WorldWideScience

Sample records for biomineralization precursors clusters

  1. Micro-structural evolution and biomineralization behavior of carbon nanofiber/bioactive glass composites induced by precursor aging time.

    Science.gov (United States)

    Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping

    2015-12-01

    Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Apatite Biominerals

    Directory of Open Access Journals (Sweden)

    Christèle Combes

    2016-04-01

    Full Text Available Calcium phosphate apatites offer outstanding biological adaptability that can be attributed to their specific physico-chemical and structural properties. The aim of this review is to summarize and discuss the specific characteristics of calcium phosphate apatite biominerals in vertebrate hard tissues (bone, dentine and enamel. Firstly, the structural, elemental and chemical compositions of apatite biominerals will be summarized, followed by the presentation of the actual conception of the fine structure of synthetic and biological apatites, which is essentially based on the existence of a hydrated layer at the surface of the nanocrystals. The conditions of the formation of these biominerals and the hypothesis of the existence of apatite precursors will be discussed. Then, we will examine the evolution of apatite biominerals, especially during bone and enamel aging and also focus on the adaptability of apatite biominerals to the biological function of their related hard tissues. Finally, the diagenetic evolution of apatite fossils will be analyzed.

  3. Biomineralization of a Self-assembled, Soft-Matrix Precursor: Enamel

    Science.gov (United States)

    Snead, Malcolm L.

    2015-04-01

    Enamel is the bioceramic covering of teeth, a composite tissue composed of hierarchical organized hydroxyapatite crystallites fabricated by cells under physiologic pH and temperature. Enamel material properties resist wear and fracture to serve a lifetime of chewing. Understanding the cellular and molecular mechanisms for enamel formation may allow a biology-inspired approach to material fabrication based on self-assembling proteins that control form and function. A genetic understanding of human diseases exposes insight from nature's errors by exposing critical fabrication events that can be validated experimentally and duplicated in mice using genetic engineering to phenocopy the human disease so that it can be explored in detail. This approach led to an assessment of amelogenin protein self-assembly that, when altered, disrupts fabrication of the soft enamel protein matrix. A misassembled protein matrix precursor results in loss of cell-to-matrix contacts essential to fabrication and mineralization.

  4. Amorphous Phase Mediated Crystallization: Fundamentals of Biomineralization

    Directory of Open Access Journals (Sweden)

    Wenjing Jin

    2018-01-01

    Full Text Available Many biomineralization systems start from transient amorphous precursor phases, but the exact crystallization pathways and mechanisms remain largely unknown. The study of a well-defined biomimetic crystallization system is key for elucidating the possible mechanisms of biomineralization and monitoring the detailed crystallization pathways. In this review, we focus on amorphous phase mediated crystallization (APMC pathways and their crystallization mechanisms in bio- and biomimetic-mineralization systems. The fundamental questions of biomineralization as well as the advantages and limitations of biomimetic model systems are discussed. This review could provide a full landscape of APMC systems for biomineralization and inspire new experiments aimed at some unresolved issues for understanding biomineralization.

  5. Are Nuclear Star Clusters the Precursors of Massive Black Holes?

    Directory of Open Access Journals (Sweden)

    Nadine Neumayer

    2012-01-01

    Full Text Available We present new upper limits for black hole masses in extremely late type spiral galaxies. We confirm that this class of galaxies has black holes with masses less than 106M⊙, if any. We also derive new upper limits for nuclear star cluster masses in massive galaxies with previously determined black hole masses. We use the newly derived upper limits and a literature compilation to study the low mass end of the global-to-nucleus relations. We find the following. (1 The MBH-σ relation cannot flatten at low masses, but may steepen. (2 The MBH-Mbulge relation may well flatten in contrast. (3 The MBH-Sersic n relation is able to account for the large scatter in black hole masses in low-mass disk galaxies. Outliers in the MBH-Sersic n relation seem to be dwarf elliptical galaxies. When plotting MBH versus MNC we find three different regimes: (a nuclear cluster dominated nuclei, (b a transition region, and (c black hole-dominated nuclei. This is consistent with the picture, in which black holes form inside nuclear clusters with a very low-mass fraction. They subsequently grow much faster than the nuclear cluster, destroying it when the ratio MBH/MNC grows above 100. Nuclear star clusters may thus be the precursors of massive black holes in galaxy nuclei.

  6. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides - relevance to biomineralization

    NARCIS (Netherlands)

    Schenk, A.S.; Zope, H.; Kim, Y.; Kros, A.; Sommerdijk, N.A.J.M.; Meldrum, F.C.

    2012-01-01

    Polymer-induced liquid precursor (PILP) phases of calcium carbonate have attracted significant interest due to possible applications in materials synthesis, and their resemblance to intermediates seen in biogenic mineralisation processes. Further, these PILP phases have been formed in vitro using

  7. From bismuth oxide/hydroxide precursor clusters towards stable oxides: Proton transfer reactions and structural reorganization govern the stability of [Bi18O13(OH)10]-nitrate clusters

    Science.gov (United States)

    Walther, M.; Zahn, D.

    2018-01-01

    Structural relaxation and stability of a Bi18-cluster as obtained from association of [Bi6O4(OH)4](NO3)6 precursor clusters in DMSO solution is investigated from a combination of quantum chemical calculations and μs-scale molecular dynamics simulations using empirical interaction potentials. The Bi18-cluster undergoes a OH⋯OH proton transfer reaction, followed by considerable structural relaxation. While the aggregation of the Bi18-cluster is induced by the dissociation of a single nitrate ion leading to [Bi6O4(OH)4](NO3)5+ as an activated precursor species that can bind two more Bi6-clusters, we find the [Bi18O13(OH)10](NO3)18-x+x species (explored for x = 1-6) rather inert against either nitrate dissociation, collision with Bi6-precursors or combinations thereof.

  8. Design and synthesis of polyoxometalate-framework materials from cluster precursors

    Science.gov (United States)

    Vilà-Nadal, Laia; Cronin, Leroy

    2017-10-01

    Inorganic oxide materials are used in semiconductor electronics, ion exchange, catalysis, coatings, gas sensors and as separation materials. Although their synthesis is well understood, the scope for new materials is reduced because of the stability limits imposed by high-temperature processing and top-down synthetic approaches. In this Review, we describe the derivatization of polyoxometalate (POM) clusters, which enables their assembly into a range of frameworks by use of organic or inorganic linkers. Additionally, bottom-up synthetic approaches can be used to make metal oxide framework materials, and the features of the molecular POM precursors are retained in these structures. Highly robust all-inorganic frameworks can be made using metal-ion linkers, which combine molecular synthetic control without the need for organic components. The resulting frameworks have high stability, and high catalytic, photochemical and electrochemical activity. Conceptually, these inorganic oxide materials bridge the gap between zeolites and metal-organic frameworks (MOFs) and establish a new class of all-inorganic POM frameworks that can be designed using topological and reactivity principles similar to MOFs.

  9. Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials.

    Science.gov (United States)

    Rozes, Laurence; Sanchez, Clément

    2011-02-01

    Titanium oxo-clusters, well-defined monodispersed nano-objects, are appropriate nano-building blocks for the preparation of organic-inorganic materials by a bottom up approach. This critical review proposes to present the different structures of titanium oxo-clusters referenced in the literature and the different strategies followed to build up hybrid materials with these versatile building units. In particular, this critical review cites and reports on the most important papers in the literature, concentrating on recent developments in the field of synthesis, characterization, and the use of titanium oxo-clusters for the construction of advanced hybrid materials (137 references).

  10. Bioinspired magnetite synthesis via solid precursor phases

    NARCIS (Netherlands)

    Lenders, J.J.M.; Mirabello, G.; Sommerdijk, N.A.J.M.

    2016-01-01

    Living organisms often exploit solid but poorly ordered mineral phases as precursors in the biomineralization of their inorganic body parts. Generally speaking, such precursor-based approaches allow the organisms-without the need of high supersaturation levels-to accumulate significant quantities of

  11. Zintl Clusters as Wet-Chemical Precursors for Germanium Nanomorphologies with Tunable Composition.

    Science.gov (United States)

    Bentlohner, Manuel M; Waibel, Markus; Zeller, Patrick; Sarkar, Kuhu; Müller-Buschbaum, Peter; Fattakhova-Rohlfing, Dina; Fässler, Thomas F

    2016-02-12

    [Ge9](4-) Zintl clusters are used as soluble germanium source for a bottom-up fabrication of Ge nanomorphologies such as inverse opal structures with tunable composition. The method is based on the assembly and oxidation of [Ge9 ](4-) clusters in a template mold using SiCl4 , GeCl4 , and PCl3 leading to Si and P-containing Ge phases as shown by X-ray diffraction, Raman spectroscopy, and energy-dispersive X-ray analysis. [Ge9](4-) clusters are retained using ethylenediamine (en) as a transfer medium to a mold after removal of the solvent if water is thoroughly excluded, but are oxidized to amorphous Ge in presence of water traces. (1)H NMR spectroscopy reveals the oxidative deprotonation of en by [Ge9](4-). Subsequent annealing leads to crystalline Ge. As an example for wet-chemical synthesis of complex Ge nanomorphologies, we describe the fabrication of undoped and P-doped inverse opal-structured Ge films with a rather low oxygen contents. The morphology of the films with regular volume porosity is characterized by SEM, TEM, and grazing incidence small-angle X-ray scattering. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Calcite biomineralization in coccoliths: Evidence from atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Henriksen, Karen; Stipp, S.L.S.

    2002-01-01

    geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy......geochemistry, crystal orientation, coccolith function, biomineralization, biological calcite, atomic force microscopy...

  13. Little Blue Dots in the Hubble Space Telescope Frontier Fields: Precursors to Globular Clusters?

    Science.gov (United States)

    Elmegreen, Debra Meloy; Elmegreen, Bruce G.

    2017-12-01

    Galaxies with stellar masses {10}-7.4 yr‑1 were examined on images of the Hubble Space Telescope Frontier Field Parallels for Abell 2744 and MACS J0416.1-02403. They appear as unresolved “Little Blue Dots” (LBDs). They are less massive and have higher specific star formation rates (sSFRs) than “blueberries” studied by Yang et al. and higher sSFRs than “Blue Nuggets” studied by Tacchella et al. We divided the LBDs into three redshift bins and, for each, stacked the B435, V606, and I814 images convolved to the same stellar point-spread function (PSF). Their radii were determined from PSF deconvolution to be ∼80 to ∼180 pc. The high sSFRs suggest that their entire stellar mass has formed in only 1% of the local age of the universe. The sSFRs at similar epochs in local dwarf galaxies are lower by a factor of ∼100. Assuming that the star formation rate is {ε }{ff}{M}{gas}/{t}{ff} for efficiency {ε }{ff}, gas mass M gas, and free-fall time, t ff, the gas mass and gas-to-star mass ratio are determined. This ratio exceeds 1 for reasonable efficiencies, and is likely to be ∼5 even with a high {ε }{ff} of 0.1. We consider whether these regions are forming today’s globular clusters. With their observed stellar masses, the maximum likely cluster mass is ∼ {10}5 {M}ȯ , but if star formation continues at the current rate for ∼ 10{t}{ff}∼ 50 {Myr} before feedback and gas exhaustion stop it, then the maximum cluster mass could become ∼ {10}6 {M}ȯ .

  14. Biomineralization

    DEFF Research Database (Denmark)

    Sand, K. K.; Pedersen, C. S.; Sjöberg, S.

    2014-01-01

    a modern coccolithophorid, Emiliania huxleyi. We generated surface complexation constants for the branch components: malonate: 14.25 ± 0.17, succinate: 11.91 ± 0.06, tricarballylate: 14.86 ± 0.04, and citrate: 15.25 ± 0.04. The implication is that complex PS could hold promise for smart material...

  15. A [4Fe-4S]-Fe(CO)(CN)-l-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly

    Science.gov (United States)

    Rao, Guodong; Tao, Lizhi; Suess, Daniel L. M.; Britt, R. David

    2018-05-01

    Biosynthesis of the [FeFe] hydrogenase active site (the 'H-cluster') requires the interplay of multiple proteins and small molecules. Among them, the radical S-adenosylmethionine enzyme HydG, a tyrosine lyase, has been proposed to generate a complex that contains an Fe(CO)2(CN) moiety that is eventually incorporated into the H-cluster. Here we describe the characterization of an intermediate in the HydG reaction: a [4Fe-4S][(Cys)Fe(CO)(CN)] species, 'Complex A', in which a CO, a CN- and a cysteine (Cys) molecule bind to the unique 'dangler' Fe site of the auxiliary [5Fe-4S] cluster of HydG. The identification of this intermediate—the first organometallic precursor to the H-cluster—validates the previously hypothesized HydG reaction cycle and provides a basis for elucidating the biosynthetic origin of other moieties of the H-cluster.

  16. Biominerals- hierarchical nanocomposites: the example of bone

    Science.gov (United States)

    Beniash, Elia

    2010-01-01

    Many organisms incorporate inorganic solids in their tissues to enhance their functional, primarily mechanical, properties. These mineralized tissues, also called biominerals, are unique organo-mineral nanocomposites, organized at several hierarchical levels, from nano- to macroscale. Unlike man made composite materials, which often are simple physical blends of their components, the organic and inorganic phases in biominerals interface at the molecular level. Although these tissues are made of relatively weak components at ambient conditions, their hierarchical structural organization and intimate interactions between different elements lead to superior mechanical properties. Understanding basic principles of formation, structure and functional properties of these tissues might lead to novel bioinspired strategies for material design and better treatments for diseases of the mineralized tissues. This review focuses on general principles of structural organization, formation and functional properties of biominerals on the example the bone tissues. PMID:20827739

  17. Ion bonding in organic scaffolding promotes biomineralization

    NARCIS (Netherlands)

    Hamers, L.; Sommerdijk, N.A.J.M.

    2015-01-01

    The seashells you pick up at the beach might not seem extraordinary, but they’re a source of inspiration for researchers, whether seeking new routes to making materials or searching for efficient ways to store extra atmospheric carbon. Through a process called biomineralization, organisms like

  18. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    Science.gov (United States)

    Zhang, Ying; Moges, Semu; Block, Paul

    2018-01-01

    Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS) values of up to 0.5 and 33 %, respectively. The general skill (after bias correction) of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  19. Does objective cluster analysis serve as a useful precursor to seasonal precipitation prediction at local scale? Application to western Ethiopia

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-01-01

    Full Text Available Prediction of seasonal precipitation can provide actionable information to guide management of various sectoral activities. For instance, it is often translated into hydrological forecasts for better water resources management. However, many studies assume homogeneity in precipitation across an entire study region, which may prove ineffective for operational and local-level decisions, particularly for locations with high spatial variability. This study proposes advancing local-level seasonal precipitation predictions by first conditioning on regional-level predictions, as defined through objective cluster analysis, for western Ethiopia. To our knowledge, this is the first study predicting seasonal precipitation at high resolution in this region, where lives and livelihoods are vulnerable to precipitation variability given the high reliance on rain-fed agriculture and limited water resources infrastructure. The combination of objective cluster analysis, spatially high-resolution prediction of seasonal precipitation, and a modeling structure spanning statistical and dynamical approaches makes clear advances in prediction skill and resolution, as compared with previous studies. The statistical model improves versus the non-clustered case or dynamical models for a number of specific clusters in northwestern Ethiopia, with clusters having regional average correlation and ranked probability skill score (RPSS values of up to 0.5 and 33 %, respectively. The general skill (after bias correction of the two best-performing dynamical models over the entire study region is superior to that of the statistical models, although the dynamical models issue predictions at a lower resolution and the raw predictions require bias correction to guarantee comparable skills.

  20. Ferroxidase-Mediated Iron Oxide Biomineralization

    DEFF Research Database (Denmark)

    Zeth, Kornelius; Hoiczyk, Egbert; Okuda, Mitsuhiro

    2016-01-01

    Iron oxide biomineralization occurs in all living organisms and typically involves protein compartments ranging from 5 to 100nm in size. The smallest iron-oxo particles are formed inside dodecameric Dps protein cages, while the structurally related ferritin compartments consist of twice as many......, translocation, oxidation, nucleation, and storage, that are mediated by ferroxidase centers. Thus, compartmentalized iron oxide biomineralization yields uniform nanoparticles strictly determined by the sizes of the compartments, allowing customization for highly diverse nanotechnological applications....... identical protein subunits. The largest known compartments are encapsulins, icosahedra made of up to 180 protein subunits that harbor additional ferritin-like proteins in their interior. The formation of iron-oxo particles in all these compartments requires a series of steps including recruitment of iron...

  1. Comparison of neurosphere-like cell clusters derived from dental follicle precursor cells and retinal Müller cells

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Petersen, Jørgen; Felthaus, Oliver

    2011-01-01

    Unrelated cells such as dental follicle precursor cells (DFPCs) and retinal Müller cells (MCs) make spheres after cultivation in serum-replacement medium (SRM). Until today, the relation and molecular processes of sphere formation from different cell types remain undescribed. Thus in this study we...... compared proteomes of spheres derived from MCs and DFPCs. 73% of 676 identified proteins were similar expressed in both cell types and many of them are expressed in the brain (55%). Moreover proteins are overrepresented that are associated with pathways for neural diseases such as Huntington disease...... or Alzheimer disease. Interestingly up-regulated proteins in DFPCs are involved in the biosynthesis of glycosphingolipids. These lipids are components of gangliosides such as GD3, which is a novel neural stem cell marker. In conclusion spheres from different types of cells have highly similar proteomes...

  2. Biominerals at the nanoscale: transmission electron microscopy methods for studying the special properties of biominerals

    DEFF Research Database (Denmark)

    Posfai, Mihaly; Kasama, Takeshi; Dunin-Borkowski, Rafal E.

    2013-01-01

    Biominerals have important functions in living organisms: apatite crystals are responsible for the strength of our bones and the hardness of our teeth, calcite and aragonite are used by many organisms for making shells, and magnetite and greigite help bacteria and birds to navigate in magnetic...... fields. In order to fulfill their roles in organisms, biominerals have strictly controlled physical and chemical properties. Transmission electron microscopy (TEM) is ideally suited for the study of the structures, arrangements, compositions, morphologies, crystallographic orientations, crystallographic...... minerals that form in the cells of magnetotactic bacteria....

  3. Chemically Treated 3D Printed Polymer Scaffolds for Biomineral Formation.

    Science.gov (United States)

    Jackson, Richard J; Patrick, P Stephen; Page, Kristopher; Powell, Michael J; Lythgoe, Mark F; Miodownik, Mark A; Parkin, Ivan P; Carmalt, Claire J; Kalber, Tammy L; Bear, Joseph C

    2018-04-30

    We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

  4. Fungal biomineralization of montmorillonite and goethite to short-range-ordered minerals

    Science.gov (United States)

    Li, Huan; Hu, Shuijin; Polizzotto, Matthew L.; Chang, Xiaoli; Shen, Qirong; Ran, Wei; Yu, Guanghui

    2016-10-01

    Highly reactive nano-scale minerals, e.g., short-range-ordered minerals (SROs) and other nanoparticles, play an important role in soil carbon (C) retention. Yet, the mechanisms that govern biomineralization from bulk minerals to highly reactive nano-scale minerals remain largely unexplored, which critically hinders our efforts toward managing nano-scale minerals for soil C retention. Here we report the results from a study that explores structural changes during Aspergillus fumigatus Z5 transformation of montmorillonite and goethite to SROs. We examined the morphology and structure of nano-scale minerals, using high-resolution transmission electron microscopy, time-resolved solid-state 27Al and 29Si NMR, and Fe K-edge X-ray absorption fine structure spectroscopy combined with two dimensional correlation spectroscopy (2D COS) analysis. Our results showed that after a 48-h cultivation of montmorillonite and goethite with Z5, new biogenic intracellular and extracellular reactive nano-scale minerals with a size of 3-5 nm became abundant. Analysis of 2D COS further suggested that montmorillonite and goethite were the precursors of the dominant biogenic nano-scale minerals. Carbon 1s near edge X-ray absorption fine structure (NEXAFS) spectra and their deconvolution results demonstrated that during fungus Z5 growth, carboxylic C (288.4-289.1 eV) was the dominant organic group, accounting for approximately 34% and 59% in the medium and aggregates, respectively. This result suggested that high percentage of the production of organic acids during the growth of Z5 was the driving factor for structural changes during biomineralization. This is, to the best of our knowledge, the first report of the structural characterization of nano-scale minerals by 2D COS, highlighting its potential to elucidate biomineralization pathways and thus identify the precursors of nano-scale minerals.

  5. Biomineralization of superhydrophilic vertically aligned carbon nanotubes.

    Science.gov (United States)

    Marsi, Teresa Cristina O; Santos, Tiago G; Pacheco-Soares, Cristina; Corat, Evaldo J; Marciano, Fernanda R; Lobo, Anderson O

    2012-03-06

    Vertically aligned carbon nanotubes (VACNT) promise a great role for the study of tissue regeneration. In this paper, we introduce a new biomimetic mineralization routine employing superhydrophilic VACNT films as highly stable template materials. The biomineralization was obtained after VACNT soaking in simulated body fluid solution. Detailed structural analysis reveals that the polycrystalline biological apatites formed due to the -COOH terminations attached to VACNT tips after oxygen plasma etching. Our approach not only provides a novel route for nanostructured materials, but also suggests that COOH termination sites can play a significant role in biomimetic mineralization. These new nanocomposites are very promising as nanobiomaterials due to the excellent human osteoblast adhesion.

  6. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site.

    Science.gov (United States)

    Hatoum-Aslan, Asma; Maniv, Inbal; Marraffini, Luciano A

    2011-12-27

    Precise RNA processing is fundamental to all small RNA-mediated interference pathways. In prokaryotes, clustered, regularly interspaced, short palindromic repeats (CRISPR) loci encode small CRISPR RNAs (crRNAs) that protect against invasive genetic elements by antisense targeting. CRISPR loci are transcribed as a long precursor that is cleaved within repeat sequences by CRISPR-associated (Cas) proteins. In many organisms, this primary processing generates crRNA intermediates that are subject to additional nucleolytic trimming to render mature crRNAs of specific lengths. The molecular mechanisms underlying this maturation event remain poorly understood. Here, we defined the genetic requirements for crRNA primary processing and maturation in Staphylococcus epidermidis. We show that changes in the position of the primary processing site result in extended or diminished maturation to generate mature crRNAs of constant length. These results indicate that crRNA maturation occurs by a ruler mechanism anchored at the primary processing site. We also show that maturation is mediated by specific cas genes distinct from those genes involved in primary processing, showing that this event is directed by CRISPR/Cas loci.

  7. Synchrotron Imaging of Biominerals highlights new results and challenges

    International Nuclear Information System (INIS)

    DiMasi, E.

    2005-01-01

    Biominerals, the mineralized tissues of animals, plants, and microorganisms, have inspired humanity with their properties and forms since prehistory. Bones and shells have been used for tools, for currency, for symbolic objects and for art in every culture. Both the fascination and the importance that biominerals present for science are made clear in Darwin's nineteenth-century writings, and in D'Arcy Wentworth Thompson's 1917 On Growth and Form, with its memorable cover illustration of the multi-chambered calcium carbonate nautilus shell. Biomineralization is now a field of study in its own right

  8. Modified cleaning method for biomineralized components

    Science.gov (United States)

    Tsutsui, Hideto; Jordan, Richard W.

    2018-02-01

    The extraction and concentration of biomineralized components from sediment or living materials is time consuming and laborious and often involves steps that remove either the calcareous or siliceous part, in addition to organic matter. However, a relatively quick and easy method using a commercial cleaning fluid for kitchen drains, sometimes combined with a kerosene soaking step, can produce remarkable results. In this study, the method is applied to sediments and living materials bearing calcareous (e.g., coccoliths, foraminiferal tests, holothurian ossicles, ichthyoliths, and fish otoliths) and siliceous (e.g., diatom valves, silicoflagellate skeletons, and sponge spicules) components. The method preserves both components in the same sample, without etching or partial dissolution, but is not applicable to unmineralized components such as dinoflagellate thecae, tintinnid loricae, pollen, or plant fragments.

  9. Biomineralization and the carbon isotope record

    International Nuclear Information System (INIS)

    Degens, E.T.; Ittekkot, V.; Kazmierczak, J.

    1986-01-01

    The advent of biomineralization at the turn of the Precambrian/Cambrian boundary has been a major event in the Earth's evolutionary history. With this there has been a major shift from abiotic to biotic formation of minerals such as phosphates and carbonates and, subsequently, silica. The dominant factor which effected this shift is a change in ocean's chemistry with respect to its Ca 2+ and mineral nutrient contents. Mechanism controlling the biotic mineral formation is different from that controlling the abiotic one in that the former is enzymically controlled. It is suggested that this difference is also manifested in the stable carbon isotope fractionation between the two processes and has implication for the interpretation of stable carbon isotope record. (Author)

  10. Investigation of biomineralization by Raman spectroscopy

    Science.gov (United States)

    Fatscher, Robert William

    Biomineralization is a process in which living organism grow composite materials consisting of inorganic and organic materials. This produces a composite material consisting of both inorganic and organic components, with superior mechanical properties. In the human body bone and dentin are both examples of biominerals. In this research Raman spectroscopy was used to characterize dentin from mice and human teeth, to determine composition. In the mouse tooth samples areas of irregular dentin were found, along the inside of the tooth, to be in the process of mineralization. By analyzing the samples along these areas we were able to determine the composition of dentin and track how it changed in these area. By analysis of the mineral to matrix ratio the areas of irregular dentin were determined to have less mineral present. Observations of other organic components and collagen in increased concentrations in this area suggested these area were in the process of biomineralization. The understanding of the structure of dentin and its biomineralization process is of crucial importance when trying reproduce dentin. Scientists and engineers are able to produce dentin minerals in vitro by culturing various dental stem cells. The ability to create dentin mineral from cells could lead to methods of repairing dentin in patients, or even lead to the creation of a completely engineered tooth. While dentin-like materials can be produced in a laboratory environment, analysis and comparison of the composition of these materials must be performed to ensure the mineral produced is consistent with dentin. Mineralized nodules from six different dental stem cell lines were cultured to produce a mineralized deposit. Utilizing Raman spectroscopy, we were able to determine cell source dependent differences in a variety of dental stem cells, and compare the mineral produced to native dentin. Orthopedic implants are implants used to replace damaged bone, examples include knee, hip and dental

  11. Shedding Light on Fish Otolith Biomineralization Using a Bioenergetic Approach

    Science.gov (United States)

    Fablet, Ronan; Pecquerie, Laure; de Pontual, Hélène; Høie, Hans; Millner, Richard; Mosegaard, Henrik; Kooijman, Sebastiaan A. L. M.

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves. PMID:22110601

  12. Biomineralization of a calcifying ureolytic bacterium Microbacterium sp. GM-1

    Directory of Open Access Journals (Sweden)

    Guojing Xu

    2017-01-01

    Conclusions: The results of this research provide evidence that Microbacterium sp. GM-1 can biologically induce calcification and suggest that strain GM-1 may play a potential role in the synthesis of new biominerals and in bioremediation or biorecovery.

  13. Shedding light on fish otolith biomineralization using a bioenergetic approach.

    Directory of Open Access Journals (Sweden)

    Ronan Fablet

    Full Text Available Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosystem and fisheries monitoring. They however often lack validation and the poor understanding of biomineralization mechanisms has led to striking examples of misinterpretations and subsequent erroneous conclusions in fish ecology and fisheries management. Here we develop and validate a numerical model of otolith biomineralization. Based on a general bioenergetic theory, it disentangles the complex interplay between metabolic and temperature effects on biomineralization. This model resolves controversial issues and explains poorly understood observations of otolith formation. It represents a unique simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves.

  14. Role of Fungi in the Biomineralization of Calcite

    Directory of Open Access Journals (Sweden)

    Saskia Bindschedler

    2016-05-01

    Full Text Available In the field of microbial biomineralization, much of the scientific attention is focused on processes carried out by prokaryotes, in particular bacteria, even though fungi are also known to be involved in biogeochemical cycles in numerous ways. They are traditionally recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of organic acids such as oxalic acid for instance, an activity leading to the genesis of various metal complexes such as metal-oxalate. Their implications in the transformation of various mineral and metallic compounds has been widely acknowledged during the last decade, however, currently, their contribution to the genesis of a common biomineral, calcite, needs to be more thoroughly documented. Calcite is observed in many ecosystems and plays an essential role in the biogeochemical cycles of both carbon (C and calcium (Ca. It may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce its biomineralization. While fungi have often been suspected of being involved in this process in terrestrial environments, only scarce information supports this hypothesis in natural settings. As a result, calcite biomineralization by microbes is still largely attributed to bacteria at present. However, in some terrestrial environments there are particular calcitic habits that have been described as being fungal in origin. In addition to this, several studies dealing with axenic cultures of fungi have demonstrated the ability of fungi to produce calcite. Examples of fungal biomineralization range from induced to organomineralization processes. More examples of calcite biomineralization related to direct fungal activity, or at least to their presence, have been described within the last decade. However, the peculiar mechanisms leading to calcite biomineralization by fungi remain incompletely understood and more research is

  15. clusters

    Indian Academy of Sciences (India)

    2017-09-27

    Sep 27, 2017 ... Author for correspondence (zh4403701@126.com). MS received 15 ... lic clusters using density functional theory (DFT)-GGA of the DMOL3 package. ... In the process of geometric optimization, con- vergence thresholds ..... and Postgraduate Research & Practice Innovation Program of. Jiangsu Province ...

  16. clusters

    Indian Academy of Sciences (India)

    environmental as well as technical problems during fuel gas utilization. ... adsorption on some alloys of Pd, namely PdAu, PdAg ... ried out on small neutral and charged Au24,26,27, Cu,28 ... study of Zanti et al.29 on Pdn (n = 1–9) clusters.

  17. The case study of biomaterials and biominerals

    Science.gov (United States)

    Del Hoyo Martínez, Carmen

    2013-04-01

    The teaching of biomaterials as case study by on-line platform , susceptible to develop both individually and in groups, got different objectives proposed by the European Higher Education System, among which include: participate actively in the teaching-learning process by students, interpreting situations, adapt processes and solutions. It also improves oral and written communication, analytical skills and synthesis and also the ability to think critically. Biomaterials have their origin in biominerals. These are solid inorganic compounds of defined structure, consisting of molecular control mechanisms that operate in biological systems. Its main functions are: structural support, a reservoir of essential elements, sensors, mechanical protection and storage of toxic elements. Following the demand of materials compatible with certain functional systems of our body, developed biomaterials. Always meet the condition of biocompatibility. Should be tolerated by the body and do not provoke rejection. This involves a comprehensive study of physiological conditions and the anatomy of the body where a biomaterial has to be implemented. The possibility of generating new materials from biominerals has a major impact in medicine and other fields could reach as geology, construction, crystallography, etc. While the study of these issues is in its infancy today, can be viewed as an impact on the art and future technology. Planning case study that students would prepare its report for discussion in subgroups. Occurs then the pooling of individual analysis, joint case discussion and adoption by the subgroup of a consensual solution to the problem. The teacher as facilitator and coordinator of the final case analysis, sharing leads to group-wide class and said the unanimous decision reached by the students and gives his opinion on the resolution of the case. REFERENCES D.P. Ausubel. Psicología Educativa. Un punto de vista cognoscitivo. Trillas. Ed. 1983. E.W. Eisner. Procesos

  18. Data set for the proteomic inventory and quantitative analysis of chicken uterine fluid during eggshell biomineralization

    Directory of Open Access Journals (Sweden)

    Pauline Marie

    2014-12-01

    Full Text Available Chicken eggshell is the protective barrier of the egg. It is a biomineral composed of 95% calcium carbonate on calcitic form and 3.5% organic matrix proteins. Mineralization process occurs in uterus into the uterine fluid. This acellular fluid contains ions and organic matrix proteins precursors which are interacting with the mineral phase and control crystal growth, eggshell structure and mechanical properties. We performed a proteomic approach and identified 308 uterine fluid proteins. Gene Ontology terms enrichments were determined to investigate their potential functions. Mass spectrometry analyses were also combined to label free quantitative analysis to determine the relative abundance of 96 proteins at initiation, rapid growth phase and termination of shell calcification. Sixty four showed differential abundance according to the mineralization stage. Their potential functions have been annotated. The complete proteomic, bioinformatic and functional analyses are reported in Marie et al., J. Proteomics (2015 [1].

  19. Selectivity in biomineralization of barium and strontium.

    Science.gov (United States)

    Krejci, Minna R; Wasserman, Brian; Finney, Lydia; McNulty, Ian; Legnini, Daniel; Vogt, Stefan; Joester, Derk

    2011-11-01

    The desmid green alga Closterium moniliferum belongs to a small number of organisms that form barite (BaSO(4)) or celestite (SrSO(4)) biominerals. The ability to sequester Sr in the presence of an excess of Ca is of considerable interest for the remediation of (90)Sr from the environment and nuclear waste. While most cells dynamically regulate the concentration of the second messenger Ca(2+) in the cytosol and various organelles, transport proteins rarely discriminate strongly between Ca, Sr, and Ba. Herein, we investigate how these ions are trafficked in C. moniliferum and how precipitation of (Ba,Sr)SO(4) crystals occurs in the terminal vacuoles. Towards this goal, we simultaneously visualize intracellular dynamics of multiple elements using X-ray fluorescence microscopy (XFM) of cryo-fixed/freeze-dried samples. We correlate the resulting elemental maps with ultrastructural information gleaned from freeze-fracture cryo-SEM of frozen-hydrated cells and use micro X-ray absorption near edge structure (micro-XANES) to determine sulfur speciation. We find that the kinetics of Sr uptake and efflux depend on external Ca concentrations, and Sr, Ba, and Ca show similar intracellular localization. A highly ion-selective cross-membrane transport step is not evident. Based on elevated levels of sulfate detected in the terminal vacuoles, we propose a "sulfate trap" model, where the presence of dissolved barium leads to preferential precipitation of (Ba,Sr)SO(4) due to its low solubility relative to SrSO(4) and CaSO(4). Engineering the sulfate concentration in the vacuole may thus be the most direct way to increase the Sr sequestered per cell, an important consideration in using desmids for phytoremediation of (90)Sr. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Characterization of calcium oxalate biominerals in Pereskia species (Cactaceae).

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2009-01-01

    Calcium oxalate druses were isolated from the stems and leaves of six Pereskioideae family members and investigated by infrared spectroscopy, showing that in all samples the biomineral was present in the form of whewellite, CaC2O4 x H2O. As Pereskia is thought to represent the "ancestral" condition of the leafless stem-succulent cacti, these results suggest that the biomineralization of calcium oxalate in Cactaceae represents a primitive characteristic of the group and also support a close genetic relationship between Pereskia and Opuntia.

  1. Uranium Biomineralization By Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Taillefert, Martial [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-04-01

    This project investigated the geochemical and microbial processes associated with the biomineralization of radionuclides in subsurface soils. During this study, it was determined that microbial communities from the Oak Ridge Field Research subsurface are able to express phosphatase activities that hydrolyze exogenous organophosphate compounds and result in the non-reductive bioimmobilization of U(VI) phosphate minerals in both aerobic and anaerobic conditions. The changes of the microbial community structure associated with the biomineralization of U(VI) was determined to identify the main organisms involved in the biomineralization process, and the complete genome of two isolates was sequenced. In addition, it was determined that both phytate, the main source of natural organophosphate compounds in natural environments, and polyphosphate accumulated in cells could also be hydrolyzed by native microbial population to liberate enough orthophosphate and precipitate uranium phosphate minerals. Finally, the minerals produced during this process are stable in low pH conditions or environments where the production of dissolved inorganic carbon is moderate. These findings suggest that the biomineralization of U(VI) phosphate minerals is an attractive bioremediation strategy to uranium bioreduction in low pH uranium-contaminated environments. These efforts support the goals of the SBR long-term performance measure by providing key information on "biological processes influencing the form and mobility of DOE contaminants in the subsurface".

  2. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  3. Inorganic Biominerals in Crustaceans are Structurally Independent of Organic Framework

    Science.gov (United States)

    Mergelsberg, S. T.; Michel, F. M.; Mukhopadhyay, B.; Dove, P. M.

    2015-12-01

    Biomineralization of calcium carbonate (CaCO3) as crystalline calcite or amorphous CaCO3 (ACC) occurs in the exoskeletons of all crustaceans. These cuticles are complex composites of inorganic mineral and organic macromolecules with highly divergent morphologies that are adapted to the extreme variations in environmental pressures within their diverse ecological niches. The remarkable variations and adaptations that form, infer a highly efficient and regulated mechanism for biomineralization that is most likely orchestrated by a myriad of biomacromolecules (Ziegler A 2012). The roles of these peptides and organic metabolites during CaCO3 biomineralization are not well understood. In part, this is due to a lack of knowledge of crustacean homeostasis. In a step toward understanding cuticle mineralization in crustaceans, this study asks: Which molecules affect biomineralization? Do the biomineral-active molecules vary greatly between species and body parts? Recent studies of polysaccharide controls on mineralization also raise the question of whether small heterogeneities in chitin, the most abundant biopolymer of the composite, could be primarily responsible for differences in CaCO3 crystallinity. This study used a novel spectroscopic approach to characterize the mineral and organic components of exoskeletons from three Malacostraca organisms — American Lobster (Homarus americanus), Dungeness Crab (Metacarcinus magister), and Red Rock Crab (Cancer productus). Using high-energy x-ray diffraction and Raman spectroscopy, the cuticles of three major body parts from these organisms were analyzed for the structure and bulk chemistry of its chitin and CaCO3 components. The findings indicate that Raman spectroscopy provides adequate resolution to show that crystallinity of chitin and the CaCO3 mineral component are chemically independent of each other, although their crystallinities co-vary for Brachyura species (Dungeness and Red Rock Crabs). Insights from this study

  4. Marine biominerals: perspectives and challenges for polymetallic nodules and crusts.

    Science.gov (United States)

    Wang, Xiaohong; Müller, Werner E G

    2009-06-01

    Deep sea minerals in polymetallic nodules, crusts and hydrothermal vents are not only formed by mineralization but also by biologically driven processes involving microorganisms (biomineralization). Within the nodules, free-living and biofilm-forming bacteria provide the matrix for manganese deposition, and in cobalt-rich crusts, coccolithophores represent the dominant organisms that act as bio-seeds for an initial manganese deposition. These (bio)minerals are economically important: manganese is an important alloying component and cobalt forms part of special steels in addition to being used, along with other rare metals, in plasma screens, hard-disk magnets and hybrid car motors. Recent progress in our understanding of the participation of the organic matrices in the enrichment of these metals might provide the basis for feasibility studies of biotechnological applications.

  5. Amorphous Ca-phosphate precursors for Ca-carbonate biominerals mediated by Chromohalobacter marismortui

    NARCIS (Netherlands)

    Rivadeneyra, María Angustias; Martín-Algarra, Agustín; Sánchez-Román, Mónica; Sánchez-Navas, Antonio; Martín-Ramos, José Daniel

    Although diverse microbial metabolisms are known to induce the precipitation of carbonate minerals, the mechanisms involved in the bacterial mediation, in particular nucleation, are still debated. The study of aragonite precipitation by Chromohalobacter marismortui during the early stages (3-7 days)

  6. Shedding light on fish otolith biomineralization using a bioenergetic approach

    DEFF Research Database (Denmark)

    Fablet, R.; Pecquerie, L.; de Pontual, H.

    2011-01-01

    Otoliths are biocalcified bodies connected to the sensory system in the inner ears of fish. Their layered, biorhythm-following formation provides individual records of the age, the individual history and the natural environment of extinct and living fish species. Such data are critical for ecosys...... simulation tool to improve otolith interpretation and applications, and, beyond, to address the effects of both climate change and ocean acidification on other biomineralizing organisms such as corals and bivalves...

  7. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Protein mapping of calcium carbonate biominerals by immunogold.

    Science.gov (United States)

    Marin, Frédéric; Pokroy, Boaz; Luquet, Gilles; Layrolle, Pierre; De Groot, Klaas

    2007-05-01

    The construction of metazoan calcium carbonate skeletons is finely regulated by a proteinaceous extracellular matrix, which remains embedded within the exoskeleton. In spite of numerous biochemical studies, the precise localization of skeletal proteins has remained for a long time as an elusive goal. In this paper, we describe a technique for visualizing shell matrix proteins on the surface of calcium carbonate crystals or within the biominerals. The technique is as follows: freshly broken pieces of biominerals or NaOCl then EDTA-etched polished surfaces are incubated with an antibody elicited against one matrix protein, then with a secondary gold-coupled antibody. After silver enhancement, the samples are subsequently observed with scanning electron microscopy by using back-scattered electron mode. In the present case, the technique is applied to a particular example, the calcitic prisms that compose the outer shell layer of the mediterranean fan mussel Pinna nobilis. One major soluble protein, caspartin, which was identified recently, was partly de novo sequenced after enzymatic digestions. A polyclonal antibody raised against caspartin was used for its localization within and on the prisms. The immunogold localization indicated that caspartin surrounds the calcitic prisms, but is also dispersed within the biominerals. This example illustrates the deep impact of the technique on the definition of intracrystalline versus intercrystalline matrix proteins. Furthermore, it is an important tool for assigning a putative function to a matrix protein of interest.

  9. Thermoset precursor

    International Nuclear Information System (INIS)

    Yamamoto, Y.

    1983-04-01

    This invention pertains to a distinctive thermoset precursor which is prepared by mixing a resin composition (A) which can be hardened by ionizing radiation, and a resin composition (B) which can be hardened by heat but cannot be hardened by, or is resistant to, ionizing radiation, and by coating or impregnating a molding or other substrate with a sheet or film of this mixture and irradiating this with an ionizing radiation. The principal components of composition (A) and (B) can be the following: (1) an acrylate or methacrylate and an epoxy resin and an epoxy resin hardener; (2) an unsaturated polyester resin and epoxy resin and an epoxy resin hardener; (3) a diacrylate or dimethacrylate or polyethylene glycol and an epoxy resin; (4) an epoxy acrylates or epoxy methacrylate obtained by the addition reaction of epoxy resin and acrylic or methacrylic acid

  10. Cluster self-organization of germanate systems: suprapolyhedral precursor clusters and self-assembly of K2Nd4Ge4O13(OH)4, K2YbGe4O10(OH), K2Sc2Ge2O7(OH)2, and KScGe2O6(PYR)

    International Nuclear Information System (INIS)

    Ilyushin, G.D.; Dem'yanets, L.N.

    2008-01-01

    One performed the computerized (the TOPOS 4.0 software package) geometric and topological analyses of all known types of K, TR-germanates (TR = La-Lu, Y, Sc, In). The skeleton structure are shown as three-dimensional 3D, K, TR, Ge-patterns (graphs) with remote oxygen atoms. TR 4 3 3 4 3 3 + T 4 3 4 3, K 2 YbGe 4 O 14 (OH) pattern, TR 6 6 3 6 + T1 6 8 6 + T2 3 6 8, K 2 Sc 2 Ge 2 O 7 (OH) 2 , TR 6 4 6 4 + T 6 4 6 and KScGe 2 O 6 - TR 6 6 3 6 3 4 + T1 6 3 6 + T2 6 4 3 patterns served as crystal-forming 2D TR,Ge-patterns for K 2 Nd 4 Ge 4 O 13 (OH) 4 . One performed the 3D-simulation of the mechanism of self-arrangement of the crystalline structures: cluster-precursor - parent chain - microlayer - microskeleton (super-precursor). Within K 2 Nd 4 Ge 4 O 13 (OH) 4 , K 2 Sc 2 Ge 2 O 7 (OH) 2 and KScGe 2 O 6 one identified the invariant type of the cyclic hexapolyhedral cluster-precursor consisting of TR-octahedrons linked by diorthogroups stabilized by K atoms. For K 2 Nd 4 Ge 4 O 13 (OH) 4 one determined the type of the cyclic tetrapolyhedral cluster-precursor consisting of TR-octavertices linked by tetrahedrons. The cluster CN within the layer just for KScGe 2 O 6 water-free germanate (the PYR pyroxene analog) is equal to 6 (the maximum possible value), while in the rest OH-containing germanates it constitutes 4. One studied the formation mechanism of Ge-radicals in the form of Ge 2 O 7 and Ge 4 O 13 groupings, GeO 3 chain and the tubular structure consisting of Ge 8 O 20 fixed cyclic groupings [ru

  11. Chitosan-Assisted Crystallization and Film Forming of Perovskite Crystals through Biomineralization.

    Science.gov (United States)

    Yang, Yang; Sun, Chen; Yip, Hin-Lap; Sun, Runcang; Wang, Xiaohui

    2016-03-18

    Biomimetic mineralization is a powerful approach for the synthesis of advanced composite materials with hierarchical organization and controlled structure. Herein, chitosan was introduced into a perovskite precursor solution as a biopolymer additive to control the crystallization and to improve the morphology and film-forming properties of a perovskite film by way of biomineralization. The biopolymer additive was able to control the size and morphology of the perovskite crystals and helped to form smooth films. The mechanism of chitosan-mediated nucleation and growth of the perovskite crystals was explored. As a possible application, the chitosan-perovskite composite film was introduced into a planar heterojunction solar cell and increased power conversion efficiency relative to that observed for the pristine perovskite film was achieved. The biomimetic mineralization method proposed in this study provides an alternative way of preparing perovskite crystals with well-controlled morphology and properties and extends the applications of perovskite crystals in photoelectronic fields, including planar-heterojunction solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Biomineralization-Inspired Synthesis of Cerium-Doped Carbonaceous Nanoparticles for Highly Hydroxyl Radical Scavenging Activity

    Science.gov (United States)

    Zou, Shenqiang; Zhu, Xiaofang; Zhang, Lirong; Guo, Fan; Zhang, Miaomiao; Tan, Youwen; Gong, Aihua; Fang, Zhengzou; Ju, Huixiang; Wu, Chaoyang; Du, Fengyi

    2018-03-01

    Cerium oxide nanoparticles recently have received extensive attention in biomedical applications due to their excellent anti-oxidation performance. In this study, a simple, mild, and green approach was developed to synthesize cerium-doped carbonaceous nanoparticles (Ce-doped CNPs) using bio-mineralization of bull serum albumin (BSA) as precursor. The resultant Ce-doped CNPs exhibited uniform and ultrasmall morphology with an average size of 14.7 nm. XPS and FTIR results revealed the presence of hydrophilic group on the surface of Ce-doped CNPs, which resulted in excellent dispersity in water. The CCK-8 assay demonstrated that Ce-doped CNPs possessed favorable biocompatibility and negligible cytotoxicity. Using H2O2-induced reactive oxygen species (ROS) as model, Ce-doped CNPs showed highly hydroxyl radical scavenging capability. Furthermore, flow cytometry and live-dead staining results indicated that Ce-doped CNPs protected cells from H2O2-induced damage in a dose-dependent effect, which provided a direct evidence for anti-oxidative performance. These findings suggest that Ce-doped CNPs as novel ROS scavengers may provide a potential therapeutic prospect in treating diseases associated with oxidative stress.

  13. Nanometer-Scale Chemistry of a Calcite Biomineralization Template: Implications for Skeletal Composition and Nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Oscar; Bonnin, Elisa A.; Perea, Daniel E.; Spero, Howard J.; Zhu, Zihua; Winters, Maria; Hönisch, Bärbel; Russell, Ann D.; Fehrenbacher, Jennifer S.; Gagnon, Alexander C.

    2016-10-28

    Biomineralizing organisms exhibit exquisite control over skeletal morphology and composition. The promise of understanding and harnessing this feat of natural engineering has motivated an intense search for the mechanisms that direct in vivo mineral self-assembly. We used atom probe tomography, a sub-nanometer 3D chemical mapping technique, to examine the chemistry of a buried organic-mineral interface in biomineral calcite from a marine foraminifer. The chemical patterns at this interface capture the processes of early biomineralization, when the shape, mineralogy, and orientation of skeletal growth are initially established. Sodium is enriched by a factor of nine on the organic side of the interface. Based on this pattern, we suggest that sodium plays an integral role in early biomineralization, potentially altering interfacial energy to promote crystal nucleation, and that interactions between organic surfaces and electrolytes other than calcium or carbonate could be a crucial aspect of CaCO3 biomineralization.

  14. Pore Structures in the Biomineralized Byssus of Anomia simplex

    DEFF Research Database (Denmark)

    Frølich, Simon; Leemreize, Hanna; Thomsen, Jesper Skovhus

    2016-01-01

    that uses a biomineralized byssus to permanently anchor itself to substrates. The byssus has a highly complex hierarchical structure and contains over 90 wt% CaCO3. The byssus features a complex set of porosities, presumed to be highly important for the function of the attachment system. The pore space...... is the main focus of the present work. We characterize the three dimensional distribution of pore spaces in the byssus using micro-computed tomography (µCT) through a combination of in house CT and high-resolution synchrotron CT. The pore structures are observed to fall into distinct categories in various...

  15. Characterization of Uranium Tolerance and Biomineralization Potential of Caulobacter crescentus

    Science.gov (United States)

    Park, D.

    2015-12-01

    Due to its high toxicity and mobility, U(VI) poses a major environmental threat to ecosystems. The ubiquitous aerobic bacterium Caulobacter cresecentus is an attractive candidate for U(VI) bioremediation because of its ability to survive in low-nutrient environments (5, 6), tolerate high U concentrations and mineralize U(VI) aerobically through the formation of uranyl phosphate (U-Pi) precipitates. Despite these attractive environmental properties, both a systems level understanding of the adaptive response pathways involved in U tolerance and the environmental conditions affecting the biomineralization process and stability of biogenic U-Pi minerals remain limited. By measuring changes in both mRNA and protein expression during exposure to high U levels, we have identified the core stress response pathways involved in U tolerance. Pathways associated with heat shock, lipospolysaccharide biosynthesis and transport, outer membrane lipoprotein transport and outermembrane assembly were highly induced at both the RNA and protein levels. Correspondingly, removal of integral components of proteolysis pathways including clpA, clpS and degP significantly reduced U tolerance under biomineralization conditions. Surprisingly, in contrast to many other heavy metals, U did not cause oxidative stress or DNA damage. Together, these analyses indicate that U predominately targets the outermembrane and causes mis-folding of both cytoplasmic and extracytoplasmic proteins. Efforts are currently underway to characterize the morphological and structural properties of biogenic U-Pi minerals and the environmental factors that influence their production and stability. Preliminary AFM studies suggest that U-Pi minerals formed under biomineralization conditions appear morphologically distinct from those formed abiotically between U(VI) and inorganic phosphate. Additionally, we observed that biomineralization tolerates a wide pH range (pH 6-9). Our long-range goal is the development of a

  16. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  17. Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria

    DEFF Research Database (Denmark)

    Miot, Jennyfer; Benzerara, Karim; Morin, Guillaume

    2009-01-01

    Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate-dependent ......Minerals formed by bio-oxidation of ferrous iron (Fe(II)) at neutral pH, their association with bacterial ultrastructures as well as their impact on the metabolism of iron-oxidizing bacteria remain poorly understood. Here, we investigated iron biomineralization by the anaerobic nitrate...... precipitation in the periplasm (in a few tens of minutes), followed by the formation of surface-bound globules. Moreover, we frequently observed an asymmetric mineral thickening at the cell poles. In parallel, the evolution of iron oxidation was quantified by STXM: iron both contained in the bacteria...... and in the extracellular precipitates reached complete oxidation within 6 days. While a progressive oxidation of Fe in the bacteria and in the medium could be observed, spatial redox (oxido-reduction state) heterogeneities were detected at the cell poles and in the extracellular precipitates after 1 day. All...

  18. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Sobecky, Patricia A. [Univ. of Alabama, Tuscaloosa, AL (United States)

    2015-04-06

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  19. Carbonate biomineralization in terrestrial gastropods: environmental vs. physiological constraints

    Science.gov (United States)

    Mierzwa, D.; Stolarski, J.

    2009-04-01

    Preservational potential of shells of terrestrial gastropods allows to use them as valuable (paleo)climatic proxies. Despite of the fact, that the elements incorporated in their skeleton derive almost entirely from their diet, details of the ion uptake routes have not been studied in details. This work is a first step in the investigations of element uptake and biomineralization processes in pulmonate gastropod Cepaea vindobonensis (Férussac, 1821). Although phenotypic plasticity in the shell characters of the species appears to be mainly genetic in nature, some differences seem to correlate with availability of ions used in biomineralization. For example, shells of individuals living in marginal parts of flood plains (environment extreme for the species and generally depleted in calcium) have weakened structure and faded color pattern, whereas individuals from the lime substrata form typically developed, pigmented shells with several cross-lamellar layers. Micro- and nanostructural characteristics of shells from different environments are visualized by SEM and AFM imaging techniques and some biogeochemical properties are characterized by spectroscopic and fluorescence methods. Further experiments are required to elucidate the ion/trace elements transfer between the substratum, nutrients, organism, and the shell.

  20. Natural analogue studies as supplements to biomineralization research

    International Nuclear Information System (INIS)

    McNeil, M.B.

    1995-01-01

    Chemical reactions can alter the chemistry and crystal structure of solid objects over archeological or geological times, while preserving external physical shapes. The reactions resulting in these structures offer natural analogues to laboratory experiments in biomineralization and to biologically influenced alteration of nuclear waste packages, and thus, they offer the only available way of validating models that purport waste package behavior over archaeological or geological times. Potential uses of such analogues in the construction and validation of hypothetical mechanisms of microbiological corrosion and biomineralization are reviewed. Evidence from such analogues suggests that biofilms can control materials alteration in ways usually overlooked. The newly hypothesized mechanisms involve control by biofilms of the cation flow near the solid surface and offer plausible mechanisms for the formation of mixed-cation minerals under conditions that would lead to dealloying in abiotic experiments; they also account for the formation of unusual minerals [such as posnjakite, Cu 4 SO 4 (OH) 6· H 2 O] and mineral morphologies unusual in corrosion [malachite, Cu 2 CO 3 (OH) 2 , rarely forms botryoidally under corrosion conditions and its occasional presence on archaeological objects that appear to have undergone microbiological corrosion may be related to biofilm phenomena

  1. Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface

    International Nuclear Information System (INIS)

    Sobecky, Patricia A.

    2015-01-01

    In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Area 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.

  2. Electron Microscopy Observation of Biomineralization within Wood Tissues of Kurogaki

    Directory of Open Access Journals (Sweden)

    Kazue Tazaki

    2017-07-01

    Full Text Available Interactions between minerals and microorganisms play a crucial role in living wood tissues. However, living wood tissues have never been studied in the field. Fortunately, we found several kurogaki (black persimmon; Diospyros kaki trees at Tawara in Kanazawa, Ishikawa, Japan. Here, we report the characterization of kurogaki based on scanning electron microscopy equipped with energy-dispersive spectroscopy (SEM-EDS and transmission electron microscopy (TEM, associated with inductively coupled plasma-mass spectrometry (ICP-MS analyses, X-ray fluorescence analyses (XRF and X-ray powder diffraction (XRD analyses. This study aims to illustrate the ability of various microorganisms associated with biominerals within wood tissues of kurogaki, as shown by SEM-EDS elemental content maps and TEM images. Kurogaki grows very slowly and has extremely hard wood, known for its striking black and beige coloration, referred to as a “peacock pattern”. However, the scientific data for kurogaki are very limited. The black “peacock pattern” of the wood mainly comprises cellulose and high levels of crystal cristobalite. As per the XRD results, the black taproot contains mineralized 7 Å clays (kaolinite, cellulose, apatite and cristobalite associated with many microorganisms. The chemical compositions of the black and beige portions of the black persimmon tree were obtained by ICP-MS analyses. Particular elements such as abundant Ca, Mg, K, P, Mn, Ba, S, Cl, Fe, Na, and Al were concentrated in the black region, associated with Pb and Sr elements. SEM-EDS semi-qualitative analyses of kurogaki indicated an abundance of P and Ca in microorganisms in the black region, associated with Pb, Sr, S, Mn, and Mg elements. On the other hand, XRF and XRD mineralogical data showed that fresh andesite, weathered andesite, and the soils around the roots of kurogaki correlate with biomineralization of the black region in kurogaki roots, showing clay minerals (kaolinite and

  3. Redox control of iron biomineralization in Magnetospirillum magneticum AMB-1

    Science.gov (United States)

    Jones, Stephanie Rhianon

    Magnetotactic bacteria have evolved complex subcellular machinery to construct linear chains of magnetite nanocrystals that allow the host cell to sense direction. Each mixed-valent iron nanoparticle is mineralized from soluble iron within a membrane-encapsulated vesicle termed the magnetosome, which serves as a specialized compartment that regulates the iron, redox, and pH environment of the growing mineral. In order to dissect the biological components that control this process, we have carried out genetic and biochemical studies of proteins proposed to function in iron mineralization in Magnetospirillum magneticum AMB-1. As iron biomineralization by magnetotactic bacteria represents a particularly interesting case for understanding how the production of nanomaterials can be programmed at the genetic level, we also apply synthetic biology techniques towards the production of new cellular materials and new cellular functions. As the production of magnetite requires both the formation of Fe(II) and Fe(III), the redox components of the magnetosome play an essential role in this process. Using genetic complementation studies, we show that the redox cofactors or heme sites of the two putative redox partners, MamP and MamT, are required for magnetite biomineralization in vivo and that removal of one or both sites leads to defects in mineralization. We develop and optimize a heterologous expression method in the E. coli periplasm to cleanly isolate fully heme-loaded MamP for biochemical studies. Spectrochemical redox titrations show that the reduction potential of MamP lies in a different range than other c-type cytochrome involved in either Fe(III) reduction or Fe(II) oxidation. Nonetheless, in vitro mineralization studies with MamP and Fe(II) show that it is able to catalyze the formation of mixed-valent Fe(II)/Fe(III) oxides such as green rust. Biomineralization also requires lattice-templating proteins that guide the growth of the functional crystalline material. We

  4. Cluster Implantation and Deposition Apparatus

    DEFF Research Database (Denmark)

    Hanif, Muhammad; Popok, Vladimir

    2015-01-01

    In the current report, a design and capabilities of a cluster implantation and deposition apparatus (CIDA) involving two different cluster sources are described. The clusters produced from gas precursors (Ar, N etc.) by PuCluS-2 can be used to study cluster ion implantation in order to develop...

  5. High ordered biomineralization induced by carbon nanoparticles in the sea urchin Paracentrotus lividus

    International Nuclear Information System (INIS)

    Manno, Daniela; Buccolieri, Alessandro; Filippo, Emanuela; Serra, Antonio; Carata, Elisabetta; Tenuzzo, Bernadetta A; Panzarini, Elisa; Dini, Luciana; Rossi, Marco

    2012-01-01

    A surprising and unexpected biomineralization process was observed during toxicological assessment of carbon nanoparticles on Paracentrotus lividus (sea urchin) pluteus larvae. The larvae activate a process of defense against external material, by incorporating the nanoparticles into microstructures of aragonite similarly to pearl oysters. Aiming at a better understanding of this phenomenon, the larvae were exposed to increasing concentrations of carbon nanoparticles and the biomineralization products were analyzed by electron microscopy, x-ray diffraction and Raman spectroscopy. In order to evaluate the possible influence of Sp-CyP-1 expression on this biomineralization process by larvae, analyses of gene expression (Sp-CyP-1) and calcein labeling were performed. Overall, we report experimental evidence about the capability of carbon nanoparticles to induce an increment of Sp-CyP-1 expression with the consequent activation of a biomineralization process leading to the production of a new pearl-like biomaterial never previously observed in sea urchins. (paper)

  6. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials.

    Science.gov (United States)

    Faivre, Damien; Godec, Tina Ukmar

    2015-04-13

    Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A critical survey of biomineralization control, mechanisms, functions and material properties

    CERN Document Server

    Engel, Jürgen

    2017-01-01

    This monograph provides a comprehensive and up-to-date approach on biomineralization. The topical focus of the book lies on the question of how matrix proteins and cells catalyze and regulate mineralization in organisms. Recent advances in the understanding of biomineralization help to better understand biomaterials, in particular their mechanical properties. The target audience primarily comprises practitioners and research experts in the field, but the book may also be beneficial for graduate students.

  8. Ionospheric earthquake precursors

    International Nuclear Information System (INIS)

    Bulachenko, A.L.; Oraevskij, V.N.; Pokhotelov, O.A.; Sorokin, V.N.; Strakhov, V.N.; Chmyrev, V.M.

    1996-01-01

    Results of experimental study on ionospheric earthquake precursors, program development on processes in the earthquake focus and physical mechanisms of formation of various type precursors are considered. Composition of experimental cosmic system for earthquake precursors monitoring is determined. 36 refs., 5 figs

  9. Characterization of biominerals in species of Canna (Cannaceae

    Directory of Open Access Journals (Sweden)

    Enrique J Baran

    2010-12-01

    Full Text Available Plant biominerals are not always well characterized, although this information is important for plant physiology and can be useful for taxonomic purposes. In this work, fresh plant material of seven wild neotropical species of genus Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., taken from different habitats, were studied to characterize the biominerals in their internal tissues. For the first time, samples from primary and secondary veins of leaves were investigated by means of infrared spectroscopy, complemented with X-ray powder diffractometry and scanning electron microscopy. The spectroscopic results, supported by X-ray powder diffractometry, suggest that the calcium oxalate is present in the form of whewellite (CaC2O4×H2O in all the investigated samples. It is interesting to emphasize that all IR spectra obtained were strongly similar in all species studied, thus indicating an identical chemical composition in terms of the biominerals found. In this sense, the results suggest that the species of Canna show similar ability to produce biogenic silica and produce an identical type of calcium oxalate within their tissues. These results can be an additional trait to support the relationship among the families of Zingiberales. Rev. Biol. Trop. 58 (4: 1507-1515. Epub 2010 December 01.Los biominerales de las plantas no siempre han sido bien caracterizados aunque esta información es importante en fisiología vegetal y puede ser de utilidad para fines taxonómicos. En este trabajo se estudió material vegetal fresco de siete especies silvestres neotropicales: Canna, C. ascendens, C. coccinea, C. indica, C. glauca, C. plurituberosa, C. variegatifolia and C. fuchsina sp. ined., provenientes de diferentes localidades, con el fin de caracterizar los biominerales presentes en sus tejidos foliares internos. Por vez primera, muestras de venas primarias (ejes foliares y secundarias de

  10. The Nanomechanics of Biomineralized Soft-Tissues and Organic Matrices

    Science.gov (United States)

    Bezares-Chavez, Jiddu

    The research reported on in this dissertation is concerned with the macro-molecular constitution and geometrical organization of the soft-tissue comprising the matrix of the nacreous portion of the shell of Haliotis rufescens, the Red abalone. Nacre is one of literally legions of intricate biomineralized structures that exist in nature and has long served as a paradigm for elegant and optimized structural de-sign. Biomineralization involves, inter alia, the uptake and synthesis of elements and compounds from the environment and their incorporation into highly optimized functional structures. Nacre has a structure described as a brick wall like with a matrix of biopolymer layers that are preformed and serve as a template into which nanocrystalline tiles of CaCO3 precipitate. The matrix, or what are known as inter-lamellar layers, are of particular interest as they impart both toughness and strength to the composite ceramic nacre structure. The work first involved a histochemical mapping of the macromolecular structure of the interlamellar layers; this revealed the locations of proteins and functional molecular groups that serve as nucleation sites for the ceramic tiles. Parallel studies on the nacre of Nautilus pompilius, the Chambered Nautilus, revealed the generality of the findings. Of particular interest was determining both the content and layout of chitin within these layers. In fact it was determined that chitin was organized as mostly unidirectional architecture of fibrils, with a certain fraction of fibrils laying at cross directions. Most remarkably, it was found that the fibrils possessed a very long range connectivity that spanned many tiles. This was determined by systematic atomic force (afm) and analytical optical histochemical microscopy. These findings were further verified by a unique form of mechanical testing whereby tensile testing was conducted on groups of interlamellar layers extracted from nacre. Mechanical testing led to a quantitative

  11. Bone up: craniomandibular development and hard-tissue biomineralization in neonate mice.

    Science.gov (United States)

    Thompson, Khari D; Weiss-Bilka, Holly E; McGough, Elizabeth B; Ravosa, Matthew J

    2017-10-01

    The presence of regional variation in the osteogenic abilities of cranial bones underscores the fact that the mechanobiology of the mammalian skull is more complex than previously recognized. However, the relationship between patterns of cranial bone formation and biomineralization remains incompletely understood. In four strains of mice, micro-computed tomography was used to measure tissue mineral density during perinatal development in three skull regions (calvarium, basicranium, mandible) noted for variation in loading environment, embryological origin, and ossification mode. Biomineralization levels increased during perinatal ontogeny in the mandible and calvarium, but did not increase in the basicranium. Tissue mineral density levels also varied intracranially, with density in the mandible being highest, in the basicranium intermediate, and in the calvarium lowest. Perinatal increases in, and elevated levels of, mandibular biomineralization appear related to the impending postweaning need to resist elevated masticatory stresses. Similarly, perinatal increases in calvarial biomineralization may be linked to ongoing brain expansion, which is known to stimulate sutural bone formation in this region. The lack of perinatal increase in basicranial biomineralization could be a result of earlier developmental maturity in the cranial base relative to other skull regions due to its role in supporting the brain's mass throughout ontogeny. These results suggest that biomineralization levels and age-related trajectories throughout the skull are influenced by the functional environment and ontogenetic processes affecting each region, e.g., onset of masticatory loads in the mandible, whereas variation in embryology and ossification mode may only have secondary effects on patterns of biomineralization. Knowledge of perinatal variation in tissue mineral density, and of normal cranial bone formation early in development, may benefit clinical therapies aiming to correct

  12. Significance, mechanisms and environmental implications of microbial bio-mineralization

    International Nuclear Information System (INIS)

    Benzerara, K.; Miot, J.; Morin, G.; Ona-Nguema, G.; Skouri-Panet, F.; Ferard, C.

    2011-01-01

    Microorganisms can mediate the formation of minerals by a process called bio-mineralization. This process offers an efficient way to sequester inorganic pollutants within relatively stable solid phases. Here we review some of the main mechanisms involved in the mediation of mineral precipitation by microorganisms. This includes supersaturation caused by metabolic activity, the triggering of nucleation by production of more or less specific organic molecules, and the impact of mineral growth. While these processes have been widely studied in the laboratory, assessment of their importance in the environment is more difficult. We illustrate this difficulty using a case study on an As-contaminated acid mine drainage located in the South of France (Carnoules, Gard). In particular, we explore the potential relationships that might exist between microbial diversity and mineral precipitation. The present review, far from being exhaustive, highlights some recent advances in the field of bio-mineralogy and provides non-specialists an introduction to some of the main approaches and some questions that remain unanswered. (authors)

  13. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    Science.gov (United States)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  14. Fungal Iron Biomineralization in Río Tinto

    Directory of Open Access Journals (Sweden)

    Monike Oggerin

    2016-04-01

    Full Text Available Although there are many studies on biomineralization processes, most of them focus on the role of prokaryotes. As fungi play an important role in different geological and biogeochemical processes, it was considered of interest to evaluate their role in a natural extreme acidic environment, Río Tinto, which has a high level of fungal diversity and a high concentration of metals. In this work we report, for the first time, the generation of iron oxyhydroxide minerals by the fungal community in a specific location of the Tinto basin. Using Transmission Electron Microscopy (TEM and High Angle Angular Dark Field coupled with Scanning Transmission Electron Microscopy (HAADF-STEM and Energy-Dispersive X-ray Spectroscopy (EDX, we observed fungal structures involved in the formation of iron oxyhydroxide minerals in mineralized sediment samples from the Río Tinto basin. Although Río Tinto waters are supersaturated in these minerals, they do not precipitate due to their slow precipitation kinetics. The presence of fungi, which simply provide charged surfaces for metal binding, favors the precipitation of Fe oxyhydroxides by overcoming these kinetic barriers. These results prove that the fungal community of Río Tinto participates very actively in the geochemical processes that take place there.

  15. Microbial Diversity in KURT Groundwater and Biomineralization Characteristics

    International Nuclear Information System (INIS)

    Roh, Yul; Rhee, Sung Keun; Oh, Jong Min; Park, Byung Jun

    2009-03-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe-metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal-reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI

  16. Polarization-dependent Imaging Contrast (PIC) mapping reveals nanocrystal orientation patterns in carbonate biominerals

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, Pupa U.P.A., E-mail: pupa@physics.wisc.edu [University of Wisconsin-Madison, Departments of Physics and Chemistry, Madison, WI 53706 (United States)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Nanocrystal orientation shown by Polarization-dependent Imaging Contrast (PIC) maps. Black-Right-Pointing-Pointer PIC-mapping of carbonate biominerals reveals their ultrastructure at the nanoscale. Black-Right-Pointing-Pointer The formation mechanisms of biominerals is discovered by PIC-mapping using PEEM. -- Abstract: Carbonate biominerals are one of the most interesting systems a physicist can study. They play a major role in the CO{sub 2} cycle, they master templation, self-assembly, nanofabrication, phase transitions, space filling, crystal nucleation and growth mechanisms. A new imaging modality was introduced in the last 5 years that enables direct observation of the orientation of carbonate single crystals, at the nano- and micro-scale. This is Polarization-dependent Imaging Contrast (PIC) mapping, which is based on X-ray linear dichroism, and uses PhotoElectron Emission spectroMicroscopy (PEEM). Here we present PIC-mapping results from biominerals, including the nacre and prismatic layers of mollusk shells, and sea urchin teeth. We describe various PIC-mapping approaches, and show that these lead to fundamental discoveries on the formation mechanisms of biominerals.

  17. Biomineralization ability and interaction of mineral trioxide aggregate and white portland cement with dentin in a phosphate-containing fluid.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2009-05-01

    Mineral trioxide aggregate (MTA) has been shown to be bioactive because of its ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin after immersion in phosphate-buffered saline (PBS). Dentin disks with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2) and immersed in 15 mL of PBS for 2 months. The precipitates were weighed and analyzed by scanning electron microscopy (SEM) and x-ray diffraction. The calcium ion release and pH of the solutions were monitored at 5, 15, 25, and 35 days. The samples were processed for SEM observations. Data were analyzed by using analysis of variance or Kruskall-Wallis tests. Our findings revealed the presence of amorphous calcium phosphate precipitates with different morphologies. The apatite formed by the cement-PBS system was deposited within collagen fibrils, promoting controlled mineral nucleation on dentin, observed as the formation of an interfacial layer with tag-like structures. All the cements tested were bioactive. The cements release some of their components in PBS, triggering the initial precipitation of amorphous calcium phosphates, which act as precursors during the formation of carbonated apatite. This spontaneous precipitation promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface.

  18. Electron localization in water clusters

    International Nuclear Information System (INIS)

    Landman, U.; Barnett, R.N.; Cleveland, C.L.; Jortner, J.

    1987-01-01

    Electron attachment to water clusters was explored by the quantum path integral molecular dynamics method, demonstrating that the energetically favored localization mode involves a surface state of the excess electron, rather than the precursor of the hydrated electron. The cluster size dependence, the energetics and the charge distribution of these novel electron-cluster surface states are explored. 20 refs., 2 figs., 1 tab

  19. Application of SEM and EDX in studying biomineralization in plant tissues.

    Science.gov (United States)

    He, Honghua; Kirilak, Yaowanuj

    2014-01-01

    This chapter describes protocols using formalin-acetic acid-alcohol (FAA) to fix plant tissues for studying biomineralization by means of scanning electron microscopy (SEM) and qualitative energy-dispersive X-ray microanalysis (EDX). Specimen preparation protocols for SEM and EDX mainly include fixation, dehydration, critical point drying (CPD), mounting, and coating. Gold-coated specimens are used for SEM imaging, while gold- and carbon-coated specimens are prepared for qualitative X-ray microanalyses separately to obtain complementary information on the elemental compositions of biominerals. During the specimen preparation procedure for SEM, some biominerals may be dislodged or scattered, making it difficult to determine their accurate locations, and light microscopy is used to complement SEM studies. Specimen preparation protocols for light microscopy generally include fixation, dehydration, infiltration and embedding with resin, microtome sectioning, and staining. In addition, microwave processing methods are adopted here to speed up the specimen preparation process for both SEM and light microscopy.

  20. Calcification in vitro of Biomineralized nanohydroxyapatite / superhydrophilic vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcele Florencio; Silva, Gislene Rodrigues; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: loboao@yahoo.com, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Pacheco-Soares, Cristina [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Dinamica de Compartimentos Celulares

    2013-11-01

    Nanocomposites based on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2}) and nanohydroxyapatite (nHAp) are of great interest in bone regenerative medicine. The biomineralization using simulated body fluid (SBF) has been extensively studied to evaluate the bioactivity of biomaterials. Thus, the combination of nHAp and VAMWCNT-O{sub 2} is attractive and promising. The aim of this study was to evaluate the in vitro calcification of nHAp/VAMWCNT-O{sub 2} nanocomposites before and after the period of biomineralization in SBF. In vitro calcification of the extracellular matrix (ECM) of HOB cells in culture after 24 hours was investigated through the assay of alkaline phosphatase. These promising in vitro results validate biomineralized nHAp/VAMWCNT-O{sub 2} as possible scaffolds for bone tissue regeneration. (author)

  1. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo.

    Science.gov (United States)

    Dreger, Luonothar Antunes Schmitt; Felippe, Wilson Tadeu; Reyes-Carmona, Jessie Fabiola; Felippe, Gabriela Santos; Bortoluzzi, Eduardo Antunes; Felippe, Mara Cristina Santos

    2012-03-01

    Mineral trioxide aggregate (MTA) and Portland cement have been shown to be bioactive because of their ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin in vivo. Seventy-two human dentin tubes were filled with MTA Branco, MTA BIO, and white Portland cement + 20% bismuth oxide (PC1) or PC1 + 10% of calcium chloride (PC2) and implanted subcutaneously in 18 rats at 4 sites from the dorsal area. Empty dentin tubes, implanted in rats of a pilot study, were used as control. After 30, 60, and 90 days, the animals were killed, and the dentin tubes were retrieved for scanning electron microscope analysis. In the periods of 30 and 60 days, the mineral deposition in the material-dentin interface (interfacial layer) and in the interior of dentinal tubules was detected in more tubes filled with MTA Branco and MTA BIO than in tubes filled with PC1 and PC2. After 90 days, the interfacial layer and intratubular mineralization were detected in all tubes except for 3 and 1 of the tubes filled with PC2, respectively. It was concluded that all the cements tested were bioactive. The cements released some of their components in the tissue capable of stimulating mineral deposition in the cement-dentin interface and in the interior of the dentinal tubules. MTA BIO and MTA Branco were more effective in promoting the biomineralization process than Portland cements, mainly after 30 and 60 days. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Fe biomineralization mirrors individual metabolic activity in a nitrate-dependent Fe(II-oxidizer

    Directory of Open Access Journals (Sweden)

    Jennyfer eMIOT

    2015-09-01

    Full Text Available Microbial biomineralization sometimes leads to periplasmic encrustation, which is predicted to enhance microorganism preservation in the fossil record. Mineral precipitation within the periplasm is however thought to induce death, as a result of permeability loss preventing nutrient and waste transit across the cell wall. This hypothesis had however never been investigated down to the single cell level. Here, we cultured the nitrate reducing Fe(II oxidizing bacteria Acidovorax sp. strain BoFeN1 that have been previously shown to promote the precipitation of a diversity of Fe minerals (lepidocrocite, goethite, Fe phosphate encrusting the periplasm. We investigated the connection of Fe biomineralization with carbon assimilation at the single cell level, using a combination of electron microscopy and Nano-Secondary Ion Mass Spectrometry (NanoSIMS. Our analyses revealed strong individual heterogeneities of Fe biomineralization. Noteworthy, a small proportion of cells remaining free of any precipitate persisted even at advanced stages of biomineralization. Using pulse chase experiments with 13C-acetate, we provide evidences of individual phenotypic heterogeneities of carbon assimilation, correlated with the level of Fe biomineralization. Whereas non- and moderately encrusted cells were able to assimilate acetate, higher levels of periplasm encrustation prevented any carbon incorporation. Carbon assimilation only depended on the level of Fe encrustation and not on the nature of Fe minerals precipitated in the cell wall. Carbon assimilation decreased exponentially with increasing cell-associated Fe content. Persistence of a small proportion of non-mineralized and metabolically active cells might constitute a strategy of survival in highly ferruginous environments. Eventually, our results suggest that periplasmic Fe biomineralization may provide a signature of individual metabolic status, which could be looked for in the fossil record and in modern

  3. Distinguishing Biologically Controlled Calcareous Biomineralization in Fossil Organisms Using Electron Backscatter Diffraction (EBSD)

    Science.gov (United States)

    Päßler, Jan-Filip; Jarochowska, Emilia; Bestmann, Michel; Munnecke, Axel

    2018-02-01

    Although carbonate-precipitating cyanobacteria are ubiquitous in aquatic ecosystems today, the criteria used to identify them in the geological record are subjective and rarely testable. Differences in the mode of biomineralization between cyanobacteria and eukaryotes, i.e. biologically induced calcification (BIM) vs. biologically controlled calcification (BCM), result in different crystallographic structures which might be used as a criterion to test cyanobacterial affinities. Cyanobacteria are often used as a ‘wastebasket taxon’, to which various microfossils are assigned. The lack of a testable criterion for the identification of cyanobacteria may bias their fossil record severely. We employed electron backscatter diffraction (EBSD) to investigate the structure of calcareous skeletons in two microproblematica widespread in Palaeozoic marine ecosystems: Rothpletzella, hypothesized to be a cyanobacterium, and an incertae sedis microorganism Allonema. We used a calcareous trilobite shell as a BCM reference. The mineralized structure of Allonema has a simple single-layered structure of acicular crystals perpendicular to the surface of the organism. The c-axes of these crystals are parallel to the elongation and thereby normal to the surface of the organism. EBSD pole figures and misorientation axes distribution reveal a fibre texture around the c-axis with a small degree of variation (up to 30°), indicating a highly ordered structure. A comparable pattern was found in the trilobite shell. This structure allows excluding biologically induced mineralization as the mechanism of shell formation in Allonema. In Rothpletzella, the c-axes of the microcrystalline sheath show a broader clustering compared to Allonema, but still reveal crystals tending to be perpendicular to the surface of the organism. The misorientation axes of adjacent crystals show an approximately random distribution. Rothpletzella also shares morphological similarities with extant cyanobacteria. We

  4. Characterization of calcium oxalate biominerals in some (non-Cactaceae) succulent plant species.

    Science.gov (United States)

    Monje, Paula V; Baran, Enrique J

    2010-01-01

    The water-accumulating leaves of crassulacean acid metabolism plants belonging to five different families were investigated for the presence of biominerals by infrared spectroscopic and microscopic analyses. Spectroscopic results revealed that the mineral present in succulent species of Agavaceae, Aizoaceae, and Asphodelaceae was calcium oxalate monohydrate (whewellite, CaC2O4 x H2O). Crystals were predominantly found as raphides or solitary crystals of various morphologies. However, representative Crassulaceae members and a succulent species of Asteraceae did not show the presence of biominerals. Overall, these results suggest no correlation between calcium oxalate generation and crassulacean acid metabolism in succulent plants.

  5. Spatial analysis of biomineralization associated gene expression from the mantle organ of the pearl oyster Pinctada maxima

    Science.gov (United States)

    2011-01-01

    Background Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes. Conclusions This investigation has mapped the spatial distribution for over 2000 ESTs present on PmaxArray 1.0 with reference to specific locations of the mantle. Expression profile clusters have indicated at least five unique functioning zones in the mantle. Three of these zones are likely involved in shell related activities including formation of nacre

  6. Earthquakes: hydrogeochemical precursors

    Science.gov (United States)

    Ingebritsen, Steven E.; Manga, Michael

    2014-01-01

    Earthquake prediction is a long-sought goal. Changes in groundwater chemistry before earthquakes in Iceland highlight a potential hydrogeochemical precursor, but such signals must be evaluated in the context of long-term, multiparametric data sets.

  7. Piezoelectric Templates – New Views on Biomineralization and Biomimetics

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V−1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  8. Do fossil vertebrate biominerals hold the key to the Palaeozoic climate?

    Science.gov (United States)

    Žigaitė, Ž.

    2012-04-01

    Fossil vertebrate hard tissues - teeth and dermoskeleton - are considered among the most geochemically stable biominerals, and therefore are widely used for palaeoenvironmental and palaeoclimatic reconstructions. Elemental and isotopic compositions of fossil dental tissues may provide unique palaeoenvironmental information, ranging from the diet and trophic positions on a food chain, to the palaeosalinity and water temperatures of ancient seas. However, the post-mortem alteration and re-crystallisation of fossil hard tissues may hamper these interpretations. Chemical composition and isotopic equilibrium of the biomineral change readily at any time from the earliest diagenesis to the final laboratory acid treatment during the fossil preparation. This is why particular attention shall be given to the preservation of fossil tissues, evaluating carefully the level of possible alteration in the primary geochemical composition. Pre-evaluation of fossil preservation can be made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections using Energy Dispersive X-ray Spectroscopy (EDS), and help to preview the chemical composition of biomineral. The Electron Backscatter Diffractometry (EBSD) is useful to examine the cristallinity and possible structural alterations. In addition, rare earth element (REE) abundances can be measured in situ within the fine fossil tissues (such as enamel) using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS), giving evidence on the selective geochemical resilience between separate vertebrate hard tissues. Therefore, in order to decipher the geochemical signal correctly, the evaluation of preservation is a necessary starting point to any further studies of fossil biomineral geochemistry.

  9. H(+)/K(+) ATPase activity is required for biomineralization in sea urchin embryos.

    Science.gov (United States)

    Schatzberg, Daphne; Lawton, Matthew; Hadyniak, Sarah E; Ross, Erik J; Carney, Tamara; Beane, Wendy S; Levin, Michael; Bradham, Cynthia A

    2015-10-15

    The bioelectrical signatures associated with regeneration, wound healing, development, and cancer are changes in the polarization state of the cell that persist over long durations, and are mediated by ion channel activity. To identify physiologically relevant bioelectrical changes that occur during normal development of the sea urchin Lytechinus variegatus, we tested a range of ion channel inhibitors, and thereby identified SCH28080, a chemical inhibitor of the H(+)/K(+) ATPase (HKA), as an inhibitor of skeletogenesis. In sea urchin embryos, the primary mesodermal lineage, the PMCs, produce biomineral in response to signals from the ectoderm. However, in SCH28080-treated embryos, aside from randomization of the left-right axis, the ectoderm is normally specified and differentiated, indicating that the block to skeletogenesis observed in SCH28080-treated embryos is PMC-specific. HKA inhibition did not interfere with PMC specification, and was sufficient to block continuing biomineralization when embryos were treated with SCH28080 after the initiation of skeletogenesis, indicating that HKA activity is continuously required during biomineralization. Ion concentrations and voltage potential were abnormal in the PMCs in SCH28080-treated embryos, suggesting that these bioelectrical abnormalities prevent biomineralization. Our results indicate that this effect is due to the inhibition of amorphous calcium carbonate precipitation within PMC vesicles. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Human mesenchymal stem cell osteoblast differentiation, ECM deposition, and biomineralization on PAH/PAA polyelectrolyte multilayers.

    Science.gov (United States)

    Pattabhi, Sudhakara Rao; Lehaf, Ali M; Schlenoff, Joseph B; Keller, Thomas C S

    2015-05-01

    Polyelectrolyte multilayer (PEMU) coatings built layer by layer with alternating pairs of polyelectrolytes can be tuned to improve cell interactions with surfaces and may be useful as biocompatible coatings to improve fixation between implants and tissues. Here, we show that human mesenchymal stromal cells (hMSCs) induced with bone differentiation medium (BDM) to become osteoblasts biomineralize crosslinked PEMUs built with the polycation poly(allylamine hydrochloride) (PAH) and the polyanion poly(acrylic acid) (PAA). Degrees of hMSC osteoblast differentiation and surface biomineralization on the smooth PAH-terminated PEMUs (PAH-PEMUs) and microstructured PAA-terminated PEMUs (PAA-PEMUs) reflect differences in cell-deposited extracellular matrix (ECM). BDM-induced hMSCs expressed higher levels of the early osteoblast differentiation marker alkaline phosphatase and collagen 1 (COL1) sooner on PAA-PEMUs than on PAH-PEMUs. Cells on both types of PEMUs proceeded to express the later stage osteoblast differentiation marker bone sialoprotein (BSP), but the BDM-induced cells organized a more amorphous Collagen I and denser BSP localization on PAA-PEMUs than on PAH-PEMUs. These ECM properties correlated with greater biomineralization on the PAA-PEMUs than on PAH-PEMUs. Together, these results confirm the suitability of PAH/PAA PEMUs as a substrate for hMSC osteogenesis and highlight the importance of substrate effects on ECM organization and BSP presentation on biomineralization. © 2014 Wiley Periodicals, Inc.

  11. Binding of ethanol on calcite: the role of the OH bond and its relevance to biomineralization

    DEFF Research Database (Denmark)

    Sand, K K; Yang, M; Makovicky, E

    2010-01-01

    The interaction of OH-containing compounds with calcite, CaCO(3), such as is required for the processes that control biomineralization, has been investigated in a low-water solution. We used ethanol (EtOH) as a simple, model, OH-containing organic compound, and observed the strength of its adsorp...

  12. Clustering of near clusters versus cluster compactness

    International Nuclear Information System (INIS)

    Yu Gao; Yipeng Jing

    1989-01-01

    The clustering properties of near Zwicky clusters are studied by using the two-point angular correlation function. The angular correlation functions for compact and medium compact clusters, for open clusters, and for all near Zwicky clusters are estimated. The results show much stronger clustering for compact and medium compact clusters than for open clusters, and that open clusters have nearly the same clustering strength as galaxies. A detailed study of the compactness-dependence of correlation function strength is worth investigating. (author)

  13. Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review

    Directory of Open Access Journals (Sweden)

    Dayana Arias

    2017-11-01

    Full Text Available The formation of minerals such as calcite and struvite through the hydrolysis of urea catalyzed by ureolytic bacteria is a simple and easy way to control mechanisms, which has been extensively explored with promising applications in various areas such as the improvement of cement and sandy materials. This review presents the detailed mechanism of the biominerals production by ureolytic bacteria and its applications to the wastewater, groundwater and seawater treatment. In addition, an interesting application is the use of these ureolytic bacteria in the removal of heavy metals and rare earths from groundwater, the removal of calcium and recovery of phosphate from wastewater, and its potential use as a tool for partial biodesalination of seawater and saline aquifers. Finally, we discuss the benefits of using biomineralization processes in water treatment as well as the challenges to be solved in order to reach a successful commercialization of this technology.

  14. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Directory of Open Access Journals (Sweden)

    Tayra Rodrigues Brazil

    2013-06-01

    Full Text Available For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O2 is presented and a model for the specific growth preference is discussed. VAMWCNT-O2 films were obtained by microwave-assisted chemical vapor deposition method and funcionalized by oxygen plasma. nHAp/VAMWCNT-O2 nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O2 films. The biomineralized "scaffolds" were obtained by soaking nHAp/VAMWCNT-O2 in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals.

  15. Calcifying Cyanobacteria - The potential of biomineralization for Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Christer G; Northen, Trent

    2010-03-26

    Employment of cyanobacteria in biomineralization of carbon dioxide by calcium carbonate precipitation offers novel and self-sustaining strategies for point-source carbon capture and sequestration. Although details of this process remain to be elucidated, a carbon-concentrating mechanism, and chemical reactions in exopolysaccharide or proteinaceous surface layers are assumed to be of crucial importance. Cyanobacteria can utilize solar energy through photosynthesis to convert carbon dioxide to recalcitrant calcium carbonate. Calcium can be derived from sources such as gypsum or industrial brine. A better understanding of the biochemical and genetic mechanisms that carry out and regulate cynaobacterial biomineralization should put us in a position where we can further optimize these steps by exploiting the powerful techniques of genetic engineering, directed evolution, and biomimetics.

  16. Tunable alumina 2D photonic-crystal structures via biomineralization of peacock tail feathers

    Science.gov (United States)

    Jiang, Yonggang; Wang, Rui; Feng, Lin; Li, Jian; An, Zhonglie; Zhang, Deyuan

    2018-04-01

    Peacock tail feathers with subtle periodic nanostructures exhibit diverse striking brilliancy, which can be applied as natural templates to fabricate artificial photonic crystals (PhCs) via a biomineralization method. Alumina photonic-crystal structures are successfully synthesized via an immersion and two-step calcination process. The lattice constants of the artificial PhCs are greatly reduced compared to their natural matrices. The lattice constants are tunable by modifying the final annealing conditions in the biomineralization process. The reflection spectra of the alumina photonic-crystal structures are measured, which is related to their material and structural parameters. This work suggests a facile fabrication process to construct alumina PhCs with a high-temperature resistance.

  17. High resolution electron backscatter diffraction (EBSD) data from calcite biominerals in recent gastropod shells.

    Science.gov (United States)

    Pérez-Huerta, Alberto; Dauphin, Yannicke; Cuif, Jean Pierre; Cusack, Maggie

    2011-04-01

    Electron backscatter diffraction (EBSD) is a microscopy technique that reveals in situ crystallographic information. Currently, it is widely used for the characterization of geological materials and in studies of biomineralization. Here, we analyze high resolution EBSD data from biogenic calcite in two mollusk taxa, Concholepas and Haliotis, previously used in the understanding of complex biomineralization and paleoenvironmental studies. Results indicate that Concholepas has less ordered prisms than in Haliotis, and that in Concholepas the level of order is not homogenous in different areas of the shell. Overall, the usefulness of data integration obtained from diffraction intensity and crystallographic orientation maps, and corresponding pole figures, is discussed as well as its application to similar studies. © 2010 Elsevier Ltd. All rights reserved.

  18. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Tayra Rodrigues; Neves, Marcele Florencio das; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Regiani, Inacio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O{sub 2} films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O{sub 2} nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O{sub 2} films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O{sub 2} in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  19. Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures.

    Science.gov (United States)

    Bäuerlein, Edmund

    2003-02-10

    With evolution, Nature has ingeniously succeeded in giving rise to an impressive variety of inorganic structures. Every organism that synthesizes biogenic minerals does so in a form that is unique to that species. This biomineralization is apparently biologically controlled. It is thus expected that both the synthesis and the form of every specific biogenic mineral is genetically determined and controlled. An investigation of the mechanism of biomineralization has only become possible with the development of modern methods in molecular biology. Unicellular organisms such as magnetic bacteria, calcareous algae, and diatoms, all of which are amongst the simplest forms of life, are particularly suited to be investigated by these methods. Crystals and composites of proteins and amorphous inorganic polymers are formed as complex structures within these organisms; these structures are not known in conventional inorganic chemistry.

  20. Proposed model for biomineralization of novel nanohydroxyapatite/vertically aligned multiwalled carbon nanotube scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Brazil, Tayra Rodrigues; Neves, Marcele Florencio das; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba (UniVap), Sao Jose dos Campos, SP (Brazil). Lab. de Nanotecnologia Biomedica; Regiani, Inacio [Instituto Tecnologico de Aeronautica (ITA), Sao Jose dos Campos, SP (Brazil)

    2013-11-01

    For the first time, the growth mechanism of biominerals formed on plate-like nanohydroxyapatite (nHAp) electrodeposited on superhydrophilic vertically aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) is presented and a model for the specific growth preference is discussed. VAMWCNT-O{sub 2} films were obtained by microwave-assisted chemical vapor deposition method and functionalized by oxygen plasma. nHAp/VAMWCNT-O{sub 2} nanocomposites were fabricated with a direct electrodeposition of the thin nHAp films onto the VAMWCNT-O{sub 2} films. The biomineralized 'scaffolds' were obtained by soaking nHAp/VAMWCNT-O{sub 2} in simulated body fluid for 7, 14 and 21 days. Results show that the carboxyl functional groups directly attached onto VAMWCNT tips after oxygen plasma treatment were essential for the acceleration of the OH- formation and the deposition of plate-like nHAp crystals (author)

  1. Can environmental conditions trigger cyanobacterial surfaces and following carbonate formation: implication for biomineralization and biotechnology

    Science.gov (United States)

    Paulo, C.; Dittrich, M.; Zhu, T.

    2015-12-01

    In this presentation we will give an overview what kind of the factors may trigger carbonate formations at the cell surfaces under a variety of environmental conditions. As examples, we will present the results from our recent studies on formation of calcium carbonates, dolomites and bio-cements. The extracellular polymeric substances (EPS) in the Synechococcuscell envelope are recognized key players in the nucleation of carbonates in marine and freshwater environments. Yet, little is known about a nutrient contents control over the molecular composition of Synechococcus cell envelope, and consequently, biomineralization. In the first study, we investigated how a variation of the phosphorus (P) in the growth media can lead to changes in the surface reactivity of the cells and impact their ability to form carbonates. The objective of the second study is to gain insights into the spatial distribution of cyanobacterial EPS and dolomite from different sediment layers of Khor Al-Adaid sabkha (Qatar). Here, we characterized microbial mats on molecular level in respect of organic and inorganic components using in-situ 2D Raman spectroscopy and Atomic Force Microscopy (AFM) were used. Additionally, 2D chemical maps of sediment layers documented spectral characterizations of minerals and organic matter of microbial origins at high spatial resolution. Finally, we will show the results from the experiments with auto-phototrophic cyanobacteria Gloeocapsa PCC73106, which habitat on the monument surfaces, towards its application for bio-concrete, a product of microbial carbonate precipitation. We studied the biomineralization in biofilm forming Gloeocapsa PCC73106 on the concrete surface as a pre-requirement for microbial carbonate precipitation. Biomineralization on the concrete surface by live cells and killed cells were compared with that under the abiotic condition. Our experiments allow us to conclude that environmental conditions play a significant role in the control of

  2. Low temperature S(0) biomineralization at a supraglacial spring system in the Canadian High Arctic.

    Science.gov (United States)

    Gleeson, D F; Williamson, C; Grasby, S E; Pappalardo, R T; Spear, J R; Templeton, A S

    2011-07-01

    Elemental sulfur (S(0) ) is deposited each summer onto surface ice at Borup Fiord pass on Ellesmere Island, Canada, when high concentrations of aqueous H(2) S are discharged from a supraglacial spring system. 16S rRNA gene clone libraries generated from sulfur deposits were dominated by β-Proteobacteria, particularly Ralstonia sp. Sulfur-cycling micro-organisms such as Thiomicrospira sp., and ε-Proteobacteria such as Sulfuricurvales and Sulfurovumales spp. were also abundant. Concurrent cultivation experiments isolated psychrophilic, sulfide-oxidizing consortia, which produce S(0) in opposing gradients of Na(2) S and oxygen. 16S rRNA gene analyses of sulfur precipitated in gradient tubes show stable sulfur-biomineralizing consortia dominated by Marinobacter sp. in association with Shewanella, Loktanella, Rubrobacter, Flavobacterium, and Sphingomonas spp. Organisms closely related to cultivars appear in environmental 16S rRNA clone libraries; none currently known to oxidize sulfide. Once consortia were simplified to Marinobacter and Flavobacteria spp. through dilution-to-extinction and agar removal, sulfur biomineralization continued. Shewanella, Loktanella, Sphingomonas, and Devosia spp. were also isolated on heterotrophic media, but none produced S(0) alone when reintroduced to Na(2) S gradient tubes. Tubes inoculated with a Marinobacter and Shewanella spp. co-culture did show sulfur biomineralization, suggesting that Marinobacter may be the key sulfide oxidizer in laboratory experiments. Light, florescence and scanning electron microscopy of mineral aggregates produced in Marinobacter experiments revealed abundant cells, with filaments and sheaths variably mineralized with extracellular submicron sulfur grains; similar biomineralization was not observed in abiotic controls. Detailed characterization of mineral products associated with low temperature microbial sulfur-cycling may provide biosignatures relevant to future exploration of Europa and Mars. © 2011

  3. Expression of biomineralization-related ion transport genes in Emiliania huxleyi.

    Science.gov (United States)

    Mackinder, Luke; Wheeler, Glen; Schroeder, Declan; von Dassow, Peter; Riebesell, Ulf; Brownlee, Colin

    2011-12-01

    Biomineralization in the marine phytoplankton Emiliania huxleyi is a stringently controlled intracellular process. The molecular basis of coccolith production is still relatively unknown although its importance in global biogeochemical cycles and varying sensitivity to increased pCO₂ levels has been well documented. This study looks into the role of several candidate Ca²⁺, H⁺ and inorganic carbon transport genes in E. huxleyi, using quantitative reverse transcriptase PCR. Differential gene expression analysis was investigated in two isogenic pairs of calcifying and non-calcifying strains of E. huxleyi and cultures grown at various Ca²⁺ concentrations to alter calcite production. We show that calcification correlated to the consistent upregulation of a putative HCO₃⁻ transporter belonging to the solute carrier 4 (SLC4) family, a Ca²⁺/H⁺ exchanger belonging to the CAX family of exchangers and a vacuolar H⁺-ATPase. We also show that the coccolith-associated protein, GPA is downregulated in calcifying cells. The data provide strong evidence that these genes play key roles in E. huxleyi biomineralization. Based on the gene expression data and the current literature a working model for biomineralization-related ion transport in coccolithophores is presented. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  4. Hierarchical CaCO3 chromatography: a stationary phase based on biominerals.

    Science.gov (United States)

    Sato, Kosuke; Oaki, Yuya; Takahashi, Daisuke; Toshima, Kazunobu; Imai, Hiroaki

    2015-03-23

    In biomineralization, acidic macromolecules play important roles for the growth control of crystals through a specific interaction. Inspired by this interaction, we report on an application of the hierarchical structures in CaCO3 biominerals to a stationary phase of chromatography. The separation and purification of acidic small organic molecules are achieved by thin-layer chromatography and flash chromatography using the powder of biominerals as the stationary phase. The unit nanocrystals and their oriented assembly, the hierarchical structure, are suitable for the adsorption site of the target organic molecules and the flow path of the elution solvents, respectively. The separation mode is ascribed to the specific adsorption of the acidic molecules on the crystal face and the coordination of the functional groups to the calcium ions. The results imply that a new family of stationary phase of chromatography can be developed by the fine tuning of hierarchical structures in CaCO3 materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  6. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Sangeeta [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India); Sar, Pinaki, E-mail: sarpinaki@yahoo.com [Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302 (India)

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g{sup -1} cell dry wt.) following incubation in 100 mg U L{sup -1}, pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation.

  7. Biomineralization of Uranium by PhoY Phosphatase Activity Aids Cell Survival in Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Yung, M C [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Jiao, Y [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-07-22

    Caulobacter crescentus is known to tolerate high levels of uranium [U(VI)], but its detoxification mechanism is poorly understood. Here we show that C. crescentus is able to facilitate U(VI) biomineralization through the formation of U-Pi precipitates via its native alkaline phosphatase activity. The U-Pi precipitates, deposited on the cell surface in the form of meta-autunite structures, have a lower U/Pi ratio than do chemically produced precipitates. The enzyme that is responsible for the phosphatase activity and thus the biomineralization process is identified as PhoY, a periplasmic alkaline phosphatase with broad substrate specificity. Furthermore, PhoY is shown to confer a survival advantage on C. crescentus toward U(VI) under both growth and nongrowth conditions. Results obtained in this study thus highlight U(VI) biomineralization as a resistance mechanism in microbes, which not only improves our understanding of bacterium-mineral interactions but also aids in defining potential ecological niches for metal-resistant bacteria.

  8. Biomineralization of Fucoidan-Peptide Blends and Their Potential Applications in Bone Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Harrison T. Pajovich

    2017-09-01

    Full Text Available Fucoidan (Fuc, a natural polysaccharide derived from brown seaweed algae, and gelatin (Gel were conjugated to form a template for preparation of biomimetic scaffolds for potential applications in bone tissue regeneration. To the Fuc–Gel we then incorporated the peptide sequence MTNYDEAAMAIASLN (MTN derived from the E-F hand domain, known for its calcium binding properties. To mimic the components of the extracellular matrix of bone tissue, the Fuc–Gel–MTN assemblies were incubated in simulated body fluid (SBF to induce biomineralization, resulting in the formation of β-tricalcium phosphate, and hydroxyapatite (HAp. The formed Fuc–Gel–MTN–beta–TCP/HAP scaffolds were found to display an average Young’s Modulus value of 0.32 GPa (n = 5 with an average surface roughness of 91 nm. Rheological studies show that the biomineralized scaffold exhibited higher storage and loss modulus compared to the composites formed before biomineralization. Thermal phase changes were studied through DSC and TGA analysis. XRD and EDS analyses indicated a biphasic mixture of β-tricalcium phosphate and hydroxyapatite and the composition of the scaffold. The scaffold promoted cell proliferation, differentiation and displayed actin stress fibers indicating the formation of cell-scaffold matrices in the presence of MT3C3-E1 mouse preosteoblasts. Osteogenesis and mineralization were found to increase with Fuc–Gel–MTN–beta–TCP/HAP scaffolds. Thus, we have developed a novel scaffold for possible applications in bone tissue engineering.

  9. Anatomically-specific intratubular and interstitial biominerals in the human renal medullo-papillary complex.

    Directory of Open Access Journals (Sweden)

    Ling Chen

    Full Text Available Limited information exists on the anatomically-specific early stage events leading to clinically detectable mineral aggregates in the renal papilla. In this study, quantitative multiscale correlative maps of structural, elemental and biochemical properties of whole medullo-papillary complexes from human kidneys were developed. Correlative maps of properties specific to the uriniferous and vascular tubules using high-resolution X-ray computed tomography, scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy, and immunolocalization of noncollagenous proteins (NCPs along with their association with anatomy specific biominerals were obtained. Results illustrated that intratubular spherical aggregates primarily form at the proximal regions distant from the papillary tip while interstitial spherical and fibrillar aggregates are distally located near the papillary tip. Biominerals at the papillary tip were closely localized with 10 to 50 μm diameter vasa recta immunolocalized for CD31 inside the medullo-papillary complex. Abundant NCPs known to regulate bone mineralization were localized within nanoparticles, forming early pathologic mineralized regions of the complex. Based on the physical association between vascular and urothelial tubules, results from light and electron microscopy techniques suggested that these NCPs could be delivered from vasculature to prompt calcification of the interstitial regions or they might be synthesized from local vascular smooth muscle cells after transdifferentiation into osteoblast-like phenotypes. In addition, results provided insights into the plausible temporal events that link the anatomically specific intratubular mineral aggregates with the interstitial biomineralization processes within the functional unit of the kidney.

  10. Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste.

    Science.gov (United States)

    Choudhary, Sangeeta; Sar, Pinaki

    2011-02-15

    Uranium biomineralization by a metal-resistant Pseudomonas aeruginosa strain isolated from uranium mine waste was characterized for its potential in bioremediation. Uranium resistance, its cellular localization and chemical nature of uranium-bacteria interaction were elucidated. Survival and uranium biomineralization from mine water were investigated using microcosm experiments. The selected bacterium showed U resistance and accumulation (maximum of 275 mg U g(-1)cell dry wt.) following incubation in 100 mg U L(-1), pH 4.0, for 6 h. Transmission electron microscopy and X-ray diffraction analyses revealed that bioaccumulated uranium was deposited within the cell envelope as needle shaped U-phosphate compounds that attain crystallinity only at pH 4.0. A synergistic involvement of deprotonated phosphate and carboxyl moieties in facilitating bioprecipitation of uranium was evident from FTIR analysis. Based on these findings we attribute the localized U sequestration by this bacterium as innocuous complex to its possible mechanism of uranium resistance. Microcosm data confirmed that the strain can remove soluble uranium (99%) and sequester it as U oxide and phosphate minerals while maintaining its viability. The study showed that indigenous bacteria from contaminated site that can survive uranium and other heavy metal toxicity and sequester soluble uranium as biominerals could play important role in uranium bioremediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. A first report of hydroxylated apatite as structural biomineral in Loasaceae - plants’ teeth against herbivores

    Science.gov (United States)

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian

    2016-05-01

    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  12. The EM Earthquake Precursor

    Science.gov (United States)

    Jones, K. B., II; Saxton, P. T.

    2013-12-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After the 1989 Loma Prieta Earthquake, American earthquake investigators predetermined magnetometer use and a minimum earthquake magnitude necessary for EM detection. This action was set in motion, due to the extensive damage incurred and public outrage concerning earthquake forecasting; however, the magnetometers employed, grounded or buried, are completely subject to static and electric fields and have yet to correlate to an identifiable precursor. Secondly, there is neither a networked array for finding any epicentral locations, nor have there been any attempts to find even one. This methodology needs dismissal, because it is overly complicated, subject to continuous change, and provides no response time. As for the minimum magnitude threshold, which was set at M5, this is simply higher than what modern technological advances have gained. Detection can now be achieved at approximately M1, which greatly improves forecasting chances. A propagating precursor has now been detected in both the field and laboratory. Field antenna testing conducted outside the NE Texas town of Timpson in February, 2013, detected three strong EM sources along with numerous weaker signals. The antenna had mobility, and observations were noted for recurrence, duration, and frequency response. Next, two

  13. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    Science.gov (United States)

    Ba, Xiaolan

    Biomineralization is a wide-spread phenomenon in the biological systems, which is the process of mineral formation by organisms through interaction between its organic contents and the inorganic minerals. The process is essential in a broad spectrum of biological phenomena ranging from bone and tooth formation to pathological mineralization under hypoxic conditions or cancerous formations. In this thesis I studied biomineralization at the earliest stages in order to obtain a better understanding of the fundamental principals involved. This knowledge is essential if we want to engineer devices which will increase bone regeneration or prevent unwanted mineral deposits. Extracellular matrix (ECM) proteins play an essential role during biomineralization in bone and engineered tissues. In this dissertation, I present an approach to mimic the ECM in vitro to probe the interactions of these proteins with calcium phosphate mineral and with each other. Early stage of mineralization is investigated by mechanical properties of the protein fibers using Scanning Probe Microscopy (SPM) and Shear Modulation Force Microscopy (SMFM). The development of mineral crystals on the protein matrices is also characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Grazing Incidence X-ray Diffraction (GIXRD). The results demonstrate complementary actions of the two ECM proteins to collect cations and template calcium phosphate mineral, respectively. Magnets have been clinically used as an "induction source" in various bone or orthodontic treatments. However, the mechanism and effects of magnetic fields remain unclear. In this dissertation, I also undertake the present investigation to study the effects of 150 mT static magnetic fields (SMF) on ECM development and cell biomineralization using MC3T3-E1 osteobalst-like cells. Early stage of biomineralization is characterized by SPM, SMFM and confocal laser scanning microscopy (CSLM). Late stage of

  14. Trichoderma koningii as a biomineralizing fungous agent of calcium oxalate crystals in typical Argiudolls of the Los Padres Lake natural reserve (Buenos Aires, Argentina).

    Science.gov (United States)

    Oyarbide, F; Osterrieth, M L; Cabello, M

    2001-01-01

    The aim of the present study, performed on typical Argiudolls in a natural reserve with little or no anthropic impact, was to characterize the fungous biomineralizing process of calcium oxalate crystals in organic horizons of the soil. The chosen sites possessed different plant cover, identified as acacia woods and grassy meadows with particular micro environmental conditions that have differing effects in the process of biomineralization. The contribution of the plant material in the soil is a key factor since 1) it generates the particular composition of the organic horizons, 2) it determines the nature of decomposing organisms, and 3) it affects the presence, composition and development of biominerals. According to the results obtained, the acacia woods prove to be a site comparatively more favorable to the fungous biomineralizing process. This makes itself manifest in the greater abundance and development of crystals in the organic horizons of the soil, resulting in whewellite (CaC2O4.H2O) and weddellite (CaC2O4.(2+x) H2O) regarding biomineral species developed, the latter being the major component. The observation of both species of biominerals is noteworthy since it represents the first cited in the country. The isolated fungous organisms were Trichoderma koningii, and Absidia corymbifera. T. koningii was identified as the most active biomineralizing organism thus constituting the first reference to indicate this species as a biomineral producing agent.

  15. Studies of biominerals relevant to the search for life on Mars.

    Science.gov (United States)

    Blanco, Armando; D'Elia, Marcella; Licchelli, Domenico; Orofino, Vincenzo; Fonti, Sergio

    2006-12-01

    The evidence of the water erosion on Mars is particularly interesting since present climatic conditions are such that liquid water cannot exist at the surface. But, if water was present on the planet in the past, there may have been life, too. Since the discovery of carbonates on Mars also may have very important implications on the possibility that life developed there, we are studying minerals that can have biotic or abiotic origin: calcite (CaCO(3)) and aragonite, a metastable state of calcite.We have analysed biomineral aragonite, in the form of recent sea shells, as well as crystals of mineral aragonite. Infrared spectroscopy in the 2-25 mum wavelength range reveals that, after thermal processing, the biotic samples have a different spectral behaviour from the abiotic ones. As a result, it is possible to distinguish abiotic mineral aragonite from aragonite of recent biological origin.Obviously, if life existed in the past on the Red Planet, we could expect to find "ancient" biotic carbonates, which should therefore be investigated, in order to search for a way of discriminating them from abiotic minerals. For this reason, at the beginning we have considered samples of crushed fossil shells of aragonite composition. Afterwards, in order to take into account that fossilization processes almost always produce a transformation of metastable form (aragonite) into more stable form (calcite), we also studied samples of mineral calcite and different types of fossils completely transformed into calcite. All these biotic fossil samples show the same spectral behaviour as the fresh biotic material after thermal annealing at 485 degrees C. Instead, the calcite behaves like abiotic aragonite.Furthermore, it is known that seashells and other biominerals are formed through an intimate association of inorganic materials with organic macromolecules. The macromolecules control the nucleation, structure, morphology, crystal orientation and spatial confinement of the inorganic

  16. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  17. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura; Marbà , Nú ria; Prado, Luis; Peron, Sophie; Lardies, Marco A.; Rodriguez-Navarro, Alejandro; Vargas, Cristian A.; Lagos, Nelson A.; Duarte, Carlos M.

    2015-01-01

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  18. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  19. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  20. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification

    KAUST Repository

    Ramajo, Laura

    2015-12-08

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH ~ 8.0) and low pH (pH ~ 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  1. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  2. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  3. Identified EM Earthquake Precursors

    Science.gov (United States)

    Jones, Kenneth, II; Saxton, Patrick

    2014-05-01

    Many attempts have been made to determine a sound forecasting method regarding earthquakes and warn the public in turn. Presently, the animal kingdom leads the precursor list alluding to a transmission related source. By applying the animal-based model to an electromagnetic (EM) wave model, various hypotheses were formed, but the most interesting one required the use of a magnetometer with a differing design and geometry. To date, numerous, high-end magnetometers have been in use in close proximity to fault zones for potential earthquake forecasting; however, something is still amiss. The problem still resides with what exactly is forecastable and the investigating direction of EM. After a number of custom rock experiments, two hypotheses were formed which could answer the EM wave model. The first hypothesis concerned a sufficient and continuous electron movement either by surface or penetrative flow, and the second regarded a novel approach to radio transmission. Electron flow along fracture surfaces was determined to be inadequate in creating strong EM fields, because rock has a very high electrical resistance making it a high quality insulator. Penetrative flow could not be corroborated as well, because it was discovered that rock was absorbing and confining electrons to a very thin skin depth. Radio wave transmission and detection worked with every single test administered. This hypothesis was reviewed for propagating, long-wave generation with sufficient amplitude, and the capability of penetrating solid rock. Additionally, fracture spaces, either air or ion-filled, can facilitate this concept from great depths and allow for surficial detection. A few propagating precursor signals have been detected in the field occurring with associated phases using custom-built loop antennae. Field testing was conducted in Southern California from 2006-2011, and outside the NE Texas town of Timpson in February, 2013. The antennae have mobility and observations were noted for

  4. Biomineralizing synthesis of mesoporous hydroxyapatite-calcium pyrophosphate polycrystal using ovalbumin as biosurfactant

    International Nuclear Information System (INIS)

    Zhao Hongshi; He Wen; Wang Yingjun; Yue Yuanzheng; Gao Xingguo; Li Zhengmao; Yan Shunpu; Zhou Weijia; Zhang Xudong

    2008-01-01

    Mesoporous polycrystals of hydroxyapatite-calcium pyrophosphate (HA-CPP) are synthesized via a biomineralizing route using ovalbumin as natural biosurfactant. The mesoporous structure of HA-CPP is characterized by means of X-ray diffraction (XRD), N 2 adsorption-desorption isotherms (NADI), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), atom force microscopy (AFM), polarization microscopy (PLM) and stereomicroscopy. The results show that the crystalline grains with an average diameter of 13.2 nm are uniformly distributed along the protein molecule chains, and this results in microsphere-like particles with diameters of 200-300 nm. The highly ordered pores involved in microspheres are found to be approximately 6.6 nm by small-angle XRD. The formation of lyotropic calcium liquid crystal (CLC) plays a key role in the formation and stabilization of the mesoporous structure. A schematic illustration is used to reveal the mechanism of protein-medicated HA-CPP biomineralization, which employs the protein tertiary structure to explain the formation of the porous particles

  5. Biomineralized multifunctional magnetite/carbon microspheres for applications in Li-ion batteries and water treatment.

    Science.gov (United States)

    Shim, Hyun-Woo; Park, Sangbaek; Song, Hee Jo; Kim, Jae-Chan; Jang, Eunjin; Hong, Kug Sun; Kim, T Doohun; Kim, Dong-Wan

    2015-03-16

    Advanced functional materials incorporating well-defined multiscale architectures are a key focus for multiple nanotechnological applications. However, strategies for developing such materials, including nanostructuring, nano-/microcombination, hybridization, and so on, are still being developed. Here, we report a facile, scalable biomineralization process in which Micrococcus lylae bacteria are used as soft templates to synthesize 3D hierarchically structured magnetite (Fe3O4) microspheres for use as Li-ion battery anode materials and in water treatment applications. Self-assembled Fe3O4 microspheres with flower-like morphologies are systematically fabricated from biomineralized 2D FeO(OH) nanoflakes at room temperature and are subsequently subjected to post-annealing at 400 °C. In particular, because of their mesoporous properties with a hollow interior and the improved electrical conductivity resulting from the carbonized bacterial templates, the Fe3 O4 microspheres obtained by calcining the FeO(OH) in Ar exhibit enhanced cycle stability and rate capability as Li-ion battery anodes, as well as superior adsorption of organic pollutants and toxic heavy metals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Cupriavidus metallidurans biomineralization ability and its application as a bioconsolidation enhancer for ornamental marble stone.

    Science.gov (United States)

    Daskalakis, Markos I; Magoulas, Antonis; Kotoulas, Georgios; Katsikis, Ioannis; Bakolas, Asterios; Karageorgis, Aristomenis P; Mavridou, Athena; Doulia, Danae; Rigas, Fotis

    2014-08-01

    Bacterially induced calcium carbonate precipitation of a Cupriavidus metallidurans isolate was investigated to develop an environmentally friendly method for restoration and preservation of ornamental stones. Biomineralization performance was carried out in a growth medium via a Design of Experiments (DoE) approach using, as design factors, the temperature, growth medium concentration, and inoculum concentration. The optimum conditions were determined with the aid of consecutive experiments based on response surface methodology (RSM) and were successfully validated thereafter. Statistical analysis can be utilized as a tool for screening bacterial bioprecipitation as it considerably reduced the experimental time and effort needed for bacterial evaluation. Analytical methods provided an insight to the biomineral characteristics, and sonication tests proved that our isolate could create a solid new layer of vaterite on marble substrate withstanding sonication forces. C. metallidurans ACA-DC 4073 provided a compact vaterite layer on the marble substrate with morphological characteristics that assisted in its differentiation. The latter proved valuable during spraying minimum amount of inoculated media on marble substrate under conditions close to an in situ application. A sufficient and clearly distinguishable layer was identified.

  7. Chemical modification of chitosan film via surface grafting of citric acid molecular to promote the biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang, E-mail: liuyang@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Engineering Research Center of Nano-Geo Materials of Ministry of Education, China University of Geosciences, Wuhan 430074 (China); School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Shen, Xin; Zhou, Huan [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Wang, Yingjun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China)

    2016-05-01

    Graphical abstract: - Highlights: • Chitosan film was modified by surface grafting of citric acid. • The modified film has good hydrophilicity and moisture-retaining capacity. • The citric acid grafting treatment significantly promote the biomineralization. • MC3T3-E1 osteoblasts research confirms the biocompatibility of the film. - Abstract: We develop a novel chitosan–citric acid film (abbreviated as CS–CA) suitable for biomedical applications in this study. In this CS–CA film, the citric acid, which is a harmless organic acid has been extensively investigated as a modifying agent on carbohydrate polymers, was cross-linked by 1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) onto the surface of chitosan (CS) film. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirms the graft copolymerization of the modified chitosan film (CS–CA). Surface wettability, moisturizing performance, the capacity of mineralization in vitro and biocompatibility of the films were characterized. After modification, this CS–CA film has good hydrophilicity. It is very evident that the citric acid grafting treatment significantly promotes the biomineralization of the chitosan based substrates. Cell experiments show that the MC3T3-E1 osteoblasts can adhere and proliferate well on the surface of CS–CA film. This CS–CA film, which can be prepared in large quantities and at low cost, should have potential application in bone tissue engineering.

  8. Formation of biomineral iron oxides compounds in a Fe hyperaccumulator plant: Imperata cylindrica (L.) P. Beauv.

    Science.gov (United States)

    Fuente, V; Rufo, L; Juárez, B H; Menéndez, N; García-Hernández, M; Salas-Colera, E; Espinosa, A

    2016-01-01

    We report a detailed work of composition and location of naturally formed iron biominerals in plant cells tissues grown in iron rich environments as Imperata cylindrica. This perennial grass grows on the Tinto River banks (Iberian Pyritic Belt) in an extreme acidic ecosystem (pH∼2.3) with high concentration of dissolved iron, sulphate and heavy metals. Iron biominerals were found at the cellular level in tissues of root, stem and leaf both in collected and laboratory-cultivated plants. Iron accumulated in this plant as a mix of iron compounds (mainly as jarosite, ferrihydrite, hematite and spinel phases) was characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy (MS), magnetometry (SQUID), electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX; TEM-EDX; HRSTEM). A low fraction of phosphorous was detected in this iron hyperaccumulator plant. Root and rhizomes tissues present a high proportion of ferromagnetic iron oxide compounds. Iron oxides-rich zones are localized in electron dense intra and inter-cellular aggregates that appear as dark deposits covering the inner membrane and organelles of the cell. This study aims to contribute to a better understanding of the mechanisms of accumulation, transport, distribution of iron in Imperata cylindrica. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Trends in Trace Element Fractionation Between Foraminiferal Species and the Role of Biomineralization

    Science.gov (United States)

    Reichart, G. J.; Nooijer, L. D.; Geerken, E.; Mezger, E.; van Dijk, I. V.; Daemmer, L. K.

    2017-12-01

    Reconstructions of past climate and environments are largely based on stable isotopes and trace element concentrations measured on fossil foraminiferal calcite. Their element and isotope composition roughly reflects seawater composition and physical conditions, which in turn, are related to paleoceanographic parameters. More recently, attempts are being made to infer ranges in environmental parameters using the observed differences in the composition within individual tests. Remarkably, inter-species differences in trace element incorporation are well-correlated over a wide range of environmental conditions. This is particularly remarkable knowing that different environmental factors influence incorporation of these elements at various magnitudes. Most likely the complex biomineralization of foraminifera potentially offsets trace elements similarly at all these scales and also between different species. This suggests that at least parts of the mechanisms underlying foraminiferal biomineralization are similar for all species, which in turn provides important clues on the cellular mechanisms operating during calcification. Moreover, the systematics in trace element partitioning between species could potentially provide important clues for unravelling past changes in trace element composition of the ancient ocean.

  10. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.

    Science.gov (United States)

    Von Euw, Stanislas; Ajili, Widad; Chan-Chang, Tsou-Hsi-Camille; Delices, Annette; Laurent, Guillaume; Babonneau, Florence; Nassif, Nadine; Azaïs, Thierry

    2017-09-01

    The presence of an amorphous surface layer that coats a crystalline core has been proposed for many biominerals, including bone mineral. In parallel, transient amorphous precursor phases have been proposed in various biomineralization processes, including bone biomineralization. Here we propose a methodology to investigate the origin of these amorphous environments taking the bone tissue as a key example. This study relies on the investigation of a bone tissue sample and its comparison with synthetic calcium phosphate samples, including a stoichiometric apatite, an amorphous calcium phosphate sample, and two different biomimetic apatites. To reveal if the amorphous environments in bone originate from an amorphous surface layer or a transient amorphous precursor phase, a combined solid-state nuclear magnetic resonance (NMR) experiment has been used. The latter consists of a double cross polarization 1 H→ 31 P→ 1 H pulse sequence followed by a 1 H magnetization exchange pulse sequence. The presence of an amorphous surface layer has been investigated through the study of the biomimetic apatites; while the presence of a transient amorphous precursor phase in the form of amorphous calcium phosphate particles has been mimicked with the help of a physical mixture of stoichiometric apatite and amorphous calcium phosphate. The NMR results show that the amorphous and the crystalline environments detected in our bone tissue sample belong to the same particle. The presence of an amorphous surface layer that coats the apatitic core of bone apatite particles has been unambiguously confirmed, and it is certain that this amorphous surface layer has strong implication on bone tissue biogenesis and regeneration. Questions still persist on the structural organization of bone and biomimetic apatites. The existing model proposes a core/shell structure, with an amorphous surface layer coating a crystalline bulk. The accuracy of this model is still debated because amorphous calcium

  11. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes.

    Directory of Open Access Journals (Sweden)

    Eulalie Buffin

    Full Text Available BACKGROUND: In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP. Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. CONCLUSIONS/SIGNIFICANCE: These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.

  12. The Biomineralization of a Bioactive Glass-Incorporated Light-Curable Pulp Capping Material Using Human Dental Pulp Stem Cells

    Directory of Open Access Journals (Sweden)

    Soo-Kyung Jun

    2017-01-01

    Full Text Available The aim of this study was to investigate the biomineralization of a newly introduced bioactive glass-incorporated light-curable pulp capping material using human dental pulp stem cells (hDPSCs. The product (Bioactive® [BA] was compared with a conventional calcium hydroxide-incorporated (Dycal [DC] and a light-curable (Theracal® [TC] counterpart. Eluates from set specimens were used for investigating the cytotoxicity and biomineralization ability, determined by alkaline phosphatase (ALP activity and alizarin red staining (ARS. Cations and hydroxide ions in the extracts were measured. An hDPSC viability of less than 70% was observed with 50% diluted extract in all groups and with 25% diluted extract in the DC. Culturing with 12.5% diluted BA extract statistically lowered ALP activity and biomineralization compared to DC (p0.05. Ca (~110 ppm and hydroxide ions (pH 11 were only detected in DC and TC. Ionic supplement-added BA, which contained similar ion concentrations as TC, showed similar ARS mineralization compared to TC. In conclusion, the BA was similar to, yet more cytotoxic to hDPSCs than, its DC and TC. The BA was considered to stimulate biomineralization similar to DC and TC only when it released a similar amount of Ca and hydroxide ions.

  13. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States)

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  14. Towards enamel biomimetics: Structure, mechanical properties and biomineralization of dental enamel

    Science.gov (United States)

    Fong, Hanson Kwok

    Dental enamel is the most mineralized tissue in the human body. This bioceramic, composed largely of hydroxyapatite (HAp), is also one of the most durable tissues despite a lifetime of masticatory loading and bacterial attack. The biosynthesis of enamel, which occurs in physiological conditions is a complex orchestration of protein assembly and mineral formation. The resulting product is the hardest tissue in the vertebrate body with the longest and most organized arrangement of hydroxyapatite crystals known to biomineralizing systems. Detail understanding of the structure of enamel in relationship to its mechanical function and the biomineralization process will provide a framework for enamel regeneration as well as potential lessons in the design of engineering materials. The objective of this study, therefore, is twofold: (1) establish the structure-function relationship of enamel as well as the dentine-enamel junction (DEJ) and (2) determine the effect of proteins on the enamel biomineralization process. A hierarchy in the enamel structure was established by means of various microscopy techniques (e.g. SEM, TEM, AFM). Mechanical properties (hardness and elastic modulus) associated with the microstructural features were also determined by nanoindentation. Furthermore, the DEJ was found to have a width in the range of micrometers to 10s of micrometers with continuous change in structure and mechanical properties. Indentation tests and contact fatigue tests using a spherical indenter have revealed that the structural features in the enamel and the DEJ played important roles in containing crack propagation emanating from the enamel tissue. To further understand the effect of this protein on the biominerailzation process, we have studied genetically engineered animals that express altered amelogenin which lack the known self-assembly properties. This in vivo study has revealed that, without the proper self-assembly of the amelogenin protein as demonstrated by the

  15. SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Strotjohann, Nora L.; Ofek, Eran O.; Gal-Yam, Avishay; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Kulkarni, Shrinivas R.; Cao, Yi [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Shaviv, Nir J. [School of Natural Sciences, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540 (United States); Fremling, Christoffer; Sollerman, Jesper [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm (Sweden); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Arcavi, Iair [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93111 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States)

    2015-10-01

    The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.

  16. Cluster headache

    Science.gov (United States)

    Histamine headache; Headache - histamine; Migrainous neuralgia; Headache - cluster; Horton's headache; Vascular headache - cluster ... Doctors do not know exactly what causes cluster headaches. They ... (chemical in the body released during an allergic response) or ...

  17. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  18. Toward a theory of precursors

    International Nuclear Information System (INIS)

    Freivogel, Ben; Giddings, Steven B.; Lippert, Matthew

    2002-01-01

    To better understand the possible breakdown of locality in quantum gravitational systems, we pursue the identity of precursors in the context of the anti-de Sitter/conformal field theory correspondence. Holography implies a breakdown of standard bulk locality which we expect to occur only at extremely high energy. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. If these precursors can be identified in the gauge theory, they are almost certainly Wilson loops, perhaps with decorations, but the relevant information is encoded in the high-energy sector of the theory and should not be observable by low energy measurements. This would be in accord with the locality bound, which serves as a criterion for situations where breakdown of bulk locality is expected

  19. The co-effect of collagen and magnesium ions on calcium carbonate biomineralization

    International Nuclear Information System (INIS)

    Jiao Yunfeng; Feng Qingling; Li Xiaoming

    2006-01-01

    The process of calcium carbonate biomineralization in the solution containing collagen and magnesium ions was studied in this paper. The results were characterized by using powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The effect rules were obtained by the cooperation of collagen and magnesium ions in different concentration. The experiment results showed that in the presence of both collagen and magnesium ions, aragonite and vaterite were precipitated at low Mg/Ca ion concentration ratio, while only aragonite with regular spherical morphology was precipitated at high Mg/Ca ion concentration ratio. It indicated that collagen has a promotional effect on magnesium ions in controlling the polymorph of calcium carbonate crystal. A much wider range of calcium carbonate morphologies was observed in the presence of both collagen and magnesium ions. The experiments suggested that collagen acts in combination with magnesium ions to inhibit calcite crystal growth, while favoring the formation of aragonite crystals

  20. The Role of Moderate Static Magnetic Fields on Biomineralization of Osteoblasts on Sulfonated Polystryene Films

    Energy Technology Data Exchange (ETDEWEB)

    X Ba; M Hadjiargyrou; E DiMasi; Y Meng; M Simon; Z Tan; M Rafailovich

    2011-12-31

    We have investigated the effects of moderate static magnetic fields (SMFs) on murine MC3T3-E1 osteoblasts, and found that they enhance proliferations and promote differentiation. The increase in proliferation rates in response to SMFs was greater in cultures grown on partially sulfonated polytstyrene (SPS, degree of sulfonation: 33%) than in cultures grown on tissue culture plastic. We have previously shown that when the degree of sulfonation exceeded a critical value (12%) [1], spontaneous fibrillogenesis occured which allowed for direct observation of the ECM fibrillar organization under the influence of external fields. We found that the ECM produced in cultures grown on the SPS in the presence of the SMFs assembled into a lattice with larger dimensions than the ECM of the cultures grown in the absence of SMFs. During the early stages of the biomineralization process (day 7), the SMF exposed cultures also templated mineral deposition more rapidly than the control cultures. The rapid response is attributed to orientation of diamagnetic ECM proteins already present in the serum, which could then initiate further cellular signaling. SMFs also influenced late stage osteoblast differentiation as measured by the increased rate of osteocalcin secretion and gene expression beginning 15 days after SFM exposure. This correlated with a large increase in mineral deposition, and in cell modulus. GIXD and EDXS analysis confirmed early deposition of crystalline hydroxyapatite. Previous studies on the effects of moderate SMF had focused on cellular gene and protein expression, but did not consider the organization of the ECM fibers. Our ability to form these fibers has allowed us explore this additional effect and highlight its significance in the initiation of the biomineralization process.

  1. ACBC to Balcite: Bioinspired Synthesis of a Highly Substituted High-Temperature Phase from an Amorphous Precursor

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, Michael L.; Joester, Derk (NWU)

    2017-04-28

    Energy-efficient synthesis of materials locked in compositional and structural states far from equilibrium remains a challenging goal, yet biomineralizing organisms routinely assemble such materials with sophisticated designs and advanced functional properties, often using amorphous precursors. However, incorporation of organics limits the useful temperature range of these materials. Herein, the bioinspired synthesis of a highly supersaturated calcite (Ca0.5Ba0.5CO3) called balcite is reported, at mild conditions and using an amorphous calcium–barium carbonate (ACBC) (Ca1- x Ba x CO3·1.2H2O) precursor. Balcite not only contains 50 times more barium than the solubility limit in calcite but also displays the rotational disorder on carbonate sites that is typical for high-temperature calcite. It is significantly harder (30%) and less stiff than calcite, and retains these properties after heating to elevated temperatures. Analysis of balcite local order suggests that it may require the formation of the ACBC precursor and could therefore be an example of nonclassical nucleation. These findings demonstrate that amorphous precursor pathways are powerfully enabling and provide unprecedented access to materials far from equilibrium, including high-temperature modifications by room-temperature synthesis.

  2. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  3. cDNA microarrays as a tool for identification of biomineralization proteins in the coccolithophorid Emiliania huxleyi (Haptophyta).

    Science.gov (United States)

    Quinn, Patrick; Bowers, Robert M; Zhang, Xiaoyu; Wahlund, Thomas M; Fanelli, Michael A; Olszova, Daniela; Read, Betsy A

    2006-08-01

    Marine unicellular coccolithophore algae produce species-specific calcite scales otherwise known as coccoliths. While the coccoliths and their elaborate architecture have attracted the attention of investigators from various scientific disciplines, our knowledge of the underpinnings of the process of biomineralization in this alga is still in its infancy. The processes of calcification and coccolithogenesis are highly regulated and likely to be complex, requiring coordinated expression of many genes and pathways. In this study, we have employed cDNA microarrays to investigate changes in gene expression associated with biomineralization in the most abundant coccolithophorid, Emiliania huxleyi. Expression profiling of cultures grown under calcifying and noncalcifying conditions has been carried out using cDNA microarrays corresponding to approximately 2,300 expressed sequence tags. A total of 127 significantly up- or down-regulated transcripts were identified using a P value of 0.01 and a change of >2.0-fold. Real-time reverse transcriptase PCR was used to test the overall validity of the microarray data, as well as the relevance of many of the proteins predicted to be associated with biomineralization, including a novel gamma-class carbonic anhydrase (A. R. Soto, H. Zheng, D. Shoemaker, J. Rodriguez, B. A. Read, and T. M. Wahlund, Appl. Environ. Microbiol. 72:5500-5511, 2006). Differentially regulated genes include those related to cellular metabolism, ion channels, transport proteins, vesicular trafficking, and cell signaling. The putative function of the vast majority of candidate transcripts could not be defined. Nonetheless, the data described herein represent profiles of the transcription changes associated with biomineralization-related pathways in E. huxleyi and have identified novel and potentially useful targets for more detailed analysis.

  4. Cluster management.

    Science.gov (United States)

    Katz, R

    1992-11-01

    Cluster management is a management model that fosters decentralization of management, develops leadership potential of staff, and creates ownership of unit-based goals. Unlike shared governance models, there is no formal structure created by committees and it is less threatening for managers. There are two parts to the cluster management model. One is the formation of cluster groups, consisting of all staff and facilitated by a cluster leader. The cluster groups function for communication and problem-solving. The second part of the cluster management model is the creation of task forces. These task forces are designed to work on short-term goals, usually in response to solving one of the unit's goals. Sometimes the task forces are used for quality improvement or system problems. Clusters are groups of not more than five or six staff members, facilitated by a cluster leader. A cluster is made up of individuals who work the same shift. For example, people with job titles who work days would be in a cluster. There would be registered nurses, licensed practical nurses, nursing assistants, and unit clerks in the cluster. The cluster leader is chosen by the manager based on certain criteria and is trained for this specialized role. The concept of cluster management, criteria for choosing leaders, training for leaders, using cluster groups to solve quality improvement issues, and the learning process necessary for manager support are described.

  5. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    Directory of Open Access Journals (Sweden)

    Marcele Florencio Neves

    2013-06-01

    Full Text Available Nanobiomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O2 are promising for their properties and bone tissue biocompatibility. VAMWCNT-O2 films with nanohydroxyapatite (nHAp aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF with two different pHs (6.10 and 7.40 during 7 days to obtain a new surface design with higher crystalinity and better morphology of nHAp/VAMWCANT-O2 nanocomposites. The objective is to obtain biomineralized nanobiomaterials to enable its applicability as "scaffold" to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nanoapatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O2 nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes.

  6. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    International Nuclear Information System (INIS)

    Neves, Marcele Florencio; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luis Eduardo Silva; Corat, Evaldo Jose

    2013-01-01

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O 2 ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O 2 films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O 2 nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O 2 nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  7. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    Science.gov (United States)

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-03-07

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au 3+ ) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au 3+ was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au 3+ reduction, reflecting the predominance of the extracellular matrix in Au 3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au 3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au 3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  8. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis.

    Science.gov (United States)

    Li, Shiguo; Liu, Chuang; Huang, Jingliang; Liu, Yangjia; Zheng, Guilan; Xie, Liping; Zhang, Rongqing

    2015-11-01

    Seawater acidification and warming resulting from anthropogenic production of carbon dioxide are increasing threats to marine ecosystems. Previous studies have documented the effects of either seawater acidification or warming on marine calcifiers; however, the combined effects of these stressors are poorly understood. In our study, we examined the interactive effects of elevated carbon dioxide partial pressure (P(CO2)) and temperature on biomineralization and amino acid content in an ecologically and economically important mussel, Mytilus edulis. Adult M. edulis were reared at different combinations of P(CO2) (pH 8.1 and 7.8) and temperature (19, 22 and 25°C) for 2 months. The results indicated that elevated P(CO2) significantly decreased the net calcification rate, the calcium content and the Ca/Mg ratio of the shells, induced the differential expression of biomineralization-related genes, modified shell ultrastructure and altered amino acid content, implying significant effects of seawater acidification on biomineralization and amino acid metabolism. Notably, elevated temperature enhanced the effects of seawater acidification on these parameters. The shell breaking force significantly decreased under elevated P(CO2), but the effect was not exacerbated by elevated temperature. The results suggest that the interactive effects of seawater acidification and elevated temperature on mussels are likely to have ecological and functional implications. This study is therefore helpful for better understanding the underlying effects of changing marine environments on mussels and other marine calcifiers. © 2015. Published by The Company of Biologists Ltd.

  9. In vitro biomineralization of a novel hydroxyapatite/superhydrophilic multiwalled carbon nanotube nanocomposite using simulated body fluids

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Marcele Florencio; Brazil, Tayra Rodrigues; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira, E-mail: aolobo@univap.br [Universidade do Vale do Paraiba(IP and D,/NANOBIO/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Nanotecnologia Biomedica; Soares, Luis Eduardo Silva [Universidade do Vale do Paraiba(IP and D/LEVB/UniVap), Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisa e Desenvolvimento. Lab. de Espectroscopia Vibracional Biomdica; Corat, Evaldo Jose [Instituto Nacional de Pesquisa Espacial (LAS/INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Sensores e Materiais

    2013-11-01

    Nano biomaterials based on superhydrophilic vertically-aligned multi-walled carbon nanotubes (VAMWCNT-O{sub 2} ) are promising for their properties and bone tissue biocompatibility. VAMWCNT-O{sub 2} films with nanohydroxyapatite (nHAp) aim to improve mechanical properties and biocompatibility of this new nanocomposite due to its resemblance to bone matrix structure. This study aimed to produce in vitro biomineralized nHAp/VAMWCNT-O2 nanocomposites using simulated body fluid (SBF) with two different pHs (6.10 and 7.40) during 7 days to obtain a new surface design with higher crystallinity and better morphology of nHAp/VAMWCANT-O{sub 2} nanocomposites. The objective is to obtain biomineralized nano biomaterials to enable its applicability as 'scaffold' to cellular support and consequent bone tissue formation, accelerating the osseointegration. Layer densification has been achieved due to polycrystalline nano apatites deposition on surface and between the biomineralized nHAp/VAMWCNT-O{sub 2} nanocomposites, without any heat treatment. Therefore, through its characteristics and properties these nanocomposite applications can be considered extremely viable for acceleration of in vivo regenerative processes. (author)

  10. Synthesis and Characterization of Smart Block Copolymers for Biomineralization and Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanapathipillai, Mathumai [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    Self-assembly is a powerful tool in forming structures with nanoscale dimensions. Self-assembly of macromolecules provides an efficient and rapid pathway for the formation of structures from the nanometer to micrometer range that are difficult, if not impossible to obtain by conventional lithographic techniques [1]. Depending on the morphologies obtained (size, shape, periodicity, etc.) these self-assembled systems have already been applied or shown to be useful for a number of applications in nanotechnology [2], biomineralization [3, 4], drug delivery [5, 6] and gene therapy [7]. In this respect, amphiphilic block copolymers that self-organize in solution have been found to be very versatile [1]. In recent years, polymer-micellar systems have been designed that are adaptable to their environment and able to respond in a controlled manner to external stimuli. In short, synthesis of 'nanoscale objects' that exhibit 'stimulus-responsive' properties is a topic gathering momentum, because their behavior is reminiscent of that exhibited by proteins [8]. By integrating environmentally sensitive homopolymers into amphiphilic block copolymers, smart block copolymers with self assembled supramolecular structures that exhibit stimuli or environmentally responsive properties can be obtained [1]. Several synthetic polymers are known to have environmentally responsive properties. Changes in the physical, chemical or biochemical environment of these polymers results in modulation of the solubility or chain conformation of the polymer [9]. There are many common schemes of engineering stimuli responsive properties into materials [8, 9]. Polymers exhibiting lower critical solution temperature (LCST) are soluble in solvent below a specific temperature and phase separate from solvent above that temperature while polymers exhibiting upper critical solution temperatures (UCST) phase separate below a certain temperature. The solubility of polymers with ionizable

  11. Fish otolith biomineralization process: first investigations about organic matrix and growth of Triglidae (Scorpaeniformes otoliths

    Directory of Open Access Journals (Sweden)

    Stefano Montanini

    2015-11-01

    Full Text Available Otolith formation involves rhythmic variations in the deposition and size of organic matrix framework and carbonate crystals, resulting in the formation of macroscopic translucent and opaque rings and microscopic zonations (growth increments (Morales Nin, 2000. As in most biominerals, the otolith matrix forms only 2-3 % of its weight, but it is admitted that it has a considerable importance in the otolith crystallization processes of nucleation, growth, orientation and growth control. The goal of this study is to characterize the matrix protein composition in the otoliths of Triglidae (Scorpaeniformes as a first step to understand molecular mechanisms of otolith formation according to biology and ecology of the species. In particular 500 sagittal otoliths from six gurnard species were analysed: Chelidonichthys cuculus, C. lucerna, Eutrigla gurnardus, Lepidotrigla cavillone, L. dieuzeidei and Trigloporus lastoviza. Protein contents were estimated by Bradford method and the urea 8 M extracts were loaded into a polyacrylamide gel, separated by SDS page and detected by Silver staining (Sigma followed the protocol of Borelli et al. (2001 with some modifications regarding protein precipitation that was enhanced by using TCA, trichloroacetic acid, 100% w/v. The urea soluble fractions revealed a unique large band around 50-55 kDa. Another common clear band was visible at the top of the separating gel (proteins >300/350 kDa unable to enter into the pores of polyacrylamide gels (12%. The complexity of the protein mixtures was investigated by 2-D electrophoresis (Gel TGX 4-20%; proteins were separated on the basis of both isoelectric point (pI and molecular size. A common protein pattern of 50-75 kDa were found in all gurnards showing a similar composition of organic matter even if the 2-D maps of otolith samples showed specie-specific variation in acid protein fractions in all the pairwise comparison. This result confirmed that the amino acid composition

  12. Trending analysis of precursor events

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1998-01-01

    The Accident Sequence Precursor (ASP) Program of United States Nuclear Regulatory Commission (U.S.NRC) identifies and categorizes operational events at nuclear power plants in terms of the potential for core damage. The ASP analysis has been performed on yearly basis and the results have been published in the annual reports. This paper describes the trends in initiating events and dominant sequences for 459 precursors identified in the ASP Program during the 1969-94 period and also discusses a comparison with dominant sequences predicted in the past Probabilistic Risk Assessment (PRA) studies. These trends were examined for three time periods, 1969-81, 1984-87 and 1988-94. Although the different models had been used in the ASP analyses for these three periods, the distribution of precursors by dominant sequences show similar trends to each other. For example, the sequences involving loss of both main and auxiliary feedwater were identified in many PWR events and those involving loss of both high and low coolant injection were found in many BWR events. Also, it was found that these dominant sequences were comparable to those determined to be dominant in the predictions by the past PRAs. As well, a list of the 459 precursors identified are provided in Appendix, indicating initiating event types, unavailable systems, dominant sequences, conditional core damage probabilities, and so on. (author)

  13. Synthesis of labelled ecdysone precursors

    International Nuclear Information System (INIS)

    Haag, T.; Hetru, C.; Nakatani, Y.; Luu, B.; Meister, M.; Pichat, L.; Audinot, M.

    1985-01-01

    High specific activity tritiated 3β,14α-dihydroxy-5β-cholest-7-en-6-one, has been prepared using a precursor which permits rapid and easy labelling. This compound is converted to ecdysone under in vitro conditions by insect prothoracic glands, a well known site of ecdysone biosynthesis. (author)

  14. Isotopic clusters

    International Nuclear Information System (INIS)

    Geraedts, J.M.P.

    1983-01-01

    Spectra of isotopically mixed clusters (dimers of SF 6 ) are calculated as well as transition frequencies. The result leads to speculations about the suitability of the laser-cluster fragmentation process for isotope separation. (Auth.)

  15. Cluster Headache

    Science.gov (United States)

    ... a role. Unlike migraine and tension headache, cluster headache generally isn't associated with triggers, such as foods, hormonal changes or stress. Once a cluster period begins, however, drinking alcohol ...

  16. Cluster Headache

    OpenAIRE

    Pearce, Iris

    1985-01-01

    Cluster headache is the most severe primary headache with recurrent pain attacks described as worse than giving birth. The aim of this paper was to make an overview of current knowledge on cluster headache with a focus on pathophysiology and treatment. This paper presents hypotheses of cluster headache pathophysiology, current treatment options and possible future therapy approaches. For years, the hypothalamus was regarded as the key structure in cluster headache, but is now thought to be pa...

  17. Categorias Cluster

    OpenAIRE

    Queiroz, Dayane Andrade

    2015-01-01

    Neste trabalho apresentamos as categorias cluster, que foram introduzidas por Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten e Gordana Todorov, com o objetivo de categoriíicar as algebras cluster criadas em 2002 por Sergey Fomin e Andrei Zelevinsky. Os autores acima, em [4], mostraram que existe uma estreita relação entre algebras cluster e categorias cluster para quivers cujo grafo subjacente é um diagrama de Dynkin. Para isto desenvolveram uma teoria tilting na estrutura triang...

  18. Meaningful Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  19. Horticultural cluster

    OpenAIRE

    SHERSTIUK S.V.; POSYLAYEVA K.I.

    2013-01-01

    In the article there are the theoretical and methodological approaches to the nature and existence of the cluster. The cluster differences from other kinds of cooperative and integration associations. Was develop by scientific-practical recommendations for forming a competitive horticultur cluster.

  20. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    Science.gov (United States)

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  1. Bio-mineralization and potential biogeochemical processes in bauxite deposits: genetic and ore quality significance

    Science.gov (United States)

    Laskou, Magdalini; Economou-Eliopoulos, Maria

    2013-08-01

    The Parnassos-Ghiona bauxite deposit in Greece of karst type is the 11th largest bauxite producer in the world. The mineralogical, major and trace-element contents and δ18O, δ12C, δ34S isotopic compositions of bauxite ores from this deposit and associated limestone provide valuable evidence for their origin and biogeochemical processes resulting in the beneficiation of low grade bauxite ores. The organic matter as thin coal layers, overlying the bauxite deposits, within limestone itself (negative δ12C isotopic values) and the negative δ34S values in sulfides within bauxite ores point to the existence of the appropriate circumstances for Fe bio-leaching and bio-mineralization. Furthermore, a consortium of microorganisms of varying morphological forms (filament-like and spherical to lenticular at an average size of 2 μm), either as fossils or presently living and producing enzymes, is a powerful factor to catalyze the redox reactions, expedite the rates of metal extraction and provide alternative pathways for metal leaching processes resulting in the beneficiation of bauxite ore.

  2. Dietary calcium deficiency in laying ducks impairs eggshell quality by suppressing shell biomineralization.

    Science.gov (United States)

    Chen, Wei; Zhao, Fei; Tian, Zhi Mei; Zhang, Han Xing; Ruan, Dong; Li, Yan; Wang, Shuang; Zheng, Chun Tian; Lin, Ying Cai

    2015-10-01

    The objective of this study was to determine the effects of dietary calcium deficiency on the process of shell formation. Four hundred and fifty female ducks (Anas platyrhynchos) at 22 weeks were randomly assigned to three groups. Ducks were fed one of two calcium-deficient diets (containing 1.8% or 0.38% calcium, respectively) or a calcium-adequate control diet (containing 3.6% calcium) for 67 days (depletion period) and then all ducks were fed a calcium-adequate diet for an additional 67 days (repletion period). Compared with the calcium-adequate control, the average shell thickness, egg shell weight, breaking strength, mammillae density and mammillary knob thickness of shell from ducks that consumed the diet with 0.38% calcium were significantly decreased (Pducks fed 0.38% calcium but not 1.8% calcium. Plasma estradiol concentration was decreased by both of the calcium-deficient diets (Pstudy suggest that dietary calcium deficiency negatively affects eggshell quality and microarchitecture, probably by suppressing shell biomineralization. © 2015. Published by The Company of Biologists Ltd.

  3. Transcription factor FoxO1 is essential for enamel biomineralization.

    Directory of Open Access Journals (Sweden)

    Ross A Poché

    Full Text Available The Transforming growth factor β (Tgf-β pathway, by signaling via the activation of Smad transcription factors, induces the expression of many diverse downstream target genes thereby regulating a vast array of cellular events essential for proper development and homeostasis. In order for a specific cell type to properly interpret the Tgf-β signal and elicit a specific cellular response, cell-specific transcriptional co-factors often cooperate with the Smads to activate a discrete set of genes in the appropriate temporal and spatial manner. Here, via a conditional knockout approach, we show that mice mutant for Forkhead Box O transcription factor FoxO1 exhibit an enamel hypomaturation defect which phenocopies that of the Smad3 mutant mice. Furthermore, we determined that both the FoxO1 and Smad3 mutant teeth exhibit changes in the expression of similar cohort of genes encoding enamel matrix proteins required for proper enamel development. These data raise the possibility that FoxO1 and Smad3 act in concert to regulate a common repertoire of genes necessary for complete enamel maturation. This study is the first to define an essential role for the FoxO family of transcription factors in tooth development and provides a new molecular entry point which will allow researchers to delineate novel genetic pathways regulating the process of biomineralization which may also have significance for studies of human tooth diseases such as amelogenesis imperfecta.

  4. Biomineralization processes of calcite induced by bacteria isolated from marine sediments.

    Science.gov (United States)

    Wei, Shiping; Cui, Hongpeng; Jiang, Zhenglong; Liu, Hao; He, Hao; Fang, Nianqiao

    2015-06-01

    Biomineralization is a known natural phenomenon associated with a wide range of bacterial species. Bacterial-induced calcium carbonate precipitation by marine isolates was investigated in this study. Three genera of ureolytic bacteria, Sporosarcina sp., Bacillus sp. and Brevundimonas sp. were observed to precipitate calcium carbonate minerals. Of these species, Sporosarcina sp. dominated the cultured isolates. B. lentus CP28 generated higher urease activity and facilitated more efficient precipitation of calcium carbonate at 3.24 ± 0.25 × 10(-4) mg/cell. X-ray diffraction indicated that the dominant calcium carbonate phase was calcite. Scanning electron microscopy showed that morphologies of the minerals were dominated by cubic, rhombic and polygonal plate-like crystals. The dynamic process of microbial calcium carbonate precipitation revealed that B. lentus CP28 precipitated calcite crystals through the enzymatic hydrolysis of urea, and that when ammonium ion concentrations reached 746 mM and the pH reached 9.6, that favored calcite precipitation at a higher level of 96 mg/L. The results of this research provide evidence that a variety of marine bacteria can induce calcium carbonate precipitation, and may influence the marine carbonate cycle in natural environments.

  5. Modeling the effectiveness of U(VI) biomineralization in dual-porosity porous media

    Science.gov (United States)

    Rotter, B. E.; Barry, D. A.; Gerhard, J. I.; Small, J. S.

    2011-05-01

    SummaryUranium contamination is a serious environmental concern worldwide. Recent attention has focused on the in situ immobilization of uranium by stimulation of dissimilatory metal-reducing bacteria (DMRB). The objective of this work was to investigate the effectiveness of this approach in heterogeneous and structured porous media, since such media may significantly affect the geochemical and microbial processes taking place in contaminated sites, impacting remediation efficiency during biostimulation. A biogeochemical reactive transport model was developed for uranium remediation by immobile-region-resident DMRB in two-region porous media. Simulations were used to investigate the parameter sensitivities of the system over wide-ranging geochemical, microbial and groundwater transport conditions. The results suggest that optimal biomineralization is generally likely to occur when the regional mass transfer timescale is less than one-thirtieth the value of the volumetric flux timescale, and/or the organic carbon fermentation timescale is less than one-thirtieth the value of the advective timescale, and/or the mobile region porosity ranges between equal to and four times the immobile region porosity. Simulations including U(VI) surface complexation to Fe oxides additionally suggest that, while systems exhibiting U(VI) surface complexation may be successfully remediated, they are likely to display different degrees of remediation efficiency over varying microbial efficiency, mobile-immobile mass transfer, and porosity ratios. Such information may aid experimental and field designs, allowing for optimized remediation in dual-porosity (two-region) biostimulated DMRB U(VI) remediation schemes.

  6. Mining the transcriptomes of four commercially important shellfish species for single nucleotide polymorphisms within biomineralization genes.

    Science.gov (United States)

    Vendrami, David L J; Shah, Abhijeet; Telesca, Luca; Hoffman, Joseph I

    2016-06-01

    Transcriptional profiling not only provides insights into patterns of gene expression, but also generates sequences that can be mined for molecular markers, which in turn can be used for population genetic studies. As part of a large-scale effort to better understand how commercially important European shellfish species may respond to ocean acidification, we therefore mined the transcriptomes of four species (the Pacific oyster Crassostrea gigas, the blue mussel Mytilus edulis, the great scallop Pecten maximus and the blunt gaper Mya truncata) for single nucleotide polymorphisms (SNPs). Illumina data for C. gigas, M. edulis and P. maximus and 454 data for M. truncata were interrogated using GATK and SWAP454 respectively to identify between 8267 and 47,159 high quality SNPs per species (total=121,053 SNPs residing within 34,716 different contigs). We then annotated the transcripts containing SNPs to reveal homology to diverse genes. Finally, as oceanic pH affects the ability of organisms to incorporate calcium carbonate, we honed in on genes implicated in the biomineralization process to identify a total of 1899 SNPs in 157 genes. These provide good candidates for biomarkers with which to study patterns of selection in natural or experimental populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Analysis of the biomineralization process on SWNT-COOH and F-SWNT films

    Energy Technology Data Exchange (ETDEWEB)

    Armentano, Ilaria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy)], E-mail: Ilaria.armentano@lnl.infn.it; Alvarez-Perez, Marco Antonio; Carmona-Rodriguez, Bruno [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico); Gutierrez-Ospina, Ivan [Universidad Autonoma Metropolitana, Xochimilco, Mexico D. F. (Mexico); Kenny, Jose Maria [Materials Engineering Centre, UdR INSTM, NIPLAB, University of Perugia, Terni (Italy); Arzate, Higinio [Laboratorio de Biologia Celular y Molecular, Facultad de Odontologia, Universidad Nacional Autonoma de Mexico, Mexico D. F. (Mexico)

    2008-12-01

    In vitro biomineralization process was investigated on functionalized single wall nanotube (SWNT) films. The films were prepared by solvent casting method by using carboxylated and fluorinated nanotubes. SWNT films were characterized by means of electron microscopy, contact angle measurements and optical absorption. The in vitro assays were performed on cultured human alveolar bone-derived cells (HABDC) to determine the capabilities of carboxylated single-walled nanotubes (SWNTs-COOH) and fluorinated single-walled nanotubes (F-SWNTs) to promote the deposit of mineral-like tissue. The results showed that the cellular response of HABDC in secreting a mineralized extracellular matrix and their consequent mineralization is dependent on the degree of functionalization of the SWNTs. Differences were found related to the kind of sidewall functionalization. Both structures promoted hydroxyapatite formation, however, calcium uptake on SWNTs-COOH increased and it was related to crystal density. From our results, it is possible to infer that CNT functionalization opens a path to future developments in new bone graft materials and techniques.

  8. Complementary effects of multi-protein components on biomineralization in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ba, X.; DiMasi, E.; Rafailovich, M.; Meng, Y.; Pernodet, N.; Wirick, S.; Furedi-Milhofer, H.; Qin, Y.X.

    2009-12-17

    The extracellular matrix (ECM) is composed of mixed protein fibers whose precise composition affects biomineralization. New methods are needed to probe the interactions of these proteins with calcium phosphate mineral and with each other. Here we follow calcium phosphate mineralization on protein fibers self-assembled in vitro from solutions of fibronectin, elastin and their mixture. We probe the surface morphology and mechanical properties of the protein fibers during the early stages. The development of mineral crystals on the protein matrices is also investigated. In physiological mineralization solution, the elastic modulus of the fibers in the fibronectin-elastin mixture increases to a greater extent than that of the fibers from either pure protein. In the presence of fibronectin, longer exposure in the mineral solution leads to the formation of amorphous calcium phosphate particles templated along the self-assembled fibers, while elastin fibers only collect calcium without any mineral observed during early stage. TEM images confirm that small needle-shape crystals are confined inside elastin fibers which suppress the release of mineral outside the fibers during late stage, while hydroxyapatite crystals form when fibronectin is present. These results demonstrate complementary actions of the two ECM proteins fibronectin and elastin to collect cations and template mineral, respectively.

  9. THE BIOMINERAL CONCENTRATIONS AND ACCUMULATION IN SOME WILD GROWING EDIBLE SPECIES OF MUSHROOMS

    Directory of Open Access Journals (Sweden)

    Carmen Cristina Elekes

    2010-01-01

    Full Text Available Many mushrooms species are known to accumulate metals to a higher level than the plants and are considered as a source of proteins, vitamins – riboflavin, biotin and thiamine, fats, carbohydrates, amino acids and minerals. The trace metals concentrations were established by Inductively Coupled Plasma - Atomic Emission Spectrometry method. The aim of this paper is to determinate the minerals content of some wild growing mushrooms, which may be useful in the phytopharmaceutical biotechnologies in order to obtain important quantities of biominerals accessible for the human body. The results are varying with the analyzed species of mushrooms between 11869.85 and 32088.68 mg/kg for potassium, 240.81 to 716.98 mg/kg for calcium and between 0 to 5350 mg/kg for phosphorus. The highest concentration if potassium was founded in B. griseus species, 32088.68 mg/kg. Only two species, Hygrophorus virgineus and Marasmius oreades show a phosphorus concentration in the fruiting body higher than in soil, indicating the accumulation capacity.

  10. Response to lead pollution: mycorrhizal Pinus sylvestris forms the biomineral pyromorphite in roots and needles.

    Science.gov (United States)

    Bizo, Maria L; Nietzsche, Sandor; Mansfeld, Ulrich; Langenhorst, Falko; Majzlan, Juraj; Göttlicher, Jörg; Ozunu, Alexandru; Formann, Steffi; Krause, Katrin; Kothe, Erika

    2017-06-01

    The development of mycorrhized pine seedlings grown in the presence of lead was assessed in order to investigate how higher plants can tolerate lead pollution in the environment. Examination with scanning electron microscopy (SEM) revealed that Pb uptake was prominent in the roots, while a smaller amount was found in pine needles, which requires symplastic uptake and root-to-shoot transfer. Lead was concentrated in nanocrystalline aggregates attached to the cell wall and, according to elemental microanalyses, is associated with phosphorus and chlorine. The identification of the nanocrystalline phase in roots and needles was performed by transmission electron microscopy (TEM) and synchrotron X-ray micro-diffraction (μ-XRD), revealing the presence of pyromorphite, Pb 5 [PO 4 ] 3 (Cl, OH), in both roots and needles. The extracellular embedding of pyromorphite within plant cell walls, featuring an indented appearance of the cell wall due to a callus-like outcrop of minerals, suggests a biogenic origin. This biomineralization is interpreted as a defense mechanism of the plant against lead pollution.

  11. Biomineralization of gold by Mucor plumbeus: The progress in understanding the mechanism of nanoparticles' formation.

    Science.gov (United States)

    Maliszewska, Irena; Tylus, Włodzimierz; Chęcmanowski, Jacek; Szczygieł, Bogdan; Pawlaczyk-Graja, Izabela; Pusz, Wojciech; Baturo-Cieśniewska, Anna

    2017-09-01

    This contribution describes the deposition of gold nanoparticles by microbial reduction of Au(III) ions using the mycelium of Mucor plumbeus. Biosorption as the major mechanism of Au(III) ions binding by the fungal cells and the reduction of them to the form of Au(0) on/in the cell wall, followed by the transportation of the synthesized gold nanoparticles to the cytoplasm, is postulated. The probable mechanism behind the reduction of Au(III) ions is discussed, leading to the conclusion that this process is nonenzymatic one. Chitosan of the fungal cell wall is most likely to be the major molecule involved in biomineralization of gold by the mycelium of M. plumbeus. Separation of gold nanoparticles from the cells has been carried out by the ultrasonic disintegration and the obtained nanostructures were characterized by UV-vis spectroscopy and transmission electron micrograph analysis. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1381-1392, 2017. © 2017 American Institute of Chemical Engineers.

  12. Analysis of the biomineralization process on SWNT-COOH and F-SWNT films

    International Nuclear Information System (INIS)

    Armentano, Ilaria; Alvarez-Perez, Marco Antonio; Carmona-Rodriguez, Bruno; Gutierrez-Ospina, Ivan; Kenny, Jose Maria; Arzate, Higinio

    2008-01-01

    In vitro biomineralization process was investigated on functionalized single wall nanotube (SWNT) films. The films were prepared by solvent casting method by using carboxylated and fluorinated nanotubes. SWNT films were characterized by means of electron microscopy, contact angle measurements and optical absorption. The in vitro assays were performed on cultured human alveolar bone-derived cells (HABDC) to determine the capabilities of carboxylated single-walled nanotubes (SWNTs-COOH) and fluorinated single-walled nanotubes (F-SWNTs) to promote the deposit of mineral-like tissue. The results showed that the cellular response of HABDC in secreting a mineralized extracellular matrix and their consequent mineralization is dependent on the degree of functionalization of the SWNTs. Differences were found related to the kind of sidewall functionalization. Both structures promoted hydroxyapatite formation, however, calcium uptake on SWNTs-COOH increased and it was related to crystal density. From our results, it is possible to infer that CNT functionalization opens a path to future developments in new bone graft materials and techniques

  13. Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization.

    Science.gov (United States)

    Rodríguez, N; Menéndez, N; Tornero, J; Amils, R; de la Fuente, V

    2005-03-01

    * The analysis of metal distribution in Imperata cylindrica, a perennial grass isolated from the banks of Tinto River (Iberian Pyritic Belt), an extreme acidic environment with high content in metals, has shown a remarkable accumulation of iron. This property has been used to study iron speciation and its distribution among different tissues and structures of the plant. * Mossbauer (MS) and X-ray diffraction (XRD) were used to determine the iron species, scanning electron microscopy (SEM) to locate iron biominerals among plant tissue structures, and energy-dispersive X-ray microanalysis (EDAX), X-ray fluorescence (TXRF) and inductively coupled plasma emission spectroscopy (ICP-MS) to confirm their elemental composition. * The MS spectral analysis indicated that iron accumulated in this plant mainly as jarosite and ferritin. The presence of jarosite was confirmed by XRD and the distribution of both minerals in structures of different tissues was ascertained by SEM-EDAX analysis. * The convergent results obtained by complementary techniques suggest a complex iron management system in I. cylindrica, probably as a consequence of the environmental conditions of its habitat.

  14. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A mesoporous silica composite scaffold: Cell behaviors, biomineralization and mechanical properties

    Science.gov (United States)

    Xu, Yong; Gao, Dan; Feng, Pei; Gao, Chengde; Peng, Shuping; Ma, HaoTian; Yang, Sheng; Shuai, Cijun

    2017-11-01

    Mesoporous structure is beneficial to cellular response due to the large specific surface area and high pore volume. In this study, mesoporous silica (SBA15) was incorporated into poly-L-lactic acid (PLLA) to construct composite scaffold by selective laser sintering. The results showed that SBA15 facilitated cells proliferation, which was mainly attributed to its unique intrinsic mesoporous structure and the released bioactive silicon. Moreover, the hydrolyzate of soluble mesoporous silica can adsorb ions to form nucleation sites that promote biomineralization, leading to improve biological activity of the composite scaffold. In addition, the compressive strength, compressive modulus and Vickers hardness of the scaffold were increased by 47.6%, 35.5% and 29.53% respectively with 1.5 wt.% SBA15. It was found that the particle enhancement of uniform distributed SBA15 accounted for the mechanic reinforcement of the composite scaffold. It indicated that the PLLA-SBA15 composite scaffold had potential applications in bone tissue engineering.

  16. Anatomical characterization of ultra-structures, biominerals and histolocalization of metabolites in leaves of Genipa americana

    Directory of Open Access Journals (Sweden)

    Alex L. Vasconcelos

    Full Text Available Abstract Inserted in one of the largest families among the Angiosperms, Genipa americana L., Rubiaceae, can be found in all Brazilian territory, presenting great medicinal importance, where several uses have been attributed. In view of this, this work has the purpose of analyzing the ultrastructural, biomineral, phytochemical and histochemical characteristics of the leaves of this native species from Brazil. For this, light microscopy, polarization and scanning electron microscopy techniques were used with X-ray scattering energy, associated to chromatographic and histochemical tests. The anatomical ultrastructural characteristics of the leaves detailed information about the type and arrangement of the cuticle, trichomes, surface and arrangement of the tissues that determine the botanical identity of this species. The phytochemical tests allowed determining their chromatographic pattern and histochemistry to determine the exact storage site of these substances in the leaf. It was observed that the characterization of the crystalline macro-pattern present in the analyzed species, as well as its exact elemental composition, can be considered an important differential diagnosis factor. The results characterize the leaves of this species in different aspects, being a native species and pharmacologically promising, with different popular uses and proven pharmacological activities, and more in depth studies is needed.

  17. Cluster Matters

    DEFF Research Database (Denmark)

    Gulati, Mukesh; Lund-Thomsen, Peter; Suresh, Sangeetha

    2018-01-01

    sell their products successfully in international markets, but there is also an increasingly large consumer base within India. Indeed, Indian industrial clusters have contributed to a substantial part of this growth process, and there are several hundred registered clusters within the country...... of this handbook, which focuses on the role of CSR in MSMEs. Hence we contribute to the literature on CSR in industrial clusters and specifically CSR in Indian industrial clusters by investigating the drivers of CSR in India’s industrial clusters....

  18. The Innate Lymphoid Cell Precursor.

    Science.gov (United States)

    Ishizuka, Isabel E; Constantinides, Michael G; Gudjonson, Herman; Bendelac, Albert

    2016-05-20

    The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.

  19. Precursor polymer compositions comprising polybenzimidazole

    Science.gov (United States)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  20. Precursor incident program at EDF

    International Nuclear Information System (INIS)

    Fourest, B.; Maliverney, B.; Rozenholc, M.; Piovesan, C.

    1998-01-01

    The precursor program was started by EDF in 1994, after an investigation of the US NRC's Accident Sequence Precursor Program. Since then, reported operational events identified as Safety Outstanding Events have been analyzed whenever possible using probabilistic methods based on PSAs. Analysis provides an estimate of the remaining protection against core damage at the time the incident occurred. Measuring the incidents' severity enables to detect incidents important regarding safety. Moreover, the most efficient feedback actions can be derived from the main accident sequences identified through the analysis. Therefore, incident probabilistic analysis provides a way to assess priorities in terms of treatment and resource allocation, and so, to implement countermeasures preventing further occurrence and development of the most significant incidents. As some incidents cannot be analyzed using this method, probabilistic analysis can only be one among the methods used to assess the nuclear power plants' safety level. Nevertheless, it provides an interesting complement to classical methods of deterministic studies. (author)

  1. Data Clustering

    Science.gov (United States)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  2. Microfossils, biomolecules and biominerals in carbonaceous meteorites: implications to the origin of life

    Science.gov (United States)

    Hoover, Richard B.

    2012-11-01

    Environmental and Field Emission Scanning Electron Microscopy (ESEM and FESEM) investigations have shown that a wide variety of carbonaceous meteorites contain the remains of large filaments embedded within freshly fractured interior surfaces of the meteorite rock matrix. The filaments occur singly or in dense assemblages and mats and are often encased within carbon-rich, electron transparent sheaths. Electron Dispersive X-ray Spectroscopy (EDS) spot analysis and 2D X-Ray maps indicate the filaments rarely have detectable nitrogen levels and exhibit elemental compositions consistent with that interpretation that of the meteorite rock matrix. Many of the meteorite filaments are exceptionally well-preserved and show evidence of cells, cell-wall constrictions and specialized cells and processes for reproduction, nitrogen fixation, attachment and motility. Morphological and morphometric analyses permit many of the filaments to be associated with morphotypes of known genera and species of known filamentous trichomic prokaryotes (cyanobacteria and sulfur bacteria). The presence in carbonaceous meteorites of diagenetic breakdown products of chlorophyll (pristane and phytane) along with indigenous and extraterrestrial chiral protein amino acids, nucleobases and other life-critical biomolecules provides strong support to the hypothesis that these filaments represent the remains of cyanobacteria and other microorganisms that grew on the meteorite parent body. The absence of other life-critical biomolecules in the meteorites and the lack of detectable levels of nitrogen indicate the filaments died long ago and can not possibly represent modern microbial contaminants that entered the stones after they arrived on Earth. This paper presents new evidence for microfossils, biomolecules and biominerals in carbonaceous meteorites and considers the implications to some of the major hypotheses for the Origin of Life.

  3. Vesicular delivery of crystalline calcium minerals to ECM in biomineralized nanoclay composites

    International Nuclear Information System (INIS)

    Katti, Kalpana S; Ambre, Avinash H; Payne, Scott; Katti, Dinesh R

    2015-01-01

    The mechanisms of mineralization and new bone formation were explored in newly formed extracellular matrix in a nanoclay based composite. Nanoclay films were prepared by intercalating the clays with amino acids and using the amino acids for mineralization of hydroxyapatite. The biomineralized hydroxyapatite (HAP) inside nanoclay galleries or in situ HAP/clay was further used to make films (substrates) using polycaprolactone (PCL) that were seeded with mesenchymal stem cells in a two-stage seeding process. SEM imaging experiments performed on PCL/in situ HAPclay composite films seeded with human MSCs indicated formation of matrix vesicles. The vesicles appear to emerge from the cells that are adhered to the nanoclay HAP films and also deposited in the extracellular space. Vesicles are also observed to be embedded in the cells or under the surface of cells. Crystalline structures with Ca and P were found inside vesicles. The Ca/P ratios obtained using energy dispersive spectroscopy indicate values ranging from below 0.7 to the stoichiometric HAP value of 1.67. The Ca/P ratios were obtained to be closer to the stoichiometric value for single seeding experiments as compared to the double seeding experiments indicating more new bone formation in double seeding experiments. New bone formation with bone mimetic mineralization is thus observed on the in situ HAP nanoclay PCL samples. Hence the PCL/in situ HAPclay composites besides being osteoinductive are also capable of providing a favorable micro-environment for cell dependent processes involved in bone mineral formation. (paper)

  4. Molecular interactions in biomineralized hydroxyapatite amino acid modified nanoclay: In silico design of bone biomaterials

    International Nuclear Information System (INIS)

    Katti, Dinesh R.; Sharma, Anurag; Ambre, Avinash H.; Katti, Kalpana S.

    2015-01-01

    A simulations driven approach to design of a novel biomaterial nanocomposite system is described in this study. Nanoclays modified with amino acids (OMMT) were used to mineralize hydroxyapatite (HAP), mimicking biomineralization. Representative models of organically modified montmorillonite clay (OMMT) and OMMT-hydroxyapatite (OMMT-HAP) were constructed using molecular dynamics and validated using X-ray Diffraction (XRD), Fourier Transforms Infrared (FTIR) spectroscopy and Transmission Electron Microscopy (TEM). Attractive interactions exist between Ca atoms of HAP and C=O group of aminovaleric acid, indicating chelate formation in OMMT-HAP. Interaction energy maps describe molecular interactions among different constituents and their quantitative contributions in the OMMT and OMMT-HAP systems at both parallel and perpendicular orientations. High attractive and high repulsive interactions were found between PO 4 3− and MMT clay as well as aminovaleric molecules in OMMT-HAP perpendicular and parallel models. Large non-bonded interactions in OMMT-HAP indicate influence of neighboring environment on PO 4 3− in in situ HAPclay. Extensive hydrogen bonds were observed between functional hydrogen atoms of modifier and MMT clay in OMMT-HAP as compared to OMMT. Thus, HAP interacts with clay through the aminovaleric acid. This computational study provides a framework for materials design and selection for biomaterials used in tissue engineering and other areas of regenerative medicine. - Highlights: • Representative models of a hybrid nanoclay-hydroxyapatite biomaterial are built. • Interaction energy maps are constructed using a molecular dynamics. • Quantitative interactions between the three components of the biomaterial are found. • The modeling and experimental approach provides insight into the complex nanomaterial

  5. Biominerals doped nanocrystalline nickel oxide as efficient humidity sensor: A green approach

    International Nuclear Information System (INIS)

    John Kennedy, L.; Magesan, P.; Judith Vijaya, J.; Umapathy, M.J.; Aruldoss, Udaya

    2014-01-01

    Graphical abstract: - Highlights: • A new resistive type of sensor was prepared by green synthesis. • The mineral oxide from seed part of Hygrophila spinosa T. Anders (HST) plant is chosen as a dopant in NiO. • The HST plant is found abundantly and commercially available in many countries. • The band gap of NH2 (Ni:HST of 0.5:0.5 weight ratio) sample is greater than prepared bulk NiO due to quantum effects. • The NH2 sample shows remarkable changes in the humidity sensing properties. - Abstract: The simple and green method is adopted for the preparation of biominerals (derived from the Hygrophila spinosa T. Anders plant seeds) doped nanocrystalline NiO. The prepared samples were subjected to instrumental analysis such as XRD, FT-IR, HR-SEM, EDX, UV–vis–DRS techniques. The surface area of all the samples was calculated from the Williamson–Hall's plot. The humidity sensitivity factor (S f ) of the prepared samples was evaluated by two probe dc electrical resistance method at different relative humidity levels. The change in the resistance was observed for the entire sensor samples except pure NiO (NH0). Compared to all the other composition, HST of 0.5% in NiO (NH2 sample) enhances the sensitivity factor (S f ) of about 90,000. The NH2 sample exhibited good linearity, reproducibility and response and recovery time about 210 ± 5 s and 232 ± 4 s, respectively. It is found that the sensitivity largely depends on composition, crystallite size and surface area

  6. A biomineralization study of the Indo-Pacific giant clam Tridacna gigas

    Science.gov (United States)

    Gannon, M. E.; Pérez-Huerta, A.; Aharon, P.; Street, S. C.

    2017-06-01

    The giant clam, Tridacna gigas, is an important faunal component of reef ecosystems of the Indo-Pacific region. In addition to its ecological role, shells of this bivalve species are useful bioarchives for past climate and environmental reconstructions. However, the biomineralization processes involved in shell aragonite deposition are insufficiently understood. Here, we present a study of the shell microstructure of modern specimens from Palm Island, Great Barrier Reef (GBR), Australia, and Huon Peninsula, Papua New Guinea (PNG), using a combination of petrography, scanning electron microscopy, electron backscatter diffraction, Raman spectroscopy and stable carbon isotope ratios. Daily growth increments were recognizable in all specimens through ontogeny, and counting these growth lines provides a robust specimen age estimate. For the internal layers, paired increments of organized aragonitic needles and compact, oblong crystals were recognized in a specimen from PNG, whereas specimens from GBR were composed of shield-like crystals that were not definable at the microscale. The combination of nutrient availability, rainfall and solar irradiance are likely to be the most significant factors controlling shell growth and may explain the observed differences in microstructure. The external layer, identical in all specimens, was composed of dendritic microstructure that is significantly enriched in 13C compared to the internal layer, suggesting different metabolic controls on layer deposition. We propose that the mineralization of the internal and external layers is independent from each other and associated with the activity of specific mantles. Future studies using T. gigas shells as bioarchives should consider the microstructure as it reflects the environment in which the individual lived and the differences in mineralization pathways of internal and external layers.

  7. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2010-02-01

    Recently, it was shown that the interaction of each of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered saline (PBS) promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. This study analyzes the influence of the biomineralization process on the push-out strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK), MTA Branco (Angelus Soluções Odontológicas, Londrina, PR, Brazil), MTA BIO (Angelus Soluções Odontológicas), or Portland cement with and without calcium chloride. Dentin discs with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2). The specimens were randomly divided into two groups: cement in contact with a wet cotton pellet for 72 hours or immersed in PBS for 2 months. The bond strengths were measured with the Instron Testing machine (Model 4444; Instron Corp, Canton, MA), and the fractured surfaces on the root walls were observed by scanning electron microscopy. All samples immersed in PBS displayed a significantly greater resistance to displacement than that observed for the samples in contact with a wet cotton pellet for 72 hours (p Portland cements. It was concluded that the biomineralization process positively influenced the push-out bond strength of the cements, particularly the MTA groups. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  9. Fission of Polyanionic Metal Clusters

    Science.gov (United States)

    König, S.; Jankowski, A.; Marx, G.; Schweikhard, L.; Wolfram, M.

    2018-04-01

    Size-selected dianionic lead clusters Pbn2 -, n =34 - 56 , are stored in a Penning trap and studied with respect to their decay products upon photoexcitation. Contrary to the decay of other dianionic metal clusters, these lead clusters show a variety of decay channels. The mass spectra of the fragments are compared to the corresponding spectra of the monoanionic precursors. This comparison leads to the conclusion that, in the cluster size region below about n =48 , the fission reaction Pbn2 -→Pbn-10 -+Pb10- is the major decay process. Its disappearance at larger cluster sizes may be an indication of a nonmetal to metal transition. Recently, the pair of Pb10- and Pbn-10 - were observed as pronounced fragments in electron-attachment studies [S. König et al., Int. J. Mass Spectrom. 421, 129 (2017), 10.1016/j.ijms.2017.06.009]. The present findings suggest that this combination is the fingerprint of the decay of doubly charged lead clusters. With this assumption, the dianion clusters have been traced down to Pb212 -, whereas the smallest size for the direct observation was as high as n =28 .

  10. LIBS, LA-ICPMS and synchrotron hard x-ray micro-radiography and micro-tomography complementary study of elemental distributions in biominerals

    International Nuclear Information System (INIS)

    Kaiser, J.; Novotny, K.; Hola, M.; Kanicky, V.; Martinec, P.; Hahn, D.W.; Diwakar, P.K.; Mancini, L.; Tromba, G.; Sodini, N.

    2009-01-01

    Full text: Analysis of bio-minerals can provide information about the chronology, diet and palaeoenvironment of past populations. More specifically, e.g. line scans of uroliths cross-sections may be used to detect the accumulation history of the selected elements. This can be linked to the patients' exposure to environmental effects. Together with the main components, biogenous and toxic trace elements can be monitored. We report on utilization of two laser-ablation based analytical techniques for mapping elemental distribution in bio-minerals, coupled to hard x-ray microradiography and micro-CT measurements for visualization of the inner structure of the investigated samples. (author)

  11. Multifunctional Silica Nanoparticles Modified via Silylated-Decaborate Precursors

    Directory of Open Access Journals (Sweden)

    Fatima Abi-Ghaida

    2015-01-01

    Full Text Available A new class of multifunctional silica nanoparticles carrying boron clusters (10-vertex closo-decaborate and incorporating luminescent centers (fluorescein has been developed as potential probes/carriers for potential application in boron neutron capture therapy (BNCT. These silica nanoparticles were charged in situ with silylated-fluorescein fluorophores via the Stöber method and their surface was further functionalized with decaborate-triethoxysilane precursors. The resulting decaborate dye-doped silica nanoparticles were characterized by TEM, solid state NMR, DLS, nitrogen sorption, elemental analysis, and fluorescence spectroscopy.

  12. Synthesis of carbon nanotubes using natural carbon precursor: Castor oil

    Science.gov (United States)

    Raziah, A. Z.; Junizah, A. R.; Saifuddin, N.

    2012-09-01

    Castor oil has long been an article of commerce due to its versatility as it is widely used as a starting material for many industrial chemical products because of its unique structure. In this study, carbon nanotubes has been synthesized by thermal decomposition of castor oil in nitrogen atmosphere at 300-400δC using custom-made microwave processing unit. The precursor material was catalyzed by iron clusters originating from the addition of ferrocene. The morphology and characterization of the CNTs were studied and discussed by transmission electron microscopy (TEM).

  13. Radon as an earthquake precursor

    International Nuclear Information System (INIS)

    Planinic, J.; Radolic, V.; Vukovic, B.

    2004-01-01

    Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors during a four-year period. Seismic activities, as well as barometric pressure, rainfall and air temperature were also observed. The influence of meteorological parameters on temporal radon variations was investigated, and a respective equation of the multiple regression was derived. The earthquakes with magnitude ≥3 at epicentral distances ≤200 km were recognized by means of radon anomaly. Empirical equations between earthquake magnitude, epicentral distance and precursor time were examined, and respective constants were determined

  14. Radon as an earthquake precursor

    Energy Technology Data Exchange (ETDEWEB)

    Planinic, J. E-mail: planinic@pedos.hr; Radolic, V.; Vukovic, B

    2004-09-11

    Radon concentrations in soil gas were continuously measured by the LR-115 nuclear track detectors during a four-year period. Seismic activities, as well as barometric pressure, rainfall and air temperature were also observed. The influence of meteorological parameters on temporal radon variations was investigated, and a respective equation of the multiple regression was derived. The earthquakes with magnitude {>=}3 at epicentral distances {<=}200 km were recognized by means of radon anomaly. Empirical equations between earthquake magnitude, epicentral distance and precursor time were examined, and respective constants were determined.

  15. Biomimetic mineralization of CaCO3 on a phospholipid monolayer: from an amorphous calcium carbonate precursor to calcite via vaterite.

    Science.gov (United States)

    Xiao, Junwu; Wang, Zhining; Tang, Yecang; Yang, Shihe

    2010-04-06

    A phospholipid monolayer, approximately half the bilayer structure of a biological membrane, can be regarded as an ideal model for investigating biomineralization on biological membranes. In this work on the biomimetic mineralization of CaCO(3) under a phospholipid monolayer, we show the initial heterogeneous nucleation of amorphous calcium carbonate precursor (ACC) nanoparticles at the air-water interface, their subsequent transformation into the metastable vaterite phase instead of the most thermodynamically stable calcite phase, and the ultimate phase transformation to calcite. Furthermore, the spontaneity of the transformation from vaterite to calcite was found to be closely related to the surface tension; high surface pressure could inhibit the process, highlighting the determinant of surface energy. To understand better the mechanisms for ACC formation and the transformation from ACC to vaterite and to calcite, in situ Brewster angle microscopy (BAM), ex situ scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction analysis were employed. This work has clarified the crystallization process of calcium carbonate under phospholipid monolayers and therefore may further our understanding of the biomineralization processes induced by cellular membranes.

  16. Fluorescing macerals from wood precursors

    Energy Technology Data Exchange (ETDEWEB)

    Stout, S A; Bensley, D F

    1987-01-01

    A preliminary investigation into the origin of wood-derived macerals has established the existence of autofluorescent maceral precursors in the secondary xylem of swamp-inhabiting plant species. The optical character and fluorescent properties of microtomed thin-sections of modern woods from the Florida Everglades and Okefenokee Swamp, Georgia are compared to the character and properties of their peatified equivalents from various Everglades and Okefenokee peat horizons and their lignitic equivalents from the Brandon lignite of Vermont and the Trail Ridge lignitic peat from northern Florida. The inherent fluorescence of woody cell walls is believed to be caused by lignin though other cell wall components may contribute. The fluorescence spectra for several wood and cell types had a ..gamma../sub m//sub a//sub x/ of 452 nm and Q value of 0.00. The color as observed in blue light and the spectral geometry as measured in UV light of peatified and lignitic woody cell walls (potential textinites) may change progressively during early coalification. Cell wall-derived maceral material is shown to maintain its fluorescing properties after being converted to a structureless material, perhaps a corpohuminite or humodetrinite precursor. Fluorescing xylem cell contents, such as condensed tannins or essential oils, can maintain the fluorescent character through early coalification. Xylem cell walls and xylem cell contents are shown to provide fluorescing progenitor materials which would not require subsequent infusion with 'lipid' materials to account for their fluorescence as phytoclast material or as macerals in coal. 35 references.

  17. Aragonite infill in overgrown conceptacles of coralline Lithothamnion spp. (Hapalidiaceae, Hapalidiales, Rhodophyta): new insights in biomineralization and phylomineralogy.

    Science.gov (United States)

    Krayesky-Self, Sherry; Richards, Joseph L; Rahmatian, Mansour; Fredericq, Suzanne

    2016-04-01

    New empirical and quantitative data in the study of calcium carbonate biomineralization and an expanded coralline psbA framework for phylomineralogy are provided for crustose coralline red algae. Scanning electron microscopy (SEM) and energy dispersive spectrometry (SEM-EDS) pinpointed the exact location of calcium carbonate crystals within overgrown reproductive conceptacles in rhodolith-forming Lithothamnion species from the Gulf of Mexico and Pacific Panama. SEM-EDS and X-ray diffraction (XRD) analysis confirmed the elemental composition of these calcium carbonate crystals to be aragonite. After spore release, reproductive conceptacles apparently became overgrown by new vegetative growth, a strategy that may aid in sealing the empty conceptacle chamber, hence influencing the chemistry of the microenvironment and in turn promoting aragonite crystal growth. The possible relevance of various types of calcium carbonate polymorphs present in the complex internal structure and skeleton of crustose corallines is discussed. This is the first study to link SEM, SEM-EDS, XRD, Microtomography and X-ray microscopy data of aragonite infill in coralline algae with phylomineralogy. The study contributes to the growing body of literature characterizing and speculating about how the relative abundances of carbonate biominerals in corallines may vary in response to changes in atmospheric pCO2 , ocean acidification, and global warming. © 2016 Phycological Society of America.

  18. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.

    2017-10-06

    Background: Software Effort Estimation (SEE) can be formulated as an online learning problem, where new projects are completed over time and may become available for training. In this scenario, a Cross-Company (CC) SEE approach called Dycom can drastically reduce the number of Within-Company (WC) projects needed for training, saving the high cost of collecting such training projects. However, Dycom relies on splitting CC projects into different subsets in order to create its CC models. Such splitting can have a significant impact on Dycom\\'s predictive performance. Aims: This paper investigates whether clustering methods can be used to help finding good CC splits for Dycom. Method: Dycom is extended to use clustering methods for creating the CC subsets. Three different clustering methods are investigated, namely Hierarchical Clustering, K-Means, and Expectation-Maximisation. Clustering Dycom is compared against the original Dycom with CC subsets of different sizes, based on four SEE databases. A baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number of CC subsets to be pre-defined, and a poor choice can negatively affect predictive performance. EM enables Dycom to automatically set the number of CC subsets while still maintaining or improving predictive performance with respect to the baseline WC model. Clustering Dycom with Hierarchical Clustering did not offer significant advantage in terms of predictive performance. Conclusion: Clustering methods can be an effective way to automatically generate Dycom\\'s CC subsets.

  19. Clustering analysis

    International Nuclear Information System (INIS)

    Romli

    1997-01-01

    Cluster analysis is the name of group of multivariate techniques whose principal purpose is to distinguish similar entities from the characteristics they process.To study this analysis, there are several algorithms that can be used. Therefore, this topic focuses to discuss the algorithms, such as, similarity measures, and hierarchical clustering which includes single linkage, complete linkage and average linkage method. also, non-hierarchical clustering method, which is popular name K -mean method ' will be discussed. Finally, this paper will be described the advantages and disadvantages of every methods

  20. Cluster analysis

    CERN Document Server

    Everitt, Brian S; Leese, Morven; Stahl, Daniel

    2011-01-01

    Cluster analysis comprises a range of methods for classifying multivariate data into subgroups. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present. These techniques have proven useful in a wide range of areas such as medicine, psychology, market research and bioinformatics.This fifth edition of the highly successful Cluster Analysis includes coverage of the latest developments in the field and a new chapter dealing with finite mixture models for structured data.Real life examples are used throughout to demons

  1. Cluster editing

    DEFF Research Database (Denmark)

    Böcker, S.; Baumbach, Jan

    2013-01-01

    . The problem has been the inspiration for numerous algorithms in bioinformatics, aiming at clustering entities such as genes, proteins, phenotypes, or patients. In this paper, we review exact and heuristic methods that have been proposed for the Cluster Editing problem, and also applications......The Cluster Editing problem asks to transform a graph into a disjoint union of cliques using a minimum number of edge modifications. Although the problem has been proven NP-complete several times, it has nevertheless attracted much research both from the theoretical and the applied side...

  2. Rayleigh-based, multi-element coral thermometry: A biomineralization approach to developing climate proxies

    Science.gov (United States)

    Gaetani, G.A.; Cohen, A.L.; Wang, Z.; Crusius, John

    2011-01-01

    This study presents a new approach to coral thermometry that deconvolves the influence of water temperature on skeleton composition from that of “vital effects”, and has the potential to provide estimates of growth temperatures that are accurate to within a few tenths of a degree Celsius from both tropical and cold-water corals. Our results provide support for a physico-chemical model of coral biomineralization, and imply that Mg2+ substitutes directly for Ca2+ in biogenic aragonite. Recent studies have identified Rayleigh fractionation as an important influence on the elemental composition of coral skeletons. Daily, seasonal and interannual variations in the amount of aragonite precipitated by corals from each “batch” of calcifying fluid can explain why the temperature dependencies of elemental ratios in coral skeleton differ from those of abiogenic aragonites, and are highly variable among individual corals. On the basis of this new insight into the origin of “vital effects” in coral skeleton, we developed a Rayleigh-based, multi-element approach to coral thermometry. Temperature is resolved from the Rayleigh fractionation signal by combining information from multiple element ratios (e.g., Mg/Ca, Sr/Ca, Ba/Ca) to produce a mathematically over-constrained system of Rayleigh equations. Unlike conventional coral thermometers, this approach does not rely on an initial calibration of coral skeletal composition to an instrumental temperature record. Rather, considering coral skeletogenesis as a biologically mediated, physico-chemical process provides a means to extract temperature information from the skeleton composition using the Rayleigh equation and a set of experimentally determined partition coefficients. Because this approach is based on a quantitative understanding of the mechanism that produces the “vital effect” it should be possible to apply it both across scleractinian species and to corals growing in vastly different environments. Where

  3. Distribution of magnesium and phosphorous in the H. americanus exoskeleton: Insights for chemical signatures in biominerals

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Dove, P. M.

    2017-12-01

    Crustacean exoskeletons provide a unique opportunity to study biogenic amorphous calcium carbonate (ACC), a common intermediate phase in the biomineralization of invertebrate skeletons. The lobster exoskeleton is of particular interest as a complex biocomposite of organic matrix (primarily chitin) and CaCO3 mineral (ACC with minor calcite). This metastable ACC remarkably persists for up to one year. Previous investigations demonstrate the ubiquitous presence of Mg and P in the exoskeleton but a broader understanding of elemental signatures is limited. Despite the discrepancies, the data suggest anecdotal evidence for underlying systematic relationships. To test this idea, we designed a series of experiments that used three extraction procedures to isolate the mineral (ACC plus calcite) fraction from the organic (chitin and protein each) fractions for seven body parts of the lobster exoskeleton. A parallel structural study of the mineral component was conducted using high energy X-ray scattering. We confirm previous reports that the mineral component compromises ≈30% of the main body exoskeleton and is ≈85% ACC, with the remainder as calcite. Chelae (claws) contain a still-greater proportion of ACC (>90%). Measurements show the Mg, P, Ca concentrations in the bulk and mineral fractions are variable and body part-specific. However, the ratios of these elements are highly regulated at Mg/Ca ≈ 0.084±0.011 (n=108) and P/Ca ≈ 0.098±0.003 (n=108) for all body parts except the chelae, where Mg and P ratios relative to Ca are offset to higher values. There is no evidence of a separate phosphate phase. The mineral fraction dominates the bulk trends of total Mg and P. The systematic relationships reported here for the lobster exoskeleton hold promise for establishing compositional correlations between body parts for studies that lack complete animal samples. In addition, we compare composition ratios of four exoskeleton-forming species and find the Mg/Ca and P

  4. Occupational Clusters.

    Science.gov (United States)

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  5. Fuzzy Clustering

    DEFF Research Database (Denmark)

    Berks, G.; Keyserlingk, Diedrich Graf von; Jantzen, Jan

    2000-01-01

    A symptom is a condition indicating the presence of a disease, especially, when regarded as an aid in diagnosis.Symptoms are the smallest units indicating the existence of a disease. A syndrome on the other hand is an aggregate, set or cluster of concurrent symptoms which together indicate...... and clustering are the basic concerns in medicine. Classification depends on definitions of the classes and their required degree of participant of the elements in the cases' symptoms. In medicine imprecise conditions are the rule and therefore fuzzy methods are much more suitable than crisp ones. Fuzzy c......-mean clustering is an easy and well improved tool, which has been applied in many medical fields. We used c-mean fuzzy clustering after feature extraction from an aphasia database. Factor analysis was applied on a correlation matrix of 26 symptoms of language disorders and led to five factors. The factors...

  6. Carbon sequestration in response to grassland–shrubland–turfgrass conversions and a test for carbonate biomineralization in desert soils, New Mexico, USA

    Science.gov (United States)

    This study uses an experimental pedology approach to examine (i) how the conversion of native C4 grassland to C3 woody shrubs then to irrigated C4 turfgrass affects both soil organic C (SOC) and soil inorganic C (SIC) and (ii) whether SIC can be enhanced by microbial biomineralization. Three sites w...

  7. Cluster generator

    Science.gov (United States)

    Donchev, Todor I [Urbana, IL; Petrov, Ivan G [Champaign, IL

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  8. Cluster Bulleticity

    OpenAIRE

    Massey, Richard; Kitching, Thomas; Nagai, Daisuke

    2010-01-01

    The unique properties of dark matter are revealed during collisions between clusters of galaxies, such as the bullet cluster (1E 0657−56) and baby bullet (MACS J0025−12). These systems provide evidence for an additional, invisible mass in the separation between the distributions of their total mass, measured via gravitational lensing, and their ordinary ‘baryonic’ matter, measured via its X-ray emission. Unfortunately, the information available from these systems is limited by their rarity. C...

  9. Cluster headache

    OpenAIRE

    Leroux, Elizabeth; Ducros, Anne

    2008-01-01

    Abstract Cluster headache (CH) is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes) of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye). It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name) in bouts that can occur ...

  10. El Niño impact on mollusk biomineralization-implications for trace element proxy reconstructions and the paleo-archeological record.

    Directory of Open Access Journals (Sweden)

    Alberto Pérez-Huerta

    Full Text Available Marine macroinvertebrates are ideal sentinel organisms to monitor rapid environmental changes associated with climatic phenomena. These organisms build up protective exoskeletons incrementally by biologically-controlled mineralization, which is deeply rooted in long-term evolutionary processes. Recent studies relating potential rapid environmental fluctuations to climate change, such as ocean acidification, suggest modifications on carbonate biominerals of marine invertebrates. However, the influence of known, and recurrent, climatic events on these biological processes during active mineralization is still insufficiently understood. Analysis of Peruvian cockles from the 1982-83 large magnitude El Niño event shows significant alterations of the chemico-structure of carbonate biominerals. Here, we show that bivalves modify the main biomineralization mechanism during the event to continue shell secretion. As a result, magnesium content increases to stabilize amorphous calcium carbonate (ACC, inducing a rise in Mg/Ca unrelated to the associated increase in sea-surface temperature. Analysis of variations in Sr/Ca also suggests that this proxy should not be used in these bivalves to detect the temperature anomaly, while Ba/Ca peaks are recorded in shells in response to an increase in productivity, or dissolved barium in seawater, after the event. Presented data contribute to a better understanding of the effects of abrupt climate change on shell biomineralization, while also offering an alternative view of bivalve elemental proxy reconstructions. Furthermore, biomineralization changes in mollusk shells can be used as a novel potential proxy to provide a more nuanced historical record of El Niño and similar rapid environmental change events.

  11. Rapid synthesis of macrocycles from diol precursors

    DEFF Research Database (Denmark)

    Wingstrand, Magnus; Madsen, Charlotte Marie; Clausen, Mads Hartvig

    2009-01-01

    A method for the formation of synthetic macrocycles with different ring sizes from diols is presented. Reacting a simple diol precursor with electrophilic reagents leads to a cyclic carbonate, sulfite or phosphate in a single step in 25-60% yield. Converting the cyclization precursor to a bis-ele...

  12. Precursors in photonic crystals - art. no. 618218

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.; DeLaRue, RM; Viktorovitch, P; Lopez, C; Midrio, M

    2006-01-01

    We derive the Sommerfeld precursor and present the first calculations for the Brillouin precursor that result from the transmission of a pulse through a photonic crystal. The photonic crystal is modelled by a one-dimensional N-layer medium and the pulse is a generic electromagnetic plane wave packet

  13. The Sommerfeld precursor in photonic crystals

    NARCIS (Netherlands)

    Uitham, R; Hoenders, BJ

    2006-01-01

    We calculate the Sommerfeld precursor that results after transmission of a generic electromagnetic plane wave pulse with transverse electric polarization, through a one-dimensional rectangular N-layer photonic crystal with two slabs per layer. The shape of this precursor equals the shape of the

  14. The interrelationships of mathematical precursors in kindergarten.

    Science.gov (United States)

    Cirino, Paul T

    2011-04-01

    This study evaluated the interrelations among cognitive precursors across quantitative, linguistic, and spatial attention domains that have been implicated for math achievement in young children. The dimensionality of the quantity precursors was evaluated in 286 kindergarteners via latent variable techniques, and the contribution of precursors from each domain was established for small sums addition. Results showed a five-factor structure for the quantity precursors, with the major distinction being between nonsymbolic and symbolic tasks. The overall model demonstrated good fit and strong predictive power (R(2)=55%) for addition number combinations. Linguistic and spatial attention domains showed indirect relationships with outcomes, with their effects mediated by symbolic quantity measures. These results have implications for the measurement of mathematical precursors and yield promise for predicting future math performance. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Stability of tris-1,10-phenanthroline iron (II) complex in biomineral particles produced by Klebsiella oxytoca

    International Nuclear Information System (INIS)

    Anghel, L.V.; Balasoiu, M.; Lazar, D.M.; Ishchenko, L.A.

    2011-01-01

    The composition of composites has a huge impact on the stability of tris-1,10-phenanthroline iron (II) complex during the determination of total iron content. The subject of this work is the determination of the stability of tris-1,10-phenanthroline iron (II) complex in samples of biominerals produced by bacteria Klebsiella oxytoca. The stability of this complex was monitored in the time period of 0-60 min. The aim of this work is to determine the concentration of the biogenic ferrihydrite in the samples and the time interval in which the absorbance of the complex is highest. The UV-Vis spectrophotometric method was used for the determination. Obtained results indicate that for more exact estimations of the concentration of biogenic ferrihydrite, absorbance of tris-1,10-phenanthroline iron (II) complex should be measured within 25 min from the moment ortho-phenanthroline was added

  16. Changes of cell growth and magnetosome biomineralization in Magnetospirillum magneticum AMB-1 after ultraviolet-B irradiation

    Directory of Open Access Journals (Sweden)

    Yinzhao eWang

    2013-12-01

    Full Text Available Effects of ultraviolet radiation on microorganisms are of great interest in field of microbiology and planetary sciences. In the present study, we used Magnetospirillum magneticum AMB-1 as a model organism to examine the influence of ultraviolet-B (UV-B radiation on cell growth and magnetite biomineralization of magnetotactic bacteria. Live AMB-1 cells were exposed to UV-B radiation for 60 s, 300 s and 900 s, which correspond to radiation doses of 120 J/m2, 600 J/m2 and 1800 J/m2, respectively. After irradiation, the amounts of cyclobutane pyrimidine dimers and reactive oxygen species of the cells were increased, and cell growth was stunted up to ~170 h, depending on the UV-B radiation doses. The UV-B irradiated cells also produced on average more magnetite crystals with larger grain sizes and longer chains, which results in changes of their magnetic properties.

  17. Clustering Dycom

    KAUST Repository

    Minku, Leandro L.; Hou, Siqing

    2017-01-01

    baseline WC model is also included in the analysis. Results: Clustering Dycom with K-Means can potentially help to split the CC projects, managing to achieve similar or better predictive performance than Dycom. However, K-Means still requires the number

  18. Cluster forcing

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    The cluster theory attributed to Michael Porter has significantly influenced industrial policies in countries across Europe and North America since the beginning of the 1990s. Institutions such as the EU, OECD and the World Bank and governments in countries such as the UK, France, The Netherlands...... or management. Both the Accelerate Wales and the Accelerate Cluster programmes target this issue by trying to establish networks between companies that can be used to supply knowledge from research institutions to manufacturing companies. The paper concludes that public sector interventions can make...... businesses. The universities were not considered by the participating companies to be important parts of the local business environment and inputs from universities did not appear to be an important source to access knowledge about new product development or new techniques in production, distribution...

  19. Regional Innovation Clusters

    Data.gov (United States)

    Small Business Administration — The Regional Innovation Clusters serve a diverse group of sectors and geographies. Three of the initial pilot clusters, termed Advanced Defense Technology clusters,...

  20. Tufa in Northern England: depositional facies, carbonate mineral fabrics, and role of biomineralization

    Science.gov (United States)

    Manzo, E.; Mawson, M.; Perri, E.; Tucker, M. E.

    2009-04-01

    magnifications, all crystal forms seem be made of sub-spherical to rod-like nano-crystals, ranging in size from 100 to 300 nm. Other than cyanobacteria, calcified organic components like diatoms, plant tissues, and extra-cellular polymeric substances (EPS) are mineralized with the same crystal nano-elements. Conclusions Tufa formation seems strongly influenced by the inclination of the slope, water energy, the biota, including the biofilm, and the organic matter substrate (mainly EPS); super-saturation of water with respect to calcite is a pre-requisite for precipitation. The inclination of the slope determines the water energy and so the degassing of CO2 which leads to precipitation of carbonate. Photosynthesis by macrophytes, microphytes and cyanobacteria could also contribute to CO2 degassing. EPS degradation processes, particularly those involving heterotrophic micro-organisms which can induce an increase in alkalinity, could be a further mechanism of biomineralization in these tufa carbonates.

  1. Cluster analysis

    OpenAIRE

    Mucha, Hans-Joachim; Sofyan, Hizir

    2000-01-01

    As an explorative technique, duster analysis provides a description or a reduction in the dimension of the data. It classifies a set of observations into two or more mutually exclusive unknown groups based on combinations of many variables. Its aim is to construct groups in such a way that the profiles of objects in the same groups are relatively homogenous whereas the profiles of objects in different groups are relatively heterogeneous. Clustering is distinct from classification techniques, ...

  2. Biochemical Removal of HAP Precursors From Coal

    International Nuclear Information System (INIS)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE's interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals

  3. Progress in molecular precursors for electronic materials

    Energy Technology Data Exchange (ETDEWEB)

    Buhro, W.E. [Washington Univ., St. Louis, MO (United States)

    1996-09-01

    Molecular-precursor chemistry provides an essential underpinning to all electronic-materials technologies, including photovoltaics and related areas of direct interest to the DOE. Materials synthesis and processing is a rapidly developing field in which advances in molecular precursors are playing a major role. This article surveys selected recent research examples that define the exciting current directions in molecular-precursor science. These directions include growth of increasingly complex structures and stoichiometries, surface-selective growth, kinetic growth of metastable materials, growth of size-controlled quantum dots and quantum-dot arrays, and growth at progressively lower temperatures. Continued progress in molecular-precursor chemistry will afford precise control over the crystal structures, nanostructures, and microstructures of electronic materials.

  4. Biochemical Removal of HAP Precursors From Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, G.; Tucker, L.; Richards, J.

    1997-07-01

    This project addresses DOE`s interest in advanced concepts for controlling emissions of air toxics from coal-fired utility boilers. We are determining the feasibility of developing a biochemical process for the precombustion removal of substantial percentages of 13 inorganic hazardous air pollutant (HAP) precursors from coal. These HAP precursors are Sb, As, Be, Cd, Cr, Cl, Co, F, Pb, Hg, Mn, Ni, and Se. Although rapid physical coal cleaning is done routinely in preparation plants, biochemical processes for removal of HAP precursors from coal potentially offer advantages of deeper cleaning, more specificity, and less coal loss. Compared to chemical processes for coal cleaning, biochemical processes potentially offer lower costs and milder process conditions. Pyrite oxidizing bacteria, most notably Thiobacillusferrooxidans, are being evaluated in this project for their ability to remove HAP precursors from U.S. coals.

  5. Probabilistic precursor analysis - an application of PSA

    International Nuclear Information System (INIS)

    Hari Prasad, M.; Gopika, V.; Sanyasi Rao, V.V.S.; Vaze, K.K.

    2011-01-01

    Incidents are inevitably part of the operational life of any complex industrial facility, and it is hard to predict how various contributing factors combine to cause the outcome. However, it should be possible to detect the existence of latent conditions that, together with the triggering failure(s), result in abnormal events. These incidents are called precursors. Precursor study, by definition, focuses on how a particular event might have adversely developed. This paper focuses on the events which can be analyzed to assess their potential to develop into core damage situation and looks into extending Probabilistic Safety Assessment techniques to precursor studies and explains the benefits through a typical case study. A preliminary probabilistic precursor analysis has been carried out for a typical NPP. The major advantages of this approach are the strong potential for augmenting event analysis which is currently carried out purely on deterministic basis. (author)

  6. nanoparticles synthesized by citrate precursor m

    African Journals Online (AJOL)

    user

    (M=Co, Cu) nanoparticles synthesized by citrate precursor method ... The structural characterization was carried out using an X-ray Diffractometer (Rikagu Miniflex, Japan) ..... His current area of interest includes magnetic nanomaterials.

  7. Planar half-cell shaped precursor body

    DEFF Research Database (Denmark)

    2015-01-01

    The invention relates to a half-cell shaped precursor body of either anode type or cathode type, the half-cell shaped precursor body being prepared to be free sintered to form a sintered or pre-sintered half-cell being adapted to be stacked in a solid oxide fuel cell stack. The obtained half......-cell has an improved planar shape, which remains planar also after a sintering process and during temperature fluctuations....

  8. Spectromicroscopy of self-assembled protein clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schonschek, O.; Hormes, J.; Herzog, V. [Univ. of Bonn (Germany)

    1997-04-01

    The aim of this project is to use synchrotron radiation as a tool to study biomedical questions concerned with the thyroid glands. The biological background is outlined in a recent paper. In short, Thyroglobulin (TG), the precursor protein of the hormone thyroxine, forms large (20 - 500 microns in diameter) clusters in the extracellular lumen of thyrocytes. The process of the cluster formation is still not well understood but is thought to be a main storage mechanism of TG and therefore thyroxine inside the thyroid glands. For human thyroids, the interconnections of the proteins inside the clusters are mainly disulfide bondings. Normally, sulfur bridges are catalyzed by an enzyme called Protein Disulfide Bridge Isomerase (PDI). While this enzyme is supposed to be not present in any extracellular space, the cluster formation of TG takes place in the lumen between the thyrocytes. A possible explanation is the autocatalysis of TG.

  9. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp.

    Directory of Open Access Journals (Sweden)

    Juliane Germer

    Full Text Available The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM, and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.

  10. Microbial Diversity and Mineralogical-Mechanical Properties of Calcitic Cave Speleothems in Natural and in Vitro Biomineralization Conditions

    Directory of Open Access Journals (Sweden)

    Navdeep K. Dhami

    2018-02-01

    Full Text Available Natural mineral formations are a window into important processes leading to carbon storage and mineralized carbonate structures formed through abiotic and biotic processes. In the current study, we made an attempt to undertake a comprehensive approach to characterize the mineralogical, mechanical, and microbial properties of different kinds of speleothems from karstic caves; with an aim to understand the bio-geo-chemical processes in speleothem structures and their impact on nanomechanical properties. We also investigated the biomineralization abilities of speleothem surface associated microbial communities in vitro. Mineralogical profiling using techniques such as X-ray powder Diffraction (XRD and Tescan Integrated Mineral Analyzer (TIMA demonstrated that calcite was the dominant mineral in the majority of speleothems with Energy Dispersive X-ray Analysis (EDS indicating a few variations in the elemental components. Differing proportions of polymorphs of calcium carbonate such as aragonite and vaterite were also recorded. Significant variations in trace metal content were recorded through Inductively Coupled Plasma Mass Spectrometer (ICP-MS. Scanning Electron Microscopy (SEM analysis revealed differences in morphological features of the crystals which varied from triangular prismatic shapes to etched spiky forms. Microbial imprints and associations were seen in a few sections. Analysis of the associated microbial diversity showed significant differences between various speleothems at Phylum level; although Proteobacteria and Actinobacteria were found to be the predominant groups. Genus level microbial associations showed a relationship with the geochemistry, mineralogical composition, and metal content of the speleothems. The assessment of nanomechanical properties measured by Nanoindentation revealed that the speleothems with a dominance of calcite were stronger than the speleothems with mixed calcium carbonate polymorphs and silica content

  11. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    International Nuclear Information System (INIS)

    Aubert, Tangi; Burel, Agnès; Esnault, Marie-Andrée; Cordier, Stéphane; Grasset, Fabien; Cabello-Hurtado, Francisco

    2012-01-01

    Highlights: ► We investigated the effect of nanosized Mo 6 clusters on the growth of rapeseed plants. ► The aggregation state of the clusters depends on the dispersion medium. ► The concentration-dependant toxicity of the clusters depends on aggregation state. ► We took into account the possible contribution to toxicity of dissolved ionic species. ► The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs 2 Mo 6 Br 14 as cluster precursor. [Mo 6 Br 14 ] 2− cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  12. Root uptake and phytotoxicity of nanosized molybdenum octahedral clusters

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, Tangi [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Burel, Agnes [Electronic Microscopy Department, University of Rennes 1, 2 av. du Professeur Leon-Bernard, Campus de Villejean, 35043 Rennes (France); Esnault, Marie-Andree [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cordier, Stephane; Grasset, Fabien [Solid State Chemistry and Materials Group, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France); Cabello-Hurtado, Francisco, E-mail: francisco.cabello@univ-rennes1.fr [Mechanisms at the Origin of Biodiversity Team, UMR CNRS 6553 Ecobio, University of Rennes 1, 263 av. du General Leclerc, Campus de Beaulieu, 35042 Rennes (France)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer We investigated the effect of nanosized Mo{sub 6} clusters on the growth of rapeseed plants. Black-Right-Pointing-Pointer The aggregation state of the clusters depends on the dispersion medium. Black-Right-Pointing-Pointer The concentration-dependant toxicity of the clusters depends on aggregation state. Black-Right-Pointing-Pointer We took into account the possible contribution to toxicity of dissolved ionic species. Black-Right-Pointing-Pointer The root uptake of the clusters was followed by NanoSIMS. - Abstract: Here are examined the root uptake and phytotoxicity of octahedral hexamolybdenum clusters on rapeseed plants using the solid state compound Cs{sub 2}Mo{sub 6}Br{sub 14} as cluster precursor. [Mo{sub 6}Br{sub 14}]{sup 2-} cluster units are nanosized entities offering a strong and stable emission in the near-infrared region with numerous applications in biotechnology. To investigate cluster toxicity on rapeseed plants, two different culture systems have been set up, using either a water-sorbing suspension of cluster aggregates or an ethanol-sorbing solution of dispersed nanosized clusters. Size, shape, surface area and state of clusters in both medium were analyzed by FE-SEM, BET and XPS. The potential contribution of cluster dissolution to phytotoxicity was evaluated by ICP-OES and toxicity analysis of Mo, Br and Cs. We showed that the clusters did not affect seed germination but greatly inhibited plant growth. This inhibition was much more important when plants were treated with nanosized entities than with microsized cluster aggregates. In addition, nanosized clusters affected the root morphology in a different manner than microsized cluster aggregates, as shown by FE-SEM observations. The root penetration of the clusters was followed by secondary ion mass spectroscopy with high spatial resolution (NanoSIMS) and was also found to be much more important for treatments with nanosized clusters.

  13. Nuclear clustering - a cluster core model study

    International Nuclear Information System (INIS)

    Paul Selvi, G.; Nandhini, N.; Balasubramaniam, M.

    2015-01-01

    Nuclear clustering, similar to other clustering phenomenon in nature is a much warranted study, since it would help us in understanding the nature of binding of the nucleons inside the nucleus, closed shell behaviour when the system is highly deformed, dynamics and structure at extremes. Several models account for the clustering phenomenon of nuclei. We present in this work, a cluster core model study of nuclear clustering in light mass nuclei

  14. Biomineralization-inspired synthesis of chitosan/hydroxyapatite biocomposites based on a novel bilayer rate-controlling model.

    Science.gov (United States)

    Hu, Jing-Xiao; Ran, Jia-Bing; Chen, Si; Shen, Xin-Yu; Tong, Hua

    2015-12-01

    In order to prepare sophisticated biomaterials using a biomimetic approach, a deeper understanding of biomineralization is needed. Of particular importance is the control and regulation of the mineralization process. In this study, a novel bilayer rate-controlling model was designed to investigate the factors potentially influencing mineralization. In the absence of a rate-controlling layer, nano-scale hydroxyapatite (HA) crystallites exhibited a spherical morphology, whereas, in the presence of a rate-controlling layer, HA crystallites were homogeneously dispersed and spindle-like in structure. The mineralization rate had a significant effect on controlling the morphology of crystals. Furthermore, in vitro tests demonstrated that the reaction layer containing spindle-like HA crystallites possessed superior biological properties. These results suggest that a slow mineralization rate is required for controlling the morphology of inorganic crystallites, and consumption by the rate-controlling layer ensured that the ammonia concentration remained low. This study demonstrates that a biomimetic approach can be used to prepare novel biomaterials containing HA crystallites that have different morphologies and biological properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Binary phase solid-state photopolymerization of acrylates: design, characterization and biomineralization of 3D scaffolds for tissue engineering

    Science.gov (United States)

    Maitlo, Inamullah; Ali, Safdar; Akram, Muhammad Yasir; Shehzad, Farooq Khurum; Nie, Jun

    2017-12-01

    Porous polymer scaffolds designed by the cryogel method are attractive materials for a range of tissue engineering applications. However, the use of toxic crosslinker for retaining the pore structure limits their clinical applications. In this research, acrylates (HEA/PEGDA, HEMA/PEGDA and PEGDA) were used in the low-temperature solid-state photopolymerization to produce porous scaffolds with good structural retention. The morphology, pore diameter, mineral deposition and water absorption of the scaffold were characterized by SEM and water absorption test respectively. Elemental analysis and cytotoxicity of the biomineralized scaffold were revealed by using XRD and MTT assay test. The PEGDA-derived scaffold showed good water absorption ability and a higher degree of porosity with larger pore size compared to others. XRD patterns and IR results confirmed the formation of hydroxyapatite crystals from an alternative socking process. The overall cell proliferation was excellent, where PEGDA-derived scaffold had the highest and the most uniform cell growth, while HEMA/PEGDA scaffold showed the least. These results suggest that the cell proliferation and adhesion are directly proportional to the pore size, the shape and the porosity of scaffolds.

  16. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Stark, Wendelin J; Feldman, Kirill; Dora, Claudio

    2012-01-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering. (paper)

  17. Nanocomposites of high-density polyethylene with amorphous calcium phosphate: in vitro biomineralization and cytocompatibility of human mesenchymal stem cells.

    Science.gov (United States)

    Hild, Nora; Fuhrer, Roland; Mohn, Dirk; Bubenhofer, Stephanie B; Grass, Robert N; Luechinger, Norman A; Feldman, Kirill; Dora, Claudio; Stark, Wendelin J

    2012-10-01

    Polyethylene is widely used as a component of implants in medicine. Composites made of high-density polyethylene (HDPE) containing different amounts of amorphous calcium phosphate nanoparticles were investigated concerning their in vitro biomedical performance. The nanoparticles were produced by flame spray synthesis and extruded with HDPE, the latter complying with Food and Drug Administration regulations. Mechanical properties such as Young's modulus and contact angle as well as in vitro biomineralization of the nanocomposites hot-pressed into thin films were evaluated. The deposition of a hydroxyapatite layer occurred upon immersion in simulated body fluid. Additionally, a cell culture study with human mesenchymal stem cells for six weeks allowed a primary assessment of the cytocompatibility. Viability assays (alamarBlue and lactate dehydrogenase detection) proved the absence of cytotoxic effects of the scaffolds. Microscopic images after hematoxylin and eosin staining confirmed typical growth and morphology. A preliminary experiment analyzed the alkaline phosphatase activity after two weeks. These findings motivate further investigations on bioactive HDPE in bone tissue engineering.

  18. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope separator techniques; it is concluded that the methods are complementary. (author)

  19. Radiochemical Means of Investigating Delayed Neutron Precursors

    International Nuclear Information System (INIS)

    Marmol, P. del

    1968-01-01

    Fast radiochemical methods used now for the determination of delayed neutron precursors are classified and reviewed: precipitations, solvent extractions, range experiments, milking, gas sweeping, isotopic and ion exchange, hot-atom reactions and diffusion loss. Advantages and limitations of irradiation systems with respect to fast separations are discussed: external beams which allow faster separations only have low neutron fluxes, internal beams which are mostly fit for gaseous reactions; and rabbits for solution irradiations. Future prospects of radiochemical procedures are presented; among these, studies should be mostly oriented towards gaseous reactions which offer possibilities of isolating very short-lived delayed neutron precursors. Chemical procedures for delayed neutron precursor detection are compared with mass spectrometric and isotope-separator techniques; it is concluded that the methods are complementary. (author)

  20. Precursors prior to type IIn supernova explosions are common: Precursor rates, properties, and correlations

    Energy Technology Data Exchange (ETDEWEB)

    Ofek, Eran O.; Steinbok, Aviram; Arcavi, Iair; Gal-Yam, Avishay; Tal, David; Ben-Ami, Sagi; Yaron, Ofer [Benoziyo Center for Astrophysics, Weizmann Institute of Science, 76100 Rehovot (Israel); Sullivan, Mark [School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Shaviv, Nir J. [Racah Institute of Physics, The Hebrew University, 91904 Jerusalem (Israel); Kulkarni, Shrinivas R. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Nugent, Peter E. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Kasliwal, Mansi M. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Cenko, S. Bradley [Astrophysics Science Division, NASA/Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, M/S 314-6, Pasadena, CA 91125 (United States); Bloom, Joshua S.; Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Silverman, Jeffrey M. [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2014-07-10

    There is a growing number of Type IIn supernovae (SNe) which present an outburst prior to their presumably final explosion. These precursors may affect the SN display, and are likely related to poorly charted phenomena in the final stages of stellar evolution. By coadding Palomar Transient Factory (PTF) images taken prior to the explosion, here we present a search for precursors in a sample of 16 Type IIn SNe. We find five SNe IIn that likely have at least one possible precursor event (PTF 10bjb, SN 2010mc, PTF 10weh, SN 2011ht, and PTF 12cxj), three of which are reported here for the first time. For each SN we calculate the control time. We find that precursor events among SNe IIn are common: at the one-sided 99% confidence level, >50% of SNe IIn have at least one pre-explosion outburst that is brighter than 3 × 10{sup 7} L{sub ☉} taking place up to 1/3 yr prior to the SN explosion. The average rate of such precursor events during the year prior to the SN explosion is likely ≳ 1 yr{sup –1}, and fainter precursors are possibly even more common. Ignoring the two weakest precursors in our sample, the precursors rate we find is still on the order of one per year. We also find possible correlations between the integrated luminosity of the precursor and the SN total radiated energy, peak luminosity, and rise time. These correlations are expected if the precursors are mass-ejection events, and the early-time light curve of these SNe is powered by interaction of the SN shock and ejecta with optically thick circumstellar material.

  1. Report on Fukushima Daiichi NPP precursor events

    International Nuclear Information System (INIS)

    2014-01-01

    The main questions to be answered by this report were: The Fukushima Daiichi NPP accident, could it have been prevented? If there is a next severe accident, may it be prevented? To answer the first question, the report addressed several aspects. First, the report investigated whether precursors to the Fukushima Daiichi NPP accident existed in the operating experience; second, the reasons why these precursors did not evolve into a severe accident. Third, whether lessons learned from these precursor events were adequately considered by member countries; and finally, if the operating experience feedback system needs to be improved, based on the previous analysis. To address the second question which is much more challenging, the report considered precursor events identified through a search and analysis of the IRS database and also precursors events based on risk significance. Both methods can point out areas where further work may be needed, even if it depends heavily on design and site-specific factors. From the operating experience side, more efforts are needed to ensure timely and full implementation of lessons learnt from precursor events. Concerning risk considerations, a combined use of risk precursors and operating experience may drive to effective changes to plants to reduce risk. The report also contains a short description and evaluation of selected precursors that are related to the course of the Fukushima Daiichi NPP accident. The report addresses the question whether operating experience feedback can be effectively used to identify plant vulnerabilities and minimize potential for severe core damage accidents. Based on several of the precursor events national or international in-depth evaluations were started. The vulnerability of NPPs due to external and internal flooding has clearly been addressed. In addition to the IRS based investigation, the WGRISK was asked to identify important precursor events based on risk significance. These precursors have

  2. Cluster headache

    Directory of Open Access Journals (Sweden)

    Ducros Anne

    2008-07-01

    Full Text Available Abstract Cluster headache (CH is a primary headache disease characterized by recurrent short-lasting attacks (15 to 180 minutes of excruciating unilateral periorbital pain accompanied by ipsilateral autonomic signs (lacrimation, nasal congestion, ptosis, miosis, lid edema, redness of the eye. It affects young adults, predominantly males. Prevalence is estimated at 0.5–1.0/1,000. CH has a circannual and circadian periodicity, attacks being clustered (hence the name in bouts that can occur during specific months of the year. Alcohol is the only dietary trigger of CH, strong odors (mainly solvents and cigarette smoke and napping may also trigger CH attacks. During bouts, attacks may happen at precise hours, especially during the night. During the attacks, patients tend to be restless. CH may be episodic or chronic, depending on the presence of remission periods. CH is associated with trigeminovascular activation and neuroendocrine and vegetative disturbances, however, the precise cautive mechanisms remain unknown. Involvement of the hypothalamus (a structure regulating endocrine function and sleep-wake rhythms has been confirmed, explaining, at least in part, the cyclic aspects of CH. The disease is familial in about 10% of cases. Genetic factors play a role in CH susceptibility, and a causative role has been suggested for the hypocretin receptor gene. Diagnosis is clinical. Differential diagnoses include other primary headache diseases such as migraine, paroxysmal hemicrania and SUNCT syndrome. At present, there is no curative treatment. There are efficient treatments to shorten the painful attacks (acute treatments and to reduce the number of daily attacks (prophylactic treatments. Acute treatment is based on subcutaneous administration of sumatriptan and high-flow oxygen. Verapamil, lithium, methysergide, prednisone, greater occipital nerve blocks and topiramate may be used for prophylaxis. In refractory cases, deep-brain stimulation of the

  3. Sol-gel precursors and products thereof

    Science.gov (United States)

    Warren, Scott C.; DiSalvo, Jr., Francis J.; Weisner, Ulrich B.

    2017-02-14

    The present invention provides a generalizable single-source sol-gel precursor capable of introducing a wide range of functionalities to metal oxides such as silica. The sol-gel precursor facilitates a one-molecule, one-step approach to the synthesis of metal-silica hybrids with combinations of biological, catalytic, magnetic, and optical functionalities. The single-source precursor also provides a flexible route for simultaneously incorporating functional species of many different types. The ligands employed for functionalizing the metal oxides are derived from a library of amino acids, hydroxy acids, or peptides and a silicon alkoxide, allowing many biological functionalities to be built into silica hybrids. The ligands can coordinate with a wide range of metals via a carboxylic acid, thereby allowing direct incorporation of inorganic functionalities from across the periodic table. Using the single-source precursor a wide range of functionalized nanostructures such as monolith structures, mesostructures, multiple metal gradient mesostructures and Stober-type nanoparticles can be synthesized. ##STR00001##

  4. Precursor Dependent Structural Properties and Antibacterial Activity ...

    Indian Academy of Sciences (India)

    71

    10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30 ... absorption spectroscopy, Scanning electron microscopy (SEM) and Zeta ... The antibacterial activity of the synthesized CuO were studied against human .... Sample d : Copper oxide synthesized with cupric sulphate as precursor ...... Chem.4 86.

  5. Biochemical Removal of HAP Precursors from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gregory J

    1997-05-12

    Column biooxidation tests with Kentucky coal confirmed results of earlier shake flask tests showing significant removal from the coal of arsenic, selenium, cobalt, manganese, nickel and cadmium. Rates of pyrite biooxidation in Kentucky coal were only slightly more than half the rates found previously for Indiana and Pittsburgh coals. Removal of pyrite from Pittsburgh coal by ferric ion oxidation slows markedly as ferrous ions accumulate in solution, requiring maintenance of high redox potentials in processes designed for removal of pyrite and hazardous air pollutant (HAP) precursors by circulation of ferric solutions through coal. The pyrite oxidation rates obtained in these tests were used by Unifield Engineering to support the conceptual designs for alternative pyrite and HAP precursor bioleaching processes for the phase 2 pilot plant. Thermophilic microorganisms were tested to determine if mercury could be mobilized from coal under elevated growth temperatures. There was no evidence for mercury removal from coal under these conditions. However, the activity of the organisms may have liberated mercury physically. It is also possible that the organisms dissolved mercury and it readsorbed to the clay preferentially. Both of these possibilities are undergoing further testing. The Idaho National Engineering and Environmental Laboratory's (INEEL) slurry column reactor was operated and several batches of feed coal, product coal, waste solids and leach solutions were submitted to LBL for HAP precursor analysis. Results to date indicate significant removal of mercury, arsenic and other HAP precursors in the combined physical-biological process.

  6. Brightest Cluster Galaxies in REXCESS Clusters

    Science.gov (United States)

    Haarsma, Deborah B.; Leisman, L.; Bruch, S.; Donahue, M.

    2009-01-01

    Most galaxy clusters contain a Brightest Cluster Galaxy (BCG) which is larger than the other cluster ellipticals and has a more extended profile. In the hierarchical model, the BCG forms through many galaxy mergers in the crowded center of the cluster, and thus its properties give insight into the assembly of the cluster as a whole. In this project, we are working with the Representative XMM-Newton Cluster Structure Survey (REXCESS) team (Boehringer et al 2007) to study BCGs in 33 X-ray luminous galaxy clusters, 0.055 < z < 0.183. We are imaging the BCGs in R band at the Southern Observatory for Astrophysical Research (SOAR) in Chile. In this poster, we discuss our methods and give preliminary measurements of the BCG magnitudes, morphology, and stellar mass. We compare these BCG properties with the properties of their host clusters, particularly of the X-ray emitting gas.

  7. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  8. Microbial Metabolic Roles in Bedrock Degradation and the Genesis of Biomineral and Biopattern Biosignatures in Caves and Mines

    Science.gov (United States)

    Boston, P. J.

    2016-12-01

    In subsurface environments like natural or anthropogenic caves (aka mines), microorganisms facilitate considerable bedrock degradation under a variety of circumstances. Mobilization of materials from these processes frequently produces distinctive biominerals, identifiable biotextures, and unique biopatterns. Microbial activities can even determine the form of speleothems (secondary mineral cave decorations), thus providing highly conspicuous macroscopic biosignatures. It is critical to understand microbial-mineral interactions, recognizing that while the lithology controls important aspects of the environment, in turn, the geochemistry is greatly affected by the biology. Microbial communities can contribute to the actual formation of cavities (speleogenesis), and subsequent enlargement of caves and vugs and the mineral deposits that enrich many subterranean spaces. A major challenge is to quantify such influences. Genetic analysis is revealing a vast but highly partitioned biodiversity in the overall rock fracture habitat of Earth's crust especially in caves and mines where the three phases of matter (solid rock, fluids, and gases) typically interact producing high niche richness. Lessons learned from the microbial/geochemical systems that we have studied include: 1) significant similarities in metabolic functions between different geochemical systems, 2) ubiquity of metal oxidation for energy, 3) ubiquity of biofilms, some highly mineralized, 4) highly interdependent, multi-species communities that can only transform materials in consortia, 5) complex ecological succession including characteristic pioneer species, 6) often very slow growth rates in culture, 7) prevalence of very small cell sizes, ( 100 - 500 nm diam.), 8) mineral reprecipitation of mobilized materials, often dependent on the presence of live microbial communities to produce initial amorphous compounds followed by gradual crystallization, and 9) resultant in situ self-fossilization. Microbial

  9. Toward a mechanistic understanding of patterns in biomineralization and new insights for old dogmas in geological settings (Invited)

    Science.gov (United States)

    Dove, P. M.; Hamm, L.; Giuffre, A. J.; Han, N.; De Yoreo, J. J.

    2013-12-01

    The ability of organisms to mineralize tissues into skeletons and other functional structures is a remarkable achievement of biology. Yet, the physical basis for how macromolecules regulate the placement and onset of mineral formation is not well established. Efforts to understand nucleation onto organic substrates have produced two, seemingly contradictory, lines of thought: The biomineralization community widely assumes the organic matrix promotes nucleation through stereochemical matching to guide the organization of solute ions, while materials synthesis groups use simple binding assays to correlate high binding strength with good promoters of nucleation. This study reconciles the two views and provides a mechanistic explanation for template-directed nucleation by correlating heterogeneous nucleation barriers with crystal-substrate binding free energies. Using surface assembled monolayers (SAM) as simple model systems, we first measure the kinetics of calcite nucleation onto model substrates that present different functional group chemistries (carboxyl, thiol, phosphate, hydroxyl) and conformations (C11, C16 chain lengths). We find rates are substrate-specific and obey predictions of classical nucleation theory at supersaturations that extend above the solubility of amorphous calcium carbonate (ACC). Analysis of the kinetic data shows the thermodynamic barrier to nucleation is reduced by minimizing the interfacial free energy of the system, γ. We then use dynamic force spectroscopy to independently measure calcite-substrate binding free energies, ΔGb. Moreover, we show that within the classical theory of nucleation, γ and ΔGb should be linearly related. The results bear out this prediction and demonstrate that low energy barriers to nucleation correlate with strong crystal-substrate binding. This relationship is general to all functional group chemistries and conformations. These findings reconcile the long-standing concept of templated nucleation through

  10. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers.

    Directory of Open Access Journals (Sweden)

    Helena C Reinardy

    Full Text Available Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.

  11. Endogenous inspired biomineral-installed hyaluronan nanoparticles as pH-responsive carrier of methotrexate for rheumatoid arthritis.

    Science.gov (United States)

    Alam, Md Mahmudul; Han, Hwa Seung; Sung, Shijin; Kang, Jin Hee; Sa, Keum Hee; Al Faruque, Hasan; Hong, Jungwan; Nam, Eon Jeong; Kim, In San; Park, Jae Hyung; Kang, Young Mo

    2017-04-28

    Methotrexate (MTX), an anchor drug for rheumatoid arthritis (RA), has been suffered from refractoriness and high toxicity limiting effective dosage. To mitigate these challenges, the ability to selectively deliver MTX to arthritis tissue is a much sought-after modality for the treatment of RA. In this study, we prepared mineralized nanoparticles (MP-HANPs), composed of PEGylated hyaluronic acid (P-HA) as the hydrophilic shell, 5β-cholanic acid as the hydrophobic core, and calcium phosphate (CaP) as the pH-responsive mineral. Owing to the presence of CaP as the diffusion barrier, mineralized HANPs revealed the pH-responsiveness of release kinetics of MTX across neutral to acidic conditions. HANPs were internalized via receptor-mediated endocytosis in macrophages which involved molecular redundancy among major hyaladherins, including CD44, stabilin-2, and RHAMM. Following endocytosis, MP-HANPs loaded with doxorubicin revealed pH-dependent demineralization followed by dramatic acceleration of drug release into the cytosol compared to other HANPs. Furthermore, an in vivo study showed a significantly high paw-to-liver ratio of fluorescent intensity after systemic administration of MP-HANP-Cy5.5, indicating improved biodistribution of nanoparticles into arthritic paws in collagen-induced arthritis mice. Treatment with MTX-loaded MP-HANPs ameliorated inflammatory arthritis with remarkable safety at high dose of MTX. We highlight the distinct advantages of combining key benefits of biomineralization and PEGylation with HA-based nanoparticles for arthritis-selective targeting, thus suggesting MP-HANPs as a promising carrier of MTX for treatment of RA. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Establishing the solubility and local structure(s) of Amorphous Calcium Carbonate (ACC): Toward an understanding of invertebrate biomineralization

    Science.gov (United States)

    Mergelsberg, S. T.; Ulrich, R. N.; Michel, F. M.; Dove, P. M.

    2017-12-01

    Recent advances in high-resolution imaging show the widespreadd occurrence of multistep pathways to mineralization in biological and geological settings (De Yoreo et al., 2015, Science). For example, carbonate biomineralization often involves precipitation of amorphous calcium carbonate (ACC) as a reactive intermediate that subsequently transforms to crystalline products with diverse structures. Although current carbonate mineral proxies are based upon the composition of final crystalline products, the final signatures may be recording the properties of the initial amorphous phase. Thus, it is critical to establish the physical properties of ACC and understand the factors that influence its evolution to final products at conditions that approximate biological environments. This disconnect limits our ability to build a process-based understanding of when/how minor and trace elements are recorded in mineral composition proxies. In this experimental study, we quantified the chemical and physical properties of ACC and its evolution to final products. We first determined ACC solubility under controlled chemical conditions using a new type of flow-through reactor developed by our research group (Blue and Dove, 2015, GCA; Blue et al., 2017, GCA). The experimental design varied Mg concentration and total alkalinity while maintaining a mild pH that approximates biological environments. ACC solubility was measured at specific time points during the precipitation (from super- and undersaturated conditions) and during its subsequent evolution. Parallel experiments characterized the structure of the corresponding amorphous products using in situ pair distribution function (PDF) and small-angle x-ray scattering (SAXS) analyses. The measurements demonstrate at least two types of ACC can be produced by tuning Mg concentration and alkalinity. Each "phase" exhibits distinct short-range ordering that demonstrates structure-specific solubility. We also find temporal changes in the

  13. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.

    Science.gov (United States)

    de Carvalho, Rodrigo Tomazetto; Salgado, Leonardo Tavares; Amado Filho, Gilberto Menezes; Leal, Rachel Nunes; Werckmann, Jacques; Rossi, André Linhares; Campos, Andrea Porto Carreiro; Karez, Cláudia Santiago; Farina, Marcos

    2017-06-01

    Over the past few decades, progress has been made toward understanding the mechanisms of coralline algae mineralization. However, the relationship between the mineral phase and the organic matrix in coralline algae has not yet been thoroughly examined. The aim of this study was to describe the cell wall ultrastructure of Lithothamnion crispatum, a cosmopolitan rhodolith-forming coralline algal species collected near Salvador (Brazil), and examine the relationship between the organic matrix and the nucleation and growth/shape modulation of calcium carbonate crystals. A nanostructured pattern was observed in L. crispatum along the cell walls. At the nanoscale, the crystals from L. crispatum consisted of several single crystallites assembled and associated with organic material. The crystallites in the bulk of the cell wall had a high level of spatial organization. However, the crystals displayed cleavages in the (104) faces after ultrathin sectioning with a microtome. This organism is an important model for biomineralization studies as the crystallographic data do not fit in any of the general biomineralization processes described for other organisms. Biomineralization in L. crispatum is dependent on both the soluble and the insoluble organic matrix, which are involved in the control of mineral formation and organizational patterns through an organic matrix-mediated process. This knowledge concerning the mineral composition and organizational patterns of crystals within the cell walls should be taken into account in future studies of changing ocean conditions as they represent important factors influencing the physico-chemical interactions between rhodoliths and the environment in coralline reefs. © 2017 Phycological Society of America.

  14. Fluorescent Thiol-Derivatized Gold Clusters Embedded in Polymers

    Directory of Open Access Journals (Sweden)

    G. Carotenuto

    2013-01-01

    Full Text Available Owing to aurophilic interactions, linear and/or planar Au(I-thiolate molecules spontaneously aggregate, leading to molecular gold clusters passivated by a thiolate monolayer coating. Differently from the thiolate precursors, such cluster compounds show very intensive visible fluorescence characteristics that can be tuned by alloying the gold clusters with silver atoms or by conjugating the electronic structure of the metallic core with unsaturated electronic structures in the organic ligand through the sulphur atom. Here, the photoluminescence features of some examples of these systems are shortly described.

  15. Diversity among galaxy clusters

    International Nuclear Information System (INIS)

    Struble, M.F.; Rood, H.J.

    1988-01-01

    The classification of galaxy clusters is discussed. Consideration is given to the classification scheme of Abell (1950's), Zwicky (1950's), Morgan, Matthews, and Schmidt (1964), and Morgan-Bautz (1970). Galaxies can be classified based on morphology, chemical composition, spatial distribution, and motion. The correlation between a galaxy's environment and morphology is examined. The classification scheme of Rood-Sastry (1971), which is based on clusters's morphology and galaxy population, is described. The six types of clusters they define include: (1) a cD-cluster dominated by a single large galaxy, (2) a cluster dominated by a binary, (3) a core-halo cluster, (4) a cluster dominated by several bright galaxies, (5) a cluster appearing flattened, and (6) an irregularly shaped cluster. Attention is also given to the evolution of cluster structures, which is related to initial density and cluster motion

  16. Understanding Animal Detection of Precursor Earthquake Sounds.

    Science.gov (United States)

    Garstang, Michael; Kelley, Michael C

    2017-08-31

    We use recent research to provide an explanation of how animals might detect earthquakes before they occur. While the intrinsic value of such warnings is immense, we show that the complexity of the process may result in inconsistent responses of animals to the possible precursor signal. Using the results of our research, we describe a logical but complex sequence of geophysical events triggered by precursor earthquake crustal movements that ultimately result in a sound signal detectable by animals. The sound heard by animals occurs only when metal or other surfaces (glass) respond to vibrations produced by electric currents induced by distortions of the earth's electric fields caused by the crustal movements. A combination of existing measurement systems combined with more careful monitoring of animal response could nevertheless be of value, particularly in remote locations.

  17. Metabolic Precursors to Amphetamine and Methamphetamine.

    Science.gov (United States)

    Cody, J D

    1993-12-01

    Analysis and interpretation of amphetamine results is a challenging process made difficult by a number of factors. One of the complications comes from determination of the origin of amphetamine or methamphetamine in a sample. Given the relatively rare occasions that either of these two drugs are prescribed, legal prescription of one of these drugs is seldom a reason for positive findings. A number of other precursor compounds are metabolized by the body to amphetamine or methamphetamine, many of which could be used for legitimate reasons. Fourteen different metabolic precursors of amphetamine or methamphetamine are included in this review. They are amphetaminil, benzphetamine, clobenzorex, deprenyl, dimethylamphetamine, ethylamphetamine, famprofazone, fencamine, fenethylline, fenproporex, furfenorex, mefenorex, mesocarb, and prenylamine. Medical use, metabolism, analysis, and interpretation are described to afford sufficient information to evaluate the possible involvement of these drugs in positive amphetamine or methamphetamine results. Copyright © 1993 Central Police University.

  18. Investigations on precursor measures for aeroelastic flutter

    Science.gov (United States)

    Venkatramani, J.; Sarkar, Sunetra; Gupta, Sayan

    2018-04-01

    Wind tunnel experiments carried out on a pitch-plunge aeroelastic system in the presence of fluctuating flows reveal that flutter instability is presaged by a regime of intermittency. It is observed that as the flow speed gradually increases towards the flutter speed, there appears intermittent bursts of periodic oscillations which become more frequent as the wind speed increases and eventually the dynamics transition into fully developed limit cycle oscillations, marking the onset of flutter. The signature from these intermittent oscillations are exploited to develop measures that forewarn a transition to flutter and can serve as precursors. This study investigates a suite of measures that are obtained directly from the time history of measurements and are hence model independent. The dependence of these precursors on the size of the measured data set and the time required for their computation is investigated. These measures can be useful in structural health monitoring of aeroelastic structures.

  19. Comparison exercise of probabilistic precursor analysis

    International Nuclear Information System (INIS)

    Fauchille, V.; Babst, S.

    2004-01-01

    From 2000 up to 2003, a comparison exercise concerning accident precursor programs was performed by IRSN, GRS, and NUPEC (Japan). The objective of this exercise was to compare the methodologies used to quantify conditional core damage probability related to incidents which can be considered as accident precursors. This exercise provided interesting results concerning the interpretation of such events. Generally, the participants identified similar scenarios of potential degradation. However, for several dominant sequences, differences in the results were noticed. The differences can be attributed to variations in the plant design, the strategy of management and in the methodological approach. For many reasons, comparison of human reliability analysis was difficult and perhaps another exercise in the future could provide more information about this subject. On the other hand, interesting outcomes have been obtained from the quantification of both common cause failures and potential common cause failures. (orig.)

  20. Functional Nanoporous Polymers from Block Copolymer Precursors

    DEFF Research Database (Denmark)

    Guo, Fengxiao

    Abstract Self-assembly of block copolymers provides well-defined morphologies with characteristic length scales in the nanometer range. Nanoporous polymers prepared by selective removal of one block from self-assembled block copolymers offer great technological promise due to their many potential...... functionalities remains a great challenge due to the limitation of available polymer synthesis and the nanoscale confinement of the porous cavities. The main topic of this thesis is to develop methods for fabrication of functional nanoporous polymers from block copolymer precursors. A method has been developed......, where living anionic polymerization and atom transfer radical polymerization (ATRP) are combined to synthesize a polydimethylsiloxane-b-poly(tert-butyl acrylate)-b-polystyrene (PDMS-b-PtBA-b-PS) triblock copolymer precursor. By using either anhydrous hydrogen fluoride or trifluoroacetic acid, PtBA block...

  1. Nonlinear magnetohydrodynamics of edge localized mode precursors

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Z. B., E-mail: guozhipku@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China); WCI Center for Fusion Theory, NFRI, Gwahangno 113, Yusung-gu, Daejeon 305-333 (Korea, Republic of); Wang, Lu [SEEE, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang, X. G. [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing (China)

    2015-02-15

    A possible origin of edge-localized-mode (ELM) precursors based on nonlinear ideal peeling-ballooning mode is reported. Via nonlinear variational principle, a nonlinear evolution equation of the radial displacement is derived and solved, analytically. Besides an explosive growth in the initial nonlinear phase, it is found that the local displacement evolves into an oscillating state in the developed nonlinear phase. The nonlinear frequency of the ELM precursors scales as ω{sub pre}∼x{sup 1/3}ξ{sup ^}{sub ψ,in}{sup 2/3}n, with x position in radial direction, ξ{sup ^}{sub ψ,in} strength of initial perturbation, and n toroidal mode number.

  2. PRECURSORS OF EARTHQUAKES: VLF SIGNALSIONOSPHERE IONOSPHERE RELATION

    Directory of Open Access Journals (Sweden)

    Mustafa ULAS

    2013-01-01

    Full Text Available lot of people have died because of earthquakes every year. Therefore It is crucial to predict the time of the earthquakes reasonable time before it had happed. This paper presents recent information published in the literature about precursors of earthquakes. The relationships between earthquakes and ionosphere are targeted to guide new researches in order to study further to find novel prediction methods.

  3. Lunar Robotic Precursor Missions Using Electric Propulsion

    OpenAIRE

    Winski, Richard G.

    2006-01-01

    A trade study is carried out for the design of electric propulsion based lunar robotic precursor missions. The focus is to understand the relationships between payload mass delivered, electric propulsion power, and trip time. The results are compared against a baseline system using chemical propulsion with LOX/H2. The major differences between the chemical propulsion based and electric propulsion based systems are presented in terms of the payload mass and trip time. It is shown that solar e...

  4. Ionospheric precursors for crustal earthquakes in Italy

    Directory of Open Access Journals (Sweden)

    L. Perrone

    2010-04-01

    Full Text Available Crustal earthquakes with magnitude 6.0>M≥5.5 observed in Italy for the period 1979–2009 including the last one at L'Aquila on 6 April 2009 were considered to check if the earlier obtained relationships for ionospheric precursors for strong Japanese earthquakes are valid for the Italian moderate earthquakes. The ionospheric precursors are based on the observed variations of the sporadic E-layer parameters (h'Es, fbEs and foF2 at the ionospheric station Rome. Empirical dependencies for the seismo-ionospheric disturbances relating the earthquake magnitude and the epicenter distance are obtained and they have been shown to be similar to those obtained earlier for Japanese earthquakes. The dependences indicate the process of spreading the disturbance from the epicenter towards periphery during the earthquake preparation process. Large lead times for the precursor occurrence (up to 34 days for M=5.8–5.9 tells about a prolong preparation period. A possibility of using the obtained relationships for the earthquakes prediction is discussed.

  5. Cellular Kinetics of Perivascular MSC Precursors

    Directory of Open Access Journals (Sweden)

    William C. W. Chen

    2013-01-01

    Full Text Available Mesenchymal stem/stromal cells (MSCs and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration.

  6. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter.

    Science.gov (United States)

    Rao, Ashit; Cölfen, Helmut

    2018-03-24

    The organization of matter from its constitutive units recruits intermediate states with distinctive degrees of self-association and molecular order. Existing as clusters, droplets, gels as well as amorphous and crystalline nanoparticles, these precursor forms have fundamental contributions towards the composition and structure of inorganic and organic architectures. In this personal account, we show that the transitions from atoms, molecules or ionic species to superstructures of higher order are intertwined with the interfaces and interactions of precursor and intermediate states. Structural organizations distributed across different length scales are explained by the multistep nature of nucleation and crystallization, which can be guided towards functional hybrid materials by the strategic application of additives, templates and reaction environments. Thus, the non-classical pathways for material formation and growth offer conceptual frameworks for elucidating, inducing and directing fascinating material organizations of biogenic and synthetic origins. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. What Makes Clusters Decline?

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    2015-01-01

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark. The longit...... but being quick to withdraw in times of crisis....

  8. Clustering of correlated networks

    OpenAIRE

    Dorogovtsev, S. N.

    2003-01-01

    We obtain the clustering coefficient, the degree-dependent local clustering, and the mean clustering of networks with arbitrary correlations between the degrees of the nearest-neighbor vertices. The resulting formulas allow one to determine the nature of the clustering of a network.

  9. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  10. Cluster ion beam facilities

    International Nuclear Information System (INIS)

    Popok, V.N.; Prasalovich, S.V.; Odzhaev, V.B.; Campbell, E.E.B.

    2001-01-01

    A brief state-of-the-art review in the field of cluster-surface interactions is presented. Ionised cluster beams could become a powerful and versatile tool for the modification and processing of surfaces as an alternative to ion implantation and ion assisted deposition. The main effects of cluster-surface collisions and possible applications of cluster ion beams are discussed. The outlooks of the Cluster Implantation and Deposition Apparatus (CIDA) being developed in Guteborg University are shown

  11. Biomineralizaciones de sílice en Celtis tala¹ (Celtidaceae Silica biomineralizations in Celtis tala (Celtidaceae

    Directory of Open Access Journals (Sweden)

    Mariana Fernández Honaine

    2005-12-01

    Full Text Available Se estudió la asociación fitolítica de Celtis tala Planchon, su composición química y variabilidad morfológica, analizándose por separado los morfotipos presentes en hoja, tallo y fruto. La asociación fitolítica de Celtis tala está compuesta principalmente por cistolitos, fitolitos poliédricos articulados con paredes y/o lumen celular silicificados, y fitolitos de contorno irregular, superficie rugosa y lumen celular silicificado. Los análisis de EDAX y las observaciones al microscopio permitieron corroborar la presencia de biomineralizaciones de sílice y calcio en hoja, tallo y fruto. Además se detectaron otros elementos, como Mg, Al, K, P, Fe y S en algunos fitolitos. En particular, este trabajo revela la presencia de sílice como un componente fundamental en la estructura de los cistolitos en esta especie, apoyando los resultados obtenidos por otros autores para cistolitos en otras especies relacionadas. La presencia de un elemento mucho menos lábil que el carbonato de calcio, permite que estas estructuras luego de la descomposición de la materia orgánica, puedan permanecer durante más tiempo sin alterarse en el suelo, constituyendo importantes elementos indicadores de la presencia de Celtis tala en el registro fósil.The phytolith assemblage of Celtis tala, its chemical composition and variability were studied. Leave, stem and fruit phytolith morphologies were analyzed with the purpose of establishing the contribution of each organ. The results showed that cystolith types, articulated poliedric (with wall and lumen silicified and irregular, rugose poliedric phytoliths were the main morphologies present in Celtis tala phytolith assemblage. Silicon and calcium biomineralizations were detected by EDAX analysis and microscope observations in leave, stem and fruit. Other elements, such as Mg, Al, K, P, Fe and S, were also detected by EDAX analysis in some phytoliths. The presence of silicon as an important structural cystolith

  12. PREFACE: Nuclear Cluster Conference; Cluster'07

    Science.gov (United States)

    Freer, Martin

    2008-05-01

    The Cluster Conference is a long-running conference series dating back to the 1960's, the first being initiated by Wildermuth in Bochum, Germany, in 1969. The most recent meeting was held in Nara, Japan, in 2003, and in 2007 the 9th Cluster Conference was held in Stratford-upon-Avon, UK. As the name suggests the town of Stratford lies upon the River Avon, and shortly before the conference, due to unprecedented rainfall in the area (approximately 10 cm within half a day), lay in the River Avon! Stratford is the birthplace of the `Bard of Avon' William Shakespeare, and this formed an intriguing conference backdrop. The meeting was attended by some 90 delegates and the programme contained 65 70 oral presentations, and was opened by a historical perspective presented by Professor Brink (Oxford) and closed by Professor Horiuchi (RCNP) with an overview of the conference and future perspectives. In between, the conference covered aspects of clustering in exotic nuclei (both neutron and proton-rich), molecular structures in which valence neutrons are exchanged between cluster cores, condensates in nuclei, neutron-clusters, superheavy nuclei, clusters in nuclear astrophysical processes and exotic cluster decays such as 2p and ternary cluster decay. The field of nuclear clustering has become strongly influenced by the physics of radioactive beam facilities (reflected in the programme), and by the excitement that clustering may have an important impact on the structure of nuclei at the neutron drip-line. It was clear that since Nara the field had progressed substantially and that new themes had emerged and others had crystallized. Two particular topics resonated strongly condensates and nuclear molecules. These topics are thus likely to be central in the next cluster conference which will be held in 2011 in the Hungarian city of Debrechen. Martin Freer Participants and Cluster'07

  13. Cilia-driven fluid flow as an epigenetic cue for otolith biomineralization on sensory hair cells of the inner ear.

    Science.gov (United States)

    Yu, Xianwen; Lau, Doreen; Ng, Chee Peng; Roy, Sudipto

    2011-02-01

    Ciliary motility is necessary for many developmental and physiological processes in animals. In zebrafish, motile cilia are thought to be required for the deposition of otoliths, which comprise crystals of protein and calcium carbonate, on hair cells of the inner ear. The identity of the motile cilia and their role in otolith biogenesis, however, remain controversial. Here, we show that the ear vesicle differentiates numerous motile cilia, the spatial distribution of which changes as a function of the expression pattern of the ciliogenic gene foxj1b. By contrast, the hair cells develop immotile kinocilia that serve as static tethers for otolith crystallization. In ears devoid of all cilia, otoliths can form but they are of irregular shapes and sizes and appear to attach instead to the hair cell apical membranes. Moreover, overproduction of motile cilia also disrupts otolith deposition through sustained agitation of the precursor particles. Therefore, the correct spatial and temporal distribution of the motile cilia is crucial for proper otolith formation. Our findings support the view that the hair cells express a binding factor for the otolith precursors, while the motile cilia ensure that the precursors do not sediment prematurely and are efficiently directed towards the hair cells. We also provide evidence that the kinocilia are modified motile cilia that depend on Foxj1b for their differentiation. We propose that in hair cells, a Foxj1b-dependent motile ciliogenic program is altered by the proneural Atoh proteins to promote the differentiation of immotile kinocilia.

  14. Meat flavor precursors and factors influencing flavor precursors--A systematic review.

    Science.gov (United States)

    Khan, Muhammad Issa; Jo, Cheorun; Tariq, Muhammad Rizwan

    2015-12-01

    Flavor is the sensory impression sensed by taste and smell buds and is a leading factor determining the meat quality and purchasing decision of the consumer. Meat flavor is characteristic of volatiles produced as a result of reactions of non-volatile components that are induced thermally. The water soluble compounds having low molecular weight and meat lipids are important precursors of cooked meat flavor. The Maillard reaction, lipid oxidation, and vitamin degradation are leading reactions during cooking which develop meat flavor from uncooked meat with little aroma and bloody taste. The pre-slaughter and postmortem factors like animal breed, sex, age, feed, aging and cooking conditions contribute to flavor development of cooked meat. The objective of this review is to highlight the flavor chemistry, meat flavor precursors and factors affecting meat flavor precursors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Non radioactive precursor import into chloroplasts

    International Nuclear Information System (INIS)

    Lombardo, V.A.; Ottado, J.

    2003-01-01

    Full text: Eukaryotic cells have a subcellular organization based on organelles. Protein transport to these organelles is quantitatively important because the majority of cellular proteins are codified in nuclear genes and then delivered to their final destination. Most of the chloroplast proteins are translated on cytoplasmic ribosomes as larger precursors with an amino terminal transit peptide that is necessary and sufficient to direct the precursor to the chloroplast. Once inside the organelle the transit peptide is cleaved and the mature protein adopts its folded form. In this work we developed a system for the expression and purification of the pea ferredoxin-NADP + reductase precursor (preFNR) for its import into chloroplasts in non radioactive conditions. We constructed a preFNR fused in its carboxy terminus to a 6 histidines peptide (preFNR-6xHis) that allows its identification using a commercial specific antibody. The construction was expressed, purified, processed and precipitated, rendering a soluble and active preFNR-6xHis that was used in binding and import into chloroplasts experiments. The reisolated chloroplasts were analyzed by SDS-PAGE, electro-blotting and revealed by immuno-detection using either colorimetric or chemiluminescent reactive. We performed also import experiments labeling preFNR and preFNR-6xHis with radioactive methionine as controls. We conclude that preFNR-6xHis is bound and imported into chloroplasts as the wild type preFNR and that both colorimetric or chemiluminescent detection methods are useful to avoid the manipulation of radioactive material. (author)

  16. NOx emissions trading: Precursor to future growth

    International Nuclear Information System (INIS)

    Colella, A.

    1993-01-01

    Title I of the Clean Air Act Amendments (CAAA) of 1990 specified the framework for enhanced regulation in ozone non-attainment areas with increasingly stringent requirements dependent on the area classification - marginal, moderate, serious, severe or extreme. Before the CAAA were passed, only volatile organic compounds (VOCs) were regulated as precursors to ozone formation, Now, by statute, emissions of nitrogen oxides (NO x ) are also regulated as ozone precursor. Under the CAAA, new sources and modifications of existing sources are subject to Title I permitting requirements in ozone non-attainment areas if emissions of NO x and/or VOCs exceed certain triggering levels. For many new or facility expansion projects, especially power generation, the NO x thresholds are easily exceeded thus triggering Title I non-attainment new source review which requires application of control technology to new equipment which results in the Lowest Achievable Emission Rate (LAER), and securing emission reductions either internally or from other major sources to offset the increased emission from the new or modified source. The selection of a LAER technology is generally within an applicant's control. An applicant can determine up-front the engineering and cost considerations associated with LAER technology is assessing a project's viability. However, without a clear source of emission offsets of a means to secure them, assessing project viability could be difficult if not impossible. No available emission offsets means no industrial growth. For sources of NO x undergoing Title I new source review, a regional or state banking system that facilitates NO x emissions trading is needed as a precursor to future growth. This paper presents an overview of EPA's Emissions Trading Policy and Title I new source review offset provisions. Industry's concerns about emissions trading and recommendations for future trading programs are presented

  17. Management of cluster headache

    DEFF Research Database (Denmark)

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-01-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe...... or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness...... and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment...

  18. Symmetries of cluster configurations

    International Nuclear Information System (INIS)

    Kramer, P.

    1975-01-01

    A deeper understanding of clustering phenomena in nuclei must encompass at least two interrelated aspects of the subject: (A) Given a system of A nucleons with two-body interactions, what are the relevant and persistent modes of clustering involved. What is the nature of the correlated nucleon groups which form the clusters, and what is their mutual interaction. (B) Given the cluster modes and their interaction, what systematic patterns of nuclear structure and reactions emerge from it. Are there, for example, families of states which share the same ''cluster parents''. Which cluster modes are compatible or exclude each other. What quantum numbers could characterize cluster configurations. There is no doubt that we can learn a good deal from the experimentalists who have discovered many of the features relevant to aspect (B). Symmetries specific to cluster configurations which can throw some light on both aspects of clustering are discussed

  19. Silica sodalite without occluded organic matters by topotactic conversion of lamellar precursor.

    Science.gov (United States)

    Moteki, Takahiko; Chaikittisilp, Watcharop; Shimojima, Atsushi; Okubo, Tatsuya

    2008-11-26

    Novel pure silica sodalite with hollow sodalite-cages has been synthesized for the first time by topotactic conversion of layered silicate (RUB-15) precursor. This success has been achieved by stepwise syntheses from silicate monomers, through clusters and layers, to microporous crystals. The pretreatment of layered silicate with small carboxylic acids before conversion is a crucial step. The obtained sodalite possesses accessible micropores, as confirmed by physical adsorption of hydrogen molecules. This plate-like silica sodalite would be very promising as fillers in mixed-matrix membranes for hydrogen separation.

  20. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family

    Directory of Open Access Journals (Sweden)

    Mitchell Douglas A

    2010-05-01

    Full Text Available Abstract Background A new family of natural products has been described in which cysteine, serine and threonine from ribosomally-produced peptides are converted to thiazoles, oxazoles and methyloxazoles, respectively. These metabolites and their biosynthetic gene clusters are now referred to as thiazole/oxazole-modified microcins (TOMM. As exemplified by microcin B17 and streptolysin S, TOMM precursors contain an N-terminal leader sequence and C-terminal core peptide. The leader sequence contains binding sites for the posttranslational modifying enzymes which subsequently act upon the core peptide. TOMM peptides are small and highly variable, frequently missed by gene-finders and occasionally situated far from the thiazole/oxazole forming genes. Thus, locating a substrate for a particular TOMM pathway can be a challenging endeavor. Results Examination of candidate TOMM precursors has revealed a subclass with an uncharacteristically long leader sequence closely related to the enzyme nitrile hydratase. Members of this nitrile hydratase leader peptide (NHLP family lack the metal-binding residues required for catalysis. Instead, NHLP sequences display the classic Gly-Gly cleavage motif and have C-terminal regions rich in heterocyclizable residues. The NHLP family exhibits a correlated species distribution and local clustering with an ABC transport system. This study also provides evidence that a separate family, annotated as Nif11 nitrogen-fixing proteins, can serve as natural product precursors (N11P, but not always of the TOMM variety. Indeed, a number of cyanobacterial genomes show extensive N11P paralogous expansion, such as Nostoc, Prochlorococcus and Cyanothece, which replace the TOMM cluster with lanthionine biosynthetic machinery. Conclusions This study has united numerous TOMM gene clusters with their cognate substrates. These results suggest that two large protein families, the nitrile hydratases and Nif11, have been retailored for

  1. Amorphous Alloy: Promising Precursor to Form Nanoflowerpot

    Directory of Open Access Journals (Sweden)

    Guo Lan

    2014-01-01

    Full Text Available Nanoporous copper is fabricated by dealloying the amorphous Ti2Cu alloy in 0.03 M HF electrolyte. The pore and ligament sizes of the nanoporous copper can be readily tailored by controlling the dealloying time. The as-prepared nanoporous copper provides fine and uniform nanoflowerpots to grow highly dispersed Au nanoflowers. The blooming Au nanoflowers in the nanoporous copper flowerpots exhibit both high catalytic activity and stability towards the oxidation of glucose, indicating that the amorphous alloys are ideal precursors to form nanoflowerpot which can grow functional nanoflowers.

  2. Iron filled carbon nanostructures from different precursors

    International Nuclear Information System (INIS)

    Costa, S.; Borowiak-Palen, E.; Bachmatiuk, A.; Ruemmeli, M.H.; Gemming, T.; Kalenczuk, R.J.

    2008-01-01

    Here, we present a study on the synthesis of different nanostructures with one single-step in situ filling (encapsulation) via carbon vapor deposition (CVD). Ferrocene, acetylferrocene and iron (II) nitrate as iron precursors were explored. The application of each of these compounds resulted in different carbon nanomaterials such as: iron filled multiwalled carbon nanotubes with a low filling ratio (Fe-MWCNT), iron filled nanocapsules and unfilled MWCNT. The as-produced samples were purified by high temperature annealing and acid treatment. The purified materials were characterised using transmission electron microscopy (TEM) and Raman spectroscopy

  3. Cluster Decline and Resilience

    DEFF Research Database (Denmark)

    Østergaard, Christian Richter; Park, Eun Kyung

    Most studies on regional clusters focus on identifying factors and processes that make clusters grow. However, sometimes technologies and market conditions suddenly shift, and clusters decline. This paper analyses the process of decline of the wireless communication cluster in Denmark, 1963......-2011. Our longitudinal study reveals that technological lock-in and exit of key firms have contributed to impairment of the cluster’s resilience in adapting to disruptions. Entrepreneurship has a positive effect on cluster resilience, while multinational companies have contradicting effects by bringing...... in new resources to the cluster but being quick to withdraw in times of crisis....

  4. Demonstrating the utility of boron based precursor molecules for selective area deposition in a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Perkins, F.K.; Onellion, M.; Lee, S.; Bowben, T.A.

    1992-01-01

    The scanning tunneling microscope (STM) can be used to selectively deposit material from a gaseous precursor compound. Ultrasmall (less than a 100 nm across) spatial dimensions for selective area deposition may be achieved by this means. In this paper the authors outline a scheme foreselecting and designing main group cluster compounds and organometallics for this type of selective area deposition using nido-decaborane(14) as an example

  5. Do protein crystals nucleate within dense liquid clusters?

    International Nuclear Information System (INIS)

    Maes, Dominique; Vorontsova, Maria A.; Potenza, Marco A. C.; Sanvito, Tiziano; Sleutel, Mike; Giglio, Marzio; Vekilov, Peter G.

    2015-01-01

    The evolution of protein-rich clusters and nucleating crystals were characterized by dynamic light scattering (DLS), confocal depolarized dynamic light scattering (cDDLS) and depolarized oblique illumination dark-field microscopy. Newly nucleated crystals within protein-rich clusters were detected directly. These observations indicate that the protein-rich clusters are locations for crystal nucleation. Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10 −3 of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in

  6. Comprehensive cluster analysis with Transitivity Clustering.

    Science.gov (United States)

    Wittkop, Tobias; Emig, Dorothea; Truss, Anke; Albrecht, Mario; Böcker, Sebastian; Baumbach, Jan

    2011-03-01

    Transitivity Clustering is a method for the partitioning of biological data into groups of similar objects, such as genes, for instance. It provides integrated access to various functions addressing each step of a typical cluster analysis. To facilitate this, Transitivity Clustering is accessible online and offers three user-friendly interfaces: a powerful stand-alone version, a web interface, and a collection of Cytoscape plug-ins. In this paper, we describe three major workflows: (i) protein (super)family detection with Cytoscape, (ii) protein homology detection with incomplete gold standards and (iii) clustering of gene expression data. This protocol guides the user through the most important features of Transitivity Clustering and takes ∼1 h to complete.

  7. Fluorinated Phenylalanine Precursor Resistance in Yeast

    Directory of Open Access Journals (Sweden)

    Ian S. Murdoch

    2018-06-01

    Full Text Available Development of a counter-selection method for phenylalanine auxotrophy could be a useful tool in the repertoire of yeast genetics. Fluorinated and sulfurated precursors of phenylalanine were tested for toxicity in Saccharomyces cerevisiae. One such precursor, 4-fluorophenylpyruvate (FPP, was found to be toxic to several strains from the Saccharomyces and Candida genera. Toxicity was partially dependent on ARO8 and ARO9, and correlated with a strain’s ability to convert FPP into 4-fluorophenylalanine (FPA. Thus, strains with deletions in ARO8 and ARO9, having a mild phenylalanine auxotrophy, could be separated from a culture of wild-type strains using FPP. Tetrad analysis suggests FPP resistance in one strain is due to two genes. Strains resistant to FPA have previously been shown to exhibit increased phenylethanol production. However, FPP resistant isolates did not follow this trend. These results suggest that FPP could effectively be used for counter-selection but not for enhanced phenylethanol production.

  8. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    Science.gov (United States)

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  9. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    Directory of Open Access Journals (Sweden)

    Peter Hesemann

    2014-04-01

    Full Text Available The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA, mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  10. Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification, supplement to: Ramajo, L; Marba, Núria; Prado, Luis; Peron, Sophie; Lardies, Marco A; Rodriguez-Navarro, Alejandro; Vargas, C A; Lagos, Nelson A; Duarte, Carlos M (2016): Biomineralization changes with food supply confer juvenile scallops (Argopecten purpuratus) resistance to ocean acidification. Global Change Biology, 22(6), 2025-2037

    KAUST Repository

    Ramajo, L

    2016-01-01

    Future ocean acidification (OA) will affect physiological traits of marine species, with calcifying species being particularly vulnerable. As OA entails high energy demands, particularly during the rapid juvenile growth phase, food supply may play a key role in the response of marine organisms to OA. We experimentally evaluated the role of food supply in modulating physiological responses and biomineralization processes in juveniles of the Chilean scallop, Argopecten purpuratus, that were exposed to control (pH 8.0) and low pH (pH 7.6) conditions using three food supply treatments (high, intermediate, and low). We found that pH and food levels had additive effects on the physiological response of the juvenile scallops. Metabolic rates, shell growth, net calcification, and ingestion rates increased significantly at low pH conditions, independent of food. These physiological responses increased significantly in organisms exposed to intermediate and high levels of food supply. Hence, food supply seems to play a major role modulating organismal response by providing the energetic means to bolster the physiological response of OA stress. On the contrary, the relative expression of chitin synthase, a functional molecule for biomineralization, increased significantly in scallops exposed to low food supply and low pH, which resulted in a thicker periostracum enriched with chitin polysaccharides. Under reduced food and low pH conditions, the adaptive organismal response was to trade-off growth for the expression of biomineralization molecules and altering of the organic composition of shell periostracum, suggesting that the future performance of these calcifiers will depend on the trajectories of both OA and food supply. Thus, incorporating a suite of traits and multiple stressors in future studies of the adaptive organismal response may provide key insights on OA impacts on marine calcifiers.

  11. LMC clusters: young

    International Nuclear Information System (INIS)

    Freeman, K.C.

    1980-01-01

    The young globular clusters of the LMC have ages of 10 7 -10 8 y. Their masses and structure are similar to those of the smaller galactic globular clusters. Their stellar mass functions (in the mass range 6 solar masses to 1.2 solar masses) vary greatly from cluster to cluster, although the clusters are similar in total mass, age, structure and chemical composition. It would be very interesting to know why these clusters are forming now in the LMC and not in the Galaxy. The author considers the 'young globular' or 'blue populous' clusters of the LMC. The ages of these objects are 10 7 to 10 8 y, and their masses are 10 4 to 10 5 solar masses, so they are populous enough to be really useful for studying the evolution of massive stars. The author concentrates on the structure and stellar content of these young clusters. (Auth.)

  12. Star clusters and associations

    International Nuclear Information System (INIS)

    Ruprecht, J.; Palous, J.

    1983-01-01

    All 33 papers presented at the symposium were inputted to INIS. They dealt with open clusters, globular clusters, stellar associations and moving groups, and local kinematics and galactic structures. (E.S.)

  13. Cluster beam injection

    International Nuclear Information System (INIS)

    Bottiglioni, F.; Coutant, J.; Fois, M.

    1978-01-01

    Areas of possible applications of cluster injection are discussed. The deposition inside the plasma of molecules, issued from the dissociation of the injected clusters, has been computed. Some empirical scaling laws for the penetration are given

  14. Crystallization Pathways in Biomineralization

    Science.gov (United States)

    Weiner, Steve; Addadi, Lia

    2011-08-01

    A crystallization pathway describes the movement of ions from their source to the final product. Cells are intimately involved in biological crystallization pathways. In many pathways the cells utilize a unique strategy: They temporarily concentrate ions in intracellular membrane-bound vesicles in the form of a highly disordered solid phase. This phase is then transported to the final mineralization site, where it is destabilized and crystallizes. We present four case studies, each of which demonstrates specific aspects of biological crystallization pathways: seawater uptake by foraminifera, calcite spicule formation by sea urchin larvae, goethite formation in the teeth of limpets, and guanine crystal formation in fish skin and spider cuticles. Three representative crystallization pathways are described, and aspects of the different stages of crystallization are discussed. An in-depth understanding of these complex processes can lead to new ideas for synthetic crystallization processes of interest to materials science.

  15. Clustering at high redshifts

    International Nuclear Information System (INIS)

    Shaver, P.A.

    1986-01-01

    Evidence for clustering of and with high-redshift QSOs is discussed. QSOs of different redshifts show no clustering, but QSOs of similar redshifts appear to be clustered on a scale comparable to that of galaxies at the present epoch. In addition, spectroscopic studies of close pairs of QSOs indicate that QSOs are surrounded by a relatively high density of absorbing matter, possibly clusters of galaxies

  16. Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

    Science.gov (United States)

    Zuurbier, Linda; Gutierrez, Alejandro; Mullighan, Charles G.; Canté-Barrett, Kirsten; Gevaert, A. Olivier; de Rooi, Johan; Li, Yunlei; Smits, Willem K.; Buijs-Gladdines, Jessica G.C.A.M.; Sonneveld, Edwin; Look, A. Thomas; Horstmann, Martin; Pieters, Rob; Meijerink, Jules P.P.

    2014-01-01

    Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients. PMID:23975177

  17. Cluster Physics with Merging Galaxy Clusters

    Directory of Open Access Journals (Sweden)

    Sandor M. Molnar

    2016-02-01

    Full Text Available Collisions between galaxy clusters provide a unique opportunity to study matter in a parameter space which cannot be explored in our laboratories on Earth. In the standard LCDM model, where the total density is dominated by the cosmological constant ($Lambda$ and the matter density by cold dark matter (CDM, structure formation is hierarchical, and clusters grow mostly by merging.Mergers of two massive clusters are the most energetic events in the universe after the Big Bang,hence they provide a unique laboratory to study cluster physics.The two main mass components in clusters behave differently during collisions:the dark matter is nearly collisionless, responding only to gravity, while the gas is subject to pressure forces and dissipation, and shocks and turbulenceare developed during collisions. In the present contribution we review the different methods used to derive the physical properties of merging clusters. Different physical processes leave their signatures on different wavelengths, thusour review is based on a multifrequency analysis. In principle, the best way to analyze multifrequency observations of merging clustersis to model them using N-body/HYDRO numerical simulations. We discuss the results of such detailed analyses.New high spatial and spectral resolution ground and space based telescopeswill come online in the near future. Motivated by these new opportunities,we briefly discuss methods which will be feasible in the near future in studying merging clusters.

  18. Size selected metal clusters

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The Optical Absorption Spectra of Small Silver Clusters (5-11) ... Soft Landing and Fragmentation of Small Clusters Deposited in Noble-Gas Films. Harbich, W.; Fedrigo, S.; Buttet, J. Phys. Rev. B 1998, 58, 7428. CO combustion on supported gold clusters. Arenz M ...

  19. The Durban Auto Cluster

    DEFF Research Database (Denmark)

    Lorentzen, Jochen; Robbins, Glen; Barnes, Justin

    2004-01-01

    The paper describes the formation of the Durban Auto Cluster in the context of trade liberalization. It argues that the improvement of operational competitiveness of firms in the cluster is prominently due to joint action. It tests this proposition by comparing the gains from cluster activities...

  20. Marketing research cluster analysis

    Directory of Open Access Journals (Sweden)

    Marić Nebojša

    2002-01-01

    Full Text Available One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  1. Marketing research cluster analysis

    OpenAIRE

    Marić Nebojša

    2002-01-01

    One area of applications of cluster analysis in marketing is identification of groups of cities and towns with similar demographic profiles. This paper considers main aspects of cluster analysis by an example of clustering 12 cities with the use of Minitab software.

  2. Minimalist's linux cluster

    International Nuclear Information System (INIS)

    Choi, Chang-Yeong; Kim, Jeong-Hyun; Kim, Seyong

    2004-01-01

    Using barebone PC components and NIC's, we construct a linux cluster which has 2-dimensional mesh structure. This cluster has smaller footprint, is less expensive, and use less power compared to conventional linux cluster. Here, we report our experience in building such a machine and discuss our current lattice project on the machine

  3. Range-clustering queries

    NARCIS (Netherlands)

    Abrahamsen, M.; de Berg, M.T.; Buchin, K.A.; Mehr, M.; Mehrabi, A.D.

    2017-01-01

    In a geometric k -clustering problem the goal is to partition a set of points in R d into k subsets such that a certain cost function of the clustering is minimized. We present data structures for orthogonal range-clustering queries on a point set S : given a query box Q and an integer k>2 , compute

  4. Cosmology with cluster surveys

    Indian Academy of Sciences (India)

    Abstract. Surveys of clusters of galaxies provide us with a powerful probe of the den- sity and nature of the dark energy. The red-shift distribution of detected clusters is highly sensitive to the dark energy equation of state parameter w. Upcoming Sunyaev–. Zel'dovich (SZ) surveys would provide us large yields of clusters to ...

  5. Unraveling Molecular Mechanisms for the Unusual Fossil Preservation and Biomineralization Pathways in Tlayúa, the Mexican Solenhofen

    Science.gov (United States)

    Cervini-Silva, J.; Fakra, S.; Alvarado-Ortega, J.; Cornejo-Garrido, H.; Marcus, M.; Hao, Z.; Espinosa-Arruberena, L.; Banfield, J.

    2007-12-01

    lagoon when the barrier was breached, probably during periods of heavy rains and hurricanes, or during high tides. Additionally, some fishes from Tlayua have been found to have affinities with recent families known to inhabit brackish and freshwater environments. Some of these fish preserve gut contents. Preliminary analysis of the intestinal content of these fishes has resulted in identification of freshwater insects and fern fragments. This work addresses for the first time the study of chemical and biological mechanisms contributing to fossil preservation and biomineralization pathways prevailing in Tlayúa using synchrotron techniques (XRF, - XRD, 3D--IR, XANES/EXAFS, STxM). We present chemical composition data collected from a fish egg's interior in search of fossilized structures. We also present data from well-preserved soft tissue collected from a fish soon to be named Michin scernai (newly identified specie, thus the name cannot be applied formally just yet). This fish is a Pachyrhizodontide, from the telesteos incertae sedis group already extinct. This particular sample was collected from the gastric cavity, precisely where female fish store the eggs before laying.

  6. Influence of crystallization time on structural and morphological characteristics the precursor of zeolite MCM-22

    International Nuclear Information System (INIS)

    Barbosa, A.S.; Lima, L.A.; Sousa, B.V.; Santos, Everton R.F. dos; Rodrigues, M.G.F.

    2009-01-01

    The zeolite MCM-22 has been studied extensively as a promising catalyst because of the high thermal stability and high activity for acid catalysis and selectivity of molecular shape. The synthesis of MCM-22 is carried out by hydrothermal treatment and long times required for complete crystallization gradual growth of crystals of 10-14 days for the synthesis of static. This work aims to synthesize the precursor of zeolite MCM-22 using the method of hydrothermal synthesis with a reduction in crystallization time of 8 and 9 days. The precursor of zeolite MCM-22 was obtained using sources of silica, soda, deionized water and the director of structures hexametilenoimina (HMI). The samples were synthesized at 150° C for 8 to 9 days, with the following molar composition: 0.511 SiO 2 : 0.039 NaOH: 0.024 Al 2 O 3 : 23.06 H 2 O and subjected to characterizations by X-ray diffraction (XRD), scanning electron microscopy ( SEM) and energy dispersive (EDX). According to tests carried out showed that the hydrothermal treatment used to synthesize the precursor of zeolite MCM-22 was effective during times of crystallization of 8 and 9 days. The results for the micrographs showed that the samples consist of clusters and / or aggregates of small crystals. (author)

  7. Lessons learned on probabilistic methodology for precursor analyses

    International Nuclear Information System (INIS)

    Babst, Siegfried; Wielenberg, Andreas; Gaenssmantel, Gerhard

    2016-01-01

    Based on its experience in precursor assessment of operating experience from German NPP and related international activities in the field, GRS has identified areas for enhancing probabilistic methodology. These are related to improving the completeness of PSA models, to insufficiencies in probabilistic assessment approaches, and to enhancements of precursor assessment methods. Three examples from the recent practice in precursor assessments illustrating relevant methodological insights are provided and discussed in more detail. Our experience reinforces the importance of having full scope, current PSA models up to Level 2 PSA and including hazard scenarios for precursor analysis. Our lessons learned include that PSA models should be regularly updated regarding CCF data and inclusion of newly discovered CCF mechanisms or groups. Moreover, precursor classification schemes should be extended to degradations and unavailabilities of the containment function. Finally, PSA and precursor assessments should put more emphasis on the consideration of passive provisions for safety, e. g. by sensitivity cases.

  8. Lessons learned on probabilistic methodology for precursor analyses

    Energy Technology Data Exchange (ETDEWEB)

    Babst, Siegfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Berlin (Germany); Wielenberg, Andreas; Gaenssmantel, Gerhard [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    Based on its experience in precursor assessment of operating experience from German NPP and related international activities in the field, GRS has identified areas for enhancing probabilistic methodology. These are related to improving the completeness of PSA models, to insufficiencies in probabilistic assessment approaches, and to enhancements of precursor assessment methods. Three examples from the recent practice in precursor assessments illustrating relevant methodological insights are provided and discussed in more detail. Our experience reinforces the importance of having full scope, current PSA models up to Level 2 PSA and including hazard scenarios for precursor analysis. Our lessons learned include that PSA models should be regularly updated regarding CCF data and inclusion of newly discovered CCF mechanisms or groups. Moreover, precursor classification schemes should be extended to degradations and unavailabilities of the containment function. Finally, PSA and precursor assessments should put more emphasis on the consideration of passive provisions for safety, e. g. by sensitivity cases.

  9. Mars MetNet Precursor Mission Status

    Science.gov (United States)

    Harri, A.-M.; Aleksashkin, S.; Guerrero, H.; Schmidt, W.; Genzer, M.; Vazquez, L.; Haukka, H.

    2013-09-01

    We are developing a new kind of planetary exploration mission for Mars in collaboration between the Finnish Meteorological Institute (FMI), Lavochkin Association (LA), Space Research Institute (IKI) and Institutio Nacional de Tecnica Aerospacial (INTA). The Mars MetNet mission is based on a new semi-hard landing vehicle called MetNet Lander (MNL). The scientific payload of the Mars MetNet Precursor [1] mission is divided into three categories: Atmospheric instruments, Optical devices and Composition and structure devices. Each of the payload instruments will provide significant insights in to the Martian atmospheric behavior. The key technologies of the MetNet Lander have been qualified and the electrical qualification model (EQM) of the payload bay has been built and successfully tested.

  10. Precursors to suicidality and violence on antidepressants

    DEFF Research Database (Denmark)

    Bielefeldt, Andreas Ø; Danborg, Pia B; Gøtzsche, Peter C

    2016-01-01

    OBJECTIVE: To quantify the risk of suicidality and violence when selective serotonin and serotonin-norepinephrine reuptake inhibitors are given to adult healthy volunteers with no signs of a mental disorder. DESIGN: Systematic review and meta-analysis. MAIN OUTCOME MEASURE: Harms related...... to suicidality, hostility, activation events, psychotic events and mood disturbances. SETTING: Published trials identified by searching PubMed and Embase and clinical study reports obtained from the European and UK drug regulators. PARTICIPANTS: Double-blind, placebo-controlled trials in adult healthy volunteers...... that reported on suicidality or violence or precursor events to suicidality or violence. RESULTS: A total of 5787 publications were screened and 130 trials fulfilled our inclusion criteria. The trials were generally uninformative; 97 trials did not report the randomisation method, 75 trials did not report any...

  11. German precursor study: methods and results

    International Nuclear Information System (INIS)

    Hoertner, H.; Frey, W.; von Linden, J.; Reichart, G.

    1985-01-01

    This study has been prepared by the GRS by contract of the Federal Minister of Interior. The purpose of the study is to show how the application of system-analytic tools and especially of probabilistic methods on the Licensee Event Reports (LERs) and on other operating experience can support a deeper understanding of the safety-related importance of the events reported in reactor operation, the identification of possible weak points, and further conclusions to be drawn from the events. Additionally, the study aimed at a comparison of its results for the severe core damage frequency with those of the German Risk Study as far as this is possible and useful. The German Precursor Study is a plant-specific study. The reference plant is Biblis NPP with its very similar Units A and B, whereby the latter was also the reference plant for the German Risk Study

  12. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  13. Ancient engineers' inventions precursors of the present

    CERN Document Server

    Rossi, Cesare

    2017-01-01

    This book describes the inventions and designs of ancient engineers who are the precursors of the present. The period ranges mainly from 300 B.C. to 1600 A.D. with several exceptions. Many of the oldest inventions are documented by archaeological finds, often very little known, mainly from Pompeii, Herculaneum and Stabiae and reveal a surprising modernity in their conception. Most of the inventions presented in the first four parts of the book were conceived up to the late Roman Empire and may be considered as milestones, each in their respective field. The fifth part concentrates on more recent centuries. The sixth part deals with some building construction techniques. Generally, for each of the presented inventions, three elements of research and reference are provided: written documents (the classics), iconic references (coins, bas-reliefs, etc.) and archaeological findings. The authors did not write this book for engineers only; hence they describe all the devices without assuming wide technical knowledge...

  14. Precursor conditions related to Zimbabwe's summer droughts

    Science.gov (United States)

    Nangombe, Shingirai; Madyiwa, Simon; Wang, Jianhong

    2018-01-01

    Despite the increasing severity of droughts and their effects on Zimbabwe's agriculture, there are few tools available for predicting these droughts in advance. Consequently, communities and farmers are more exposed, and policy makers are always ill prepared for such. This study sought to investigate possible cycles and precursor meteorological conditions prior to drought seasons that could be used to predict impending droughts in Zimbabwe. The Single Z-Index was used to identify and grade drought years between 1951 and 2010 according to rainfall severity. Spectral analysis was used to reveal the cycles of droughts for possible use of these cycles for drought prediction. Composite analysis was used to investigate circulation and temperature anomalies associated with severe and extreme drought years. Results indicate that severe droughts are more highly correlated with circulation patterns and embedded weather systems in the Indian Ocean and equatorial Pacific Ocean than any other area. This study identified sea surface temperatures in the average period June to August, geopotential height and wind vector in July to September period, and air temperature in September to November period as precursors that can be used to predict a drought occurrence several months in advance. Therefore, in addition to sea surface temperature, which was identified through previous research for predicting Zimbabwean droughts, the other parameters identified in this study can aid in drought prediction. Drought cycles were established at 20-, 12.5-, 3.2-, and 2.7-year cycles. The spectral peaks, 12.5, 3.2, and 2.7, had a similar timescale with the luni-solar tide, El Niño Southern Oscillation and Quasi Biennial Oscillation, respectively, and hence, occurrence of these phenomena have a possibility of indicating when the next drought might be.

  15. Polyacetylenes and Cumulenes, Potential Elements for Molecular Machines and Precursors of Carbon Clusters: A Theoretical Study

    Czech Academy of Sciences Publication Activity Database

    Zahradník, Rudolf; Šroubková, Libuše

    2003-01-01

    Roč. 86, - (2003), s. 979- 1000 ISSN 0018-019X Institutional research plan: CEZ:AV0Z4040901 Keywords : polyacetylenes * cummulenes * potential elemens Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.861, year: 2003

  16. Sol-gel-derived bioactive glass nanoparticle-incorporated glass ionomer cement with or without chitosan for enhanced mechanical and biomineralization properties.

    Science.gov (United States)

    Kim, Dong-Ae; Lee, Jung-Hwan; Jun, Soo-Kyung; Kim, Hae-Won; Eltohamy, Mohamed; Lee, Hae-Hyoung

    2017-07-01

    This study investigated the mechanical and in vitro biological properties (in immortalized human dental pulp stem cells (ihDPSCs)) of bioactive glass nanoparticle (BGN)-incorporated glass ionomer cement (GIC) with or without chitosan as a binder. After the BGNs were synthesized and characterized, three experimental GICs and a control (conventional GIC) that differed in the additive incorporated into a commercial GIC liquid (Hy-bond, Shofu, Japan) were produced: BG5 (5wt% of BGNs), CL0.5 (0.5wt% of chitosan), and BG5+CL0.5 (5wt% of BGNs and 0.5wt% of chitosan). After the net setting time was determined, weight change and bioactivity were analyzed in simulated body fluid (SBF) at 37°C. Mechanical properties (compressive strength, diametral tensile strength, flexural strength and modulus) were measured according to the incubation time (up to 28 days) in SBF. Cytotoxicity (1day) and biomineralization (14 days), assessed by alizarin red staining, were investigated using an extract from GIC and ihDPSCs. Data were analyzed using one-way analysis of variance (ANOVA) followed by Tukey's post hoc test; pproperties were increased in the BGN-incorporated GICs compared to those in the control (pproperties such as compressive, diametral tensile and flexural strength as well as in vitro biomineralization properties in ihDPSCs without cytotoxicity. Therefore, the developed BGN-incorporated GIC is a promising restorative dental material, although further in vivo investigation is needed before clinical application. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Cluster analysis for applications

    CERN Document Server

    Anderberg, Michael R

    1973-01-01

    Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis.Comprised of 10 chapters, this book begins with an introduction to the subject o

  18. Closed-cage tungsten oxide clusters in the gas phase.

    Science.gov (United States)

    Singh, D M David Jeba; Pradeep, T; Thirumoorthy, Krishnan; Balasubramanian, Krishnan

    2010-05-06

    During the course of a study on the clustering of W-Se and W-S mixtures in the gas phase using laser desorption ionization (LDI) mass spectrometry, we observed several anionic W-O clusters. Three distinct species, W(6)O(19)(-), W(13)O(29)(-), and W(14)O(32)(-), stand out as intense peaks in the regular mass spectral pattern of tungsten oxide clusters suggesting unusual stabilities for them. Moreover, these clusters do not fragment in the postsource decay analysis. While trying to understand the precursor material, which produced these clusters, we found the presence of nanoscale forms of tungsten oxide. The structure and thermodynamic parameters of tungsten clusters have been explored using relativistic quantum chemical methods. Our computed results of atomization energy are consistent with the observed LDI mass spectra. The computational results suggest that the clusters observed have closed-cage structure. These distinct W(13) and W(14) clusters were observed for the first time in the gas phase.

  19. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  20. Spatial cluster modelling

    CERN Document Server

    Lawson, Andrew B

    2002-01-01

    Research has generated a number of advances in methods for spatial cluster modelling in recent years, particularly in the area of Bayesian cluster modelling. Along with these advances has come an explosion of interest in the potential applications of this work, especially in epidemiology and genome research. In one integrated volume, this book reviews the state-of-the-art in spatial clustering and spatial cluster modelling, bringing together research and applications previously scattered throughout the literature. It begins with an overview of the field, then presents a series of chapters that illuminate the nature and purpose of cluster modelling within different application areas, including astrophysics, epidemiology, ecology, and imaging. The focus then shifts to methods, with discussions on point and object process modelling, perfect sampling of cluster processes, partitioning in space and space-time, spatial and spatio-temporal process modelling, nonparametric methods for clustering, and spatio-temporal ...

  1. Thin HTSC films produced by a polymer metal precursor technique

    Science.gov (United States)

    Lampe, L. v.; Zygalsky, F.; Hinrichsen, G.

    In precursors the metal ions are combined with acid groups of polymethacrylic acid (PMAA), polyacrylic acid (PAA) or novolac. Compared to thermal degradation temperature of pure polymers those of precursors are low. Precursors films were patterned by UV lithography. Diffractometric investigations showed that the c-axis oriented epitaxial films of YBa 2Cu 3O x and Bi 2Sr 2CaCu 2O x originated from amorphous metal oxide films, which were received after thermal degradation of the precursor. Transition temperatures and current densities were determined by electric resistivity measurements.

  2. Clusters and how to make it work : Cluster Strategy Toolkit

    NARCIS (Netherlands)

    Manickam, Anu; van Berkel, Karel

    2014-01-01

    Clusters are the magic answer to regional economic development. Firms in clusters are more innovative; cluster policy dominates EU policy; ‘top-sectors’ and excellence are the choice of national policy makers; clusters are ‘in’. But, clusters are complex, clusters are ‘messy’; there is no clear

  3. Development of an accident sequence precursor methodology and its application to significant accident precursors

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Seung Hyun; Park, Sung Hyun; Jae, Moo Sung [Dept. of of Nuclear Engineering, Hanyang University, Seoul (Korea, Republic of)

    2017-03-15

    The systematic management of plant risk is crucial for enhancing the safety of nuclear power plants and for designing new nuclear power plants. Accident sequence precursor (ASP) analysis may be able to provide risk significance of operational experience by using probabilistic risk assessment to evaluate an operational event quantitatively in terms of its impact on core damage. In this study, an ASP methodology for two operation mode, full power and low power/shutdown operation, has been developed and applied to significant accident precursors that may occur during the operation of nuclear power plants. Two operational events, loss of feedwater and steam generator tube rupture, are identified as ASPs. Therefore, the ASP methodology developed in this study may contribute to identifying plant risk significance as well as to enhancing the safety of nuclear power plants by applying this methodology systematically.

  4. Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods.

    Science.gov (United States)

    Aliani, Michel; Farmer, Linda J

    2005-08-10

    Sensory evaluation was used to identify flavor precursors that are critical for flavor development in cooked chicken. Among the potential flavor precursors studied (thiamin, inosine 5'-monophosphate, ribose, ribose-5-phosphate, glucose, and glucose-6-phosphate), ribose appears most important for chicken aroma. An elevated concentration (added or natural) of only 2-4-fold the natural concentration gives an increase in the selected aroma and flavor attributes of cooked chicken meat. Assessment of the volatile odor compounds by gas chromatography-odor assessment and gas chromatography-mass spectrometry showed that ribose increased odors described as "roasted" and "chicken" and that the changes in odor due to additional ribose are probably caused by elevated concentrations of compounds such as 2-furanmethanethiol, 2-methyl-3-furanthiol, and 3-methylthiopropanal.

  5. Agricultural Clusters in the Netherlands

    NARCIS (Netherlands)

    Schouten, M.A.; Heijman, W.J.M.

    2012-01-01

    Michael Porter was the first to use the term cluster in an economic context. He introduced the term in The Competitive Advantage of Nations (1990). The term cluster is also known as business cluster, industry cluster, competitive cluster or Porterian cluster. This article aims at determining and

  6. Enumeration of minimal stoichiometric precursor sets in metabolic networks.

    Science.gov (United States)

    Andrade, Ricardo; Wannagat, Martin; Klein, Cecilia C; Acuña, Vicente; Marchetti-Spaccamela, Alberto; Milreu, Paulo V; Stougie, Leen; Sagot, Marie-France

    2016-01-01

    What an organism needs at least from its environment to produce a set of metabolites, e.g. target(s) of interest and/or biomass, has been called a minimal precursor set. Early approaches to enumerate all minimal precursor sets took into account only the topology of the metabolic network (topological precursor sets). Due to cycles and the stoichiometric values of the reactions, it is often not possible to produce the target(s) from a topological precursor set in the sense that there is no feasible flux. Although considering the stoichiometry makes the problem harder, it enables to obtain biologically reasonable precursor sets that we call stoichiometric. Recently a method to enumerate all minimal stoichiometric precursor sets was proposed in the literature. The relationship between topological and stoichiometric precursor sets had however not yet been studied. Such relationship between topological and stoichiometric precursor sets is highlighted. We also present two algorithms that enumerate all minimal stoichiometric precursor sets. The first one is of theoretical interest only and is based on the above mentioned relationship. The second approach solves a series of mixed integer linear programming problems. We compared the computed minimal precursor sets to experimentally obtained growth media of several Escherichia coli strains using genome-scale metabolic networks. The results show that the second approach efficiently enumerates minimal precursor sets taking stoichiometry into account, and allows for broad in silico studies of strains or species interactions that may help to understand e.g. pathotype and niche-specific metabolic capabilities. sasita is written in Java, uses cplex as LP solver and can be downloaded together with all networks and input files used in this paper at http://www.sasita.gforge.inria.fr.

  7. Open source clustering software.

    Science.gov (United States)

    de Hoon, M J L; Imoto, S; Nolan, J; Miyano, S

    2004-06-12

    We have implemented k-means clustering, hierarchical clustering and self-organizing maps in a single multipurpose open-source library of C routines, callable from other C and C++ programs. Using this library, we have created an improved version of Michael Eisen's well-known Cluster program for Windows, Mac OS X and Linux/Unix. In addition, we generated a Python and a Perl interface to the C Clustering Library, thereby combining the flexibility of a scripting language with the speed of C. The C Clustering Library and the corresponding Python C extension module Pycluster were released under the Python License, while the Perl module Algorithm::Cluster was released under the Artistic License. The GUI code Cluster 3.0 for Windows, Macintosh and Linux/Unix, as well as the corresponding command-line program, were released under the same license as the original Cluster code. The complete source code is available at http://bonsai.ims.u-tokyo.ac.jp/mdehoon/software/cluster. Alternatively, Algorithm::Cluster can be downloaded from CPAN, while Pycluster is also available as part of the Biopython distribution.

  8. Hydrodeoxygenation of coal using organometallic catalyst precursors

    Science.gov (United States)

    Kirby, Stephen R.

    2002-04-01

    coals. Trends within the data were similar to those reported by other authors. Based on the conclusions from both the model compound studies and the coal analysis, predictions were made of the catalyst precursors' performance in the HDO of the three selected coals. It was concluded that CoMo-T2 is a desirable catalyst precursor for the HDO of coals (particularly low-rank coals), but that an optimum set of conditions must be determined to take full advantage of its HDO ability. (Abstract shortened by UMI.)

  9. Operational experience feedback with precursor analysis

    International Nuclear Information System (INIS)

    Koncar, M.; Ferjancic, M.; Muehleisen, A.; Vojnovic, D.

    2003-01-01

    Experience of practical operation is a valuable source of information for improving the safety and reliability of nuclear power plants. Operational experience feedback (Olef) system manages this aspect of NPP operation. The traditional ways of investigating operational events, such as the root cause analysis (RCA), are predominantly qualitative. RCA as a part of the Olef system provides technical guidance and management expectations in the conduct of assessing the root cause to prevent recurrence, covering the following areas: conditions preceding the event, sequence of events, equipment performance and system response, human performance considerations, equipment failures, precursors to the event, plant response and follow-up, radiological considerations, regulatory process considerations and safety significance. The root cause of event is recognized when there is no known answer on question 'why has it happened?' regarding relevant condition that may have affected the event. At that point the Olef is proceeding by actions taken in response to events, utilization, dissemination and exchange of operating experience information and at the end reviewing the effectiveness of the Olef. Analysis of the event and the selection of recommended corrective/preventive actions for implementation and prioritization can be enhanced by taking into account the information and insights derived from Pasa-based analysis. A Pasa based method, called probabilistic precursor event analysis (PPE A) provides a complement to the RCA approach by focusing on how an event might have developed adversely, and implies the mapping of an operational event on a probabilistic risk model of the plant in order to obtain a quantitative assessment of the safety significance of the event PSA based event analysis provides, due to its quantitative nature, appropriate prioritization of corrective actions. PPEA defines requirements for PSA model and code, identifies input requirements and elaborates following

  10. Electron: Cluster interactions

    International Nuclear Information System (INIS)

    Scheidemann, A.A.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E ∼ 0.1 to E ∼ 6 eV. The investigation focused on the closed shell clusters Na 8 , Na 20 , Na 40 . The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size

  11. Clustering high dimensional data

    DEFF Research Database (Denmark)

    Assent, Ira

    2012-01-01

    High-dimensional data, i.e., data described by a large number of attributes, pose specific challenges to clustering. The so-called ‘curse of dimensionality’, coined originally to describe the general increase in complexity of various computational problems as dimensionality increases, is known...... to render traditional clustering algorithms ineffective. The curse of dimensionality, among other effects, means that with increasing number of dimensions, a loss of meaningful differentiation between similar and dissimilar objects is observed. As high-dimensional objects appear almost alike, new approaches...... for clustering are required. Consequently, recent research has focused on developing techniques and clustering algorithms specifically for high-dimensional data. Still, open research issues remain. Clustering is a data mining task devoted to the automatic grouping of data based on mutual similarity. Each cluster...

  12. Geometrizing configurations. Heinrich Hertz and his mathematical precursors

    DEFF Research Database (Denmark)

    Lützen, Jesper

    1999-01-01

    A comparison between the methods used by Heinrich hertz and his mathematician precursors such as Liouville, Lipschitz and Darboux in order to apply differential geometry in mechanics......A comparison between the methods used by Heinrich hertz and his mathematician precursors such as Liouville, Lipschitz and Darboux in order to apply differential geometry in mechanics...

  13. The electromagnetic Brillouin precursor in one-dimensional photonic crystals

    NARCIS (Netherlands)

    Uitham, R.; Hoenders, B. J.

    2008-01-01

    We have calculated the electromagnetic Brillouin precursor that arises in a one-dimensional photonic crystal that consists of two homogeneous slabs which each have a single electron resonance. This forerunner is compared with the Brillouin precursor that arises in a homogeneous double-electron

  14. Dynamic stabilization of disruption precursors in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maoquan, Wang; Jianshan, Mao; Yuan, Pan [Academia Sinica, Hefei, AH (China). Inst. of Plasma Physics

    1994-12-01

    A method for dynamic stabilization of the disruption precursors in tokamak is proposed, that is a controlled ac current induced and added to the equilibrium current. The ac currents applied can be a sine alternative current with a relevant frequency, or a pulsed current with a suitable pulsed width {tau} and or a discontinuous pulsed current whose width {tau} is very shorter than the intervals between pulses, and or a `sawtooth` pulsed current with the time of ramp phase of the sawtooth is very much shorter than the sawtooth descending time, the ratio of them can be {<=}10{sup -3}. The physical model of the ac current drive is analyzed in detail. The suppression role of the ac current on the MHD perturbations was analyzed in theory and proved numerically. It is indicated that the ac current can make the discontinuous derivative, {Delta}`, more favorable for the tearing mode stabilities, and so, as long as the parameters of the applied ac currents are selected suitably, the MHD perturbations can be suppressed effectively, the perturbations will be in the zero-growing state, the profile of the plasma current and temperature remain in the initial states and not variate basically, the tokamak be in the stabilized operation state. (8 figs.).

  15. Assimilation of NAD(+) precursors in Candida glabrata.

    Science.gov (United States)

    Ma, Biao; Pan, Shih-Jung; Zupancic, Margaret L; Cormack, Brendan P

    2007-10-01

    The yeast pathogen Candida glabrata is a nicotinamide adenine dinucleotide (NAD(+)) auxotroph and its growth depends on the environmental supply of vitamin precursors of NAD(+). C. glabrata salvage pathways defined in this article allow NAD(+) to be synthesized from three compounds - nicotinic acid (NA), nicotinamide (NAM) and nicotinamide riboside (NR). NA is salvaged through a functional Preiss-Handler pathway. NAM is first converted to NA by nicotinamidase and then salvaged by the Preiss-Handler pathway. Salvage of NR in C. glabrata occurs via two routes. The first, in which NR is phosphorylated by the NR kinase Nrk1, is independent of the Preiss-Handler pathway. The second is a novel pathway in which NR is degraded by the nucleosidases Pnp1 and Urh1, with a minor role for Meu1, and ultimately converted to NAD(+) via the nicotinamidase Pnc1 and the Preiss-Handler pathway. Using C. glabrata mutants whose growth depends exclusively on the external NA or NR supply, we also show that C. glabrata utilizes NR and to a lesser extent NA as NAD(+) sources during disseminated infection.

  16. Modelling earth current precursors in earthquake prediction

    Directory of Open Access Journals (Sweden)

    R. Di Maio

    1997-06-01

    Full Text Available This paper deals with the theory of earth current precursors of earthquake. A dilatancy-diffusion-polarization model is proposed to explain the anomalies of the electric potential, which are observed on the ground surface prior to some earthquakes. The electric polarization is believed to be the electrokinetic effect due to the invasion of fluids into new pores, which are opened inside a stressed-dilated rock body. The time and space variation of the distribution of the electric potential in a layered earth as well as in a faulted half-space is studied in detail. It results that the surface response depends on the underground conductivity distribution and on the relative disposition of the measuring dipole with respect to the buried bipole source. A field procedure based on the use of an areal layout of the recording sites is proposed, in order to obtain the most complete information on the time and space evolution of the precursory phenomena in any given seismic region.

  17. Enzymatic synthesis of vitamin B6 precursor

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2013-01-01

    Full Text Available 3-Cyano-4-ethoxymethyl-6-methyl-2-pyridone is an important precursor in the synthesis of vitamin B6, obtained in the addition reaction between 2-cyanoacetamide and 1-ethoxy-2,4-pentanedione catalyzed by lipase from Candida rugosa (triacylglycerol ester hydrolases, EC 3.1.1.3. This work shows new experimental data and mathematical modeling of lipase catalyzed synthesis of 3-cyano-4-ethoxymethyl-6-methyl-2-pyridone, starting from 1-ethoxy-2,4-pentanedione and 2-cyanoacetamide. Kinetic measurements were done at 50 oC with enzyme concentration of 1.2 % w/v. Experimental results were fitted with two kinetic models: the ordered bi-ter and ping-pong bi-ter model, and the initial rates of the reaction were found to correlate best with a ping-pong bi-ter mechanism with inhibition by 2-cyanoacetamide. Obtained specificity constants indicated that lipase from C. rugosa had higher affinity towards 1-ethoxy-2,4-pentanedione and less bulky substrates. [Projekat Ministarstva nauke Republike Srbije, br. 172013, br. III 46010 and br. 172049

  18. Earth Observing System precursor data sets

    Science.gov (United States)

    Mah, Grant R.; Eidenshink, Jeff C.; Sheffield, K. W.; Myers, Jeffrey S.

    1993-08-01

    The Land Processes Distributed Active Archive Center (DAAC) is archiving and processing precursor data from airborne and spaceborne instruments such as the thermal infrared multispectral scanner (TIMS), the NS-001 and thematic mapper simulators (TMS), and the advanced very high resolution radiometer (AVHRR). The instrument data are being used to construct data sets that simulate the spectral and spatial characteristics of the advanced spaceborne thermal emission and reflection radiometer (ASTER) and the moderate resolution imaging spectrometer (MODIS) flight instruments scheduled to be flown on the EOS-AM spacecraft. Ames Research Center has developed and is flying a MODIS airborne simulator (MAS), which provides coverage in both MODIS and ASTER bands. A simulation of an ASTER data set over Death Valley, California has been constructed using a combination of TMS and TIMS data, along with existing digital elevation models that were used to develop the topographic information. MODIS data sets are being simulated by using MAS for full-band site coverage at high resolution and AVHRR for global coverage at 1 km resolution.

  19. PRECURSORS TO INTERSTELLAR SHOCKS OF SOLAR ORIGIN

    Energy Technology Data Exchange (ETDEWEB)

    Gurnett, D. A.; Kurth, W. S. [University of Iowa, Department of Physics and Astronomy, Iowa City, IA 52242 (United States); Stone, E. C.; Cummings, A. C. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Krimigis, S. M.; Decker, R. B. [Applied Physics Laboratory/JHU, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Ness, N. F. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); Burlaga, L. F., E-mail: donald-gurnett@uiowa.edu [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-08-20

    On or about 2012 August 25, the Voyager 1 spacecraft crossed the heliopause into the nearby interstellar plasma. In the nearly three years that the spacecraft has been in interstellar space, three notable particle and field disturbances have been observed, each apparently associated with a shock wave propagating outward from the Sun. Here, we present a detailed analysis of the third and most impressive of these disturbances, with brief comparisons to the two previous events, both of which have been previously reported. The shock responsible for the third event was first detected on 2014 February 17 by the onset of narrowband radio emissions from the approaching shock, followed on 2014 May 13 by the abrupt appearance of intense electron plasma oscillations generated by electrons streaming outward ahead of the shock. Finally, the shock arrived on 2014 August 25, as indicated by a jump in the magnetic field strength and the plasma density. Various disturbances in the intensity and anisotropy of galactic cosmic rays were also observed ahead of the shock, some of which are believed to be caused by the reflection and acceleration of cosmic rays by the magnetic field jump at the shock, and/or by interactions with upstream plasma waves. Comparisons to the two previous weaker events show somewhat similar precursor effects, although differing in certain details. Many of these effects are very similar to those observed in the region called the “foreshock” that occurs upstream of planetary bow shocks, only on a vastly larger spatial scale.

  20. Innate lymphoid cells, precursors and plasticity.

    Science.gov (United States)

    Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas

    2016-11-01

    Innate lymphoid cells (ILC) have only recently been recognized as a separate entity of the lymphoid lineage. Their subpopulations share common characteristics in terms of early development and major transcriptional circuitry with their related cousins of the T cell world. It is currently hypothesized that ILCs constitute an evolutionary older version of the lymphoid immune system. They are found at all primary entry points for pathogens such as mucosal surfaces of the lung and gastrointestinal system, the skin and the liver, which is the central contact point for pathogens that breach the intestinal barrier and enter the circulation. There, ILC contribute to the first line defense as well as to organ homeostasis. However, ILC are not only involved in classical defense tasks, but also contribute to the organogenesis of lymphoid organs as well as tissue remodeling and even stem cell regeneration. ILC may, therefore, implement different functions according to their emergence in ontogeny, their development and their final tissue location. We will review here their early development from precursors of the fetal liver and the adult bone marrow as well as their late plasticity in adaptation to their environment. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  1. Identification, Selection, and Enrichment of Cardiomyocyte Precursors

    Directory of Open Access Journals (Sweden)

    Bianca Ferrarini Zanetti

    2013-01-01

    Full Text Available The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. The main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5′-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP+. These GFP+ cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs, which can then be differentiated terminally for cell therapy and tissue engineering.

  2. Substructure in clusters of galaxies

    International Nuclear Information System (INIS)

    Fitchett, M.J.

    1988-01-01

    Optical observations suggesting the existence of substructure in clusters of galaxies are examined. Models of cluster formation and methods used to detect substructure in clusters are reviewed. Consideration is given to classification schemes based on a departure of bright cluster galaxies from a spherically symmetric distribution, evidence for statistically significant substructure, and various types of substructure, including velocity, spatial, and spatial-velocity substructure. The substructure observed in the galaxy distribution in clusters is discussed, focusing on observations from general cluster samples, the Virgo cluster, the Hydra cluster, Centaurus, the Coma cluster, and the Cancer cluster. 88 refs

  3. Nuclear cluster states

    International Nuclear Information System (INIS)

    Rae, W.D.M.; Merchant, A.C.

    1993-01-01

    We review clustering in light nuclei including molecular resonances in heavy ion reactions. In particular we study the systematics, paying special attention to the relationships between cluster states and superdeformed configurations. We emphasise the selection rules which govern the formation and decay of cluster states. We review some recent experimental results from Daresbury and elsewhere. In particular we report on the evidence for a 7-α chain state in 28 Si in experiments recently performed at the NSF, Daresbury. Finally we begin to address theoretically the important question of the lifetimes of cluster states as deduced from the experimental energy widths of the resonances. (Author)

  4. 15th Cluster workshop

    CERN Document Server

    Laakso, Harri; Escoubet, C. Philippe; The Cluster Active Archive : Studying the Earth’s Space Plasma Environment

    2010-01-01

    Since the year 2000 the ESA Cluster mission has been investigating the small-scale structures and processes of the Earth's plasma environment, such as those involved in the interaction between the solar wind and the magnetospheric plasma, in global magnetotail dynamics, in cross-tail currents, and in the formation and dynamics of the neutral line and of plasmoids. This book contains presentations made at the 15th Cluster workshop held in March 2008. It also presents several articles about the Cluster Active Archive and its datasets, a few overview papers on the Cluster mission, and articles reporting on scientific findings on the solar wind, the magnetosheath, the magnetopause and the magnetotail.

  5. Clusters in simple fluids

    International Nuclear Information System (INIS)

    Sator, N.

    2003-01-01

    This article concerns the correspondence between thermodynamics and the morphology of simple fluids in terms of clusters. Definitions of clusters providing a geometric interpretation of the liquid-gas phase transition are reviewed with an eye to establishing their physical relevance. The author emphasizes their main features and basic hypotheses, and shows how these definitions lead to a recent approach based on self-bound clusters. Although theoretical, this tutorial review is also addressed to readers interested in experimental aspects of clustering in simple fluids

  6. Influence of titanium precursor on photoluminescent emission of micro-cube-shaped CaTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mazzo, Tatiana Martelli, E-mail: tatimazzo@gmail.com [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Santilli do Nascimento Libanori, Gabriela [Departamento de Ciências do Mar, Universidade Federal de São Paulo, Avenida Almameda Saldanha da Gama, 89, Ponta da Praia, CEP 11030-400 Santos, SP (Brazil); Moreira, Mario Lucio [Instituto de Física e Matemática, Universidade Federal de Pelotas, P.O. Box 354, Campus do Capão do Leão, 96001-970 Pelotas, RS (Brazil); Avansi Jr, Waldir [Departamento de Física, Universidade Federal de São Carlos, Jardim Guanabara, 13565-905 São Carlos, SP (Brazil); Mastelaro, Valmor Roberto [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São Carlense, 400, Arnold Schimidt, 13566-590 São Carlos, SP (Brazil); Varela, José Arana; Longo, Elson [INCTMN/LIEC, Instituto de Química, Universidade Estadual Paulista, P.O. Box 355, R. Francisco Degni, 55, Bairro Quitandinha, 14801-907 Araraquara, SP (Brazil)

    2015-09-15

    For this research, we studied the influence of titanium tetrachloride (TC) and titanium tetraisopropoxide (TTP) precursors on CaTiO{sub 3} (CTO) synthesis by employing a microwave-assisted hydrothermal (MAH) method regarding their respective short-, medium- and long-range features to determine if the use of different titanium precursors enhances the structural evolution of the material. The growth mechanism for the formation of the micro-cube-shaped CTO is proposed to obtain nanoparticle aggregation of self-assembly nanoplates. The disorder coupled to the oxygen vacancies of [TiO{sub 5}]–[TiO{sub 6}] in complex clusters in the CTO 1 powder and twists in bonding between the [TiO{sub 6}]–[TiO{sub 6}] complex clusters in the CTO 2 powder were mainly responsible for photoluminescent (PL) emission. - Highlights: • Different titanium precursors enhance the structural evolution of the material. • [TiO{sub 5}]–[TiO{sub 6}] and twists in bonding [TiO{sub 6}]–[TiO{sub 6}] were responsible for PL emission. • Micro-cube shaped was formed by nanoparticle aggregation of self-assembly nanoplates.

  7. Clustering of transmutation elements tantalum, rhenium and osmium in tungsten in a fusion environment

    Science.gov (United States)

    You, Yu-Wei; Kong, Xiang-Shan; Wu, Xuebang; Liu, C. S.; Fang, Q. F.; Chen, J. L.; Luo, G.-N.

    2017-08-01

    The formation of transmutation solute-rich precipitates has been reported to seriously degrade the mechanical properties of tungsten in a fusion environment. However, the underlying mechanisms controlling the formation of the precipitates are still unknown. In this study, first-principles calculations are therefore performed to systemically determine the stable structures and binding energies of solute clusters in tungsten consisting of tantalum, rhenium and osmium atoms as well as irradiation-induced vacancies. These clusters are known to act as precursors for the formation of precipitates. We find that osmium can easily segregate to form clusters even in defect-free tungsten alloys, whereas extremely high tantalum and rhenium concentrations are required for the formation of clusters. Vacancies greatly facilitate the clustering of rhenium and osmium, while tantalum is an exception. The binding energies of vacancy-osmium clusters are found to be much higher than those of vacancy-tantalum and vacancy-rhenium clusters. Osmium is observed to strongly promote the formation of vacancy-rhenium clusters, while tantalum can suppress the formation of vacancy-rhenium and vacancy-osmium clusters. The local strain and electronic structure are analyzed to reveal the underlying mechanisms governing the cluster formation. Employing the law of mass action, we predict the evolution of the relative concentration of vacancy-rhenium clusters. This work presents a microscopic picture describing the nucleation and growth of solute clusters in tungsten alloys in a fusion reactor environment, and thereby explains recent experimental phenomena.

  8. Lifting to cluster-tilting objects in higher cluster categories

    OpenAIRE

    Liu, Pin

    2008-01-01

    In this note, we consider the $d$-cluster-tilted algebras, the endomorphism algebras of $d$-cluster-tilting objects in $d$-cluster categories. We show that a tilting module over such an algebra lifts to a $d$-cluster-tilting object in this $d$-cluster category.

  9. A critical review of Electric Earthquake Precursors

    Directory of Open Access Journals (Sweden)

    F. Vallianatos

    2001-06-01

    Full Text Available The generation of transient electric potential prior to rupture has been demonstrated in a number of laboratory experiments involving both dry and wet rock specimens. Several different electrification effects are responsible for these observations, but how these may scale up co-operatively in large heterogeneous rock volumes, to produce observable macroscopic signals, is still incompletely understood. Accordingly, the nature and properties of possible Electric Earthquake Precursors (EEP are still inadequately understood. For a long time observations have been fragmentary, narrow band and oligo-parametric (for instance, the magnetic field was not routinely measured. In general, the discrimination of purported EEP signals relied on "experience" and ad hoc empirical rules that could be shown unable to guarantee the validity of the data. In consequence, experimental studies have produced a prolific variety of signal shape, complexity and duration but no explanation for the apparently indefinite diversity. A set of inconsistent or conflicting ideas attempted to explain such observations, including different concepts about the EEP source region (near the observer or at the earthquake focus and propagation (frequently assumed to be guided by peculiar geoelectric structure. Statistics was also applied to establish the "beyond chance" association between presumed EEP signals and earthquakes. In the absence of well constrained data, this approach ended up with intense debate and controversy but no useful results. The response of the geophysical community was scepticism and by the mid-90's, the very existence of EEP was debated. At that time, a major re-thinking of EEP research began to take place, with reformulation of its queries and objectives and refocusing on the exploration of fundamental concepts, less on field experiments. The first encouraging results began to appear in the last two years of the 20th century. Observation technologies are mature

  10. A critical review of electric earthquake precursors

    Energy Technology Data Exchange (ETDEWEB)

    Tzanis, A. [Athens Univ., Athens (Italy). Dept. of Geophysics and Geothermy; Valliantos, F. [Technological Educational Institute of Crete, Chania (Greece)

    2001-04-01

    The generation of transient electric potential prior to rupture has been demonstrated in a number of laboratory experiments involving both dry and wet rock specimens. Several different electrification effects are responsible for these observations, but how these may scale up co-operatively in large heterogeneous rock volumes, to produce observable macroscopic signals, is still incompletely understood. Accordingly, the nature and properties of possible Electric Earthquake Precursors (EEP) are still inadequately understood. For a long time observations have been fragmentary, narrow band and oligo-parametric (for instance, the magnetic field was not routinely measured). In general, the discrimination of purported EEP signals relied on experience and ad hoc empirical rules that could be shown unable to guarantee the validity of the data. In consequence, experimental studies have produced a prolific variety of signal shape, complexity and duration but no explanation for the apparently indefinite diversity. A set of inconsistent or conflicting ideas attempted to explain such observations, including different concepts about the EEP source region (near the observer or at the earthquake focus) and propagation (frequently assumed to be guided by peculiar geo electric structure). Statistics was also applied to establish the beyond chance association between presumed EEP signals and earthquakes. In the absence of well constrained data, this approach ended up with intense debate and controversy but no useful results. The response of the geophysical community was scepticism and by the mid-90's, the very existence of EEP was debated. At that time, a major re-thinking of EEP research began to take place, with reformulation of its queries and objectives and refocusing on the exploration of fundamental concepts, less on field experiments. The firs encouraging results began to appear in the last two years of the 20th century. Observation technologies are mature and can guarantee

  11. PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-09

    In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

  12. On important precursor of singular optics (tutorial)

    Science.gov (United States)

    Polyanskii, Peter V.; Felde, Christina V.; Bogatyryova, Halina V.; Konovchuk, Alexey V.

    2018-01-01

    The rise of singular optics is usually associated with the seminal paper by J. F. Nye and M. V. Berry [Proc. R. Soc. Lond. A, 336, 165-189 (1974)]. Intense development of this area of modern photonics has started since the early eighties of the XX century due to invention of the interfrence technique for detection and diagnostics of phase singularities, such as optical vortices in complex speckle-structured light fields. The next powerful incentive for formation of singular optics into separate area of the science on light was connectected with discovering of very practical technique for creation of singular optical beams of various kinds on the base of computer-generated holograms. In the eghties and ninetieth of the XX century, singular optics evolved, almost entirely, under the approximation of complete coherency of light field. Only at the threshold of the XXI century, it has been comprehended that the singular-optics approaches can be fruitfully expanded onto partially spatially coherent, partially polarized and polychromatic light fields supporting singularities of new kinds, that has been resulted in establishing of correlation singular optics. Here we show that correlation singular optics has much deeper roots, ascending to "pre-singular" and even pre-laser epoch and associated with the concept of partial coherence and polarization. It is remarcable that correlation singular optics in its present interpretation has forestalled the standard coherent singular optics. This paper is timed to the sixtieth anniversary of the most profound precursor of modern correlation singular optics [J. Opt. Soc. Am., 47, 895-902 (1957)].

  13. Neurostimulation in cluster headache

    DEFF Research Database (Denmark)

    Pedersen, Jeppe L; Barloese, Mads; Jensen, Rigmor H

    2013-01-01

    PURPOSE OF REVIEW: Neurostimulation has emerged as a viable treatment for intractable chronic cluster headache. Several therapeutic strategies are being investigated including stimulation of the hypothalamus, occipital nerves and sphenopalatine ganglion. The aim of this review is to provide...... effective strategy must be preferred as first-line therapy for intractable chronic cluster headache....

  14. Cauchy cluster process

    DEFF Research Database (Denmark)

    Ghorbani, Mohammad

    2013-01-01

    In this paper we introduce an instance of the well-know Neyman–Scott cluster process model with clusters having a long tail behaviour. In our model the offspring points are distributed around the parent points according to a circular Cauchy distribution. Using a modified Cramér-von Misses test...

  15. When Clusters become Networks

    NARCIS (Netherlands)

    S.M.W. Phlippen (Sandra); G.A. van der Knaap (Bert)

    2007-01-01

    textabstractPolicy makers spend large amounts of public resources on the foundation of science parks and other forms of geographically clustered business activities, in order to stimulate regional innovation. Underlying the relation between clusters and innovation is the assumption that co-located

  16. Mixed-Initiative Clustering

    Science.gov (United States)

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  17. Coma cluster of galaxies

    Science.gov (United States)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  18. Cluster growth kinetics

    International Nuclear Information System (INIS)

    Dubovik, V.M.; Gal'perin, A.G.; Rikhvitskij, V.S.; Lushnikov, A.A.

    2000-01-01

    Processes of some traffic blocking coming into existence are considered as probabilistic ones. We study analytic solutions for models for the dynamics of both cluster growth and cluster growth with fragmentation in the systems of finite number of objects. Assuming rates constancy of both coalescence and fragmentation, the models under consideration are linear on the probability functions

  19. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  20. Magnetic reconnection and precursor effect in coaxial discharge

    International Nuclear Information System (INIS)

    Masoud, M.M.; Soliman, H.M.; El-Khalafawy, T.A.

    1988-01-01

    A precursor pulse was observed ahead of the plasma sheath produced by a coaxial electrode discharge system. The velocity of the precursor pulse was 4x10 7 cmS -1 and the velocity of the plasma sheath was 6x10 6 cmS -1 . The precursor pulse was unaffected when an axial magnetic field of 6 K.G. was applied to the propagation chamber, while the plasma sheath velocity increased and downstream structure were changed. The precursor pulse was split, sometimes, into two or more peaks, had the same shape and structure of the original one. The rest gas was heated up to 20 e.V. when the precursor pulse was destructed. The precursor pulse propagation mechanism and parameters showed that it had a solitary wave structure and behaviour. A reversed magnetic field was detected, when the plasma sheath had diamagnetic properties, where magnetic reconnection took place. Magnetic reconnection was responsible for energy transfiguration and wave generation. This was due to acceleration mechanism of charged particles occurred by the induced electric field at the moment of magnetic reconnection. The detected induced electric field had a high field intensity and fast rise time pulse. Several instabilities were referred to magnetic reconnection and the precursor pulse observed was a result of such instabilities

  1. Negotiating Cluster Boundaries

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    2017-01-01

    Palm oil was introduced to Malay(si)a as an alternative to natural rubber, inheriting its cluster organizational structure. In the late 1960s, Malaysia became the world’s largest palm oil exporter. Based on archival material from British colonial institutions and agency houses, this paper focuses...... on the governance dynamics that drove institutional change within this cluster during decolonization. The analysis presents three main findings: (i) cluster boundaries are defined by continuous tug-of-war style negotiations between public and private actors; (ii) this interaction produces institutional change...... within the cluster, in the form of cumulative ‘institutional rounds’ – the correction or disruption of existing institutions or the creation of new ones; and (iii) this process leads to a broader inclusion of local actors in the original cluster configuration. The paper challenges the prevalent argument...

  2. Mathematical classification and clustering

    CERN Document Server

    Mirkin, Boris

    1996-01-01

    I am very happy to have this opportunity to present the work of Boris Mirkin, a distinguished Russian scholar in the areas of data analysis and decision making methodologies. The monograph is devoted entirely to clustering, a discipline dispersed through many theoretical and application areas, from mathematical statistics and combina­ torial optimization to biology, sociology and organizational structures. It compiles an immense amount of research done to date, including many original Russian de­ velopments never presented to the international community before (for instance, cluster-by-cluster versions of the K-Means method in Chapter 4 or uniform par­ titioning in Chapter 5). The author's approach, approximation clustering, allows him both to systematize a great part of the discipline and to develop many in­ novative methods in the framework of optimization problems. The optimization methods considered are proved to be meaningful in the contexts of data analysis and clustering. The material presented in ...

  3. Neutrosophic Hierarchical Clustering Algoritms

    Directory of Open Access Journals (Sweden)

    Rıdvan Şahin

    2014-03-01

    Full Text Available Interval neutrosophic set (INS is a generalization of interval valued intuitionistic fuzzy set (IVIFS, whose the membership and non-membership values of elements consist of fuzzy range, while single valued neutrosophic set (SVNS is regarded as extension of intuitionistic fuzzy set (IFS. In this paper, we extend the hierarchical clustering techniques proposed for IFSs and IVIFSs to SVNSs and INSs respectively. Based on the traditional hierarchical clustering procedure, the single valued neutrosophic aggregation operator, and the basic distance measures between SVNSs, we define a single valued neutrosophic hierarchical clustering algorithm for clustering SVNSs. Then we extend the algorithm to classify an interval neutrosophic data. Finally, we present some numerical examples in order to show the effectiveness and availability of the developed clustering algorithms.

  4. Platinum clusters with precise numbers of atoms for preparative-scale catalysis.

    Science.gov (United States)

    Imaoka, Takane; Akanuma, Yuki; Haruta, Naoki; Tsuchiya, Shogo; Ishihara, Kentaro; Okayasu, Takeshi; Chun, Wang-Jae; Takahashi, Masaki; Yamamoto, Kimihisa

    2017-09-25

    Subnanometer noble metal clusters have enormous potential, mainly for catalytic applications. Because a difference of only one atom may cause significant changes in their reactivity, a preparation method with atomic-level precision is essential. Although such a precision with enough scalability has been achieved by gas-phase synthesis, large-scale preparation is still at the frontier, hampering practical applications. We now show the atom-precise and fully scalable synthesis of platinum clusters on a milligram scale from tiara-like platinum complexes with various ring numbers (n = 5-13). Low-temperature calcination of the complexes on a carbon support under hydrogen stream affords monodispersed platinum clusters, whose atomicity is equivalent to that of the precursor complex. One of the clusters (Pt 10 ) exhibits high catalytic activity in the hydrogenation of styrene compared to that of the other clusters. This method opens an avenue for the application of these clusters to preparative-scale catalysis.The catalytic activity of a noble metal nanocluster is tied to its atomicity. Here, the authors report an atom-precise, fully scalable synthesis of platinum clusters from molecular ring precursors, and show that a variation of only one atom can dramatically change a cluster's reactivity.

  5. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.

    Science.gov (United States)

    Mao, Yelin; Satchell, Paul G; Luan, Xianghong; Diekwisch, Thomas G H

    2016-01-01

    The two major proteins involved in vertebrate enamel formation and echinoderm sea urchin tooth biomineralization, amelogenin and SM50, are both characterized by elongated polyproline repeat domains in the center of the macromolecule. To determine the role of polyproline repeat polypeptides in basal deuterostome biomineralization, we have mapped the localization of SM50 as it relates to crystal growth, conducted self-assembly studies of SM50 repeat polypeptides, and examined their effect on calcium carbonate and apatite crystal growth. Electron micrographs of the growth zone of Strongylocentrotus purpuratus sea urchin teeth documented a series of successive events from intravesicular mineral nucleation to mineral deposition at the interface between tooth surface and odontoblast syncytium. Using immunohistochemistry, SM50 was detected within the cytoplasm of cells associated with the developing tooth mineral, at the mineral secreting front, and adjacent to initial mineral deposits, but not in muscles and ligaments. Polypeptides derived from the SM50 polyproline alternating hexa- and hepta-peptide repeat region (SM50P6P7) formed highly discrete, donut-shaped self-assembly patterns. In calcium carbonate crystal growth studies, SM50P6P7 repeat peptides triggered the growth of expansive networks of fused calcium carbonate crystals while in apatite growth studies, SM50P6P7 peptides facilitated the growth of needle-shaped and parallel arranged crystals resembling those found in developing vertebrate enamel. In comparison, SM50P6P7 surpassed the PXX24 polypeptide repeat region derived from the vertebrate enamel protein amelogenin in its ability to promote crystal nucleation and appositional crystal growth. Together, these studies establish the SM50P6P7 polyproline repeat region as a potent regulator in the protein-guided appositional crystal growth that occurs during continuous tooth mineralization and eruption. In addition, our studies highlight the role of species

  6. Methods for forming particles from single source precursors

    Science.gov (United States)

    Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID

    2011-08-23

    Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.

  7. Herd Clustering: A synergistic data clustering approach using collective intelligence

    KAUST Repository

    Wong, Kachun; Peng, Chengbin; Li, Yue; Chan, Takming

    2014-01-01

    , this principle is used to develop a new clustering algorithm. Inspired by herd behavior, the clustering method is a synergistic approach using collective intelligence called Herd Clustering (HC). The novel part is laid in its first stage where data instances

  8. Effect of pretreatment temperature on catalytic performance of the catalysts derived from cobalt carbonyl cluster in Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Byambasuren O

    2017-02-01

    Full Text Available The monometallic cobalt-based catalysts were prepared by pretreating the catalysts derived from carbonyl cluster precursor (CO6Co2CC(COOH2 supported on γ-Al2O3 with hydrogen at 180, 220, and 260°C respectively. The temperature effect of the pretreatments on the structure evolution of cluster precursors and the catalytic performance of the Fischer-Tropsch (F-T synthesis was investigated. The pretreated catalyst at 220°C with unique phase structure exhibited best catalytic activity and selectivity among three pretreated catalysts. Moreover, the catalysts exhibited high dispersion due to the formation of hydrogen bonds between the cluster precursor and γ-Al2O3 support.

  9. MMPM - Mars MetNet Precursor Mission

    Science.gov (United States)

    Harri, A.-M.; Schmidt, W.; Pichkhadze, K.; Linkin, V.; Vazquez, L.; Uspensky, M.; Polkko, J.; Genzer, M.; Lipatov, A.; Guerrero, H.; Alexashkin, S.; Haukka, H.; Savijarvi, H.; Kauhanen, J.

    2008-09-01

    We are developing a new kind of planetary exploration mission for Mars - MetNet in situ observation network based on a new semi-hard landing vehicle called the Met-Net Lander (MNL). The eventual scope of the MetNet Mission is to deploy some 20 MNLs on the Martian surface using inflatable descent system structures, which will be supported by observations from the orbit around Mars. Currently we are working on the MetNet Mars Precursor Mission (MMPM) to deploy one MetNet Lander to Mars in the 2009/2011 launch window as a technology and science demonstration mission. The MNL will have a versatile science payload focused on the atmospheric science of Mars. Detailed characterization of the Martian atmospheric circulation patterns, boundary layer phenomena, and climatology cycles, require simultaneous in-situ measurements by a network of observation posts on the Martian surface. The scientific payload of the MetNet Mission encompasses separate instrument packages for the atmospheric entry and descent phase and for the surface operation phase. The MetNet mission concept and key probe technologies have been developed and the critical subsystems have been qualified to meet the Martian environmental and functional conditions. Prototyping of the payload instrumentation with final dimensions was carried out in 2003-2006.This huge development effort has been fulfilled in collaboration between the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Association (LA) and the Russian Space Research Institute (IKI) since August 2001. Currently the INTA (Instituto Nacional de Técnica Aeroespacial) from Spain is also participating in the MetNet payload development. To understand the behavior and dynamics of the Martian atmosphere, a wealth of simultaneous in situ observations are needed on varying types of Martian orography, terrain and altitude spanning all latitudes and longitudes. This will be performed by the Mars MetNet Mission. In addition to the science aspects the

  10. [Felice Fontana precursor of neurosciences (author's transl)].

    Science.gov (United States)

    Disertori, B; Piazza, M

    1981-01-01

    The A.A. insert the life and work of the naturalist and chemist Felice Fontana, born in Pomarolo (Trentino), in the frame of 18th century sciences, beside other great names of that century like Carolus Linnaeus, Réaumur, von Haller, Spallanzani, Morgagni, Priestley and Lavoisier. In the field of general biology, the discovery of nucleus and nucleolus and consequently the discovery of the eukaryotic cell, as we say in our days, in his, as well as the one of anabiosis. The A.A. enucleate and analyse the contributions of Fontana to the neurosciences; he has discovered the axon and the myelinic sheath half century before Remak and Purknije; he found out that the white matter of the brain is made of fibres alike those of nerves and the grey matter is made of globules (i.e. cells) mixed up with fibres; he discovered in the retina a part of coming out from the brain; he described the transversal bands of fibres of the skeletal muscles; he was the first to introduce into physiology the law of "all and nothing"; he attributed the irritability to the whole animal life; he identified the pupillar reflexes to the light, the reflex of accommodation, the consensual reflex, the psycho-emotive mydriasis and at last the myosis of sleep. He made experimental searches about nerves and recognised their regeneration, he enumerated various pathological intracranial masses, he made an important anatomopathological research about hydatid cyst in the brain of the sheep affected by "capostorno" and madness, he demonstrated their parasitical nature (he said that the hydated cysts were covered inside by small animals), he come out to formulate the hypothesis that some neuropsychiatric diseases of man can depend from similar aetiology. He declared that passions may have pathological effects (psyco-somatic aetiology), but he has also drawned the attention against the danager of aprioristical generalisation of neurogenical causes in all diseases. The A.A. give to Fontana the palm of precursor

  11. Biological Indicators in Studies of Earthquake Precursors

    Science.gov (United States)

    Sidorin, A. Ya.; Deshcherevskii, A. V.

    2012-04-01

    Time series of data on variations in the electric activity (EA) of four species of weakly electric fish Gnathonemus leopoldianus and moving activity (MA) of two cat-fishes Hoplosternum thoracatum and two groups of Columbian cockroaches Blaberus craniifer were analyzed. The observations were carried out in the Garm region of Tajikistan within the frameworks of the experiments aimed at searching for earthquake precursors. An automatic recording system continuously recorded EA and DA over a period of several years. Hourly means EA and MA values were processed. Approximately 100 different parameters were calculated on the basis of six initial EA and MA time series, which characterize different variations in the EA and DA structure: amplitude of the signal and fluctuations of activity, parameters of diurnal rhythms, correlated changes in the activity of various biological indicators, and others. A detailed analysis of the statistical structure of the total array of parametric time series obtained in the experiment showed that the behavior of all animals shows a strong temporal variability. All calculated parameters are unstable and subject to frequent changes. A comparison of the data obtained with seismicity allow us to make the following conclusions: (1) The structure of variations in the studied parameters is represented by flicker noise or even a more complex process with permanent changes in its characteristics. Significant statistics are required to prove the cause-and-effect relationship of the specific features of such time series with seismicity. (2) The calculation of the reconstruction statistics in the EA and MA series structure demonstrated an increase in their frequency in the last hours or a few days before the earthquake if the hypocenter distance is comparable to the source size. Sufficiently dramatic anomalies in the behavior of catfishes and cockroaches (changes in the amplitude of activity variation, distortions of diurnal rhythms, increase in the

  12. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    Science.gov (United States)

    Sanfilippo, Antonio [Richland, WA; Calapristi, Augustin J [West Richland, WA; Crow, Vernon L [Richland, WA; Hetzler, Elizabeth G [Kennewick, WA; Turner, Alan E [Kennewick, WA

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  13. Cluster-cluster correlations and constraints on the correlation hierarchy

    Science.gov (United States)

    Hamilton, A. J. S.; Gott, J. R., III

    1988-01-01

    The hypothesis that galaxies cluster around clusters at least as strongly as they cluster around galaxies imposes constraints on the hierarchy of correlation amplitudes in hierachical clustering models. The distributions which saturate these constraints are the Rayleigh-Levy random walk fractals proposed by Mandelbrot; for these fractal distributions cluster-cluster correlations are all identically equal to galaxy-galaxy correlations. If correlation amplitudes exceed the constraints, as is observed, then cluster-cluster correlations must exceed galaxy-galaxy correlations, as is observed.

  14. Formation of stable products from cluster-cluster collisions

    International Nuclear Information System (INIS)

    Alamanova, Denitsa; Grigoryan, Valeri G; Springborg, Michael

    2007-01-01

    The formation of stable products from copper cluster-cluster collisions is investigated by using classical molecular-dynamics simulations in combination with an embedded-atom potential. The dependence of the product clusters on impact energy, relative orientation of the clusters, and size of the clusters is studied. The structures and total energies of the product clusters are analysed and compared with those of the colliding clusters before impact. These results, together with the internal temperature, are used in obtaining an increased understanding of cluster fusion processes

  15. Tune Your Brown Clustering, Please

    DEFF Research Database (Denmark)

    Derczynski, Leon; Chester, Sean; Bøgh, Kenneth Sejdenfaden

    2015-01-01

    Brown clustering, an unsupervised hierarchical clustering technique based on ngram mutual information, has proven useful in many NLP applications. However, most uses of Brown clustering employ the same default configuration; the appropriateness of this configuration has gone predominantly...

  16. Cluster Management Institutionalization

    DEFF Research Database (Denmark)

    Normann, Leo; Agger Nielsen, Jeppe

    2015-01-01

    of how it was legitimized as a “ready-to-use” management model. Further, our account reveals how cluster management translated into considerably different local variants as it travelled into specific organizations. However, these processes have not occurred sequentially with cluster management first...... legitimized at the field level, then spread, and finally translated into action in the adopting organizations. Instead, we observed entangled field and organizational-level processes. Accordingly, we argue that cluster management institutionalization is most readily understood by simultaneously investigating...

  17. The concept of cluster

    DEFF Research Database (Denmark)

    Laursen, Lea Louise Holst; Møller, Jørgen

    2013-01-01

    villages in order to secure their future. This paper will address the concept of cluster-villages as a possible approach to strengthen the conditions of contemporary Danish villages. Cluster-villages is a concept that gather a number of villages in a network-structure where the villages both work together...... to forskellige positioner ser vi en ny mulighed for landsbyudvikling, som vi kalder Clustervillages. In order to investigate the potentials and possibilities of the cluster-village concept the paper will seek to unfold the concept strategically; looking into the benefits of such concept. Further, the paper seeks...

  18. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  19. Introduction to cluster dynamics

    CERN Document Server

    Reinhard, Paul-Gerhard

    2008-01-01

    Clusters as mesoscopic particles represent an intermediate state of matter between single atoms and solid material. The tendency to miniaturise technical objects requires knowledge about systems which contain a ""small"" number of atoms or molecules only. This is all the more true for dynamical aspects, particularly in relation to the qick development of laser technology and femtosecond spectroscopy. Here, for the first time is a highly qualitative introduction to cluster physics. With its emphasis on cluster dynamics, this will be vital to everyone involved in this interdisciplinary subje

  20. Contextualizing the Cluster

    DEFF Research Database (Denmark)

    Giacomin, Valeria

    This dissertation examines the case of the palm oil cluster in Malaysia and Indonesia, today one of the largest agricultural clusters in the world. My analysis focuses on the evolution of the cluster from the 1880s to the 1970s in order to understand how it helped these two countries to integrate...... into the global economy in both colonial and post-colonial times. The study is based on empirical material drawn from five UK archives and background research using secondary sources, interviews, and archive visits to Malaysia and Singapore. The dissertation comprises three articles, each discussing a major under...

  1. Atomic cluster collisions

    Science.gov (United States)

    Korol, Andrey V.; Solov'yov, Andrey

    2013-01-01

    Atomic cluster collisions are a field of rapidly emerging research interest by both experimentalists and theorists. The international symposium on atomic cluster collisions (ISSAC) is the premier forum to present cutting-edge research in this field. It was established in 2003 and the most recent conference was held in Berlin, Germany in July of 2011. This Topical Issue presents original research results from some of the participants, who attended this conference. This issues specifically focuses on two research areas, namely Clusters and Fullerenes in External Fields and Nanoscale Insights in Radiation Biodamage.

  2. CHEMICAL VAPOUR DEPOSITION FROM A RADIATION-SENSITIVE PRECURSOR

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates in one aspect to a method of depositing a thin film on a substrate by chemical vapour deposition (CVD) from a radiation-sensitive precursor substance. The method comprises the steps of: (i) placing the substrate in a reaction chamber of a CVD system; (ii) heating...... heating pulse followed by an idle period; (iii) during at least one of the idle periods, providing a pressure pulse of precursor substance inside the reaction chamber by feeding at least one precursor substance to the reaction chamber so as to establish a reaction partial pressure for thin film deposition...... is formed. According to a further aspect, the invention relates to a chemical vapour deposition (CVD) system for depositing a thin film onto a substrate using precursor substances containing at least one radiation sensitive species....

  3. The proliferative human monocyte subpopulation contains osteoclast precursors

    Science.gov (United States)

    Lari, Roya; Kitchener, Peter D; Hamilton, John A

    2009-01-01

    Introduction Immediate precursors of bone-resorbing osteoclasts are cells of the monocyte/macrophage lineage. Particularly during clinical conditions showing bone loss, it would appear that osteoclast precursors are mobilized from bone marrow into the circulation prior to entering tissues undergoing such loss. The observed heterogeneity of peripheral blood monocytes has led to the notion that different monocyte subpopulations may have special or restricted functions, including as osteoclast precursors. Methods Human peripheral blood monocytes were sorted based upon their degree of proliferation and cultured in macrophage colony-stimulating factor (M-CSF or CSF-1) and receptor activator of nuclear factor-kappa-B ligand (RANKL). Results The monocyte subpopulation that is capable of proliferation gave rise to significantly more multinucleated, bone-resorbing osteoclasts than the bulk of the monocytes. Conclusions Human peripheral blood osteoclast precursors reside in the proliferative monocyte subpopulation. PMID:19222861

  4. Synthesis of beta alumina from aluminum hydroxide and oxyhydroxide precursors

    CSIR Research Space (South Africa)

    Van Zyl, A

    1993-02-01

    Full Text Available Two aluminium oxyhydroxides, boehmite and pseudoboehmite, and two aluminium hydroxides, bayerite and gibbsite, have been investigated as precursors for the synthesis of the solid electrolyte, beta alumina. Reaction pathways and products have been...

  5. Are any public-reported earthquake precursors valid?

    Directory of Open Access Journals (Sweden)

    N. E. Whitehead

    2004-01-01

    Full Text Available This article examines retrospective public-supplied precursor reports statistically, and confirms published hypotheses that some alleged precursors within 100km and within a day prior to the large 1995 Kobe and 1999 Izmit earthquakes, may be valid. The confirmations are mostly at the p<0.001 level of significance. Most significant were alleged meteorological and geophysical precursors, and less often, animal reports. The chi-squared test used, for the first time eliminates the distorting effects of psychological factors on the reports. However it also shows that correct reports are diluted with about the same number which are merely wishful thinking, and obtaining more reliable data would be logistically difficult. Some support is found for another published hypothesis in which other precursors occurred within the ten days prior to the earthquake.

  6. N-Nitroso Compound Precursors in some Nigerian Forage Crops ...

    African Journals Online (AJOL)

    N-Nitroso Compound Precursors in some Nigerian Forage Crops. ... were analyzed as their sulphonamides by gas chromatography interfaced with a chemiluminescence detector-Thermal Energy Analyzer modified for use in nitrogen mode.

  7. Unconsumed precursors and couplers after formation of oxidative hair dyes

    DEFF Research Database (Denmark)

    Rastogi, Suresh Chandra; Søsted, Heidi; Johansen, Jeanne Duus

    2006-01-01

    Contact allergy to hair dye ingredients, especially precursors and couplers, is a well-known entity among consumers having hair colouring done at home or at a hairdresser. The aim of the present investigation was to estimate consumer exposure to some selected precursors (p-phenylenediamine, toluene......-2,5-diamine) and couplers (3-aminophenol, 4-aminophenol, resorcinol) of oxidative hair dyes during and after hair dyeing. Concentrations of unconsumed precursors and couplers in 8 hair dye formulations for non-professional use were investigated, under the conditions reflecting hair dyeing. Oxidative...... hair dye formation in the absence of hair was investigated using 6 products, and 2 products were used for experimental hair dyeing. In both presence and absence of hair, significant amounts of unconsumed precursors and couplers remained in the hair dye formulations after final colour development. Thus...

  8. Combining cluster number counts and galaxy clustering

    Energy Technology Data Exchange (ETDEWEB)

    Lacasa, Fabien; Rosenfeld, Rogerio, E-mail: fabien@ift.unesp.br, E-mail: rosenfel@ift.unesp.br [ICTP South American Institute for Fundamental Research, Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo (Brazil)

    2016-08-01

    The abundance of clusters and the clustering of galaxies are two of the important cosmological probes for current and future large scale surveys of galaxies, such as the Dark Energy Survey. In order to combine them one has to account for the fact that they are not independent quantities, since they probe the same density field. It is important to develop a good understanding of their correlation in order to extract parameter constraints. We present a detailed modelling of the joint covariance matrix between cluster number counts and the galaxy angular power spectrum. We employ the framework of the halo model complemented by a Halo Occupation Distribution model (HOD). We demonstrate the importance of accounting for non-Gaussianity to produce accurate covariance predictions. Indeed, we show that the non-Gaussian covariance becomes dominant at small scales, low redshifts or high cluster masses. We discuss in particular the case of the super-sample covariance (SSC), including the effects of galaxy shot-noise, halo second order bias and non-local bias. We demonstrate that the SSC obeys mathematical inequalities and positivity. Using the joint covariance matrix and a Fisher matrix methodology, we examine the prospects of combining these two probes to constrain cosmological and HOD parameters. We find that the combination indeed results in noticeably better constraints, with improvements of order 20% on cosmological parameters compared to the best single probe, and even greater improvement on HOD parameters, with reduction of error bars by a factor 1.4-4.8. This happens in particular because the cross-covariance introduces a synergy between the probes on small scales. We conclude that accounting for non-Gaussian effects is required for the joint analysis of these observables in galaxy surveys.

  9. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Morillo, Viviana [Universidade Federal do Rio de Janeiro; Abreu, Fernanda [Universidade Federal do Rio de Janeiro; Araujo, Ana C [Universidade Federal do Rio de Janeiro; de Almeida, Luiz G [Laboratorio Nacional de Computacao Cientifica; Enrich-Prast, Alex [Universidade Federal do Rio de Janeiro; Farina, Marcos [Universidade Federal do Rio de Janeiro; de Vasconcelos, Ana T [Laboratorio Nacional de Computacao Cientifica; Bazylinski, Dennis A [Ames Laboratory; Lins, Ulysses [Universidade Federal do Rio de Janeiro

    2014-01-01

    Although magnetotactic bacteria (MTB) are ubiquitous in aquatic habitats, they are still considered fastidious microorganisms with regard to growth and cultivation with only a relatively low number of axenic cultures available to date. Here, we report the first axenic culture of an MTB isolated in the Southern Hemisphere (Itaipu Lagoon in Rio de Janeiro, Brazil). Cells of this new isolate are coccoid to ovoid in morphology and grow microaerophilically in semi-solid medium containing an oxygen concentration ([O2]) gradient either under chemoorganoheterotrophic or chemolithoautotrophic conditions. Each cell contains a single chain of approximately 10 elongated cuboctahedral magnetite (Fe3O4) magnetosomes. Phylogenetic analysis based on the 16S rRNA gene sequence shows that the coccoid MTB isolated in this study represents a new genus in the Alphaproteobacteria; the name Magnetofaba australis strain IT-1 is proposed. Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1. However, organization of the magnetosome genes differs from M. marinus.

  10. Biomineralization, life-time of odontogenic cells and differential expression of the two homeobox genes MSX-1 and DLX-2 in transgenic mice.

    Science.gov (United States)

    Lézot, F; Thomas, B; Hotton, D; Forest, N; Orestes-Cardoso, S; Robert, B; Sharpe, P; Berdal, A

    2000-03-01

    Msx and Dlx homeobox genes encode for transcription factors that control early morphogenesis. More specifically, Msx-1, Msx-2, and Dlx-2 homeobox genes contribute to the initial patterning of the dentition. The present study is devoted to the potential role of those homeobox genes during the late formation of mineralized tissues, using the rodent incisor as an experimental system. The continuously erupting mandibular incisor allows (1) the coinvestigation of the whole sequences of amelogenesis and dentinogenesis, aligned along the main dental axis in a single sample in situ and (2) the differential characterization of transcripts generated by epithelial and ectomesenchymal odontogenic cells. Northern blot experiments on microdissected cells showed the continuing expression of Msx-2 and Dlx-2 in the later stages of dental biomineralization, differentially in epithelial and ectomesenchymal compartments. Transgenic mice produced with LacZ reporter constructs for Dlx-2 and Msx-1 were used to detect different components of the gene expression patterns with the sensitive beta-galactosidase histoenzymology. The results show a prominent epithelial involvement of Dlx-2, with stage-specific variations in the cells involved in enamel formation. Quantitative analyses identified specific modulations of Dlx-2 expression in ameloblasts depending on the anatomical sites of the incisor, showing more specifically an inverse linear relationship between the Dlx-2 promoter activity level and enamel thickness. This investigation extends the role of homeoproteins to postmitotic stages, which would control secretory cell activity, in a site-specific manner as shown here for Dlx-2.

  11. Not All Inner Ears are the Same: Otolith Matrix Proteins in the Inner Ear of Sub-Adult Cichlid Fish, Oreochromis Mossambicus, Reveal Insights Into the Biomineralization Process.

    Science.gov (United States)

    Weigele, Jochen; Franz-Odendaal, Tamara A; Hilbig, Reinhard

    2016-02-01

    The fish ear stones (otoliths) consist mainly of calcium carbonate and have lower amounts of a proteinous matrix. This matrix consists of macromolecules, which directly control the biomineralization process. We analyzed the composition of this proteinous matrix by mass spectrometry in a shotgun approach. For this purpose, an enhanced protein purification technique was developed that excludes any potential contamination of proteins from body fluids. Using this method we identified eight proteins in the inner ear of Oreochromis mossambicus. These include the common otolith matrix proteins (OMP-1, otolin-1, neuroserpin, SPARC and otoconin), and three proteins (alpha tectorin, otogelin and transferrin) not previously localized to the otoliths. Moreover, we were able to exclude the occurrence of two matrix proteins (starmaker and pre-cerebellin-like protein) known from other fish species. In further analyses, we show that the absence of the OMP starmaker corresponds to calcitic otoliths and that pre-cerebellin-like protein is not present at any stage during the development of the otoliths of the inner ear. This study shows O. mossambicus does not have all of the known otolith proteins indicating that the matrix proteins in the inner ear of fish are not the same across species. Further functional studies of the novel proteins we identified during otolith development are required. © 2015 Wiley Periodicals, Inc.

  12. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) Model - An Unified Concept for Earthquake Precursors Validation

    Science.gov (United States)

    Pulinets, S.; Ouzounov, D.

    2010-01-01

    The paper presents a conception of complex multidisciplinary approach to the problem of clarification the nature of short-term earthquake precursors observed in atmosphere, atmospheric electricity and in ionosphere and magnetosphere. Our approach is based on the most fundamental principles of tectonics giving understanding that earthquake is an ultimate result of relative movement of tectonic plates and blocks of different sizes. Different kind of gases: methane, helium, hydrogen, and carbon dioxide leaking from the crust can serve as carrier gases for radon including underwater seismically active faults. Radon action on atmospheric gases is similar to the cosmic rays effects in upper layers of atmosphere: it is the air ionization and formation by ions the nucleus of water condensation. Condensation of water vapor is accompanied by the latent heat exhalation is the main cause for observing atmospheric thermal anomalies. Formation of large ion clusters changes the conductivity of boundary layer of atmosphere and parameters of the global electric circuit over the active tectonic faults. Variations of atmospheric electricity are the main source of ionospheric anomalies over seismically active areas. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model can explain most of these events as a synergy between different ground surface, atmosphere and ionosphere processes and anomalous variations which are usually named as short-term earthquake precursors. A newly developed approach of Interdisciplinary Space-Terrestrial Framework (ISTF) can provide also a verification of these precursory processes in seismically active regions. The main outcome of this paper is the unified concept for systematic validation of different types of earthquake precursors united by physical basis in one common theory.

  13. Metal cluster compounds - chemistry and importance; clusters containing isolated main group element atoms, large metal cluster compounds, cluster fluxionality

    International Nuclear Information System (INIS)

    Walther, B.

    1988-01-01

    This part of the review on metal cluster compounds deals with clusters containing isolated main group element atoms, with high nuclearity clusters and metal cluster fluxionality. It will be obvious that main group element atoms strongly influence the geometry, stability and reactivity of the clusters. High nuclearity clusters are of interest in there own due to the diversity of the structures adopted, but their intermediate position between molecules and the metallic state makes them a fascinating research object too. These both sites of the metal cluster chemistry as well as the frequently observed ligand and core fluxionality are related to the cluster metal and surface analogy. (author)

  14. Elements of the tsunami precursors' detection physics

    Science.gov (United States)

    Novik, Oleg; Ruzhin, Yuri; Ershov, Sergey; Volgin, Max; Smirnov, Fedor

    ionosphere from the buoy, balloon and satellite complexes. The balloon and buoy complexes will transmit data to a shore station over satellite link. The frequency ranges and sensitivity thresholds of all of the sensors of the LOAMS will be adapted to the characteristics of expected seismic signals according to the numerical research above. Computational methods and statistical analysis (e.g. seismic changes of coherence of spatially distributed sensors of different nature) of the recorded multidimensional time series will be used for prognostic interpretation. The multilevel recordings will provide a stable noise (e.g. ionosphere Pc pulsations, hard sea, industry) and seismic event detection. An intensive heat flow typical for tectonically active lithosphere zones may be considered as an energy source for advanced modifications of the LOAMS. The latter may be used as a warning system for continental and marine technologies, e.g. a sea bottom geothermal energy production. Indeed, seismic distraction of the nuclear power station Fukushima I demonstrates that similar technology hardly is able to solve the energy problems in seismically active regions. On the other hand, the LOAMS may be considered as a scientific observatory for development of the seaquake/tsunami precursor physics, i.e. seismo-hydro-electromagnetics.

  15. Disentangling Porterian Clusters

    DEFF Research Database (Denmark)

    Jagtfelt, Tue

    , contested theory become so widely disseminated and applied as a normative and prescriptive strategy for economic development? The dissertation traces the introduction of the cluster notion into the EU’s Lisbon Strategy and demonstrates how its inclusion originates from Porter’s colleagues: Professor Örjan...... to his membership on the Commission on Industrial Competitiveness, and that the cluster notion found in his influential book, Nations, represents a significant shift in his conception of cluster compared with his early conceptions. This shift, it is argued, is a deliberate attempt by Porter to create...... a paradigmatic textbook that follows Kuhn’s blueprint for scientific revolutions by instilling Nations with circular references and thus creating a local linguistic holism conceptualized through an encompassing notion of cluster. The dissertation concludes that the two research questions are philosophically...

  16. Remarks on stellar clusters

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    In the following, a few simple remarks on the evolution and properties of stellar clusters will be collected. In particular, globular clusters will be considered. Though details of such clusters are often not known, a few questions can be clarified with the help of primitive arguments. These are:- why are spherical clusters spherical, why do they have high densities, why do they consist of approximately a million stars, how may a black hole of great mass form within them, may they be the origin of gamma-ray bursts, may their invisible remnants account for the missing mass of our galaxy. The available data do not warrant a detailed evaluation. However, it is remarkable that exceedingly simple models can shed some light on the questions enumerated above. (author)

  17. From collisions to clusters

    DEFF Research Database (Denmark)

    Loukonen, Ville; Bork, Nicolai; Vehkamaki, Hanna

    2014-01-01

    -principles molecular dynamics collision simulations of (sulphuric acid)1(water)0, 1 + (dimethylamine) → (sulphuric acid)1(dimethylamine)1(water)0, 1 cluster formation processes. The simulations indicate that the sticking factor in the collisions is unity: the interaction between the molecules is strong enough...... control. As a consequence, the clusters show very dynamic ion pair structure, which differs from both the static structure optimisation calculations and the equilibrium first-principles molecular dynamics simulations. In some of the simulation runs, water mediates the proton transfer by acting as a proton...... to overcome the possible initial non-optimal collision orientations. No post-collisional cluster break up is observed. The reasons for the efficient clustering are (i) the proton transfer reaction which takes place in each of the collision simulations and (ii) the subsequent competition over the proton...

  18. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  19. How Clusters Work

    Science.gov (United States)

    Technology innovation clusters are geographic concentrations of interconnected companies, universities, and other organizations with a focus on environmental technology. They play a key role in addressing the nation’s pressing environmental problems.

  20. Evolution of clustered storage

    CERN Multimedia

    CERN. Geneva; Van de Vyvre, Pierre

    2007-01-01

    The session actually featured two presentations: * Evolution of clustered storage by Lance Hukill, Quantum Corporation * ALICE DAQ - Usage of a Cluster-File System: Quantum StorNext by Pierre Vande Vyvre, CERN-PH the second one prepared at short notice by Pierre (thanks!) to present how the Quantum technologies are being used in the ALICE experiment. The abstract to Mr Hukill's follows. Clustered Storage is a technology that is driven by business and mission applications. The evolution of Clustered Storage solutions starts first at the alignment between End-users needs and Industry trends: * Push-and-Pull between managing for today versus planning for tomorrow * Breaking down the real business problems to the core applications * Commoditization of clients, servers, and target devices * Interchangeability, Interoperability, Remote Access, Centralized control * Oh, and yes, there is a budget and the "real world" to deal with This presentation will talk through these needs and trends, and then ask the question, ...

  1. Galaxy clusters and cosmology

    CERN Document Server

    White, S

    1994-01-01

    Galaxy clusters are the largest coherent objects in Universe. It has been known since 1933 that their dynamical properties require either a modification of the theory of gravity, or the presence of a dominant component of unseen material of unknown nature. Clusters still provide the best laboratories for studying the amount and distribution of this dark matter relative to the material which can be observed directly -- the galaxies themselves and the hot,X-ray-emitting gas which lies between them.Imaging and spectroscopy of clusters by satellite-borne X -ray telescopes has greatly improved our knowledge of the structure and composition of this intergalactic medium. The results permit a number of new approaches to some fundamental cosmological questions,but current indications from the data are contradictory. The observed irregularity of real clusters seems to imply recent formation epochs which would require a universe with approximately the critical density. On the other hand, the large baryon fraction observ...

  2. Applications of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Applications of Clustering. Biology – medical imaging, bioinformatics, ecology, phylogenies problems etc. Market research. Data Mining. Social Networks. Any problem measuring similarity/correlation. (dimensions represent different parameters)

  3. Clustering Game Behavior Data

    DEFF Research Database (Denmark)

    Bauckhage, C.; Drachen, Anders; Sifa, Rafet

    2015-01-01

    of the causes, the proliferation of behavioral data poses the problem of how to derive insights therefrom. Behavioral data sets can be large, time-dependent and high-dimensional. Clustering offers a way to explore such data and to discover patterns that can reduce the overall complexity of the data. Clustering...... and other techniques for player profiling and play style analysis have, therefore, become popular in the nascent field of game analytics. However, the proper use of clustering techniques requires expertise and an understanding of games is essential to evaluate results. With this paper, we address game data...... scientists and present a review and tutorial focusing on the application of clustering techniques to mine behavioral game data. Several algorithms are reviewed and examples of their application shown. Key topics such as feature normalization are discussed and open problems in the context of game analytics...

  4. Clustering on Membranes

    DEFF Research Database (Denmark)

    Johannes, Ludger; Pezeshkian, Weria; Ipsen, John H

    2018-01-01

    Clustering of extracellular ligands and proteins on the plasma membrane is required to perform specific cellular functions, such as signaling and endocytosis. Attractive forces that originate in perturbations of the membrane's physical properties contribute to this clustering, in addition to direct...... protein-protein interactions. However, these membrane-mediated forces have not all been equally considered, despite their importance. In this review, we describe how line tension, lipid depletion, and membrane curvature contribute to membrane-mediated clustering. Additional attractive forces that arise...... from protein-induced perturbation of a membrane's fluctuations are also described. This review aims to provide a survey of the current understanding of membrane-mediated clustering and how this supports precise biological functions....

  5. Air void clustering.

    Science.gov (United States)

    2015-06-01

    Air void clustering around coarse aggregate in concrete has been identified as a potential source of : low strengths in concrete mixes by several Departments of Transportation around the country. Research was : carried out to (1) develop a quantitati...

  6. Speaker segmentation and clustering

    OpenAIRE

    Kotti, M; Moschou, V; Kotropoulos, C

    2008-01-01

    07.08.13 KB. Ok to add the accepted version to Spiral, Elsevier says ok whlile mandate not enforced. This survey focuses on two challenging speech processing topics, namely: speaker segmentation and speaker clustering. Speaker segmentation aims at finding speaker change points in an audio stream, whereas speaker clustering aims at grouping speech segments based on speaker characteristics. Model-based, metric-based, and hybrid speaker segmentation algorithms are reviewed. Concerning speaker...

  7. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  8. BUILDING e-CLUSTERS

    OpenAIRE

    Milan Davidovic

    2013-01-01

    E-clusters are strategic alliance in TIMES technology sector (Telecommunication, Information technology, Multimedia, Entertainment, Security) where products and processes are digitalized. They enable horizontal and vertical integration of small and medium companies and establish new added value e-chains. E-clusters also build supply chains based on cooperation relationship, innovation, organizational knowledge and compliance of intellectual properties. As an innovative approach for economic p...

  9. Clusters and exotic processes

    International Nuclear Information System (INIS)

    Schiffer, J.P.

    1975-01-01

    An attempt is made to present some data which may be construed as indicating that perhaps clusters play a role in high energy and exotic pion or kaon interactions with complex (A much greater than 16) nuclei. Also an attempt is made to summarize some very recent experimental work on pion interactions with nuclei which may or may not in the end support a picture in which clusters play an important role. (U.S.)

  10. Amino Acid Precursor Supply in the Biosynthesis of the RNA Polymerase Inhibitor Streptolydigin by Streptomyces lydicus▿†

    OpenAIRE

    Gómez, Cristina; Horna, Dina H.; Olano, Carlos; Palomino-Schätzlein, Martina; Pineda-Lucena, Antonio; Carbajo, Rodrigo J.; Braña, Alfredo F.; Méndez, Carmen; Salas, José A.

    2011-01-01

    Biosynthesis of the hybrid polyketide-nonribosomal peptide antibiotic streptolydigin, 3-methylaspartate, is utilized as precursor of the tetramic acid moiety. The three genes from the Streptomyces lydicus streptolydigin gene cluster slgE1-slgE2-slgE3 are involved in 3-methylaspartate supply. SlgE3, a ferredoxin-dependent glutamate synthase, is responsible for the biosynthesis of glutamate from glutamine and 2-oxoglutarate. In addition to slgE3, housekeeping NADPH- and ferredoxin-dependent glu...

  11. Robust continuous clustering.

    Science.gov (United States)

    Shah, Sohil Atul; Koltun, Vladlen

    2017-09-12

    Clustering is a fundamental procedure in the analysis of scientific data. It is used ubiquitously across the sciences. Despite decades of research, existing clustering algorithms have limited effectiveness in high dimensions and often require tuning parameters for different domains and datasets. We present a clustering algorithm that achieves high accuracy across multiple domains and scales efficiently to high dimensions and large datasets. The presented algorithm optimizes a smooth continuous objective, which is based on robust statistics and allows heavily mixed clusters to be untangled. The continuous nature of the objective also allows clustering to be integrated as a module in end-to-end feature learning pipelines. We demonstrate this by extending the algorithm to perform joint clustering and dimensionality reduction by efficiently optimizing a continuous global objective. The presented approach is evaluated on large datasets of faces, hand-written digits, objects, newswire articles, sensor readings from the Space Shuttle, and protein expression levels. Our method achieves high accuracy across all datasets, outperforming the best prior algorithm by a factor of 3 in average rank.

  12. Cluster bomb ocular injuries.

    Science.gov (United States)

    Mansour, Ahmad M; Hamade, Haya; Ghaddar, Ayman; Mokadem, Ahmad Samih; El Hajj Ali, Mohamad; Awwad, Shady

    2012-01-01

    To present the visual outcomes and ocular sequelae of victims of cluster bombs. This retrospective, multicenter case series of ocular injury due to cluster bombs was conducted for 3 years after the war in South Lebanon (July 2006). Data were gathered from the reports to the Information Management System for Mine Action. There were 308 victims of clusters bombs; 36 individuals were killed, of which 2 received ocular lacerations and; 272 individuals were injured with 18 receiving ocular injury. These 18 surviving individuals were assessed by the authors. Ocular injury occurred in 6.5% (20/308) of cluster bomb victims. Trauma to multiple organs occurred in 12 of 18 cases (67%) with ocular injury. Ocular findings included corneal or scleral lacerations (16 eyes), corneal foreign bodies (9 eyes), corneal decompensation (2 eyes), ruptured cataract (6 eyes), and intravitreal foreign bodies (10 eyes). The corneas of one patient had extreme attenuation of the endothelium. Ocular injury occurred in 6.5% of cluster bomb victims and 67% of the patients with ocular injury sustained trauma to multiple organs. Visual morbidity in civilians is an additional reason for a global ban on the use of cluster bombs.

  13. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  14. Cluster dynamics at different cluster size and incident laser wavelengths

    International Nuclear Information System (INIS)

    Desai, Tara; Bernardinello, Andrea

    2002-01-01

    X-ray emission spectra from aluminum clusters of diameter -0.4 μm and gold clusters of dia. ∼1.25 μm are experimentally studied by irradiating the cluster foil targets with 1.06 μm laser, 10 ns (FWHM) at an intensity ∼10 12 W/cm 2 . Aluminum clusters show a different spectra compared to bulk material whereas gold cluster evolve towards bulk gold. Experimental data are analyzed on the basis of cluster dimension, laser wavelength and pulse duration. PIC simulations are performed to study the behavior of clusters at higher intensity I≥10 17 W/cm 2 for different size of the clusters irradiated at different laser wavelengths. Results indicate the dependence of cluster dynamics on cluster size and incident laser wavelength

  15. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  16. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  17. GibbsCluster: unsupervised clustering and alignment of peptide sequences

    DEFF Research Database (Denmark)

    Andreatta, Massimo; Alvarez, Bruno; Nielsen, Morten

    2017-01-01

    motif characterizing each cluster. Several parameters are available to customize cluster analysis, including adjustable penalties for small clusters and overlapping groups and a trash cluster to remove outliers. As an example application, we used the server to deconvolute multiple specificities in large......-scale peptidome data generated by mass spectrometry. The server is available at http://www.cbs.dtu.dk/services/GibbsCluster-2.0....

  18. Size distribution of silver nanoclusters induced by ion, electron, laser beams and thermal treatments of an organometallic precursor

    International Nuclear Information System (INIS)

    D'Urso, L.; Nicolosi, V.; Compagnini, G.; Puglisi, O.

    2004-01-01

    Recently, a huge variety of physical and chemical synthetic processes have been reported to prepare nanostructured materials made of very small (diameter<50 nm) metallic clusters. Depending on the nature of clusters, this new kind of materials posses interesting properties (electronic, optical, magnetic, catalytic) that can be tailored as a function of the particles size and shape. Silver nanoparticles have been obtained by direct thermal treatment or by beam-enhanced decomposition (ion, electron and laser) of a silver organometallic compound (precursor) spinned onto suitable substrates. In this paper, we present the results of a study on the size distribution of such nanoparticles as a function of the different synthesis methods. It was found that the methods employed strongly affect the silver nanoparticles formation. Smaller silver nanoclusters were obtained after reduction by ion beam irradiation and thermal treatment, as observed by using different techniques (AFM, XRD and UV-Vis)

  19. Subspace K-means clustering

    NARCIS (Netherlands)

    Timmerman, Marieke E.; Ceulemans, Eva; De Roover, Kim; Van Leeuwen, Karla

    2013-01-01

    To achieve an insightful clustering of multivariate data, we propose subspace K-means. Its central idea is to model the centroids and cluster residuals in reduced spaces, which allows for dealing with a wide range of cluster types and yields rich interpretations of the clusters. We review the

  20. Clustering and Filtering Tandem Mass Spectra Acquired in Data-Independent Mode

    Science.gov (United States)

    Pak, Huisong; Nikitin, Frederic; Gluck, Florent; Lisacek, Frederique; Scherl, Alexander; Muller, Markus

    2013-12-01

    Data-independent mass spectrometry activates all ion species isolated within a given mass-to-charge window ( m/z) regardless of their abundance. This acquisition strategy overcomes the traditional data-dependent ion selection boosting data reproducibility and sensitivity. However, several tandem mass (MS/MS) spectra of the same precursor ion are acquired during chromatographic elution resulting in large data redundancy. Also, the significant number of chimeric spectra and the absence of accurate precursor ion masses hamper peptide identification. Here, we describe an algorithm to preprocess data-independent MS/MS spectra by filtering out noise peaks and clustering the spectra according to both the chromatographic elution profiles and the spectral similarity. In addition, we developed an approach to estimate the m/z value of precursor ions from clustered MS/MS spectra in order to improve database search performance. Data acquired using a small 3 m/z units precursor mass window and multiple injections to cover a m/z range of 400-1400 was processed with our algorithm. It showed an improvement in the number of both peptide and protein identifications by 8 % while reducing the number of submitted spectra by 18 % and the number of peaks by 55 %. We conclude that our clustering method is a valid approach for data analysis of these data-independent fragmentation spectra. The software including the source code is available for the scientific community.

  1. Projected coupled cluster theory.

    Science.gov (United States)

    Qiu, Yiheng; Henderson, Thomas M; Zhao, Jinmo; Scuseria, Gustavo E

    2017-08-14

    Coupled cluster theory is the method of choice for weakly correlated systems. But in the strongly correlated regime, it faces a symmetry dilemma, where it either completely fails to describe the system or has to artificially break certain symmetries. On the other hand, projected Hartree-Fock theory captures the essential physics of many kinds of strong correlations via symmetry breaking and restoration. In this work, we combine and try to retain the merits of these two methods by applying symmetry projection to broken symmetry coupled cluster wave functions. The non-orthogonal nature of states resulting from the application of symmetry projection operators furnishes particle-hole excitations to all orders, thus creating an obstacle for the exact evaluation of overlaps. Here we provide a solution via a disentanglement framework theory that can be approximated rigorously and systematically. Results of projected coupled cluster theory are presented for molecules and the Hubbard model, showing that spin projection significantly improves unrestricted coupled cluster theory while restoring good quantum numbers. The energy of projected coupled cluster theory reduces to the unprojected one in the thermodynamic limit, albeit at a much slower rate than projected Hartree-Fock.

  2. Globular Clusters - Guides to Galaxies

    CERN Document Server

    Richtler, Tom; Joint ESO-FONDAP Workshop on Globular Clusters

    2009-01-01

    The principal question of whether and how globular clusters can contribute to a better understanding of galaxy formation and evolution is perhaps the main driving force behind the overall endeavour of studying globular cluster systems. Naturally, this splits up into many individual problems. The objective of the Joint ESO-FONDAP Workshop on Globular Clusters - Guides to Galaxies was to bring together researchers, both observational and theoretical, to present and discuss the most recent results. Topics covered in these proceedings are: internal dynamics of globular clusters and interaction with host galaxies (tidal tails, evolution of cluster masses), accretion of globular clusters, detailed descriptions of nearby cluster systems, ultracompact dwarfs, formations of massive clusters in mergers and elsewhere, the ACS Virgo survey, galaxy formation and globular clusters, dynamics and kinematics of globular cluster systems and dark matter-related problems. With its wide coverage of the topic, this book constitute...

  3. Molecular characterization of the 30-AA N-terminal mineral interaction domain of the biomineralization protein AP7.

    Science.gov (United States)

    Kim, Il Won; Morse, Daniel E; Evans, John Spencer

    2004-12-21

    The AP7 protein is one of several mollusk shell proteins which are responsible for aragonite polymorph formation and stabilization within the nacre layer of the Pacific red abalone, H. rufescens. Previously, we demonstrated that the 30-AA N-terminal domain of AP7, denoted as AP7-1, exists as an unfolded sequence and possesses the capability of inhibiting calcium carbonate crystal growth in vitro via growth step frustration or interruption. However, very little is known with regard to the interactive capabilities of this sequence with Ca(II) and with calcium carbonates. Using multidisciplinary techniques, we determine that the AP7-1 polypeptide interacts with Ca(II) ions at the -DD- sequence clusters, yet retains its unfolded, conformationally labile structure in the presence of Ca(II) ions. Further, NMR experiments reveal that the extended structured sequence blocks, -GNGM-, -SVRTQG-, and -ISYL, exhibit motional, chemical exchange, and/or backbone geometry perturbations in response to Ca(II) interactions with AP7-1. Solid-state NMR magic angle spinning studies verify that during the course of in vitro calcium carbonate crystal growth, AP7-1 becomes bound to calcite fragments and cannot be entirely displaced from the mineral fragments using competitive Ca(II) washing. Finally, using a scrambled sequence version of the AP7-1 polypeptide, we observe that sequence scrambling does not adversely affect the crystal growth inhibitory activity of AP7-1, suggesting that the amino acid composition of AP7-1 may be more critical to growth step inhibition than the linear ordering of amino acids.

  4. Modelling of heterogeneous clustering in aluminium

    International Nuclear Information System (INIS)

    Smith, A.E.; Bourgeois, L.; Nie, J.-F.; Muddle, B.C.

    2003-01-01

    Full text: Ab initio modelling of heterogeneous clustering in aluminium has been carried out in order to study the precipitation hardening of alloys. This process is based on the addition of small amounts of solute element to the pure metal. With increasing computational power, atomic scale effects can now be better simulated to determine the nature of the hardening mechanism. Comparisons are made between results obtained from two computational packages. These are the Linear Augmented Plane Wave WEEN2K and the plane wave pseudopotential density functional theory package fhi98md. The study of the optimal geometry of very small size clusters inside aluminium has begun with the testing of initial convergence conditions by determination of binding energies for a variety of super cell sizes of the aluminium host crystal. These are compared with total energy calculations for small size precipitates of copper and transition metals of fixed geometry. Such local optimal determinations are seen as precursors to full Monte Carlo calculations of the notional best local geometry for larger precipitates

  5. Cryopreservation of GABAergic Neuronal Precursors for Cell-Based Therapy.

    Directory of Open Access Journals (Sweden)

    Daniel Rodríguez-Martínez

    Full Text Available Cryopreservation protocols are essential for stem cells storage in order to apply them in the clinic. Here we describe a new standardized cryopreservation protocol for GABAergic neural precursors derived from the medial glanglionic eminence (MGE, a promising source of GABAergic neuronal progenitors for cell therapy against interneuron-related pathologies. We used 10% Me2SO as cryoprotectant and assessed the effects of cell culture amplification and cellular organization, as in toto explants, neurospheres, or individualized cells, on post-thaw cell viability and retrieval. We confirmed that in toto cryopreservation of MGE explants is an optimal preservation system to keep intact the interneuron precursor properties for cell transplantation, together with a high cell viability (>80% and yield (>70%. Post-thaw proliferation and self-renewal of the cryopreserved precursors were tested in vitro. In addition, their migration capacity, acquisition of mature neuronal morphology, and potency to differentiate into multiple interneuron subtypes were also confirmed in vivo after transplantation. The results show that the cryopreserved precursor features remained intact and were similar to those immediately transplanted after their dissection from the MGE. We hope this protocol will facilitate the generation of biobanks to obtain a permanent and reliable source of GABAergic precursors for clinical application in cell-based therapies against interneuronopathies.

  6. Hydrokinetic simulations of nanoscopic precursor films in rough channels

    International Nuclear Information System (INIS)

    Chibbaro, S; Biferale, L; Binder, K; Milchev, A; Dimitrov, D; Diotallevi, F; Succi, S

    2009-01-01

    We report on simulations of capillary filling of highly wetting fluids in nanochannels with and without obstacles. We use atomistic (molecular dynamics) and hydrokinetic (lattice Boltzmann; LB) approaches which indicate clear evidence of the formation of thin precursor films, moving ahead of the main capillary front. The dynamics of the precursor films is found to obey a square-root law like that obeyed by the main capillary front, z 2 (t)∝t, although with a larger prefactor, which we find to take the same value for the different geometries (2D–3D) under inspection. The two methods show a quantitative agreement which indicates that the formation and propagation of thin precursors can be handled at a mesoscopic/hydrokinetic level. This can be considered as a validation of the LB method and opens the possibility of using hydrokinetic methods to explore space–time scales and complex geometries of direct experimental relevance. Then, the LB approach is used to study the fluid behaviour in a nanochannel when the precursor film encounters a square obstacle. A complete parametric analysis is performed which suggests that thin-film precursors may have an important influence on the efficiency of nanochannel-coating strategies

  7. Fluid Mechanics of Lean Blowout Precursors in Gas Turbine Combustors

    Directory of Open Access Journals (Sweden)

    T. M. Muruganandam

    2012-03-01

    Full Text Available Understanding of lean blowout (LBO phenomenon, along with the sensing and control strategies could enable the gas turbine combustor designers to design combustors with wider operability regimes. Sensing of precursor events (temporary extinction-reignition events based on chemiluminescence emissions from the combustor, assessing the proximity to LBO and using that data for control of LBO has already been achieved. This work describes the fluid mechanic details of the precursor dynamics and the blowout process based on detailed analysis of near blowout flame behavior, using simultaneous chemiluminescence and droplet scatter observations. The droplet scatter method represents the regions of cold reactants and thus help track unburnt mixtures. During a precursor event, it was observed that the flow pattern changes significantly with a large region of unburnt mixture in the combustor, which subsequently vanishes when a double/single helical vortex structure brings back the hot products back to the inlet of the combustor. This helical pattern is shown to be the characteristic of the next stable mode of flame in the longer combustor, stabilized by double helical vortex breakdown (VBD mode. It is proposed that random heat release fluctuations near blowout causes VBD based stabilization to shift VBD modes, causing the observed precursor dynamics in the combustor. A complete description of the evolution of flame near the blowout limit is presented. The description is consistent with all the earlier observations by the authors about precursor and blowout events.

  8. Adenine nucleotide translocator transports haem precursors into mitochondria.

    Directory of Open Access Journals (Sweden)

    Motoki Azuma

    2008-08-01

    Full Text Available Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT, the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.

  9. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development

    Science.gov (United States)

    Benz, Claudia; Martins, Vera C.; Radtke, Freddy; Bleul, Conrad C.

    2008-01-01

    T cell development in the thymus depends on continuous colonization by hematopoietic precursors. Several distinct T cell precursors have been identified, but whether one or several independent precursor cell types maintain thymopoiesis is unclear. We have used thymus transplantation and an inducible lineage-tracing system to identify the intrathymic precursor cells among previously described thymus-homing progenitors that give rise to the T cell lineage in the thymus. Extrathymic precursors were not investigated in these studies. Both approaches show that the stream of T cell lineage precursor cells, when entering the thymus, selectively passes through the early T lineage precursor (ETP) stage. Immigrating precursor cells do not exhibit characteristics of double-negative (DN) 1c, DN1d, or DN1e stages, or of populations containing the common lymphoid precursor 2 (CLP-2) or the thymic equivalent of circulating T cell progenitors (CTPs). It remains possible that an unknown hematopoietic precursor cell or previously described extrathymic precursors with a CLP, CLP-2, or CTP phenotype feed into T cell development by circumventing known intrathymic T cell lineage progenitor cells. However, it is clear that of the known intrathymic precursors, only the ETP population contributes significant numbers of T lineage precursors to T cell development. PMID:18458114

  10. Spanning Tree Based Attribute Clustering

    DEFF Research Database (Denmark)

    Zeng, Yifeng; Jorge, Cordero Hernandez

    2009-01-01

    Attribute clustering has been previously employed to detect statistical dependence between subsets of variables. We propose a novel attribute clustering algorithm motivated by research of complex networks, called the Star Discovery algorithm. The algorithm partitions and indirectly discards...... inconsistent edges from a maximum spanning tree by starting appropriate initial modes, therefore generating stable clusters. It discovers sound clusters through simple graph operations and achieves significant computational savings. We compare the Star Discovery algorithm against earlier attribute clustering...

  11. Exotic cluster structures on

    CERN Document Server

    Gekhtman, M; Vainshtein, A

    2017-01-01

    This is the second paper in the series of papers dedicated to the study of natural cluster structures in the rings of regular functions on simple complex Lie groups and Poisson-Lie structures compatible with these cluster structures. According to our main conjecture, each class in the Belavin-Drinfeld classification of Poisson-Lie structures on \\mathcal{G} corresponds to a cluster structure in \\mathcal{O}(\\mathcal{G}). The authors have shown before that this conjecture holds for any \\mathcal{G} in the case of the standard Poisson-Lie structure and for all Belavin-Drinfeld classes in SL_n, n<5. In this paper the authors establish it for the Cremmer-Gervais Poisson-Lie structure on SL_n, which is the least similar to the standard one.

  12. From superdeformation to clusters

    Energy Technology Data Exchange (ETDEWEB)

    Betts, R R [Argonne National Lab., IL (United States). Physics Div.

    1992-08-01

    Much of the discussion at the conference centred on superdeformed states and their study by precise gamma spectrometry. The author suggests that the study of superdeformation by fission fragments and by auto-scattering is of importance, and may become more important. He concludes that there exists clear evidence of shell effects at extreme deformation in light nuclei studied by fission or cluster decay. The connection between the deformed shell model and the multi-center shell model can be exploited to give give insight into the cluster structure of these extremely deformed states, and also gives hope of a spectroscopy based on selection rules for cluster decay. A clear disadvantage at this stage is inability to make this spectroscopy more quantitative through calculation of the decay widths. The introduction of a new generation of high segmentation, high resolution, particle arrays has and will have a major impact on this aspect of the study of highly deformed nuclei. 20 refs., 16 figs.

  13. Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor

    Science.gov (United States)

    Dhere, Neelkanth G.; Kadam, Ankur A.

    2009-12-15

    A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.

  14. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Alexander, E-mail: ahubbard@amnh.org [American Museum of Natural History, New York, NY (United States)

    2016-08-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  15. PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING

    International Nuclear Information System (INIS)

    Hubbard, Alexander

    2016-01-01

    Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.

  16. Confocal laser Raman microspectroscopy of biomineralization foci in UMR 106 osteoblastic cultures reveals temporally synchronized protein changes preceding and accompanying mineral crystal deposition.

    Science.gov (United States)

    Wang, Chuanyi; Wang, Yong; Huffman, Nichole T; Cui, Chaoying; Yao, Xiaomei; Midura, Sharon; Midura, Ronald J; Gorski, Jeff P

    2009-03-13

    Mineralization in UMR 106-01 osteoblastic cultures occurs within extracellular biomineralization foci (BMF) within 12 h after addition of beta-glycerol phosphate to cells at 64 h after plating. BMF are identified by their enrichment with an 85-kDa glycoprotein reactive with Maackia amurensis lectin. Laser Raman microspectroscopic scans were made on individual BMF at times preceding (64-76 h) and following the appearance of mineral crystals (76-88 h). The range of variation between spectra for different BMF in the same culture was rather small. In contrast, significant differences were observed for spectral bands at 957-960, 1004, and 1660 cm(-1) when normalized BMF spectra at different times were compared. Protein-dependent spectral bands at 1004 and 1660 cm(-1) increased and then decreased preceding the detection of hydroxyapatite crystals via the phosphate stretching peak at 959-960 cm(-1). When sodium phosphate was substituted for beta-glycerol phosphate, mineralization occurred 3-6 h earlier. Irrespective of phosphate source, the Raman full peak width at half-maximum ratio for 88 h cultures was similar to that for 10-day-old marrow ablation primary bone. However, if mineralization was blocked with serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 64-88-h BMF spectra remained largely invariant. In summary, Raman spectral data demonstrate for the first time that formation of hydroxyapatite crystals within individual BMF is a multistep process. Second, changes in protein-derived signals at 1004 and 1660 cm(-1) reflect events within BMFs that precede or accompany mineral crystal production because they are blocked by mineralization inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride. Finally, the low extent of spectral variability detected among different BMF at the same time point indicates that mineralization of individual BMF within a culture is synchronized.

  17. Confocal Laser Raman Microspectroscopy of Biomineralization Foci in UMR 106 Osteoblastic Cultures Reveals Temporally Synchronized Protein Changes Preceding and Accompanying Mineral Crystal Deposition*

    Science.gov (United States)

    Wang, Chuanyi; Wang, Yong; Huffman, Nichole T.; Cui, Chaoying; Yao, Xiaomei; Midura, Sharon; Midura, Ronald J.; Gorski, Jeff P.

    2009-01-01

    Mineralization in UMR 106-01 osteoblastic cultures occurs within extracellular biomineralization foci (BMF) within 12 h after addition of β-glycerol phosphate to cells at 64 h after plating. BMF are identified by their enrichment with an 85-kDa glycoprotein reactive with Maackia amurensis lectin. Laser Raman microspectroscopic scans were made on individual BMF at times preceding (64–76 h) and following the appearance of mineral crystals (76–88 h). The range of variation between spectra for different BMF in the same culture was rather small. In contrast, significant differences were observed for spectral bands at 957–960, 1004, and 1660 cm-1 when normalized BMF spectra at different times were compared. Protein-dependent spectral bands at 1004 and 1660 cm-1 increased and then decreased preceding the detection of hydroxyapatite crystals via the phosphate stretching peak at 959–960 cm-1. When sodium phosphate was substituted for β-glycerol phosphate, mineralization occurred 3–6 h earlier. Irrespective of phosphate source, the Raman full peak width at half-maximum ratio for 88 h cultures was similar to that for 10-day-old marrow ablation primary bone. However, if mineralization was blocked with serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride, 64–88-h BMF spectra remained largely invariant. In summary, Raman spectral data demonstrate for the first time that formation of hydroxyapatite crystals within individual BMF is a multistep process. Second, changes in protein-derived signals at 1004 and 1660 cm-1 reflect events within BMFs that precede or accompany mineral crystal production because they are blocked by mineralization inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride. Finally, the low extent of spectral variability detected among different BMF at the same time point indicates that mineralization of individual BMF within a culture is synchronized. PMID:19116206

  18. Application of precursor methodology in initiating frequency estimates

    International Nuclear Information System (INIS)

    Kohut, P.; Fitzpatrick, R.G.

    1991-01-01

    The precursor methodology developed in recent years provides a consistent technique to identify important accident sequence precursors. It relies on operational events (extracting information from actual experience) and infers core damage scenarios based on expected safety system responses. The ranking or categorization of each precursor is determined by considering the full spectrum of potential core damage sequences. The methodology estimates the frequency of severe core damage based on the approach suggested by Apostolakis and Mosleh, which may lead to a potential overestimation of the severe-accident sequence frequency due to the inherent dependencies between the safety systems and the initiating events. The methodology is an encompassing attempt to incorporate most of the operating information available from nuclear power plants and is an attractive tool from the point of view of risk management. In this paper, a further extension of this methodology is discussed with regard to the treatment of initiating frequency of the accident sequences

  19. Early postradiation recovery of precursor cells of hemopoietic stroma

    International Nuclear Information System (INIS)

    Todriya, T.V.

    1984-01-01

    Ability of stroma precursor cells to early postradiation recovery was studied in male mices using the method of fraction irradiation of bone marrow. Donor mices of bone marrow were irradiated in vivo once by the total dose (nonfraction irradiation) and fractionally with 6 h interval between two irradiation doses. The cumulative irradiation doses equal to 10, 12, 14, 16 Gr were investigated. Irradiation was carried out using gamma facility. Bone marrow of the femur was implanted immediately after irradiation under kidney capsule of nonirradiated syngeneic recipient. The ability of stroma precursor cells to intracellular repair (repair index) was evaluated according to the ratio of the number of hemopoietic cells formed in heterotropic transplants in groups with fraction irradiation to the same one in groups with nonfraction irradiation. The obtained results testify to the fact that slowly regenerated highly radioresistant population of precursor cells of hemopoietic stroma is capable to early postradiation recovery

  20. Refractory chronic cluster headache

    DEFF Research Database (Denmark)

    Mitsikostas, Dimos D; Edvinsson, Lars; Jensen, Rigmor H

    2014-01-01

    Chronic cluster headache (CCH) often resists to prophylactic pharmaceutical treatments resulting in patients' life damage. In this rare but pragmatic situation escalation to invasive management is needed but framing criteria are lacking. We aimed to reach a consensus for refractory CCH definition...... for clinical and research use. The preparation of the final consensus followed three stages. Internal between authors, a larger between all European Headache Federation members and finally an international one among all investigators that have published clinical studies on cluster headache the last five years...

  1. I Cluster geografici

    Directory of Open Access Journals (Sweden)

    Maurizio Rosina

    2010-03-01

    Full Text Available Geographic ClustersOver the past decade, public alphanumeric database have been growing at exceptional rate. Most of data can be georeferenced, so that is possible gaining new knowledge from such databases. The contribution of this paper is two-fold. We first present a model of geographic clusters, which uses only geographic and functionally data properties. The model is useful to process huge amount of public/government data, even daily upgrading. After that, we merge the model into the framework GEOPOI (GEOcoding Points Of Interest, and show some graphic map results.

  2. I Cluster geografici

    Directory of Open Access Journals (Sweden)

    Maurizio Rosina

    2010-03-01

    Full Text Available Geographic Clusters Over the past decade, public alphanumeric database have been growing at exceptional rate. Most of data can be georeferenced, so that is possible gaining new knowledge from such databases. The contribution of this paper is two-fold. We first present a model of geographic clusters, which uses only geographic and functionally data properties. The model is useful to process huge amount of public/government data, even daily upgrading. After that, we merge the model into the framework GEOPOI (GEOcoding Points Of Interest, and show some graphic map results.

  3. Clustering via Kernel Decomposition

    DEFF Research Database (Denmark)

    Have, Anna Szynkowiak; Girolami, Mark A.; Larsen, Jan

    2006-01-01

    Methods for spectral clustering have been proposed recently which rely on the eigenvalue decomposition of an affinity matrix. In this work it is proposed that the affinity matrix is created based on the elements of a non-parametric density estimator. This matrix is then decomposed to obtain...... posterior probabilities of class membership using an appropriate form of nonnegative matrix factorization. The troublesome selection of hyperparameters such as kernel width and number of clusters can be obtained using standard cross-validation methods as is demonstrated on a number of diverse data sets....

  4. A genome-wide analysis of nonribosomal peptide synthetase gene clusters and their peptides in a Planktothrix rubescens strain

    Directory of Open Access Journals (Sweden)

    Nederbragt Alexander J

    2009-08-01

    Full Text Available Abstract Background Cyanobacteria often produce several different oligopeptides, with unknown biological functions, by nonribosomal peptide synthetases (NRPS. Although some cyanobacterial NRPS gene cluster types are well described, the entire NRPS genomic content within a single cyanobacterial strain has never been investigated. Here we have combined a genome-wide analysis using massive parallel pyrosequencing ("454" and mass spectrometry screening of oligopeptides produced in the strain Planktothrix rubescens NIVA CYA 98 in order to identify all putative gene clusters for oligopeptides. Results Thirteen types of oligopeptides were uncovered by mass spectrometry (MS analyses. Microcystin, cyanopeptolin and aeruginosin synthetases, highly similar to already characterized NRPS, were present in the genome. Two novel NRPS gene clusters were associated with production of anabaenopeptins and microginins, respectively. Sequence-depth of the genome and real-time PCR data revealed three copies of the microginin gene cluster. Since NRPS gene cluster candidates for microviridin and oscillatorin synthesis could not be found, putative (gene encoded precursor peptide sequences to microviridin and oscillatorin were found in the genes mdnA and oscA, respectively. The genes flanking the microviridin and oscillatorin precursor genes encode putative modifying enzymes of the precursor oligopeptides. We therefore propose ribosomal pathways involving modifications and cyclisation for microviridin and oscillatorin. The microviridin, anabaenopeptin and cyanopeptolin gene clusters are situated in close proximity to each other, constituting an oligopeptide island. Conclusion Altogether seven nonribosomal peptide synthetase (NRPS gene clusters and two gene clusters putatively encoding ribosomal oligopeptide biosynthetic pathways were revealed. Our results demonstrate that whole genome shotgun sequencing combined with MS-directed determination of oligopeptides successfully

  5. The globular cluster system of NGC 1316. IV. Nature of the star cluster complex SH2

    Science.gov (United States)

    Richtler, T.; Husemann, B.; Hilker, M.; Puzia, T. H.; Bresolin, F.; Gómez, M.

    2017-05-01

    Context. The light of the merger remnant NGC 1316 (Fornax A) is dominated by old and intermediate-age stars. The only sign of current star formation in this big galaxy is the Hii region SH2, an isolated star cluster complex with a ring-like morphology and an estimated age of 0.1 Gyr at a galactocentric distance of about 35 kpc. A nearby intermediate-age globular cluster, surrounded by weak line emission and a few more young star clusters, is kinematically associated. The origin of this complex is enigmatic. Aims: We want to investigate the nature of this star cluster complex. The nebular emission lines permit a metallicity determination which can discriminate between a dwarf galaxy or other possible precursors. Methods: We used the Integral Field Unit (IFU) of the VIMOS instrument at the Very Large Telescope of the European Southern Observatory in high dispersion mode to study the morphology, kinematics, and metallicity employing line maps, velocity maps, and line diagnostics of a few characteristic spectra. Results: The line ratios of different spectra vary, indicating highly structured Hii regions, but define a locus of uniform metallicity. The strong-line diagnostic diagrams and empirical calibrations point to a nearly solar or even super-solar oxygen abundance. The velocity dispersion of the gas is highest in the region offset from the bright clusters. Star formation may be active on a low level. There is evidence for a large-scale disk-like structure in the region of SH2, which would make the similar radial velocity of the nearby globular cluster easier to understand. Conclusions: The high metallicity does not fit to a dwarf galaxy as progenitor. We favour the scenario of a free-floating gaseous complex having its origin in the merger 2 Gyr ago. Over a long period the densities increased secularly until finally the threshold for star formation was reached. SH2 illustrates how massive star clusters can form outside starbursts and without a considerable field

  6. Hemopoietic precursor cell regeneration following irradiation and syngeneic marrow transplantation

    Energy Technology Data Exchange (ETDEWEB)

    Melchner, H. von

    1983-01-01

    The transplantation of hemopoietic cells into adequately pretreated recipients represents one of the most promising approaches in the treatment of immunohematological disorders such as aplastic anemia, immunodeficiency diseases, leukemias and malignant lymphomas. The basic property of the hemopoietic cells permitting such therapeutic procedure, namely, the capacity of hemopoietic precursors to actively proliferate and differentiate in recipients suffering the consequences of various kinds of hemopoietic failure, represents the subject of the present review. The main cell populations addressed in the subsequent sections are the hemopoietic precursor cells. Mature end cells and in particular lymphocytes did not receive as much attention.

  7. IL-9-Producing Mast Cell Precursors and Food Allergy

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0517 TITLE: IL-9-Producing Mast Cell Precursors and Food Allergy PRINCIPAL INVESTIGATOR: Dr. Simon P. Hogan PhD...IL-9-Producing Mast Cell Precursors and Food Allergy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yui Hsi Wang, Sunil...threatening anaphylaxis. We have identified a novel multi-functional IL-9-producing mucosal mast cells (MMC9s) that produce large amounts of IL-9, IL

  8. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  9. Differentiation of Mouse Embryonic Stem Cells into Ventral Foregut Precursors

    DEFF Research Database (Denmark)

    Rothová, Michaela; Hölzenspies, Jurriaan J; Livigni, Alessandra

    2016-01-01

    Anterior definitive endoderm (ADE), the ventral foregut precursor, is both an important embryonic signaling center and a unique multipotent precursor of liver, pancreas, and other organs. Here, a method is described for the differentiation of mouse embryonic stem cells (mESCs) to definitive...... endoderm with pronounced anterior character. ADE-containing cultures can be produced in vitro by suspension (embryoid body) culture or in a serum-free adherent monolayer culture. ESC-derived ADE cells are committed to endodermal fates and can undergo further differentiation in vitro towards ventral foregut...

  10. Multi-Optimisation Consensus Clustering

    Science.gov (United States)

    Li, Jian; Swift, Stephen; Liu, Xiaohui

    Ensemble Clustering has been developed to provide an alternative way of obtaining more stable and accurate clustering results. It aims to avoid the biases of individual clustering algorithms. However, it is still a challenge to develop an efficient and robust method for Ensemble Clustering. Based on an existing ensemble clustering method, Consensus Clustering (CC), this paper introduces an advanced Consensus Clustering algorithm called Multi-Optimisation Consensus Clustering (MOCC), which utilises an optimised Agreement Separation criterion and a Multi-Optimisation framework to improve the performance of CC. Fifteen different data sets are used for evaluating the performance of MOCC. The results reveal that MOCC can generate more accurate clustering results than the original CC algorithm.

  11. Photochemistry in rare gas clusters

    International Nuclear Information System (INIS)

    Moeller, T.; Haeften, K. von; Pietrowski, R. von

    1999-01-01

    In this contribution photochemical processes in pure rare gas clusters will be discussed. The relaxation dynamics of electronically excited He clusters is investigated with luminescence spectroscopy. After electronic excitation of He clusters many sharp lines are observed in the visible and infrared spectral range which can be attributed to He atoms and molecules desorbing from the cluster. It turns out that the desorption of electronically excited He atoms and molecules is an important decay channel. The findings for He clusters are compared with results for Ar clusters. While desorption of electronically excited He atoms is observed for all clusters containing up to several thousand atoms a corresponding process in Ar clusters is only observed for very small clusters (N<10). (orig.)

  12. Photochemistry in rare gas clusters

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, T.; Haeften, K. von; Pietrowski, R. von [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Hamburger Synchrotronstrahlungslabor; Laarman, T. [Universitaet Hamburg, II. Institut fuer Experimentalphysik, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    1999-12-01

    In this contribution photochemical processes in pure rare gas clusters will be discussed. The relaxation dynamics of electronically excited He clusters is investigated with luminescence spectroscopy. After electronic excitation of He clusters many sharp lines are observed in the visible and infrared spectral range which can be attributed to He atoms and molecules desorbing from the cluster. It turns out that the desorption of electronically excited He atoms and molecules is an important decay channel. The findings for He clusters are compared with results for Ar clusters. While desorption of electronically excited He atoms is observed for all clusters containing up to several thousand atoms a corresponding process in Ar clusters is only observed for very small clusters (N<10). (orig.)

  13. Globular clusters, old and young

    International Nuclear Information System (INIS)

    Samus', N.N.

    1984-01-01

    The problem of similarity of and difference in the globular and scattered star clusters is considered. Star clusters in astronomy are related either to globular or to scattered ones according to the structure of Hertzsprung-Russell diagram constructed for star clusters, but not according to the appearance. The qlobular clusters in the Galaxy are composed of giants and subgiants, which testifies to the old age of the globular clusters. The Globular clusters in the Magellanic clouds are classified into ''red'' ones - similar to the globular clusters of the Galaxy, and ''blue'' ones - similar to them in appearance but differing extremely by the star composition and so by the age. The old star clusters are suggested to be called globular ones, while another name (''populous'', for example) is suggested to be used for other clusters similar to globular ones only in appearance

  14. Globular clusters and galaxy halos

    International Nuclear Information System (INIS)

    Van Den Bergh, S.

    1984-01-01

    Using semipartial correlation coefficients and bootstrap techniques, a study is made of the important features of globular clusters with respect to the total number of galaxy clusters and dependence of specific galaxy cluster on parent galaxy type, cluster radii, luminosity functions and cluster ellipticity. It is shown that the ellipticity of LMC clusters correlates significantly with cluster luminosity functions, but not with cluster age. The cluter luminosity value above which globulars are noticeably flattened may differ by a factor of about 100 from galaxy to galaxy. Both in the Galaxy and in M31 globulars with small core radii have a Gaussian distribution over luminosity, whereas clusters with large core radii do not. In the cluster systems surrounding the Galaxy, M31 and NGC 5128 the mean radii of globular clusters was found to increase with the distance from the nucleus. Central galaxies in rich clusters have much higher values for specific globular cluster frequency than do other cluster ellipticals, suggesting that such central galaxies must already have been different from normal ellipticals at the time they were formed

  15. Clustering of resting state networks.

    Directory of Open Access Journals (Sweden)

    Megan H Lee

    Full Text Available The goal of the study was to demonstrate a hierarchical structure of resting state activity in the healthy brain using a data-driven clustering algorithm.The fuzzy-c-means clustering algorithm was applied to resting state fMRI data in cortical and subcortical gray matter from two groups acquired separately, one of 17 healthy individuals and the second of 21 healthy individuals. Different numbers of clusters and different starting conditions were used. A cluster dispersion measure determined the optimal numbers of clusters. An inner product metric provided a measure of similarity between different clusters. The two cluster result found the task-negative and task-positive systems. The cluster dispersion measure was minimized with seven and eleven clusters. Each of the clusters in the seven and eleven cluster result was associated with either the task-negative or task-positive system. Applying the algorithm to find seven clusters recovered previously described resting state networks, including the default mode network, frontoparietal control network, ventral and dorsal attention networks, somatomotor, visual, and language networks. The language and ventral attention networks had significant subcortical involvement. This parcellation was consistently found in a large majority of algorithm runs under different conditions and was robust to different methods of initialization.The clustering of resting state activity using different optimal numbers of clusters identified resting state networks comparable to previously obtained results. This work reinforces the observation that resting state networks are hierarchically organized.

  16. Clustering in Ethiopia

    African Journals Online (AJOL)

    Background: The importance of local variations in patterns of health and disease are increasingly recognised, but, particularly in the case of tropical infections, available methods and resources for characterising disease clusters in time and space are limited. Whilst the Global Positioning System. (GPS) allows accurate and ...

  17. Hardness of Clustering

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Hardness of Clustering. Both k-means and k-medians intractable (when n and d are both inputs even for k =2). The best known deterministic algorithms. are based on Voronoi partitioning that. takes about time. Need for approximation – “close” to optimal.

  18. On small clusters

    International Nuclear Information System (INIS)

    Bernardes, N.

    1984-01-01

    A discussion is presented of zero-point motion effects on the binding energy of a small cluster of identical particles interacting through short range attractive-repulsive forces. The model is appropriate to a discussion of both Van der Waals as well as nuclear forces. (Author) [pt

  19. Emergence of regional clusters

    DEFF Research Database (Denmark)

    Dahl, Michael S.; Østergaard, Christian Richter; Dalum, Bent

    2010-01-01

    The literature on regional clusters has increased considerably during the last decade. The emergence and growth patterns are usually explained by such factors as unique local culture, regional capabilities, tacit knowledge or the existence of location-specific externalities (knowledge spillovers...

  20. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  1. Greedy subspace clustering.

    Science.gov (United States)

    2016-09-01

    We consider the problem of subspace clustering: given points that lie on or near the union of many low-dimensional linear subspaces, recover the subspaces. To this end, one first identifies sets of points close to the same subspace and uses the sets ...

  2. Clustering mechanism of oxocarboxylic acids involving hydration reaction: Implications for the atmospheric models

    Science.gov (United States)

    Liu, Ling; Kupiainen-Määttä, Oona; Zhang, Haijie; Li, Hao; Zhong, Jie; Kurtén, Theo; Vehkamäki, Hanna; Zhang, Shaowen; Zhang, Yunhong; Ge, Maofa; Zhang, Xiuhui; Li, Zesheng

    2018-06-01

    The formation of atmospheric aerosol particles from condensable gases is a dominant source of particulate matter in the boundary layer, but the mechanism is still ambiguous. During the clustering process, precursors with different reactivities can induce various chemical reactions in addition to the formation of hydrogen bonds. However, the clustering mechanism involving chemical reactions is rarely considered in most of the nucleation process models. Oxocarboxylic acids are common compositions of secondary organic aerosol, but the role of oxocarboxylic acids in secondary organic aerosol formation is still not fully understood. In this paper, glyoxylic acid, the simplest and the most abundant atmospheric oxocarboxylic acid, has been selected as a representative example of oxocarboxylic acids in order to study the clustering mechanism involving hydration reactions using density functional theory combined with the Atmospheric Clusters Dynamic Code. The hydration reaction of glyoxylic acid can occur either in the gas phase or during the clustering process. Under atmospheric conditions, the total conversion ratio of glyoxylic acid to its hydration reaction product (2,2-dihydroxyacetic acid) in both gas phase and clusters can be up to 85%, and the product can further participate in the clustering process. The differences in cluster structures and properties induced by the hydration reaction lead to significant differences in cluster formation rates and pathways at relatively low temperatures.

  3. Data clustering algorithms and applications

    CERN Document Server

    Aggarwal, Charu C

    2013-01-01

    Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as fea

  4. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  5. Cluster model of the nucleus

    International Nuclear Information System (INIS)

    Horiuchi, H.; Ikeda, K.

    1986-01-01

    This article reviews the development of the cluster model study. The stress is put on two points; one is how the cluster structure has come to be regarded as a fundamental structure in light nuclei together with the shell-model structure, and the other is how at present the cluster model is extended to and connected with the studies of the various subjects many of which are in the neighbouring fields. The authors the present the main theme with detailed explanations of the fundamentals of the microscopic cluster model which have promoted the development of the cluster mode. Examples of the microscopic cluster model study of light nuclear structure are given

  6. Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis

    Science.gov (United States)

    Koh, Esther G. L.; Lam, Kevin; Christoffels, Alan; Erdmann, Mark V.; Brenner, Sydney; Venkatesh, Byrappa

    2003-01-01

    The Hox genes encode transcription factors that play a key role in specifying body plans of metazoans. They are organized into clusters that contain up to 13 paralogue group members. The complex morphology of vertebrates has been attributed to the duplication of Hox clusters during vertebrate evolution. In contrast to the single Hox cluster in the amphioxus (Branchiostoma floridae), an invertebrate-chordate, mammals have four clusters containing 39 Hox genes. Ray-finned fishes (Actinopterygii) such as zebrafish and fugu possess more than four Hox clusters. The coelacanth occupies a basal phylogenetic position among lobe-finned fishes (Sarcopterygii), which gave rise to the tetrapod lineage. The lobe fins of sarcopterygians are considered to be the evolutionary precursors of tetrapod limbs. Thus, the characterization of Hox genes in the coelacanth should provide insights into the origin of tetrapod limbs. We have cloned the complete second exon of 33 Hox genes from the Indonesian coelacanth, Latimeria menadoensis, by extensive PCR survey and genome walking. Phylogenetic analysis shows that 32 of these genes have orthologs in the four mammalian HOX clusters, including three genes (HoxA6, D1, and D8) that are absent in ray-finned fishes. The remaining coelacanth gene is an ortholog of hoxc1 found in zebrafish but absent in mammals. Our results suggest that coelacanths have four Hox clusters bearing a gene complement more similar to mammals than to ray-finned fishes, but with an additional gene, HoxC1, which has been lost during the evolution of mammals from lobe-finned fishes. PMID:12547909

  7. Cluster analysis of tropical cyclone tracks in the Southern Hemisphere

    Energy Technology Data Exchange (ETDEWEB)

    Ramsay, Hamish A. [Monash University, Monash Weather and Climate, School of Mathematical Sciences, Clayton, VIC (Australia); Camargo, Suzana J.; Kim, Daehyun [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-08-15

    A probabilistic clustering method is used to describe various aspects of tropical cyclone (TC) tracks in the Southern Hemisphere, for the period 1969-2008. A total of 7 clusters are examined: three in the South Indian Ocean, three in the Australian Region, and one in the South Pacific Ocean. Large-scale environmental variables related to TC genesis in each cluster are explored, including sea surface temperature, low-level relative vorticity, deep-layer vertical wind shear, outgoing longwave radiation, El Nino-Southern Oscillation (ENSO) and the Madden-Julian Oscillation (MJO). Composite maps, constructed 2 days prior to genesis, show some of these to be significant precursors to TC formation - most prominently, westerly wind anomalies equatorward of the main development regions. Clusters are also evaluated with respect to their genesis location, seasonality, mean peak intensity, track duration, landfall location, and intensity at landfall. ENSO is found to play a significant role in modulating annual frequency and mean genesis location in three of the seven clusters (two in the South Indian Ocean and one in the Pacific). The ENSO-modulating effect on genesis frequency is caused primarily by changes in low-level zonal flow between the equator and 10 S, and associated relative vorticity changes in the main development regions. ENSO also has a significant effect on mean genesis location in three clusters, with TCs forming further equatorward (poleward) during El Nino (La Nina) in addition to large shifts in mean longitude. The MJO has a strong influence on TC genesis in all clusters, though the amount modulation is found to be sensitive to the definition of the MJO. (orig.)

  8. Cyanide leaching of Au/CeO2: highly active gold clusters for 1,3-butadiene hydrogenation

    NARCIS (Netherlands)

    Guan, Y.; Hensen, E.J.M.

    2009-01-01

    Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au LIII edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold

  9. Cluster-derived Ir-Sn/SiO2 catalysts for the catalytic dehydrogenation of propane: A spectroscopic study

    KAUST Repository

    Gallo, Alessandro; Psaro, Rinaldo; Guidotti, Matteo; Dal Santo, Vladimiro; Pergola, Roberto Della; Masih, Dilshad; Izumi, Yasuo

    2013-01-01

    Ir-Sn bimetallic silica-based materials have been prepared via deposition of the molecular organometallic clusters (NEt4)2[Ir 4(CO)10(SnCl3)2] and NEt 4[Ir6(CO)15(SnCl3)] or via deposition of Sn organometallic precursor Sn(n-C4H9) 4 onto pre

  10. TreeCluster: Massively scalable transmission clustering using phylogenetic trees

    OpenAIRE

    Moshiri, Alexander

    2018-01-01

    Background: The ability to infer transmission clusters from molecular data is critical to designing and evaluating viral control strategies. Viral sequencing datasets are growing rapidly, but standard methods of transmission cluster inference do not scale well beyond thousands of sequences. Results: I present TreeCluster, a cross-platform tool that performs transmission cluster inference on a given phylogenetic tree orders of magnitude faster than existing inference methods and supports multi...

  11. Developmental Dyslexia: Early Precursors, Neurobehavioral Markers, and Biological Substrates

    Science.gov (United States)

    Benasich, April A., Ed.; Fitch, R. Holly, Ed.

    2012-01-01

    Understanding the precursors and early indicators of dyslexia is key to early identification and effective intervention. Now there's a single research volume that brings together the very latest knowledge on the earliest stages of dyslexia and the diverse genetic, neurobiological, and cognitive factors that may contribute to it. Based on findings…

  12. Manganite perovskite ceramics, their precursors and methods for forming

    Science.gov (United States)

    Payne, David Alan; Clothier, Brent Allen

    2015-03-10

    Disclosed are a variety of ceramics having the formula Ln.sub.1-xM.sub.xMnO.sub.3, where 0.Itoreq.x.Itoreq.1 and where Ln is La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu or Y; M is Ca, Sr, Ba, Cd, or Pb; manganite precursors for preparing the ceramics; a method for preparing the precursors; and a method for transforming the precursors into uniform, defect-free ceramics having magnetoresistance properties. The manganite precursors contain a sol and are derived from the metal alkoxides: Ln(OR).sub.3, M(OR).sub.2 and Mn(OR).sub.2, where R is C.sub.2 to C.sub.6 alkyl or C.sub.3 to C.sub.9 alkoxyalkyl, or C.sub.6 to C.sub.9 aryl. The preferred ceramics are films prepared by a spin coating method and are particularly suited for incorporation into a device such as an integrated circuit device.

  13. Development of precursors recognition methods in vector signals

    Science.gov (United States)

    Kapralov, V. G.; Elagin, V. V.; Kaveeva, E. G.; Stankevich, L. A.; Dremin, M. M.; Krylov, S. V.; Borovov, A. E.; Harfush, H. A.; Sedov, K. S.

    2017-10-01

    Precursor recognition methods in vector signals of plasma diagnostics are presented. Their requirements and possible options for their development are considered. In particular, the variants of using symbolic regression for building a plasma disruption prediction system are discussed. The initial data preparation using correlation analysis and symbolic regression is discussed. Special attention is paid to the possibility of using algorithms in real time.

  14. High regioselective acetylation of vitamin A precursors using lipase ...

    African Journals Online (AJOL)

    Administrator

    2011-09-26

    Sep 26, 2011 ... High regioselective acetylation of vitamin A precursors using lipase B from Candida antarctica in organic media. Jingpeng Sun, Keju Jing* and Yinghua Lu. Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen. University, Xiamen 361005, P. R. ...

  15. Technical Note: Methionine, a precursor of methane in living plants

    Science.gov (United States)

    Lenhart, K.; Althoff, F.; Greule, M.; Keppler, F.

    2015-03-01

    When terrestrial plants were identified as producers of the greenhouse gas methane, much discussion and debate ensued not only about their contribution to the global methane budget but also with regard to the validity of the observation itself. Although the phenomenon has now become more accepted for both living and dead plants, the mechanism of methane formation in living plants remains to be elucidated and its precursor compounds to be identified. We made use of stable isotope techniques to verify the in vivo formation of methane, and, in order to identify the carbon precursor, 13C positionally labeled organic compounds were employed. Here we show that the amino acid L-methionine acts as a methane precursor in living plants. Employing 13C-labeled methionine clearly identified the sulfur-bound methyl group of methionine as a carbon precursor of methane released from lavender (Lavandula angustifolia). Furthermore, when lavender plants were stressed physically, methane release rates and the stable carbon isotope values of the emitted methane greatly increased. Our results provide additional support that plants possess a mechanism for methane production and suggest that methionine might play an important role in the formation of methane in living plants, particularly under stress conditions.

  16. Process for producing ceramic nitrides anc carbonitrides and their precursors

    Science.gov (United States)

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  17. Boron nitride ceramics from molecular precursors: synthesis, properties and applications.

    Science.gov (United States)

    Bernard, Samuel; Salameh, Chrystelle; Miele, Philippe

    2016-01-21

    Hexagonal boron nitride (h-BN) attracts considerable interest because its structure is similar to that of carbon graphite while it displays different properties which are of interest for environmental and green technologies. The polar nature of the B-N bond in sp(2)-bonded BN makes it a wide band gap insulator with different chemistry on its surface and particular physical and chemical properties such as a high thermal conductivity, a high temperature stability, a high resistance to corrosion and oxidation and a strong UV emission. It is chemically inert and nontoxic and has good environmental compatibility. h-BN also has enhanced physisorption properties due to the dipolar fields near its surface. Such properties are closely dependent on the processing method. Bottom-up approaches consist of transforming molecular precursors into non-oxide ceramics with retention of the structural units inherent to the precursor molecule. The purpose of the present review is to give an up-to-date overview on the most recent achievements in the preparation of h-BN from borazine-based molecular single-source precursors including borazine and 2,4,6-trichloroborazine through both vapor phase syntheses and methods in the liquid/solid state involving polymeric intermediates, called the Polymer-Derived Ceramics (PDCs) route. In particular, the effect of the chemistry, composition and architecture of the borazine-based precursors and derived polymers on the shaping ability as well as the properties of h-BN is particularly highlighted.

  18. Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells

    NARCIS (Netherlands)

    Maldonado, Paloma P; Angulo, María Cecilia

    The surprising discovery of bona fide synapses between neurons and oligodendrocytes precursor cells (OPCs) 15 years ago placed these progenitors as real partners of neurons in the CNS. The role of these synapses has not been established yet, but a main hypothesis is that neuron-OPC synaptic activity

  19. Methionine as a Precursor of Ethylene—Commentary

    Science.gov (United States)

    Lieberman et al. showed in a 1966 publication of Plant Physiology that methionine is a precursor of ethylene. It was the first paper that showed ethylene carbons are derived from carbons 3 and 4 of methionine. This paper catalyzed remarkable interest among plant biologists to elucidate the biosynth...

  20. Carbon molecular sieve membranes prepared from porous fiber precursor

    NARCIS (Netherlands)

    Barsema, J.N.; van der Vegt, N.F.A.; Koops, G.H.; Wessling, Matthias

    2002-01-01

    Carbon molecular sieve (CMS) membranes are usually prepared from dense polymeric precursors that already show intrinsic gas separation properties. The rationale behind this approach is that the occurrence of any kind of initial porosity will deteriorate the final CMS performance. We will show that

  1. Polyazidopyrimidines: High Energy Compounds and Precursors to Carbon Nanotubes (Postprint)

    National Research Council Canada - National Science Library

    Ye, Chengfeng; Gao, Haixiang; Boatz, Jerry A; Drake, Gregory W; Twamley, Brendan; Shreeve, Jean'ne M

    2006-01-01

    ...). The compound 4,4',6,6'-tetra(azido)azo-1,3,5-triazine (2), has a heat of formation of 2171 (6164 kJ kg -1) (Fig. 1). Recently it was demonstrated that 1 and 2 were good precursors to nano carbon nitride materials...

  2. NdRhSn: A ferromagnet with an antiferromagnetic precursor

    Czech Academy of Sciences Publication Activity Database

    Mihalik, M.; Prokleška, J.; Kamarád, Jiří; Prokeš, K.; Isnard, O.; McIntyre, G. J.; Dönni, A.; Yoshii, S.; Kitazawa, H.; Sechovský, V.; de Boer, F.R.

    2011-01-01

    Roč. 83, č. 10 (2011), "104403-1"-"104403-10" ISSN 1098-0121 R&D Projects: GA ČR GA202/09/1027 Institutional research plan: CEZ:AV0Z10100521 Keywords : NdRhSn * ferromagnet * antiferromagnetic precursor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011

  3. Electrical properties of a novel lead alkoxide precursor: Lead glycolate

    International Nuclear Information System (INIS)

    Tangboriboon, Nuchnapa; Pakdeewanishsukho, Kittikhun; Jamieson, Alexander; Sirivat, Anuvat; Wongkasemjit, Sujitra

    2006-01-01

    The reaction of lead acetate trihydrate Pb(CH 3 COO) 2 .3H 2 O and ethylene glycol, using triethylenetetramine (TETA) as a catalyst, provides in one step access to a polymer-like precursor of lead glycolate [-PbOCH 2 CH 2 O-]. On the basis of high-resolution mass spectroscopy, chemical analysis composition, FTIR, 13 C-solid state NMR and TGA, the lead glycolate precursor can be identified as a trimer structure. The FTIR spectrum demonstrates the characteristics of lead glycolate; the peaks at 1086 and 1042 cm -1 can be assigned to the C-O-Pb stretchings. The 13 C-solid state NMR spectrum gives notably only one peak at 68.639 ppm belonging to the ethylene glycol ligand. The phase transformations of lead glycolate and lead acetate trihydrate to lead oxide, their microstructures, and electrical properties were found to vary with increasing temperature. The lead glycolate precursor has superior electrical properties relative to those of lead acetate trihydrate, suggesting that the lead glycolate precursor can possibly be used as a starting material for producing electrical and semiconducting ceramics, viz. ferroelectric, anti-ferroelectric, and piezoelectric materials

  4. Deposition on disordered substrates with precursor layer diffusion

    Science.gov (United States)

    Filipe, J. A. N.; Rodgers, G. J.; Tavassoli, Z.

    1998-09-01

    Recently we introduced a one-dimensional accelerated random sequential adsorption process as a model for chemisorption with precursor layer diffusion. In this paper we consider this deposition process on disordered or impure substrates. The problem is solved exactly on both the lattice and continuum and for various impurity distributions. The results are compared with those from the standard random sequential adsorption model.

  5. College Student Stress: A Predictor of Eating Disorder Precursor Behaviors

    Science.gov (United States)

    Shelton, Virginia L.; Valkyrie, Karena T.

    2010-01-01

    Eating disorders are compulsive behaviors that can consume a person's life to the point of becoming life threatening. Previous research found stress associated with eating disorders. College can be a stressful time. If stress predicted precursor behaviors to eating disorders, then counselors would have a better chance to help students sooner. This…

  6. Low temperature catalyst-assisted pyrolysis of polymer precursors to ...

    Indian Academy of Sciences (India)

    2017-11-15

    Nov 15, 2017 ... convert the organic compounds into high-performance car- bon. PAN is one of the ... yield, RF organic gel is also identified as a widely used precursor to produce ..... sis were applied to estimate radius of gyration (Rg) and surface ... pyrolysis approach without compromising the yield and qual- ity of the final ...

  7. Xylopia Aethiopica lowers Plasma Lipid Precursors of Reproductive ...

    African Journals Online (AJOL)

    Xylopia Aethiopica lowers Plasma Lipid Precursors of Reproductive Hormones in Wister Rats. PC Onyebuagu, CP Aloamaka, JC Igweh. Abstract. This study investigated the effects of dietary Xylopia aethiopica on reproductive hormones and plasma lipids in rats. 10 male and 10 female Wistar rats weighing 200-220g and ...

  8. The rotation of galaxy clusters

    International Nuclear Information System (INIS)

    Tovmassian, H.M.

    2015-01-01

    The method for detection of the galaxy cluster rotation based on the study of distribution of member galaxies with velocities lower and higher of the cluster mean velocity over the cluster image is proposed. The search for rotation is made for flat clusters with a/b> 1.8 and BMI type clusters which are expected to be rotating. For comparison there were studied also round clusters and clusters of NBMI type, the second by brightness galaxy in which does not differ significantly from the cluster cD galaxy. Seventeen out of studied 65 clusters are found to be rotating. It was found that the detection rate is sufficiently high for flat clusters, over 60 per cent, and clusters of BMI type with dominant cD galaxy, ≈ 35 per cent. The obtained results show that clusters were formed from the huge primordial gas clouds and preserved the rotation of the primordial clouds, unless they did not have mergings with other clusters and groups of galaxies, in the result of which the rotation has been prevented

  9. Single-cluster dynamics for the random-cluster model

    NARCIS (Netherlands)

    Deng, Y.; Qian, X.; Blöte, H.W.J.

    2009-01-01

    We formulate a single-cluster Monte Carlo algorithm for the simulation of the random-cluster model. This algorithm is a generalization of the Wolff single-cluster method for the q-state Potts model to noninteger values q>1. Its results for static quantities are in a satisfactory agreement with those

  10. Choosing the Number of Clusters in K-Means Clustering

    Science.gov (United States)

    Steinley, Douglas; Brusco, Michael J.

    2011-01-01

    Steinley (2007) provided a lower bound for the sum-of-squares error criterion function used in K-means clustering. In this article, on the basis of the lower bound, the authors propose a method to distinguish between 1 cluster (i.e., a single distribution) versus more than 1 cluster. Additionally, conditional on indicating there are multiple…

  11. Heavy hitters via cluster-preserving clustering

    DEFF Research Database (Denmark)

    Larsen, Kasper Green; Nelson, Jelani; Nguyen, Huy L.

    2016-01-01

    In the turnstile lp heavy hitters problem with parameter ε, one must maintain a high-dimensional vector xεRn subject to updates of the form update (i,Δ) causing the change xi≤ ← xi + Δ, where iε[n], ΔεR. Upon receiving a query, the goal is to report every "heavy hitter" iε[n] with |xi| ≥ε......|x|p as part of a list L⊆[n] of size O(1/εp), i.e. proportional to the maximum possible number of heavy hitters. For any pε(0,2] the COUNTSKETCH of [CCFC04] solves lp heavy hitters using O(ε-plog n) words of space with O(log n) update time, O(nlog n) query time to output L, and whose output after any query......, providing correctness whp. In fact, a simpler version of our algorithm for p = 1 in the strict turnstile model answers queries even faster than the "dyadic trick" by roughly a log n factor, dominating it in all regards. Our main innovation is an efficient reduction from the heavy hitters to a clustering...

  12. Solution precursor plasma deposition of nanostructured ZnO coatings

    International Nuclear Information System (INIS)

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2011-01-01

    Highlights: → The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. → It is highly capable of developing tailorable nanostructures. → This technique can be employed to spray the coatings on any kind of substrates including polymers. → The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance (∼65-80%) and reflectivity (∼65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 mΩ cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  13. Solution precursor plasma deposition of nanostructured ZnO coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Raghavender [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Guduru, Ramesh K., E-mail: rkguduru@umich.edu [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States); Mohanty, Pravansu S. [Department of Mechanical Engineering, University of Michigan - Dearborn, MI 48128 (United States)

    2011-08-15

    Highlights: {yields} The solution precursor route employed is an inexpensive process with capability to produce large scale coatings at fast rates on mass scale production. {yields} It is highly capable of developing tailorable nanostructures. {yields} This technique can be employed to spray the coatings on any kind of substrates including polymers. {yields} The ZnO coatings developed via solution precursor plasma spray process have good electrical conductivity and reflectivity properties in spite of possessing large amount of particulate boundaries, porosity and nanostructured grains. -- Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material that has various applications including optical, electronic, biomedical and corrosion protection. It is usually synthesized via processing routes, such as vapor deposition techniques, sol-gel, spray pyrolysis and thermal spray of pre-synthesized ZnO powders. Cheaper and faster synthesis techniques are of technological importance due to increased demand in alternative energy applications. Here, we report synthesis of nanostructured ZnO coatings directly from a solution precursor in a single step using plasma spray technique. Nanostructured ZnO coatings were deposited from the solution precursor prepared using zinc acetate and water/isopropanol. An axial liquid atomizer was employed in a DC plasma spray torch to create fine droplets of precursor for faster thermal treatment in the plasma plume to form ZnO. Microstructures of coatings revealed ultrafine particulate agglomerates. X-ray diffraction confirmed polycrystalline nature and hexagonal Wurtzite crystal structure of the coatings. Transmission electron microscopy studies showed fine grains in the range of 10-40 nm. Observed optical transmittance ({approx}65-80%) and reflectivity ({approx}65-70%) in the visible spectrum, and electrical resistivity (48.5-50.1 m{Omega} cm) of ZnO coatings are attributed to ultrafine particulate morphology of the coatings.

  14. Evolution of the spherical clusters

    International Nuclear Information System (INIS)

    Surdin, V.G.

    1978-01-01

    The possible processes of the Galaxy spherical clusters formation and evolution are described on a popular level. The orbits of spherical cluster motion and their spatial velocities are determined. Given are the distrbutions of spherical cluster stars according to their velocities and the observed distribution of spherical clusters in the area of the Galaxy slow evolution. The dissipation and dynamic friction processes destructing clusters with the mass less than 10 4 of solar mass and bringing about the reduction of clusters in the Galaxy are considered. The paradox of forming mainly X-ray sources in spherical clusters is explained. The schematic image of possible ways of forming X-ray sources in spherical clusters is given

  15. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  16. Structure and bonding in clusters

    International Nuclear Information System (INIS)

    Kumar, V.

    1991-10-01

    We review here the recent progress made in the understanding of the electronic and atomic structure of small clusters of s-p bonded materials using the density functional molecular dynamics technique within the local density approximation. Starting with a brief description of the method, results are presented for alkali metal clusters, clusters of divalent metals such as Mg and Be which show a transition from van der Waals or weak chemical bonding to metallic behaviour as the cluster size grows and clusters of Al, Sn and Sb. In the case of semiconductors, we discuss results for Si, Ge and GaAs clusters. Clusters of other materials such as P, C, S, and Se are also briefly discussed. From these and other available results we suggest the possibility of unique structures for the magic clusters. (author). 69 refs, 7 figs, 1 tab

  17. Random matrix improved subspace clustering

    KAUST Repository

    Couillet, Romain; Kammoun, Abla

    2017-01-01

    This article introduces a spectral method for statistical subspace clustering. The method is built upon standard kernel spectral clustering techniques, however carefully tuned by theoretical understanding arising from random matrix findings. We show

  18. Eclipsing binaries in open clusters

    DEFF Research Database (Denmark)

    Southworth, John; Clausen, J.V.

    2006-01-01

    Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August......Stars: fundamental parameters - Stars : binaries : eclipsing - Stars: Binaries: spectroscopic - Open clusters and ass. : general Udgivelsesdato: 5 August...

  19. Dynamical aspects of galaxy clustering

    International Nuclear Information System (INIS)

    Fall, S.M.

    1980-01-01

    Some recent work on the origin and evolution of galaxy clustering is reviewed, particularly within the context of the gravitational instability theory and the hot big-bang cosmological model. Statistical measures of clustering, including correlation functions and multiplicity functions, are explained and discussed. The close connection between galaxy formation and clustering is emphasized. Additional topics include the dependence of galaxy clustering on the spectrum of primordial density fluctuations and the mean mass density of the Universe. (author)

  20. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.