WorldWideScience

Sample records for biomineralization precursors clusters

  1. Energetic clues to pathways to biomineralization: Precursors, clusters, and nanoparticles

    OpenAIRE

    Navrotsky, Alexandra

    2004-01-01

    Nanoparticle and nanocluster precursors may play a major role in biomineralization. The small differences in enthalpy and free energy among metastable nanoscale phases offer controlled thermodynamic and mechanistic pathways. Clusters and nanoparticles offer concentration and controlled transport of reactants. Control of polymorphism, surface energy, and surface charge on nanoparticles can lead to morphological control and appropriate growth rates of biominerals. Rather than conventional nucle...

  2. Biomineralization

    DEFF Research Database (Denmark)

    Sand, K. K.; Pedersen, C. S.; Sjöberg, S.;

    2014-01-01

    Our results demonstrate that in addition to being used for controlling morphology during calcite growth, polysaccharide (PS) that has been designed for biomineralization is also extremely robust, influencing calcite reactions even after millions of years. We investigated calcite (CaCO3) behavior in...... solutions with very small concentrations of PS that was produced ∼70 Ma ago by coccolithophorids. We used atomic force microscopy (AFM) and the constant composition method to monitor calcite growth in the presence of this ancient PS. The ancient PS is still very active and has a high affinity for calcite...... step edges. Adsorption, even at extremely low concentrations (0.5 μg/mL), results in decreased growth rate and dramatic morphology changes during growth and dissolution. The experimental results are complemented with surface complexation modeling for adsorption of components of polysaccharide from a...

  3. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    Science.gov (United States)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  4. Efficient selection of biomineralizing DNA aptamers using deep sequencing and population clustering.

    Science.gov (United States)

    Bawazer, Lukmaan A; Newman, Aaron M; Gu, Qian; Ibish, Abdullah; Arcila, Mary; Cooper, James B; Meldrum, Fiona C; Morse, Daniel E

    2014-01-28

    DNA-based information systems drive the combinatorial optimization processes of natural evolution, including the evolution of biominerals. Advances in high-throughput DNA sequencing expand the power of DNA as a potential information platform for combinatorial engineering, but many applications remain to be developed due in part to the challenge of handling large amounts of sequence data. Here we employ high-throughput sequencing and a recently developed clustering method (AutoSOME) to identify single-stranded DNA sequence families that bind specifically to ZnO semiconductor mineral surfaces. These sequences were enriched from a diverse DNA library after a single round of screening, whereas previous screening approaches typically require 5-15 rounds of enrichment for effective sequence identification. The consensus sequence of the largest cluster was poly d(T)30. This consensus sequence exhibited clear aptamer behavior and was shown to promote the synthesis of crystalline ZnO from aqueous solution at near-neutral pH. This activity is significant, as the crystalline form of this wide-bandgap semiconductor is not typically amenable to solution synthesis in this pH range. High-resolution TEM revealed that this DNA synthesis route yields ZnO nanoparticles with an amorphous-crystalline core-shell structure, suggesting that the mechanism of mineralization involves nanoscale coacervation around the DNA template. We thus demonstrate that our new method, termed Single round Enrichment of Ligands by deep Sequencing (SEL-Seq), can facilitate biomimetic synthesis of technological nanomaterials by accelerating combinatorial selection of biomolecular-mineral interactions. Moreover, by enabling direct characterization of sequence family demographics, we anticipate that SEL-Seq will enhance aptamer discovery in applications employing additional rounds of screening. PMID:24341560

  5. Surface reconstruction precursor to melting in Au309 clusters

    Directory of Open Access Journals (Sweden)

    Fuyi Chen

    2011-09-01

    Full Text Available The melting of gold cluster is one of essential properties of nanoparticles and revisited to clarify the role played by the surface facets in the melting transition by molecular dynamics simulations. The occurrence of elaborate surface reconstruction is observed using many-body Gupta potential as energetic model for 309-atom (2.6 nm decahedral, cuboctahedral and icosahedral gold clusters. Our results reveal for the first time a surface reconstruction as precursor to the melting transitions. The surface reconstruction lead to an enhanced melting temperature for (100 faceted decahedral and cuboctahedral cluster than (111 faceted icosahedral gold cluster, which form a liquid patch due to surface vacancy.

  6. Dynamics of Biomineralization and Biodemineralization

    OpenAIRE

    Wang, Lijun; Nancollas, George H.

    2010-01-01

    In order to understand the fundamental processes leading to biomineralization, this chapter focuses on the earliest events of homo/heterogeneous nucleation from an initial supersaturated solution phase and subsequent growth involving various possible precursor phases (amorphous or crystalline) to the final mineral phase by specific template and other influences. We also discuss how the combination of macroscopic constant composition and microscopic atomic force microscopy provides insights in...

  7. Are nuclear star clusters the precursors of massive black holes?

    CERN Document Server

    Neumayer, Nadine

    2012-01-01

    We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has black holes with masses less than 10^6 Msolar, if any. We also derive new upper limits for nuclear star cluster (NC) masses in massive galaxies with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low mass end of the global-to-nucleus relations. We find the following (1) The M_BH-sigma relation cannot flatten at low masses, but may steepen. (2) The M_BH-M_bulge relation may well flatten in contrast. (3) The M_BH-Sersic n relation is able to account for the large scatter in black hole masses in low-mass disk galaxies. Outliers in the M_BH-Sersic n relation seem to be dwarf elliptical galaxies. When plotting M_BH versus M_NC we find three different regimes: (a) nuclear cluster dominated nuclei, (b) a transition region, and (c) black hole-dominated nuclei. This is consistent with the picture, in which black ho...

  8. Cluster self-organization of silicate and germanate systems: Invariant suprapolyhedral cluster precursors and self-assembly of the crystal structures of Li,TR silicates (germanates)

    International Nuclear Information System (INIS)

    The initial stages of formation of suprapolyhedral clusters (containing polyhedra of different types) in an evolving chemical system are considered. The suprapolyhedral clusters of the chain and cyclic types are used for modeling two-dimensional periodic structures. The developed model is used to search for cluster precursors in the structures of Li,TR silicates (germanates) of the known structure types. The complete threedimensional reconstruction of the self-assembly of Li,TR silicates (germanates) is performed using computer methods (with the TOPOS program package) according to the following scheme: cluster precursor → primary chain → microlayer → microframework (supraprecursor) → ... framework. Two types of invariant cyclic cluster precursors composed of the TR polyhedra linked by tetrahedra and the TR polyhedra joined by diorthotetrahedra are identified in five and two structures, respectively. It is revealed that the lithium atoms are located at the centers of all clusters. New types of two-dimensional nets with a hierarchical structure formed as a result of the packing of cyclic four-, six-, and eight-node clusters are described.

  9. Biomineralization in perforate foraminifera

    OpenAIRE

    L. J. de Nooijer; H. J. Spero; Erez, J.; Bijma, J.; Reichart, G. J.

    2014-01-01

    In this paper, we review the current understanding of biomineralization in perforate foraminifera. Ideas on the mechanisms responsible for the flux of Ca2 + and inorganic carbon from seawater into the test were originally based on light and electron microscopic observations of calcifying foraminifera. From the 1980s onward, tracer experiments, fluorescent microscopy and high-resolution test geochemical analysis have added to existing calcification models. Despite recent insights, no general c...

  10. Biomineralization: mineral formation by organisms

    Science.gov (United States)

    Addadi, Lia; Weiner, Steve

    2014-09-01

    Organisms form many different types of minerals, with diverse shapes and sizes. These minerals fulfill a variety of functions. Inspired by the late H A Lowenstam, Steve Weiner and Lia Addadi have addressed many questions that relate to the mechanisms by which biological organisms produce these mineral phases and how their structures relate to their functions. Addadi and Weiner have explored the manner in which macromolecules extracted from mineralized tissues can interact with some crystal planes and not others, how these macromolecules can be occluded inside the forming crystals residing preferentially on specific crystal planes, and how they can induce one polymorph of calcium carbonate and not another to nucleate. Addadi and Weiner have also identified a novel strategy used by the sea urchin to form its smooth and convoluted mineralized skeletal elements. The strategy involves the initial production by cells of a highly disordered mineral precursor phase in vesicles, and then the export of this so-called amorphous phase to the site of skeletal formation, where it crystallizes. This strategy is now known to be used by many different invertebrate phyla, as well as by vertebrates to build bones and teeth. One of the major current research aims of the Weiner--Addadi group is to understand the biomineralization pathways whereby ions are extracted from the environment, are transported and deposited inside cells within vesicles, how these disordered phases are then transferred to the site of skeletal formation, and finally how the so-called amorphous phase crystallizes. Biology has clearly evolved unique strategies for forming crystalline minerals. Despite more than 300 years of research in this field, many challenging questions still remain unanswered.

  11. Overview of Biomineralization and Nanobacteria

    Science.gov (United States)

    Ciftcioglu, N.; McKay, D. S.

    2005-01-01

    Biomineralization is a frequently used term in nanotechnology, astrobiology, geology, and medicine. In the process of biomineralization, a living organism provides a chemical environment that controls the nucleation and growth of unique mineral phases. Often these materials exhibit hierarchical structural order, leading to superior physical properties, not found either in their inorganic counterparts or in synthetic materials. Biomineralization is widespread in the biosphere and hundreds of different minerals are produced or assisted by a variety of organisms from bacteria to humans. Teeth, bones, kidney stones, and skeletons of algae, mussels, and magnetotactic bacteria are all examples of biomineralization. We do not fully understand the control mechanism of biomineralization either in primitive or in developed organisms. The presence of organic molecules, among other characteristics, can influence the coherence length for X-ray scattering in biogenic crystals. Control over biomineral properties can be accomplished at a myriad of levels, including the regulation of particle size, shape, crystal orientation, polymorphic structure, defect texture, and particle assembly. In the latter case, cellular processes enable control in both the spatial and temporal domain in such a way that hierarchical composite structures can be built which increase the toughness and durability of the material, which is invaluable for load-bearing materials such as bones, teeth, mollusk shells, etc. Durability of biominerals produces remarkably preserved bacterial and cyanobacterial microfossils from billions of years-old samples. The differentiation between microfossils and nonbiogenic artifacts has been a lively discussion subject in astrobiology especially in the last decade. Clearly, more detailed information on the mechanism of biomineralization, and the effect of organic matter on crystal formation/fossilization would help focus such discussions.

  12. Biomineralization : A crystal-clear view

    OpenAIRE

    Cölfen, Helmut

    2010-01-01

    The mechanisms of biomineralization remain hotly debated. Now high-resolution microscopy yields unsurpassed insight into mechanisms relevant both to the biomineralization of bone and teeth and to pathological mineralization.

  13. Ethynide-stabilized high-nuclearity silver(i) sulfido molecular clusters assembled using organic sulfide precursors.

    Science.gov (United States)

    Chen, Zi-Yi; Tam, Dennis Y S; Mak, Thomas C W

    2016-05-01

    Inexpensive 1,1'-thiocarbonyldiimidazole and di(2-pyridyl) thionocarbonate have been used as respective sulfide precursors to assemble unprecedented high-nuclearity ethynide-stabilized silver(i) sulfido molecular clusters [Ag9S6@Ag36(C[triple bond, length as m-dash]C(t)Bu)32(H2O)2] [Ag(imidazole)(CH3OH)(H2O)](BF4)2·8H2O·2CH3OH (1) and [Ag120S24(PhC[triple bond, length as m-dash]C)52Cl4(2-pyridone)10(H2O)8](H3O)4(SiF6)8(BF4)4·CH3OH·22H2O (2), the latter being the largest isolated silver(i) ethynide cluster reported to date. PMID:27071972

  14. Hybrid Cluster Precursors of the LaZrO Insulator for Transistors: Properties of High-Temperature-Processed Films and Structures of Solutions, Gels, and Solids.

    Science.gov (United States)

    Li, Jinwang; Zhu, Peixin; Hirose, Daisuke; Kohara, Shinji; Shimoda, Tatsuya

    2016-01-01

    In the solution processing of oxide electronics, the structure of metal-organic precursors in solution and their effect on processability and on the final structure and properties of the oxide have rarely been studied. We have observed that hybrid clusters, having inorganic cores coordinated by organic ligands, are the typical form of metal-organic precursor structures. For insulating ternary LaZrO, improved synthesis of the cluster precursor under solvothermal conditions led to low-temperature deposition of the film at 200 °C, as we will report in another paper. In the current paper, we first briefly show that solvothermal synthesis of the precursor resulted in significantly improved insulating properties (e.g., two orders lower leakage current) of high-temperature-annealed films, and then focus on the structural analysis of the cluster precursors and annealed solids and relate the results to the significant improvement of properties by solvothermal treatment of solutions. A change in the cluster core toward structural unification was brought about by solvothermal treatment, resulting in higher uniformity and higher stability of clusters. The final structure of the material maintained the features of the core structure in solution, even after annealing at high temperatures. These results demonstrate the key role played by designing cluster structure in solution. PMID:27411971

  15. Synthesis of Co-containing mesoporous carbon foams using a new cobalt-oxo cluster as a precursor

    International Nuclear Information System (INIS)

    A novel trinuclear cobalt-oxo cluster 2[Co3O(Ac)6(H2O)3]·H2O (Co-OXO) has been obtained and characterized by X-ray single-crystal diffraction and elemental analysis. The structure of Co-OXO displays 3D supramolecular networks through hydrogen bonds and generates boron nitride (bnn) topology. Co-OXO was further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs), which exhibit highly ordered mesostructure with specific surface area of 614 m2 g−1 and uniform pore size of 2.7 nm. Charge–discharge tests show that the specific discharge capacitance of Co-MCFs is 7% higher than that of the MCFs at the current density of 100 mA g−1, and 26% higher than that of MCFs at the current density of 3 A g−1. The electrochemical behaviors of Co-MCFs are obviously improved due to the improved wettability, increased graphitization degree and the pseudo-capacitance through additional faradic reactions arising from cobalt. - Graphical Abstract: A new trinuclear cobalt-oxo cluster, 2[Co3O(Ac)6(H2O)3]·H2O (1), was obtained and further used as a precursor to synthesize Co-containing mesoporous carbon foams (Co-MCFs) which exhibit improved electrochemical behaviors. Highlights: ► A new trinuclear cobalt-oxo cluster (1) were obtained. ► 1 is joined by hydrogen bonds to construct a 3D structure showing bnn topology. ► 1 was further used to obtain Co-containing mesoporous carbon foams (Co-MCFs). ► Co-MCFs exhibit highly ordered mesostructure and uniform pore sizes. ► Electrochemical behaviors of Co-MCFs are obviously improved compared with pure MCFs.

  16. Zintl Clusters as Wet-Chemical Precursors for Germanium Nanomorphologies with Tunable Composition.

    Science.gov (United States)

    Bentlohner, Manuel M; Waibel, Markus; Zeller, Patrick; Sarkar, Kuhu; Müller-Buschbaum, Peter; Fattakhova-Rohlfing, Dina; Fässler, Thomas F

    2016-02-12

    [Ge9](4-) Zintl clusters are used as soluble germanium source for a bottom-up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9 ](4-) clusters in a template mold using SiCl4 , GeCl4 , and PCl3 leading to Si and P-containing Ge phases as shown by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analysis. [Ge9](4-) clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. (1)H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9](4-). Subsequent annealing leads to crystalline Ge. As an example for wet-chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P-doped inverse opal-structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small-angle X-ray scattering. PMID:26633085

  17. Intrinsically disordered proteins and biomineralization.

    Science.gov (United States)

    Boskey, Adele L; Villarreal-Ramirez, Eduardo

    2016-01-01

    In vertebrates and invertebrates, biomineralization is controlled by the cell and the proteins they produce. A large number of these proteins are intrinsically disordered, gaining some secondary structure when they interact with their binding partners. These partners include the component ions of the mineral being deposited, the crystals themselves, the template on which the initial crystals form, and other intrinsically disordered proteins and peptides. This review speculates why intrinsically disordered proteins are so important for biomineralization, providing illustrations from the SIBLING (small integrin binding N-glycosylated) proteins and their peptides. It is concluded that the flexible structure, and the ability of the intrinsically disordered proteins to bind to a multitude of surfaces is crucial, but details on the precise-interactions, energetics and kinetics of binding remain to be determined. PMID:26807759

  18. Spatial Patterns of Carbonate Biomineralization in Biofilms

    OpenAIRE

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.; Packman, Aaron I.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aerug...

  19. Evolutionary origins of animal skeletal biomineralization.

    Science.gov (United States)

    Murdock, Duncan J E; Donoghue, Philip C J

    2011-01-01

    The evolutionary history of biomineralization in animals is crucial to our understanding of modern mineralized tissues. Traditional methods of unravelling this history have aimed to derive a theory of the development of biomineralization through evolution by the comparison of mineralized systems in model organisms. This has led to the recognition of the 'biomineralization toolkit' and raised the question of the homology of mineralized tissues versus convergent or parallel evolution. The 'new animal phylogeny' reveals that many of the groups known to biomineralize sit among close relatives that do not, and it favours an interpretation of convergent or parallel evolution for biomineralization in animals. In addition, the fossil record of the earliest mineralized skeletons presents a rapid proliferation of biomineralization across a range of animal phyla with fossil representatives of many modern biomineralizing phyla. A synthesis of molecular, developmental, phylogenetic and fossil evidence demonstrates the convergent or parallel evolution of biomineralization in animals at the phylum level. The fossil record of the Cambrian explosion not only provides vital evidence for the evolution of animal mineralized tissues but also suggests a mechanism for its rapid and synchronous convergent origin. PMID:21625061

  20. Genomic Insights into the Biomineralization and Environmental Function of Magnetotactic Bacteria

    Science.gov (United States)

    Lin, W.; Pan, Y.

    2015-12-01

    Microorganisms have populated the Earth for billions of years and their activities are important biologic forces shaping our planetary environments. Microbial biomineralization that selectively take up environmental elements (e.g., C, S, P, Fe) and synthesize minerals either intracellularly or extracellularly is of great interest. One of the most interesting examples of these types of organisms are magnetotactic bacteria (MTB), a polyphyletic group of prokaryotes that uptake iron from aquatic habitats and biomineralize intracellular nano-sized iron minerals of magnetite (Fe3O4) and/or greigite (Fe3S4), known as magnetosomes, and orientate and swim along the Earth's magnetic field. However, our knowledge on the biomineralization mechanisms of MTB and their environmental function remains very limited because the genomic information of most MTB is still not fully understood. By using metagenomic approaches, we have acquired genomic sequences of environmental MTB communities and discovered several conserved genomic fragments containing gene operons for magnetite or greigite biomineralization from Proteobacteria and Nitrospirae MTB. The comparison of these gene clusters has provided valuable insights into the origin and evolution of magnetosome biomineralization. We further obtained several draft genomes of uncultivated MTB belonging to the phylum Nitrospirae, which reveals a metabolic flexibility of this poorly understood magnetotactic group and indicates their considerable roles in the biogeochemical cycles of iron and sulfur.

  1. Phosphate Biomineralization of Cambrian Microorganisms

    Science.gov (United States)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  2. Biomineralization mechanisms: a kinetics and interfacial energy approach

    Science.gov (United States)

    Nancollas, George H.; Wu, Wenju

    2000-04-01

    The calcium phosphates and oxalates are among the most frequently encountered biomineral phases and numerous kinetics studies have been made of their crystallization and dissolution in supersaturated and undersaturated solutions, respectively. These have focused mainly on parameters such as solution composition, ionic strength, pH, temperature, and solid surface characteristics. There is considerable interest in extending such studies to solutions more closely simulating the biological milieu. The constant composition method is especially useful for investigating the mechanisms of these reactions, and in the present work, the interfacial tensions between water and each of these surfaces have been calculated from measured contact angles using surface tension component theory. Values for the calcium phosphate phases such as dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), hydroxyapatite (HAP), and fluorapatite (FAP) may be compared with data calculated from dissolution kinetics experiments invoking different reaction mechanisms. Agreement between the directly measured interfacial energies and those calculated from the kinetics experiments provides valuable corroborative information about individual growth and dissolution mechanisms. For the calcium phosphates, the much smaller interfacial tensions of OCP and DCPD in contact with water as compared with those of HAP and FAP support the suggestion that the former phases are precursors in HAP and FAP biomineralization. The ability of a surface to nucleate mineral phases is closely related to the magnitude of the interfacial energies. Constant composition studies have also shown that HAP is an effective nucleator of calcium oxalate monohydrate, both of which are frequently observed in renal stones.

  3. Silicon Biomineralization on the Earth

    Science.gov (United States)

    Mitra, D.; Das, S.

    2010-12-01

    Silicon biomineralization in nature occurs as either ‘biologically controlled biomineralization’; where silicon is precipitated to serve some physiological purpose; or as ‘biologically induced biomineralization’; where mineralization occurs as a byproduct of cell’s metabolic activity or through its interactions with the environment. In biologically controlled mineralization, there is an overwhelming control of the microorganism on nucleation and mineral growth stage. There is delineation of space (as intracellular silica deposition vesicle (SDV)) for the locus of mineralization, which is sealed off from the external environment. Then silicate is sequestered and transferred to the mineralization site by energy driven (energy may be derived from photosynthesis or from glucose metabolism) pump mechanism in presence of specific transporter protein. In biologically induced biomineralization, first, there is silicon nucleation, which leads to the spontaneous growth of some critical nuclei which are resistant to rapid dissolution. Then growth of these silicon nuclei (if the ions are same) or precipitation over the nuclei (if the ions are different) occurs. Ultimately the initial amorphous phase is converted into a crystalline phase. Silicon deposition may also occur due to Ostwald ripening. If silica concentration is more than the solubility of amorphous silica (at 100oC ~ 380 mg L-1), monomeric silica [Si(OH)4] is formed which is converted into oligomers (dimers, trimers and tetramers) by polymerization. Ultimately large polymers of silanol (-Si-OH-) and siloxane (-Si-O-Si-) are formed. Silicification then occurs by hydrogen bonding with neutrally charged polysaccharides, by cation bridging with the cell wall or by direct electrostatic interactions with cationic amino groups present in protein-rich biofilms. Diatoms are the world’s largest contributor to biomineralization of silicon. Diatom silicon transporters (SITs) are membrane associated proteins that

  4. Biomineralization Guided by Paper Templates.

    Science.gov (United States)

    Camci-Unal, Gulden; Laromaine, Anna; Hong, Estrella; Derda, Ratmir; Whitesides, George M

    2016-01-01

    This work demonstrates the fabrication of partially mineralized scaffolds fabricated in 3D shapes using paper by folding, and by supporting deposition of calcium phosphate by osteoblasts cultured in these scaffolds. This process generates centimeter-scale free-standing structures composed of paper supporting regions of calcium phosphate deposited by osteoblasts. This work is the first demonstration that paper can be used as a scaffold to induce template-guided mineralization by osteoblasts. Because paper has a porous structure, it allows transport of O2 and nutrients across its entire thickness. Paper supports a uniform distribution of cells upon seeding in hydrogel matrices, and allows growth, remodelling, and proliferation of cells. Scaffolds made of paper make it possible to construct 3D tissue models easily by tuning material properties such as thickness, porosity, and density of chemical functional groups. Paper offers a new approach to study mechanisms of biomineralization, and perhaps ultimately new techniques to guide or accelerate the repair of bone. PMID:27277575

  5. Single-step co-deposition of nanostructured tungsten oxide supported gold nanoparticles using a gold–phosphine cluster complex as the gold precursor

    International Nuclear Information System (INIS)

    The use of a molecular gold organometallic cluster in chemical vapour deposition is reported, and it is utilized, together with a tungsten oxide precursor, for the single-step co-deposition of (nanostructured) tungsten oxide supported gold nanoparticles (NPs). The deposited gold-NP and tungsten oxide supported gold-NP are highly active catalysts for benzyl alcohol oxidation; both show higher activity than SiO2 supported gold-NP synthesized via a solution-phase method, and tungsten oxide supported gold-NP show excellent selectivity for conversion to benzaldehyde. (paper)

  6. The magnetosome model: insights into the mechanisms of bacterial biomineralization

    OpenAIRE

    Rahn-Lee, Lilah; Komeili, Arash

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aqu...

  7. The Magnetosome Model: Insights into the Mechanisms of Bacterial Biomineralization

    OpenAIRE

    Lilah eRahn-Lee; Arash eKomeili

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of a...

  8. Biomineral Structure and Strength of Barnacle Exoskeletons

    Science.gov (United States)

    Swift, Nathan

    2011-03-01

    Studying the construction of organic-inorganic compound structures through biomineralization is potentially very useful. During biomineral formation, organisms restructure naturally occurring minerals in conjunction with their own organically produced minerals to create new structures. While there is extensive knowledge about material properties and structure of the raw minerals themselves, insight into how specific biomineral structures and compounds contribute to an object's mechanical properties is lacking. In this study, the exoskeletons of barnacles from the genus Balanus were examined, both for their physical structure (how they're put together) and for their mechanical properties (strength, hardness, and elasticity). Scanning electron microscopy produced close-up, detailed images of the inner shell structure to determine what type of structure barnacles build during exoskeleton formation. Energy dispersive x-ray spectroscopy was used to map the elemental components of the shells. Nanoindentation tested the mechanical properties of these mapped structures to determine how certain characteristics of the exoskeleton contribute to its mechanical properties.

  9. Biomineralization of uraninite and uranyl phosphate controlled by organic acids

    International Nuclear Information System (INIS)

    Biomineralization of uraninite (UO2) and uranyl phosphate minerals are both able to decrease the mobility of uranium in the environment. We examined biomineralization of UO2 and uranyl phosphate by Shewanella putrefaciens in the basic medium containing lactate as an electron donor, β- glycerolphosphate as a phosphorous source, and uranyl nitrate in the absence and presence of weak or strong complexing organic acids (WCOA or SCOA) under an anaerobic condition. In the basic medium, only biomineralization of UO2 was observed because of rapid reduction of U(VI). Biomineralization of UO2 and uranyl phosphate occurred in the media with WCOA, however the no biomineralization was occurred in the presence of SCOA. It is thought that formation of stable U(VI)-, and U(IV)- organic complexes prevents the biomineralization. These finding suggest that coexisting organic acids control the biomineralization of UO2 and uranyl phosphate minerals by microorganisms. (author)

  10. Biomineralization of metal carbonates by Neurospora crassa.

    Science.gov (United States)

    Li, Qianwei; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2014-12-16

    In this research, the urease-positive fungus Neurospora crassa was investigated for the biomineralization of calcium carbonate and its potential application in metal biorecovery and/or bioremediation. After 12 d incubation at 25 °C in urea and calcium-containing medium, extensive biomineralization of fungal filaments was observed. Energy dispersive X-ray analysis of crystalline precipitates on the hyphae of N. crassa showed that the main elements present in the crystals were Ca, C, and O. X-ray diffraction (XRD) of the precipitates showed they were composed solely of calcite (CaCO3) and over 90% Ca could be removed from the media by the fungal biomass and associated calcite precipitation. To further investigate biologically induced metal carbonate biomineralization, CdCl2 was contacted with supernatants of N. crassa obtained after growth in urea-containing medium. XRD showed that the Cd(2+) was precipitated as pure otavite (CdCO3) with a particle size range of 55 to 870 nm, and approximately 1.5% having nanoscale dimensions. These results provide direct experimental evidence for the precipitation of metal carbonates such as calcite and otavite based on biologically induced mineralization, and suggest that urease-positive fungi may play a potential role in the synthesis of novel biominerals and in metal bioremediation or biorecovery. PMID:25423300

  11. Biomineralization and magnetism of bacterial magnetosomes

    Institute of Scientific and Technical Information of China (English)

    PAN Yongxin; DENG Chenglong; LIU Qingsong; Nikolai Petersen; ZHU Rixiang

    2004-01-01

    Magnetosomes of magnetotactic bacteria are of great interest in understanding biomineralization and possible links between organisms and geomagnetic field. Fossil magnetosomes are ubiquitous in marine and lake sediments and may significantly contribute to magnetic signals. In this review, we firstly introduce some characteristics of magnetotactic bacteria, followed by considering recent progress in magnetosome formation, magnetic measurements, and identification of bacterial magnetites in bulk sediments as well as their paleoenvironmental implications. Finally, we briefly discuss potential future breakthroughs in magnetosome studies and its applications.

  12. Role of Matrix Vesicles in Biomineralization

    OpenAIRE

    Golub, Ellis E.

    2009-01-01

    Matrix vesicles have been implicated in the mineralization of calcified cartilage, bone and dentin for more than 40 years. During this period, their exact role, if any in the nucleation of hydroxyapatite mineral, and its subsequent association with the collagen fibrils in the organic matrix has been debated and remains controversial. Several hypotheses have been recently introduced to explain in greater detail how matrix vesicles function in biomineralization. This review will summarize recen...

  13. Diffusion Systems for Evaluation of Biomineralization

    OpenAIRE

    Silverman, L.; Boskey, A. L.

    2004-01-01

    A variety of in vitro study methods have been used to elucidate the roles of matrix molecules in biomineralization processes. Among these, gel diffusion-precipitation studies have proved to be an effective tool. This methodology is uniquely capable of characterizing the effects of matrix molecules on mineralization while only using very small quantities of material. Furthermore, gel methods have been extended for use as a mineralization assay system to characterize modified matrix molecules a...

  14. Hierarchical structure and biomineralization in cricket teeth

    International Nuclear Information System (INIS)

    The cricket is a truculent insect with stiff and sharp teeth as a fighting weapon. The structure and possible biomineralization of cricket teeth are always interesting. Synchrotron radiation X-ray fluorescence, X-ray diffraction, and small angle X-ray scattering techniques were used to probe the element distribution, possible crystalline structures and size distribution of scatterers in cricket teeth. A scanning electron microscope was used to observe the nanoscaled structure. The results demonstrate that Zn is the main heavy element in cricket teeth. The surface of a cricket tooth has a crystalline compound like ZnFe2(AsO4)2(OH)2(H2O)4. The interior of the tooth has a crystalline compound like ZnCl2, which is from the biomineralization. The ZnCl2-like biomineral forms nanoscaled microfibrils and their axial direction points towards the top of the tooth cusp. The microfibrils aggregate randomly into intermediate filaments, forming a hierarchical structure. A sketch map of the cricket tooth cusp is proposed and a detailed discussion is given in this paper. (authors)

  15. Hierarchical structure and biomineralization in cricket tooth

    CERN Document Server

    Xing, Xueqing; Cai, Quan; Mo, Guang; Du, Rong; Chen, Zhongjun; Wu, Zhonghua

    2012-01-01

    Cricket is a truculent insect with stiff and sharp teeth as a fighting weapon. The structure and possible biomineralization of the cricket teeth are always interested. Synchrotron radiation X-ray fluorescence, X-ray diffraction and small angle X-ray scattering techniques were used to probe the element distribution, possible crystalline structures and size distribution of scatterers in cricket teeth. Scanning electron microscope was used to observe the nanoscaled structure. The results demonstrate that Zn is the main heavy element in cricket teeth. The surface of the cricket teeth has a crystalline compound like ZnFe2(AsO4)2(OH)2(H2O)4. While, the interior of the teeth has a crystalline compound like ZnCl2, which is from the biomineralization. The ZnCl2-like biomineral forms nanoscaled microfibrils and their axial direction points at the top of tooth cusp. The microfibrils aggregate random into intermediate filaments, forming a hierarchical structure. A sketch map of the cricket tooth cusp was proposed and a d...

  16. Fungal Biomineralization of Manganese as a Novel Source of Electrochemical Materials.

    Science.gov (United States)

    Li, Qianwei; Liu, Daoqing; Jia, Zheng; Csetenyi, Laszlo; Gadd, Geoffrey Michael

    2016-04-01

    Electrical energy storage systems such as rechargeable lithium-ion batteries (LiBs) and supercapacitors have shown great promise as sustainable energy storage systems [1-4]. However, LiBs have high specific energy density (energy stored per unit mass) and act as slow, steady suppliers for large energy demands. In contrast, supercapacitors possess high specific power (energy transferred per unit mass per unit time) and can charge and discharge quickly for low energy demands. In LiBs, graphite is the most common anode material, although high electrolyte sensitivity and low charge capacity can limit performance. Efforts have been made to improve LiB or supercapacitor performance using alternative electrode materials such as carbon nanotubes and manganese oxides (MnxOy) [3, 5-14]. Microorganisms play significant roles in metal and mineral biotransformations [15-22]. Fungi possess various biomineralization properties, as well as a filamentous mycelium, which may provide mechanical support for mineral deposition. Although some research has been carried out on the application of biological materials as carbon precursors [8, 9, 23], biomineralizing fungal systems have not been investigated. In this research, novel electrochemical materials have been synthesized using a fungal Mn biomineralization process based on urease-mediated Mn carbonate bioprecipitation [24]. The carbonized fungal biomass-mineral composite (MycMnOx/C) showed a high specific capacitance (>350 F g(-1)) in a supercapacitor and excellent cycling stability (>90% capacity was retained after 200 cycles) in LiBs. This is the first demonstration of the synthesis of electrode materials using a fungal biomineralization process, thus providing a novel strategy for the preparation of sustainable electrochemical materials. PMID:26996506

  17. Biomineralization in bryozoans: present, past and future.

    Science.gov (United States)

    Taylor, Paul D; Lombardi, Chiara; Cocito, Silvia

    2015-11-01

    Many animal phyla have the physiological ability to produce biomineralized skeletons with functional roles that have been shaped by natural selection for more than 500 million years. Among these are bryozoans, a moderately diverse phylum of aquatic invertebrates with a rich fossil record and importance today as bioconstructors in some shallow-water marine habitats. Biomineralizational patterns and, especially, processes are poorly understood in bryozoans but are conventionally believed to be similar to those of the related lophotrochozoan phyla Brachiopoda and Mollusca. However, bryozoan skeletons are more intricate than those of these two phyla. Calcareous skeletons have been acquired independently in two bryozoan clades - Stenolaemata in the Ordovician and Cheilostomata in the Jurassic - providing an evolutionary replicate. This review aims to highlight the importance of biomineralization in bryozoans and focuses on their skeletal ultrastructures, mineralogy and chemistry, the roles of organic components, the evolutionary history of bimineralization in bryozoans with respect to changes in seawater chemistry, and the impact of contemporary global changes, especially ocean acidification, on bryozoan skeletons. Bryozoan skeletons are constructed from three different wall types (exterior, interior and compound) differing in the presence/absence and location of organic cuticular layers. Skeletal ultrastructures can be classified into wall-parallel (i.e. laminated) and wall-perpendicular (i.e. prismatic) fabrics, the latter apparently found in only one of the two biomineralizing clades (Cheilostomata), which is also the only clade to biomineralize aragonite. A plethora of ultrastructural fabrics can be recognized and most occur in combination with other fabrics to constitute a fabric suite. The proportion of aragonitic and bimineralic bryozoans, as well as the Mg content of bryozoan skeletons, show a latitudinal increase into the warmer waters of the tropics. Responses

  18. Biominerals at the nanoscale: transmission electron microscopy methods for studying the special properties of biominerals

    DEFF Research Database (Denmark)

    Posfai, Mihaly; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2013-01-01

    Biominerals have important functions in living organisms: apatite crystals are responsible for the strength of our bones and the hardness of our teeth, calcite and aragonite are used by many organisms for making shells, and magnetite and greigite help bacteria and birds to navigate in magnetic...... minerals that form in the cells of magnetotactic bacteria....

  19. Clustering

    Directory of Open Access Journals (Sweden)

    Jinfei Liu

    2013-04-01

    Full Text Available DBSCAN is a well-known density-based clustering algorithm which offers advantages for finding clusters of arbitrary shapes compared to partitioning and hierarchical clustering methods. However, there are few papers studying the DBSCAN algorithm under the privacy preserving distributed data mining model, in which the data is distributed between two or more parties, and the parties cooperate to obtain the clustering results without revealing the data at the individual parties. In this paper, we address the problem of two-party privacy preserving DBSCAN clustering. We first propose two protocols for privacy preserving DBSCAN clustering over horizontally and vertically partitioned data respectively and then extend them to arbitrarily partitioned data. We also provide performance analysis and privacy proof of our solution..

  20. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1.

    Science.gov (United States)

    Murat, Dorothée; Falahati, Veesta; Bertinetti, Luca; Csencsits, Roseann; Körnig, André; Downing, Kenneth; Faivre, Damien; Komeili, Arash

    2012-08-01

    Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria. PMID:22716969

  1. Biomineralizations: insights and prospects from crustaceans

    Directory of Open Access Journals (Sweden)

    Gilles Luquet

    2012-03-01

    Full Text Available For growing, crustaceans have to molt cyclically because of the presence of a rigid exoskeleton. Most of the crustaceans harden their cuticle not only by sclerotization, like all the arthropods, but also by calcification. All the physiology of crustaceans, including the calcification process, is then linked to molting cycles. This means for these animals to find regularly a source of calcium ions quickly available just after ecdysis. The sources of calcium used are diverse, ranging from the environment where the animals live to endogenous calcium deposits cyclically elaborated by some of them. As a result, crustaceans are submitted to an important and energetically demanding calcium turnover throughout their life. The mineralization process occurs by precipitation of calcium carbonate within an organic matrix network of chitin-proteins fibers. Both crystalline and stabilized amorphous polymorphs of calcium carbonate are found in crustacean biominerals. Furthermore, Crustacea is the only phylum of animals able to elaborate and resorb periodically calcified structures. Notably for these two previous reasons, crustaceans are more and more extensively studied and considered as models of choice in the biomineralization research area.

  2. Ureolytic Biomineralization Reduces Proteus mirabilis Biofilm Susceptibility to Ciprofloxacin.

    Science.gov (United States)

    Li, Xiaobao; Lu, Nanxi; Brady, Hannah R; Packman, Aaron I

    2016-05-01

    Ureolytic biomineralization induced by urease-producing bacteria, particularly Proteus mirabilis, is responsible for the formation of urinary tract calculi and the encrustation of indwelling urinary catheters. Such microbial biofilms are challenging to eradicate and contribute to the persistence of catheter-associated urinary tract infections, but the mechanisms responsible for this recalcitrance remain obscure. In this study, we characterized the susceptibility of wild-type (ure+) and urease-negative (ure-) P. mirabilis biofilms to killing by ciprofloxacin. Ure+ biofilms produced fine biomineral precipitates that were homogeneously distributed within the biofilm biomass in artificial urine, while ure- biofilms did not produce biomineral deposits under identical growth conditions. Following exposure to ciprofloxacin, ure+ biofilms showed greater survival (less killing) than ure- biofilms, indicating that biomineralization protected biofilm-resident cells against the antimicrobial. To evaluate the mechanism responsible for this recalcitrance, we observed and quantified the transport of Cy5-conjugated ciprofloxacin into the biofilm by video confocal microscopy. These observations revealed that the reduced susceptibility of ure+ biofilms resulted from hindered delivery of ciprofloxacin into biomineralized regions of the biofilm. Further, biomineralization enhanced retention of viable cells on the surface following antimicrobial exposure. These findings together show that ureolytic biomineralization induced by P. mirabilis metabolism strongly regulates antimicrobial susceptibility by reducing internal solute transport and increasing biofilm stability. PMID:26953206

  3. Silver nanoclusters emitting weak NIR fluorescence biomineralized by BSA

    Science.gov (United States)

    Li, Baoshun; Li, Jianjun; Zhao, Junwu

    2015-01-01

    Noble metal (e.g., gold and silver) nanomaterials possess unique physical and chemical properties. In present work, silver nanoclusters (also known as silver quantum clusters or silver quantum dots) were synthesized by bovine serum albumin (BSA) biomineralization. The synthesized silver nanoclusters were characterized by UV-VIS absorption spectroscopy, fluorescence spectroscopy, upconversion emission spectroscopy, TEM, HRTEM and FTIR spectroscopy. TEM results showed that the average size of the silver nanoclusters was 2.23 nm. Fluorescence results showed that these silver nanoclusters could emit weak near-infrared (NIR) fluorescence (the central emission wavelength being about 765 nm). And the central excitation wavelength was about 395 nm, in the UV spectral region. These silver nanoclusters showed an extraordinarily large gap (about 370 nm) between the central excitation wavelength and central emission wavelength. In addition, it was found that these silver nanoclusters possess upconversion emission property. Upconversion emission results showed that the upconversion emission spectrum of the silver nanoclusters agreed well with their normal fluorescence emission spectrum. The synthesized silver nanoclusters showed high stability in aqueous solution and it was considered that they might be confined in BSA molecules. It was found that silver nanoclusters might enhance and broaden the absorption of proteins, and the protein absorption peak showed an obvious red shift (being 7 nm) after the formation of silver nanoclusters.

  4. Synchrotron Imaging of Biominerals highlights new results and challenges

    International Nuclear Information System (INIS)

    Biominerals, the mineralized tissues of animals, plants, and microorganisms, have inspired humanity with their properties and forms since prehistory. Bones and shells have been used for tools, for currency, for symbolic objects and for art in every culture. Both the fascination and the importance that biominerals present for science are made clear in Darwin's nineteenth-century writings, and in D'Arcy Wentworth Thompson's 1917 On Growth and Form, with its memorable cover illustration of the multi-chambered calcium carbonate nautilus shell. Biomineralization is now a field of study in its own right

  5. Biomineralization of nanoscale single crystal hydroxyapatite.

    Science.gov (United States)

    Omokanwaye, Tiffany; Wilson, Otto C; Gugssa, Ayelle; Anderson, Winston

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague-Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54nm and 0.23nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. PMID:26249568

  6. Brazilian biominerals for high-dose dosimetry

    International Nuclear Information System (INIS)

    The thermoluminescent (TL) signal of biominerals was studied up to 400 °C. The glow curves present TL peaks at ∼140 °C and 300 °C in the pellets (with Teflon) of coral reef, oyster shell and mother-of-pearl. The TL response to gamma radiation was found to be linear in the dose range of 10 Gy to 10 kGy, and the optically stimulated luminescence (OSL) response showed an increasing behavior in function of absorbed dose too. The TL lower detection limits of these materials were around 1.2 Gy, and the TL response reproducibility was 4.5%. The materials show a potential use for high dose dosimetry.

  7. Biomineralization of pisoliths in hot springs

    International Nuclear Information System (INIS)

    Biological activity can produce complex patterned structures in accretionary carbonate spheres (pisoliths) from hot springs. Pisoliths from a few millimeters to 50 mm diameter were collected from a geyser at the high-salinity Arima Hot Springs near Kobe, Japan. High-resolution electron microscope images show that microorganisms produced concentric laminar layers of aragonite alternating with Si- and Fe-rich layers. STEM elemental distribution maps show that the cementation of aragonite is associated with NaCl-rich bacterial cells and elevated phosphorous and sulfur concentrations. The filamentous microbes build the concentric framework for mineral laminae with a web-like network of microbial strands. The intricate patterns of mineralogical and bacterial variation in the pisoliths correlate with the change of water chemistry in the hot spring. These patterns could improve our understanding of nano-scale biomineralization. In addition, the terrestrial hot spring pisoliths might be a counterpart of the tiny spherules recently found on Mars

  8. Biomineralization and the carbon isotope record

    International Nuclear Information System (INIS)

    The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record. (Author)

  9. Shedding light on fish otolith biomineralization using a bioenergetic approach.

    Directory of Open Access Journals (Sweden)

    Ronan Fablet

    Full Text Available Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves.

  10. Shedding light on fish otolith biomineralization using a bioenergetic approach.

    Science.gov (United States)

    Fablet, Ronan; Pecquerie, Laure; de Pontual, Hélène; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A L M

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves. PMID:22110601

  11. Intracellular Ca-carbonate biomineralization is widespread in cyanobacteria.

    OpenAIRE

    Benzerara, Karim; Skouri-Panet, Feriel; Li, Jinhua; Férard, Céline; Gugger, Muriel; Laurent, Thierry; Couradeau, Estelle; Ragon, Marie; Cosmidis, Julie; Menguy, N.; Margaret-Oliver, Isabel; Tavera, Rosaluz; López-García, Purificación; Moreira, David

    2014-01-01

    Cyanobacteria have played a significant role in the formation of past and modern carbonate deposits at the surface of the Earth using a biomineralization process that has been almost systematically considered induced and extracellular. Recently, a deep-branching cyanobacterial species, Candidatus Gloeomargarita lithophora, was reported to form intracellular amorphous Ca-rich carbonates. However, the significance and diversity of the cyanobacteria in which intracellular biomineralization occur...

  12. Four hundred million years of silica biomineralization in land plants

    OpenAIRE

    Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E.; Fischer, Woodward W.

    2015-01-01

    Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diver...

  13. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    OpenAIRE

    Lechner, Carolin C.; Becker, Christian F. W.

    2015-01-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typic...

  14. The Magnetosome Model: Insights into the Mechanisms of Bacterial Biomineralization

    Directory of Open Access Journals (Sweden)

    Lilah eRahn-Lee

    2013-11-01

    Full Text Available Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4 or the iron sulfide greigite (Fe3S4. Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds.

  15. The magnetosome model: insights into the mechanisms of bacterial biomineralization.

    Science.gov (United States)

    Rahn-Lee, Lilah; Komeili, Arash

    2013-01-01

    Though the most ready example of biomineralization is the calcium phosphate of vertebrate bones and teeth, many bacteria are capable of creating biominerals inside their cells. Because of the diversity of these organisms and the minerals they produce, their study may reveal aspects of the fundamental mechanisms of biomineralization in more complex organisms. The best-studied case of intracellular biomineralization in bacteria is the magnetosome, an organelle produced by a diverse group of aquatic bacteria that contains single-domain crystals of the iron oxide magnetite (Fe3O4) or the iron sulfide greigite (Fe3S4). Here, recent advances in our understanding of the mechanisms of bacterial magnetite biomineralization are discussed and used as a framework for understanding less-well studied examples, including the bacterial intracellular biomineralization of cadmium, selenium, silver, nickel, uranium, and calcium carbonate. Understanding the molecular mechanisms underlying the biological formation of these minerals will have important implications for technologies such as the fabrication of nanomaterials and the bioremediation of toxic compounds. PMID:24324464

  16. Four hundred million years of silica biomineralization in land plants

    Science.gov (United States)

    Trembath-Reichert, Elizabeth; Wilson, Jonathan Paul; McGlynn, Shawn E.; Fischer, Woodward W.

    2015-04-01

    Biomineralization plays a fundamental role in the global silicon cycle. Grasses are known to mobilize significant quantities of Si in the form of silica biominerals and dominate the terrestrial realm today, but they have relatively recent origins and only rose to taxonomic and ecological prominence within the Cenozoic Era. This raises questions regarding when and how the biological silica cycle evolved. To address these questions, we examined silica abundances of extant members of early-diverging land plant clades, which show that silica biomineralization is widespread across terrestrial plant linages. Particularly high silica abundances are observed in lycophytes and early-diverging ferns. However, silica biomineralization is rare within later-evolving gymnosperms, implying a complex evolutionary history within the seed plants. Electron microscopy and X-ray spectroscopy show that the most common silica-mineralized tissues include the vascular system, epidermal cells, and stomata, which is consistent with the hypothesis that biomineralization in plants is frequently coupled to transpiration. Furthermore, sequence, phylogenetic, and structural analysis of nodulin 26-like intrinsic proteins from diverse plant genomes points to a plastic and ancient capacity for silica accumulation within terrestrial plants. The integration of these two comparative biology approaches demonstrates that silica biomineralization has been an important process for land plants over the course of their >400 My evolutionary history.

  17. Cluster self-organization of intermetallic systems: Quasi-spherical nanocluster precursors with internal Friauf polyhedra (A-172) and icosahedra (B-137) in the Li19Na8Ba15 (hP842) crystal structure

    International Nuclear Information System (INIS)

    A combinatorial and topological analysis of Li19Na8Ba15 (hP842, a = 20 A, c = 93 A, V = 33552 A3, P3-bar) has been performed using computer methods (the TOPOS program package). Two types of crystal-forming quasi-spherical nanoclusters about 20 A in diameter with internal Friauf polyhedra (A-172) and icosahedra (B-137) have been established by the complete decomposition of the 3D factor graph of the structure into cluster substructures. Each type of nanoclusters forms close-packed 2D layers 36, which alternate along the c axis. The B-137 and A-172 nanoclusters are composed of three layers and have shell compositions (1 + 12 + 32 + 92) and (1 + 16 + 59 + 103) with local symmetries 3 and 3-bar, respectively; they were revealed for the first time in crystal structures as cluster precursors. The icosahedral B-137 nanocluster contains a 104-atom quasicrystal approximant (Samson cluster).

  18. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis.

    Science.gov (United States)

    Mass, Tali; Putnam, Hollie M; Drake, Jeana L; Zelzion, Ehud; Gates, Ruth D; Bhattacharya, Debashish; Falkowski, Paul G

    2016-04-27

    Reef-building corals begin as non-calcifying larvae that, upon settling, rapidly begin to accrete skeleton and a protein-rich skeletal organic matrix that attach them to the reef. Here, we characterized the temporal and spatial expression pattern of a suite of biomineralization genes during three stages of larval development in the reef-building coral Pocillopora damicornis: stage I, newly released; stage II, oral-aborally compressed and stage III, settled and calcifying spat. Transcriptome analysis revealed 3882 differentially expressed genes that clustered into four distinctly different patterns of expression change across the three developmental stages. Immunolocalization analysis further reveals the spatial arrangement of coral acid-rich proteins (CARPs) in the overall architecture of the emerging skeleton. These results provide the first analysis of the timing of the biomineralization 'toolkit' in the early life history of a stony coral. PMID:27122561

  19. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  20. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2014-12-01

    Full Text Available Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015 [1].

  1. Biomineralization of nanoscale single crystal hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Omokanwaye, Tiffany [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Wilson, Otto C., E-mail: wilsono@cua.edu [Catholic University of America, BONE/CRAB Lab, Department of Biomedical Engineering, Washington, DC 20064 (United States); Gugssa, Ayelle; Anderson, Winston [Howard University, Department of Biology, Washington, DC (United States)

    2015-11-01

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague–Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5 nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54 nm and 0.23 nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. - Highlights: • Nanocrystalline particles were formed during in vivo implantation of crab shell using a rat model. • High resolution TEM revealed that nanoparticles were single crystals and less than 5 nm in size. • The relative distance between spots matches the expected values for hydroxyapatite.

  2. Biomineralization of nanoscale single crystal hydroxyapatite

    International Nuclear Information System (INIS)

    The chemical and physical characteristics of nanocrystalline hydroxyapatite particles which formed during the subcutaneous implantation of crab shell in Sprague–Dawley rats were studied using selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM). The initial SAED characterization evidence indicated the presence of an amorphous calcium phosphate phase. The electron dense nanophase particles which formed in the wound healing zone displayed broad diffuse rings which usually indicate a low crystalline order or amorphous phase. High resolution transmission electron microscopy (HRTEM) revealed that these mineralized regions contained discrete single crystal particles less than 5 nm in size. Micrographs taken at successively higher magnifications revealed very small nanoparticles with a hexagonal arrangement of ion channels with characteristic spacing of 0.54 nm and 0.23 nm. This study revealed that single crystal hydroxyapatite nanoparticles consisting of only a few unit cells formed via a biomineralization directed process. - Highlights: • Nanocrystalline particles were formed during in vivo implantation of crab shell using a rat model. • High resolution TEM revealed that nanoparticles were single crystals and less than 5 nm in size. • The relative distance between spots matches the expected values for hydroxyapatite

  3. Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System.

    Science.gov (United States)

    Chang, Eric P; Roncal-Herrero, Teresa; Morgan, Tamara; Dunn, Katherine E; Rao, Ashit; Kunitake, Jennie A M R; Lui, Susan; Bilton, Matthew; Estroff, Lara A; Kröger, Roland; Johnson, Steven; Cölfen, Helmut; Evans, John Spencer

    2016-04-26

    In the nacre or aragonite layer of the mollusk shell, proteomes that regulate both the early stages of nucleation and nano-to-mesoscale assembly of nacre tablets from mineral nanoparticle precursors exist. Several approaches have been developed to understand protein-associated mechanisms of nacre formation, yet we still lack insight into how protein ensembles or proteomes manage nucleation and crystal growth. To provide additional insights, we have created a proportionally defined combinatorial model consisting of two nacre-associated proteins, C-RING AP7 (shell nacre, Haliotis rufescens) and pseudo-EF hand PFMG1 (oyster pearl nacre, Pinctada fucata), whose individual in vitro mineralization functionalities are well-documented and distinct from one another. Using scanning electron microscopy, flow cell scanning transmission electron microscopy, atomic force microscopy, Ca(II) potentiometric titrations, and quartz crystal microbalance with dissipation monitoring quantitative analyses, we find that both nacre proteins are functionally active within the same mineralization environments and, at 1:1 molar ratios, synergistically create calcium carbonate mesoscale structures with ordered intracrystalline nanoporosities, extensively prolong nucleation times, and introduce an additional nucleation event. Further, these two proteins jointly create nanoscale protein aggregates or phases that under mineralization conditions further assemble into protein-mineral polymer-induced liquid precursor-like phases with enhanced ACC stabilization capabilities, and there is evidence of intermolecular interactions between AP7 and PFMG1 under these conditions. Thus, a combinatorial model system consisting of more than one defined biomineralization protein dramatically changes the outcome of the in vitro biomineralization process. PMID:27072850

  4. Cluster self-organization of inorganic crystal-forming systems: Templated nanocluster precursors and self-assembly of framework MT structures of A/B,Zr silicates (A = Na, K; B = Ca, Sr)

    International Nuclear Information System (INIS)

    The basic concepts that are used to describe crystallization as a phenomenon of the hierarchical (cluster) self-organization of a chemical system are considered. The templation of theoretically possible nan-ocluster precursors composed of M octahedra and T tetrahedra by atoms of (A) alkaline and (B) alkaline earth metals is considered for the first time. A relationship between the A/B,M,T composition of templated nanocluster precursors with the composition of A/B,M silicates is established. The model that is developed is used to search for nanocluster precursors in framework MT structures of A/B,Zr silicates. Computer methods (TOPOS 4.0 program package) were used to perform complete 3D reconstruction of the self-assembly of all (four) structural types of A/B,Zr silicates (A = Na, K; B = Ca, Sr) with frameworks of the MT2O7 type: nan-ocluster precursor S30-primary chain S31-microlayer S32-microframework S33. The invariant type of mono-cyclic nanocluster precursor M2T4 (with the point symmetries 1-bar and 2), stabilized by one or two template cations (A and B), is determined. Bifurcations of the paths of evolution at the S31 level (structural branching point) are established for the self-assembly of the following frameworks: MT-1 in CaZrSi2O7 (gittinsite, C2), MT-2 in SrZrSi2O7 (P21/c); MT-3 in Na2ZrSi2O7 (parakeldyshite,), K2ZrSi2O7 (khibinskite, P21/b), and K2ZrGe2O7 (C2/c); and MT-4 in Na2ZrSi2O7 (H2O)(C2/c), Na3ScSi2O7 (Pbnm), and K3ScSi2O7 (P63/mmc).

  5. Trace metal accumulation in carbonate biominerals of the Atlantic Ocean

    Science.gov (United States)

    Demina, L. L.; Oskina, N. S.; Galkin, S. V.

    2016-01-01

    New data on trace metal (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb) distribution in carbonate biominerals formed in geochemically different oceanic environments are discussed. Calcite shells of shelf and deepwater hydrothermal vent mussels as well as planktic foraminifers and pteropods from the central Atlantic Ocean have been studied. The variability in concentrations of most trace elements between different groups of calcifying organisms are usually within one order of magnitude, except for Fe and Mn, the elevated contents of which in microfossils are caused by post-sedimentation interaction. Different groups of calcifying organisms demonstrate a biogeochemical uniformity in trace metal accumulation during the biomineralization processes.

  6. Biomineralization-Inspired Preparation of Zinc Hydroxide Carbonate/Polymer Hybrids and Their Conversion into Zinc Oxide Thin-Film Photocatalysts.

    Science.gov (United States)

    Matsumura, Shunichi; Horiguchi, Yoshimasa; Nishimura, Tatsuya; Sakai, Hideki; Kato, Takashi

    2016-05-17

    The development of ZnO thin films has been achieved through the conversion of zinc hydroxide carbonate thin-film crystals. Crystallization of this compound is induced by a biomineralization-inspired method with polymer-stabilized amorphous precursors. The crystals grow radially on polymer matrices, leading to the formation of zinc hydroxide carbonate/polymer thin-film hybrids that fully cover the substrate. These hybrids are converted into ZnO and retain their thin-film morphologies. The resultant ZnO thin films exhibit a preferential crystallographic orientation that is attributed to the alignment of zinc hydroxide carbonate crystals before conversion. In addition, a photocatalytic function of the ZnO thin films has been demonstrated by analyzing the oxidation reaction of 2-propanol. The biomineralization-inspired approach reported herein is a promising way to develop ZnO materials with controlled morphologies and structures for photocatalytic applications. PMID:27062559

  7. Simulation of self-organization processes in crystal-forming systems: Supramolecular cyclic R6 cluster precursors and self-assembly of TeO2- TEL ( Tellurite) and TeO2- PAR ( Paratellurite) structures

    Science.gov (United States)

    Ilyushin, G. D.

    2014-11-01

    The supramolecular chemistry of oxides of sp elements (SO2, SeO2, and TeO2) is considered. The self-assembly of TeO2- TEL ( Tellurite) and TeO2- PAR ( Paratellurite) crystal structures is simulated. Methods of combinatorial and topological analysis (TOPOS program package) are applied which are based on constructing a basis 3D network of the structure in the form of a graph, the sites of which correspond to the positions of centroids of TeO2 molecules and the edges characterize bonds between them. The topological type of the basis 2D network in the TeO2- TEL structure corresponds to graphite (C- GRA), while in the TeO2- PAR structure the basis network corresponds to the 3D diamond network (C- DIA). A nanocluster precursor of cyclic type ( R6) composed of six covalently bound TeO2 molecules (chair conformation) is established for both structures. The desymmetrization of the cyclic structure of the R6 cluster in TeO2- PAR is related to the formation of Te-Te bonds with lengths of 3.824 and 4.062 Å. The symmetry and topology code of the processes of self-assembly of 3D structures from nanocluster precursors is completely reconstructed into the form "primary chain → microlayer → microframework." In both structures R6 clusters form 2D packings with a coordination number of 6. The cluster self-assembly model explains the specific features of the morphogenesis of TeO2- TEL and TeO2- PAR (phases with low and high crystallization temperatures, respectively): platelike shape, perfect cleavage in the (110) plane, and preferred growth in the primar-chain direction [100] in the former case and growth in the direction of the primary [001] axis with the preferred formation of tetragonal prism faces (110) in the latter case.

  8. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. PMID:26555960

  9. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  10. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  11. The Radical SAM Enzyme HydG Requires Cysteine and a Dangler Iron for Generating an Organometallic Precursor to the [FeFe]-Hydrogenase H-Cluster.

    Science.gov (United States)

    Suess, Daniel L M; Pham, Cindy C; Bürstel, Ingmar; Swartz, James R; Cramer, Stephen P; Britt, R David

    2016-02-01

    Three maturase enzymes-HydE, HydF, and HydG-synthesize and insert the organometallic component of the [FeFe]-hydrogenase active site (the H-cluster). HydG generates the first organometallic intermediates in this process, ultimately producing an [Fe(CO)2(CN)] complex. A limitation in understanding the mechanism by which this complex forms has been uncertainty regarding the precise metallocluster composition of HydG that comprises active enzyme. We herein show that the HydG auxiliary cluster must bind both l-cysteine and a dangler Fe in order to generate the [Fe(CO)2(CN)] product. These findings support a mechanistic framework in which a [(Cys)Fe(CO)2(CN)](-) species is a key intermediate in H-cluster maturation. PMID:26764535

  12. Thermoset precursor

    International Nuclear Information System (INIS)

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  13. The Earliest Phases of Star Formation (EPoS): A Herschel Key Program - The precursors to high-mass stars and clusters

    OpenAIRE

    Ragan, Sarah; Henning, Thomas; Krause, Oliver; Pitann, Jan; BEUTHER, Henrik; Linz, Hendrik; Tackenberg, Jochen; Balog, Zoltan; Hennemann, Martin; Launhardt, Ralf; Lippok, Nils; Nielbock, Markus; Schmiedeke, Anika; Schuller, Frederic; Steinacker, Juergen

    2012-01-01

    (Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. ...

  14. Magnetic properties of biomineral particles produced by bacteria Klebsiella oxytoca

    Science.gov (United States)

    Raĭkher, Yu. L.; Stepanov, V. I.; Stolyar, S. V.; Ladygina, V. P.; Balaev, D. A.; Ishchenko, L. A.; Balasoiu, M.

    2010-02-01

    Ferrihydrite nanoparticles (2-5 nm in size) produced by bacteria Klebsiella oxytoca in the course of biomineralization of iron salt solutions from a natural medium exhibit unique magnetic properties: they are characterized by both the antiferromagnetic order inherent in a bulk ferrihydrite and the spontaneous magnetic moment due to the decompensation of spins in sublattices of a nanoparticle. The magnetic susceptibility enhanced by the superantiferromagnetism effect and the magnetic moment independent of the magnetic field provide the possibility of magnetically controlling these natural objects. This has opened up the possibilities for their use in nanomedicine and bioengineering. The results obtained from measurements of the magnetic properties of the ferrihydrite produced by Klebsiella oxytoca in its two main crystalline modifications are reported, and the data obtained are analyzed theoretically. This has made it possible to determine numerical values of the magnetic parameters of real biomineral nanoparticles.

  15. Magnetic properties of biomineral nanoparticles produced by Klebsiella oxytoca bacteria

    International Nuclear Information System (INIS)

    Ferrihydrite nanoparticles of the size 2-5 nm produced by environmental Klebsiella oxytoca bacteria through biomineralization of iron salt solutions possess unique magnetic properties. Namely, in these grains there co-exist the antiferromagnetic order inherent to bulk ferrihydrite and the permanent magnetic moment caused by the decompensation of the nanoparticle spin sublattices. The magnetic susceptibility of the particles enhanced by the superantiferromagnetism effect, together with the presence of magnetic moment independent of the external field, provides the possibility of magnetic manipulation of these natural objects. Thereby a way to their use in nanomedicine and biotechnologies opens. In the present work measurement results on magnetization of the two main crystallization phases of ferrihydrite produced by Klebsiella oxytoca are reported and theoretical analysis of these data is performed. This enables us to evaluate the magnetic parameters of real biomineral nanoparticles

  16. Molecular Mechanisms of Compartmentalization and Biomineralization in Magnetotactic Bacteria

    OpenAIRE

    Komeili, Arash

    2012-01-01

    Magnetotactic bacteria are remarkable organisms with the ability to exploit the earth’s magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the parti...

  17. Unexpected link between polyketide synthase and calcium carbonate biomineralization

    OpenAIRE

    Hojo, Motoki; Omi, Ai; Hamanaka, Gen; Shindo, Kazutoshi; Shimada, Atsuko; Kondo, Mariko; Narita, Takanori; Kiyomoto, Masato; Katsuyama, Yohei; Ohnishi, Yasuo; Irie, Naoki; Takeda, Hiroyuki

    2015-01-01

    Introduction Calcium carbonate biominerals participate in diverse physiological functions. Despite intensive studies, little is known about how mineralization is initiated in organisms. Results We analyzed the medaka spontaneous mutant, ha, defective in otolith (calcareous ear stone) formation. ha lacks a trigger for otolith mineralization, and the causative gene was found to encode polyketide synthase (pks), a multifunctional enzyme mainly found in bacteria, fungi, and plant. Subsequent expe...

  18. Shedding light on fish otolith biomineralization using a bioenergetic approach

    DEFF Research Database (Denmark)

    Fablet, R.; Pecquerie, L.; de Pontual, H.;

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosys...... simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves...

  19. Shedding Light on Fish Otolith Biomineralization Using a Bioenergetic Approach

    OpenAIRE

    FABLET, Ronan; Pecquerie, Laure; Pontual, Hélène de; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A. L. M.

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent ...

  20. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization.

    OpenAIRE

    Addadi, L; Weiner, S

    1985-01-01

    Acidic matrix macromolecules are intimately involved in biological crystal growth. In vitro experiments, in which crystals of calcium dicarboxylate salts were grown in the presence of aspartic acid-rich proteins, revealed a stereochemical property common to all the interacting faces. Calcite crystals are nucleated on stereochemically analogous faces when proteins are adsorbed onto a rigid substrate. The importance of this property in biomineralization is discussed.

  1. Shedding light on fish otolith biomineralization using a bioenergetic approach

    OpenAIRE

    Fablet, R; Pecquerie, L.; de Pontual, H.; Høie, H.; Millner, R.; Mosegaard, Henrik; Sebastiaan, A.; Kooijman, S. A. L. M.

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous ...

  2. An alternative interpretation of nanobacteria-induced biomineralization

    OpenAIRE

    Cisar, John O.; Xu, De-Qi; Thompson, John; Swaim, William; Hu, Lan; Kopecko, Dennis J.

    2000-01-01

    The reported isolation of nanobacteria from human kidney stones raises the intriguing possibility that these microorganisms are etiological agents of pathological extraskeletal calcification [Kajander, E. O. & Çiftçioglu, N. (1998) Proc. Natl. Acad. Sci. USA 95, 8274–8279]. Nanobacteria were previously isolated from FBS after prolonged incubation in DMEM. These bacteria initiated biomineralization of the culture medium and were identified in calcified particles and...

  3. Role of Fungi in the Biomineralization of Calcite

    OpenAIRE

    Saskia Bindschedler; Guillaume Cailleau; Eric Verrecchia

    2016-01-01

    In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various meta...

  4. Characterization of biominerals in species of Canna (Cannaceae).

    Science.gov (United States)

    Baran, Enrique J; González-Baró, Ana C; Ciciarelli, María M; Rolleri, Cristina H

    2010-12-01

    Plant biominerals are not always well characterized, although this information is important for plant physiology and can be useful for taxonomic purposes. In this work, fresh plant material of seven wild neotropical species of genus Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., taken from different habitats, were studied to characterize the biominerals in their internal tissues. For the first time, samples from primary and secondary veins of leaves were investigated by means of infrared spectroscopy, complemented with X-ray powder diffractometry and scanning electron microscopy. The spectroscopic results, supported by X-ray powder diffractometry, suggest that the calcium oxalate is present in the form of whewellite (CaC2O4 x H2O) in all the investigated samples. It is interesting to emphasize that all IR spectra obtained were strongly similar in all species studied, thus indicating an identical chemical composition in terms of the biominerals found. In this sense, the results suggest that the species of Canna show similar ability to produce biogenic silica and produce an identical type of calcium oxalate within their tissues. These results can be an additional trait to support the relationship among the families of Zingiberales. PMID:21247002

  5. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    Directory of Open Access Journals (Sweden)

    Carolin C. Lechner

    2015-08-01

    Full Text Available Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.

  6. Fabrication and in vitro biomineralization of bioactive glass (BG) nanofibres

    International Nuclear Information System (INIS)

    Bioactive glass nanofibres have excellent bioactivity and cell compatibility, and are regarded as a promising next-generation biomaterial in the bone-regeneration field. This paper is concentrated on the effect of electrospinning parameters on the diameter and morphology of bioactive glass nanofibres, and the process of in vitro biomineralization. In this work, sol-gel glass nanofibres with high bioactivity were prepared by electrospinning processing in the presence of poly(vinyl pyrrolidone) (PVP) and pluronic P123 (EO20-PO70-EO20) as chain entanglements. The influence of the polymer concentration, types of polymer and electric field strength on the fibre diameter was examined. The average diameter of these BG nanofibres could be controlled in the range from 85 to 400 nm. The addition of PVP resulted in sufficient chain entanglement and the formation of smooth BG nanofibres, and the addition of P123 led to a further decrease of the diameter with appropriate electric field strength, which held the balance between the electrostatic repulsive force and surface tension of the electrospinning solution. Furthermore, the early stage of in vitro biomineralization of the BG nanofibres in the simulated body fluid (SBF) was studied in this work. The behaviour of in vitro biomineralization of bioactive glass nanofibres was different to the conventional ones, and the structure of bioactive glasses contributed to the formation process of hydroxyapatite

  7. Initial formation stage and succedent biomineralization of pearls

    International Nuclear Information System (INIS)

    The initial formation stage and succedent biomineralization of pearls were studied using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and atomic force microscopy. A new initial formation phase with needle-like structure which is found to be nanocrystallites of aragonite was discovered. As a result, two possible formation modes are proposed to describe the initial formation stage of pearls. As for the succedent mineralization of “brick and mortar” structure, nanostripes were first discovered inside the “brick” (aragonite platelet), compared with the foregoing finding of nanograins. The various nanostructures of aragonite platelet allow us to reconsider the role of the inter- and intracrystalline organic material surrounding CaCO3, and a possible biomineralization mechanism was proposed. - Highlights: • A new initial formation mineral phase was discovered in pearl. • Nanograins and nanostripes inside aragonite platelets were found in pearl. • Two possible initial formation stages were proposed for pearl. • A possible biomineralization mechanism of nacre in pearl was proposed

  8. Initial formation stage and succedent biomineralization of pearls

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Fen [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Tian, Liangguang [Shandong Institute of Supervision and Inspection on Product Quality, Jinan 250100 (China); Xu, Xiangang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Hu, Xiaobo, E-mail: xbhu@sdu.edu.cn [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2014-04-01

    The initial formation stage and succedent biomineralization of pearls were studied using scanning electron microscopy, Raman spectroscopy, transmission electron microscopy and atomic force microscopy. A new initial formation phase with needle-like structure which is found to be nanocrystallites of aragonite was discovered. As a result, two possible formation modes are proposed to describe the initial formation stage of pearls. As for the succedent mineralization of “brick and mortar” structure, nanostripes were first discovered inside the “brick” (aragonite platelet), compared with the foregoing finding of nanograins. The various nanostructures of aragonite platelet allow us to reconsider the role of the inter- and intracrystalline organic material surrounding CaCO{sub 3}, and a possible biomineralization mechanism was proposed. - Highlights: • A new initial formation mineral phase was discovered in pearl. • Nanograins and nanostripes inside aragonite platelets were found in pearl. • Two possible initial formation stages were proposed for pearl. • A possible biomineralization mechanism of nacre in pearl was proposed.

  9. Role of the Template in Model Biomineralization: Synchrotron X-ray Scattering Experiments

    Science.gov (United States)

    Uysal, Ahmet

    during model hydroxyapatite biomineralization. We studied the interactions between the organic template and the pre-nucleation clusters in the calcium phosphate solution depending on the temperature and the subphase concentration. Our results show how the organic-inorganic interface becomes more suitable for oriented hydroxyapatite crystallization under physiological conditions. One of the main reasons to study biomineralization is to use the knowledge obtained to develop new methods for nano-engineering. As a demonstration of this idea, we used Langmuir monolayer of alkylthiols to grow (111)-oriented gold nanoparticles from solution in a biomimetic way. The organic molecules we used make the gold nanoparticles grow with a specific orientation. However, they also change their organization to minimize the interaction potential at the organic-inorganic interface. In fact the final structure they adapt is very similar to self-assembled monolayers of alkylthiol molecules on gold crystal surfaces, so one can say that we "reversed" the self-assembly process. It has long been assumed, although not directly observed, that the organic template controls the growth of the inorganic crystals. Our studies, taken together, show that the interaction between the organic template and the crystals is not a one way street; rather, both organic and inorganic structures may change to lower the interaction potential energy at the interface. This is usually accomplished through a structural match between the surface lattices.

  10. The Earliest Phases of Star Formation (EPoS): A Herschel Key Program - The precursors to high-mass stars and clusters

    CERN Document Server

    Ragan, Sarah; Krause, Oliver; Pitann, Jan; Beuther, Henrik; Linz, Hendrik; Tackenberg, Jochen; Balog, Zoltan; Hennemann, Martin; Launhardt, Ralf; Lippok, Nils; Nielbock, Markus; Schmiedeke, Anika; Schuller, Frederic; Steinacker, Juergen; Stutz, Amelia; Vasyunina, Tatiana

    2012-01-01

    (Abridged) We present an overview of the sample of high-mass star and cluster forming regions observed as part of the Earliest Phases of Star Formation (EPoS) Herschel Guaranteed Time Key Program. A sample of 45 infrared-dark clouds (IRDCs) were mapped at PACS 70, 100, and 160 micron and SPIRE 250, 350, and 500 micron. In this paper, we characterize a population of cores which appear in the PACS bands and place them into context with their host cloud and investigate their evolutionary stage. We construct spectral energy distributions (SEDs) of 496 cores which appear in all PACS bands, 34% of which lack counterparts at 24 micron. From single-temperature modified blackbody fits of the SEDs, we derive the temperature, luminosity, and mass of each core. These properties predominantly reflect the conditions in the cold, outer regions. Taking into account optical depth effects and performing simple radiative transfer models, we explore the origin of emission at PACS wavelengths. The core population has a median tem...

  11. Special issue featuring articles from the 3rd Asian Symposium on Biomineralization

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ This issue contains a selection of nine peer-reviewed articles that were presented during the 3rd Asian Symposium on Biomineralization held in Xiamen,China on 21-23 November,2007.The symposium focused on the recent development of mechanisms of biomineralization and its applications in novel biomaterials,environmental issues,geophysics and nano-biotechnologies.

  12. Synthesis of mixed-valence hexanuclear Mn(II/III) clusters from its Mn(II) precursor: variations of catecholase-like activity and magnetic coupling.

    Science.gov (United States)

    Kar, Paramita; Ida, Yumi; Kanetomo, Takuya; Drew, Michael G B; Ishida, Takayuki; Ghosh, Ashutosh

    2015-06-01

    One Mn(II) coordination polymer, [Mn(o-(NO2)C6H4COO)2(pyz)(H2O)]n (1), has been synthesized and oxidized with n-Bu4NMnO4 in non-aqueous media to two mixed-valence hexanuclear Mn(II/III) complexes [MnIII2MnII4O2(pyz)0.61/(MeOH)0.39(o-(NO2)C6H4COO)10·(H2O)·{(CH3)2CO}2]·(CH3)2CO (2) and [MnIII2MnII4O2(pyz)0.28/(MeCN)3.72(o-(NO2)C6H4COO)10·(H2O)] (3) (where pyz = pyrazine). All three complexes were characterized by elemental analyses, IR spectroscopy, single-crystal X-ray diffraction analyses, and variable-temperature magnetic measurements. The structural analyses reveal that complex 1 is comprised of linear chains of pyz bridged Mn(II), which are further linked to one another by syn–anti carboxylate bridges, giving rise to a two-dimensional (2D) net. Complexes 2 and 3 feature mixed valence [MnIII2MnII4] units in which each of the six manganese centres reside in an octahedral environment. Apart from the variations in terminal ligands (acetone for 2 and acetonitrile for 3), the complexes are very similar. Using 3,5-di-tert-butyl catechol (3,5-DTBC) as the substrate, the catecholase-like activity of the complexes has been studied and it is found that the mixed valent Mn6 complexes (2 and 3) are much more active towards aerial oxidation of catechol compared to the Mn(II) complex (1). Variable-temperature (1.8–300 K) magnetic susceptibility measurements showed the presence of antiferromagnetic coupling in all three complexes. The magnetic data have been fitted with a 2D quadratic model derived by Lines, giving the exchange constant J/kB = −0.0788(5) K for 1. For 2 and 3, antiferromagnetic interactions within the Mn6 cluster have been fitted with models containing three exchange constants: JA/kB = −70 K, JB/kB = −0.5 K, JC/kB = −2.9 K for 2 and JA/kB = −60 K, JB/kB = −0.3 K, JC/kB = −2.8 K for 3. PMID:25928181

  13. Environmental context for the terminal Ediacaran biomineralization of animals.

    Science.gov (United States)

    Cui, H; Kaufman, A J; Xiao, S; Peek, S; Cao, H; Min, X; Cai, Y; Siegel, Z; Liu, X-M; Peng, Y; Schiffbauer, J D; Martin, A J

    2016-07-01

    In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying Formation. Both fossils have similar size, funnel-in-funnel construction, and epibenthic lifestyle, but Cloudina is biomineralized, whereas Conotubus is not. To provide environmental context for this evolutionary milestone, we conducted a high-resolution elemental and stable isotope study of the richly fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive carbonate carbon isotope excursion (up to +6‰) and an increase in the abundance and (34) S composition of pyrite. In contrast, δ(34) S values of carbonate-associated sulfate remain steady throughout the succession, resulting in anomalously large (>70‰) sulfur isotope fractionations in the lower half of the member. The fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for Conotubus and other soft-bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the stage for an unprecedented geobiological response: the evolutionary novelty

  14. Biomineralization of iron phosphate nanoparticles in yeast cells

    International Nuclear Information System (INIS)

    Amorphous iron phosphate nanoparticles mineralized in yeast cells are studied by transmission electron microscopy, Fourier transform infrared spectrograph and micro electrophoresis. Iron phosphate nanoparticles in yeast cells show uniform morphology with extensive surface roughness and disperse well. The size distribution of iron phosphate is about 50-200 nm. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages between iron phosphate nanoparticles with protein macromolecules in yeast cells. The mechanism of biomineralization was simply discussed by chemical bonds and surface charges.

  15. Biomineralization: Some complex crystallite-oriented skeletal structures

    Indian Academy of Sciences (India)

    Ashok Sahni

    2013-12-01

    The present review focuses on some specific aspects of biomineralization with regard to the evolution of the first focused visioning systems in trilobites, the formation of molluscan shell architecture, dental enamel and its biomechanical properties and the structure of the calcified amniote egg, both fossil and recent. As an interdisciplinary field, biomineralization deals with the formation, structure and mechanical strength of mineralized skeletonized tissue secreted by organisms. Mineral matter formed in this way occurs in all three domains of life and consists of several mineral varieties, of which carbonates, phosphates and opaline silica are the most common. Animals and plants need mechanical support to counteract gravitational forces on land and hydrostatic pressure in the deep ocean, which is provided by a skeletonized framework. Skeleton architecture mainly consists of basic elements represented by small usually micrometer- to nanometer-sized crystallites of calcite and aragonite for carbonate systems and apatite crystallites for phosphatic ones, and then these building blocks develop into structured more complex frameworks. As selective pressures work towards optimizing stress and response, the orientation, morphology and structural arrangement of the crystallites indicates the distribution of the stress field of the biomineralized tissue. Large animals such as the dinosaurs have to deal with large gravitational forces, but in much smaller skeletonized organism such as the coccoliths, a few micrometer in diameter made up of even smaller individual crystallites, van der Waals forces play an increasingly important role and are at present poorly understood. Skeleton formation is dependent upon many factors including ambient water chemistry, temperature and environment. Ocean chemistry has played a vital role in the origins of skeletonization, 500 to 600 million years (ma) ago with the dominance of calcium carbonate as the principal skeleton-forming tissue

  16. cDNA Microarray Analysis Revealing Candidate Biomineralization Genes of the Pearl Oyster, Pinctada fucata martensii.

    Science.gov (United States)

    Shi, Yaohua; Zheng, Xing; Zhan, Xin; Wang, Aimin; Gu, Zhifeng

    2016-06-01

    Biomineralization is a common biological phenomenon resulting in strong tissue, such as bone, tooth, and shell. Pinctada fucata martensii is an ideal animal for the study of biomineralization. Here, microarray technique was used to identify biomineralization gene in mantle edge (ME), mantle center (MC), and both ME and MC (ME-MC) for this pearl oyster. Results revealed that 804, 306, and 1127 contigs expressed at least three times higher in ME, MC, and ME-MC as those in other tissues. Blast against non-redundant database showed that 130 contigs (16.17 %), 53 contigs (17.32 %), and 248 contigs (22.01 %) hit reference genes (E ≤ -10), among which 91 contigs, 48 contigs, and 168 contigs could be assigned to 32, 26, and 63 biomineralization genes in tissue of ME, MC, and ME-MC at a threshold of 3 times upregulated expression level. The ratios of biomineralization contigs to homologous contigs were similar at 3 times, 10 times, and 100 times of upregulated expression level in either ME, MC, or ME-MC. Moreover, the ratio of biomineralization contigs was highest in MC. Although mRNA distribution characters were similar to those in other studies for eight biomineralization genes of PFMG3, Pif, nacrein, MSI7, mantle gene 6, Pfty1, prismin, and the shematrin, most biomineralization genes presented different expression profiles from existing reports. These results provided massive fundamental information for further study of biomineralization gene function, and it may be helpful for revealing gene nets of biomineralization and the molecular mechanisms underlining formation of shell and pearl for the oyster. PMID:27184264

  17. Multi-scale modeling of biophysical phenomena: ionic transport, biomineralization, and force spectroscopy

    Science.gov (United States)

    Kelly, Mark A.

    2011-07-01

    Biophysics is the study of the complex physical processes occurring in biological systems that are responsible for life. This dissertation addresses three important topics in biophysics: ionic transport, biomineralization, and force spectroscopy. Ionic transport involves the passage of ions through a special class of hollow, transmembrane proteins called ion channels which regulate the movement of charged species across nearly all biological membranes with varying degrees of specificity. Despite the fundamental importance of these channels to many physiological processes little is known about how channel structure and composition couple to determine its function. Deriving inspiration from these systems, a simple computational platform is developed to study the salient features of these channels in order to better understand the fundamental physics of these systems. The results of this work indicate that a converging-diverging region formed within the pore to create a single constriction is the most effective method to regulate the passage of ions through the pore. By controlling the geometry of the constriction the local potential and chemical gradients can be manipulated to tailor the channel for specific applications. The process of selective extraction and incorporation of local elements from the surrounding environment into functional structures under strict biological control is known as biomineralization. As an initial step to gain a more fundamental understanding of directed crystallization of zinc oxide molecular dynamics simulations were performed to study the conformational behavior of two experimentally derived biomimetic peptides in a precursor solution. Substantial differences in the conformational properties and affinity for zinc and hydroxide ions in solution were observed. These findings are in qualitative agreement with experimental observations. The mechanical response of biopolymers such as RNA and DNA to externally applied forces is a topic that

  18. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  19. Carbonate biomineralization in terrestrial gastropods: environmental vs. physiological constraints

    Science.gov (United States)

    Mierzwa, D.; Stolarski, J.

    2009-04-01

    Preservational potential of shells of terrestrial gastropods allows to use them as valuable (paleo)climatic proxies. Despite of the fact, that the elements incorporated in their skeleton derive almost entirely from their diet, details of the ion uptake routes have not been studied in details. This work is a first step in the investigations of element uptake and biomineralization processes in pulmonate gastropod Cepaea vindobonensis (Férussac, 1821). Although phenotypic plasticity in the shell characters of the species appears to be mainly genetic in nature, some differences seem to correlate with availability of ions used in biomineralization. For example, shells of individuals living in marginal parts of flood plains (environment extreme for the species and generally depleted in calcium) have weakened structure and faded color pattern, whereas individuals from the lime substrata form typically developed, pigmented shells with several cross-lamellar layers. Micro- and nanostructural characteristics of shells from different environments are visualized by SEM and AFM imaging techniques and some biogeochemical properties are characterized by spectroscopic and fluorescence methods. Further experiments are required to elucidate the ion/trace elements transfer between the substratum, nutrients, organism, and the shell.

  20. Natural analogue studies as supplements to biomineralization research

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, M.B. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-09-01

    Chemical reactions can alter the chemistry and crystal structure of solid objects over archeological or geological times, while preserving external physical shapes. The reactions resulting in these structures offer natural analogues to laboratory experiments in biomineralization and to biologically influenced alteration of nuclear waste packages, and thus, they offer the only available way of validating models that purport waste package behavior over archaeological or geological times. Potential uses of such analogues in the construction and validation of hypothetical mechanisms of microbiological corrosion and biomineralization are reviewed. Evidence from such analogues suggests that biofilms can control materials alteration in ways usually overlooked. The newly hypothesized mechanisms involve control by biofilms of the cation flow near the solid surface and offer plausible mechanisms for the formation of mixed-cation minerals under conditions that would lead to dealloying in abiotic experiments; they also account for the formation of unusual minerals [such as posnjakite, Cu{sub 4}SO{sub 4}(OH){sub 6{center_dot}}H{sub 2}O] and mineral morphologies unusual in corrosion [malachite, Cu{sub 2}CO{sub 3}(OH){sub 2}, rarely forms botryoidally under corrosion conditions and its occasional presence on archaeological objects that appear to have undergone microbiological corrosion may be related to biofilm phenomena].

  1. Structural insight into magnetochrome-mediated magnetite biomineralization

    Science.gov (United States)

    Siponen, Marina I.; Legrand, Pierre; Widdrat, Marc; Jones, Stephanie R.; Zhang, Wei-Jia; Chang, Michelle C. Y.; Faivre, Damien; Arnoux, Pascal; Pignol, David

    2013-10-01

    Magnetotactic bacteria align along the Earth's magnetic field using an organelle called the magnetosome, a biomineralized magnetite (Fe(II)Fe(III)2O4) or greigite (Fe(II)Fe(III)2S4) crystal embedded in a lipid vesicle. Although the need for both iron(II) and iron(III) is clear, little is known about the biological mechanisms controlling their ratio. Here we present the structure of the magnetosome-associated protein MamP and find that it is built on a unique arrangement of a self-plugged PDZ domain fused to two magnetochrome domains, defining a new class of c-type cytochrome exclusively found in magnetotactic bacteria. Mutational analysis, enzyme kinetics, co-crystallization with iron(II) and an in vitro MamP-assisted magnetite production assay establish MamP as an iron oxidase that contributes to the formation of iron(III) ferrihydrite eventually required for magnetite crystal growth in vivo. These results demonstrate the molecular mechanisms of iron management taking place inside the magnetosome and highlight the role of magnetochrome in iron biomineralization.

  2. Natural analogue studies as supplements to biomineralization research

    International Nuclear Information System (INIS)

    Chemical reactions can alter the chemistry and crystal structure of solid objects over archeological or geological times, while preserving external physical shapes. The reactions resulting in these structures offer natural analogues to laboratory experiments in biomineralization and to biologically influenced alteration of nuclear waste packages, and thus, they offer the only available way of validating models that purport waste package behavior over archaeological or geological times. Potential uses of such analogues in the construction and validation of hypothetical mechanisms of microbiological corrosion and biomineralization are reviewed. Evidence from such analogues suggests that biofilms can control materials alteration in ways usually overlooked. The newly hypothesized mechanisms involve control by biofilms of the cation flow near the solid surface and offer plausible mechanisms for the formation of mixed-cation minerals under conditions that would lead to dealloying in abiotic experiments; they also account for the formation of unusual minerals [such as posnjakite, Cu4SO4(OH)6·H2O] and mineral morphologies unusual in corrosion [malachite, Cu2CO3(OH)2, rarely forms botryoidally under corrosion conditions and its occasional presence on archaeological objects that appear to have undergone microbiological corrosion may be related to biofilm phenomena

  3. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  4. In Situ Biomineralization and Particle Deposition Distinctively Mediate Biofilm Susceptibility to Chlorine.

    Science.gov (United States)

    Li, Xiaobao; Chopp, David L; Russin, William A; Brannon, Paul T; Parsek, Matthew R; Packman, Aaron I

    2016-05-15

    Microbial biofilms and mineral precipitation commonly co-occur in engineered water systems, such as cooling towers and water purification systems, and both decrease process performance. Microbial biofilms are extremely challenging to control and eradicate. We previously showed that in situ biomineralization and the precipitation and deposition of abiotic particles occur simultaneously in biofilms under oversaturated conditions. Both processes could potentially alter the essential properties of biofilms, including susceptibility to biocides. However, the specific interactions between mineral formation and biofilm processes remain poorly understood. Here we show that the susceptibility of biofilms to chlorination depends specifically on internal transport processes mediated by biomineralization and the accumulation of abiotic mineral deposits. Using injections of the fluorescent tracer Cy5, we show that Pseudomonas aeruginosa biofilms are more permeable to solutes after in situ calcite biomineralization and are less permeable after the deposition of abiotically precipitated calcite particles. We further show that biofilms are more susceptible to chlorine killing after biomineralization and less susceptible after particle deposition. Based on these observations, we found a strong correlation between enhanced solute transport and chlorine killing in biofilms, indicating that biomineralization and particle deposition regulate biofilm susceptibility by altering biocide penetration into the biofilm. The distinct effects of in situ biomineralization and particle deposition on biocide killing highlight the importance of understanding the mechanisms and patterns of biomineralization and scale formation to achieve successful biofilm control. PMID:26944848

  5. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  6. Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis

    Science.gov (United States)

    Mann, Stephen; Archibald, Douglas D.; Didymus, Jon M.; Douglas, Trevor; Heywood, Brigid R.; Meldrum, Fiona C.; Reeves, Nicholas J.

    1993-09-01

    Crystallization is an important process in a wide range of scientific disciplines including chemistry, physics, biology, geology, and materials science. Recent investigations of biomineralization indicate that specific molecular interactions at inorganic-organic interfaces can result in the controlled nucleation and growth of inorganic crystals. Synthetic systems have highlighted the importance of electrostatic binding or association, geometric matching (epitaxis), and stereochemical correspondence in these recognition processes. Similarly, organic molecules in solution can influence the morphology of inorganic crystals if there is molecular complementarity at the crystal-additive interface. A biomimetic approach based on these principles could lead to the development of new strategies in the controlled synthesis of inorganic nanophases, the crystal engineering of bulk solids, and the assembly of organized composite and ceramic materials.

  7. Biomineralization of magnet nanoparticles with bacterial symbionts of man

    Directory of Open Access Journals (Sweden)

    Horobets S.V.

    2014-06-01

    Full Text Available Bioinformational analysis of human’s bacterial symbionts (BS to study the process of biomineralization of biogenic magnetic nanoparticles (BMN was conducted. For this purpose in this paper a comparative analysis of amino acid sequences of proteins of magnetosome island of magnetotactic bacteria (MI MTB with human BS proteins using the program "BLAST-online" was made. A number of human BS may be potential producers of magnetic nanoparticles as evidenced by the experimental work of other authors. Considering obtained results it was shown that the interaction between tumor cells and some strains of human’s BS may occur due to the forces of magnetic dipole interaction, occuring between the endogenous magnetic nanoparticles of tumor cells and endogenous magnetosensitive particles of bacteria.

  8. In Vitro Biomineralization of Glutaraldehyde Crosslinked Chitosan Films

    Institute of Scientific and Technical Information of China (English)

    FENG Fang; LIU Yu; ZHAO Binyuan; HU Ke'ao

    2005-01-01

    The biomimetic approach was applied to study the in vitro biomineralization of series of the chitosan films crosslinked by glutaraldehyde. The deposited calcium phosphate coatings were studied using scanning electron microscopy and energy dispersive X-ray analysis. Initially, the treatment in simulated body fluid (SBF) results in the formation of single layer of calcium phosphate particles over the film surface. As immersion time in SBF increases, further nucleation and growth produce a simulated calcium phosphate coating. The Ca/P molar ratio of the calcium phosphate increases with the immersion time, showing a rapid formation of calcium-deficient phosphate material from the phase of octac1alcium phosphate. The different glutaraldehyde crosslinking degree influences the morphology and magnitude of the calcium phosphate coatings on the surface of the chitosan films.

  9. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    Science.gov (United States)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume; Kappler, Andreas; Bernard, Sylvain; Obst, Martin; Férard, Céline; Skouri-Panet, Fériel; Guigner, Jean-Michel; Posth, Nicole; Galvez, Matthieu; Brown, Gordon E., Jr.; Guyot, François

    2009-02-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent iron-oxidizing bacterium Acidovorax sp. strain BoFeN1 in the presence of dissolved Fe(II) using electron microscopy and Scanning Transmission X-ray Microscopy (STXM). All detected minerals consisted mainly of amorphous iron phosphates, but based on their morphology and localization, three types of precipitates could be discriminated: (1) mineralized filaments at distance from the cells, (2) globules of 100 ± 25 nm in diameter, at the cell surface and (3) a 40-nm thick mineralized layer within the periplasm. All of those phases were shown to be intimately associated with organic molecules. Periplasmic encrustation was accompanied by an accumulation of protein moieties. In the same way, exopolysaccharides were associated with the extracellular mineralized filaments. The evolution of cell encrustation was followed by TEM over the time course of a culture: cell encrustation proceeded progressively, with rapid precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All these findings provide new information to further the understanding of molecular processes involved in iron biomineralization by anaerobic iron-oxidizing bacteria and

  10. Effect of solute concentration on fibroin regulated biomineralization of calcium phosphate

    International Nuclear Information System (INIS)

    In this paper we used UV/Visible method to study the effect of solute concentration on fibroin regulated biomineralization of calcium phosphate. During the reaction process, ultraviolet-visible spectrophotometer was used to track the extinction in the reaction solution. It is found that kinetics of the biomineralization can be strongly affected by the presence of fibroin. Fibroin with higher concentration has more positive effect on the biomineralization process. Under the appropriate reaction conditions, wave crest and wave trough appear in the kinetic curves of fibroin biomineralization. The wave crest and wave trough phenomenon is mainly related with the process of phase separation. X-ray Diffraction (XRD) result shows the calcium phosphate before the wave trough is mainly amorphous calcium phosphate, while after the wave trough crystal of hydroxyapatite (HA) and brushite (DCPD) are the mainly ingredients

  11. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins. (paper)

  12. Analysis by PIXE and PIGME of biomineralized tissues in the chiton Clavarizona hirtosa

    International Nuclear Information System (INIS)

    Procedures have been developed to determine, by PIXE and PIGME, the elemental composition of small samples (ca. 1 mg) of biomineralized tissue. The Fe, Ca and P contents of the radula of the chiton C. hirtosa increase considerably from the early to the late stage of mineralization. However, F is absent, indicating that at least in C. hirtosa, Ca and P biomineral deposits are most likely hydroxyapatite rather than fluoroapatite which has been reported in several other species

  13. Direct Deposition of Crystalline Aragonite in the Controlled Biomineralization of the Calcareous Tubeworm

    OpenAIRE

    Chan, Vera B. S.; Toyofuku, Takashi; Wetzel, George; Saraf, Laxmikant; Thiyagarajan, Vengatesen; Mount, Andrew S.

    2015-01-01

    Although space delineation is a well-accepted requirement for biologically controlled biomineralization, the actual location of the mineralizing compartment within marine invertebrates has only recently been determined. We observed that the biomineralization was compartmented within the collar region of the metamorphosing larvae of Hydrodies elegans at its earliest possible time, i.e., at the post-metamorphic stage. We have also found that these highly regulated compartments contained aragoni...

  14. Biomineralization in chitosan/Bioglass® composite membranes under different dynamic mechanical conditions

    OpenAIRE

    Caridade, S. G.; Merino, Esther G.; Alves, N. M.; Mano, J.F.

    2013-01-01

    Fundamental aspects of biomineralization may be important in order to understand and improve calcification onto the surface of biomaterials. The biomineralization process is mainly followed in vitro by assessing the evolution of the apatite layer that is formed upon immersion of the material in Simulated Body Fluid (SBF). In this work we propose an innovative methodology to monitor apatite deposition by looking at the evolution of the mechanical/viscoelastic properties of the samp...

  15. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization

    OpenAIRE

    Gueguen Yannick; Cochennec-Laureau Nathalie; Pierrat Fabien; Zanella-Cléon Isabelle; Manchon Laurent; Marie Benjamin; Piquemal David; Joubert Caroline; Montagnani Caroline

    2010-01-01

    Abstract Background The shell of the pearl-producing bivalve Pinctada margaritifera is composed of an organic cell-free matrix that plays a key role in the dynamic process of biologically-controlled biomineralization. In order to increase genomic resources and identify shell matrix proteins implicated in biomineralization in P. margaritifera, high-throughput Expressed Sequence Tag (EST) pyrosequencing was undertaken on the calcifying mantle, combined with a proteomic analysis of the shell. Re...

  16. Computer modeling of self-assembly of the crystal structure of zeolite Na384[Al384Si384O1536] (H2O)422 (LTN, cF4080) from suprapolyhedral cluster precursors AB2 (A-K48, B-K24)

    International Nuclear Information System (INIS)

    Combinatorial and topological analyses and a simulation of the self-assembly of zeolite crystal structure Na384Al384Si384O1536 · 422H2O (LTN, sp. gr. Fd3 bar) have been performed using computer methods (TOPOS program package). A cubic cell with the parameters a = 36.95 Å and V = 50 449 Å3 contains 768 framework-forming AlO4- and SiO4 tetrahedra (T tetrahedra). The method of complete expansion of a 3D factor graph in nonintersecting cluster substructures in the tetrahedral T framework was used to reveal nanocluster precursors: A composed of 48 T tetrahedra (A-K48) and B composed of 24 T tetrahedra (B-K24). The nanocluster precursors A and B correspond to the polyhedral T clusters (tiles) 48T-grc and 24T-toc; they are involved in the matrix self-assembly of the crystal structure within the supracluster AB2. The centers of clusters A and B occupy the positions of Mg and Cu atoms in the Laves net AB2 = MgCu2; i.e., the zeolite structure is a suprapolyhedral analog of an intermetallic compound. The self-assembly code of a 3D structure from complementary bound nanocluster precursors is completely reconstuctured in the following form: supracluster → primary chain → microlayer → microframework → ...framework. The localization of the Na+ template cations in the 6T- and 8T rings of nanocluster precursors A and B and Na+ spacer cations in the 28T-ltn tile with the formation of tetrahedral configuration and in the center of 6-ring, which arises as a result of bonding two B nanoclusters, is established.

  17. Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata

    OpenAIRE

    Liu, Jun; Yang, Dong; Liu, Shiting; Li, Shiguo; Xu, Guangrui; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2015-01-01

    Background The molluscan Pinctada fucata is an important pearl-culturing organism to study biomineralization mechanisms. Several biomineralization-related genes play important roles regulating shell formation, but most previous work has focused only on their functions in adult oysters. Few studies have investigated biomineralization during larval development, when the shell is initially constructed and formed until the juvenile stage in dissoconch shells. Here, we report, for the first time, ...

  18. Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization

    Directory of Open Access Journals (Sweden)

    Gueguen Yannick

    2010-11-01

    Full Text Available Abstract Background The shell of the pearl-producing bivalve Pinctada margaritifera is composed of an organic cell-free matrix that plays a key role in the dynamic process of biologically-controlled biomineralization. In order to increase genomic resources and identify shell matrix proteins implicated in biomineralization in P. margaritifera, high-throughput Expressed Sequence Tag (EST pyrosequencing was undertaken on the calcifying mantle, combined with a proteomic analysis of the shell. Results We report the functional analysis of 276 738 sequences, leading to the constitution of an unprecedented catalog of 82 P. margaritifera biomineralization-related mantle protein sequences. Components of the current "chitin-silk fibroin gel-acidic macromolecule" model of biomineralization processes were found, in particular a homolog of a biomineralization protein (Pif-177 recently discovered in P. fucata. Among these sequences, we could show the localization of two other biomineralization protein transcripts, pmarg-aspein and pmarg-pearlin, in two distinct areas of the outer mantle epithelium, suggesting their implication in calcite and aragonite formation. Finally, by combining the EST approach with a proteomic mass spectrometry analysis of proteins isolated from the P. margaritifera shell organic matrix, we demonstrated the presence of 30 sequences containing almost all of the shell proteins that have been previously described from shell matrix protein analyses of the Pinctada genus. The integration of these two methods allowed the global composition of biomineralizing tissue and calcified structures to be examined in tandem for the first time. Conclusions This EST study made on the calcifying tissue of P. margaritifera is the first description of pyrosequencing on a pearl-producing bivalve species. Our results provide direct evidence that our EST data set covers most of the diversity of the matrix protein of P. margaritifera shell, but also that the

  19. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process

    Science.gov (United States)

    Gower, Laurie B.; Odom, Damian J.

    2000-03-01

    A polypeptide additive has been used to transform the solution crystallization of calcium carbonate to a solidification process of a liquid-phase mineral precursor. In situ observations reveal that polyaspartate induces liquid-liquid phase separation of droplets of a mineral precursor. The droplets deposit on the substrate and coalesce to form a coating, which then solidifies into calcitic tablets and films. Transition bars form during the amorphous to crystalline transition, leading to sectorization of calcite tablets, and the defect textures and crystal morphologies are atypical of solution grown crystals. The formation of nonequilibrium crystal morphologies using an acidic polypeptide may have implications in the field of biomineralization, and the environmentally friendly aspects of this polymer-induced liquid-precursor (PILP) process may offer new techniques for aqueous-based processing of ceramic films, coatings, and particulates.

  20. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    Science.gov (United States)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  1. Microbial Diversity in KURT Groundwater and Biomineralization Characteristics

    International Nuclear Information System (INIS)

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe-metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal-reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI

  2. Significance, mechanisms and environmental implications of microbial bio-mineralization

    International Nuclear Information System (INIS)

    Microorganisms can mediate the formation of minerals by a process called bio-mineralization. This process offers an efficient way to sequester inorganic pollutants within relatively stable solid phases. Here we review some of the main mechanisms involved in the mediation of mineral precipitation by microorganisms. This includes supersaturation caused by metabolic activity, the triggering of nucleation by production of more or less specific organic molecules, and the impact of mineral growth. While these processes have been widely studied in the laboratory, assessment of their importance in the environment is more difficult. We illustrate this difficulty using a case study on an As-contaminated acid mine drainage located in the South of France (Carnoules, Gard). In particular, we explore the potential relationships that might exist between microbial diversity and mineral precipitation. The present review, far from being exhaustive, highlights some recent advances in the field of bio-mineralogy and provides non-specialists an introduction to some of the main approaches and some questions that remain unanswered. (authors)

  3. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...... contributions to the theory of cluster stopping in matter as well as for practical applications requiring ultra-shallow implantation and modification of surfaces on the nanoscale. Metal clusters from the magnetron cluster source are of interest for the production of optical sensors to detect specific biological...

  4. Localization of calmodulin and calmodulin-like protein and their functions in biomineralization in P. fucata

    Institute of Scientific and Technical Information of China (English)

    Zi Fang; Zhenguang Yan; Shuo Li; Qin Wang; Weizhong Cao; Guangrui Xu; Xunhao Xiong; Liping Xie; Rongqing Zhang

    2008-01-01

    Calmodulin (CaM) and calmodulin-like protein (CaLP) are two proteins involved in biomineralization. Their localizations in Pinct-ada fucata mantle epithelia were studied by Western blot (WB) analysis of the nuclear/cytosol fraction of primary cultured P. fucata mantle cells and immunogold electron microscopy. The results showed a completely different distribution of these two proteins at the subcellular level. CaM was distributed throughout both the nucleus and cytoplasm of the mantle epithelium but CaLP was distributed only in the cytoplasm. The functions of these two proteins in biomineralization were investigated by shell regeneration. During this process, the expressions of CaM and CaLP were greatly enhanced in different organelles of the mantle epithelium. Overexpression of these two proteins and a mutant of calmodulin-like protein (M-CaLP) that lacks an extra C-terminal tail in MC3T3-E1 promoted the mRNA expression of osteopontin, a biomineralization marker for osteoblasts. All of the results indicated that CaM and CaLP have completely different distributions in the mantle epithelium and affect the biomineralization process at different levels. The extra C-terminal tail of CaLP is important for its functions in biomineralization in P. fucata.

  5. Calcification in vitro of Biomineralized nanohydroxyapatite / superhydrophilic vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcele Florencio; Silva, Gislene Rodrigues; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: loboao@yahoo.com, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Pacheco-Soares, Cristina [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Dinamica de Compartimentos Celulares

    2013-11-01

    Nanocomposites based on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2}) and nanohydroxyapatite (nHAp) are of great interest in bone regenerative medicine. The biomineralization using simulated body fluid (SBF) has been extensively studied to evaluate the bioactivity of biomaterials. Thus, the combination of nHAp and VAMWCNT-O{sub 2} is attractive and promising. The aim of this study was to evaluate the in vitro calcification of nHAp/VAMWCNT-O{sub 2} nanocomposites before and after the period of biomineralization in SBF. In vitro calcification of the extracellular matrix (ECM) of HOB cells in culture after 24 hours was investigated through the assay of alkaline phosphatase. These promising in vitro results validate biomineralized nHAp/VAMWCNT-O{sub 2} as possible scaffolds for bone tissue regeneration. (author)

  6. Kinetic analysis of simultaneous denitrification and biomineralization of novel Acinetobacter sp. CN86.

    Science.gov (United States)

    Su, Jun-Feng; Shi, Jing-Xin; Huang, Ting-Lin; Ma, Fang

    2016-08-15

    A novel aerobic denitrification and biomineralization strain CN86 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain CN86 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Exponential decay equation was used for the matching of kinetic processes on denitrification and biomineralization. A highest nitrate removal rate was achieved at the pH7.0, organic concentration of 1.5g/L and temperature of 30°C. An optimal hardness removal rate was obtained at the pH9.0, organic concentration of 2.0g/L and temperature of 30°C. Strain CN86 is a suitable candidate for the simultaneous removal of nitrate and hardness in groundwater treatment. PMID:27287863

  7. Origin and Status of Homologous Proteins of Biomineralization (Biosilicification in the Taxonomy of Phylogenetic Domains

    Directory of Open Access Journals (Sweden)

    Igor E. Pamirsky

    2013-01-01

    Full Text Available The taxonomic affiliation (in the systematisation of viruses, and biological domains of known peptides and proteins of biomineralization (silicateins, silaffins, silacidins and silicase and their primary structure homologues were analyzed (methods in silico; using Uniprot database. The total number of known peptides and proteins of biosilicification was counted. The data of the quantitative distribution of the detected homologues found in nature are presented. The similarity of the primary structures of silaffins, silacidins, silicateins, silicase, and their homologues was 21–94%, 45–98%, 39–50%, and 28–40%, respectively. These homologues are found in many organisms, from the Protista to the higher plants and animals, including humans, as well as in bacteria and extracellular agents, and they perform a variety of biological functions, such as biologically controlled mineralisation. The provisional classification of these biomineralization proteins is presented. The interrelation of the origin of the first organic polymers and biomineralization is discussed.

  8. Calcification in vitro of Biomineralized nanohydroxyapatite / superhydrophilic vertically aligned multiwalled carbon nanotube scaffolds

    International Nuclear Information System (INIS)

    Nanocomposites based on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O2) and nanohydroxyapatite (nHAp) are of great interest in bone regenerative medicine. The biomineralization using simulated body fluid (SBF) has been extensively studied to evaluate the bioactivity of biomaterials. Thus, the combination of nHAp and VAMWCNT-O2 is attractive and promising. The aim of this study was to evaluate the in vitro calcification of nHAp/VAMWCNT-O2 nanocomposites before and after the period of biomineralization in SBF. In vitro calcification of the extracellular matrix (ECM) of HOB cells in culture after 24 hours was investigated through the assay of alkaline phosphatase. These promising in vitro results validate biomineralized nHAp/VAMWCNT-O2 as possible scaffolds for bone tissue regeneration. (author)

  9. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima

    Directory of Open Access Journals (Sweden)

    Leavesley David

    2011-09-01

    Full Text Available Abstract Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0 from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities

  10. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  11. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  12. Magnetosomal matrix: ultrafine structure may template biomineralization of magnetosomes.

    Science.gov (United States)

    Taylor, A P; Barry, J C

    2004-02-01

    The organic matrix surrounding bullet-shaped, cubo-octahedral, D-shaped, irregular arrowhead-shaped, and truncated hexa-octahedral magnetosomes was analysed in a variety of uncultured magnetotactic bacteria. The matrix was examined using low- (80 kV) and intermediate- (400 kV) voltage TEM. It encapsulated magnetosomes in dehydrated cells, ultraviolet-B-irradiated dehydrated cells and stained resin-embedded fixed cells, so the apparent structure of the matrix does not appear to be an artefact of specimen preparation. High-resolution images revealed lattice fringes in the matrix surrounding magnetite and greigite magnetosomes that were aligned with lattice fringes in the encapsulated magnetosomes. In all except one case, the lattice fringes had widths equal to or twice the width of the corresponding lattice fringes in the magnetosomes. The lattice fringes in the matrix were aligned with the [311], [220], [331], [111] and [391] related lattice planes of magnetite and the [222] lattice plane of greigite. An unidentified material, possibly an iron hydroxide, was detected in two immature magnetosomes containing magnetite. The unidentified phase had a structure similar to that of the matrix as it contained [311], [220] and [111] lattice fringes, which indicates that the matrix acts as a template for the spatially controlled biomineralization of the unidentified phase, which itself transforms into magnetite. The unidentified phase was thus called pre-magnetite. The presence of the magnetosomal matrix explains all of the five properties of the biosignature of the magnetosomal chain proposed previously by Friedmann et al. and supports their claim that some of the magnetite particles in the carbonate globules in the Martian meteorite ALH84001 are biogenic. Two new morphologies of magnetite magnetosomes are also reported here (i.e. tooth-shaped and hexa-octahedral magnetosomes). Tooth-shaped magnetite magnetosomes elongated in the [110] direction are reported, and are distinct

  13. Regulating proliferation and differentiation of osteoblasts on poly(l-lactide)/gelatin composite nanofibers via timed biomineralization.

    Science.gov (United States)

    Zhang, Caijin; Cao, Man; Lan, Jinle; Wei, Pengfei; Cai, Qing; Yang, Xiaoping

    2016-08-01

    Mimicking the natural bone extracellular matrix, biomineralized nanofibers are envisioned as good choices for bone regeneration. Herein, composite nanofibers composed of poly(L-lactide) (PLLA) and gelatin (50/50, w/w) were electrospun and soaked in a modified five times simulated body fluid (SBF) for 6-24 h. Along with the soaking time, the amounts of deposited minerals increased, and the minerals transformed from dicalcium phosphate dehydrate (DCPD) to hydroxyapatite (HA). Mineral dissolution and Ca(2+) ion release of these biomineralized nanofibers were investigated by putting them in deionized water or Hank's balanced salt solution. MC3T3-E1 osteoblasts were cultured in transwell chambers without contacting the materials or on the biomineralized nanofibers directly. In the noncontact culture, the released ions were found able to enhance osteogenic differentiation more significantly in comparison with cell proliferation. In the contact culture, all biomineralized nanofibers demonstrated strong ability in promoting both cell proliferation and osteogenic differentiation. Due to the fast dissolution of DCPD, the biomineralized nanofibers obtained from short SBF soaking was found to be inferior in enhancing osteogenic differentiation. Whereas the cells displayed high levels of alkaline phosphatase activity and collagen I synthesis when the material had abundant deposition of apatite. The results revealed that cell biological behaviors were synergistically influenced by the ionic dissolution products, the composition, and the morphology of biomineralized nanofibers, which could be regulated by timed biomineralization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1968-1980, 2016. PMID:27027483

  14. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E; Cooke, David; Hassenkam, T; Bechgaard, K; Stipp, S L S

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  15. Characterization of the calcium biomineral in the radular teeth of Chiton pelliserpentis.

    Science.gov (United States)

    Evans, L A; Alvarez, R

    1999-04-01

    The radula in a group of molluscan invertebrates, the chitons (Polyplacophora), is a ribbon-like apparatus used for feeding and which bears a series of distinctive mineralized teeth called the major lateral teeth. While some chiton species deposit only iron biominerals in these teeth, many others deposit both iron and calcium. In this study, the calcium biomineral in the teeth of one of the latter types of species, the Australian east-coast chiton, Chiton pelliserpentis, has been isolated and examined for the first time. Spectroscopic and crystallographic techniques have identified the biomineral as a carbonate-substituted apatite with significant fluoride substitution also likely. Fourier-transform infrared and laser Raman spectroscopy indicated that the carbonate content was less than that of either bovine tibia cortical bone or human tooth enamel. X-ray diffraction analysis showed the biomineral to be poorly crystalline due to small crystal size and appreciable anionic substitution. The lattice parameters were calculated to be a = 9.382 A and c = 6.883 A, which are suggestive of a fluorapatite material. It is postulated that structural and biochemical differences in the tooth organic matrix of different chiton species will ultimately determine if the teeth become partly calcified or iron mineralized only. PMID:10499087

  16. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria.

    Science.gov (United States)

    Abreu, Fernanda; Cantão, Mauricio E; Nicolás, Marisa F; Barcellos, Fernando G; Morillo, Viviana; Almeida, Luiz Gp; do Nascimento, Fabrícia F; Lefèvre, Christopher T; Bazylinski, Dennis A; R de Vasconcelos, Ana Tereza; Lins, Ulysses

    2011-10-01

    Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe(3)O(4)) or/and greigite (Fe(3)S(4)) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnetosome chain, the mam and mms genes, are organized within a genomic island. However, partially because there are presently no greigite-producing magnetotactic bacteria in pure culture, little is known regarding the greigite biomineralization process in these organisms including whether similar genes are involved in the process. Here using culture-independent techniques, we now show that mam genes involved in the production of magnetite magnetosomes are also present in greigite-producing magnetotactic bacteria. This finding suggest that the biomineralization of magnetite and greigite did not have evolve independently (that is, magnetotaxis is polyphyletic) as once suggested. Instead, results presented here are consistent with a model in which the ability to biomineralize magnetosomes and the possession of the mam genes was acquired by bacteria from a common ancestor, that is, the magnetotactic trait is monophyletic. PMID:21509043

  17. Piezoelectric Templates – New Views on Biomineralization and Biomimetics

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V‑1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  18. Untangling ENSO Precursors

    Science.gov (United States)

    Pegion, K.; Alexander, M. A.

    2014-12-01

    There are several proposed precursors to the El Nino-Southern Oscillation (ENSO) that may provide the ability to predict ENSO as much as one year in advance. Some of these precursors are associated with stochastic forcing from extratropical atmospheric variability. Two examples are the seasonal footprinting mechanism (SFM) and the Pacific meridional mode (PMM). Both of these ENSO precursors are thought to be forced by the North Pacific Oscillation (NPO), a north-south sea level pressure dipole in the north Pacific. Additionally, both the PMM and SFM are thought to impact the tropics through wind evaporation SST feedbacks and have a correlation with ENSO up to one year in advance. These two precursors are discussed interchangeably throughout the literature and various indices used to define them co-mingle them. As a result, whether they are independent of each other or are part of the same process has not been investigated. The research presented is focused on untangling the relationship between the PMM, SFM, NPO, and ENSO using observational datasets and model simulations. Observational results demonstrate that these two mechanisms are different, are forced by different atmospheric circulations, and result in different manifestations of ENSO. Modeling results highlight the extent to which climate models can simulate these relationships and their impact on the simulation of ENSO.

  19. Cuticular Biominerals of the Terrestrial Crustacean Oniscus asellus (Isopoda, Linnaeus 1758)

    Science.gov (United States)

    Mergelsberg, S. T.; Mukhopadhyay, B.; Dove, P. M.

    2013-12-01

    Biomineralization is a phenomenon observed in many eukaryotic organisms and evidence suggests this process began relatively early in the evolution of multicellular life (Marin F et al. 1996). Crustaceans form a large fraction of all eukaryotic biomineralizers by incorporating calcium carbonate (CaCO3) into their cuticle. Terrestrial species are challenged in their production of CaCO3 by the absence of calcium-rich waters. To cope with this limitation, the terrestrial crustacean Oniscus asellus recycles up to 80% (Auzou G 1953) of its total calcium during the molting process. This feat is accomplished by separate molting of the front and back cuticle, with temporary storage of the calcium carbonate as amorphous calcium carbonate (ACC) in the front half (Ziegler A 1997). These processes infer a highly efficient and regulated mechanism for biomineralization that is most likely orchestrated by a myriad of proteins (Ziegler A et al. 2012). Until recently, investigations of biomineralization were largely directed toward understanding morphology and large-scale chemistry of the minerals, ignoring the mechanistic roles of biomacromolecules in mineralization processes. More recent work suggests a high involvement of these compounds on the formation of biominerals and, in some cases, the specific polymorphs thereof (Keene EC et al. 2010). This study focuses on identifying the components of the biological mineralization matrix at each stage of the process. Using chemical demineralization of the stored ACC, all biomacromolecules can be separated and purified for subsequent analysis by MALDI-TOF mass spectrometry. To link the localized biochemistry more intimately to the polymorph of calcium carbonate that forms in the animal, the inorganic phase (';the mineral') will be monitored at each life stage using XRD and TEM. This analysis will reveal the organic components of a very precise biomineralization mechanism and may shed insight on its evolutionary origin. References: Marin

  20. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Tayra Rodrigues; Neves, Marcele Florencio das; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Regiani, Inacio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O{sub 2} films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O{sub 2} nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O{sub 2} films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O{sub 2} in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  1. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  2. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    International Nuclear Information System (INIS)

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O2 ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O2 films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O2 nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O2 films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O2 in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  3. Low-molecular-weight poly-carboxylate as crystal growth modifier in biomineralization

    Indian Academy of Sciences (India)

    Ballav Moni Borah; Bhaskar Jyoti Bhuyan; Gopal Das

    2006-11-01

    Construction of modified inorganic mineral with controlled mineralization analogues of those produced by nature is now of current interest for understanding the mechanism of the in vivo biomineralization processes, as well as looking for fresh industrial and technological applications. Lowmolecular-weight chiral poly-carboxylate ligands derived from naturally occurring L--amino acids have been used as model systems to study the effect of molecular properties on crystal growth modification.

  4. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  5. Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila

    OpenAIRE

    Rothenstein, Dirk; Baier, Johannes; Schreiber, Thomas D.; Barucha, Vera; Bill, Joachim

    2012-01-01

    Background: The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic-inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation proces...

  6. Common ancestry of iron oxide- and iron-sulfide-based biomineralization in magnetotactic bacteria

    OpenAIRE

    Abreu, Fernanda; Cantão, Mauricio E; Nicolás, Marisa F; Barcellos, Fernando G; Morillo, Viviana; Almeida, Luiz GP; do Nascimento, Fabrícia F; Lefèvre, Christopher T; Dennis A. Bazylinski; R de Vasconcelos, Ana Tereza; Lins, Ulysses

    2011-01-01

    Magnetosomes are prokaryotic organelles produced by magnetotactic bacteria that consist of nanometer-sized magnetite (Fe3O4) or/and greigite (Fe3S4) magnetic crystals enveloped by a lipid bilayer membrane. In magnetite-producing magnetotactic bacteria, proteins present in the magnetosome membrane modulate biomineralization of the magnetite crystal. In these microorganisms, genes that encode for magnetosome membrane proteins as well as genes involved in the construction of the magnetite magnet...

  7. Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization.

    Science.gov (United States)

    Kocot, Kevin M; Aguilera, Felipe; McDougall, Carmel; Jackson, Daniel J; Degnan, Bernard M

    2016-01-01

    An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium. Despite its deep conservation within Mollusca, the mantle is capable of producing an incredible diversity of shell patterns, and macro- and micro-architectures. Here we review recent developments within the field of molluscan biomineralization, focusing on the genes expressed in the mantle that encode secreted proteins. The so-called mantle secretome appears to regulate shell deposition and patterning and in some cases becomes part of the shell matrix. Recent transcriptomic and proteomic studies have revealed marked differences in the mantle secretomes of even closely-related molluscs; these typically exceed expected differences based on characteristics of the external shell. All mantle secretomes surveyed to date include novel genes encoding lineage-restricted proteins and unique combinations of co-opted ancient genes. A surprisingly large proportion of both ancient and novel secreted proteins containing simple repetitive motifs or domains that are often modular in construction. These repetitive low complexity domains (RLCDs) appear to further promote the evolvability of the mantle secretome, resulting in domain shuffling, expansion and loss. RLCD families further evolve via slippage and other mechanisms associated with repetitive sequences. As analogous types of secreted proteins are expressed in biomineralizing tissues in other animals, insights into the evolution of the genes

  8. Origin and Status of Homologous Proteins of Biomineralization (Biosilicification) in the Taxonomy of Phylogenetic Domains

    OpenAIRE

    Golokhvast, Kirill S.; Pamirsky, Igor E.

    2013-01-01

    The taxonomic affiliation (in the systematisation of viruses, and biological domains) of known peptides and proteins of biomineralization (silicateins, silaffins, silacidins and silicase) and their primary structure homologues were analyzed (methods in silico; using Uniprot database). The total number of known peptides and proteins of biosilicification was counted. The data of the quantitative distribution of the detected homologues found in nature are presented. The similarity of the primary...

  9. Zinc isotope and transition-element dynamics accompanying hydrozincite biomineralization in the Rio Naracauli, Sardinia, Italy

    Science.gov (United States)

    Wanty, Richard B.; Podda, F.; De Giudici, Giovanni; Cidu, R.; Lattanzi, Pierfranco

    2013-01-01

    The Rio Naracauli in SW Sardinia drains part of the Ingurtosu Zn–Pb mining district, and contains extreme concentrations of dissolved Zn at near-neutral pH. In the upper reaches of the stream, pH, alkalinity and Zn concentrations are such that hydrozincite [Zn5(CO3)2(OH)6] precipitates in a biologically mediated process facilitated by a microalga (Chlorella sp.) and a cyanobacterium (Scytonema sp.). Values of δ66Zn in water and solid samples ranged from − 0.35‰ to + 0.5‰ relative to the JMC 3-0749-Lyon standard, and closely follow a mass-dependent fractionation line. Two composite samples of sphalerite, the primary ore mineral in the Ingurtosu deposits, had an average δ66Zn of + 0.15‰, similar to sphalerite measured elsewhere in hydrothermal mineral deposits. Zinc isotope measurements of the stream water and the hydrozincite forming in the stream show a consistent preference for the heavy isotope, 66Zn, in the hydrozincite relative to 64Zn. Synthetic hydrozincites produced without added bacteria have δ66Zn identical to the dissolved Zn, thus suggesting a biologically mediated mineralization process in Rio Naracauli. The average fractionation, Δhdz-water, is 0.35‰, the magnitude of which is consistent with other studies, and suggests an extracellular mechanism of the biomineralization process. Zinc concentration and dissolved δ66Zn steadily decrease in the reach of the stream where the biomineralization occurs. The biomineralization process also leads to the sequestration of Pb, Cu and Ni in the hydrozincite lattice, and the coeval precipitation of an amorphous CdCO3 solid, prompting the suggestion that if optimized, the biomineralization process might represent a feasible passive remediation strategy for streams with high Zn and other metals, and with near-neutral pH.

  10. A new model for biomineralization and trace-element signatures of Foraminifera tests

    OpenAIRE

    G. Nehrke; Keul, N.; Langer, G.; L. J. de Nooijer; Bijma, J.; Meibom, A.

    2013-01-01

    The Mg / Ca ratio of foraminifera calcium-carbonate tests is used as proxy for seawater temperature and widely applied to reconstruct global paleo-climatic changes. However, the mechanisms involved in the carbonate biomineralization process are poorly understood. The current paradigm holds that calcium ions for the test are supplied primarily by endocytosis of seawater. Here, we combine confocal-laser scanning-microscopy observations of a membrane-impermeable fluorescent marker in the ...

  11. Dynamic Remodeling of the Magnetosome Membrane Is Triggered by the Initiation of Biomineralization

    OpenAIRE

    Cornejo, Elias; Subramanian, Poorna; Li, Zhuo; Jensen, Grant J.; Komeili, Arash

    2016-01-01

    Magnetotactic bacteria produce chains of membrane-bound organelles that direct the biomineralization of magnetic nanoparticles. These magnetosome compartments are a model for studying the biogenesis and subcellular organization of bacterial organelles. Previous studies have suggested that discrete gene products build and assemble magnetosomes in a stepwise fashion. Here, using an inducible system, we show that the stages of magnetosome formation are highly dynamic and interconnected. During d...

  12. Biomineralization in the Sea Hare Aplysia punctata Initiated by Nano-Dolomite

    OpenAIRE

    Tonejc, Anđelka; Medaković, Davorin; Popović, Stanko; JAKLIN Andrej; Bijelić, Mirjana; Lončarek, Ivana

    2014-01-01

    X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), high resolution transmission electron microscopy (HRTEM), environmental scanning electron microscopy (ESEM) and energy dispersive X-ray analysis (EDS) were used in study of starting biomineralization processes in embryos of the sea hare species Aplysia punctata. 10 days old embryos appeared amorphous according to XRD patterns. TEM of the same sample showed that first grains of nanocryst...

  13. Expression of biomineralization-related ion transport genes in Emiliania huxleyi

    OpenAIRE

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-01-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO2 levels has been well documented. This study looks into the role of several candidate Ca2+, H+ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene ex...

  14. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense

    OpenAIRE

    Li, Yingjie; Sabaty, Monique; Borg, Sarah; Silva, Karen T.; Pignol, David; Schüler, Dirk

    2014-01-01

    Background: Magnetotactic bacteria are capable of synthesizing magnetosomes only under oxygen-limited conditions. However, the mechanism of the aerobic repression on magnetite biomineralization has remained unknown. In Escherichia coli and other bacteria, Fnr (fumarate and nitrate reduction regulator) proteins are known to be involved in controlling the switch between microaerobic and aerobic metabolism. Here, we report on an Fnr-like protein (MgFnr) and its role in growth metabolism and magn...

  15. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II)-oxidizer

    OpenAIRE

    Miot, Jennyfer; Remusat, Laurent; Duprat, Elodie; Gonzalez, Adriana; Pont, Sylvain; Poinsot, Mélanie

    2015-01-01

    Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is, however, thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had, however, never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II) oxidizing bacteria Acidovorax sp. strain...

  16. Biomineral Processing: A Valid Eco-Friendly Alternative for Metal Extraction.

    OpenAIRE

    Sandeep Panda; Lala Behari Sukla; Jacintha Esther; Nilotpala Pradhan

    2014-01-01

    Over the past few years, the applications of certain microorganisms have gained importance in the field of applied environmental microbiology. Amongst them, biomineral processing is such field that deals with metal mining from ores, concentrates, industrial wastes, overburdens etc. under the impact of microorganisms and/or their metabolites. The most successful advancement of mineral biotechnology so far is on copper, uranium, nickel-cobalt and gold bearing ores. Treatment of mineral industry...

  17. A contribution to the study of pathological biomineralization of aortic valves

    Czech Academy of Sciences Publication Activity Database

    Zeman, Antonín; Šmíd, M.; Kučková, Š.; Hájek, T.; Rokyta, R.

    Gorgonzola : Associazione Italiana per lo Studio delle Argille, 2011 - (Belviso, C.; Fiore, S.; Giannossi, M.), s. 305-314 ISBN 978-88-7522-041-9. [International conference on Medical geo logy /4./. Bari (IT), 20.09.2011-25.09.2011] Institutional research plan: CEZ:AV0Z20710524 Keywords : biomineralization aortic valves * spectroscopy * X-ray Subject RIV: DB - Geo logy ; Mineralogy

  18. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  19. Biomineralization of uranium by PhoY phosphatase activity aids cell survival in Caulobacter crescentus.

    Science.gov (United States)

    Yung, Mimi C; Jiao, Yongqin

    2014-08-01

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown to confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria. PMID:24878600

  20. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste

    International Nuclear Information System (INIS)

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g-1 cell dry wt.) following incubation in 100 mg U L-1, pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  1. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Yung, M C [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiao, Y [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-22

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown to confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria.

  2. Modeling the environmental stability of FeS2 nanorods, using lessons from biomineralization

    International Nuclear Information System (INIS)

    Previous experimental studies have indicated that the controlled formation of anisotropic pyrite nanoparticles, such as nanorods or nanowires, is dependent on the right combination of solution chemistry and temperature. Similarly, the morphology of the individual nanocrystals during intracellular biomineralization of single nanocrystals has been attributed to the local environmental conditions, as well as the species of the micro-organism. Although there are obvious similarities, using the lessons from biomineralization to assist the laboratory synthesis of anisotropic pyrite nanostructures, and in the anticipation of environmental stability, requires a more detailed understanding of the role played by individual environmental parameters. In the present study we use a multi-scale thermodynamic model, combined with parameters obtained from first principles calculations, to investigate the formation and stability of pyrite nanorods as a function of temperature and chemical environment. The results of our systematic modeling of parameter space predict that the morphology of pyrite nanorods grown in the laboratory, or associated with biomineralization, is more likely to be a function of surface ligands and the biology of the organisms than a function of simpler environmental parameters such as temperature, pressure, concentration of sulfur and adsorption of water.

  3. Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

    Science.gov (United States)

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-12-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented. PMID:21902794

  4. Structure-function studies of the magnetite-biomineralizing magnetosome-associated protein MamC.

    Science.gov (United States)

    Nudelman, Hila; Valverde-Tercedor, Carmen; Kolusheva, Sofiya; Perez Gonzalez, Teresa; Widdrat, Marc; Grimberg, Noam; Levi, Hilla; Nelkenbaum, Or; Davidov, Geula; Faivre, Damien; Jimenez-Lopez, Concepcion; Zarivach, Raz

    2016-06-01

    Magnetotactic bacteria are Gram-negative bacteria that navigate along geomagnetic fields using the magnetosome, an organelle that consists of a membrane-enveloped magnetic nanoparticle. Magnetite formation and its properties are controlled by a specific set of proteins. MamC is a small magnetosome-membrane protein that is known to be active in iron biomineralization but its mechanism has yet to be clarified. Here, we studied the relationship between the MamC magnetite-interaction loop (MIL) structure and its magnetite interaction using an inert biomineralization protein-MamC chimera. Our determined structure shows an alpha-helical fold for MamC-MIL with highly charged surfaces. Additionally, the MamC-MIL induces the formation of larger magnetite crystals compared to protein-free and inert biomineralization protein control experiments. We suggest that the connection between the MamC-MIL structure and the protein's charged surfaces is crucial for magnetite binding and thus for the size control of the magnetite nanoparticles. PMID:26970040

  5. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    Science.gov (United States)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-01-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462

  6. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants' teeth against herbivores.

    Science.gov (United States)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-01-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix. PMID:27194462

  7. Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties.

    Science.gov (United States)

    Dunleavy, Robert; Lu, Li; Kiely, Christopher J; McIntosh, Steven; Berger, Bryan W

    2016-05-10

    Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization. PMID:27118834

  8. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  9. Biomineral Processing: A Valid Eco-Friendly Alternative for Metal Extraction.

    Directory of Open Access Journals (Sweden)

    Lala Behari Sukla

    2014-07-01

    Full Text Available Over the past few years, the applications of certain microorganisms have gained importance in the field of applied environmental microbiology. Amongst them, biomineral processing is such field that deals with metal mining from ores, concentrates, industrial wastes, overburdens etc. under the impact of microorganisms and/or their metabolites. The most successful advancement of mineral biotechnology so far is on copper, uranium, nickel-cobalt and gold bearing ores. Treatment of mineral industry effluents by microorganisms, with incidental recovery of some metal values constitutes an equally important area of biomineral processing. The most common method followed for leaching or extraction of metal values is through shake flask (a lab scale method followed by bioreactors or percolation columns (a bench scale method and finally to heap leaching (a pilot scale method. Bio-leaching of mono- and multiple-sulphides is now coming to be known as an established commercial process. The present review discusses the microorganisms involved in biomineral processing, mechanism of metal extraction, molecular methodologies adopted for microbial identification with our experience on application of microorganism.

  10. Role of EPS in dolomite biomineralization by coastal sabkha microbial isolates

    Science.gov (United States)

    Ahmad, F.; Matiin, W. A.; Mansoor, B.; Yousef, L. F.

    2012-12-01

    Dolomite, CaMg(CO3)2, is an ancient form of carbonate constituting a wide variety of geologic formations. Despite its abundant deposits in geologic record, a longstanding mystery termed 'the Dolomite Problem' surrounds the formation of this mineral under present-day Earth conditions. Attempts to precipitate dolomite abiotically out of supersaturated solutions, and at ambient temperatures were not successful, particularly due to the kinetic barrier of strong ion pairs formed by calcium and magnesium with sulfate. The coastal sabkhas of western Abu Dhabi, alongside locations like Lagoa Vermelha, Brejo de Espinho, the Coorong, and Qinghai Lake were reported to exhibit modern dolomite formation, driven by the activity of sedimentary microbes well-adapted to these highly evaporative, hypersaline and sulfur-rich environments. Our study investigated one group of microbes, the sulfate-reducing bacteria (SRB) hypothesized to overcome the kinetic barrier through cation-sulfate pair dissociation and subsequent sulfate reduction into sulfide. While previous studies have successfully precipitated dolomite at ambient temperatures when incubated with SRB, the exact mechanism remains unclear. To address this, the biofilm aspect of natural SRB growth was explored within the setting of a dolomitizing culture. The study sought to investigate the potential role of exopolymeric substances (EPS) in promoting favorable conditions for dolomite biomineralization. SRB isolated from a coastal sabkha (western Abu Dhabi) were cultured and their EPS was extracted for characterization studies. To investigate the influence of EPS on dolomite biomineralization, sabkha SRB were cultured on dynamic hypersaline medium in the presence of varying EPS concentrations. Periodic chemical analysis of the growth medium, and HVSEM-EDS studies of the generated biofilm and biominerals suggest possible EPS influence on the microbial cultures and biomineralization process. Direct imaging of emerging Ca

  11. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  12. Leading time domain seismic precursors

    Science.gov (United States)

    Boucouvalas, A. C.; Gkasios, M.; Keskebes, A.; Tselikas, N. T.

    2014-08-01

    The problem of predicting the occurrence of earthquakes is threefold. On one hand it is necessary to predict the date and magnitude of an earthquake, and on the other hand the location of the epicenter. In this work after a brief review of the state of earthquake prediction research, we report on a new leading time precursor for determining time onset of earthquake occurrence. We report the linking between earthquakes of the past with those which happen in the future via Fibonacci, Dual and Lucas numbers (FDL) numbers. We demonstrate it here with two example seed earthquakes at least 100 years old. Using this leading indicator method we can predict significant earthquake events >6.5R, with good accuracy approximately +- 1 day somewhere in the world. From a single seed we produce at least 100 trials simultaneously of which 50% are correct to +- 1day. The indicator is based on Fibonacci, Dual and Lucas numbers (FDL). This result hints that the log periodic FDL numbers are at the root of the understanding of the earthquake mechanism. The theory is based on the assumption that each occurred earthquake discontinuity can be thought of as a generating source of FDL time series. (The mechanism could well be linked to planetary orbits). When future dates are derived from clustering and convergence from previous strong earthquake dates at an FDL time distance, then we have a high probability for an earthquake to occur on that date. We set up a real time system which generates FDL time series from each previous significant earthquake (>7R) and we produce a year to year calendar of high probability earthquake dates. We have tested this over a number of years with considerable success. We have applied this technique for strong (>7R) earthquakes across the globe as well as on a restricted region such as the Greek geographic region where the magnitude is small (>4R-6.5R). In both cases the success of the method is impressive. It is our belief that supplementing this method with

  13. Reverse tracing of precursors and earthquake precursors in Taiwan

    Institute of Scientific and Technical Information of China (English)

    WANG Li-ping; LI Yong; MA Li; ZHANG Shu-mei

    2008-01-01

    In this paper, we investigate the precursors of large earthquakes in the eastern region of Taiwan by means of the reverse tracing of precursors. We discuss the parameters which are suitable for the seismic chains and intermedi-ate-term patterns in this region and obtain the threshold of the patterns. Applying the linear discriminate method to the intermediate-term patterns of seismic chains, we present an approach for exploring the precursors of large earthquakes. The results show that this method can reduce the false alarm rate for large earthquakes in this region, and the reverse tracing of precursors can be applied to the eastern region of Taiwan.

  14. Generation of nonlinear vortex precursors

    CERN Document Server

    Chen, Yue-Yue; Liu, Chengpu

    2016-01-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex har- monics are generated in the transmitted field due to ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provide a straightforward way of measuring precursors. By the virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical informa- tion and communication fields where controllable loss, large information-carrying capacity and high speed communication are required.

  15. Generation of Nonlinear Vortex Precursors

    Science.gov (United States)

    Chen, Yue-Yue; Feng, Xun-Li; Liu, Chengpu

    2016-07-01

    We numerically study the propagation of a few-cycle pulse carrying orbital angular momentum (OAM) through a dense atomic system. Nonlinear precursors consisting of high-order vortex harmonics are generated in the transmitted field due to carrier effects associated with ultrafast Bloch oscillation. The nonlinear precursors survive to propagation effects and are well separated with the main pulse, which provides a straightforward way to measure precursors. By virtue of carrying high-order OAM, the obtained vortex precursors as information carriers have potential applications in optical information and communication fields where controllable loss, large information-carrying capacity, and high speed communication are required.

  16. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2015-12-08

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  17. The role of anaerobic respiration in the immobilization of uranium through biomineralization of phosphate minerals

    Science.gov (United States)

    Salome, Kathleen R.; Green, Stefan J.; Beazley, Melanie J.; Webb, Samuel M.; Kostka, Joel E.; Taillefert, Martial

    2013-04-01

    Although bioreduction of uranyl ions (U(VI)) and biomineralization of U(VI)-phosphate minerals are both able to immobilize uranium in contaminated sediments, the competition between these processes and the role of anaerobic respiration in the biomineralization of U(VI)-phosphate minerals has yet to be investigated. In this study, contaminated sediments incubated anaerobically in static microcosms at pH 5.5 and 7.0 were amended with the organophosphate glycerol-2-phosphate (G2P) as sole phosphorus and external carbon source and iron oxides, sulfate, or nitrate as terminal electron acceptors to determine the most favorable geochemical conditions to these two processes. While sulfate reduction was not observed even in the presence of G2P at both pHs, iron reduction was more significant at circumneutral pH irrespective of the addition of G2P. In turn, nitrate reduction was stimulated by G2P at both pH 5.5 and 7.0, suggesting nitrate-reducing bacteria provided the main source of inorganic phosphate in these sediments. U(VI) was rapidly removed from solution in all treatments but was not reduced as determined by X-ray absorption near edge structure (XANES) spectroscopy. Simultaneously, wet chemical extractions and extended X-ray absorption fine structure (EXAFS) spectroscopy of these sediments indicated the presence of U-P species in reactors amended with G2P at both pHs. The rapid removal of dissolved U(VI), the simultaneous production of inorganic phosphate, and the existence of U-P species in the solid phase indicate that uranium was precipitated as U(VI)-phosphate minerals in sediments amended with G2P. Thus, under reducing conditions and in the presence of G2P, bioreduction of U(VI) was outcompeted by the biomineralization of U(VI)-phosphate minerals and U(VI) sorption at both pHs.

  18. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  19. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification.

    Science.gov (United States)

    Ramajo, Laura; Marbà, Núria; Prado, Luis; Peron, Sophie; Lardies, Marco A; Rodriguez-Navarro, Alejandro B; Vargas, Cristian A; Lagos, Nelson A; Duarte, Carlos M

    2016-06-01

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers. PMID:26644007

  20. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  1. The Impact of Small-Scale Heterogeneity on Proxies in Biomineral Archives

    Science.gov (United States)

    Gagnon, A. C.

    2015-12-01

    From the pace of the ice ages to how the carbon cycle has changed through time, much of what we know about earth history and climate dynamics is based on chemical signatures locked within minerals. Recorded as trace element anomalies or as isotopic shifts, these chemical signatures reflect how mass and energy move across the planet, as well as the response of biological systems to these changes. When viewed at the sub-micron to nano-scale however, chemical composition rarely follows a simple relationship with environmental conditions. This is especially true for the preserved CaCO3 skeletons of marine organisms, which often exhibit systematic patterns of high magnitude chemical variability at the sub-micron scale. While this biologically-driven variability can complicate the interpretation of climate records, it also represents a rich and largely untapped signal. Major advances in our understanding of both biomineralization and paleoproxies hinge on new techniques that can isolate small signals from this complexity. To probe the mechanisms controlling biomineralization and sub-micron compositional variability, we use a suite of high spatial resolution tools: NanoSIMS, ToF-SIMS, and Atom Probe Tomography (APT), together with stable isotope labels and biomineral culture. In planktonic foraminifera we conducted modified pulse chase experiments using isotope tracers to measure ion transport rates during biomineralization. By varying elemental concentrations in the surrounding seawater during these pulse chase experiments, we induced systematic shifts in the ion transport rate. The magnitude of these shifts indirectly measure the elemental composition of the calcifying microenvironment, a key and previously unmeasured parameter affecting skeletal chemistry and paleoproxy systematics. Complementary isotope tracer experiments in coral and related experiments applying APT to the organic-mineral interface in foraminifera uncovered the response of calcification to ocean

  2. Pore Structures in the Biomineralized Byssus of Anomia simplex

    DEFF Research Database (Denmark)

    Frølich, Simon; Leemreize, Hanna; Thomsen, Jesper Skovhus;

    2016-01-01

    uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space is...... the main focus of the present work. We characterize the three dimensional distribution of pore spaces in the byssus using micro-computed tomography (µCT) through a combination of in house CT and high-resolution synchrotron CT. The pore structures are observed to fall into distinct categories in...

  3. Strontium Co-precipitation During Biomineralization of Calcite in Porous Media Using Differing Treatment Strategies

    Science.gov (United States)

    Lauchnor, E. G.; Schultz, L.; Mitchell, A.; Cunningham, A. B.; Gerlach, R.

    2013-12-01

    The process of ureolytically-induced calcium carbonate mineralization has been shown in laboratory studies to be effective in co-precipitation of heavy metals and radionuclides. During this process, the microbially catalyzed hydrolysis of urea increases alkalinity and pH, thus promoting CaCO3 precipitation in the presence of dissolved calcium. One proposed application of biomineralization includes the remediation of radionuclides such as strontium, which can be co-precipitated in situ within calcite. Strontium is of concern at several US DOE sites where it is a radioactive product of uranium fission and groundwater contaminant. Our research focuses on promoting attached bacteria, or biofilms, in subsurface environments where they serve as immobilized catalysts in biomineralization and can aide in co-precipitation of some contaminants. In this work, flat plate reactors with 1 mm etched flow channels designed to mimic a porous medium environment were used. Reactors were inoculated with the model ureolytic bacterium Sporosarcina pasteurii and addition of urea, calcium and strontium containing fluid was performed to induce biomineralization. Continuous flow and stopped-flow injection strategies were investigated to evaluate differences in strontium co-precipitation efficiency. During stopped-flow experiments, injection of cementation fluid containing urea, Ca2+ and Sr2+ was alternated with growth nutrients for stimulation of microbial activity. Control parameters such as urea and calcium concentration and injection flow rate are currently being varied to optimize rate and efficiency of strontium co-precipitation. Ureolytically induced calcite precipitation and strontium incorporation in the calcite was verified by chemical and mineralogical analyses, including X-ray diffraction and ICP-MS. Strontium co-precipitation efficiency was similar under different injection strategies. Alternating calcium-containing fluid with growth nutrients allowed for continued viability of

  4. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  5. Spatial and Geochemical Heterogeneity Impacts on Iron Biomineralization and Uranium Sequestration

    International Nuclear Information System (INIS)

    Bioreductive transformations of iron (hydr)oxides are a critically important processes controlling the fate and transport of contaminants in soil and aquifer systems. Heterogeneity arising from both chemical and physical conditions will lead to various biomineralization products of iron oxides and will additionally alter reactions controlling the partitioning of hazardous elements such as uranium. We are presently exploring chemical and mineralogical transformations within physically complex material having a range of pore-size distribution and chemical environments. Here we discuss the impact of calcium on the reactive transport of uranium and the spatial heterogeneity in iron hydroxide mineralization and concomitant uranium reduction along a diffusive flow path.

  6. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    OpenAIRE

    Yung, Mimi C.; Jiao, Yongqin

    2014-01-01

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the ...

  7. Cluster Automorphisms

    OpenAIRE

    Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa

    2010-01-01

    In this article, we introduce the notion of cluster automorphism of a given cluster algebra as a $\\ZZ$-automorphism of the cluster algebra that sends a cluster to another and commutes with mutations. We study the group of cluster automorphisms in detail for acyclic cluster algebras and cluster algebras from surfaces, and we compute this group explicitly for the Dynkin types and the Euclidean types.

  8. Graphene oxide and titanium: synergistic effects on the biomineralization ability of osteoblast cultures.

    Science.gov (United States)

    Zancanela, Daniela C; Simão, Ana Maria S; Francisco, Camila G; de Faria, Amanda N; Ramos, Ana Paula; Gonçalves, Rogéria R; Matsubara, Elaine Y; Rosolen, José Maurício; Ciancaglini, Pietro

    2016-04-01

    Graphene oxide (GO) has attracted remarkable attention in recent years due to properties such as extremely large surface area, biocompatibility, biostability, and easy chemical functionalization. Osteoblasts underlie the deposition of hydroxyapatite crystals in the bone protein matrix during biomineralization; hydroxyapatite deposition involves extracellular matrix vesicles that are rich in alkaline phosphatase (ALP). Here, we have investigated how GO affects osteoblast viability, ALP activity, and mineralized matrix formation in osteoblast cultures in three different phases of cell growth, in the presence and in the absence of titanium (Ti). Scanning electron microscopy (SEM), Raman spectra, and energy dispersive spectroscopy aided GO characterization. The presence of GO increased the viability of osteoblast cells grown on a plastic surface. However, osteoblast viability on Ti discs was lower in the presence than in the absence of GO. ALP activity emerged at 14 days for the cell culture incubated with GO. The total protein concentration also increased at 21 days on both the Ti discs and plastic surface. Osteoblasts grown on Ti discs had increased mineralized matrix formation in the presence of GO as compared to the cells grown in the absence of GO. SEM images of the cell cultures on plastic surfaces in the presence of GO suggested delayed mineralized matrix formation. In conclusion, applications requiring the presence of Ti, such as prostheses and implants, should benefit from the use of GO, which may increase mineralized nodule formation, stimulate biomineralization, and accelerate bone regeneration. PMID:26886819

  9. A Study of Chromium Adsorption on Natural Goethite Biomineralized with Iron Bacteria

    Institute of Scientific and Technical Information of China (English)

    SUN Zhenya; ZHU Chunshui; HUANG Jiangbo; GONG Wenqi; CHEN Hesheng; MU Shanbin

    2006-01-01

    Goethite, especially biogenic goethite, has high specific surface area and great capacity for the adsorption of many contaminants including metal ions and organic chelates. Chromium is a redox actively toxic metal ion that exists as either CrⅢ or CrⅥ in nature, and as such it is essential to understand its behavior of adsorption on natural goethite mineralized by iron bacteria, as Gallionella and Leptothrix in water body. The adsorption of Cr3+ and CrⅥ on naturally biomineralized goethite is studied in this paper. The results show that both Langmuir and Freundlich adsorption isothermal models are able to accurately describe the adsorption of these two ions. Investigation of SEM/EDS,TEM/EDS indicates that the two ions do not adsorb homogeneously on goethite owing to the different microstructures of goethite, and that the microspherical goethite has a greater adsorption capacity for chromium ions than the helical one. XPS data show that redox reaction of chromium on the surface of biomineralized goethite takes place in the adsorption of both Cr3+ and CrⅥ. The CrⅥ adsorbed on biogoethite is much easier to transform into CrⅢ than the oxidization of CrⅢ on the bio-goethite.

  10. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature

    Science.gov (United States)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. “Ion and acid-base regulation” related genes and “amino acid metabolism” pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, “anti-oxidation”-related genes and “Toll-like receptor signaling”, “arachidonic acid metabolism”, “lysosome” and “other glycan degradation” pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture.

  11. Kinetics of aerobic and anaerobic biomineralization of atrazine in surface and subsurface agricultural soils in Ohio.

    Science.gov (United States)

    Tuovinen, Olli H; Deshmukh, Vaidehi; Özkaya, Bestamin; Radosevich, Mark

    2015-01-01

    The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of (14)CO2 during incubation of soil samples with [U-ring-(14)C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another. PMID:26273756

  12. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. PMID:26592710

  13. Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO2 and temperature.

    Science.gov (United States)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zhang, Shuwen; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-01-01

    Ocean acidification and global warming have been shown to significantly affect the physiological performances of marine calcifiers; however, the underlying mechanisms remain poorly understood. In this study, the transcriptome and biomineralization responses of Pinctada fucata to elevated CO2 (pH 7.8 and pH 7.5) and temperature (25 °C and 31 °C) are investigated. Increases in CO2 and temperature induced significant changes in gene expression, alkaline phosphatase activity, net calcification rates and relative calcium content, whereas no changes are observed in the shell ultrastructure. "Ion and acid-base regulation" related genes and "amino acid metabolism" pathway respond to the elevated CO2 (pH 7.8), suggesting that P. fucata implements a compensatory acid-base mechanism to mitigate the effects of low pH. Additionally, "anti-oxidation"-related genes and "Toll-like receptor signaling", "arachidonic acid metabolism", "lysosome" and "other glycan degradation" pathways exhibited responses to elevated temperature (25 °C and 31 °C), suggesting that P. fucata utilizes anti-oxidative and lysosome strategies to alleviate the effects of temperature stress. These responses are energy-consuming processes, which can lead to a decrease in biomineralization capacity. This study therefore is important for understanding the mechanisms by which pearl oysters respond to changing environments and predicting the effects of global climate change on pearl aquaculture. PMID:26732540

  14. Mineralogical Diversity in Lake Pavin: Connections with Water Column Chemistry and Biomineralization Processes

    Directory of Open Access Journals (Sweden)

    Jennyfer Miot

    2016-03-01

    Full Text Available As biominerals are good tracers of microbial interactions with the environment, they may provide signatures of microbial evolution and paleoenvironmental conditions. Since modern analogues of past environments help with defining proxies and biosignatures, we explored microbe mineral interactions in the water column of a maar lake, located in France: Lake Pavin. This lake is considered as a potential Precambrian ocean analogue, as it is ferruginous and meromictic, i.e., stratified with a superficial O2-rich layer (mixolimnion and a deeper permanently anoxic layer (monimolimnion. We combined bulk chemical analyses of dissolved and particulate matter in combination with electron microscopy analyses of the particulate matter at different depths along the water column. The mineralogy changed along with water chemistry, and most of the minerals were intimately associated with microorganisms. Evolution of the redox conditions with depth leads to the successive precipitation of silica and carbonates, Mn-bearing, Fe-bearing and S-containing phases, with a predominance of phosphates in the monimolimnion. This scheme parallels the currently-assessed changes of microbial diversity with depth. The present results corroborate previous studies that suggested a strong influence of microbial activity on mineralogical diversity through extracellular and intracellular biomineralization. This paper reports detailed data on mineralogical profiles of the water column and encourages extended investigation of these processes.

  15. Iron Oxide Biominerals in Protein Nanocages, the Ferritins: Easing Into Life With Oxygen?

    Science.gov (United States)

    Theil, E. C.

    2008-12-01

    Organisms with ferritins could represent the progenitors of organisms that successfully made the transition to aerobic life. Ferritins are protein nanocages (8 or 12 nm diameter) that catalyze reactions between Fe(II) and O2 or H2O2 to synthesize ferrihydrite-like biominerals of Fe2O3(H2 O)n; phosphate is sometimes incorporated during mineralization. All groups of organisms, archea, bacteria, plants and animals have ferritins. Catalytic reactions between Fe and O occur in the protein cage with the products moving into the central protein cavity (5 or 8 nm diameter) where mineralization occurs; mineral sizes reach 4500 Fe with more than 7000 O atoms in the large cavities of maxi-ferritins and 500 Fe with more than 800 O atoms in the smaller, mini-ferritins, also called Dps proteins. H2O2 is preferentially used by mini-ferritins in archea and bacteria, contrasting with O2, preferentially used by maxi-ferritins in bacteria plants and animals, and some bacterial mini-ferritins that use either H2O2 or O2, to oxidize Fe(II) during biomineralization. The study of ferritins in contemporary organisms can illuminate mechanisms for oxygen and oxidant responses in changing environments now and in the past. Multiple genes encoding ferritins are often regulated by different environmental stimuli and in multi-cellular organisms, by tissue-specific, differentiation programs. The single celled E.coli has four ferritin genes, encoding three maxi-ferritins, one with a heme cofactor (bacterioferritin), and one mini-ferritin (Dps), expressed at different points in the culture cycle and/or in response to different stresses. Environmental iron, oxygen and peroxide all change the amounts of ferritin. When iron is plentiful, mineralized ferritin accumulates. Ferritin iron is recovered during periods of iron deficiency, apparently by selective unfolding of gated pores in ferritin protein nanocage that expose the mineral to reductants. Gene (DNA) transcription is the genetic target for iron

  16. MamO Is a Repurposed Serine Protease that Promotes Magnetite Biomineralization through Direct Transition Metal Binding in Magnetotactic Bacteria

    Science.gov (United States)

    Hershey, David M.; Ren, Xuefeng; Melnyk, Ryan A.; Browne, Patrick J.; Ozyamak, Ertan; Jones, Stephanie R.; Chang, Michelle C. Y.; Hurley, James H.; Komeili, Arash

    2016-01-01

    Many living organisms transform inorganic atoms into highly ordered crystalline materials. An elegant example of such biomineralization processes is the production of nano-scale magnetic crystals in magnetotactic bacteria. Previous studies implicated the involvement of two putative serine proteases, MamE and MamO, during the early stages of magnetite formation in Magnetospirillum magneticum AMB-1. Here, using genetic analysis and X-ray crystallography, we show that MamO has a degenerate active site, rendering it incapable of protease activity. Instead, MamO promotes magnetosome formation through two genetically distinct, noncatalytic activities: activation of MamE-dependent proteolysis of biomineralization factors and direct binding to transition metal ions. By solving the structure of the protease domain bound to a metal ion, we identify a surface-exposed di-histidine motif in MamO that contributes to metal binding and show that it is required to initiate biomineralization in vivo. Finally, we find that pseudoproteases are widespread in magnetotactic bacteria and that they have evolved independently in three separate taxa. Our results highlight the versatility of protein scaffolds in accommodating new biochemical activities and provide unprecedented insight into the earliest stages of biomineralization. PMID:26981620

  17. Synthesis of globular precursors.

    Science.gov (United States)

    Teixidor, Francesc; Sillanpää, Reijo; Pepiol, Ariadna; Lupu, Marius; Viñas, Clara

    2015-09-01

    o-Carborane (C2 B10 H12 ) was adapted to perform as the core of globular macromolecules, dendrons or dendrimers. To meet this objective, precisely defined substitution patterns of terminal olefin groups on the carborane framework were subjected to Heck cross-coupling reactions or hydroboration leading to hydroxyl terminated arms. These led to new terminal groups (chloro, bromo, and tosyl leaving groups, organic acid, and azide) that permitted ester production, click chemistry, and oxonium ring opening to be performed as examples of reactions that demonstrate the wide possibilities of the globular icosahedral carboranes to produce new dendritic or dendrimer-like structures. Polyanionic species were obtained in high yield through the ring-opening reaction of cyclic oxonium compound [3,3'-Co(8-C4 H8 O2 -1,2-C2 B9 H10 )(1',2'-C2 B9 H11 )] by using terminal hydroxyl groups as nucleophiles. These new polyanionic compounds that contain multiple metallacarborane clusters at their periphery may prove useful as new classes of compounds for boron neutron capture therapy with enhanced water solubility and as cores to make a new class of high-boron globular macromolecules. PMID:26228947

  18. El Nino impact on mollusk biomineralization-implications for trace element proxy reconstructions and the paleo-archeological record.

    Directory of Open Access Journals (Sweden)

    Alberto Pérez-Huerta

    Full Text Available Marine macroinvertebrates are ideal sentinel organisms to monitor rapid environmental changes associated with climatic phenomena. These organisms build up protective exoskeletons incrementally by biologically-controlled mineralization, which is deeply rooted in long-term evolutionary processes. Recent studies relating potential rapid environmental fluctuations to climate change, such as ocean acidification, suggest modifications on carbonate biominerals of marine invertebrates. However, the influence of known, and recurrent, climatic events on these biological processes during active mineralization is still insufficiently understood. Analysis of Peruvian cockles from the 1982-83 large magnitude El Niño event shows significant alterations of the chemico-structure of carbonate biominerals. Here, we show that bivalves modify the main biomineralization mechanism during the event to continue shell secretion. As a result, magnesium content increases to stabilize amorphous calcium carbonate (ACC, inducing a rise in Mg/Ca unrelated to the associated increase in sea-surface temperature. Analysis of variations in Sr/Ca also suggests that this proxy should not be used in these bivalves to detect the temperature anomaly, while Ba/Ca peaks are recorded in shells in response to an increase in productivity, or dissolved barium in seawater, after the event. Presented data contribute to a better understanding of the effects of abrupt climate change on shell biomineralization, while also offering an alternative view of bivalve elemental proxy reconstructions. Furthermore, biomineralization changes in mollusk shells can be used as a novel potential proxy to provide a more nuanced historical record of El Niño and similar rapid environmental change events.

  19. Calcium Biomineralization in Sediment of Lake Acigol, an Hypersaline Lake in SW Turkey

    Science.gov (United States)

    Celik Balci, Nurgul; Menekse, Meryem; Sonmez, Seref; Gul Karaguler, Nevin

    2010-05-01

    The study of biomineralization in (hyper) saline environments is important for two reasons, 1-it can extend our knowledge about the earliest microbial life on Earth which may have been halophilic 2-because of the presence of hypersaline conditions on Mars, the analog environments in Earth may have implications for the possibility of life on Mars. We examine calcium biomineralization in Lake Acigol, a unique hypersaline lake in southwest Turkey by integrating geochemical and microbiological approaches. Lake Acigol is a perennial lake with a maximum salinity of about 200 g/L and covers an area of 55-60 km2and is one of the main salt reservoirs of Turkey. Water, sediment and core samples were taken from the lake and salty ponds around the lake during the field excursion. The water chemistry revealed relatively high Na and SO4 concentrations both in the lake (30 gr/L, 33.36 gr/L), and the ponds (100 mg/L, 123 mg/L). The mineralogical analyses of sediments showed gypsum, halite, carbonate (aragonite, huntite) precipitation in the lake and ponds. We employed culture-dependent (16s rRNA cloning method, enrichment culture), and -independent techniques to study microbial diversity in Lake Aci gol. Sediment samples were used to isolate Halophilic sp. (e.g. salinicoccus roseus , Dunella sp.) under salinities that were similar to those measured in the lake water to further use in the laboratory Ca-precipitation experiments. For the precipitation experiments, liquid and solid culture media with various salinities ( 6-25 %) in addition to one similar to the lake water were prepared. In order to determine effect of Mg2+-Ca2+ molar ratio on mineralogy and the rate of precipitation, media with different Ca2+and Mg2+ concentrations were also prepared. Our preliminary results indicate that the halophilic bacteria play active role in the precipitation of Ca-minerals but the geochemical conditions are clearly influential. The results also point out that in the Lake Aci gol C, N, P, Ca

  20. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  1. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States)

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  2. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina;

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both the...... partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  3. Cluster Headache

    OpenAIRE

    Frederick G Freitag

    1985-01-01

    Learning Objectives: Review the current understanding of the pathophysiology of cluster headache Be able to recognize the clinical features of cluster headache Be able to develop a strategy for treatment of cluster headache Cluster headache is divided into multiple subtypes under the IHC classification criteria. The vast majority of patients present with episodic cluster headache (3.1.1). This will be the focus of the presentation. The syndrome is characterized by repeated at...

  4. Contribution of ionic precursors to deposition rate of a-Si:H films fabricated by plasma CVD

    International Nuclear Information System (INIS)

    We have studied contribution of ionic precursors to deposition rate of a-Si:H films in the downstream region of a multi-hollow discharge plasma CVD reactor using a DC bias grid and QCMs. The deposition rate decreases from 1.1 to 0.93 by applying negative bias voltage to the bias grid. The ionic precursors contribute to 7% of the total deposition rate and the dominant ionic precursors are considered to be negatively charged clusters

  5. Magneto-optical study of magnetite nanoparticles prepared by chemical and biomineralization process

    International Nuclear Information System (INIS)

    This paper deals with a magneto-optical study of suspensions of magnetosomes. These magnetosomes are synthesized by biomineralization process of magnetotactic bacteria, followed by steps of isolation and purification in order to obtain stable suspensions. The structural analysis evidences the good crystallinity of the magnetite particles with a diameter of 34 nm. Magneto-induced linear and circular anisotropy confirms the important role played by the chains in the orientation mechanism of such magnetic dipoles. Numerical adjustments of the linear anisotropy curves using a classical Langevin orientation model give the average number of magnetosomes per chain, about 12. - Highlights: → Magnetosomes chains submitted to a magnetic field produce optical anisotropy. → Anisotropy numerical adjustments give the average number of particles per chains. → This number is consistent with statistical analysis from TEM pictures.

  6. Magneto-optical study of magnetite nanoparticles prepared by chemical and biomineralization process

    Energy Technology Data Exchange (ETDEWEB)

    Dzarova, A. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Royer, F., E-mail: Francois.Royer@univ-st-etienne.f [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Timko, M. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Jamon, D. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Kopcansky, P.; Kovac, J. [Institute of Experimental Physics, SASD, Watsonova 47, 040 01 Kosice (Slovakia); Choueikani, F. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France); Gojzewski, H. [Institute of Physics, Poznan University of Technology, ul. Nieszawska 13A, 60-965 Poznan (Poland); Rousseau, J.J. [Universite de Lyon, F-42023 Saint Etienne (France); DIOM EA 3523, Universite de Saint Etienne, Jean Monnet, F-42000 Saint Etienne (France)

    2011-06-15

    This paper deals with a magneto-optical study of suspensions of magnetosomes. These magnetosomes are synthesized by biomineralization process of magnetotactic bacteria, followed by steps of isolation and purification in order to obtain stable suspensions. The structural analysis evidences the good crystallinity of the magnetite particles with a diameter of 34 nm. Magneto-induced linear and circular anisotropy confirms the important role played by the chains in the orientation mechanism of such magnetic dipoles. Numerical adjustments of the linear anisotropy curves using a classical Langevin orientation model give the average number of magnetosomes per chain, about 12. - Highlights: Magnetosomes chains submitted to a magnetic field produce optical anisotropy. Anisotropy numerical adjustments give the average number of particles per chains. This number is consistent with statistical analysis from TEM pictures.

  7. Microscopy techniques for investigating the control of organic constituents on biomineralization

    Science.gov (United States)

    Hendley, Coit T.; Tao, Jinhui; Kunitake, Jennie A.M.R.; De Yoreo, James J.; Estroff, Lara A.

    2016-01-01

    This article addresses recent advances in the application of microscopy techniques to characterize crystallization processes as they relate to biomineralization and bio-inspired materials synthesis. In particular, we focus on studies aimed at revealing the role organic macromolecules and functionalized surfaces play in modulating the mechanisms of nucleation and growth. In nucleation studies, we explore the use of methods such as in situ transmission electron microscopy, atomic force microscopy, and cryogenic electron microscopy to delineate formation pathways, phase stabilization, and the competing effects of free energy and kinetic barriers. In growth studies, emphasis is placed on understanding the interactions of macromolecular constituents with growing crystals and characterization of the internal structures of the resulting composite crystals using techniques such as electron tomography, atom probe tomography, and vibrational spectromicroscopy. Examples are drawn from both biological and bio-inspired synthetic systems.

  8. Biomineralization of a Cadmium Chloride Nanocrystal by a Designed Symmetrical Protein.

    Science.gov (United States)

    Voet, Arnout R D; Noguchi, Hiroki; Addy, Christine; Zhang, Kam Y J; Tame, Jeremy R H

    2015-08-17

    We have engineered a metal-binding site into the novel artificial β-propeller protein Pizza. This new Pizza variant carries two nearly identical domains per polypeptide chain, and forms a trimer with three-fold symmetry. The designed single metal ion binding site lies on the symmetry axis, bonding the trimer together. Two copies of the trimer associate in the presence of cadmium chloride in solution, and very high-resolution X-ray crystallographic analysis reveals a nanocrystal of cadmium chloride, sandwiched between two trimers of the protein. This nanocrystal, containing seven cadmium ions lying in a plane and twelve interspersed chloride ions, is the smallest reported to date. Our results indicate the feasibility of using rationally designed symmetrical proteins to biomineralize nanocrystals with useful properties. PMID:26136355

  9. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  10. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  11. Biocompatibility and biomineralization assessment of bioceramic-, epoxy-, and calcium hydroxide-based sealers.

    Science.gov (United States)

    Bueno, Carlos Roberto Emerenciano; Valentim, Diego; Marques, Vanessa Abreu Sanches; Gomes-Filho, João Eduardo; Cintra, Luciano Tavares Angelo; Jacinto, Rogério Castilho; Dezan-Junior, Eloi

    2016-06-14

    Obturation of the root canal system aims to fill empty spaces, promoting hermetic sealing and preventing bacterial activity in periapical tissues. This should provide optimal conditions for repair, stimulating the process of biomineralization. An endodontic sealer should be biocompatible once it is in direct contact with periapical tissues. The aim of this study was to evaluate the rat subcutaneous tissue response to implanted polyethylene tubes filled with Smartpaste Bio, Acroseal, and Sealapex and investigate mineralization ability of these endodontic sealers. Forty Wistar rats were assigned to the three sealers groups and control group, (n = 10 animals/group) and received subcutaneous implants containing the test sealers, and the control group were implanted with empty tubes. After days 7, 15, 30, and 60, animals were euthanized and polyethylene tubes were removed with the surrounding tissues. Inflammatory infiltrate and thickness of the fibrous capsule were histologically evaluated. Mineralization was analyzed by Von Kossa staining and polarized light. Data were tabulated and analyzed via Kruskal-Wallis and Dunn's test. All tested materials induced a moderate inflammatory reaction in the initial periods. Smartpaste Bio induced the mildest inflammatory reactions after day 15. No difference was observed among groups after days 30 or 60. Von Kossa-positive staining and birefringent structures observed under polarized light revealed a larger mineralization area in Sealapex-treated animals followed by Smartpaste Bio-treated animals. At the end of the experiment, all tested sealers were found to be biocompatible. All sealers induced biomineralization, except Acroseal, which induced a mild tissue reaction. PMID:27305513

  12. Insights into the Role of Biomineralizing Peptide Surfactants on Making Nanoemulsion-Templated Silica Nanocapsules.

    Science.gov (United States)

    Hui, Yue; Wibowo, David; Zhao, Chun-Xia

    2016-01-26

    We recently developed a novel approach for making oil-core silica-shell nanocapsules using designed bifunctional peptides (also called biomineralizing peptide surfactants) having both surface activity and biomineralization activity. Using the bifunctional peptides, oil-in-water nanoemulsion templates can be readily prepared, followed by the silicification directed exclusively onto the oil droplet surfaces and thus the formation of the silica shell. To explore their roles in the synthesis of silica nanocapsules, two bifunctional peptides, AM1 and SurSi, were systematically studied and compared. Peptide AM1, which was designed as a stimuli-responsive surfactant, demonstrated quick adsorption kinetics with a rapid decrease in the oil-water interfacial tension, thus resulting in the formation of nanoemulsions with a droplet size as small as 38 nm. Additionally, the nanoemulsions showed good stability over 4 weeks because of the formation of a histidine-Zn(2+) interfacial network. In comparison, the SurSi peptide that was designed by modularizing an AM1-like surface-active module with a highly cationic biosilicification-active module was unable to effectively reduce the oil-water interfacial tension because of its high molecular charge at neutral pH. The slow adsorption resulted in the formation of less stable nanoemulsions with a larger size (60 nm) than that of AM1. Besides, both AM1 and SurSi were found to be able to induce biomimetic silica formation. SurSi produced well-dispersed and uniform silica nanospheres in the bulk solution, whereas AM1 generated only irregular silica aggregates. Consequently, well-defined silica nanocapsules were synthesized using SurSi nanoemulsion templates, whereas silica aggregates instead of nanocapsules predominated when templating AM1 nanoemulsions. This finding indicated that the capability of peptide surfactants to form isolated silica nanospheres might play a role in the successful fabrication of silica nanocapsules. This

  13. The biomineralization and fossilization of magnetotactic bacteria: Insights from experimental and field studies

    Science.gov (United States)

    Pan, Y.; LI, J.; Menguy, N.; Deng, C.; Kissel, C.; Liu, Q.; Zhu, R.

    2015-12-01

    Magnetotactic bacteria (MTB) are widespread prokaryotes which can navigate along the Earth's magnetic field lines and produce tens to hundreds of nanocrystals of magnetite (Fe3O4) or/and greigite (Fe3S4) aligned in chain(s) within a cell. The remains of MTB (i.e. magnetofossils) within geological records have therefore been considered as potential recorders of paleomagnetic, paleoenvironmental and ancient-life signals. These intracellularly-formed nanocrystals, called magnetosomes, generally have distinctively physical, chemical and crystallographic features from those magnetic minerals produced by abiotic or extracellular mineralization processes, and therefore could be distinguished by rock magnetic and electron microscopic approaches. However, identification and quantification of magnetofossils from sediments or sedimentary rocks are nevertheless not straightforward not only due to their tiny sizes, relatively low concentration, always mixing with abiotic magnetic minerals, but also the chain collapse and crystal maghemization during post-depositional processes. Comprehensive studies on the biomineralization and fossilization of magnetosomes are therefore essential for unambiguously identifying and quantitating magnetofossils from geologic samples. In this presentation, we summarize the biomineralization processes and magnetic properties of magnetosome chains within modern cultured and uncultured MTB. Experimental studies on the effects of the chain aligning and collapsing on the magnetic properties of magnetosomes are discussed, which give useful clues to understand the possible occurrence of magnetofossils within natural materials and their corresponding magnetic changes. Recent findings in magnetofossils from marine and lake sediments, showing how to identify magnetofossils from sediments by using the comprehensive rock magnetism, ferromagnetic resonance, and transmission electron microscopy approaches, as well as their implications for sedimentary magnetism

  14. The Periplasmic Nitrate Reductase Nap Is Required for Anaerobic Growth and Involved in Redox Control of Magnetite Biomineralization in Magnetospirillum gryphiswaldense

    OpenAIRE

    Li, Yingjie; Katzmann, Emanuel; Borg, Sarah; Schüler, Dirk

    2012-01-01

    The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for n...

  15. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  16. Isotopic clusters

    International Nuclear Information System (INIS)

    Spectra of isotopically mixed clusters (dimers of SF6) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  17. Weighted Clustering

    OpenAIRE

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina; Loker, David

    2012-01-01

    We investigate a natural generalization of the classical clusteringproblem, considering clustering tasks in which differentinstances may have different weights.We conduct the firstextensive theoretical analysis on the influence of weighteddata on standard clustering algorithms in both the partitionaland hierarchical settings, characterizing the conditions underwhich algorithms react to weights. Extending a recent frameworkfor clustering algorithm selection, we propose intuitiveproperties that...

  18. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  19. Trending analysis of precursor events

    International Nuclear Information System (INIS)

    The Accident Sequence Precursor (ASP) Program of United States Nuclear Regulatory Commission (U.S.NRC) identifies and categorizes operational events at nuclear power plants in terms of the potential for core damage. The ASP analysis has been performed on yearly basis and the results have been published in the annual reports. This paper describes the trends in initiating events and dominant sequences for 459 precursors identified in the ASP Program during the 1969-94 period and also discusses a comparison with dominant sequences predicted in the past Probabilistic Risk Assessment (PRA) studies. These trends were examined for three time periods, 1969-81, 1984-87 and 1988-94. Although the different models had been used in the ASP analyses for these three periods, the distribution of precursors by dominant sequences show similar trends to each other. For example, the sequences involving loss of both main and auxiliary feedwater were identified in many PWR events and those involving loss of both high and low coolant injection were found in many BWR events. Also, it was found that these dominant sequences were comparable to those determined to be dominant in the predictions by the past PRAs. As well, a list of the 459 precursors identified are provided in Appendix, indicating initiating event types, unavailable systems, dominant sequences, conditional core damage probabilities, and so on. (author)

  20. Novel Precursors for Chalcogenide Materials

    OpenAIRE

    Oyetunde, Temidayo Timothy

    2011-01-01

    The University of Manchester Temidayo Timothy Oyetunde, PhDNovel Chalcogenide Precursors for Materials2011.Abstract Metal chalcogenides (sulfides, selenides and tellurides) are materials of current interest due to their peculiar properties such as optoelectronic, magnetooptic, thermoelectric and piezoelectric displays. These semiconducting materials have potential applications in solar cell devices, infrared detectors and ambient thermoelectric generators. Previously, these materials...

  1. PAGOSA Sample Problem. Elastic Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Weseloh, Wayne N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clancy, Sean Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-03

    A PAGOSA simulation of a flyer plate impact which produces an elastic precursor wave is examined. The simulation is compared to an analytic theory for the Mie-Grüneisen equation of state and an elastic-perfectly-plastic strength model.

  2. The magnetosome membrane protein, MmsF, is a major regulator of magnetite biomineralization in Magnetospirillum magneticum AMB-1

    OpenAIRE

    Murat, Dorothée; Falahati, Veesta; Bertinetti, Luca; Csencsits, Roseann; Körnig, André; Downing, Kenneth; Faivre, Damien; Komeili, Arash

    2012-01-01

    Magnetotactic bacteria (MTB) use magnetosomes, membrane bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineral...

  3. Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell

    OpenAIRE

    Joubert, Caroline; Tayalé, Alexandre; Zanella-Cléon, Isabelle; Belliard, Corinne; Piquemal, David; Cochennec-laureau, Nathalie; Marin, Frédéric; Gueguen, Yannick

    2012-01-01

    Mollusca evolutionary success can be attributed partly to their efficiency to sustain and protect their soft body with an external biomineralized structure, the shell. Current knowledge of the protein set responsible for the formation of the shell microstructural polymorphism and unique properties remains largely patchy. In Pinctada margaritifera and Pinctada maxima, we identified 80 shell matrix proteins, among which 66 are entirely unique. This is the only description of the whole "biominer...

  4. Structure of precursor bound NifEN: a nitrogenase FeMo cofactor maturase/insertase*

    OpenAIRE

    Kaiser, Jens T.; Hu, Yilin; Wiig, Jared A.; Rees, Douglas C.; Ribbe, Markus W.

    2011-01-01

    NifEN plays an essential role in the biosynthesis of the nitrogenase iron-molybdenum (FeMo) cofactor (M cluster). It is an α_2β_2 tetramer that is homologous to the catalytic molybdenum-iron (MoFe) protein (NifDK) component of nitrogenase. NifEN serves as a scaffold for the conversion of an iron-only precursor to a matured form of the M cluster before delivering the latter to its target location within NifDK. Here, we present the structure of the precursor-bound NifEN of Azotobacter vinelandi...

  5. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcele Florencio; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba(IP and D,/NANOBIO/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Nanotecnologia Biomedica; Soares, Luis Eduardo Silva [Universidade do Vale do Paraiba(IP and D/LEVB/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Espectroscopia Vibracional Biomdica; Corat, Evaldo Jose [Instituto Nacional de Pesquisa Espacial (LAS/INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Sensores e Materiais

    2013-11-01

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O{sub 2} films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O{sub 2} nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O{sub 2} nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  6. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis.

    Science.gov (United States)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2015-11-01

    Seawater acidification and warming resulting from anthropogenic production of carbon dioxide are increasing threats to marine ecosystems. Previous studies have documented the effects of either seawater acidification or warming on marine calcifiers; however, the combined effects of these stressors are poorly understood. In our study, we examined the interactive effects of elevated carbon dioxide partial pressure (P(CO2)) and temperature on biomineralization and amino acid content in an ecologically and economically important mussel, Mytilus edulis. Adult M. edulis were reared at different combinations of P(CO2) (pH 8.1 and 7.8) and temperature (19, 22 and 25°C) for 2 months. The results indicated that elevated P(CO2) significantly decreased the net calcification rate, the calcium content and the Ca/Mg ratio of the shells, induced the differential expression of biomineralization-related genes, modified shell ultrastructure and altered amino acid content, implying significant effects of seawater acidification on biomineralization and amino acid metabolism. Notably, elevated temperature enhanced the effects of seawater acidification on these parameters. The shell breaking force significantly decreased under elevated P(CO2), but the effect was not exacerbated by elevated temperature. The results suggest that the interactive effects of seawater acidification and elevated temperature on mussels are likely to have ecological and functional implications. This study is therefore helpful for better understanding the underlying effects of changing marine environments on mussels and other marine calcifiers. PMID:26417015

  7. Enhanced interfacial adhesion and osteogenesis for rapid "bone-like" biomineralization by PECVD-based silicon oxynitride overlays.

    Science.gov (United States)

    Ilyas, Azhar; Lavrik, Nickolay V; Kim, Harry K W; Aswath, Pranesh B; Varanasi, Venu G

    2015-07-22

    Structurally unstable fracture sites require metal fixative devices, which have long healing times due to their lack of osteoinductivity. Bioactive glass coatings lack in interfacial bonding, delaminate, and have reduced bioactivity due to the high temperatures used for their fabrication. Here, we test the hypothesis that low-temperature PECVD amorphous silica can enhance adhesion to the underlying metal surface and that N incorporation enhances osteogenesis and rapid biomineralization. A model Ti/TiO2-SiOx interface was formed by first depositing Ti onto Si wafers, followed by surface patterning, thermal annealing to form TiO2, and depositing SiOx/Si(ON)x overlays. TEM micrographs showed conformal SiOx layers on Ti/TiO2 overlays while XPS data revealed the formation of an elemental Ti-O-Si interface. Nanoscratch testing verified strong SiOx bonding with the underlying TiO2 layers. In vitro studies showed that the surface properties changed significantly to reveal the formation of hydroxycarbonate apatite within 6 h, and Si(ON)x surface chemistry induced osteogenic gene expression of human periosteal cells and led to a rapid "bone-like" biomineral formation within 4 weeks. XANES data revealed that the incorporation of N increased the surface HA bioactivity by increasing the carbonate to phosphate ratio. In conclusion, silicon oxynitride overlays on bone-implant systems enhance osteogenesis and biomineralization via surface nitrogen incorporation. PMID:26095187

  8. Quantifying biomineralization of zinc in the Rio Naracauli (Sardinia, Italy), using a tracer injection and synoptic sampling

    Science.gov (United States)

    De Giudici, Giovanni; Wanty, Richard B.; Podda, F.; Kimball, Briant A.; Verplanck, Philip L.; Lattanzi, P.; Cidu, R.; Medas, D.

    2014-01-01

    Streams draining mined areas throughout the world commonly have high concentrations of Zn. Because Zn is not easily removed from stream water and because it can be toxic to aquatic organisms, its presence is a persistent problem. The discovery of biomineralization of Zn-bearing solids in the mine drainage of Rio Naracauli, in Sardinia, Italy, provides insights into strategies for removing Zn and improving water quality in streams affected by mine drainage. Until now, the transport and attenuation of Zn has not been quantified in this stream setting. A continuous tracer injection experiment was conducted to quantify the biomineralization process and to identify the loading of constituents that causes a change from precipitation of hydrozincite [Zn5(CO3)2(OH)6] in the upstream reach to precipitation of a Zn-silicate phase downstream. Based on the mass-load calculations derived from the tracer experiment, about 1.2 kg/day of Zn is sequestered in hydrozincite. This biomineralization represents nearly 90% removal of Zn. Other elements such as Pb and Cd also are sequestered, either in the hydrozincite, or in a separate phase that forms simultaneously. In the lower 600 m of the stream, where the Zn-silicate forms, as much as 0.7 kg/day Zn are sequestered in this solid, but additions of Zn to the stream from groundwater discharge lead to an overall increase in load in that portion of the Rio Naracauli.

  9. A Fluorescence-Quenching Platform based on Biomineralized Hydroxyapatite from Natural Seashell and Applied to Cancer Cell Detection

    Science.gov (United States)

    Zhang, Ying; Liu, Wei; Banks, Craig E.; Liu, Fei; Li, Mao; Xia, Fan; Yang, Xiangliang

    2014-12-01

    As a typical biomineral, hydroxyapatite (HAp) is widely applied in bone implants and other related fields. However, the inherent nature of HAp can potentially be altered through restricting its fabrication conditions. Here, HAp fabricated by a hydrothermal treatment of pieces of natural seashell is demonstrated to have the capability of fluorescence quenching. To the best of the author's knowledge, this is the first time that this new property of HAp has been reported. Consequently, we assembled a fluorescence-quenching platform based on the biomineralized HAp substrate following a hydrothermal treatment and associated with a DNA molecular beacon and applied to cancer cell detection by the transformation from ``OFF state'' (fluorescence quenching) to ``ON state'' (fluorescence recovery). Herein, we found that the outer surface of HAp material after hydrothermal biomineralization for 5 days has considerable capability for both fluorescence quenching and recovery. These results may also have implications in the further detection of various targets such as cancer cells with other special surface antigens, significant biological small molecules or disease related microRNA, just by changing the sequence of the nucleic acid beacon according to the corresponding aptamer.

  10. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    International Nuclear Information System (INIS)

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O2 ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O2 films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O2 nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O2 nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  11. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable

  12. Cluster Lenses

    CERN Document Server

    Kneib, Jean-Paul; 10.1007/s00159-011-0047-3

    2012-01-01

    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining...

  13. Magnetite Biomineralization: Fifty years of progress, from beach-combing to the SQUID microscope

    Science.gov (United States)

    Kirschvink, J. L.; Dixson, A. D.; Raub, T.

    2012-12-01

    Magnetite biomineralization was first discovered 50 years ago as a hardening agent in the teeth of the Polyplacophoran molluscs (chitons) by the late Prof. Heinz A. Lowenstam of Caltech, when he noticed unusual erosional effects produced by their grazing in the intertidal zones of Palau (Lowenstam, 1962). Since then, biogenic magnetite has been detected in a broad range of organisms, including magnetotactic bacteria, protists, insects, fish, amphibians, reptiles, birds, and mammals including humans. In many species, the role of ferromagnetic material as a neurophysiological transducer is demonstrated clearly through the effects of pulse-remagnetization on behavior. A brief (1 uS), properly configured magnetic discharge from a rectified LC circuit, tailored to exceed the coercivity of the magnetite, will often abolish a magnetic behavioral response, or in some cases make the organism go the wrong way. This is a unique ferromagnetic effect. The genes controlling magnetite biomineralization are well characterized in several species of bacteria, and the ability of some of these bacterial genes to initiate magnetite precipitation in mammalian cell lines argues for a common descent, probably via a magnetotactic mitochondrial ancestor. Previous studies in fish reported the presence of single-domain magnetite crystals in cells near projections of the trigeminal nerve, co-located in the olfactory epithelium. Although the cells are rare, the recent development of a spinning magnetic field technique allows easy identification and isolation of these cells for individual study (Eder et al., 2012). The cells are surprisingly magnetic, with moments hundreds of times larger than typical magnetotactic bacteria. Subsequent efforts to identify the anatomical seat of magnetoreceptors have focused on the same locations in new organisms, excluding other areas. Using SQUID moment magnetometry and SQUID scanning microscopy, we report here the unexpected presence of biogenic magnetite in

  14. Fish otolith biomineralization process: first investigations about organic matrix and growth of Triglidae (Scorpaeniformes otoliths

    Directory of Open Access Journals (Sweden)

    Stefano Montanini

    2015-11-01

    Full Text Available Otolith formation involves rhythmic variations in the deposition and size of organic matrix framework and carbonate crystals, resulting in the formation of macroscopic translucent and opaque rings and microscopic zonations (growth increments (Morales Nin, 2000. As in most biominerals, the otolith matrix forms only 2-3 % of its weight, but it is admitted that it has a considerable importance in the otolith crystallization processes of nucleation, growth, orientation and growth control. The goal of this study is to characterize the matrix protein composition in the otoliths of Triglidae (Scorpaeniformes as a first step to understand molecular mechanisms of otolith formation according to biology and ecology of the species. In particular 500 sagittal otoliths from six gurnard species were analysed: Chelidonichthys cuculus, C. lucerna, Eutrigla gurnardus, Lepidotrigla cavillone, L. dieuzeidei and Trigloporus lastoviza. Protein contents were estimated by Bradford method and the urea 8 M extracts were loaded into a polyacrylamide gel, separated by SDS page and detected by Silver staining (Sigma followed the protocol of Borelli et al. (2001 with some modifications regarding protein precipitation that was enhanced by using TCA, trichloroacetic acid, 100% w/v. The urea soluble fractions revealed a unique large band around 50-55 kDa. Another common clear band was visible at the top of the separating gel (proteins >300/350 kDa unable to enter into the pores of polyacrylamide gels (12%. The complexity of the protein mixtures was investigated by 2-D electrophoresis (Gel TGX 4-20%; proteins were separated on the basis of both isoelectric point (pI and molecular size. A common protein pattern of 50-75 kDa were found in all gurnards showing a similar composition of organic matter even if the 2-D maps of otolith samples showed specie-specific variation in acid protein fractions in all the pairwise comparison. This result confirmed that the amino acid composition

  15. A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels.

    Science.gov (United States)

    Hüning, Anne K; Lange, Skadi M; Ramesh, Kirti; Jacob, Dorrit E; Jackson, Daniel J; Panknin, Ulrike; Gutowska, Magdalena A; Philipp, Eva E R; Rosenstiel, Philip; Lucassen, Magnus; Melzner, Frank

    2016-06-01

    Biomineralization processes in bivalve molluscs are still poorly understood. Here we provide an analysis of specifically expressed sequences from a mantle transcriptome of the blue mussel, Mytilus edulis. We then developed a novel, integrative shell injury assay to test, whether biomineralization candidate genes highly expressed in marginal and pallial mantle could be induced in central mantle tissue underlying the damaged shell areas. This experimental approach makes it possible to identify gene products that control the chemical micro-environment during calcification as well as organic matrix components. This is unlike existing methodological approaches that work retroactively to characterize calcification relevant molecules and are just able to examine organic matrix components that are present in completed shells. In our assay an orthogonal array of nine 1mm holes was drilled into the left valve, and mussels were suspended in net cages for 20, 29 and 36days to regenerate. Structural observations using stereo-microscopy, SEM and Raman spectroscopy revealed organic sheet synthesis (day 20) as the first step of shell-repair followed by the deposition of calcite crystals (days 20 and 29) and aragonite tablets (day 36). The regeneration period was characterized by time-dependent shifts in gene expression in left central mantle tissue underlying the injured shell, (i) increased expression of two tyrosinase isoforms (TYR3: 29-fold and TYR6: 5-fold) at day 20 with a decline thereafter, (ii) an increase in expression of a gene encoding a nacrein-like protein (max. 100-fold) on day 29. The expression of an acidic Asp-Ser-rich protein was enhanced during the entire regeneration process. This proof-of-principle study demonstrates that genes that are specifically expressed in pallial and marginal mantle tissue can be induced (4 out of 10 genes) in central mantle following experimental injury of the overlying shell. Our findings suggest that regeneration assays can be used

  16. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  17. Precursor incident program at EDF

    International Nuclear Information System (INIS)

    The precursor program was started by EDF in 1994, after an investigation of the US NRC's Accident Sequence Precursor Program. Since then, reported operational events identified as Safety Outstanding Events have been analyzed whenever possible using probabilistic methods based on PSAs. Analysis provides an estimate of the remaining protection against core damage at the time the incident occurred. Measuring the incidents' severity enables to detect incidents important regarding safety. Moreover, the most efficient feedback actions can be derived from the main accident sequences identified through the analysis. Therefore, incident probabilistic analysis provides a way to assess priorities in terms of treatment and resource allocation, and so, to implement countermeasures preventing further occurrence and development of the most significant incidents. As some incidents cannot be analyzed using this method, probabilistic analysis can only be one among the methods used to assess the nuclear power plants' safety level. Nevertheless, it provides an interesting complement to classical methods of deterministic studies. (author)

  18. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages. PMID:27168240

  19. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  20. Evaluating Molecular Interactions in Polycaprolactone-Biomineralized Hydroxyapatite Nanocomposites using Steered Molecular Dynamics

    Science.gov (United States)

    Sharma, Anurag; Payne, Scott; Katti, Kalpana S.; Katti, Dinesh R.

    2015-04-01

    An experimental and modeling study of a complex nanoclay-based polymeric scaffold system is presented here. A representative molecular model of polymeric nanocomposite scaffold system for bone tissue engineering applications was developed. Polymeric scaffolds were synthesized using organically modified montmorillonite clay (OMMT) with biomineralized hydroxyapatite and polycaprolactone (OMMT-HAP-PCL). The OMMT-HAP-PCL representative model was constructed and validated using transmission electron microscopy, x-ray diffraction and material density results. We observed strong molecular interactions between OMMT, hydroxyapatite (HAP) and polycaprolactone (PCL) in the OMMT-HAP-PCL system. Attractive and repulsive interactions between PCL and different constituents of OMMT and HAP indicate influence of OMMT-HAP on PCL. Polymeric scaffolds were found to have improved nanomechanical properties as compared to pristine PCL due to the introduction of OMMT-HAP. Stress-strain response for the representative OMMT-HAP-PCL model was evaluated using constant force steered molecular dynamics (SMD) simulations. Two distinct stress-strain responses observed in the system indicate a two-phase nanomechanical behavior of OMMT-HAP-PCL obtained at low and high applied stresses. The results obtained from the MD and SMD simulations provide quantitative understanding of molecular interactions between different constituents of OMMT, HAP and PCL and mechanical response in the OMMT-HAP-PCL system.

  1. Biomineral shell formation under ocean acidification: a shift from order to chaos

    Science.gov (United States)

    Fitzer, Susan C.; Chung, Peter; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Kamenos, Nicholas A.; Phoenix, Vernon R.; Cusack, Maggie

    2016-02-01

    Biomineral production in marine organisms employs transient phases of amorphous calcium carbonate (ACC) in the construction of crystalline shells. Increasing seawater pCO2 leads to ocean acidification (OA) with a reduction in oceanic carbonate concentration which could have a negative impact on shell formation and therefore survival. We demonstrate significant changes in the hydrated and dehydrated forms of ACC in the aragonite and calcite layers of Mytilus edulis shells cultured under acidification conditions (1000 μatm pCO2) compared to present day conditions (380 μatm pCO2). In OA conditions, Mytilus edulis has more ACC at crystalisation sites. Here, we use the high-spatial resolution of synchrotron X-ray Photo Emission Electron Microscopy (XPEEM) combined with X-ray Absorption Spectroscopy (XAS) to investigate the influence of OA on the ACC formation in the shells of adult Mytilus edulis. Electron Backscatter Diffraction (EBSD) confirms that OA reduces crystallographic control of shell formation. The results demonstrate that OA induces more ACC formation and less crystallographic control in mussels suggesting that ACC is used as a repair mechanism to combat shell damage under OA. However, the resultant reduced crystallographic control in mussels raises concerns for shell protective function under predation and changing environments.

  2. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Science.gov (United States)

    Liu, Yang; Shen, Xin; Zhou, Huan; Wang, Yingjun; Deng, Linhong

    2016-05-01

    We develop a novel chitosan-citric acid film (abbreviated as CS-CA) suitable for biomedical applications in this study. In this CS-CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS-CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS-CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS-CA film. This CS-CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  3. Analysis of the biomineralization process on SWNT-COOH and F-SWNT films

    International Nuclear Information System (INIS)

    In vitro biomineralization process was investigated on functionalized single wall nanotube (SWNT) films. The films were prepared by solvent casting method by using carboxylated and fluorinated nanotubes. SWNT films were characterized by means of electron microscopy, contact angle measurements and optical absorption. The in vitro assays were performed on cultured human alveolar bone-derived cells (HABDC) to determine the capabilities of carboxylated single-walled nanotubes (SWNTs-COOH) and fluorinated single-walled nanotubes (F-SWNTs) to promote the deposit of mineral-like tissue. The results showed that the cellular response of HABDC in secreting a mineralized extracellular matrix and their consequent mineralization is dependent on the degree of functionalization of the SWNTs. Differences were found related to the kind of sidewall functionalization. Both structures promoted hydroxyapatite formation, however, calcium uptake on SWNTs-COOH increased and it was related to crystal density. From our results, it is possible to infer that CNT functionalization opens a path to future developments in new bone graft materials and techniques

  4. Biomineralization of phototrophic microbes in silica-enriched hot springs in South China

    Institute of Scientific and Technical Information of China (English)

    PENG XiaoTong; ZHOU HuaiYang; WU ZhiJun; JIANG Lei; TANG Song; YAO HuiQiang; CHEN GuangQian

    2007-01-01

    Microbial mats in two hot springs in South China were sampled for the research of mineralization of microbes and its mechanism by the methods of geology and modern biology. The results show that hot spring microbes have the key capability for enrichment of Si, Al, Fe, Ca and other elements, and the microbes are also crucial for the formation of SiO2, CaCO3, clay and so on. The extracellular polymeric substances (EPS) play important roles in the process of mineralization of hot spring microbes, which mainly takes place in the layer of EPS outside cell wall or sheath of cyanobacteria. The sheath outside cell wall, which keeps the normal metabolism of cyanobacteria during the process of mineralization on its surface, is also considerable for the biomineralization of cyanobacteria. According to structure and mineralization characteristics of two microbial mats, the process of mineralization can be divided into three stages, namely, early surface mineralization, middle degradation mineralization, and late desquamation of mineral. The above conclusions are significant for comprehension of the process of mineralization, the process of deposition and the preservation of microfossil in modern and ancient extreme environments.

  5. Analysis of the biomineralization process on SWNT-COOH and F-SWNT films

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, Ilaria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy)], E-mail: Ilaria.armentano@lnl.infn.it; Alvarez-Perez, Marco Antonio; Carmona-Rodriguez, Bruno [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico); Gutierrez-Ospina, Ivan [Universidad Autonoma Metropolitana, Xochimilco, Mexico D. F. (Mexico); Kenny, Jose Maria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy); Arzate, Higinio [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico)

    2008-12-01

    In vitro biomineralization process was investigated on functionalized single wall nanotube (SWNT) films. The films were prepared by solvent casting method by using carboxylated and fluorinated nanotubes. SWNT films were characterized by means of electron microscopy, contact angle measurements and optical absorption. The in vitro assays were performed on cultured human alveolar bone-derived cells (HABDC) to determine the capabilities of carboxylated single-walled nanotubes (SWNTs-COOH) and fluorinated single-walled nanotubes (F-SWNTs) to promote the deposit of mineral-like tissue. The results showed that the cellular response of HABDC in secreting a mineralized extracellular matrix and their consequent mineralization is dependent on the degree of functionalization of the SWNTs. Differences were found related to the kind of sidewall functionalization. Both structures promoted hydroxyapatite formation, however, calcium uptake on SWNTs-COOH increased and it was related to crystal density. From our results, it is possible to infer that CNT functionalization opens a path to future developments in new bone graft materials and techniques.

  6. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization

    Science.gov (United States)

    Shankramma, K.; Yallappa, S.; Shivanna, M. B.; Manjanna, J.

    2015-12-01

    In the present study, we demonstrate magnetic iron (III) oxide nanoparticles (Fe2O3 NPs) uptake by the Solanum lycopersicum (S. lycopersicum) plant. The S. lycopersicum seeds were coated with Fe2O3 NPs and allowed to germinate in moistened sand bed. The seedlings are observed for 20 days, and then, it was post-treated using different amounts of Fe2O3 NPs in hydroponic solution for 10 days. The plant was allowed to grow in green house for 3 months, and uptake of NPs through roots and translocation into different parts was studied. For this, we have segmented the plants and incubated with 10 % NaOH solution. It is found that the NPs are deposited preferentially in root hairs, root tips followed by nodal and middle zone of plant. The iron present in the whole plant was quantitatively estimated by treating dry biomass of the plant in acid. The Fe2+/Fetotal increased with increasing concentration of NPs and >45 % ferrous iron suggests the biomineralization of NPs due to rich phytochemicals in plants. We believe that the present study is useful to build a base line data for novel applications in agri-nanotechnology.

  7. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    Directory of Open Access Journals (Sweden)

    Laura Newsome

    Full Text Available Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV by U(VI- and Fe(III-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI, via reduction to nano-crystalline U(IV uraninite. Some evidence for the reduction of solid phase uranyl(VI phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.

  8. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-06-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry.

  9. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  10. Analysis of an ultra hard magnetic biomineral in chiton radular teeth

    Directory of Open Access Journals (Sweden)

    James C. Weaver

    2010-01-01

    Full Text Available Recent analyses of the ultrastructural and mechanical properties of mineralized biological materials have demonstrated some common architectural features that can help explain their observed damage tolerance. Nature has accomplished this feat through the precise control of anisotropic crystal nucleation and growth processes in conjunction with nanoscale control over the self-assembly of spatially distinct organic and inorganic phases, resulting in effective inhibition of crack propagation through these materials. One such example is found in the hyper-mineralized and abrasion resistant radular teeth of the chitons, a group of herbivorous marine mollusks who have the surprising capacity to erode away the rocky substrates on which they graze1–4. Through the use of modern microscopy and nanomechanical characterization techniques, we describe the architectural and mechanical properties of the radular teeth from Cryptochiton stelleri. Chiton teeth are shown to exhibit the largest hardness and stiffness of any biominerals reported to date, being notably as much as three-fold harder than human enamel and the calcium carbonate-based shells of mollusks. We explain how the unique multi-phasic design of these materials contributes not only to their functionality, but also highlights some interesting design principles that might be applied to the fabrication of synthetic composites.

  11. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. PMID:27287112

  12. A unique coral biomineralization pattern has resisted 40 million years of major ocean chemistry change

    Science.gov (United States)

    Stolarski, Jarosław; Bosellini, Francesca R.; Wallace, Carden C.; Gothmann, Anne M.; Mazur, Maciej; Domart-Coulon, Isabelle; Gutner-Hoch, Eldad; Neuser, Rolf D.; Levy, Oren; Shemesh, Aldo; Meibom, Anders

    2016-01-01

    Today coral reefs are threatened by changes to seawater conditions associated with rapid anthropogenic global climate change. Yet, since the Cenozoic, these organisms have experienced major fluctuations in atmospheric CO2 levels (from greenhouse conditions of high pCO2 in the Eocene to low pCO2 ice-house conditions in the Oligocene-Miocene) and a dramatically changing ocean Mg/Ca ratio. Here we show that the most diverse, widespread, and abundant reef-building coral genus Acropora (20 morphological groups and 150 living species) has not only survived these environmental changes, but has maintained its distinct skeletal biomineralization pattern for at least 40 My: Well-preserved fossil Acropora skeletons from the Eocene, Oligocene, and Miocene show ultra-structures indistinguishable from those of extant representatives of the genus and their aragonitic skeleton Mg/Ca ratios trace the inferred ocean Mg/Ca ratio precisely since the Eocene. Therefore, among marine biogenic carbonate fossils, well-preserved acroporid skeletons represent material with very high potential for reconstruction of ancient ocean chemistry. PMID:27302371

  13. Calcium-tracers disclose the site of biomineralization in inner ear otoliths of fish

    Science.gov (United States)

    Beier, M.; Anken, R. H.; Rahmann, H.

    2004-01-01

    Since changing gravity (concerning direction and amplitude) strongly affects inner ear otolith growth and otolithic calcium incorporation in developing fish, it was the aim of the present study to locate the site of mineralization in order to gain cues and insights into the provenance of the otoliths inorganic compounds. Therefore, larval cichlid fish (Oreochromis mossambicus) were incubated in the calcium-tracer alizarin complexone (AC; red fluorescence). After maintenance in aquarium water for various periods (1, 2, 3, 6, 9 and 12 h; 1, 2, 3, 5, 6, 7, 15, 29, 36 and 87 d), the animals were incubated in the calcium-tracer calcein (CAL; green fluorescence). AC thus labeled calcium being incorporated at the beginning of the experiment and would subsequently accompany calcium in the course of a possible dislocation, whereas CAL visualized calcium being deposited right at the end of the test. Subsequently, the otoliths were analyzed using a laser scanning microscope and it was shown that the initial site of calcium incorporation was located directly adjacent to the sensory epithelium and the otolithic membrane. Later, calcium deposits were also found on further regions of the otoliths' surface area, where they had been shifted to in the course of dislocation. This finding strongly indicates that the sensory epithelium plays a prominent role in otolithic biomineralization, which is in full agreement with an own electron microscopical study [ELGRA News 23 (2003) 63].

  14. Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers.

    Science.gov (United States)

    Chang, Eric P; Evans, John Spencer

    2015-09-01

    The formation of the mollusk nacre layer involves the assembly and organization of mineral nanoparticles into fracture-toughened mesoscale-sized aragonite tablets that possess intracrystalline nanoporosities. At least one nacre protein family, known as the framework proteome, is strategically located as part of a macromolecular coating around each nacre tablet and is believed to participate in tablet formation. Here, we report new studies of a recombinant form (rPif97) of a unique Japanese pearl oyster (Pinctada fucata) nacre framework biomineralization protein, Pif97. This unique protein possesses both a von Willlebrand factor type A domain (vWA, F23-Y161) and a Peritrophin A chitin-binding domain (PAC, E234-D298). rPif97 self-associates or aggregates to form amorphous protein phases that organize both amorphous and single-crystal calcium carbonate nanoparticles in vitro. Further, in the presence of nucleating calcite crystals, rPif97 protein phases deposit onto these crystals and become occluded over time, forming nanochambers within the crystal interior. The formation of these mineral-modifying amorphous protein phases is linked to the presence of intrinsic disorder and amyloid-like cross-β-strand aggregation-prone regions, and three-dimensional modeling indicates that both the vWA and PAC domains are accessible for intermolecular interactions. Thus, the vWA- and PAC-containing Pif97 protein exhibits key functionalities that would allow its participation in mollusk nacre layer tablet assembly and porosity formation. PMID:26258941

  15. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    Science.gov (United States)

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. PMID:26806806

  16. Biomineralization of a Self-Assembled Extracellular Matrix for Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Understanding how biomineralization occurs in the extracellular matrix (ECM) of bone cells is crucial to the understanding of bone formation and the development of a successfully engineered bone tissue scaffold. It is still unclear how ECM mechanical properties affect protein-mineral interactions in early stages of bone mineralization. We investigated the longitudinal mineralization properties of MC3T3-E1 cells and the elastic modulus of their ECM using shear modulation force microscopy, synchrotron grazing incidence X-ray diffraction (GIXD), scanning electron microscopy, energy dispersive X-ray spectroscopy, and confocal laser scanning microscopy (CLSM). The elastic modulus of the ECM fibers underwent significant changes for the mineralizing cells, which were not observed in the nonmineralizing cells. On substrates conducive to ECM network production, the elastic modulus of mineralizing cells increased at time points corresponding to mineral production, whereas that of the nonmineralizing cells did not vary over time. The presence of hydroxyapatite in mineralizing cells and the absence thereof in the nonmineralizing ones were confirmed by GIXD, and CLSM showed that a restructuring of actin occurred only for mineral-producing cells. These results show that the correct and complete development of the ECM network is required for osteoblasts to mineralize. This in turn requires a suitably prepared synthetic substrate for bone development to succeed in vitro.

  17. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  18. Stepwise Evolution of Coral Biomineralization Revealed with Genome-Wide Proteomics and Transcriptomics

    Science.gov (United States)

    Sawada, Hitoshi; Satoh, Noriyuki

    2016-01-01

    Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans. We found that SOMPs include not only coral-specific proteins, but also protein families that are widely conserved among cnidarians and other metazoans. We also identified several conserved transmembrane proteins in the skeletal proteome. Gene expression analysis revealed that expression of these conserved genes continues throughout development. Therefore, these genes are involved not only skeleton formation, but also in basic cellular functions, such as cell-cell interaction and signaling. On the other hand, genes encoding coral-specific proteins, including extracellular matrix domain-containing proteins, galaxins, and acidic proteins, were prominently expressed in post-settlement stages, indicating their role in skeleton formation. Taken together, the process of coral skeleton formation is hypothesized as: 1) formation of initial extracellular matrix between epithelial cells and substrate, employing pre-existing transmembrane proteins; 2) additional extracellular matrix formation using novel proteins that have emerged by domain shuffling and rapid molecular evolution and; 3) calcification controlled by coral-specific SOMPs. PMID:27253604

  19. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil

    Science.gov (United States)

    Zhuang, Li; Xu, Jielong; Tang, Jia; Zhou, Shungui

    2015-05-01

    Microbial reduction of Fe(III) can be one of the major factors controlling methane production from anaerobic sedimentary environments, such as paddy soils and wetlands. Although secondary iron mineralization following Fe(III) reduction is a process that occurs naturally over time, it has not yet been considered in methanogenic systems. This study performed a long-term anaerobic incubation of a paddy soil and ferrihydrite-supplemented soil cultures to investigate methanogenesis during ferrihydrite biomineralization. The results revealed that the long-term effect of ferrihydrite on methanogenesis may be enhancement rather than suppression documented in previous studies. During initial microbial ferrihydrite reduction, methanogenesis was suppressed; however, the secondary minerals of magnetite formation was simultaneous with facilitated methanogenesis in terms of average methane production rate and acetate utilization rate. In the phase of magnetite formation, microbial community analysis revealed a strong stimulation of the bacterial Geobacter, Bacillus, and Sedimentibacter and the archaeal Methanosarcina in the ferrihydrite-supplemented cultures. Direct electric syntrophy between Geobacter and Methanosarcina via conductive magnetite is the plausible mechanism for methanogenesis acceleration along with magnetite formation. Our data suggested that a change in iron mineralogy might affect the conversion of anaerobic organic matter to methane and might provide a fresh perspective on the mitigation of methane emissions from paddy soils by ferric iron fertilization.

  20. Whistler precursors on a VLF transmitter signal

    International Nuclear Information System (INIS)

    Whistler precursors are discrete emissions which are occasionally seen just before two-hop whistlers. Most theories of precursors assume they are triggered emissions and focus on creating a triggering signal with the proper time delay from the causative sferic. Whistler precursors have now been seen on a signal from the Siple VLF transmitter. Phase analysis shows that these precursors are caused by a rapid increase in growth activity, and not by a triggering signal

  1. Cluster Chemistry

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ Cansisting of eight scientists from the State Key Laboratory of Physical Chemistry of Solid Surfaces and Xiamen University, this creative research group is devoted to the research of cluster chemistry and creation of nanomaterials.After three-year hard work, the group scored a series of encouraging progresses in synthesis of clusters with special structures, including novel fullerenes, fullerene-like metal cluster compounds as well as other related nanomaterials, and their properties study.

  2. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  3. Cancer Clusters

    Science.gov (United States)

    ... of cancer. Cancer clusters can help scientists identify cancer-causing substances in the environment. For example, in the early 1970s, a cluster ... the area and time period over which the cancers were diagnosed. They also ask about specific environmental hazards or concerns in the affected area. If ...

  4. Clustering processes

    CERN Document Server

    Ryabko, Daniil

    2010-01-01

    The problem of clustering is considered, for the case when each data point is a sample generated by a stationary ergodic process. We propose a very natural asymptotic notion of consistency, and show that simple consistent algorithms exist, under most general non-parametric assumptions. The notion of consistency is as follows: two samples should be put into the same cluster if and only if they were generated by the same distribution. With this notion of consistency, clustering generalizes such classical statistical problems as homogeneity testing and process classification. We show that, for the case of a known number of clusters, consistency can be achieved under the only assumption that the joint distribution of the data is stationary ergodic (no parametric or Markovian assumptions, no assumptions of independence, neither between nor within the samples). If the number of clusters is unknown, consistency can be achieved under appropriate assumptions on the mixing rates of the processes. (again, no parametric ...

  5. Precursor films in wetting phenomena

    OpenAIRE

    Popescu, M. N.; Oshanin, G.; Dietrich, S.; Cazabat, A. -M.

    2012-01-01

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in t...

  6. Sulfur-accumulating plants convert sulfate salts from soils into environmentally resilient biominerals

    Science.gov (United States)

    Robson, Thomas; Reid, Nathan; Stevens, Jason; Dixon, Kingsley

    2016-04-01

    Sulfur-accumulator plants (thiophores), which accumulate atypically high sulfur and calcium concentrations in their aerial biomass, may be suitable for revegetating and phytostabilising reactive sulfur-enriched substrates such as mine tailings, acid-sulfate soils and polluted soils. We present biogeochemical insights on thiophores from the Australian Great Sandy Desert, which accumulate up to 40 times as much sulfur (2-5 %S) versus comparator species. X-ray microanalyses revealed this accumulation relates to peculiar gypsum-like mineralisation throughout their foliage, illustrating a mechanism for sulfate removal from soils and sequestration as sparingly soluble biominerals. However, we did not know whether these species treat the excess Ca/S as a waste to be shed with senescent litter and, if so, how resilient these 'biominerals' are to photo-biodegradation once shed and so to what extent the accumulated elements are recycled back into the reactive/bioavailable sulfate reservoir. To address these questions, we sampled four foliage (phyllode) fractions from ten individuals of the thiophore, Acacia bivenosa: healthy mature phyllodes, senescent phyllodes on the branch, recently shed and older, more degraded ground litter. We selected two thiophores (A. bivenosa and A. robeorum) and a non-thiophore (A. ancistrocarpa) for detailed soil/regolith studies. Samples were collected from trenches bisected by each tree, taken from varying depth (20-500 mm) and distance from the stem (0.1-5 m). Dried foliage was cleaned, sectioned for SEM-EDXS examination and elemental compositions of foliage and soils were determined (microwave-assisted acid digestion + ICP-OES/MS). Each species generated a 'halo' of elevated S/Ca in the soil immediately beneath their crowns, although that of A. ancistrocarpa was of minor magnitude. These anomalies were confined to shallow soil (20-50 mm i.e. influenced by litter), suggesting limited S/Ca re-mobilisation from the litter. Foliar elemental

  7. The effects of arsenic and seawater acidification on antioxidant and biomineralization responses in two closely related Crassostrea species.

    Science.gov (United States)

    Moreira, Anthony; Figueira, Etelvina; Soares, Amadeu M V M; Freitas, Rosa

    2016-03-01

    Ocean acidification processes are major threats to marine calcifying organisms, mostly affecting biomineralization related processes. Abiotic stressors acting on marine systems do not act alone, rather in a combination of multiple stressors, especially in coastal habitats such as estuaries, where anthropogenic and environmental pressures are high. Arsenic (As) is a widely distributed contaminant worldwide and its toxicity has been studied on a variety of organisms. However, the effect of low pH on the toxicity of As on marine organisms is unknown. Here, we studied the combined effects of ocean acidification and As exposure on two closely related oyster species (Crassostrea angulata and Crassostrea gigas), by use of a biochemical approach. Oxidative stress related parameters were studied along with the assessment of biomineralization enzymes activity after 28days of exposure. Results showed that both species were sensitive to all tested conditions (low pH, As and pH+As), showing enhancement of antioxidant and biotransformation defenses and impairment of biomineralization processes. Glutathione S-transferases (GSTs) activity were significantly higher in oysters exposed to As, showing activation of detoxification mechanisms, and a lower GSTs activity was observed in low pH+As condition, indicating an impact on the oysters capacity to detoxify As in a low pH scenario. Carbonic anhydrase (CA) activity was significantly lower in all tested conditions, showing to be affected by both As and low pH, whereas the combined effect of low pH+As was not different from the effect of low pH alone. Multivariate analysis of biochemical data allowed for the comparison of both species performance, showing a clear distinction of response in both species. C. gigas presented overall higher enzymatic activity (GSTs; superoxide dismutase; catalase; CA and acid phosphatase) and higher cytosolic GSH content in As exposed oysters than C. angulata. Results obtained indicate a higher tolerance

  8. Computational prediction of candidate miRNAs and their potential functions in biomineralization in pearl oyster Pinctada martensii.

    Science.gov (United States)

    Zheng, Zhe; Jiao, Yu; Du, Xiaodong; Tian, Qunli; Wang, Qingheng; Huang, Ronglian; Deng, Yuewen

    2016-05-01

    MicroRNAs (miRNAs) are a class of non-coding RNA molecules with presumed post-transcriptional regulatory activity in various biological processes, such as development and biomineralization. Pinctada martensii is one of the main species cultured for marine pearl production in China and Japan. In our previous research, 258 pm-miRNAs had been identified by solexa deep sequencing in P. martensii, while it is far from the number of miRNAs found in other species. In this study, based on the transcriptome database of pearl sac, we identified 30 candidate pm-miRNAs by computational prediction. Among the obtained 30 pm-miRNAs, 13 pm-miRNAs were generated from the complementary strand of protein-coding mRNAs, and 17 pm-miRNAs could not be annotated using blastx and tblastn analysis. Notably, 10 of the 30 pm-miRNAs, such as pm-miR-1b, pm-miR-205b and pm-miR-375b, were homologous with the reported pm-miRNAs, respectively. To validate the existence of the identified pm-miRNAs, eight randomly selected pm-miRNAs were tested by stem loop quantitative RT-PCR analyses using 5.8S as the internal reference gene. Target prediction between the obtained pm-miRNAs and biomineralization-related genes by microTar, miRanda and RNA22 indicated pm-miR-2386 and pm-miR-13b may be the key factors in the regulation network by regulating the formation of organic matrix or the differentiation of mineralogenic cell during shell formation. Thus, this study enriched miRNA databases of pearl oyster and provided a new way to understand biomineralization. PMID:27081363

  9. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials

    International Nuclear Information System (INIS)

    A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed using molecular dynamics and validated using X-ray Diffraction (XRD), Fourier Transforms Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). Attractive interactions exist between Ca atoms of HAP and C=O group of aminovaleric acid, indicating chelate formation in OMMT-HAP. Interaction energy maps describe molecular interactions among different constituents and their quantitative contributions in the OMMT and OMMT-HAP systems at both parallel and perpendicular orientations. High attractive and high repulsive interactions were found between PO43− and MMT clay as well as aminovaleric molecules in OMMT-HAP perpendicular and parallel models. Large non-bonded interactions in OMMT-HAP indicate influence of neighboring environment on PO43− in in situ HAPclay. Extensive hydrogen bonds were observed between functional hydrogen atoms of modifier and MMT clay in OMMT-HAP as compared to OMMT. Thus, HAP interacts with clay through the aminovaleric acid. This computational study provides a framework for materials design and selection for biomaterials used in tissue engineering and other areas of regenerative medicine. - Highlights: • Representative models of a hybrid nanoclay-hydroxyapatite biomaterial are built. • Interaction energy maps are constructed using a molecular dynamics. • Quantitative interactions between the three components of the biomaterial are found. • The modeling and experimental approach provides insight into the complex nanomaterial

  10. Taking nature into lab: biomineralization by heavy metal resistant streptomycetes in soil

    Directory of Open Access Journals (Sweden)

    E. Schütze

    2013-02-01

    Full Text Available Biomineralization by heavy metal resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals on tryptic soy broth (TSB media supplemented with AlCl2, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite was exclusively formed on minimal media spiked with MnCl2 by four heavy metal resistant strains, and on nutrient enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a~dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding may be transferred to formation of minerals in rock and sediment evolution, to ore deposit formation, and also might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  11. Taking nature into lab: biomineralization by heavy metal-resistant streptomycetes in soil

    Directory of Open Access Journals (Sweden)

    E. Schütze

    2013-06-01

    Full Text Available Biomineralization by heavy metal-resistant streptomycetes was tested to evaluate the potential influence on metal mobilities in soil. Thus, we designed an experiment adopting conditions from classical laboratory methods to natural conditions prevailing in metal-rich soils with media spiked with heavy metals, soil agar, and nutrient-enriched or unamended soil incubated with the bacteria. As a result, all strains were able to form struvite minerals (MgNH4PO4• 6H2O on tryptic soy broth (TSB-media supplemented with AlCl3, MnCl2 and CuSO4, as well as on soil agar. Some strains additionally formed struvite on nutrient-enriched contaminated and control soil, as well as on metal contaminated soil without addition of media components. In contrast, switzerite (Mn3(PO42• 7H2O was exclusively formed on minimal media spiked with MnCl2 by four heavy metal-resistant strains, and on nutrient-enriched control soil by one strain. Hydrated nickel hydrogen phosphate was only crystallized on complex media supplemented with NiSO4 by most strains. Thus, mineralization is a dominant property of streptomycetes, with different processes likely to occur under laboratory conditions and sub-natural to natural conditions. This new understanding might have implications for our understanding of biological metal resistance mechanisms. We assume that biogeochemical cycles, nutrient storage and metal resistance might be affected by formation and re-solubilization of minerals like struvite in soil at microscale.

  12. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  13. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A new resistive type of sensor was prepared by green synthesis. • The mineral oxide from seed part of Hygrophila spinosa T. Anders (HST) plant is chosen as a dopant in NiO. • The HST plant is found abundantly and commercially available in many countries. • The band gap of NH2 (Ni:HST of 0.5:0.5 weight ratio) sample is greater than prepared bulk NiO due to quantum effects. • The NH2 sample shows remarkable changes in the humidity sensing properties. - Abstract: The simple and green method is adopted for the preparation of biominerals (derived from the Hygrophila spinosa T. Anders plant seeds) doped nanocrystalline NiO. The prepared samples were subjected to instrumental analysis such as XRD, FT-IR, HR-SEM, EDX, UV–vis–DRS techniques. The surface area of all the samples was calculated from the Williamson–Hall's plot. The humidity sensitivity factor (Sf) of the prepared samples was evaluated by two probe dc electrical resistance method at different relative humidity levels. The change in the resistance was observed for the entire sensor samples except pure NiO (NH0). Compared to all the other composition, HST of 0.5% in NiO (NH2 sample) enhances the sensitivity factor (Sf) of about 90,000. The NH2 sample exhibited good linearity, reproducibility and response and recovery time about 210 ± 5 s and 232 ± 4 s, respectively. It is found that the sensitivity largely depends on composition, crystallite size and surface area

  14. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Katti, Dinesh R., E-mail: Dinesh.Katti@ndsu.edu; Sharma, Anurag; Ambre, Avinash H.; Katti, Kalpana S.

    2015-01-01

    A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed using molecular dynamics and validated using X-ray Diffraction (XRD), Fourier Transforms Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). Attractive interactions exist between Ca atoms of HAP and C=O group of aminovaleric acid, indicating chelate formation in OMMT-HAP. Interaction energy maps describe molecular interactions among different constituents and their quantitative contributions in the OMMT and OMMT-HAP systems at both parallel and perpendicular orientations. High attractive and high repulsive interactions were found between PO{sub 4}{sup 3−} and MMT clay as well as aminovaleric molecules in OMMT-HAP perpendicular and parallel models. Large non-bonded interactions in OMMT-HAP indicate influence of neighboring environment on PO{sub 4}{sup 3−} in in situ HAPclay. Extensive hydrogen bonds were observed between functional hydrogen atoms of modifier and MMT clay in OMMT-HAP as compared to OMMT. Thus, HAP interacts with clay through the aminovaleric acid. This computational study provides a framework for materials design and selection for biomaterials used in tissue engineering and other areas of regenerative medicine. - Highlights: • Representative models of a hybrid nanoclay-hydroxyapatite biomaterial are built. • Interaction energy maps are constructed using a molecular dynamics. • Quantitative interactions between the three components of the biomaterial are found. • The modeling and experimental approach provides insight into the complex nanomaterial.

  15. Mitigation of efflorescence of wallboard by means of bio-mineralization

    Directory of Open Access Journals (Sweden)

    Bin eXue

    2015-10-01

    Full Text Available Cement-based material is one of the most versatile and largest amount of building materials which can not only be used in load-bearing structure but also decoration materials, like brick, wallboard and tile. However, white calcium carbonate always deposit on the surface of wallboard. This phenomenon generally is called efflorescence, which is not damaging of wallboard, but has aesthetic impact. In this research, Bacillus mucilaginosus was pre-added to the cement matrix to reduce the efflorescence of wallboard. Image processing with software ImageJ, thermogravimetric analysis and permeability test were used to characterize the degree of efflorescence of wallboard. The results showed that the bacterium can capture atmospheric CO2 by carbonic anhydrase and then the CO2 react with Ca(OH2 produced by cement hydration inside the wallboard. This process can not only reduce the content of Ca(OH2 but also improve the compactness of wallboard. In addition, the efficiency of resistance to the efflorescence can be achieved when the content of microbial is 4% of cementitious material and the area proportion of surface efflorescence reduced from 32±3% to 5±1%. At the same time, compressive and flexural strength were the highest performance by means of universal testing machine test. The surface of wallboard was the most compact by SEM analysis. The observed efflorescence reduction was indeed due to the effect of bio-mineralization. This promising method is cheap, convenient and environment friendly. It can be massively applied in engineering practice and other fields.

  16. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach

    Energy Technology Data Exchange (ETDEWEB)

    John Kennedy, L. [Materials Division, School of Advanced Sciences, Vellore Institute of Technology (VIT) Chennai, Chennai 600 048, Tamil Nadu (India); Magesan, P. [Department of Chemistry, College of Engineering Guindy, Anna University Chennai, Chennai 600 025, Tamil Nadu (India); Judith Vijaya, J. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College (Autonomous), Chennai 600 034, Tamil Nadu (India); Umapathy, M.J. [Department of Chemistry, College of Engineering Guindy, Anna University Chennai, Chennai 600 025, Tamil Nadu (India); Aruldoss, Udaya, E-mail: udayaevs@yahoo.co.in [Department of Chemistry, College of Engineering Guindy, Anna University Chennai, Chennai 600 025, Tamil Nadu (India)

    2014-12-15

    Graphical abstract: - Highlights: • A new resistive type of sensor was prepared by green synthesis. • The mineral oxide from seed part of Hygrophila spinosa T. Anders (HST) plant is chosen as a dopant in NiO. • The HST plant is found abundantly and commercially available in many countries. • The band gap of NH2 (Ni:HST of 0.5:0.5 weight ratio) sample is greater than prepared bulk NiO due to quantum effects. • The NH2 sample shows remarkable changes in the humidity sensing properties. - Abstract: The simple and green method is adopted for the preparation of biominerals (derived from the Hygrophila spinosa T. Anders plant seeds) doped nanocrystalline NiO. The prepared samples were subjected to instrumental analysis such as XRD, FT-IR, HR-SEM, EDX, UV–vis–DRS techniques. The surface area of all the samples was calculated from the Williamson–Hall's plot. The humidity sensitivity factor (S{sub f}) of the prepared samples was evaluated by two probe dc electrical resistance method at different relative humidity levels. The change in the resistance was observed for the entire sensor samples except pure NiO (NH0). Compared to all the other composition, HST of 0.5% in NiO (NH2 sample) enhances the sensitivity factor (S{sub f}) of about 90,000. The NH2 sample exhibited good linearity, reproducibility and response and recovery time about 210 ± 5 s and 232 ± 4 s, respectively. It is found that the sensitivity largely depends on composition, crystallite size and surface area.

  17. Applications of Time-Resolved Synchrotron X-ray Diffraction to Cation Exchange, Crystal Growth and Biomineralization Reactions

    International Nuclear Information System (INIS)

    Advances in the design of environmental reaction cells and in the collection of X-ray diffraction data are transforming our ability to study mineral-fluid interactions. The resulting increase in time resolution now allows for the determination of rate laws for mineral reactions that are coupled to atomic-scale changes in crystal structure. Here we address the extension of time-resolved synchrotron diffraction techniques to four areas of critical importance to the cycling of metals in soils: (1) cation exchange; (2) biomineralization; (3) stable isotope fractionation during redox reactions; and (4) nucleation and growth of nanoscale oxyhydroxides.

  18. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation

    OpenAIRE

    YinzhaoWang

    2013-01-01

    Effects of ultraviolet radiation on microorganisms are of great interest in field of microbiology and planetary sciences. In the present study, we used Magnetospirillum magneticum AMB-1 as a model organism to examine the influence of ultraviolet-B (UV-B) radiation on cell growth and magnetite biomineralization of magnetotactic bacteria (MTB). Live AMB-1 cells were exposed to UV-B radiation for 60, 300 and 900 s, which correspond to radiation doses of 120 J/m2, 600 J/m2, and 1800 J/m2, respect...

  19. Synthesis of antireflective silica coatings through the synergy of polypeptide layer-by-layer assemblies and biomineralization

    Science.gov (United States)

    Lee, Yung-Lun; Lin, Ting-Xuan; Hsu, Feng-Ming; Jan, Jeng-Shiung

    2016-01-01

    We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting more than 6% increase in transmittance in the near UV/visible spectral range can be obtained at an optimized refractive index, thickness, and surface roughness. The abrasion test showed that the silica coatings exhibited sufficient structural durability due to continuous silica nanostructures and low surface roughness. This study demonstrated that nanostructured thin films can be synthesized for AR coatings using the synergy between the LbL assembly technique and biomineralization.We report a versatile approach to synthesize silica coatings with antireflective (AR) characteristics through the combination of a layer-by-layer (LbL) assembly technique and biomineralization. LbL assembled decanoyl-modified poly(l-lysine)/poly(l-glutamic acid) (PLL-g-Dec/PLGA) multilayer films were used as templates for silica mineralization, followed by calcination. The specific deposition of silica onto the LbL polypeptide assemblies through amine-catalyzed polycondensation resulted in silica coatings that exhibited the transcription of the nano-/microstructured polypeptide films and their film thickness and porosity can be tuned by varying the number of bilayers, degree of substitution, and PLL molecular weight. AR silica coatings exhibiting

  20. Clustering analysis

    International Nuclear Information System (INIS)

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K-mean method' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  1. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side. The...... algorithms for biological problems. © 2013 Springer-Verlag....... problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications of these...

  2. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  3. Spitzer Clusters

    Science.gov (United States)

    Krick, Kessica

    This proposal is a specific response to the strategic goal of NASA's research program to "discover how the universe works and explore how the universe evolved into its present form." Towards this goal, we propose to mine the Spitzer archive for all observations of galaxy groups and clusters for the purpose of studying galaxy evolution in clusters, contamination rates for Sunyaev Zeldovich cluster surveys, and to provide a database of Spitzer observed clusters to the broader community. Funding from this proposal will go towards two years of support for a Postdoc to do this work. After searching the Spitzer Heritage Archive, we have found 194 unique galaxy groups and clusters that have data from both the Infrared array camera (IRAC; Fazio et al. 2004) at 3.6 - 8 microns and the multiband imaging photometer for Spitzer (MIPS; Rieke et al. 2004) at 24microns. This large sample will add value beyond the individual datasets because it will be a larger sample of IR clusters than ever before and will have sufficient diversity in mass, redshift, and dynamical state to allow us to differentiate amongst the effects of these cluster properties. An infrared sample is important because it is unaffected by dust extinction while at the same time is an excellent measure of both stellar mass (IRAC wavelengths) and star formation rate (MIPS wavelengths). Additionally, IRAC can be used to differentiate star forming galaxies (SFG) from active galactic nuclei (AGN), due to their different spectral shapes in this wavelength regime. Specifically, we intend to identify SFG and AGN in galaxy groups and clusters. Groups and clusters differ from the field because the galaxy densities are higher, there is a large potential well due mainly to the mass of the dark matter, and there is hot X-ray gas (the intracluster medium; ICM). We will examine the impact of these differences in environment on galaxy formation by comparing cluster properties of AGN and SFG to those in the field. Also, we will

  4. Statistical Properties of Fracture Precursors

    OpenAIRE

    Garcimartin, A.; Guarino, A; Lebon, L.; Ciliberto, S.

    1997-01-01

    We present the data of a mode-I fracture experiment. The samples are broken under imposed pressure. The acoustic emission of microfractures before the breakup of the sample is registered. From the acoustic signals, the position of microfractures and the energy released are calculated. A measure of the clustering of microfractures yields information about the critical load. The statistics from energy measurements strongly suggest that the fracture can be viewed as a critical phenomenon; energy...

  5. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas D.; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by th...

  6. Cluster Bulleticity

    OpenAIRE

    Massey, R; Kitching, T.; Nagai, D.

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  7. Cluster generator

    Science.gov (United States)

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  8. Premarital precursors of marital infidelity.

    Science.gov (United States)

    Allen, Elizabeth S; Rhoades, Galena Kline; Stanley, Scott M; Markman, Howard J; Williams, Tamara; Melton, Jessica; Clements, Mari L

    2008-06-01

    Premarital precursors of infidelity were evaluated in a sample of 72 couples (N = 144) who were taking part in a longitudinal study of marriage. Premarital self-report and observational data were compared for couples who experienced infidelity and those who did not experience infidelity in the first years of marriage. Couples in which the male engaged in marital infidelity were characterized, premaritally, by significantly lower male sexual satisfaction, lower male positive communication, and higher female invalidation, whereas couples in which the female went on to engage in infidelity were characterized, premaritally, by significantly lower levels of female positive communication, higher levels of male and female negative communication, and higher levels of male and female invalidation. Implications of the findings for future research on the prediction and prevention of infidelity are discussed. PMID:18605124

  9. Effect of Detergents on Streptolysin S Precursor

    OpenAIRE

    Calandra, Gary B.

    1980-01-01

    Group A streptococci which produce streptolysin S contain a cellular precursor to streptolysin S in the membranes and cytoplasm which is activatable by blending in a Vortex mixer with glass beads and ribonucleic acid (RNA)-core (RNA preparation from yeast). Although no activation of precursor occurred when it was mixed with detergents, it was activated when blended with glass beads and detergents such as Tergitol NP-40 and Brij 35. Maximum activation of precursor was achieved in 1 to 2% deter...

  10. Overview of ALD Precursors and Reaction Mechanisms

    OpenAIRE

    Gordon, Roy Gerald

    2011-01-01

    Successful use of ALD requires suitable chemical precursors used under reaction conditions that are appropriate for them. There are many requirements for ALD precursors: sufficient volatility, thermal stability and reactivity with substrates and with the films being deposited. In addition, it is easier to produce the required vapors if the precursor is liquid at room temperature, or if it is a solid with melting point below the vaporization temperature, or if it is soluble in an inert solvent...

  11. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy.

    Science.gov (United States)

    Krayesky-Self, Sherry; Richards, Joseph L; Rahmatian, Mansour; Fredericq, Suzanne

    2016-04-01

    New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM-EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith-forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM-EDS and X-ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM-EDS, XRD, Microtomography and X-ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2 , ocean acidification, and global warming. PMID:27037582

  12. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote.

    Science.gov (United States)

    Kolinko, Sebastian; Richter, Michael; Glöckner, Frank-Oliver; Brachmann, Andreas; Schüler, Dirk

    2014-10-01

    For magnetic orientation, magnetotactic bacteria biosynthesize magnetosomes, which consist of membrane-enveloped magnetic nanocrystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). While magnetite formation is increasingly well understood, much less is known about the genetic control of greigite biomineralization. Recently, two related yet distinct sets of magnetosome genes were discovered in a cultivated magnetotactic deltaproteobacterium capable of synthesizing either magnetite or greigite, or both minerals. This led to the conclusion that greigite and magnetite magnetosomes are synthesized by separate biomineralization pathways. Although magnetosomes of both mineral types co-occurred in uncultured multicellular magnetotactic prokaryotes (MMPs), so far only one type of magnetosome genes could be identified in the available genome data. The MMP Candidatus Magnetomorum strain HK-1 from coastal tidal sand flats of the North Sea (Germany) was analysed by a targeted single-cell approach. The draft genome assembly resulted in a size of 14.3 Mb and an estimated completeness of 95%. In addition to genomic features consistent with a sulfate-reducing lifestyle, we identified numerous genes putatively involved in magnetosome biosynthesis. Remarkably, most mam orthologues were present in two paralogous copies with highest similarity to either magnetite or greigite type magnetosome genes, supporting the ability to synthesize magnetite and greigite magnetosomes. PMID:25079475

  13. Interactive Effects of Seawater Acidification and Elevated Temperature on the Transcriptome and Biomineralization in the Pearl Oyster Pinctada fucata.

    Science.gov (United States)

    Li, Shiguo; Huang, Jingliang; Liu, Chuang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2016-02-01

    Interactive effects of ocean acidification and ocean warming on marine calcifiers vary among species, but little is known about the underlying mechanisms. The present study investigated the combined effects of seawater acidification and elevated temperature (ambient condition: pH 8.1 × 23 °C, stress conditions: pH 7.8 × 23 °C, pH 8.1 × 28 °C, and pH 7.8 × 28 °C, exposure time: two months) on the transcriptome and biomineralization of the pearl oyster Pinctada fucata, which is an important marine calcifier. Transcriptome analyses indicated that P. fucata implemented a compensatory acid-base mechanism, metabolic depression and positive physiological responses to mitigate the effects of seawater acidification alone. These responses were energy-expensive processes, leading to decreases in the net calcification rate, shell surface calcium and carbon content, and changes in the shell ultrastructure. Elevated temperature (28 °C) within the thermal window of P. fucata did not induce significant enrichment of the sequenced genes and conversely facilitated calcification, which was detected to alleviate the negative effects of seawater acidification on biomineralization and the shell ultrastructure. Overall, this study will help elucidate the mechanisms by which pearl oysters respond to changing seawater conditions and predict the effects of global climate change on pearl aquaculture. PMID:26727167

  14. Uranium Biomineralization As a Result of Bacterial Phosphatase Activity: Insights From Bacterial Isolates From a Contaminated Subsurface

    International Nuclear Information System (INIS)

    Uranium contamination is an environmental concern at the Department of Energy's Field Research Center in Oak Ridge, Tennessee. In this study, we investigated whether phosphate biomineralization, or the aerobic precipitation of U(VI)-phosphate phases facilitated by the enzymatic activities of microorganisms, offers an alternative to the more extensively studied anaerobic U(VI) bioreduction. Three heterotrophic bacteria isolated from FRC soils were studied for their ability to grow and liberate phosphate in the presence of U(VI) and an organophosphate between pH 4.5 and 7.0. The objectives were to determine whether the strains hydrolyzed sufficient phosphate to precipitate uranium, to determine whether low pH might have an effect on U(VI) precipitation, and to identify the uranium solid phase formed during biomineralization. Two bacterial strains hydrolyzed sufficient organophosphate to precipitate 73-95% total uranium after 120 h of incubation in simulated groundwater. The highest rates of uranium precipitation and phosphatase activity were observed between pH 5.0 and 7.0. EXAFS spectra identified the uranyl phosphate precipitate as an autunite/meta-autunite group mineral. The results of this study indicate that aerobic heterotrophic bacteria within a uranium-contaminated environment that can hydrolyze organophosphate, especially in low pH conditions, may play an important role in the bioremediation of uranium

  15. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins.

    Directory of Open Access Journals (Sweden)

    Hiroyuki O Ishikawa

    Full Text Available Raine syndrome is caused by mutations in FAM20C, which had been reported to encode a secreted component of bone and teeth. We found that FAM20C encodes a Golgi-localized protein kinase, distantly related to the Golgi-localized kinase Four-jointed. Drosophila also encode a Golgi-localized protein kinase closely related to FAM20C. We show that FAM20C can phosphorylate secreted phosphoproteins, including both Casein and members of the SIBLING protein family, which modulate biomineralization, and we find that FAM20C phosphorylates a biologically active peptide at amino acids essential for inhibition of biomineralization. We also identify autophosphorylation of FAM20C, and characterize parameters of FAM20C's kinase activity, including its Km, pH and cation dependence, and substrate specificity. The biochemical properties of FAM20C match those of an enzymatic activity known as Golgi casein kinase. Introduction of point mutations identified in Raine syndrome patients into recombinant FAM20C impairs its normal localization and kinase activity. Our results identify FAM20C as a kinase for secreted phosphoproteins and establish a biochemical basis for Raine syndrome.

  16. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    Science.gov (United States)

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, J.

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where

  17. Denominators of cluster variables

    OpenAIRE

    Buan, Aslak Bakke; Marsh, Robert J.; Reiten, Idun

    2007-01-01

    Associated to any acyclic cluster algebra is a corresponding triangulated category known as the cluster category. It is known that there is a one-to-one correspondence between cluster variables in the cluster algebra and exceptional indecomposable objects in the cluster category inducing a correspondence between clusters and cluster-tilting objects. Fix a cluster-tilting object T and a corresponding initial cluster. By the Laurent phenomenon, every cluster variable can be written as a Laurent...

  18. Multipotent skin-derived precursors: adult neural crest-related precursors with therapeutic potential

    OpenAIRE

    Fernandes, Karl J.L; Toma, Jean G; Miller, Freda D.

    2007-01-01

    We previously made the surprising finding that cultures of multipotent precursors can be grown from the dermis of neonatal and adult mammalian skin. These skin-derived precursors (SKPs) display multi-lineage differentiation potential, producing both neural and mesodermal progeny in vitro, and are an apparently novel precursor cell type that is distinct from other known precursors within the skin. In this review, we begin by placing these findings within the context of the rapidly evolving ste...

  19. Cluster Bulleticity

    CERN Document Server

    Massey, Richard; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, like the bullet cluster (1E 0657-56) and baby bullet (MACSJ0025-12). These systems provide evidence for an additional, invisible mass in the separation between the distribution of their total mass, measured via gravitational lensing, and their ordinary 'baryonic' matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. Constraints on the properties of dark matter, such as its interaction cross-section, are therefore restricted by uncertainties in the individual systems' impact velocity, impact parameter and orientation with respect to the line of sight. Here we develop a complementary, statistical measurement in which every piece of substructure falling into every massive cluster is treated as a bullet. We define 'bulleticity' as the mean separation between dark matter and ordinary matter, and we measure a positive signal in hydrodynamical si...

  20. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis...

  1. Rheological behavior of precursor PPV monolayers

    NARCIS (Netherlands)

    Luinge, JW; Nijboer, GW; Hagting, JG; Vorenkamp, EJ; Fuller, GG; Schouten, AJ

    2004-01-01

    The rheological behavior of different precursor poly(p-phenylene vinylene) (prec-PPV) monolayers at the air-water interface was investigated using an interfacial stress rheometer (ISR). This device nicely reveals a transition of the precursor poly(2,5-dimethoxy-1,4 phenylene vinylene) (prec-DMePPV)

  2. Nanometals and colloids as catalyst precursors

    Energy Technology Data Exchange (ETDEWEB)

    Boennemann, H.H. [Max-Planck-Institut fuer Kohlenforschung (Germany)

    1995-12-01

    Mono- or plurimetallic nanometals and colloids stabilized by surfactant molecules are discussed as pre-prepared precursors for heterogeneous catalysts. This {open_quotes}precursor concept{close_quotes} provides a novel access to supported metal catalysts having active components of controlled particle size, intermetallic ratio and particle structure on surfaces. Possible applications will also be presented.

  3. Precursor films in wetting phenomena

    International Nuclear Information System (INIS)

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. (topical review)

  4. Precursor films in wetting phenomena.

    Science.gov (United States)

    Popescu, M N; Oshanin, G; Dietrich, S; Cazabat, A-M

    2012-06-20

    The spontaneous spreading of non-volatile liquid droplets on solid substrates poses a classic problem in the context of wetting phenomena. It is well known that the spreading of a macroscopic droplet is in many cases accompanied by a thin film of macroscopic lateral extent, the so-called precursor film, which emanates from the three-phase contact line region and spreads ahead of the latter with a much higher speed. Such films have been usually associated with liquid-on-solid systems, but in the last decade similar films have been reported to occur in solid-on-solid systems. While the situations in which the thickness of such films is of mesoscopic size are fairly well understood, an intriguing and yet to be fully understood aspect is the spreading of microscopic, i.e. molecularly thin, films. Here we review the available experimental observations of such films in various liquid-on-solid and solid-on-solid systems, as well as the corresponding theoretical models and studies aimed at understanding their formation and spreading dynamics. Recent developments and perspectives for future research are discussed. PMID:22627067

  5. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan;

    2000-01-01

    and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones...

  6. Quotients of cluster categories

    OpenAIRE

    Jorgensen, Peter

    2007-01-01

    Higher cluster categories were recently introduced as a generalization of cluster categories. This paper shows that in Dynkin types A and D, half of all higher cluster categories are actually just quotients of cluster categories. The other half can be obtained as quotients of 2-cluster categories, the "lowest" type of higher cluster categories. Hence, in Dynkin types A and D, all higher cluster phenomena are implicit in cluster categories and 2-cluster categories. In contrast, the same is not...

  7. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  8. Preparation of precursor for stainless steel foam

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xiang-yang; LI Shan-ni; LI Jie; LIU Ye-xiang

    2008-01-01

    The effects of polyurethane sponge pretreatment and slurry compositions on the slurry loading in precursor were discussed, and the,performances of stainless steel foams prepared from precursors with different slurry loadings and different particle sizes of the stainless steel powder were also investigated. The experimental results show that the pretreatment of sponge with alkaline solution is effective to reduce the jam of cells in precursor and ensure the slurry to uniformly distribute in sponge, and it is also an effective method for increasing the slurry loading in precursor; the mass fraction of additive A and solid content in slurry greatly affect the slurry loading in precursor, when they are kept in 9%-13% and 52%-75%, respectively, the stainless steel foam may hold excellent 3D open-cell network structure and uniform muscles; the particle size of the stainless steel powder and the slurry loading in precursor have great effects on the bending strength, apparent density and open porosity of stainless steel foam; when the stainless steel powder with particle size of 44 tan and slurry loading of 0.5 g/cm3 in precursor are used, a stainless steel foam can be obtained, which has open porosity of 81.2%, bending strength of about 51.76 MPa and apparent density of about 1.0 g/cm3.

  9. The interactions of strontium and technetium with Fe(II) bearing biominerals: Implications for bioremediation of radioactively contaminated land

    International Nuclear Information System (INIS)

    Highlights: • Bioreduction leads to Fe(II) bearing mineral phases at neutral and alkaline pH. • Tc-99 is reductively precipitated as hydrous TcO2 at neutral and alkaline pH. • Sr-90 sorbs to the biomineral phases across the pH range of study. • Stable Sr is scavenged to solids at high pH. - Abstract: At nuclear contaminated sites, microbially-mediated Fe(III) reduction under alkaline conditions opens up the potential for co-treatment of the groundwater contaminants 99Tc, though reduction to less mobile Tc(IV) phases, and 90Sr, through increased sorption and/or precipitation promoted at higher pH. In the experiments described here, microbial enrichment cultures derived from representative Sellafield sediments were used to probe the effect of microbially-mediated Fe(III) reduction on the mobility of 99Tc and Sr (as stable Sr2+ at elevated concentrations and 90Sr2+ at ultra-trace concentrations) under both neutral and alkaline conditions. The reduction of Fe(III) in enrichment culture experiments at an initial pH of 7 or 9 resulted in the precipitation of an Fe(II) bearing biomineral comprised of siderite and vivianite. Results showed that TcO4- added at 1.6 × 10−6 M was removed (>80%) from solution concurrent with Fe(III) reduction at both pH 7 and pH 9. Furthermore, X-ray absorption spectroscopy of the reduced biominerals confirmed reduction of Tc(VII) to Tc(IV). To understand Sr behaviour in these systems, Sr2+ was added to enrichment cultures at ultra-trace concentrations (2.2 × 10−10 M (as 90Sr2+)) and at higher concentrations (1.15 × 10−3 M (as stable Sr2+)). In ultra-trace experiments at pH 7, microbially active systems showed enhanced removal of 90Sr compared to the sterile control. This was likely due to sorption of 90Sr2+ to the Fe(II)-bearing biominerals that formed in situ. By contrast, at pH 9, the sterile control showed comparable removal of 90Sr to the microbially active experiment even though the Fe-minerals formed were of very

  10. Effects of collagen types II and X on the kinetics of crystallization of calcium phosphate in biomineralization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The effects of the components of cartilages matrix on the process of endochondral ossification and the kinetics of crystal growth of calcium phosphate have been studied in the presence of type II or X collagen. During the experiments, type I collagen was added as the seed material. FT-IR analysis shows that calcium phosphate crystallized on the surface of type I collagen was mainly hydroxyapatite. Both type II and X collagens could reduce the growth rate of calcium phosphate crystals, and the effect of type X collagen is more obvious. The reaction was in the fourth order in the presence of type II collagen. The results showed that type II or X collagen had the ability to make Ca2+ accumulate in the process of endochondral ossification, but has little effect on crystal growth and the product of biomineralization.

  11. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation

    Directory of Open Access Journals (Sweden)

    YinzhaoWang

    2013-12-01

    Full Text Available Effects of ultraviolet radiation on microorganisms are of great interest in field of microbiology and planetary sciences. In the present study, we used Magnetospirillum magneticum AMB-1 as a model organism to examine the influence of ultraviolet-B (UV-B radiation on cell growth and magnetite biomineralization of magnetotactic bacteria. Live AMB-1 cells were exposed to UV-B radiation for 60 s, 300 s and 900 s, which correspond to radiation doses of 120 J/m2, 600 J/m2 and 1800 J/m2, respectively. After irradiation, the amounts of cyclobutane pyrimidine dimers and reactive oxygen species of the cells were increased, and cell growth was stunted up to ~170 h, depending on the UV-B radiation doses. The UV-B irradiated cells also produced on average more magnetite crystals with larger grain sizes and longer chains, which results in changes of their magnetic properties.

  12. Spectromicroscopy of self-assembled protein clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schonschek, O.; Hormes, J.; Herzog, V. [Univ. of Bonn (Germany)

    1997-04-01

    The aim of this project is to use synchrotron radiation as a tool to study biomedical questions concerned with the thyroid glands. The biological background is outlined in a recent paper. In short, Thyroglobulin (TG), the precursor protein of the hormone thyroxine, forms large (20 - 500 microns in diameter) clusters in the extracellular lumen of thyrocytes. The process of the cluster formation is still not well understood but is thought to be a main storage mechanism of TG and therefore thyroxine inside the thyroid glands. For human thyroids, the interconnections of the proteins inside the clusters are mainly disulfide bondings. Normally, sulfur bridges are catalyzed by an enzyme called Protein Disulfide Bridge Isomerase (PDI). While this enzyme is supposed to be not present in any extracellular space, the cluster formation of TG takes place in the lumen between the thyrocytes. A possible explanation is the autocatalysis of TG.

  13. Introduction to accident sequence precursor methodology

    International Nuclear Information System (INIS)

    The report consists of the following sections: (1) Introduction to the issue (Use of accident sequence precursor (ASP) programs; Definition of ASP, indicators, information; Status of ASP evaluation methodology); (2) Selection of potential precursors; (3) Detailed analysis of selected potential precursors (Methodology; ASP analysis software; Indicators and presentation of results); Potential for ASP evaluation at Czech nuclear power plants (Procedure for Conditional Core Damage Probability and Event Importance assessment by the NRC method; Experience in ASP in the Czech Republic; Application of the ASP evaluation method to the Dukovany NPP); Plan of Activities; and Conclusions. (P.A.)

  14. Isolation and distribution of rabbit keratocyte precursors

    OpenAIRE

    Mimura, Tatsuya; Amano, Shiro; Yokoo, Seiichi; Uchida, Saiko; Usui, Tomohiko; Yamagami, Satoru

    2008-01-01

    Purpose To isolate multipotent precursors from the rabbit corneal stroma and to compare the distribution and proliferative capacity of keratocyte precursors obtained from the central and peripheral regions of the corneal stroma. Methods The rabbit corneal stroma was divided into a peripheral region (6.0–10.0 mm in diameter) and a central region (6.0 mm in diameter). A sphere-forming assay was then performed to isolate precursors from the stroma of each region. To promote differentiation, isol...

  15. Metabolism-Induced CaCO3 Biomineralization During Reactive Transport in a Micromodel: Implications for Porosity Alteration.

    Science.gov (United States)

    Singh, Rajveer; Yoon, Hongkyu; Sanford, Robert A; Katz, Lynn; Fouke, Bruce W; Werth, Charles J

    2015-10-20

    The ability of Pseudomonas stutzeri strain DCP-Ps1 to drive CaCO3 biomineralization has been investigated in a microfluidic flowcell (i.e., micromodel) that simulates subsurface porous media. Results indicate that CaCO3 precipitation occurs during NO3(-) reduction with a maximum saturation index (SIcalcite) of ∼1.56, but not when NO3(-) was removed, inactive biomass remained, and pH and alkalinity were adjusted to SIcalcite ∼ 1.56. CaCO3 precipitation was promoted by metabolically active cultures of strain DCP-Ps1, which at similar values of SIcalcite, have a more negative surface charge than inactive strain DCP-Ps1. A two-stage NO3(-) reduction (NO3(-) → NO2(-) → N2) pore-scale reactive transport model was used to evaluate denitrification kinetics, which was observed in the micromodel as upper (NO3(-) reduction) and lower (NO2(-) reduction) horizontal zones of biomass growth with CaCO3 precipitation exclusively in the lower zone. Model results are consistent with two biomass growth regions and indicate that precipitation occurred in the lower zone because the largest increase in pH and alkalinity is associated with NO2(-) reduction. CaCO3 precipitates typically occupied the entire vertical depth of pores and impacted porosity, permeability, and flow. This study provides a framework for incorporating microbial activity in biogeochemistry models, which often base biomineralization only on SI (caused by biotic or abiotic reactions) and, thereby, underpredict the extent of this complex process. These results have wide-ranging implications for understanding reactive transport in relevance to groundwater remediation, CO2 sequestration, and enhanced oil recovery. PMID:26348257

  16. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing

    International Nuclear Information System (INIS)

    Groove pressing (GP) has been successfully adopted to achieve fine grain size up to 7 μm in AZ31 magnesium alloy with an initial grain size of 55 μm. The effect of microstructural evolution and surface features on wettability, corrosion resistance, bioactivity and cell adhesion were investigated with an emphasis to study the influence of deposited phases when the samples were immersed in simulated body fluid (SBF 5 ×). The role of microstructure was also evaluated without any surface treatments or coatings on the material. GPed samples exhibit improved hydrophilicity compared to the annealed sample. After immersion in SBF, specimens were characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD) methods. More amount of white precipitates composed of hydroxyapatite and magnesium phosphate along with magnesium hydroxide was observed on the surfaces of groove pressed specimens as compared to the annealed specimens with an increase in immersion time in SBF. Corrosion behavior of the samples estimated using potentiodynamic polarization curves indicate good corrosion resistance for GPed samples before and after immersion in SBF. The MTT assay using rat skeletal muscle (L6) cells revealed that both the processed and unprocessed samples are nontoxic and cell adhesion was promising for GPed sample. - Highlights: ► Fine grain structure was achieved in AZ31 magnesium alloy by groove pressing. ► Influence of microstructure and surface roughness on surface energy and biomineralization was studied. ► Early biomineralization due to high wettability reduced the degradation rate in groove pressed samples. ► Better cell viability and adhesion due to surface micro-features induced by groove pressing were observed

  17. Role of biomineralization on the degradation of fine grained AZ31 magnesium alloy processed by groove pressing

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, B. Ratna [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India); Kumar, Arun Anil [Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirappalli, 620015 (India); Sampath Kumar, T.S., E-mail: tssk@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India); Chakkingal, Uday [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, 600036 (India)

    2013-04-01

    Groove pressing (GP) has been successfully adopted to achieve fine grain size up to 7 μm in AZ31 magnesium alloy with an initial grain size of 55 μm. The effect of microstructural evolution and surface features on wettability, corrosion resistance, bioactivity and cell adhesion were investigated with an emphasis to study the influence of deposited phases when the samples were immersed in simulated body fluid (SBF 5 ×). The role of microstructure was also evaluated without any surface treatments or coatings on the material. GPed samples exhibit improved hydrophilicity compared to the annealed sample. After immersion in SBF, specimens were characterized using scanning electron microscopy (SEM), energy dispersive X-ray (EDAX) analysis and X-ray diffraction (XRD) methods. More amount of white precipitates composed of hydroxyapatite and magnesium phosphate along with magnesium hydroxide was observed on the surfaces of groove pressed specimens as compared to the annealed specimens with an increase in immersion time in SBF. Corrosion behavior of the samples estimated using potentiodynamic polarization curves indicate good corrosion resistance for GPed samples before and after immersion in SBF. The MTT assay using rat skeletal muscle (L6) cells revealed that both the processed and unprocessed samples are nontoxic and cell adhesion was promising for GPed sample. - Highlights: ► Fine grain structure was achieved in AZ31 magnesium alloy by groove pressing. ► Influence of microstructure and surface roughness on surface energy and biomineralization was studied. ► Early biomineralization due to high wettability reduced the degradation rate in groove pressed samples. ► Better cell viability and adhesion due to surface micro-features induced by groove pressing were observed.

  18. Clustering experiments

    CERN Document Server

    Wang, Zhengwei; Tan, Ken; Di, Zengru; Roehner, Bertrand M

    2011-01-01

    It is well known that bees cluster together in cold weather, in the process of swarming (when the ``old'' queen leaves with part of the colony) or absconding (when the queen leaves with all the colony) and in defense against intruders such as wasps or hornets. In this paper we describe a fairly different clustering process which occurs at any temperature and independently of any special stimulus or circumstance. As a matter of fact, this process is about four times faster at 28 degree Celsius than at 15 degrees. Because of its simplicity and low level of ``noise'' we think that this phenomenon can provide a means for exploring the strength of inter-individual attraction between bees or other living organisms. For instance, and at first sight fairly surprisingly, our observations showed that this attraction does also exist between bees belonging to different colonies. As this study is aimed at providing a comparative perspective, we also describe a similar clustering experiment for red fire ants.

  19. Precursor Parameter Identification for IGBT Prognostics

    Data.gov (United States)

    National Aeronautics and Space Administration — Precursor parameters have been identified to enable development of a prognostic approach for insulated gate bipolar transistors (IGBT). The IGBT were subjected to...

  20. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  1. Profiling Identifies Precursor Suspects: Notch Family Again!

    OpenAIRE

    Breunig, Joshua J.; Rakic, Pasko

    2010-01-01

    Newborn neurons in the adult dentate gyrus pass through several distinct precursor and progenitor classes prior to differentiation. In this issue of Cell Stem Cell, Lugert et al. (2010) characterized their strikingly different proliferative behaviors after neurogenic stimuli or aging.

  2. Factor PD-Clustering

    OpenAIRE

    Gettler Summa, Mireille; Palumbo, Francesco; Tortora, Cristina

    2012-01-01

    Factorial clustering methods have been developed in recent years thanks to the improving of computational power. These methods perform a linear transformation of data and a clustering on transformed data optimizing a common criterion. Factorial PD-clustering is based on Probabilistic Distance clustering (PD-clustering). PD-clustering is an iterative, distribution free, probabilistic, clustering method. Factor PD-clustering make a linear transformation of original variables into a reduced numb...

  3. Functional Analyses and Treatment of Precursor Behavior

    OpenAIRE

    Najdowski, Adel C; Wallace, Michele D; Ellsworth, Carrie L; MacAleese, Alicia N; Cleveland, Jackie M

    2008-01-01

    Functional analysis has been demonstrated to be an effective method to identify environmental variables that maintain problem behavior. However, there are cases when conducting functional analyses of severe problem behavior may be contraindicated. The current study applied functional analysis procedures to a class of behavior that preceded severe problem behavior (precursor behavior) and evaluated treatments based on the outcomes of the functional analyses of precursor behavior. Responding fo...

  4. Sequestration and Transport of Lignin Monomeric Precursors

    OpenAIRE

    Ke-Wei Zhang; Yu-Chen Miao; Chang-Jun Liu

    2011-01-01

    Lignin is the second most abundant terrestrial biopolymer after cellulose. It is essential for the viability of vascular plants. Lignin precursors, the monolignols, are synthesized within the cytosol of the cell. Thereafter, these monomeric precursors are exported into the cell wall, where they are polymerized and integrated into the wall matrix. Accordingly, transport of monolignols across cell membranes is a critical step affecting deposition of lignin in the secondarily thickened cell wall...

  5. Milk proteins as precursors of bioactive peptides

    OpenAIRE

    Marta Dziuba; Bartłomiej Dziuba; Anna Iwaniak

    2009-01-01

    Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and M...

  6. Molecular Mixed-Metal Manganese Oxido Cubanes as Precursors to Heterogeneous Oxygen Evolution Catalysts

    OpenAIRE

    Suseno, Sandy; McCrory, Charles C. L.; Tran, Rosalie; Gul, Sheraz; Yano, Junko; Agapie, Theodor

    2015-01-01

    Well-defined mixed-metal [CoMn_3O_4] and [NiMn_3O_4] cubane complexes were synthesized and used as precursors for heterogeneous oxygen evolution reaction (OER) electrocatalysts. The discrete clusters were dropcasted onto glassy carbon (GC) and indium tin oxide (ITO) electrodes, and the OER activities of the resulting films were evaluated. The catalytic surfaces were analyzed by various techniques to gain insight into the structure-function relationships of the electrocatalysts’ heterometallic...

  7. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    International Nuclear Information System (INIS)

    Highlights: ► We investigated the effect of nanosized Mo6 clusters on the growth of rapeseed plants. ► The aggregation state of the clusters depends on the dispersion medium. ► The concentration-dependant toxicity of the clusters depends on aggregation state. ► We took into account the possible contribution to toxicity of dissolved ionic species. ► The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs2Mo6Br14 as cluster precursor. [Mo6Br14]2− cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  8. Cluster automorphisms and compatibility of cluster variables

    OpenAIRE

    Assem, Ibrahim; Schiffler, Ralf; Shramchenko, Vasilisa

    2013-01-01

    In this paper, we introduce a notion of unistructural cluster algebras, for which the set of cluster variables uniquely determines the clusters. We prove that cluster algebras of Dynkin type and cluster algebras of rank 2 are unistructural, then prove that if $\\mathcal{A}$ is unistructural or of Euclidean type, then $f: \\mathcal{A}\\to \\mathcal{A}$ is a cluster automorphism if and only if $f$ is an automorphism of the ambient field which restricts to a permutation of the cluster variables. In ...

  9. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    Science.gov (United States)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    magnifications, all crystal forms seem be made of sub-spherical to rod-like nano-crystals, ranging in size from 100 to 300 nm. Other than cyanobacteria, calcified organic components like diatoms, plant tissues, and extra-cellular polymeric substances (EPS) are mineralized with the same crystal nano-elements. Conclusions Tufa formation seems strongly influenced by the inclination of the slope, water energy, the biota, including the biofilm, and the organic matter substrate (mainly EPS); super-saturation of water with respect to calcite is a pre-requisite for precipitation. The inclination of the slope determines the water energy and so the degassing of CO2 which leads to precipitation of carbonate. Photosynthesis by macrophytes, microphytes and cyanobacteria could also contribute to CO2 degassing. EPS degradation processes, particularly those involving heterotrophic micro-organisms which can induce an increase in alkalinity, could be a further mechanism of biomineralization in these tufa carbonates.

  10. Globular Cluster Formation in the Virgo Cluster

    CERN Document Server

    Moran, C Corbett; Lake, G

    2014-01-01

    Metal poor globular clusters (MPGCs) are a unique probe of the early universe, in particular the reionization era. Systems of globular clusters in galaxy clusters are particularly interesting as it is in the progenitors of galaxy clusters that the earliest reionizing sources first formed. Although the exact physical origin of globular clusters is still debated, it is generally admitted that globular clusters form in early, rare dark matter peaks (Moore et al. 2006; Boley et al. 2009). We provide a fully numerical analysis of the Virgo cluster globular cluster system by identifying the present day globular cluster system with exactly such early, rare dark matter peaks. A popular hypothesis is that that the observed truncation of blue metal poor globular cluster formation is due to reionization (Spitler et al. 2012; Boley et al. 2009; Brodie & Strader 2006); adopting this view, constraining the formation epoch of MPGCs provides a complementary constraint on the epoch of reionization. By analyzing both the l...

  11. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    Directory of Open Access Journals (Sweden)

    Juliane Germer

    Full Text Available The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM, and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.

  12. The HtrA/DegP family protease MamE is a bifunctional protein with roles in magnetosome protein localization and magnetite biomineralization

    OpenAIRE

    Quinlan, Anna; Murat, Dorothée; Vali, Hojatollah; Komeili, Arash

    2011-01-01

    Magnetotactic bacteria contain nanometer-sized, membrane-bound organelles, called magnetosomes, which are tasked with the biomineralization of small crystals of the iron oxide magnetite allowing the organism to use geomagnetic field lines for navigation. A key player in this process is the HtrA/DegP family protease MamE. In its absence, Magnetospirillum magneticum str AMB-1 is able to form magnetosome membranes but not magnetite crystals, a defect previously linked to the mislocalization of m...

  13. Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12-2 isolated from Lead-Zinc mine tailings.

    Science.gov (United States)

    Chen, Zhi; Pan, Xiaohong; Chen, Hui; Guan, Xiong; Lin, Zhang

    2016-01-15

    The remediation of Pb(II) through biomineralization is rergarded as a promising technique as well as an interesting phenomenon for transforming heavy metals from mobile species into very stable minerals in the environment. Studies are well needed for in-depth understanding the mechanism of Pb(II) immobilized by bacteria. In the present study, we investigated the uptake and biomineralization of Pb(II) using Bacillus cereus 12-2 isolated from lead-zinc mine tailings. The maximum Pb(II) uptake capacity of B. cereus 12-2 was 340 mg/g at pH 3.0. Zeta potential analyses and selective passivation experiments demonstrated that electrostatic attraction was the main force driving the uptake of Pb(II), while the carboxyl, amide and phosphate functional groups of the bacteria provided the binding sites for immobilizing Pb(II). XRD and TEM investigation revealed that the Pb(II) loaded on bacteria could be stepwise transformed into rod-shaped Ca2.5Pb7.5(OH)2(PO4)6 nanocrystal. Combined with protein denaturalization experiments, we proposed that the biomineralization of Pb(II) possibly consisted of two steps: (1) Rapid biosorption of Pb(II) on B. cereus 12-2 through the synergy of electrostatic attraction, ionic exchange and chelating activity of functional groups; (2) enzyme-mediated mineral transformation from amorphous precipitate to rod-shaped crystalline minerals happening gradually inside the bacteria. PMID:26468754

  14. Biomineralization of electrospun poly(L-lactic acid)/gelatin composite fibrous scaffold by using a supersaturated simulated body fluid with continuous CO2 bubbling

    International Nuclear Information System (INIS)

    To promote the biomineralization, supersaturated simulated body fluids (SBFs), e.g. five times SBF (5 x SBF), were usually applied. In these SBFs, however, homogeneous nucleation of Ca-P mineralites and deposition unavoidably took place owing to the HCO3- decomposition and the pH value increment, which made the prediction of bone bioactivity of substrates controversial. In this study, the classically prepared 5 x SBF was continuously bubbled with CO2 to keep the pH value stable at 6.4 and the solution transparent, and a kind of electrospun poly(L-lactic acid)/gelatin composite fibers was used for the biomineralization study. In such a modified 5 x SBF, heterogenenous nucleation occurred dominantly and thermodynamical unstable brushites (dicalcium phosphate dihydrate, DCPD) were detected shortly on both electrospun PLLA fibers and PLLA/gelatin (1:1 in weight) composite fibers. In comparison with electrospun PLLA fibers, the sheet-like DCPD mineralites transformed into flaky carbonated calcium-deficient hydroxyapatite (CDHA) within 24 h on the PLLA/gelatin composite fibers due to the accelerating effect of gelatin component. The formed apatite coating contained much less Mg2+ ions than that deposited in the classical 5 x SBF. The results of this study showed that supersaturated SBFs buffered with gassy CO2 were expected good choices for the accelerated biomineralization, and for the prediction of the bone bonding bioactivity of substrates.

  15. Adaptive Evolutionary Clustering

    OpenAIRE

    Xu, Kevin S.; Kliger, Mark; Hero III, Alfred O.

    2011-01-01

    In many practical applications of clustering, the objects to be clustered evolve over time, and a clustering result is desired at each time step. In such applications, evolutionary clustering typically outperforms traditional static clustering by producing clustering results that reflect long-term trends while being robust to short-term variations. Several evolutionary clustering algorithms have recently been proposed, often by adding a temporal smoothness penalty to the cost function of a st...

  16. Relational visual cluster validity

    OpenAIRE

    Ding, Y.; Harrison, R F

    2007-01-01

    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to corre...

  17. Proceedings of the workshop on precursor analysis

    International Nuclear Information System (INIS)

    The purpose of the meeting was to provide a forum for open discussion on the state-of-the-art of Precursor Analysis to all professional parties involved, i.e. industry, regulators and support organizations. The meeting was intended to discuss insights both from the operating experience point of view and from the PA methodology point of view. Therefore, it was considered interesting to bring together specialists in the use and application of operational feedback (mainly covered via NEA CSNI/WGOE) and specialists in methodological aspects of Precursor Analysis (mainly covered via CSNI/WGRISK). Cross-fertilization of insights and experiences was expected to be beneficial for both sides. The major effort in Precursor Analysis is carried out on a limited set of safety significant events that occurred at commercial nuclear power plants. Thus, an objective of the Workshop was also to explore, to which extent Precursor Analysis is already applied to other types of nuclear installations (fuel fabrication, research reactors, etc.). In session 1, introductory remarks were given by representatives of WGOE and WGRISK, the two OECD/NEA working groups respectively on Operating Experience and Risk. Sessions 2, 5 and 6 focused on national programs of probabilistic precursor analysis. Contributions from US, Germany, Switzerland, Finland, Czech Republic, Belgium and Japan were presented. Sessions 7 and 8 brought further prospects on the national programs, combined with information on more specific applications. These sessions contained contributions from Hungary, US, Spain, and France. Session 3 was mainly dealing with the more classical (non probabilistic) approach of the analysis of operational events, with contributions from Finland, Belgium, and Sweden. A consultant company (Enconet) presented a newly developed method and a computer tool. Session 4 focused on methodological aspects, and the development of guidelines and models for probabilistic precursor analysis. It included a

  18. Nonlinear magnetohydrodynamics of edge localized mode precursors

    International Nuclear Information System (INIS)

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ωpre∼x1/3ξ^ψ,in2/3n, with x position in radial direction, ξ^ψ,in strength of initial perturbation, and n toroidal mode number

  19. Galaxy Clusters and Properties in the CFHTLS/VIPERS Survey

    Science.gov (United States)

    Gallego Gallego, Sofia Carolina; Murphy, David; Hyazinth Puzia, Thomas

    2015-08-01

    We present our analysis of clusters in the CFHTLS Wide fields using a red-sequence based cluster finding code. The deep five-band photometry and panoramic coverage permits detection of galaxy clusters between z=0 and z~1 over 132 square degrees. We present a cluster catalogue and optical richness estimates as mass proxies, derived cluster properties from a novel template-fitting analysis and cluster redshift measurements utilizing data from the VLT/VIPERS spectroscopic survey.We complement our analysis with studies of mock cluster catalogues generated from N-body simulation lightcones featuring semi-analytic prescriptions of galaxy formation. These provide us with an insight into the performance of the cluster-finding technique, uncertainties in the derived properties of the detected cluster populations and an important comparison of the popular “lambda” optical richness estimator to known dark matter halo properties.This study serves as the perfect precursor to LSST-depth cluster science, providing an important input into how models describe the evolution of clusters and their members as a function of redshift and mass, and the role high-density environments play in galaxy evolution over half the Hubble time.

  20. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  1. Characterization of a Monoclonal Antibody Directed against Mytilus spp Larvae Reveals an Antigen Involved in Shell Biomineralization

    Science.gov (United States)

    Calvo-Iglesias, Juan; Pérez-Estévez, Daniel; Lorenzo-Abalde, Silvia; Sánchez-Correa, Beatriz; Quiroga, María Isabel; Fuentes, José M.; González-Fernández, África

    2016-01-01

    The M22.8 monoclonal antibody (mAb) developed against an antigen expressed at the mussel larval and postlarval stages of Mytilus galloprovincialis was studied on adult samples. Antigenic characterization by Western blot showed that the antigen MSP22.8 has a restricted distribution that includes mantle edge tissue, extrapallial fluid, extrapallial fluid hemocytes, and the shell organic matrix of adult samples. Other tissues such as central mantle, gonadal tissue, digestive gland, labial palps, foot, and byssal retractor muscle did not express the antigen. Immunohistochemistry assays identified MSP22.8 in cells located in the outer fold epithelium of the mantle edge up to the pallial line. Flow cytometry analysis showed that hemocytes from the extrapallial fluid also contain the antigen intracellularly. Furthermore, hemocytes from hemolymph have the ability to internalize the antigen when exposed to a cell-free extrapallial fluid solution. Our findings indicate that hemocytes could play an important role in the biomineralization process and, as a consequence, they have been included in a model of shell formation. This is the first report concerning a protein secreted by the mantle edge into the extrapallial space and how it becomes part of the shell matrix framework in M. galloprovincialis mussels. PMID:27008638

  2. Natural Abundance 43Ca NMR as a Tool for Exploring Calcium Biomineralization: Renal Stone Formation and Growth

    Energy Technology Data Exchange (ETDEWEB)

    Bowers, Geoffrey M.; Kirkpatrick, Robert J.

    2011-12-07

    Renal stone diseases are a global health issue with little effective therapeutic recourse aside from surgery and shock-wave lithotripsy, primarily because the fundamental chemical mechanisms behind calcium biomineralization are poorly understood. In this work, we show that natural abundance 43Ca NMR at 21.1 T is an effective means to probe the molecular-level Ca2+ structure in oxalate-based kidney stones. We find that the 43Ca NMR resonance of an authentic oxalate-based kidney stone cannot be explained by a single pure phase of any common Ca2+-bearing stone mineral. Combined with XRD results, our findings suggest an altered calcium oxalate monohydrate-like Ca2+ coordination environment for some fraction of Ca2+ in our sample. The evidence is consistent with existing literature hypothesizing that nonoxalate organic material interacts directly with Ca2+ at stone surfaces and is the primary driver of renal stone aggregation and growth. Our findings show that 43Ca NMR spectroscopy may provide unique and crucial insight into the fundamental chemistry of kidney stone formation, growth, and the role organic molecules play in these processes.

  3. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq

    2015-08-01

    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  4. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering. (paper)

  5. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  6. Cluster Evaluation of Density Based Subspace Clustering

    OpenAIRE

    Sembiring, Rahmat Widia; Zain, Jasni Mohamad

    2010-01-01

    Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object ...

  7. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Gregory J. Olson

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory�s (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  8. Detection of earthquake magnetic precursors candidates

    OpenAIRE

    Korepanov, Valery; Dudkin, Fedir

    2012-01-01

    A new approach is developed to find a source of pre-EQ ULF electromagnetic activity of lithospheric origin. For separation and localization of EQ magnetic precursors a new polarization ellipse technique has been developed to process the measurements data acquired from 3-component magnetometers.

  9. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    OpenAIRE

    Mustafa ULAS; ATA, Fikret; Hasan Hüseyin BALIK

    2013-01-01

    lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  10. Milk proteins as precursors of bioactive peptides

    Directory of Open Access Journals (Sweden)

    Marta Dziuba

    2009-03-01

    Full Text Available Milk proteins, a source of bioactive peptides, are the subject of numerous research studies aiming to, among others, evaluate their properties as precursors of biologically active peptides. Physiologically active peptides released from their precursors may interact with selected receptors and affect the overall condition and health of humans. By relying on the BIOPEP database of proteins and bioactive peptides, developed by the Department of Food Biochemistry at the University of Warmia and Mazury in Olsztyn (www.uwm.edu.pl/biochemia, the profiles of potential activity of milk proteins were determined and the function of those proteins as bioactive peptide precursors was evaluated based on a quantitative criterion, i.e. the occurrence frequency of bioactive fragments (A. The study revealed that milk proteins are mainly a source of peptides with the following types of activity: antihypertensive (Amax = 0.225, immunomodulating (0.024, smooth muscle contracting (0.011, antioxidative (0.029, dipeptidyl peptidase IV inhibitors (0.148, opioid (0.073, opioid antagonistic (0.053, bonding and transporting metals and metal ions (0.024, antibacterial and antiviral (0.024, and antithrombotic (0.029. The enzymes capable of releasing bioactive peptides from precursor proteins were determined for every type of activity. The results of the experiment indicate that milk proteins such as lactoferrin, α-lactalbumin, β-casein and κ-casein hydrolysed by trypsin can be a relatively abundant source of biologically active peptides.

  11. Targeting bactoprenol-coupled cell envelope precursors.

    Science.gov (United States)

    Ulm, Hannah; Schneider, Tanja

    2016-09-01

    Targeting the bactoprenol-coupled cell wall precursor lipid II is a validated antibacterial strategy. In this review, selected prototype lipid II-binding antibiotics of different chemical classes are discussed. Although these compounds attack the same molecular target, they trigger nuanced and diverse cellular effects. Consequently, the mechanisms of antibacterial resistance and the likelihood of resistance development may vary substantially. PMID:27495122

  12. Clustering with Spectral Methods

    OpenAIRE

    Gaertler, Marco

    2002-01-01

    Grouping and sorting are problems with a great tradition in the history of mankind. Clustering and cluster analysis is a small aspect in the wide spectrum. But these topics have applications in most scientific disciplines. Graph clustering is again a little fragment in the clustering area. Nevertheless it has the potential for new pioneering and innovative methods. One such method is the Markov Clustering presented by van Dongen in 'Graph Clustering by Flow Simulation'. We investigated the qu...

  13. Sparse Convex Clustering

    OpenAIRE

    Wang, Binhuan; Zhang, Yilong; Sun, Wei; Fang, Yixin

    2016-01-01

    Convex clustering, a convex relaxation of k-means clustering and hierarchical clustering, has drawn recent attentions since it nicely addresses the instability issue of traditional nonconvex clustering methods. Although its computational and statistical properties have been recently studied, the performance of convex clustering has not yet been investigated in the high-dimensional clustering scenario, where the data contains a large number of features and many of them carry no information abo...

  14. Detection of Chemical Precursors of Explosives

    Science.gov (United States)

    Li, Jing

    2012-01-01

    Certain selected chemicals associated with terrorist activities are too unstable to be prepared in final form. These chemicals are often prepared as precursor components, to be combined at a time immediately preceding the detonation. One example is a liquid explosive, which usually requires an oxidizer, an energy source, and a chemical or physical mechanism to combine the other components. Detection of the oxidizer (e.g. H2O2) or the energy source (e.g., nitromethane) is often possible, but must be performed in a short time interval (e.g., 5 15 seconds) and in an environment with a very small concentration (e.g.,1 100 ppm), because the target chemical(s) is carried in a sealed container. These needs are met by this invention, which provides a system and associated method for detecting one or more chemical precursors (components) of a multi-component explosive compound. Different carbon nanotubes (CNTs) are loaded (by doping, impregnation, coating, or other functionalization process) for detecting of different chemical substances that are the chemical precursors, respectively, if these precursors are present in a gas to which the CNTs are exposed. After exposure to the gas, a measured electrical parameter (e.g. voltage or current that correlate to impedance, conductivity, capacitance, inductance, etc.) changes with time and concentration in a predictable manner if a selected chemical precursor is present, and will approach an asymptotic value promptly after exposure to the precursor. The measured voltage or current are compared with one or more sequences of their reference values for one or more known target precursor molecules, and a most probable concentration value is estimated for each one, two, or more target molecules. An error value is computed, based on differences of voltage or current for the measured and reference values, using the most probable concentration values. Where the error value is less than a threshold, the system concludes that the target

  15. Cluster categories and cluster-tilted algebras

    OpenAIRE

    Torkildsen, Hermund Andre

    2006-01-01

    We have given an introduction to the theory of cluster categories and cluster-tilted algebras, and this was one of our main objectives in this thesis. We have seen that cluster-tilted algebras are relation-extension algebras, and this gave us a way of constructing the quiver of a cluster-tilted algebra from a tilted algebra. A cluster-tilted algebra of finite representation type is determined by its quiver, and this raised questions about the generality of this result. We defined a new class...

  16. Study of the precursor and non-precursor implosion regimes in wire array Z-pinches

    International Nuclear Information System (INIS)

    Star-like and closely spaced nested wire array configurations were investigated in precursor and non-precursor implosions. Closely spaced nested cylindrical arrays have inner and outer arrays with equal wire numbers, and inner and outer wires aligned to each other. The gap between the outer and inner wires is not more than 1 mm. Calculation of magnetic fields shows that the small gap results in a reversed, outward j × B force on the inner wires. Closely spaced arrays of 6–16 wires with outer diameter of 16 mm and with gaps of ΔR = 0.25–1 mm were tested. 6–8-wire arrays with a gap of ΔR = 0.4–1 mm imploded without precursor, but precursor was present in loads with 12–16 wires and ΔR = 0.25–1 mm. Implosion dynamics of closely spaced arrays was similar to that of star-like arrays. Implosion time was found to decrease with decreased wire numbers. Star array configurations were designed with a numerical scheme to implode with or without precursor. The lack of precursor resulted in a marginal improvement in total x-ray yield and power, and up to 20% increase in Al K-shell yield. The Al K-shell radiated energy was found to increase with decreasing the number of arrays in closely spaced and star-like wire arrays.

  17. Iron-oxo clusters biomineralizing on protein surfaces: Structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states

    OpenAIRE

    Zeth, Kornelius; Offermann, Stefanie; Essen, Lars-Oliver; Oesterhelt, Dieter

    2004-01-01

    The crystal structure of the Dps-like (Dps, DNA-protecting protein during starvation) ferritin protein DpsA from the halophile Halobacterium salinarum was determined with low endogenous iron content at 1.6-Å resolution. The mechanism of iron uptake and storage was analyzed in this noncanonical ferritin by three high-resolution structures at successively increasing iron contents. In the high-iron state of the DpsA protein, up to 110 iron atoms were localized in the dodecameric protein complex....

  18. Learning predictive clustering rules

    OpenAIRE

    Ženko, Bernard; Džeroski, Sašo; Struyf, Jan

    2005-01-01

    The two most commonly addressed data mining tasks are predictive modelling and clustering. Here we address the task of predictive clustering, which contains elements of both and generalizes them to some extent. We propose a novel approach to predictive clustering called predictive clustering rules, present an initial implementation and its preliminary experimental evaluation.

  19. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  20. Structures of Mn clusters

    Indian Academy of Sciences (India)

    Tina M Briere; Marcel H F Sluiter; Vijay Kumar; Yoshiyuki Kawazoe

    2003-01-01

    The geometries of several Mn clusters in the size range Mn13–Mn23 are studied via the generalized gradient approximation to density functional theory. For the 13- and 19-atom clusters, the icosahedral structures are found to be most stable, while for the 15-atom cluster, the bcc structure is more favoured. The clusters show ferrimagnetic spin configurations.

  1. Foodservice Occupations Cluster Guide.

    Science.gov (United States)

    Oregon State Dept. of Education, Salem.

    Intended to assist vocational teachers in developing and implementing a cluster program in food service occupations, this guide contains sections on cluster organization and implementation and instructional emphasis areas. The cluster organization and implementation section covers goal-based planning and includes a proposed cluster curriculum, a…

  2. Laser ablation of persistent twist cells in Drosophila: muscle precursor fate is not segmentally restricted

    Science.gov (United States)

    Farrell, E. R.; Keshishian, H.

    1999-01-01

    In Drosophila the precursors of the adult musculature arise during embryogenesis. These precursor cells have been termed Persistent Twist Cells (PTCs), as they continue to express the transcription factor Twist after that gene ceases expression elsewhere in the mesoderm. In the larval abdomen, the PTCs are associated with peripheral nerves in stereotypic ventral, dorsal, and lateral clusters, which give rise, respectively, to the ventral, dorsal, and lateral muscle fiber groups of the adult. We tested the developmental potential of the PTCs by using a microbeam laser to ablate specific clusters in larvae. We found that the ablation of a single segmental PTC cluster does not usually result in the deletion of the corresponding adult fibers of that segment. Instead, normal or near normal numbers of adult fibers can form after the ablation. Examination of pupae following ablation showed that migrating PTCs from adjacent segments are able to invade the affected segment, replenishing the ablated cells. However, the ablation of homologous PTCs in multiple segments does result in the deletion of the corresponding adult muscle fibers. These data indicate that the PTCs in an abdominal segment can contribute to the formation of muscle fibers in adjacent abdominal segments, and thus are not inherently restricted to the formation of muscle fibers within their segment of origin.

  3. Group IIA β-diketonate compounds as CVD-precursors for high-Tc superconductors

    International Nuclear Information System (INIS)

    The advent of the high temperature superconducting metal oxides (SMO) has prompted an increasing number of studies aimed at the development of new routes to their synthesis in particular in the form of thin films. The preferred method in this regard has been that of chemical vapor deposition (CVD); however, significant difficulties have been associated with the efficacy of commercial precursors for the Group IIA metals in particular those of the β-diketonates of barium, whose coordinative unsaturation leads to cluster formation. The development of alternative β-diketonate precursor systems has focused upon the synthesis of stable Lewis-acid base complexes by either inter- or intra- molecular stabilization. The results of these studies are described herein, along with a review of the structural studies of the parent β-diketonate complexes and their decomposition products. (orig.)

  4. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  5. [Presentation of the Lunar Precursor Robotics Program

    Science.gov (United States)

    Lavoie, Anthony R.

    2008-01-01

    The Lunar Precursor Robotics Program (LPRP) is the host program for the Exploration Systems Mission Directorate's (ESMD) lunar robotic precursor missions to the Moon. The program includes two missions, the Lunar Reconnaissance Orbiter (LRO), and the Lunar CRater Observation and Sensing Satellite (LCROSS). Both missions will provide the required lunar information to support development and operations of those systems required for Human lunar return. LPRP is developing a lunar mapping plan, Called the Lunar Mapping and Modeling Project, to create the capability to archive and present all data from LRO, LCROSS, historical lunar missions, and international lunar missions for future mission planning and operations. LPRP is also developing its educational and public outreach activities for the Vision for Space Exploration's first missions. LPRP is working closely with the Science Mission Directorate as their lunar activities come into focus.

  6. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  7. A Novel Synthesis of Biomolecular Precursors

    Science.gov (United States)

    Saladino, Raffaele; et al.

    2004-07-01

    We discuss the role of formamide, a product of hydrolysis of hydrogen cyanide (HCN), as precursor of relevant components of nucleic acids in prebiotic conditions and describe the efficient synthesis of purine, adenine, cytosine, thymine, and 5-hydroxymethyluracil. The remarkable formation of some purine acyclonucleosides is also reported, providing a possible solution to the problem of the elusive origin of nucleosides under prebiotic conditions. The role of catalysts as CaCO3, silica, alumina, TiO2 and others in enhancing and variegating the yields of these compounds is described. In addition, formamide acts as a selective agent in the degradation of bases, nucleosides and DNA oligomers. Taken together, these observations reveal a formamide-based synthesis/degradation cycle whose properties provide an equilibration mechanism for the pool of prebiotic precursors.

  8. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan; Krieger, Ralph; Seidl, Thomas

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  9. Organic matter remains in the Kess Kess mounds of the Hamar Laghadad (Anti Atlas, Morocco): record of microbial biomineralization

    Science.gov (United States)

    Demasi, Fabio; Barbieri, Roberto; Guido, Adriano; Mastandrea, Adelaide; Cavalazzi, Barbara; Russo, Franco

    2010-05-01

    Carbonate Mud Mounds are well documented in the geological record, and span from Proterozoic to recent times, in shallow- and deep-water settings. They are a significant expression of the history of Earth's microbial life. The origin of carbonate mud-mounds has long been debated and the discovery of seep- and vent-related ecosystems from different geotectonic settings, associated to authigenic carbonate mounds, allowed the re-interpretation of some mounds as the product of chemosynthetic microbial mediation. We analyzed the carbonate mounds, informally called 'Kess-Kess', cropping out in the Hamar Laghdad Ridge, eastern Anti-Atlas, SE Morocco. These mounds are the most spectacularly exposed carbonate buildups of the world and, due to differential erosion, they show their original shapes and the relationships with associated strata. The origin of these buildups is still under debate and the most consistent hypotheses are related to submarine hydrothermal vents or hydrocarbon seapage in which bacteria and/or archaea plaied a prominent role in the carbonate biomineralization. To investigate the possible remains of prokaryote metabolic activity we studied the micrite precipitation processes through microfacies and biogeochemical analyses. The more indicative micrite texture is stromatolitic with very fine wrinkled lamination organized in antigravitative pattern. High resolution SEM observations suggest the presence of widespread trace of organic phantoms. The geochemical characterization of extracted organic matter was performed through the functional group analyses by FT-IR spectroscopy. The infrared spectra showed bands between 600 and 3000 cm-1. They contain stretching aliphatic bands (νCHali) at 2950, 2925 and 2850 cm-1, and deformation bands of methyl (δCH3; 1365 cm-1) and both methyl and methylene [δ(CH2 + CH3); 1458 cm-1] groups. The spectra also display the band assigned to carbonyl and/or carboxyl groups (νC=O; 1740 cm-1). The νC-O vibration appears

  10. Ediacarian sponge spicule clusters from southwestern Mongolia and the origins of the Cambrian fauna

    Science.gov (United States)

    Brasier, Martin; Green, Owen; Shields, Graham

    1997-04-01

    Carbon and strontium isotopic data are used to show that the earliest sponge spicule clusters and associated phosphatic sediments (with Anabarites) from southwestern Mongolia are of Ediacarian age. Spicule morphologies include bundles of oxeas arranged in three-dimensional quadrules, linked together at junctions by tetracts, pentacts, hexacts, or polyactines. All are referred to the Phylum Porifera, Class Hexactinellida. These sponge spicules provide the oldest remains that can be assigned without question to an extant phylum, and also the first firm evidence for filter feeding and metazoan silica biomineralization in the fossil record. It is suggested that siliceous and phosphatic members of the “Cambrian fauna” may have had their origins in eutrophic and outer shelf facies of the Late Proterozoic.

  11. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  12. Phonon Theory of Martensitic Transformation Precursors

    OpenAIRE

    Jin, Yongmei M.; Wang, Yu. U.

    2014-01-01

    A phonon theory of precursor phenomena in martensitic phase transformations is developed. Extending Gr\\"uneisen theory of thermal expansion, this theory addresses the effects of deformation-dependent low-energy phonons on the structural, thermal, and elastic behaviors of pre-martensitic cubic crystals that undergo incomplete phonon softening. It reveals spontaneous symmetry breaking, pre-martensitic transformation, phonon domains, and tweed structure. The theory naturally explains the ubiquit...

  13. Radiation response of rodent neural precursor cells

    International Nuclear Information System (INIS)

    Full text: Therapeutic irradiation of the brain can cause cognitive dysfunction that is not treatable or well understood. Several lines of evidence from our laboratory suggest that radiation induced inhibition of neurogenesis in the hippocampus may be involved. To understand the mechanisms underlying these observations, we initiated studies using neural precursor cells isolated from the adult rat hippocampus. Cells were cultured exponentially and analyzed for acute (0-24h) and chronic (3-33 day) changes in apoptosis and oxidative stress following exposure to X-rays. Oxidative stress was measured using a dye sensitive to reactive oxygen species (ROS) and apoptosis was measured using annexin V binding; each endpoint was quantified by fluorescent automated cell sorting (FACS). Following exposure to X-rays, neural precursor cells exhibit a dose-responsive increase in the level of ROS and apoptosis over acute and chronic time frames. ROS and apoptosis were maximal at 12h, increasing 35 and 37% respectively over that of unirradiated controls. ROS and apoptosis peaked again at 24h, increasing 31 and 21% respectively over controls. Chronic levels of ROS and apoptosis were persistently elevated in a dose-dependent manner. ROS showed significant increases (34-180%) over a 3-4 week interval, while increases in apoptosis were less dramatic, rising 45% by week one before dropping to background. Irradiation of rat neural precursor cells was associated with an increase in p53 protein levels, and the activation of G1/S and G2/M checkpoints. These data suggest that the apoptotic and ROS responses may be tied to p53 dependent regulation of cell cycle control and stress activated pathways. We propose that oxidative stress plays a critical role in the radiation response of neural precursor cells, and discuss how this might contribute to the inhibition of neurogenesis and the cognitive impairment observed in the irradiated CNS

  14. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  15. Proinsulin: from hormonal precursor to neuroprotective factor

    OpenAIRE

    Flora de Pablo

    2011-01-01

    In the last decade, non-canonical functions have been described for several molecules with hormone-like activities in different stages of vertebrate development. Since its purification in the 1960s, proinsulin has been one of the best described hormonal precursors, though it has been overwhelmingly studied in the context of insulin, the mature protein secreted by the pancreas. Beginning with our discovery of the presence and precise regulation of proinsulin mRNA in early neurulation and neuro...

  16. Proinsulin: From Hormonal Precursor to Neuroprotective Factor

    OpenAIRE

    De La Rosa, Enrique J; Pablo, Flora de

    2011-01-01

    In the last decade, non-canonical functions have been described for several molecules with hormone-like activities in different stages of vertebrate development. Since its purification in the 1960s, proinsulin has been one of the best described hormonal precursors, though it has been overwhelmingly studied in the context of insulin, the mature protein secreted by the pancreas. Beginning with our discovery of the presence and precise regulation of proinsulin mRNA in early neurulation and neuro...

  17. Molecular imaging in myeloma precursor disease

    OpenAIRE

    Mena, E.; Choyke, P; Tan, E; Landgren, O; Kurdziel, K

    2011-01-01

    Multiple myeloma (MM) is consistently preceded by its pre-malignant states, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). By definition, precursor conditions do not exhibit end-organ disease (anemia, hypercalcemia, renal failure, skeletal lytic lesions, or a combination of these). However, new imaging methods are demonstrating that some patients in the MGUS or SNM category are exhibiting early signs of MM.

  18. Accelerated transformation of brushite to octacalcium phosphate in new biomineralization media between 36.5 deg. C and 80 deg. C

    International Nuclear Information System (INIS)

    This study investigated the hydrothermal transformation of brushite (dicalcium phosphate dihydrate, DCPD, CaHPO4.2H2O) into octacalcium phosphate (OCP, Ca8(HPO4)2(PO4)4.5H2O) in seven different newly developed biomineralization media, all inspired from the commercial DMEM solutions, over the temperature range of 36.5 deg. C to 90 deg. C with aging times varying between 1 h and 6 days. DCPD powders used in this study were synthesized in our laboratory by using a wet-chemical technique. DCPD was found to transform into OCP in the Ca2+, Mg2+, Na+, K+, HCO3-, Cl- and H2PO4- containing aqueous biomineralization media in less than 72 h at 36.5 deg. C, without stirring. The same medium was able to convert DCPD into OCP in about 2 h at 75-80 deg. C, again without a need for stirring. Samples were characterized by using powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). - Research highlights: → New biomineralization solutions developed to convert DCPD into OCP at 36.5 deg. C to 80 deg. C. → DCPD powder was the starting material. → OCP was synthesized under static conditions (no need for stirring). → OCP was synthesized in sealed glass media bottles in solutions free of Hepes or Tris. → OCP can be synthesized at 75-80 deg. C in only 2 hours in the above solutions without stirring.

  19. Tilting theory and cluster algebras

    OpenAIRE

    Reiten, Idun

    2010-01-01

    We give an introduction to the theory of cluster categories and cluster tilted algebras. We include some background on the theory of cluster algebras, and discuss the interplay with cluster categories and cluster tilted algebras.

  20. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Directory of Open Access Journals (Sweden)

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

  1. Toward a mechanistic understanding of patterns in biomineralization and new insights for old dogmas in geological settings (Invited)

    Science.gov (United States)

    Dove, P. M.; Hamm, L.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2013-12-01

    The ability of organisms to mineralize tissues into skeletons and other functional structures is a remarkable achievement of biology. Yet, the physical basis for how macromolecules regulate the placement and onset of mineral formation is not well established. Efforts to understand nucleation onto organic substrates have produced two, seemingly contradictory, lines of thought: The biomineralization community widely assumes the organic matrix promotes nucleation through stereochemical matching to guide the organization of solute ions, while materials synthesis groups use simple binding assays to correlate high binding strength with good promoters of nucleation. This study reconciles the two views and provides a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate binding free energies. Using surface assembled monolayers (SAM) as simple model systems, we first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, hydroxyl) and conformations (C11, C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate (ACC). Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings reconcile the long-standing concept of templated nucleation through

  2. Biomineralization of dolomite and magnesite discovered in tropical coralline algae: a biological solution to the geological dolomite problem

    Directory of Open Access Journals (Sweden)

    M. C. Nash

    2011-06-01

    Full Text Available Dolomite is a magnesium-rich carbonate mineral abundant in fossil carbonate reef platforms but surprisingly rare in modern sedimentary environments, a conundrum known as the ''Dolomite Problem". Marine sedimentary dolomite has been interpreted to form by an unconfirmed, post-depositional diagenetic process, despite minimal experimental success at replicating this. Here we show that dolomite, accompanied by magnesite, forms within living crustose coralline alga, Hydrolithon onkodes, a prolific global tropical reef species. Chemical micro-analysis of the coralline skeleton reveals that not only are the cell walls calcitised, but that cell spaces are typically filled with magnesite, rimmed by dolomite, or both. Mineralogy was confirmed by X-ray diffraction. Thus there are at least three mineral phases present (magnesium calcite, dolomite and magnesite rather than one or two (magnesium calcite and brucite as previously thought. Our results are consistent with dolomite occurrences in coralline algae rich environments in fossil reefs. Instead of a theory of post-depositional dolomitisation, we present evidence revealing biomineralization that can account for the massive formations seen in the geologic record. Additionally, our findings imply that previously unrecognized dolomite and magnesite have formed throughout the Holocene. This discovery together with the scale of coralline algae dominance in past shallow carbonate environments raises the possibility that environmental factors driving this biological dolomitisation process have influenced the global marine magnesium/calcium cycle. Perhaps, most importantly, we reveal that what has been considered a geological process can be a biological process, having many implications for both disciplines.

  3. Probe measurements on a shock precursor

    International Nuclear Information System (INIS)

    A shock front of speed V/sub s/ from 0.6 to 5 x 106 cm/sec is launched by a capacitor discharge in one end of a 10 cm i.d. Pyrex pipe 150 cm long. Initial gas pressures range from 0.05 to 1.35 Torr of argon and observations with internal probes are carried out at positions down the tube, z of 73 to 117 cm. A steady magnetic field is applied and the shock, detected by pressure traces, compresses the field by 1.7: 1. Ahead of this shock a precursor is found which produces a magnetic field change which is abrupt (risetime=0.7 μsec) and substantial (approximately 50% of the imposed field). The size of this diamagnetic field change increases with V/sub s/ in agreement with a simple diamagnetic model which includes substantial radial flow. The location of precursor field change moves upstream toward the shock with reduced V/sub s/ and the strength of the field change is reduced at radii nearer the tube walls. Measurements of excitation temperature yield values of kT/sub e/=2.0 eV for the shock and 2.5 eV for the precursor region

  4. Ionospheric precursors for crustal earthquakes in Italy

    Science.gov (United States)

    Perrone, L.; Korsunova, L. P.; Mikhailov, A. V.

    2010-04-01

    Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979-2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs) and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8-5.9) tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  5. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  6. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  7. Parallel Local Graph Clustering

    OpenAIRE

    Shun, Julian; Roosta-Khorasani, Farbod; Fountoulakis, Kimon; Mahoney, Michael W.

    2016-01-01

    Graph clustering has many important applications in computing, but due to growing sizes of graph, even traditionally fast clustering methods such as spectral partitioning can be computationally expensive for real-world graphs of interest. Motivated partly by this, so-called local algorithms for graph clustering have received significant interest due to the fact that they can find good clusters in a graph with work proportional to the size of the cluster rather than that of the entire graph. T...

  8. Clustering and classification

    CERN Document Server

    Arabie, Phipps

    1996-01-01

    At a moderately advanced level, this book seeks to cover the areas of clustering and related methods of data analysis where major advances are being made. Topics include: hierarchical clustering, variable selection and weighting, additive trees and other network models, relevance of neural network models to clustering, the role of computational complexity in cluster analysis, latent class approaches to cluster analysis, theory and method with applications of a hierarchical classes model in psychology and psychopathology, combinatorial data analysis, clusterwise aggregation of relations, review

  9. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  10. Graded cluster algebras

    OpenAIRE

    Grabowski, Jan

    2015-01-01

    In the cluster algebra literature, the notion of a graded cluster algebra has been implicit since the origin of the subject. In this work, we wish to bring this aspect of cluster algebra theory to the foreground and promote its study. We transfer a definition of Gekhtman, Shapiro and Vainshtein to the algebraic setting, yielding the notion of a multi-graded cluster algebra. We then study gradings for finite type cluster algebras without coefficients, giving a full classification. Translating ...

  11. Reverse Detection of Short-Term Earthquake Precursors

    OpenAIRE

    V. Keilis-Borok; Shebalin, P.; Gabrielov, A.; Turcotte, D.

    2003-01-01

    We introduce a new approach to short-term earthquake prediction based on the concept of selforganization of seismically active fault networks. That approach is named "Reverse Detection of Precursors" (RDP), since it considers precursors in reverse order of their appearance. This makes it possible to detect precursors undetectable by direct analysis. Possible mechanisms underlying RDP are outlined. RDP is described with a concrete example: we consider as short-term precursors the newly introdu...

  12. Cluster Evaluation of Density Based Subspace Clustering

    CERN Document Server

    Sembiring, Rahmat Widia

    2010-01-01

    Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object typically determined using a distance function, for example the Euclidean distance. In this paper SUBCLU, FIRES and INSCY methods will be applied to clustering 6x1595 dimension synthetic datasets. IO Entropy, F1 Measure, coverage, accurate and time consumption used as evaluation performance parameters. Evaluation results showed SUBCLU method requires considerable time to process subspace clustering; however, its value coverage is better. Meanwhile INSCY method is better for accuracy comparing with two other methods, altho...

  13. Media Clusters and Media Cluster Policies

    OpenAIRE

    Karlsson, Charlie; Picard, Robert

    2011-01-01

    Large media clusters have emerged in a limited number of large cities, characterizing the geographical concentration of the global media industry. This paper explores the reasons behind the localization patterns of media industries, the effect of the rapid advancement of Information and Communication Technologies (ICT) on media clusters and the role of media cluster policies. One might draw the conclusion that with the developments of the ICT sector and the fact that there are no raw material...

  14. Cluster selection in divisive clustering algorithms

    OpenAIRE

    Savaresi, Sergio,; Boley, Daniel L.; Bittanti, Sergio; Gazzaniga, Giovanna

    2002-01-01

    This paper deals with the problem of clustering a data-set. In particular, the bisecting divisive approach is here considered. This approach can be naturally divided into two sub-problems: the problem of choosing which cluster must be divided, and the problem of splitting the selected cluster. The focus here is on the first problem. The contribution of this work is to propose a new technique for the selection of the cluster to split. This technique is based upon the shape of...

  15. Transcriptional properties and splicing of the flamenco piRNA cluster.

    Science.gov (United States)

    Goriaux, Coline; Desset, Sophie; Renaud, Yoan; Vaury, Chantal; Brasset, Emilie

    2014-04-01

    In Drosophila, the piRNA cluster, flamenco, produces most of the piRNAs (PIWI-interacting RNAs) that silence transposable elements in the somatic follicle cells during oogenesis. These piRNAs are thought to be processed from a long single-stranded precursor transcript. Here, we demonstrate that flamenco transcription is initiated from an RNA polymerase II promoter containing an initiator motif (Inr) and downstream promoter element (DPE) and requires the transcription factor, Cubitus interruptus. We show that the flamenco precursor transcript undergoes differential alternative splicing to generate diverse RNA precursors that are processed to piRNAs. Our data reveal dynamic processing steps giving rise to piRNA cluster precursors. PMID:24562610

  16. Room temperature strain rate sensitivity in precursor derived HfO2/Si-C-N(O ceramic nanocomposites

    Directory of Open Access Journals (Sweden)

    Ravindran Sujith

    2014-01-01

    Full Text Available Investigation on the room temperature strain rate sensitivity using depth sensing nanoindentation is carried out on precursor derived HfO2/Si-C-N(O ceramic nanocomposite sintered using pulsed electric current sintering. Using constant load method the strain rate sensitivity values are estimated. Lower strain rate sensitivity of ∼ 3.7 × 10−3 is observed and the limited strain rate sensitivity of these ceramic nanocomposites is explained in terms of cluster model. It is concluded that presence of amorphous Si-C-N(O clusters are responsible for the limited flowability in these ceramics.

  17. Do protein crystals nucleate within dense liquid clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Dominique, E-mail: dommaes@vub.ac.be [Vrije Universiteit Brussel, 1050 Brussels (Belgium); Vorontsova, Maria A. [University of Houston, Houston, TX 77204 (United States); Potenza, Marco A. C.; Sanvito, Tiziano [Universita di Milano, 20133 Milano (Italy); Sleutel, Mike [Vrije Universiteit Brussel, 1050 Brussels (Belgium); Giglio, Marzio [Universita di Milano, 20133 Milano (Italy); Vekilov, Peter G. [Vrije Universiteit Brussel, 1050 Brussels (Belgium); University of Houston, Houston, TX 77204 (United States); University of Houston, Houston, TX 77204 (United States)

    2015-06-27

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10{sup −3} of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  18. The HP1 homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing

    OpenAIRE

    Zhang, Zhao; Wang, Jie; Schultz, Nadine; Zhang, Fan; Parhad, Swapnil S.; Tu, Shikui; Vreven, Thom; Zamore, Phillip D; Weng, Zhiping; Theurkauf, William E.

    2014-01-01

    piRNAs guide an adaptive genome defense system that silences transposons during germline development. The Drosophila HP1 homolog Rhino is required for germline piRNA production. We show that Rhino binds specifically to the heterochromatic clusters that produce piRNA precursors, and that binding directly correlates with piRNA production. Rhino co-localizes to germline nuclear foci with Rai1/DXO related protein Cuff and the DEAD box protein UAP56, which are also required for germline piRNA prod...

  19. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    Directory of Open Access Journals (Sweden)

    Mitchell Douglas A

    2010-05-01

    Full Text Available Abstract Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM. As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P, but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for

  20. Young massive star clusters

    CERN Document Server

    Zwart, Simon Portegies; Gieles, Mark

    2010-01-01

    Young massive clusters are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few young massive clusters that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. Young massive clusters are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in young massive clusters, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review we focus on star clusters younger than $\\sim100$\\,Myr, m...

  1. Cluster automorphism groups of cluster algebras with coefficients

    OpenAIRE

    Chang, Wen; Zhu, Bin

    2015-01-01

    We study the cluster automorphism group of a skew-symmetric cluster algebra with geometric coefficients. For this, we introduce the notion of gluing free cluster algebra, and show that under a weak condition the cluster automorphism group of a gluing free cluster algebra is a subgroup of the cluster automorphism group of its principal part cluster algebra (i.e. the corresponding cluster algebra without coefficients). We show that several classes of cluster algebras with coefficients are gluin...

  2. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The...... longitudinal study on the high-tech cluster reveals that technological lock-in and exit of key firms have contributed to decline. Entrepreneurship has a positive effect on the cluster’s adaptive capabilities, while multinational companies have contradicting effects by bringing in new resources to the cluster...

  3. Biomimetic synthesis for precursor of muscone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Muscone is a precious fragrant compound scarce in nature. Many attempts have been made to synthesize this unique natural product. In this work, the one- carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. Benzimidazolium salt was used as the tetrahydrofolate coenzyme model at formic acid oxidation level and di-Grignard reagent as the nucleophile to which one-carbon unit was transferred; the biomimetic synthesis of 2,15- hexade-canedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of benzimidazolium salt with Grignard reagent. And an impor-tant useful method for the synthesis of muscone is provided.

  4. Ballooning instability precursors to high β disruptions

    International Nuclear Information System (INIS)

    Strongly ballooning modes have been found as precursors to high β disruptions on TFTR. The modes are typically localized to a region spanning about 60 degree in the toroidal direction. The toroidal localization is associated with lower frequency, global Magneto-Hydro-Dynamic (MHD) activity, typically an ideal n = 1 kink mode. They have moderate to high frequency (f = 10--20 frot), implying toroidal mode numbers in the range n = 10--20. The growth rates for the modes are large, of order 104/sec

  5. Development of precursors to produce metallic foams

    OpenAIRE

    Lopes, Bruno Pinto

    2011-01-01

    As espumas metálicas produzidas por metalurgia de pós têm vindo a ser cada vez mais utilizadas nas mais diversas aplicações. Actualmente estes materiais estão a ser utilizados em estruturas ultraleves, de absorção de energia e de amortecimento sonoro em veículos automóveis, comboios, eléctricos e aeronaves. O principal objectivo desta dissertação prendeu-se com o desenvolvimento de material precursor de qualidade para o fabrico de espumas de ligas de Alumínio. Para o efeito foram testados ...

  6. Analysis of Various Clustering Algorithms

    OpenAIRE

    Asst Prof. Sunila Godara,; Ms. Amita Verma,

    2013-01-01

    Data clustering is a process of putting similar data into groups. A clustering algorithm partitions a data set into several groups such that the similarity within a group is larger than among groups. This paper reviews four types of clustering techniques- k-Means Clustering, Farther first clustering, Density Based Clustering, Filtered clusterer. These clustering techniques are implemented and analyzed using a clustering tool WEKA. Performance of the 4 techniques are presented and compared.

  7. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster......High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... groups objects that are similar to one another, whereas dissimilar objects are assigned to different clusters, possibly separating out noise. In this manner, clusters describe the data structure in an unsupervised manner, i.e., without the need for class labels. A number of clustering paradigms exist...

  8. Star clusters and associations

    International Nuclear Information System (INIS)

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  9. The Impact of Seawater Saturation State on Early Skeletal Development in Larval Corals: Insights into Scleractinian Biomineralization

    Science.gov (United States)

    Cohen, A. L.; McCorkle, D. C.; de Putron, S.

    2007-12-01

    Understanding the response of coral calcification to changes in seawater saturation state (ocean acidification) could provide important insights into the fundamental processes of scleractinian biomineralization. In particular, larval calcification, which involves initiation of skeletogenesis by a previously non-calcifying planktonic planula, offers a unique opportunity to examine the role and limitations of biological control over an essentially physicochemical process. Larvae of the brooding Atlantic coral Favia fragum were settled in unmodified seawater onto clay tiles within 12h of spawning, and placed into non-through flow 30 L aquaria prior to initiation of calcification. Seawater chemistry was pre-adjusted via HCl addition and continuous bubbling with laboratory air, yielding four aragonite saturation states: Omega(aragonite) = 3.71 (unmodified), 2.4, 1.04, and 0.22. The aquaria were held at 25 °C on a 12h/12h light/dark cycle, and sets of tiles harvested at 1, 5 and 8 days post-spawning. Accretion of aragonite (confirmed by Raman spectroscopy) in all treatments indicates that the settled larvae were able to elevate the saturation state of aquarium seawater sequestered within their calcifying space. However, external aqueous carbonate chemistry had a striking effect on larval mortality, on the nature and timing of basal plate formation, on skeletal growth rates (based on the length and cross-sectional area of septa), and on the structure and organization of aragonite crystals within the septa (imaged using SEM). Larval survival rates at the two lower saturation states was only 40% of that in the control and Omega = 2.35 treatments, and skeletal growth decreased by 30 % (relative to the control) in seawater with saturation state comparable to that predicted for the mid-latitude surface ocean by 2100 AD. SEM imaging of the larval skeletons revealed significant differences in the morphology of aragonite crystals accreted under different conditions. In stark

  10. Can stable isotope fractionation in diatom and coccolith biominerals elucidate the significance of carbon concentrating mechanisms (CCMs) in the past?

    Science.gov (United States)

    Stoll, H.; Bolton, C.; Isensee, K.; Mendez-Vicente, A.; Rubio-Ramos, M.; Mejia-Ramirez, L. M.

    2012-04-01

    Carbon isotopic fractionation in fossil algal biomarkers is typically interpreted to reflect atmospheric CO2 changes assuming simple diffusive uptake of CO2 by cells, however modern algae employ a diverse array of additional strategies to concentrate DIC inside the cell (CCMs). We previously hypothesized that the size-correlated range of vital effects in carbonate liths produced by different coccolithophore species was due to variable significance of CCMs in their C acquisition, and that an absence of interspecific vital effects may reflect a reduced importance of CCMs (or more similar CCMs employed). Here, we present stable isotope data from size-separated deep-sea sediments dominated by small, intermediate and large coccoliths from time slices throughout the Cenozoic. We show that the range of coccolith vital effects is distinct during several major Cenozoic proxy-inferred climate-CO2 transitions, and where vital effects are significant their magnitude scales with cell size in the same sense as modern culture genera (increasing C and O isotope enrichment with decreasing coccolith size). Our new culture experiments with coccolithophorids reveal strong plasticity in the magnitude of stable carbon isotope vital effects in coccoliths of Calcidiscus leptoporus and Emiliania huxleyi with variable CO2. At high CO2 coccoliths of both species are more isotopically enriched, but the magnitude is greater in C. leptoporus leading to reduced interspecific offsets at high CO2. In the case of E. huxleyi, higher CO2 conditions resulted in significant reduction in the magnitude of DIC accumulation in the intracellular carbon pool, and more positive carbon isotopic values inside the particulate organic matter. A model of carbon acquisition incorporating both photosynthetic and carbonate production is used to explore mechanisms for these relationships. We also investigate fractionation in diatom organic matter and diatom biomineral-bound organic matter. While the carbon isotopic

  11. Melting of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Haberland, H. [Freiburg Univ., Facultat fur Physik (Germany)

    2001-07-01

    An experiment is described which allows to measure the caloric curve of size selected sodium cluster ions. This allows to determine rather easily the melting temperatures, and latent heats in the size range between 55 and 340 atoms per cluster. A more detailed analysis is necessary to show that the cluster Na{sub 147}{sup +} has a negative microcanonical heat capacity, and how to determine the entropy of the cluster from the data. (authors)

  12. Precursor solitons in a flowing complex plasma

    Science.gov (United States)

    Bandyopadhyay, Pintu; Jaiswal, Surabhi; Sen, Abhijit

    2015-11-01

    We report the first experimental observation of precursor solitons in a flowing dusty plasma. The nonlinear solitary dust acoustic waves (DAWs) are excited by a supersonic mass flow of the dust particles passing over an electrostatic potential hill. In a frame where the fluid is stationary and the hill is moving the solitons propagate in the upstream direction while wake structures consisting of linear DAWs are seen to propagate in the downstream direction. The experiments have been carried out in a U-shaped Dusty Plasma Experimental (DPEx) device where kaolin particles are immersed in a DC discharge argon plasma to form the dusty plasma and a floating wire mounted on the cathode creates a potential hill. The dust flow is induced by sudden changes in the hill height and the solitary structures are seen only for supersonic flows and up to an upper limit of the flow. A theoretical model description of the phenomenon will be provided and some practical implications of such precursor excitations for a charged object moving in a plasma will be discussed.

  13. Solar-cycle precursors and predictions

    CERN Document Server

    Jiang, Jie

    2013-01-01

    The sunspot number data during the past 400 years indicates that both the profile and the amplitude of the solar cycle have large variations. Some precursors of the solar cycle were identified aiming to predict the solar cycle. The polar field and the geomagnetic index are two precursors which are received the most attention. The geomagnetic variations during the solar minima are potentially caused by the solar polar field by the connection of the solar open flux. The robust prediction skill of the polar field indicates that the memory of the dynamo process is less than 11 yrs within the framework of the Babcock-Leighton flux transport dynamo. One possible reason to get the short magnetic memory is the high magnetic diffusivity in the convective zone. Our recent studies show that the radial downward pumping is another possible reason. Based upon the mechanism, we well simulate the cycle irregularities during RGO time period. This opens the possibility to set up a standard dynamo based model to predict the sol...

  14. Cluster beam sources. Part 1. Methods of cluster beams generation

    Directory of Open Access Journals (Sweden)

    A.Ju. Karpenko

    2012-10-01

    Full Text Available The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  15. Cluster beam sources. Part 1. Methods of cluster beams generation

    OpenAIRE

    A.Ju. Karpenko; V.A. Baturin

    2012-01-01

    The short review on cluster beams generation is proposed. The basic types of cluster sources are considered and the processes leading to cluster formation are analyzed. The parameters, that affects the work of cluster sources are presented.

  16. Multireference Coupled Cluster Ansatz

    OpenAIRE

    Jeziorski, Bogumil

    2010-01-01

    Abstract The origin of the multireference coupled cluster Ansatz for the wave function and the wave operator, discovered in Quantum Theory Project in 1981, is presented from the historical perspective. Various methods of obtaining the cluster amplitudes - both state universal and state selective are critically reviewed and further prospects of using the multireference coupled cluster Ansatz in electronic structure theory are briefly discussed.

  17. Quantum Annealing for Clustering

    OpenAIRE

    Kurihara, Kenichi; Tanaka, Shu; Miyashita, Seiji

    2014-01-01

    This paper studies quantum annealing (QA) for clustering, which can be seen as an extension of simulated annealing (SA). We derive a QA algorithm for clustering and propose an annealing schedule, which is crucial in practice. Experiments show the proposed QA algorithm finds better clustering assignments than SA. Furthermore, QA is as easy as SA to implement.

  18. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities i...

  19. Relational aspects of clusters

    DEFF Research Database (Denmark)

    Gjerding, Allan Næs

    The present paper is the first preliminary account of a project being planned for 2013, focussing on the development of the biomedico cluster in North Denmark. The project focusses on the relational capabilities of the cluster in terms of a number of organizational roles which are argued to be...... necessary for the development and growth of the upcoming cluster in question....

  20. Minimalist's linux cluster

    International Nuclear Information System (INIS)

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  1. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  2. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  3. Clustering high dimensional data using subspace and projected clustering algorithms

    OpenAIRE

    Rahmat Widia Sembiring; Jasni Mohamad Zain; Abdullah Embong

    2010-01-01

    Problem statement: Clustering has a number of techniques that have been developed in statistics, pattern recognition, data mining, and other fields. Subspace clustering enumerates clusters of objects in all subspaces of a dataset. It tends to produce many over lapping clusters. Approach: Subspace clustering and projected clustering are research areas for clustering in high dimensional spaces. In this research we experiment three clustering oriented algorithms, PROCLUS, P3C and STATPC. Results...

  4. Future Observations of Cosmic Magnetic Fields with LOFAR, SKA and Its Precursors

    Science.gov (United States)

    Beck, Rainer

    Polarization observations with the forthcoming large radio telescopes will open a new era in the observation of magnetic fields and should help to understand their origin. Low-frequency radio synchrotron emission from the Milky Way, galaxies and galaxy clusters, observed with the new Low Frequency Array (LOFAR) and the planned Square Kilometre Array (SKA), traces low-energy cosmic ray electrons and allows us to map the structure of weak magnetic fields in the outer regions and halos of galaxies, in halos and relics of clusters and in the Milky Way. Polarization at higher frequencies (1-10 GHz), to be observed with the SKA and its precursors Australia SKA Pathfinder (ASKAP) and the South African MeerKAT telescopes, will trace magnetic fields in the disks and central regions of galaxies and in cluster relics in unprecedented detail. All-sky surveys of Faraday rotation measures towards a dense grid of polarized background sources with ASKAP (project POSSUM) and the SKA are dedicated to measure magnetic fields in intervening galaxies, clusters and intergalactic filaments, and will be used to model the overall structure and strength of magnetic fields in the Milky Way. Cosmic magnetism is "key science" for LOFAR, ASKAP and the SKA.

  5. Impurity profiling to match a nerve agent to its precursor source for chemical forensics applications.

    Science.gov (United States)

    Fraga, Carlos G; Acosta, Gabriel A Pérez; Crenshaw, Michael D; Wallace, Krys; Mong, Gary M; Colburn, Heather A

    2011-12-15

    Chemical forensics is a developing field that aims to attribute a chemical (or mixture) of interest to its source by the analysis of the chemical itself or associated material constituents. Herein, for the first time, trace impurities detected by gas chromatography/mass spectrometry and originating from a chemical precursor were used to match a synthesized nerve agent to its precursor source. Specifically, six batches of sarin (GB, isopropyl methylphosphonofluoridate) and its intermediate methylphosphonic difluoride (DF) were synthesized from two commercial stocks of 97% pure methylphosphonic dichloride (DC); the GB and DF were then matched by impurity profiling to their DC stocks from a collection of five possible stocks. Source matching was objectively demonstrated through the grouping by hierarchal cluster analysis of the GB and DF synthetic batches with their respective DC precursor stocks based solely upon the impurities previously detected in five DC stocks. This was possible because each tested DC stock had a unique impurity profile that had 57% to 88% of its impurities persisting through product synthesis, decontamination, and sample preparation. This work forms a basis for the use of impurity profiling to help find and prosecute perpetrators of chemical attacks. PMID:22040126

  6. Polynuclear technetium halide clusters

    International Nuclear Information System (INIS)

    Development of chemistry of polynuclear technetium halide clusters in works devoted to synthesis, structure and investigation of their chemical and physical properties is considered. The role of academician V.I. Spitsyn as an initiator of investigation of polynuclear technetium halide clusters in the Institute of Physical Chemistry of Academy of Science of USSR is noted. Reactions and stability of cluster halides, their molecular and electronic structures are analyzed. Prospects of development of polynuclear technetium halide clusters chemistry as a direction being on the junction of cluster chemistry and theory of metal-metal multiple bonds are appreciated

  7. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  8. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria.

    Science.gov (United States)

    Lin, Wei; Pan, Yongxin

    2015-04-01

    The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature. PMID:25382584

  9. Survey on Text Document Clustering

    OpenAIRE

    M.Thangamani; Dr.P.Thangaraj

    2010-01-01

    Document clustering is also referred as text clustering, and its concept is merely equal to data clustering. It is hardly difficult to find the selective information from an ‘N’number of series information, so that document clustering came into picture. Basically cluster means a group of similar data, document clustering means segregating the data into different groups of similar data. Clustering can be of mathematical, statistical or numerical domain. Clustering is a fundamental data analysi...

  10. Unconventional methods for clustering

    Science.gov (United States)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  11. Clusters in nuclei

    CERN Document Server

    Beck, Christian

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  12. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  13. ON THE PRECURSORS OF FOSSIL GROUPS

    Directory of Open Access Journals (Sweden)

    Hrant Tovmassian

    2010-01-01

    Full Text Available Comparamos las magnitudes absolutas en la banda K de las galaxias más brillantes en cúmulos de Bautz-Morgan tipo I con las de las galaxias brillantes de grupos fósiles. Demostramos que las galaxias más brillantes en grupos fósiles son, en promedio, más débiles que sus contrapartes en los cúmulos. Además, mostramos que la luminosidad de la galaxia más brillante depende de la riqueza del cúmulo. Concluimos que los precursores de grupos fóiles fueron en promedio cúmulos po- bres.

  14. ON THE PRECURSORS OF FOSSIL GROUPS

    OpenAIRE

    Hrant Tovmassian

    2010-01-01

    Comparamos las magnitudes absolutas en la banda K de las galaxias más brillantes en cúmulos de Bautz-Morgan tipo I con las de las galaxias brillantes de grupos fósiles. Demostramos que las galaxias más brillantes en grupos fósiles son, en promedio, más débiles que sus contrapartes en los cúmulos. Además, mostramos que la luminosidad de la galaxia más brillante depende de la riqueza del cúmulo. Concluimos que los precursores de grupos fóiles fueron en promedio cúmulos po- bres.

  15. Filler/ Polycarbosilane Systems as CMC Matrix Precursors

    Science.gov (United States)

    Hurwitz, Frances I.

    1998-01-01

    Pyrolytic conversion of polymeric precursors to ceramics is accompanied by loss of volatiles and large volume changes. Infiltration of a low viscosity polymer into a fiber preform will fill small spaces within fiber tows by capillary forces, but create large matrix cracks within large, intertow areas. One approach to minimizing shrinkage and reducing the number of required infiltration cycles is to use particulate fillers. In this study, Starfire allylhydridopolycarbosilane (AHPCS) was blended with a silicon carbide powder, with and without dispersant, using shear mixing. The polymer and polymer/particle interactions were characterized using nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and rheometry. Polymer/particulate slurries and suspensions were used to infiltrate a figidized preform of an eight ply five harness satin CG Nicalon fiber having a dual layer BN/SiC interface coating, and the resulting composites characterized by optical and scanning electron microscopy.

  16. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  17. Agricultural Clusters in the Netherlands

    NARCIS (Netherlands)

    Schouten, M.A.; Heijman, W.J.M.

    2012-01-01

    Michael Porter was the first to use the term cluster in an economic context. He introduced the term in The Competitive Advantage of Nations (1990). The term cluster is also known as business cluster, industry cluster, competitive cluster or Porterian cluster. This article aims at determining and mea

  18. STIMULATED PLATELETS RELEASE AMYLOID β–PROTEIN PRECURSOR

    OpenAIRE

    Cole, Gregory M.; Galasko, Douglas; Shapiro, I. Paul; Saitoh, Tsunao

    1990-01-01

    Human platelets can be stimulated by thrombin or ionomycin to secrete soluble truncated amyloid β–protein precursor and particulate membrane fragments which contain C-terminal and N-terminal immunoreactive amyloid β–protein precursor. This suggests a possible circulating source of β–protein in serum which may play a role in the formation of amyloid deposits. The release of soluble amyloid β-protein precursor could be involved in normal platelet physiology.

  19. Identification and structural analysis of a novel snoRNA gene cluster from Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    周惠; 孟清; 屈良鹄

    2000-01-01

    A 22 snoRNA gene cluster, consisting of four antisense snoRNA genes, was identified from Arabidopsis thaliana. The sequence and structural analysis showed that the 22 snoRNA gene cluster might be transcribed as a polycistronic precursor from an upstream promoter, and the in-tergenic spacers of the gene cluster encode the ’hairpin’ structures similar to the processing recognition signals of yeast Saccharomyces cerevisiae polycistronic snoRNA precursor. The results also revealed that plant snoRNA gene with multiple copies is a characteristic in common, and provides a good system for further revealing the transcription and expression mechanism of plant snoRNA gene cluster.

  20. DSC Study on the Polyacrylonitrile Precursors for Carbon Fibers

    Institute of Scientific and Technical Information of China (English)

    Wangxi ZHANG; Musen LI

    2005-01-01

    Different polyacrylonitrile (PAN) precursor fibers that displayed various thermal properties were studied by using differential scanning calorimetry (DSC). Results showed that some commercial PAN precursor fibers displayed double separated peaks and these fibers were of high quality because of their process stability during their conversion to carbon fibers of high performance. Some fabrication processes, such as spinning, drawing, could not apparently change the DSC features of a PAN precursor fiber. It was concluded that the thermal properties of a PAN precursor fiber was mainly determined from its comonomer content type and compositions.

  1. Biomineralization: Nanocrystals by design

    Science.gov (United States)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  2. Calcium oxalate biomineralization in plants%植物体内草酸钙的生物矿化

    Institute of Scientific and Technical Information of China (English)

    李秀丽; 张文君; 鲁剑巍; 王荔军

    2012-01-01

    草酸钙晶体在特化的植物晶异细胞内的形成是一种基本的、重要的生理代谢过程.不同植物草酸钙晶体在形态/结构上存在多样性和种间专一性,它们具有特定的尺寸和形貌,并且成核后晶体的生长和特化细胞的发育间存在显著的协同作用,这表明草酸钙的生物合成不是一种简单的化学结晶过程,而是受遗传和生物大分子的精确调控.被塑造的矿化相在特定的膜包覆空间内经历了各自不同的生物化学途径,最终形成热力学稳定相.草酸钙晶体赋予植物许多不同的功能,主要包括对高容量钙的调节和植物自我保护作用,从而间接地反映出植物在不同生境中进化的印迹.本文介绍了草酸钙晶体在植物体内合成的草酸代谢途径、钙的吸收和累积,主要讨论晶体生长过程的植物调节机制以及体外模拟生物分子对草酸钙结晶动力学过程的调控等,以期揭示植物体内草酸钙的生物矿化机制,并为仿生材料合成和人类病理结石的抑制等提供重要线索.%Calium oxalate (CaOx) biomineralization with diverse and species-specific morphologies and structures formed in specialized cells (idioblast) is a basic and important process in many plant families. During their formation there exist the synergetic interactions between cell growth/expansion and crystal nucleation/growth, indicating that the mineralization process is precisely controlled by biomacromolecules through the exquisite bio-regulation mechanisms rather than a simple chemical precipitation reaction. The mineralized phases and the final mature products formed inside cells are shaped and thermodynamically stabilized by various biomacromolecules expressed and synthesized in corresponding bio-pathways. CaOx crystals in plants fulfill a variety of crucial functions, including the high-capacity calcium regulation and self-protection of plants against herbivory by large animals as well as insects

  3. Unraveling Molecular Mechanisms for the Unusual Fossil Preservation and Biomineralization Pathways in Tlayúa, the Mexican Solenhofen

    Science.gov (United States)

    Cervini-Silva, J.; Fakra, S.; Alvarado-Ortega, J.; Cornejo-Garrido, H.; Marcus, M.; Hao, Z.; Espinosa-Arruberena, L.; Banfield, J.

    2007-12-01

    lagoon when the barrier was breached, probably during periods of heavy rains and hurricanes, or during high tides. Additionally, some fishes from Tlayua have been found to have affinities with recent families known to inhabit brackish and freshwater environments. Some of these fish preserve gut contents. Preliminary analysis of the intestinal content of these fishes has resulted in identification of freshwater insects and fern fragments. This work addresses for the first time the study of chemical and biological mechanisms contributing to fossil preservation and biomineralization pathways prevailing in Tlayúa using synchrotron techniques (XRF, - XRD, 3D--IR, XANES/EXAFS, STxM). We present chemical composition data collected from a fish egg's interior in search of fossilized structures. We also present data from well-preserved soft tissue collected from a fish soon to be named Michin scernai (newly identified specie, thus the name cannot be applied formally just yet). This fish is a Pachyrhizodontide, from the telesteos incertae sedis group already extinct. This particular sample was collected from the gastric cavity, precisely where female fish store the eggs before laying.

  4. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    OpenAIRE

    Peter Hesemann; Thy Phung Nguyen; Samir El Hankari

    2014-01-01

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the tw...

  5. Spatial Scan Statistic: Selecting clusters and generating elliptic clusters

    DEFF Research Database (Denmark)

    Christiansen, Lasse Engbo; Andersen, Jens Strodl

    2004-01-01

    The spatial scan statistic is widely used to search for clusters. This paper shows that the usually applied elimination of overlapping clusters to find secondary clusters is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of set of confocal elliptic...... clusters. In addition, we propose a new way to present the information in a given set of clusters based on the significance of the clusters....

  6. Cluster brand as a competitive advantage. Case: Airport cluster Finland

    OpenAIRE

    Väinölä, Lotta-Elviira

    2015-01-01

    Objective of the Study: The objective of this study is to explore the phenomenon of cluster branding. This study investigates cluster brand as a competitive advantage that impacts the success or decline of the cluster. The research questions examine three aspects: (1) cluster branding as a process, (2) the concrete tools that can be used in cluster branding and (3) the perceived benefits of cluster brand. The study aims to produce a generic model for cluster branding, which can be used as...

  7. Integrating cluster formation and cluster evaluation in interactive visual analysis

    OpenAIRE

    Turkay, C.; Parulek, J.; Reuter, N.; Hauser, H.

    2011-01-01

    Cluster analysis is a popular method for data investigation where data items are structured into groups called clusters. This analysis involves two sequential steps, namely cluster formation and cluster evaluation. In this paper, we propose the tight integration of cluster formation and cluster evaluation in interactive visual analysis in order to overcome the challenges that relate to the black-box nature of clustering algorithms. We present our conceptual framework in the form of an interac...

  8. Clustering Categorical Data:A Cluster Ensemble Approach

    Institute of Scientific and Technical Information of China (English)

    He Zengyou(何增友); Xu Xiaofei; Deng Shengchun

    2003-01-01

    Clustering categorical data, an integral part of data mining,has attracted much attention recently. In this paper, the authors formally define the categorical data clustering problem as an optimization problem from the viewpoint of cluster ensemble, and apply cluster ensemble approach for clustering categorical data. Experimental results on real datasets show that better clustering accuracy can be obtained by comparing with existing categorical data clustering algorithms.

  9. Technical Note: Towards resolving in situ, centimeter-scale location and timing of biomineralization in calcareous meiobenthos - the calcein-osmotic pump method

    Science.gov (United States)

    Bernhard, J. M.; Phalen, W. G.; McIntyre-Wressnig, A.; Mezzo, F.; Wit, J. C.; Jeglinski, M.; Filipsson, H. L.

    2015-09-01

    Insights into oceanographic environmental conditions such as paleoproductivity, deep-water temperatures, salinity, ice volumes, and nutrient cycling have all been obtained from geochemical analyses of biomineralized carbonate of marine organisms. However, we cannot fully understand geochemical proxy incorporation and the fidelity of such in species until we better understand fundamental aspects of their ecology such as where and when these (micro)organisms calcify. Here, we present an innovative method using osmotic pumps and the fluorescent marker calcein to help identify where and when calcareous meiofauna calcify in situ. Method development initially involved juvenile quahogs (Mercenaria mercenaria); subsequent method refinement involved a neritic benthic foraminiferal community. Future applications of this method will allow determining the in situ growth rate in calcareous organisms and provide insights about microhabitats where paleoceanographically relevant benthic foraminifera actually calcify.

  10. Quantification of biomineralization: An in-vitro tissue culture system and microanalysis of calcium, phosphorus and trace elements by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    An in-vitro tissue culture system with folded periostea of 17-day-old fetal chick calvaria was combined with analytical methods to achieve quantification of biomineralization. A scanning electron microscope with an energy-dispersive X-ray detector was applied to show the distribution of calcium, phosphorus and trace elements. Calcium and phosphorus were concentrated in the zone of the mineralized matrix. Strontium was distributed similar to calcium. Zinc was distributed equally in the soft tissue and the mineralized matrix. Total-reflection X-ray fluorescence was used for quantification. Thyroxine in high concentration reduces the calcium content of the samples. One week after incubation magnesium chloride (1.8 mM) or zinc chloride (.1 mM) were found to reduce the calcium content by 38% or 82%, respectively

  11. Distinction of gaseous soot precursor molecules and soot precursor particles through photoionization mass spectrometry.

    Science.gov (United States)

    Happold, Joachim; Grotheer, Horst-Henning; Aigner, Manfred

    2007-01-01

    Samples were drawn from sooting premixed low-pressure ethylene oxygen flames and investigated through photoionization mass spectrometry using either KrF or ArF lasers as the radiation source. With the former, mass spectra were obtained as described in the literature and characterized through a series of signal groups, one for each C-number and extending to about m/z 1000, assigned as a PAH series. When the ArF laser was used the same series was observed with a somewhat higher sensitivity. In addition, a new series was observed overlaid on the PAH series and starting at about m/z 680. The new series exhibited abundant ions and it completely dominated the spectrum beyond m/z 1000. This series was identified as being the spectrum of soot precursor particles. Through measurement of the ionization order it was concluded that at least two photons are needed for ionization of PAHs whereas the particles need only one photon. Consequently, they can be measured with high sensitivity when an ArF laser is used as the radiation source. Furthermore, the discrimination of soot precursor molecules and soot precursor particles becomes possible through photoionization and this enables an improved understanding of the mass spectra. This should allow a particle growth mechanism to be deduced in the near future. PMID:17342787

  12. Disentangling Porterian Clusters

    DEFF Research Database (Denmark)

    Jagtfelt, Tue

    This dissertation investigates the contemporary phenomenon of industrial clusters based on the work of Michael E. Porter, the central progenitor and promoter of the cluster notion. The dissertation pursues two central questions: 1) What is a cluster? and 2) How could Porter’s seemingly fuzzy......, contested theory become so widely disseminated and applied as a normative and prescriptive strategy for economic development? The dissertation traces the introduction of the cluster notion into the EU’s Lisbon Strategy and demonstrates how its inclusion originates from Porter’s colleagues: Professor Örjan...... Sölvell, Dr. Christian Ketels and Dr. Göran Lindqvist. Taking departure in Porter’s works and the cluster literature, the dissertations shows a considerable paradigmatic shift has occurred from the first edition of Nations to the present state of cluster cooperation. To elaborate on this change and the...

  13. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton......The clustering of sulphuric acid with base molecules is one of the main pathways of new-particle formation in the Earth's atmosphere. First step in the clustering process is likely the formation of a (sulphuric acid)1(base)1(water)n cluster. Here, we present results from direct first......-principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough to...

  14. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Subhabrata Majumdar

    2004-10-01

    Surveys of clusters of galaxies provide us with a powerful probe of the density and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter . Upcoming Sunyaev–Zel'dovich (SZ) surveys would provide us large yields of clusters to very high red-shifts. Self-calibration of cluster scaling relations, possible for such a huge sample, would be able to constrain systematic biases on mass estimators. Combining cluster red-shift abundance with limited mass follow-up and cluster mass power spectrum can then give constraints on , as well as on 8 and to a few per cents.

  15. Cluster Management Institutionalization

    DEFF Research Database (Denmark)

    Normann, Leo; Agger Nielsen, Jeppe

    2015-01-01

    This article explores a new management form – cluster management – in Danish public sector day care. Although cluster management has been widely adopted in Danish day care at the municipality level, it has attracted only sparse research attention. We use theoretical insights from Scandinavian...... institutionalism together with a longitudinal case-based inquiry into how cluster management has entered and penetrated the management practices of day care in Denmark. We demonstrate how cluster management became widely adopted in the day care field not only because of its intrinsic properties but also because...... of how it was legitimized as a “ready-to-use” management model. Further, our account reveals how cluster management translated into considerably different local variants as it travelled into specific organizations. However, these processes have not occurred sequentially with cluster management first...

  16. Clustering Techniques in Bioinformatics

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Masood

    2015-01-01

    Full Text Available Dealing with data means to group information into a set of categories either in order to learn new artifacts or understand new domains. For this purpose researchers have always looked for the hidden patterns in data that can be defined and compared with other known notions based on the similarity or dissimilarity of their attributes according to well-defined rules. Data mining, having the tools of data classification and data clustering, is one of the most powerful techniques to deal with data in such a manner that it can help researchers identify the required information. As a step forward to address this challenge, experts have utilized clustering techniques as a mean of exploring hidden structure and patterns in underlying data. Improved stability, robustness and accuracy of unsupervised data classification in many fields including pattern recognition, machine learning, information retrieval, image analysis and bioinformatics, clustering has proven itself as a reliable tool. To identify the clusters in datasets algorithm are utilized to partition data set into several groups based on the similarity within a group. There is no specific clustering algorithm, but various algorithms are utilized based on domain of data that constitutes a cluster and the level of efficiency required. Clustering techniques are categorized based upon different approaches. This paper is a survey of few clustering techniques out of many in data mining. For the purpose five of the most common clustering techniques out of many have been discussed. The clustering techniques which have been surveyed are: K-medoids, K-means, Fuzzy C-means, Density-Based Spatial Clustering of Applications with Noise (DBSCAN and Self-Organizing Map (SOM clustering.

  17. Cluster Symmetries and Dynamics

    Directory of Open Access Journals (Sweden)

    Freer Martin

    2016-01-01

    Full Text Available Many light nuclei display behaviour that indicates that rather than behaving as an A-body systems, the protons and neutrons condense into clusters. The α-particle is the most obvious example of such clustering. This contribution examines the role of such α-clustering on the structure, symmetries and dynamics of the nuclei 8Be, 12C and 16O, recent experimental measurements and future perspectives.

  18. Agricultural Clusters in China

    OpenAIRE

    Kiminami, Lily; Kiminami, Akira

    2009-01-01

    The purpose of this study is to assess the potential of clustering in the development of agriculture and rural communities in China. We shall examine in detail the food industry, which is the link in the food chain that propels the industrialization of agriculture, and identify instances of industrial agglomeration and business collaboration. Next, we shall analyze the externalities (i.e. spillovers) of clusters, demand conditions in cluster formation, and the effectiveness of business collab...

  19. The Durban Auto Cluster

    OpenAIRE

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities in the areas of supplier development, human resource development, logistics, and benchmarking, and by contrasting the impact of joint action against a host of other variables, notably international com...

  20. Securing personal network clusters

    OpenAIRE

    Jehangir, Assed; Heemstra de Groot, Sonia M.

    2007-01-01

    A Personal Network is a self-organizing, secure and private network of a user’s devices notwithstanding their geographic location. It aims to utilize pervasive computing to provide users with new and improved services. In this paper we propose a model for securing Personal Network clusters. Clusters are ad-hoc networks of co-located personal devices. The ad-hoc makeup of clusters, coupled with the resource constrained nature of many constituent devices, makes enforcing security a challenging ...

  1. Cluster headache with aura

    OpenAIRE

    Martínez-Fernández, Eva; Alberca, Roman; Mir, Pablo; Franco, Emilio; Montes, Enrique; Lozano, Pilar

    2002-01-01

    The objective of our study is to report the frequency and characteristics of cluster headache with aura among the population of patients with cluster headache treated in our outpatient neurology clinic. 254 patients were submitted to semi-structured interviews to identify the presence of symptoms similar to the migraine aura. 5 patients who suffered from a cluster headache with aura filled a diary with the characteristics of the pain attacks and the aura. All the patients with either episodic...

  2. Frog Swarms: Earthquake Precursors or False Alarms?

    Science.gov (United States)

    Grant, Rachel A; Conlan, Hilary

    2013-01-01

    In short-term earthquake risk forecasting, the avoidance of false alarms is of utmost importance to preclude the possibility of unnecessary panic among populations in seismic hazard areas. Unusual animal behaviour prior to earthquakes has been reported for millennia but has rarely been scientifically documented. Recently large migrations or unusual behaviour of amphibians have been linked to large earthquakes, and media reports of large frog and toad migrations in areas of high seismic risk such as Greece and China have led to fears of a subsequent large earthquake. However, at certain times of year large migrations are part of the normal behavioural repertoire of amphibians. News reports of "frog swarms" from 1850 to the present day were examined for evidence that this behaviour is a precursor to large earthquakes. It was found that only two of 28 reported frog swarms preceded large earthquakes (Sichuan province, China in 2008 and 2010). All of the reported mass migrations of amphibians occurred in late spring, summer and autumn and appeared to relate to small juvenile anurans (frogs and toads). It was concluded that most reported "frog swarms" are actually normal behaviour, probably caused by juvenile animals migrating away from their breeding pond, after a fruitful reproductive season. As amphibian populations undergo large fluctuations in numbers from year to year, this phenomenon will not occur on a yearly basis but will depend on successful reproduction, which is related to numerous climatic and geophysical factors. Hence, most large swarms of amphibians, particularly those involving very small frogs and occurring in late spring or summer, are not unusual and should not be considered earthquake precursors. In addition, it is likely that reports of several mass migration of small toads prior to the Great Sichuan Earthquake in 2008 were not linked to the subsequent M = 7.9 event (some occurred at a great distance from the epicentre), and were probably co

  3. Operational experience feedback with precursor analysis

    International Nuclear Information System (INIS)

    Experience of practical operation is a valuable source of information for improving the safety and reliability of nuclear power plants. Operational experience feedback (Olef) system manages this aspect of NPP operation. The traditional ways of investigating operational events, such as the root cause analysis (RCA), are predominantly qualitative. RCA as a part of the Olef system provides technical guidance and management expectations in the conduct of assessing the root cause to prevent recurrence, covering the following areas: conditions preceding the event, sequence of events, equipment performance and system response, human performance considerations, equipment failures, precursors to the event, plant response and follow-up, radiological considerations, regulatory process considerations and safety significance. The root cause of event is recognized when there is no known answer on question 'why has it happened?' regarding relevant condition that may have affected the event. At that point the Olef is proceeding by actions taken in response to events, utilization, dissemination and exchange of operating experience information and at the end reviewing the effectiveness of the Olef. Analysis of the event and the selection of recommended corrective/preventive actions for implementation and prioritization can be enhanced by taking into account the information and insights derived from Pasa-based analysis. A Pasa based method, called probabilistic precursor event analysis (PPE A) provides a complement to the RCA approach by focusing on how an event might have developed adversely, and implies the mapping of an operational event on a probabilistic risk model of the plant in order to obtain a quantitative assessment of the safety significance of the event PSA based event analysis provides, due to its quantitative nature, appropriate prioritization of corrective actions. PPEA defines requirements for PSA model and code, identifies input requirements and elaborates following

  4. 15th Cluster workshop

    CERN Document Server

    Laakso, Harri; Escoubet, C. Philippe; The Cluster Active Archive : Studying the Earth’s Space Plasma Environment

    2010-01-01

    Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.

  5. Management of cluster headache.

    Science.gov (United States)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-07-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment and prophylactic treatment. In ECH and CCH the attacks can be treated with oxygen (12 L/min) or subcutaneous sumatriptan 6 mg. For both oxygen and sumatriptan there are two randomized, placebo-controlled trials demonstrating efficacy. In both ECH and CCH, verapamil is the prophylactic drug of choice. Verapamil 360 mg/day was found to be superior to placebo in one clinical trial. In clinical practice, daily doses of 480-720 mg are mostly used. Thus, the dose of verapamil used in cluster headache treatment may be double the dose used in cardiology, and with the higher doses the PR interval should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add-on prophylactic treatment. In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy

  6. Fast Density Based Clustering Algorithm

    OpenAIRE

    Priyanka Trikha; Singh Vijendra

    2013-01-01

    Clustering problem is an unsupervised learning problem. It is a procedure that partition data objects into matching clusters. The data objects in the same cluster are quite similar to each other and dissimilar in the other clusters. The traditional algorithms do not meet the latest multiple requirements simultaneously for objects. Density-based clustering algorithms find clusters based on density of data points in a region. DBSCAN algorithm is one of the density-based clustering algorithms. I...

  7. Statistical Properties of Convex Clustering

    OpenAIRE

    Tan, Kean Ming; Witten, Daniela

    2015-01-01

    In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and $k$-means clustering. In addition, we derive the range of tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimate of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to some tr...

  8. A Uniqueness Theorem for Clustering

    OpenAIRE

    Zadeh, Reza Bosagh; Ben-David, Shai

    2012-01-01

    Despite the widespread use of Clustering, there is distressingly little general theory of clustering available. Questions like "What distinguishes a clustering of data from other data partitioning?", "Are there any principles governing all clustering paradigms?", "How should a user choose an appropriate clustering algorithm for a particular task?", etc. are almost completely unanswered by the existing body of clustering literature. We consider an axiomatic approach to the theory of Clustering...

  9. Statistical properties of convex clustering

    OpenAIRE

    Tan, Kean Ming; Witten, Daniela

    2015-01-01

    In this manuscript, we study the statistical properties of convex clustering. We establish that convex clustering is closely related to single linkage hierarchical clustering and $k$-means clustering. In addition, we derive the range of the tuning parameter for convex clustering that yields a non-trivial solution. We also provide an unbiased estimator of the degrees of freedom, and provide a finite sample bound for the prediction error for convex clustering. We compare convex clustering to so...

  10. Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mazzo, Tatiana Martelli, E-mail: tatimazzo@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Santilli do Nascimento Libanori, Gabriela [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Moreira, Mario Lucio [Instituto de Física e Matemática, Universidade Federal de Pelotas, P.O. Box 354, Campus do Capão do Leão, 96001-970 Pelotas, RS (Brazil); Avansi Jr, Waldir [Departamento de Física, Universidade Federal de São Carlos, Jardim Guanabara, 13565-905 São Carlos, SP (Brazil); Mastelaro, Valmor Roberto [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, Arnold Schimidt, 13566-590 São Carlos, SP (Brazil); Varela, José Arana; Longo, Elson [INCTMN/LIEC, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, R. Francisco Degni, 55, Bairro Quitandinha, 14801-907 Araraquara, SP (Brazil)

    2015-09-15

    For this research, we studied the influence of titanium tetrachloride (TC) and titanium tetraisopropoxide (TTP) precursors on CaTiO{sub 3} (CTO) synthesis by employing a microwave-assisted hydrothermal (MAH) method regarding their respective short-, medium- and long-range features to determine if the use of different titanium precursors enhances the structural evolution of the material. The growth mechanism for the formation of the micro-cube-shaped CTO is proposed to obtain nanoparticle aggregation of self-assembly nanoplates. The disorder coupled to the oxygen vacancies of [TiO{sub 5}]–[TiO{sub 6}] in complex clusters in the CTO 1 powder and twists in bonding between the [TiO{sub 6}]–[TiO{sub 6}] complex clusters in the CTO 2 powder were mainly responsible for photoluminescent (PL) emission. - Highlights: • Different titanium precursors enhance the structural evolution of the material. • [TiO{sub 5}]–[TiO{sub 6}] and twists in bonding [TiO{sub 6}]–[TiO{sub 6}] were responsible for PL emission. • Micro-cube shaped was formed by nanoparticle aggregation of self-assembly nanoplates.

  11. Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO3

    International Nuclear Information System (INIS)

    For this research, we studied the influence of titanium tetrachloride (TC) and titanium tetraisopropoxide (TTP) precursors on CaTiO3 (CTO) synthesis by employing a microwave-assisted hydrothermal (MAH) method regarding their respective short-, medium- and long-range features to determine if the use of different titanium precursors enhances the structural evolution of the material. The growth mechanism for the formation of the micro-cube-shaped CTO is proposed to obtain nanoparticle aggregation of self-assembly nanoplates. The disorder coupled to the oxygen vacancies of [TiO5]–[TiO6] in complex clusters in the CTO 1 powder and twists in bonding between the [TiO6]–[TiO6] complex clusters in the CTO 2 powder were mainly responsible for photoluminescent (PL) emission. - Highlights: • Different titanium precursors enhance the structural evolution of the material. • [TiO5]–[TiO6] and twists in bonding [TiO6]–[TiO6] were responsible for PL emission. • Micro-cube shaped was formed by nanoparticle aggregation of self-assembly nanoplates

  12. Document Clustering Based on Semi-Supervised Term Clustering

    Directory of Open Access Journals (Sweden)

    Hamid Mahmoodi

    2012-05-01

    Full Text Available The study is conducted to propose a multi-step feature (term selection process and in semi-supervised fashion, provide initial centers for term clusters. Then utilize the fuzzy c-means (FCM clustering algorithm for clustering terms. Finally assign each of documents to closest associated term clusters. While most text clustering algorithms directly use documents for clustering, we propose to first group the terms using FCM algorithm and then cluster documents based on terms clusters. We evaluate effectiveness of our technique on several standard text collections and compare our results with the some classical text clustering algorithms.

  13. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron reson

  14. Diversity of Neural Precursors in the Adult Mammalian Brain.

    Science.gov (United States)

    Bonaguidi, Michael A; Stadel, Ryan P; Berg, Daniel A; Sun, Jiaqi; Ming, Guo-Li; Song, Hongjun

    2016-01-01

    Aided by advances in technology, recent studies of neural precursor identity and regulation have revealed various cell types as contributors to ongoing cell genesis in the adult mammalian brain. Here, we use stem-cell biology as a framework to highlight the diversity of adult neural precursor populations and emphasize their hierarchy, organization, and plasticity under physiological and pathological conditions. PMID:26988967

  15. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  16. A Fission-Powered Interstellar Precursor Mission

    Energy Technology Data Exchange (ETDEWEB)

    Lenard, R.X.; Lipinski, R.J.; West, J.L.; Wright, S.A.

    1998-10-28

    An 'interstellar precursor mission' lays the groundwork for eventual interstellar exploration by studying the interstellar medium and by stretching technologies that have potential application for eventual interstellar exploration. The numerous scientific goals for such a mission include generating a 3-D stellar map of our galaxy, studying Kuiper-belt and Oort cloud objects, and observing distant objects using the sun's gravitational lens as the primary of an enormous telescope. System equations are developed for a space tug which propels a 2500-kg scientific payload to 550 astronomical units in about 20 years. The tug to transport this payload uses electric propulsion with an Isp of 15,000 seconds and a fission reactor with a closed Brayton cycle to genemte the electricity. The optimal configuration may be to thrust for only about 6 years and then coast for the remaining 14 pars. This spacecraft does not require any physics breakthroughs or major advances in technology. The fission power syslem can be engineered and built by drawing upon known technologies developed for relatgd systems over the past 40 years. The tug system would eventually reach 1000 a.u in 33 years, and would have adequate power to relay large amounts of data throughout its journey.

  17. Proinsulin: from hormonal precursor to neuroprotective factor

    Directory of Open Access Journals (Sweden)

    Flora eDe Pablo

    2011-09-01

    Full Text Available In the last decade, non-canonical functions have been described for several molecules with hormone-like activities in different stages of vertebrate development. Since its purification in the 1960s, proinsulin has been one of the best described hormonal precursors, though it has been overwhelmingly studied in the context of insulin, the mature protein secreted by the pancreas. Beginning with our discovery of the presence and precise regulation of proinsulin mRNA in early neurulation and neurogenesis, we uncovered a role for proinsulin in cell survival in the developing nervous system. We subsequently demonstrated the ability of proinsulin to prevent pathological cell death and delay photoreceptor degeneration in a mouse model of retinitis pigmentosa. In this review, we focus on the evolution of proinsulin/insulin, beginning with insulin-like peptides expressed in mainly the neurosecretory cells of some invertebrates. We summarize findings related to the regulation of proinsulin expression during development and discuss the possible effects of proinsulin in neural cells or tissue, and its potential as a neuroprotective molecule.

  18. Identification, Selection, and Enrichment of Cardiomyocyte Precursors

    Directory of Open Access Journals (Sweden)

    Bianca Ferrarini Zanetti

    2013-01-01

    Full Text Available The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. The main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5′-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP+. These GFP+ cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs, which can then be differentiated terminally for cell therapy and tissue engineering.

  19. Pair Fireball Precursors of Neutron Star Mergers

    CERN Document Server

    Metzger, Brian D

    2016-01-01

    If at least one neutron star (NS) is magnetized in a binary NS merger, then the orbital motion of the conducting companion through its dipole field during the final inspiral induces a strong voltage and current along the magnetic field lines connecting the two objects. If a modest fraction eta of the electromagnetic power extracted during the inspiral is used to accelerate relativistic particles, the resulting gamma-ray emission in such a compact volume will result in the formation of a thermal electron-positron pair fireball. Applying the steady-state pair wind model of Paczynski (1986), we quantify the luminosities and temperatures of the precursor fireball and its detectability with gamma-ray satellites. Under the assumption that eta ~ 1, the gamma-ray detection horizon of Dmax ~ 20(Bd/1e14 G) is much closer than the Advanced LIGO/Virgo horizon of 200 Mpc, unless the surface magnetic field of the NS is very strong, Bd > 1e15 G. Given the quasi-isotropic nature of the emission, a sub-population of mergers w...

  20. Enzymatic synthesis of vitamin B6 precursor

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2013-01-01

    Full Text Available 3-Cyano-4-ethoxymethyl-6-methyl-2-pyridone is an important precursor in the synthesis of vitamin B6, obtained in the addition reaction between 2-cyanoacetamide and 1-ethoxy-2,4-pentanedione catalyzed by lipase from Candida rugosa (triacylglycerol ester hydrolases, EC 3.1.1.3. This work shows new experimental data and mathematical modeling of lipase catalyzed synthesis of 3-cyano-4-ethoxymethyl-6-methyl-2-pyridone, starting from 1-ethoxy-2,4-pentanedione and 2-cyanoacetamide. Kinetic measurements were done at 50 oC with enzyme concentration of 1.2 % w/v. Experimental results were fitted with two kinetic models: the ordered bi-ter and ping-pong bi-ter model, and the initial rates of the reaction were found to correlate best with a ping-pong bi-ter mechanism with inhibition by 2-cyanoacetamide. Obtained specificity constants indicated that lipase from C. rugosa had higher affinity towards 1-ethoxy-2,4-pentanedione and less bulky substrates. [Projekat Ministarstva nauke Republike Srbije, br. 172013, br. III 46010 and br. 172049

  1. Precursor of kunitz trypsin inhibitor in soybean seeds

    International Nuclear Information System (INIS)

    Kunitz soybean trypsin inhibitor (KSTI) appears to be synthesized in precursor form which is converted by proteolytic digestion to the mature form of KSTI. Two forms of anti-cross-reacting material are evident when Western blots of extracts of developing seeds are analyzed. The precursor form increases to maximum levels as seed lengths increase to 11 mm. As the seed matures to 13 mm and turns yellow, precursor levels decrease while mature KSTI levels increase. The conversion of precursor to mature form could be demonstrated in vitro in seed extracts. The conversion could also be demonstrated in excised seeds pulse-labeled with [14C]-leucine as loss of radioactivity from the precursor and appearance in the mature KSTI form

  2. Fuzzy Clustering: Determining the Number of Clusters

    Czech Academy of Sciences Publication Activity Database

    Řezanková, H.; Húsek, Dušan

    Piscataway : IEEE, 2012, s. 277-282. ISBN 978-1-4673-4793-8. [CASoN 2012. International Conference on Computational Aspects of Social Networks /4./. Sao Carlos (BR), 21.11.2012-23.11.2012] R&D Projects: GA ČR GAP202/10/0262 Grant ostatní: GA MŠk(CZ) ED1.1.00/02.0070 Institutional support: RVO:67985807 Keywords : fuzzy cluster analysis * determining number of clusters * Dunn’s coefficient * average silhouette width Subject RIV: BB - Applied Statistics, Operational Research

  3. Identification of TiO2 clusters present during synthesis of sol-gel derived TiO2 nano-particles

    DEFF Research Database (Denmark)

    Simonsen, Morten Enggrob; Søgaard, Erik Gydesen

    -MS) and dynamic light scattering (DLS). Depending on the involved precursor TiO2 clusters of different sizes were identified (TTIP ~ 11-12 Ti atoms, TTB ~ 10-11 Ti atoms, and TTE ~ 5-7 Ti atoms).4 The Ti-O-Ti backbone/core of the titanium clusters were found to be quite stable after formation and do not...

  4. The Cluster Substructure - Alignment Connection

    CERN Document Server

    Plionis, M

    2002-01-01

    Using the APM cluster data we investigate whether the dynamical status of clusters is related to the large-scale structure of the Universe. We find that cluster substructure is strongly correlated with the tendency of clusters to be aligned with their nearest neighbour and in general with the nearby clusters that belong to the same supercluster. Furthermore, dynamically young clusters are more clustered than the overall cluster population. These are strong indications that cluster develop in a hierarchical fashion by anisotropy merging along the large-scale filamentary superclusters within which they are embedded.

  5. Mixed-Initiative Clustering

    Science.gov (United States)

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  6. Density Adaptive Parallel Clustering

    OpenAIRE

    La Rocca, Marcello

    2014-01-01

    In this paper we are going to introduce a new nearest neighbours based approach to clustering, and compare it with previous solutions; the resulting algorithm, which takes inspiration from both DBscan and minimum spanning tree approaches, is deterministic but proves simpler, faster and doesnt require to set in advance a value for k, the number of clusters.

  7. Star Formation in Clusters

    CERN Document Server

    Larsen, S S

    2004-01-01

    HST is very well tailored for observations of extragalactic star clusters. One obvious reason is HST's high spatial resolution, but equally important is the wavelength range offered by the instruments on board HST, in particular the blue and near-UV coverage which is essential for age-dating young clusters. HST observations have helped establish the ubiquity of young massive clusters (YMCs) in a wide variety of star-forming environments, from dwarf galaxies and spiral disks to nuclear starbursts and mergers. These YMCs have masses and sizes similar to those of old globular clusters (GCs), and the two may be closely related. A large fraction of all stars seem to be born in clusters, but most clusters disrupt rapidly and the stars disperse to become part of the field population. In most cases studied to date the luminosity functions of young cluster systems are well fit by power-laws dN(L)/dL ~ L^-2, and the luminosity of the brightest cluster can (with few exceptions) be predicted from simple sampling statisti...

  8. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  9. Computing upper cluster algebras

    OpenAIRE

    Matherne, Jacob; Muller, Greg

    2013-01-01

    This paper develops techniques for producing presentations of upper cluster algebras. These techniques are suited to computer implementation, and will always succeed when the upper cluster algebra is totally coprime and finitely generated. We include several examples of presentations produced by these methods.

  10. Cluster growth kinetics

    International Nuclear Information System (INIS)

    Processes of some traffic blocking coming into existence are considered as probabilistic ones. We study analytic solutions for models for the dynamics of both cluster growth and cluster growth with fragmentation in the systems of finite number of objects. Assuming rates constancy of both coalescence and fragmentation, the models under consideration are linear on the probability functions

  11. Clustering Text Data Streams

    Institute of Scientific and Technical Information of China (English)

    Yu-Bao Liu; Jia-Rong Cai; Jian Yin; Ada Wai-Chee Fu

    2008-01-01

    Clustering text data streams is an important issue in data mining community and has a number of applications such as news group filtering, text crawling, document organization and topic detection and tracing etc. However, most methods are similarity-based approaches and only use the TF*IDF scheme to represent the semantics of text data and often lead to poor clustering quality. Recently, researchers argue that semantic smoothing model is more efficient than the existing TF.IDF scheme for improving text clustering quality. However, the existing semantic smoothing model is not suitable for dynamic text data context. In this paper, we extend the semantic smoothing model into text data streams context firstly. Based on the extended model, we then present two online clustering algorithms OCTS and OCTSM for the clustering of massive text data streams. In both algorithms, we also present a new cluster statistics structure named cluster profile which can capture the semantics of text data streams dynamically and at the same time speed up the clustering process. Some efficient implementations for our algorithms are also given. Finally, we present a series of experimental results illustrating the effectiveness of our technique.

  12. Phases of cluster states

    International Nuclear Information System (INIS)

    The question of phases and phase transitions of cluster states is reviewed. First some features of the vibron model are recalled, then its extensions are investigated. Preliminary results are also presented from a study on the cluster-shell competition. (authors)

  13. Illinois' Career Cluster Model

    Science.gov (United States)

    Jankowski, Natasha A.; Kirby, Catherine L.; Bragg, Debra D.; Taylor, Jason L.; Oertle, Kathleen M.

    2009-01-01

    This booklet provides information to multiple stakeholders on the implementation of career clusters in Illinois. The booklet is an extension of the previous edition titled "An Introduction to Illinois CTE Programs of Study" (2008), and provides a resource for partners to understand Illinois' Career Cluster Model as its own adaptation of the…

  14. Calixarene-supported clusters

    DEFF Research Database (Denmark)

    Taylor, Stephanie M.; McIntosh, Ruaraidh D.; Piligkos, Stergios; Dalgarno, Scott J.; Brechin, Euan K.

    2012-01-01

    A combination of complementary cluster ligands results in the formation of a new calixarene-supported ferromagnetic [Mn(5)] cage that displays the characteristic bonding modes of each support.......A combination of complementary cluster ligands results in the formation of a new calixarene-supported ferromagnetic [Mn(5)] cage that displays the characteristic bonding modes of each support....

  15. Brightest Cluster Galaxy Identification

    Science.gov (United States)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  16. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add...

  17. Blue emitting undecaplatinum clusters

    Science.gov (United States)

    Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.

    2014-07-01

    A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g

  18. Melting of graphene clusters

    OpenAIRE

    Singh, Sandeep Kumar; Neek-Amal, M.; Peeters, F. M.

    2013-01-01

    Density-functional tight-binding and classical molecular dynamics simulations are used to investigate the structural deformations and melting of planar carbon nano-clusters $C_{N}$ with N=2-55. The minimum energy configurations for different clusters are used as starting configuration for the study of the temperature effects on the bond breaking/rotation in carbon lines (N$

  19. Cold cluster ferromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, G.F. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory; Yabana, K. [Niigata Univ. (Japan). Dept. of Physics

    1993-12-31

    We examine the magnetic moment distribution of ferromagnetic clusters under conditions where the magnetic moment is aligned with the internal cluster axis. Analytic expressions are obtained for the moment distribution and the adiabatic average moment induced in low fields. The result differs from the low-field Langevin function by a factor 2/3.

  20. Investigation of Cluster and Cluster Queuing System

    OpenAIRE

    Halifu, Saerda

    2008-01-01

    Cluster became main platform as parallel and distributed computing structure for high performance computing. Following the development of high performance computer architecture more and more different branches of natural science benefit fromhuge and efficient computational power. For instance bio-informatics, climate science, computational physics, computational chemistry, marine science, etc. Efficient and reliable computing powermay not only expending demand of existing high performance com...