WorldWideScience

Sample records for biomimetics gepi-based biological

  1. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  2. Biomimetic Strategies for Sensing Biological Species

    Directory of Open Access Journals (Sweden)

    Munawar Hussain

    2013-02-01

    Full Text Available The starting point of modern biosensing was the application of actual biological species for recognition. Increasing understanding of the principles underlying such recognition (and biofunctionality in general, however, has triggered a dynamic field in chemistry and materials sciences that aims at joining the best of two worlds by combining concepts derived from nature with the processability of manmade materials, e.g., sensitivity and ruggedness. This review covers different biomimetic strategies leading to highly selective (biochemical sensors: the first section covers molecularly imprinted polymers (MIP that attempt to generate a fully artificial, macromolecular mold of a species in order to detect it selectively. A different strategy comprises of devising polymer coatings to change the biocompatibility of surfaces that can also be used to immobilized natural receptors/ligands and thus stabilize them. Rationally speaking, this leads to self-assembled monolayers closely resembling cell membranes, sometimes also including bioreceptors. Finally, this review will highlight some approaches to generate artificial analogs of natural recognition materials and biomimetic approaches in nanotechnology. It mainly focuses on the literature published since 2005.

  3. 3D Modelling of Biological Systems for Biomimetics

    Institute of Scientific and Technical Information of China (English)

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  4. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals.

    Science.gov (United States)

    Nocerino, Nunzia; Fulgione, Andrea; Iannaccone, Marco; Tomasetta, Laura; Ianniello, Flora; Martora, Francesca; Lelli, Marco; Roveri, Norberto; Capuano, Federico; Capparelli, Rosanna

    2014-01-01

    The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA). We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications.

  5. From biological membranes to biomimetic model membranes

    Directory of Open Access Journals (Sweden)

    Eeman, M.

    2010-01-01

    Full Text Available Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997 and Brown et al. (1997 who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level.

  6. Approaches for biological and biomimetic energy conversion

    OpenAIRE

    LaVan, David A.; Cha, Jennifer N.

    2006-01-01

    This article highlights areas of research at the interface of nanotechnology, the physical sciences, and biology that are related to energy conversion: specifically, those related to photovoltaic applications. Although much ongoing work is seeking to understand basic processes of photosynthesis and chemical conversion, such as light harvesting, electron transfer, and ion transport, application of this knowledge to the development of fully synthetic and/or hybrid devices is still in its infanc...

  7. Biomimetics

    Indian Academy of Sciences (India)

    P Ramachandra Rao

    2003-06-01

    The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a few natural materials and systems and explore how ideas from nature are being interpreted and modified to suit efforts aimed at designing better machines and synthesising newer materials.

  8. Controlled biological and biomimetic systems for landmine detection.

    Science.gov (United States)

    Habib, Maki K

    2007-08-30

    Humanitarian demining requires to accurately detect, locate and deactivate every single landmine and other buried mine-like objects as safely and as quickly as possible, and in the most non-invasive manner. The quality of landmine detection affects directly the efficiency and safety of this process. Most of the available methods to detect explosives and landmines are limited by their sensitivity and/or operational complexities. All landmines leak with time small amounts of their explosives that can be found on surrounding ground and plant life. Hence, explosive signatures represent the robust primary indicator of landmines. Accordingly, developing innovative technologies and efficient techniques to identify in real-time explosives residue in mined areas represents an attractive and promising approach. Biological and biologically inspired detection technology has the potential to compete with or be used in conjunction with other artificial technology to complement performance strengths. Biological systems are sensitive to many different scents concurrently, a property that has proven difficult to replicate artificially. Understanding biological systems presents unique opportunities for developing new capabilities through direct use of trained bio-systems, integration of living and non-living components, or inspiring new design by mimicking biological capabilities. It is expected that controlled bio-systems, biotechnology and microbial techniques will contribute to the advancement of mine detection and other application domains. This paper provides directions, evaluation and analysis on the progress of controlled biological and biomimetic systems for landmine detection. It introduces and discusses different approaches developed, underlining their relative advantages and limitations, and highlighting trends, safety and ecology concern, and possible future directions.

  9. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. High-valent copper in biomimetic and biological oxidations.

    Science.gov (United States)

    Keown, William; Gary, J Brannon; Stack, T Daniel P

    2017-04-01

    A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.

  11. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  12. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  13. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    Science.gov (United States)

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  14. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  15. Bions: a family of biomimetic mineralo-organic complexes derived from biological fluids.

    Directory of Open Access Journals (Sweden)

    Cheng-Yeu Wu

    Full Text Available Mineralo-organic nanoparticles form spontaneously in human body fluids when the concentrations of calcium and phosphate ions exceed saturation. We have shown previously that these mineralo-organic nanoparticles possess biomimetic properties and can reproduce the whole phenomenology of the so-called nanobacteria-mineralized entities initially described as the smallest microorganisms on earth. Here, we examine the possibility that various charged elements and ions may form mineral nanoparticles with similar properties in biological fluids. Remarkably, all the elements tested, including sodium, magnesium, aluminum, calcium, manganese, iron, cobalt, nickel, copper, zinc, strontium, and barium form mineralo-organic particles with bacteria-like morphologies and other complex shapes following precipitation with phosphate in body fluids. Upon formation, these mineralo-organic particles, which we term bions, invariably accumulate carbonate apatite during incubation in biological fluids; yet, the particles also incorporate additional elements and thus reflect the ionic milieu in which they form. Bions initially harbor an amorphous mineral phase that gradually converts to crystals in culture. Our results show that serum produces a dual inhibition-seeding effect on bion formation. Using a comprehensive proteomic analysis, we identify a wide range of proteins that bind to these mineral particles during incubation in medium containing serum. The two main binding proteins identified, albumin and fetuin-A, act as both inhibitors and seeders of bions in culture. Notably, bions possess several biomimetic properties, including the possibility to increase in size and number and to be sub-cultured in fresh culture medium. Based on these results, we propose that bions represent biological, mineralo-organic particles that may form in the body under both physiological and pathological homeostasis conditions. These mineralo-organic particles may be part of a

  16. A biomimetic functionalization approach to integration of carbon nanoutbes into biological systems

    Science.gov (United States)

    Chen, Xing; Tam, Un Chong; Bertozzi, Carolyn; Zettl, Alex

    2006-03-01

    Due to their remarkable structural, electrical, and mechanical properties, carbon nanotubes (CNTs) have potential applications in biology ranging from imaging and tissue engineering. To realize these applications, however, new strategies for controlling the interaction between CNTs and biological systems such as proteins and cells are required. Here we describe a biomimetic approach to functionalize CNTs and therefore render them biocompatibility in order to facilitate their integration into biological systems. CNTs were coated with synthetic gycopolymers that mimic cell surface mucin gycoproteins. The functionalized CNTs were soluble in water, resisted non-specific protein binding and bound specifically to biomolecules. The coated CNTs could then be integrated onto mammalian cell surface by virtue of glycan-receptor interactions. Furthermore, the functionalized CNTs are non-toxic to cells. This strategy offers new opportunities for development of biosensor to probe biological processes. References: 1. X. Chen, G. S. Lee, A. Zettl, C. R. Bertozzi, Angewandte Chemie-International Edition 43, 6111 (2004). 2. X. Chen, U. C. Tam, J. L. Czlapanski, G. S. Lee, D. Rabuka, A. Zettl, C. R. Bertozzi, submitted.

  17. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, G.J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow s

  18. Exceptionally High Rates of Biological Hydrogen Production by Biomimetic In Vitro Synthetic Enzymatic Pathways.

    Science.gov (United States)

    Kim, Eui-Jin; Wu, Chang-Hao; Adams, Michael W W; Zhang, Y-H Percival

    2016-11-02

    Hydrogen production by water splitting energized by biomass sugars is one of the most promising technologies for distributed green H2 production. Direct H2 generation from NADPH, catalysed by an NADPH-dependent, soluble [NiFe]-hydrogenase (SH1) is thermodynamically unfavourable, resulting in slow volumetric productivity. We designed the biomimetic electron transport chain from NADPH to H2 by the introduction of an oxygen-insensitive electron mediator benzyl viologen (BV) and an enzyme (NADPH rubredoxin oxidoreductase, NROR), catalysing electron transport between NADPH and BV. The H2 generation rates using this biomimetic chain increased by approximately five-fold compared to those catalysed only by SH1. The peak volumetric H2 productivity via the in vitro enzymatic pathway comprised of hyperthermophilic glucose 6-phosphate dehydrogenase, 6-phosphogluconolactonase, and 6-phosphogluconate dehydrogenase, NROR, and SH1 was 310 mmol H2 /L h(-1) , the highest rate yet reported. The concept of biomimetic electron transport chains could be applied to both in vitro and in vivo H2 production biosystems and artificial photosynthesis.

  19. Biomimetics: process, tools and practice.

    Science.gov (United States)

    Fayemi, P E; Wanieck, K; Zollfrank, C; Maranzana, N; Aoussat, A

    2017-01-23

    Biomimetics applies principles and strategies abstracted from biological systems to engineering and technological design. With a huge potential for innovation, biomimetics could evolve into a key process in businesses. Yet challenges remain within the process of biomimetics, especially from the perspective of potential users. We work to clarify the understanding of the process of biomimetics. Therefore, we briefly summarize the terminology of biomimetics and bioinspiration. The implementation of biomimetics requires a stated process. Therefore, we present a model of the problem-driven process of biomimetics that can be used for problem-solving activity. The process of biomimetics can be facilitated by existing tools and creative methods. We mapped a set of tools to the biomimetic process model and set up assessment sheets to evaluate the theoretical and practical value of these tools. We analyzed the tools in interdisciplinary research workshops and present the characteristics of the tools. We also present the attempt of a utility tree which, once finalized, could be used to guide users through the process by choosing appropriate tools respective to their own expertize. The aim of this paper is to foster the dialogue and facilitate a closer collaboration within the field of biomimetics.

  20. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.

    Science.gov (United States)

    Sreejalekshmi, Kumaran G; Nair, Prabha D

    2011-02-01

    Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field.

  1. Incorporation of uranium into a biomimetic apatite: physicochemical and biological aspects.

    Science.gov (United States)

    Chatelain, Grégory; Bourgeois, Damien; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude; Meyer, Daniel

    2015-04-01

    Bone is the main target organ for the storage of several toxic metals, including uranium. But the mode of action of uranium on bones remains poorly understood. To better assess the impact of uranium on bone cells, synthetic biomimetic apatites encompassing a controlled amount of uranium were prepared and analyzed. This study revealed the physicochemical impact of uranium on apatite mineralization: the presence of the metal induces a loss of crystallinity and a lower mineralization rate. The prepared samples were then used as substrates for bone cell culture. Osteoblasts were not sensitive to the presence of uranium in the support, whereas previous results showed a deleterious effect of uranium introduced into a cell culture solution. This work should therefore have some original prospects within the context of toxicological studies concerning the effect of metallic cations on bone cell systems.

  2. Mixed ligand Cu(II)N2O2 complexes: biomimetic synthesis, activities in vitro and biological models, theoretical calculations.

    Science.gov (United States)

    Li, Chen; Yin, Bing; Kang, Yifan; Liu, Ping; Chen, Liang; Wang, Yaoyu; Li, Jianli

    2014-12-15

    Three new mixed ligand Cu(II)N2O2 complexes, namely, [Cu(II)(2-A-6-MBT)2(m-NB)2] (1), [Cu(II)(2-ABT)2(m-NB)2] (2), and [Cu(II)(2-ABT)2(o-NB)2] (3), (2-A-6-MBT = 2-amino-6-methoxybenzothiazole, m-NB = m-nitrobenzoate, 2-ABT = 2-aminobenzothiazole, and o-NB = o-nitrobenzoate), have been prepared by the biomimetic synthesis strategy, and their structures were determined by X-ray crystallography studies and spectral methods. These complexes exhibited the effective superoxide dismutase (SOD) activity and catecholase activity. On the basis of the experimental data and computational studies, the structure-activity relationship for these complexes was investigated. The results reveal that electron-accepting abilities of these complexes and coordination geometries have significant effects on the SOD activity and catecholase activity. Then, we found that 1 and 2 exerted potent intracellular antioxidant capacity in the model of H2O2-induced oxidative stress based on HeLa cervical cancer cells, which were screened out by the cytotoxicity assays of different kinds of cells. Furthermore, 1-3 showed the favorable biocompatibility in two different biological models: Saccharomyces cerevisiae and human vascular endothelial cells. These biological experimental data are indicative of the promising application potential of these complexes in biology and pharmacology.

  3. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  4. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Cen; Kong, Xiangdong [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Zhang, Sheng-Min [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Lee, In-Seop, E-mail: inseop@yonsei.ac.kr [Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Institute of Natural Sciences, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2015-04-15

    Graphical abstract: - Highlights: • Mineral/OGP nanocomposite layers were synthesized biomimetically on Ti substrates. • Incorporated OGP affected the morphology and ultimate structure of mineral. • Incorporated OGP improved the MSCs adhesion, proliferation, and ALP activity. - Abstract: Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  5. In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid–phosphorylcholine–chitosan conjugate

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Minming; Guo, Kai; Dong, Hongwei; Zeng, Rong, E-mail: tzengronga@jnu.edu.cn; Tu, Mei; Zhao, Jianhao

    2014-12-01

    Novel biomimetic amphiphilic chitosan derivative, deoxycholic acid–phosphorylcholine–chitosan conjugate (DCA–PCCs) was synthesized based on the combination of Atherton–Todd reaction for coupling phosphorylcholine (PC) and carbodiimide coupling reaction for linking deoxycholic acid (DCA) to chitosan. The chemical structure of DCA–PCCs was characterized by {sup 1}H and {sup 31}P nuclear magnetic resonance (NMR). The self-assembly of DCA–PCCs in water was analyzed by fluorescence measurements, dynamic laser light-scattering (DLS), zeta potential and transmission electron microscopy (TEM) technologies. The results confirmed that the amphiphilic DCA–PCCs can self-assemble to form nanosized spherical micelles with biomimetic PC shell. In vitro biological evaluation revealed that DCA–PCCs micelles had low toxicity against NIH/3T3 mouse embryonic fibroblasts as well as good hemocompatibility. Using quercetin as a hydrophobic model drug, drug loading and release study suggested that biomimetic DCA–PCCs micelles could be used as a promising nanocarrier avoiding unfavorable biological response for hydrophobic drug delivery applications. - Highlights: • DCA–PCCs with phosphorylcholine and deoxycholic acid was synthesized. • DCA–PCCs can self-assemble to form spherical micelles in aqueous system. • DCA–PCCs micelles had excellent cytocompatibility and hemocompatibility. • DCA–PCCs micelles loaded with quercetin exhibited a sustained drug release behavior.

  6. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena...

  7. Biomimetism, biomimetic matrices and the induction of bone formation.

    Science.gov (United States)

    Ripamonti, Ugo

    2009-09-01

    the induction of bone formation, the emergence of the skeleton, of the vertebrates and of Homo species * Different strategies for the induction of bone formation. Biological significance of redundancy and synergistic induction of bone formation. Biomimetism and biomimetic matrices self-assembling the induction of bone formation The concavity: the shape of life and the induction of bone formation. Influence of geometry on the expression of the osteogenic phenotype. Conclusion and therapeutic perspectives on porous biomimetic matrices with intrinsic osteoinductivity Bone formation by induction initiates by invocation of osteogenic soluble molecular signals of the transforming growth factor-beta (TGF-beta) superfamily; when combined with insoluble signals or substrata, the osteogenic soluble signals trigger the ripple-like cascade of cell differentiation into osteoblastic cell lines secreting bone matrix at site of surgical implantation. A most exciting and novel strategy to initiate bone formation by induction is to carve smart self-inducing geometric concavities assembled within biomimetic constructs. The assembly of a series of repetitive concavities within the biomimetic constructs is endowed with the striking prerogative of differentiating osteoblast-like cells attached to the biomimetic matrices initiating the induction of bone formation as a secondary response. Importantly, the induction of bone formation is initiated without the exogenous application of the osteogenic soluble molecular signals of the TGF-beta superfamily. This manuscript reviews the available data on this fascinating phenomenon, i.e. biomimetic matrices that arouse and set into motion the mammalian natural ability to heal thus constructing biomimetic matrices that in their own right set into motion inductive regenerative phenomena initiating the cascade of bone differentiation by induction biomimetizing the remodelling cycle of the primate cortico-cancellous bone.

  8. Developing Enzyme and Biomimetic Catalysts for Upgrading Heavy Crudes via Biological Hydrogenation and Hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Borole, A P

    2006-08-22

    The recovery and conversion of heavy oils is limited due to the high viscosity of these crudes and their high heteroatom content. Conventional technology relies on thermochemical hydrogenation and hydrodesulfurization to address these problems and is energy intensive due to the high operating temperature and pressure. This project was initiated to explore biological catalysts for adding hydrogen to the heavy oil molecules. Biological enzymes are efficient at hydrogen splitting at very mild conditions such as room temperature and pressure, however, they are very specific in terms of the substrates they hydrogenate. The goal of the project was to investigate how the specificity of these enzymes can be altered to develop catalysts for oil upgrading. Three approaches were used. First was to perform chemical modification of the enzyme surface to improve binding of other non-natural substrates. Second approach was to expose the deeply buried catalytic active site of the enzyme by removal of protein scaffolding to enable better interaction with other substrates. The third approach was based on molecular biology to develop genetically engineered systems for enabling targeted structural changes in the enzyme. The first approach was found to be limited in success due to the non-specificity of the chemical modification and inability to target the region near the active site or the site of substrate binding. The second approach produced a smaller catalyst capable of catalyzing hydrogen splitting, however, further experimentation is needed to address reproducibility and stability issues. The third approach which targeted cloning of hydrogenase in alternate hosts demonstrated progress, although further work is necessary to complete the cloning process. The complex nature of the hydrogenase enzyme structure-function relationship and role of various ligands in the protein require significant more research to better understand the enzyme and to enable success in strategies in

  9. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  10. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael

    2016-09-01

    We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices.

  11. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Karavitaki, K Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P; Triantafyllou, Michael

    2016-09-13

    We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices.

  12. Biomimetic organic-inorganic nanocomposite coatings for titanium implants. In vitro and in vivo biological testing.

    Science.gov (United States)

    Schade, R; Sikirić, M Dutour; Lamolle, S; Ronold, H J; Lyngstadass, S P; Liefeith, K; Cuisinier, F; Füredi-Milhofer, H

    2010-12-01

    Recently described organic-inorganic nanocomposite coatings of the chemical composition: (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4) (coating A) and (PLL/PGA)(10)CaP[(PLL/PGA)(5)CaP](4)(PLL/PGA)(5) (coating B), applied to chemically etched titanium plates, have been tested by extensive cell culture tests and in vivo biological experiments, with uncoated titanium plates serving as controls. Before testing, coated samples were stored for extended periods of time (from 2 weeks to 8 months) under dry, sterile conditions. Cells of the cell-lines MC3T3-E1 and/or SAOS-2 were used for the following cell culture tests: initial adhesion (4 h) and proliferation (up to 21 days), cell activity (XTT test), morphology, synthesis of collagen type I and alkaline phosphatase activity (all incubation up to 21 days). In addition, coating B was tested against uncoated control in a validated in vivo pull-out model in rabbit tibia. The results of both in vitro and in vivo experiments show excellent biological properties of chemically etched titanium which are even surpassed by surfaces covered with coating B. Thus, after 8 weeks of healing the implants coated with B were significantly better attached to the cortical bone of rabbit thibiae than uncoated titanium controls with more than twice the force needed to detach coated implants. However, coating A (top crystal layer) had an adverse effect on both cell proliferation and activity, which is explained by morphological observations, showing inhibited spreading of the cells on its rough surfaces. The results also show the remarkable stability of the coatings when shelved under dry and sterile conditions.

  13. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...... will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport contribution from both protein and biomimetic support matrix. Also the biomimetic matrix must be encapsulated in order to protect it and make...

  14. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.

    Science.gov (United States)

    Zan, Guangtao; Wu, Qingsheng

    2016-03-16

    In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.

  15. Biomimetic Microelectronics for Regenerative Neuronal Cuff Implants.

    Science.gov (United States)

    Karnaushenko, Daniil; Münzenrieder, Niko; Karnaushenko, Dmitriy D; Koch, Britta; Meyer, Anne K; Baunack, Stefan; Petti, Luisa; Tröster, Gerhard; Makarov, Denys; Schmidt, Oliver G

    2015-11-18

    Smart biomimetics, a unique class of devices combining the mechanical adaptivity of soft actuators with the imperceptibility of microelectronics, is introduced. Due to their inherent ability to self-assemble, biomimetic microelectronics can firmly yet gently attach to an inorganic or biological tissue enabling enclosure of, for example, nervous fibers, or guide the growth of neuronal cells during regeneration.

  16. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas

    2015-01-13

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  17. Hydrophobic organic chemicals (HOCs) removal from biologically treated landfill leachate by powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC).

    Science.gov (United States)

    Liyan, Song; Youcai, Zhao; Weimin, Sun; Ziyang, Lou

    2009-04-30

    Biological pretreatment efficiently remove organic matter from landfill leachate, but further removal of refractory hydrophobic organic chemicals (HOCs) is hard even with advanced treatment. In this work, three-stage-aged refuse bioreactor (ARB) efficiently removed chemical oxygen demand (COD) and biochemical oxygen demand (BOD) of fresh leachate produced in Shanghai laogang landfill, from 8603 to 451 mg L(-1) and 1368 to 30 mg L(-1), respectively. In downstream treatment, 3 g L(-1) powder-activated carbon (PAC), granular-activated carbon (GAC) and biomimetic fat cell (BFC) removed 89.2, 73.4 and 81.1% HOCs, but only 24.6, 19.1 and 8.9% COD, respectively. Through the specific HOCs accumulation characteristics of BFC, about 11.2% HOCs with low molecular weight (effluent exhibited a wide molecular weight distribution (34-514,646 Da). These constitutes are derived from both autochthonous and allochthonous matters as well as biological activities.

  18. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  19. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiang Li

    Full Text Available BACKGROUND: High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. METHODS: In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. RESULTS: The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young's modulus being 14.5-38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. CONCLUSIONS: This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.

  20. Biologically Inspired Self-assembling Synthesis of Bone-like Nano-hydroxyapatite/PLGA- (PEG-ASP)n Composite: A New Biomimetic Bone Tissue Engineering Scaffold Material

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new biomimetic bone tissue engineering scaffold material, nano-HA/ PLGA-( PEG- ASP )n composite, was synthesized by a biologically inspired self assembling approach. A novel biodegradable PLGA( PEG-ASP ) n copolymer with pendant amine functional groups and enhanced hydrophilicity was synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA ) and glycolide( GA ) with Aspartic acid ( ASP )-Polyethylene glycol( PEG ) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG-ASP )n copolymer was fabricated by a solvent casting, particulate leaching process. The scaffold was then incubated in modified simulated body fluid ( mSBF ) . Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM, mass increase measurements and quantification of phosphate content within scaffolds . SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfawes of the PLGA-( PEG-ASP)n scaffolds. The amount of calcium binding, total mass and the mass of pbosphate on experimental PLGA-( PEG- ASP )n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds . This nano-HA/ PLGA- ( PEG-ASP )n composite shows some features of natural bone both in main composition and hierarchical microstructure. The ASPPEG alt-prepolymer modified PLGA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhauce nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface funetionalization and subsequent mineral nucleation and self-assembling on biodegradable polymer scaffolds for tissue engineering.

  1. Evaluation of biological properties of electron beam melted Ti6Al4V implant with biomimetic coating in vitro and in vivo.

    Science.gov (United States)

    Li, Xiang; Feng, Ya-Fei; Wang, Cheng-Tao; Li, Guo-Chen; Lei, Wei; Zhang, Zhi-Yong; Wang, Lin

    2012-01-01

    High strength porous titanium implants are widely used for the reconstruction of craniofacial defects because of their similar mechanical properties to those of bone. The recent introduction of electron beam melting (EBM) technique allows a direct digitally enabled fabrication of patient specific porous titanium implants, whereas both their in vitro and in vivo biological performance need further investigation. In the present study, we fabricated porous Ti6Al4V implants with controlled porous structure by EBM process, analyzed their mechanical properties, and conducted the surface modification with biomimetic approach. The bioactivities of EBM porous titanium in vitro and in vivo were evaluated between implants with and without biomimetic apatite coating. The physical property of the porous implants, containing the compressive strength being 163 - 286 MPa and the Young's modulus being 14.5-38.5 GPa, is similar to cortical bone. The in vitro culture of osteoblasts on the porous Ti6Al4V implants has shown a favorable circumstance for cell attachment and proliferation as well as cell morphology and spreading, which were comparable with the implants coating with bone-like apatite. In vivo, histological analysis has obtained a rapid ingrowth of bone tissue from calvarial margins toward the center of bone defect in 12 weeks. We observed similar increasing rate of bone ingrowth and percentage of bone formation within coated and uncoated implants, all of which achieved a successful bridging of the defect in 12 weeks after the implantation. This study demonstrated that the EBM porous Ti6Al4V implant not only reduced the stress-shielding but also exerted appropriate osteoconductive properties, as well as the apatite coated group. The results opened up the possibility of using purely porous titanium alloy scaffolds to reconstruct specific bone defects in the maxillofacial and orthopedic fields.

  2. Challenges in biomimetic design and innovation

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael; Shu, Li

    Biomimetic design copies desired principles found in nature and implement them into artificial applications. Applications could be products we use in our daily life but it can also be used to inspire material innovation. However there are significant challenges in performing biomimetic design. One...... including the terminology and knowledge organisation. It is often easy to recognise the splendour of a biological solution, but it can be much more difficult to understand the underlying mechanisms. Another challenge in biomimetic design is the search and identification of relevant solutions in nature...

  3. Researches and developments of biomimetics in tribology

    Institute of Scientific and Technical Information of China (English)

    DAI Zhendong; TONG Jin; REN Luquan

    2006-01-01

    Animals and plants have developed optimal geometric structures, smart topological materials and multi-functional surface textures with excellent tribological characteristics through the evolution of thousand millions of years and become models for tribological design. This paper puts forward the definition and fundament of biomimetic tribology, investigates the status of self-cleaning of liquid-solid interface, adhesion between animals' feet and solid surface, wear characteristics of biological surfaces and biomimetic design, as well as the friction and bionic design on liquid-solid interface. The further developments of the tribological biomimetics are discussed.

  4. Biomimetic chemical sensors using bioengineered olfactory and taste cells

    OpenAIRE

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing ...

  5. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  6. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  7. Probing the Biomimetic Ice Nucleation Inhibition Activity of Poly(vinyl alcohol) and Comparison to Synthetic and Biological Polymers.

    Science.gov (United States)

    Congdon, Thomas; Dean, Bethany T; Kasperczak-Wright, James; Biggs, Caroline I; Notman, Rebecca; Gibson, Matthew I

    2015-09-14

    Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL(-1). Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes.

  8. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  10. Biomimetic bio-inspired biomorph sustainable? An attempt to classify and clarify biology-derived technical developments.

    Science.gov (United States)

    Speck, Olga; Speck, David; Horn, Rafael; Gantner, Johannes; Sedlbauer, Klaus Peter

    2017-01-24

    Over the last few decades, the systematic approach of knowledge transfer from biological concept generators to technical applications has received increasing attention, particularly because marketable bio-derived developments are often described as sustainable. The objective of this paper is to rationalize and refine the discussion about bio-derived developments also with respect to sustainability by taking descriptive, normative and emotional aspects into consideration. In the framework of supervised learning, a dataset of 70 biology-derived and technology-derived developments characterised by 9 different attributes together with their respective values and assigned to one of 17 classes was created. On the basis of the dataset a decision tree was generated which can be used as a straightforward classification tool to identify biology-derived and technology-derived developments. The validation of the applied learning procedure achieved an average accuracy of 90.0%. Additional extraordinary qualities of technical applications are generally discussed by means of selected biology-derived and technology-derived examples with reference to normative (contribution to sustainability) and emotional aspects (aesthetics and symbolic character). In the context of a case study from the building sector, all aspects are critically discussed.

  11. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2008-01-01

    Purpose – The purpose of this paper is to illustrate how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. The paper reviews a number of biomimetic studies...... of sense organs in animals and illustrates how a formal search method developed at University of Toronto can be applied to sensor design. Design/methodology/approach – Using biomimetics involves a search for relevant cases, a proper analysis of the biological solutions, identification of design principles...... or the search gives too many results. This is handled by a more advanced search strategy where the search is either widened or it is focused further mainly using biological synonyms. Findings – A major problem in biomimetic design is finding the relevant analogies to actual design tasks in nature. Research...

  12. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight...... the possibilities and challenges. Biomimetics for engineering design is explored through an experiment involving 12 design engineering students. For 7 selected problem areas they searched biology literature available at a university library and identified a number of biological solutions. Central solution...... principles were formulated and used for designing technical items that could be used to solve the initial problems. Experiences are that biomimetic design can be made successfully using commonly available biological literature and internet resources and that designers without detailed biological knowledge...

  13. Characterization and in vitro biological evaluation of mineral/osteogenic growth peptide nanocomposites synthesized biomimetically on titanium

    Science.gov (United States)

    Chen, Cen; Kong, Xiangdong; Zhang, Sheng-Min; Lee, In-Seop

    2015-04-01

    Nanocomposite layers of mineral/osteogenic growth peptide (OGP) were synthesized on calcium phosphate coated titanium substrates by immersing in calcium-phosphate buffer solution containing OGP. Peptide incorporated mineral was characterized by determining quantity loaded, effects on mineral morphology and structure. Also, the biological activity was investigated by cell adhesion, proliferation assay, and measurement of alkaline phosphatase (ALP) activity. X-ray photoelectron spectroscopy (XPS) and micro-bicinchoninic acid (BCA) assay revealed that OGP was successfully incorporated with mineral and the amount was increased with immersion time. Incorporated OGP changed the mineral morphology from sharp plate-like shape to more rounded one, and the octacalcium phosphate structure of the mineral was gradually transformed into apatite. With confocal microscopy to examine the incorporation of fluorescently labeled peptide, OGP was evenly distributed throughout mineral layers. Mineral/OGP nanocomposites promoted cell adhesion and proliferation, and also increased ALP activity of mesenchymal stem cells (MSCs). Results presented here indicated that the mineral/OGP nanocomposites formed on titanium substrates had the potential for applications in dental implants.

  14. Calcifying tissue regeneration via biomimetic materials chemistry.

    Science.gov (United States)

    Green, David W; Goto, Tazuko K; Kim, Kye-Seong; Jung, Han-Sung

    2014-12-06

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel and bone or that can be used to fully regenerate them with integrated cell populations. Biomimetic materials chemistry encompasses the two processes of crystal formation and mineralization of crystals into inorganic formations on organic templates. This review will revisit the successes of biomimetics materials chemistry in regenerative medicine, including coccolithophore simulants able to promote in vivo bone formation. In-depth knowledge of biomineralization throughout evolution informs the biomimetic materials chemist of the most effective techniques for regenerative framework construction exemplified via exploitation of liquid crystals (LCs) and complex self-organizing media. Therefore, a new innovative direction would be to create chemical environments that perform reaction-diffusion exchanges as the basis for building complex biomimetic inorganic structures. This has evolved widely in biology, as have LCs, serving as self-organizing templates in pattern formation of structural biomaterials. For instance, a study is highlighted in which artificially fabricated chiral LCs, made from bacteriophages are transformed into a faithful copy of enamel. While chemical-based strategies are highly promising at creating new biomimetic structures there are limits to the degree of complexity that can be generated. Thus, there may be good reason to implement living or artificial cells in 'morphosynthesis' of complex inorganic constructs. In the future, cellular construction is probably

  15. Tissue bionics: examples in biomimetic tissue engineering.

    Science.gov (United States)

    Green, David W

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  16. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  17. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized and highly efficient transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create...... membrane-based sensor and/or separation devices? In the development of biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. Generally, each class of transport proteins conducts specific molecular species in and out of the cell while...... generally have a lower turnover but are capable of transport against gradients. For both classes of proteins, their unique flux-properties make them interesting as candidates in biomimetic sensor/separation devices. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually...

  18. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  19. Biomimetics: nature based innovation

    National Research Council Canada - National Science Library

    Bar-Cohen, Yoseph

    2012-01-01

    "Based on the concept that nature offers numerous sources of inspiration for inventions related to mechanisms, materials, processes, and algorithms, this book covers the topic of biomimetics and the inspired innovation...

  20. Evolving application of biomimetic nanostructured hydroxyapatite.

    Science.gov (United States)

    Roveri, Norberto; Iafisco, Michele

    2010-11-09

    By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical-physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical-physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical-physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.

  1. Biomimetics for next generation materials.

    Science.gov (United States)

    Barthelat, Francois

    2007-12-15

    Billions of years of evolution have produced extremely efficient natural materials, which are increasingly becoming a source of inspiration for engineers. Biomimetics-the science of imitating nature-is a growing multidisciplinary field which is now leading to the fabrication of novel materials with remarkable mechanical properties. This article discusses the mechanics of hard biological materials, and more specifically of nacre and bone. These high-performance natural composites are made up of relatively weak components (brittle minerals and soft proteins) arranged in intricate ways to achieve specific combinations of stiffness, strength and toughness (resistance to cracking). Determining which features control the performance of these materials is the first step in biomimetics. These 'key features' can then be implemented into artificial bio-inspired synthetic materials, using innovative techniques such as layer-by-layer assembly or ice-templated crystallization. The most promising approaches, however, are self-assembly and biomineralization because they will enable tight control of structures at the nanoscale. In this 'bottom-up' fabrication, also inspired from nature, molecular structures and crystals are assembled with a little or no external intervention. The resulting materials will offer new combinations of low weight, stiffness and toughness, with added functionalities such as self-healing. Only tight collaborations between engineers, chemists, materials scientists and biologists will make these 'next-generation' materials a reality.

  2. Biomimetic tissue-engineered systems for advancing cancer research: NCI Strategic Workshop report.

    Science.gov (United States)

    Schuessler, Teresa K; Chan, Xin Yi; Chen, Huanhuan Joyce; Ji, Kyungmin; Park, Kyung Min; Roshan-Ghias, Alireza; Sethi, Pallavi; Thakur, Archana; Tian, Xi; Villasante, Aranzazu; Zervantonakis, Ioannis K; Moore, Nicole M; Nagahara, Larry A; Kuhn, Nastaran Z

    2014-10-01

    Advanced technologies and biomaterials developed for tissue engineering and regenerative medicine present tractable biomimetic systems with potential applications for cancer research. Recently, the National Cancer Institute convened a Strategic Workshop to explore the use of tissue biomanufacturing for development of dynamic, physiologically relevant in vitro and ex vivo biomimetic systems to study cancer biology and drug efficacy. The workshop provided a forum to identify current progress, research gaps, and necessary steps to advance the field. Opportunities discussed included development of tumor biomimetic systems with an emphasis on reproducibility and validation of new biomimetic tumor models, as described in this report.

  3. Biomimetic chemical sensors using bioengineered olfactory and taste cells

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well. PMID:25482234

  4. Biomimetic use of genetic algorithms

    CERN Document Server

    Dessalles, Jean-Louis

    2011-01-01

    Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.

  5. Biomimetic mineral coatings in dental and orthopaedic implantology

    Institute of Scientific and Technical Information of China (English)

    Yue-lian LIU; Klaas de GROOT; Ernst B.HUNZIKER

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers genelated by biomi-metic methods resemble bone mineral, and can be degraded within a biological milieu.The biomimetic coating technique involves the nuclea-tion and growth of bone-like crystals upon a pretreated substrate by immersing this in a supersaturated solution of calcium phosphate under physiological conditions of temperature (37~C) and pH (7.4). The method, originally developed by Kokubo in 1990, has since undergone improvement and refinement by several groups of investigators.Biomimetic coatings are valuable in that they can serve as a vehicle for the slow and sustained release of osteogenic agents at the site of implantation. This attribute is rendered possible by the near-physiological conditions under which these coatings are prepared, which permits an incorporation of binactive agents into the inorganic crystal latticework rather than their nlere superficial adsorption onto preformed layers. In addition, the biomimetic coating technique can be applied to implants of an organic as well as of an inorganic nature and to those with irregular surface geometries, which is not possible using conventional methodologies.

  6. Kirigami design and fabrication for biomimetic robotics

    Science.gov (United States)

    Rossiter, Jonathan; Sareh, Sina

    2014-03-01

    Biomimetics faces a continual challenge of how to bridge the gap between what Nature has so effectively evolved and the current tools and materials that engineers and scientists can exploit. Kirigami, from the Japanese `cut' and `paper', is a method of design where laminar materials are cut and then forced out-of-plane to yield 3D structures. Kirimimetic design provides a convenient and relatively closed design space within which to replicate some of the most interesting niche biological mechanisms. These include complex flexing organelles such as cilia in algae, energy storage and buckled structures in plants, and organic appendages that actuate out-of-plane such as the myoneme of the Vorticella protozoa. Where traditional kirigami employs passive materials which must be forced to transition to higher dimensions, we can exploit planar smart actuators and artificial muscles to create self-actuating kirigami structures. Here we review biomimetics with respect to the kirigami design and fabrication methods and examine how smart materials, including electroactive polymers and shape memory polymers, can be used to realise effective biomimetic components for robotic, deployable structures and engineering systems. One-way actuation, for example using shape memory polymers, can yield complete self-deploying structures. Bi-directional actuation, in contrast, can be exploited to mimic fundamental biological mechanisms such as thrust generation and fluid control. We present recent examples of kirigami robotic mechanisms and actuators and discuss planar fabrication methods, including rapid prototyping and 3D printing, and how current technologies, and their limitations, affect Kirigami robotics.

  7. A future of living machines?: International trends and prospects in biomimetic and biohybrid systems

    Science.gov (United States)

    Prescott, Tony J.; Lepora, Nathan; Vershure, Paul F. M. J.

    2014-03-01

    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent.

  8. The Top of the Biomimetic Triangle

    Institute of Scientific and Technical Information of China (English)

    Andrei P. Sommer; Dan Zhu; Matthias Wiora; Hans-Joerg Fecht

    2008-01-01

    There is increasing observational evidence indicating that crystalline interfacial water layers play a central role in evolution and biology. For instance in cellular recognition processes, in particular during first contact events, where cells decide upon survival or entering apoptosis. Understanding water layers is thus crucial in biomedical engineering, specifically in the design of biomaterials inspired by biomimetic principles. Whereas there is ample experimental evidence for crystalline interfacial water layers on surfaces in air, their subaquatic presence could not be verified directly, so far. Analysing a polarity dependent asym- metry in the surface conductivity on hydrogenated nanocrystalline diamond, we show that crystalline interfacial water layers persist subaquatically. Nanoscopic interfacial water layers with an order different from that of bulk water have been identified at room temperature on both hydrophilic and hydrophobic model surfaces - in air and subaquatically. Their generalization and systematic inclusion into the catalogue of physical and chemical determinants of biocompatibility complete the biomimetic triangle.

  9. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  10. Green tribology. Biomimetics, energy conservation and sustainability

    Energy Technology Data Exchange (ETDEWEB)

    Nosonovsky, Michael [Wisconsin Univ., Milwaukee, WI (United States). Dept. of Mechanical Engineering; Bhushan, Bharat (eds.) [Ohio State Univ., Columbus, OH (US). Nanoprobe Lab. for Bio- and Nanotechnology and Biomimetics (NLB2)

    2012-07-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of ''green tribology'' as ''the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts'' was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment. (orig.)

  11. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  12. Amelogenin and Enamel Biomimetics

    OpenAIRE

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recen...

  13. Biomimetic and bioinspired nanoparticles for targeted drug delivery.

    Science.gov (United States)

    Gagliardi, Mariacristina

    2017-03-01

    In drug targeting, the urgent need for more effective and less iatrogenic therapies is pushing toward a complete revision of carrier setup. After the era of 'articles used as homing systems', novel prototypes are now emerging. Newly conceived carriers are endowed with better biocompatibility, biodistribution and targeting properties. The biomimetic approach bestows such improved functional properties. Exploiting biological molecules, organisms and cells, or taking inspiration from them, drug vector performances are now rapidly progressing toward the perfect carrier. Following this direction, researchers have refined carrier properties, achieving significant results. The present review summarizes recent advances in biomimetic and bioinspired drug vectors, derived from biologicals or obtained by processing synthetic materials with a biomimetic approach.

  14. Conventional vs Biomimetic Approaches to the Exploration of Mars

    Science.gov (United States)

    Ellery, A.

    It is not usual to refer to convention in planetary exploration missions by virtue of the innovation required for such projects. The term conventional refers to the methodologies, tools and approaches typically adopted in engineering that are applied to such missions. Presented is a "conventional" Mars rover mission in which the author was involved - ExoMars - into which is interspersed references to examples where biomimetic approaches may yield superior capabilities. Biomimetics is a relatively recently active area of research which seeks to examine how biological systems solve the problem of survival in the natural environment. Biological organisms are autonomous entities that must survive in a hostile world adapting both adaptivity and robustness. It is not then surprising that biomimetics is particularly useful when applied to robotic elements of a Mars exploration mission. I present a number of areas in which biomimetics may yield new solutions to the problem of Mars exploration - optic flow navigation, potential field navigation, genetically-evolved neuro-controllers, legged locomotion, electric motors implementing muscular behaviour, and a biomimetic drill based on the wood wasp ovipositor. Each of these techniques offers an alternative approach to conventional ones. However, the perceptive hurdles are likely to dwarf the technical hurdles in implementing many of these methods in the near future.

  15. Biomimetic Composite Structural T-joints

    Institute of Scientific and Technical Information of China (English)

    Vimal Kumar Thummalapalli; Steven L.Donaldson

    2012-01-01

    Biological structural fixed joints exhibit unique attributes,including highly optimized fiber paths which minimize stress concentrations.In addition,since the joints consist of continuous,uncut fiber architectures,the joints enable the organism to transport information and chemicals from one part of the body to the other.To the contrary,sections of man-made composite material structures are often joined using bolted or bonded joints,which involve low strength and high stress concentrations.These methods are also expensive to achieve.Additional functions such as fluid transport,electrical signal delivery,and thermal conductivity across the joints typically require parasitic tubes,wires,and attachment clips.By using the biomimetic methods,we seek to overcome the limitations which are present in the conventional methods. In the present work,biomimetic co-cured composite sandwich T-joints were constructed using unidirectional glass fiber,epoxy resin,and structural foam.The joints were fabricated using the wet lay-up vacuum bag resin infusion method.Foam sandwich T-joints with multiple continuous fiber architectures and sandwich foam thickness were prepared.The designs were tested in quasi-static bending using a mechanical load frame.The significantweight savings using the biomimetic approaches is discussed,as well as a comparison of failure modes versus architecture is described.

  16. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetical...

  17. Diffraction from relief gratings on a biomimetic elastomer cast

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Raphael A., E-mail: rguerrero@admu.edu.ph [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines); Aranas, Erika B. [Department of Physics, Ateneo de Manila University, Loyola Heights, Quezon City (Philippines)

    2010-10-12

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  18. Biomimetic cilia arrays generate simultaneous pumping and mixing regimes.

    Science.gov (United States)

    Shields, A R; Fiser, B L; Evans, B A; Falvo, M R; Washburn, S; Superfine, R

    2010-09-07

    Living systems employ cilia to control and to sense the flow of fluids for many purposes, such as pumping, locomotion, feeding, and tissue morphogenesis. Beyond their use in biology, functional arrays of artificial cilia have been envisaged as a potential biomimetic strategy for inducing fluid flow and mixing in lab-on-a-chip devices. Here we report on fluid transport produced by magnetically actuated arrays of biomimetic cilia whose size approaches that of their biological counterparts, a scale at which advection and diffusion compete to determine mass transport. Our biomimetic cilia recreate the beat shape of embryonic nodal cilia, simultaneously generating two sharply segregated regimes of fluid flow: Above the cilia tips their motion causes directed, long-range fluid transport, whereas below the tips we show that the cilia beat generates an enhanced diffusivity capable of producing increased mixing rates. These two distinct types of flow occur simultaneously and are separated in space by less than 5 microm, approximately 20% of the biomimetic cilium length. While this suggests that our system may have applications as a versatile microfluidics device, we also focus on the biological implications of our findings. Our statistical analysis of particle transport identifying an enhanced diffusion regime provides novel evidence for the existence of mixing in ciliated systems, and we demonstrate that the directed transport regime is Poiseuille-Couette flow, the first analytical model consistent with biological measurements of fluid flow in the embryonic node.

  19. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2014-11-01

    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  20. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  1. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    Science.gov (United States)

    Steckel, Jan; Peremans, Herbert

    2013-01-01

    We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office) environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  2. BatSLAM: Simultaneous localization and mapping using biomimetic sonar.

    Directory of Open Access Journals (Sweden)

    Jan Steckel

    Full Text Available We propose to combine a biomimetic navigation model which solves a simultaneous localization and mapping task with a biomimetic sonar mounted on a mobile robot to address two related questions. First, can robotic sonar sensing lead to intelligent interactions with complex environments? Second, can we model sonar based spatial orientation and the construction of spatial maps by bats? To address these questions we adapt the mapping module of RatSLAM, a previously published navigation system based on computational models of the rodent hippocampus. We analyze the performance of the proposed robotic implementation operating in the real world. We conclude that the biomimetic navigation model operating on the information from the biomimetic sonar allows an autonomous agent to map unmodified (office environments efficiently and consistently. Furthermore, these results also show that successful navigation does not require the readings of the biomimetic sonar to be interpreted in terms of individual objects/landmarks in the environment. We argue that the system has applications in robotics as well as in the field of biology as a simple, first order, model for sonar based spatial orientation and map building.

  3. Biomaterial Scaffolds with Biomimetic Fluidic Channels for Hepatocyte Culture

    Institute of Scientific and Technical Information of China (English)

    Xiao Li; Jiankang He; Yaxiong Liu; Qian Zhao; Wanquan Wu; Dichen Li; Zhongmin Jin

    2013-01-01

    Biomaterial scaffolds play an important role in maintaining the viability and biological functions of highly metabolic hepatocytes in liver tissue engineering.One of the major challenges involves building a complex microchannel network inside three-dimensional (3D) scaffolds for efficient mass transportation.Here we presented a biomimetic strategy to generate a microchannel network within porous biomaterial scaffolds by mimicking the vascular tree of rat liver.The typical parameters of the blood vessels were incorporated into the biomimetic design of the microchannel network such as branching angle and diameter.Silk fibroin-gelatin scaffolds with biomimetic vascular tree were fabricated by combining micromolding,freeze drying and 3D rolling techniques.The relationship between the micro-channeled design and flow pattern was revealed by a flow experiment,which indicated that the scaffolds with biomimetic vascular tree exhibited unique capability in improving mass transportation inside the 3D scaffold.The 3D scaffolds,preseeded with primary hepatocytes,were dynamically cultured in a bioreactor system.The results confirmed that the pre-designed biomimetic microchannel network facilitated the generation and expansion of hepatocytes.

  4. Biomimetic Nanotechnology: A Powerful Means to address Global Challenges

    CERN Document Server

    Gebeshuber, Ille C

    2010-01-01

    Biomimetic nanotechnology is a prominent research area at the meeting place of life sciences with engineering and physics: it is a continuously growing field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a field that has the potential to substantially support successful mastering of major global challenges. The Millennium Project was commissioned by the United Nations Secretary-General in 2002 to develop a concrete action plan for the world to reverse the grinding poverty, hunger and disease affecting billions of people. It states 15 Global Challenges: sustainable development, water, population and resources, democratization, long-term perspectives, information technology, the rich-poor gap, health, capacity to decide, peace and conflict, status of women, transnational crime, energy, science and technology and global ethics. The possible contributions to master these challenges with the help of biomimetic nanotechnology will be discussed in detail.

  5. Superhydrophobic surfaces: from natural to biomimetic to functional.

    Science.gov (United States)

    Guo, Zhiguang; Liu, Weimin; Su, Bao-Lian

    2011-01-15

    Nature is the creation of aesthetic functional systems, in which many natural materials have vagarious structures. Inspired from nature, such as lotus leaf, butterfly' wings, showing excellent superhydrophobicity, scientists have recently fabricated a lot of biomimetic superhydrophobic surfaces by virtue of various smart and easy routes. Whilst, many examples, such as lotus effect, clearly tell us that biomimicry is dissimilar to a simple copying or duplicating of biological structures. In this feature article, we review the recent studies in both natural superhydrophobic surfaces and biomimetic superhydrophobic surfaces, and highlight some of the recent advances in the last four years, including the various smart routes to construct rough surfaces, and a lot of chemical modifications which lead to superhydrophobicity. We also review their functions and applications to date. Finally, the promising routes from biomimetic superhydrophobic surfaces in the next are proposed.

  6. Biomimetic Cilia Based on MEMS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2008-01-01

    A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.

  7. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  8. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Martin J. Pearson

    2005-12-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  9. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met...... this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...

  10. Biomimetic matrices self-initiating the induction of bone formation.

    Science.gov (United States)

    Ripamonti, Ugo; Roden, Laura C; Ferretti, Carlo; Klar, Roland M

    2011-09-01

    The new strategy of tissue engineering, and regenerative medicine at large, is to construct biomimetic matrices to mimic nature's hierarchical structural assemblages and mechanisms of simplicity and elegance that are conserved throughout genera and species. There is a direct spatial and temporal relationship of morphologic and molecular events that emphasize the biomimetism of the remodeling cycles of the osteonic corticocancellous bone versus the "geometric induction of bone formation," that is, the induction of bone by "smart" concavities assembled in biomimetic matrices of macroporous calcium phosphate-based constructs. The basic multicellular unit of the corticocancellous bone excavates a trench across the bone surface, leaving in its wake a hemiosteon rather than an osteon, that is, a trench with cross-sectional geometric cues of concavities after cyclic episodes of osteoclastogenesis, eventually leading to osteogenesis. The concavities per se are geometric regulators of growth-inducing angiogenesis and osteogenesis as in the remodeling processes of the corticocancellous bone. The concavities act as a powerful geometric attractant for myoblastic/myoendothelial and/or endothelial/pericytic stem cells, which differentiate into bone-forming cells. The lacunae, pits, and concavities cut by osteoclastogenesis within the biomimetic matrices are the driving morphogenetic cues that induce bone formation in a continuum of sequential phases of resorption/dissolution and formation. To induce the cascade of bone differentiation, the soluble osteogenic molecular signals of the transforming growth factor β supergene family must be reconstituted with an insoluble signal or substratum that triggers the bone differentiation cascade. By carving a series of repetitive concavities into solid and/or macroporous biomimetic matrices of highly crystalline hydroxyapatite or biphasic hydroxyapatite/β-tricalcium phosphate, we were able to embed smart biologic functions within

  11. Mobile Robot Navigation Algorithm of Biomimetic Conditioned Reflex Based on Biological Antennas%基于生物触角的仿生条件反射机器人导航算法

    Institute of Scientific and Technical Information of China (English)

    江济良; 屠大维; 许烁; 赵其杰

    2013-01-01

    运用神经行为学原理提出一种模拟生物条件反射活动的机器人导航算法.对于环境感知,提出生物触角模型,因仅对特定区域信息进行处理,大大减小了计算量;对于运动控制,提出一种实用的改进Bug算法,机器人依靠生物触角感知环境刺激,实时激励触发相应的行走行为.最后在多种障碍物分布情形下进行算法对比验证.结果表明,机器人可以利用该算法实现未知环境下定目标点自主导航,具有转向次数少、绕行障碍物距离小及运动路径平滑等优点.该算法在自主移动机器人和自主牵引车辆中具有潜在应用价值.%This paper proposes a navigation algorithm of biomimetic conditioned reflex for mobile robots based on neu-roethology principles.For environment perception,a biological antenna model is proposed to delineate the interested sensing areas, and thus decrease the computational burden. For motion planning and control, according to a practical Bug algorithm proposed in this paper, the obtained environment stimulation is responded to generate the corresponding walking behavior. Experiments have been carried out in different conditions of obstacle distribution for algorithm verification. The results present its practicability,fewer turning number, smaller route length and smooth motion path. It can be expected that this algorithm will be of potential application in automated mobile robot(AMR)and automated guided vehicle(AGV).

  12. Bioimprinting strategies: from soft lithography to biomimetic sensors and beyond.

    Science.gov (United States)

    Mujahid, Adnan; Iqbal, Naseer; Afzal, Adeel

    2013-12-01

    Imprinting is a straightforward, yet a reliable technique to develop dynamic artificial recognition materials-so called as synthetic antibodies. Surface imprinting strategies such as soft lithography allow biological stereotyping of polymers and sol-gel phases to prepare extremely selective receptor layers, which can be combined with suitable transducer systems to develop high performance biomimetic sensors. This article presents an overview of the remarkable technical advancements in the field of surface bioimprinting with particular emphasis on surface imprinted bioanalyte detection systems and their applications in rapid bioanalysis and biotechnology. Herein, we discuss a variety of surface imprinting strategies including soft lithography, template immobilization, grafting, emulsion polymerization, and others along with their biomimetic sensor applications, merits and demerits. The pioneering research works on surface patterned biosensors are described with selected examples of detecting biological agents ranging from small biomolecules and proteins to living cells and microorganisms. © 2013.

  13. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    OpenAIRE

    Bharat Bhushan

    2011-01-01

    The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such a...

  14. Acceleration of biomimetic mineralization to apply in bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Jayasuriya, A Champa [Department of Orthopaedics, University of Toledo, Toledo, OH 43614 (United States); Shah, Chiragkumar [Department of Bioengineering, University of Toledo, Toledo, OH 43606 (United States); Ebraheim, Nabil A [Department of Orthopaedics, University of Toledo, Toledo, OH 43614 (United States); Jayatissa, Ahalapitiya H [Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43606 (United States)

    2008-03-15

    The delivery of growth factors and therapeutic drugs into bone defects is a major clinical challenge. Biomimetically prepared bone-like mineral (BLM) containing a carbonated apatite layer can be used to deliver growth factors and drugs in a controlled manner. In the conventional biomimetic process, BLM can be deposited on the biodegradable polymer surfaces by soaking them in simulated body fluid (SBF) for 16 days or more. The aim of this study was to accelerate the biomimetic process of depositing BML in the polymer surfaces. We accelerated the deposition of mineral on 3D poly(lactic-co-glycolic acid) (PLGA) porous scaffolds to 36-48 h by modifying the biomimetic process parameters and applying surface treatments to PLGA scaffolds. The BLM was coated on scaffolds after surface treatments followed by incubation at 37 {sup 0}C in 15 ml of 5x SBF. We characterized the BLM created using the accelerated biomineralization process with wide angle x-ray diffraction (XRD), Fourier transform infrared (FTIR) microscopy, and scanning electron microscopy (SEM). The FTIR and XRD analyses of mineralized scaffolds show similarities between biomimetically prepared BLM, and bone bioapatite and carbonated apatite. We also found that the BLM layer on the surface of scaffolds was stable even after 21 days immersed in Tris buffered saline and cell culture media. This study suggests that BLM was stable for at least 3 weeks in both media, and therefore, BLM has a potential for use as a carrier for biological molecules for localized release applications as well as bone tissue engineering applications.

  15. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  16. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær

    2015-01-01

    of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...

  17. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized and highly efficient transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create...... membrane-based sensor and/or separation devices? In the development of biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. Generally, each class of transport proteins conducts specific molecular species in and out of the cell while...... preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...

  18. Biomimetics for architecture & design nature, analogies, technology

    CERN Document Server

    Pohl, Göran

    2015-01-01

    This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Göran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and “translated” in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for pro...

  19. Biomimetic gyroid nanostructures exceeding their natural origins

    Science.gov (United States)

    Gan, Zongsong; Turner, Mark D.; Gu, Min

    2016-01-01

    Using optical two-beam lithography with improved resolution and enhanced mechanical strength, we demonstrate the replication of gyroid photonic nanostructures found in the butterfly Callophrys rubi. These artificial structures are shown to have size, controllability, and uniformity that are superior to those of their biological counterparts. In particular, the elastic Young’s modulus of fabricated nanowires is enhanced by up to 20%. As such, the circular dichroism enabled by the gyroid nanostructures can operate in the near-ultraviolet wavelength region, shorter than that supported by the natural butterfly wings of C. rubi. This fabrication technique provides a unique tool for extracting three-dimensional photonic designs from nature and will aid the investigation of biomimetic nanostructures. PMID:27386542

  20. Biomimetic gyroid nanostructures exceeding their natural origins.

    Science.gov (United States)

    Gan, Zongsong; Turner, Mark D; Gu, Min

    2016-05-01

    Using optical two-beam lithography with improved resolution and enhanced mechanical strength, we demonstrate the replication of gyroid photonic nanostructures found in the butterfly Callophrys rubi. These artificial structures are shown to have size, controllability, and uniformity that are superior to those of their biological counterparts. In particular, the elastic Young's modulus of fabricated nanowires is enhanced by up to 20%. As such, the circular dichroism enabled by the gyroid nanostructures can operate in the near-ultraviolet wavelength region, shorter than that supported by the natural butterfly wings of C. rubi. This fabrication technique provides a unique tool for extracting three-dimensional photonic designs from nature and will aid the investigation of biomimetic nanostructures.

  1. Biomimetic microchannels of planar reactors for optimized photocatalytic efficiency of water purification

    Science.gov (United States)

    Liao, Wuxia; Wang, Ning; Wang, Taisheng; Xu, Jia; Han, Xudong; Liu, Zhenyu; Yu, Weixing

    2016-01-01

    This paper reports a biomimetic design of microchannels in the planar reactors with the aim to optimize the photocatalytic efficiency of water purification. Inspired from biology, a bifurcated microchannel has been designed based on the Murray's law to connect to the reaction chamber for photocatalytic reaction. The microchannels are designed to have a constant depth of 50 μm but variable aspect ratios ranging from 0.015 to 0.125. To prove its effectiveness for photocatalytic water purification, the biomimetic planar reactors have been tested and compared with the non-biomimetic ones, showing an improvement of the degradation efficiency by 68%. By employing the finite element method, the flow process of the designed microchannel reactors has been simulated and analyzed. It is found that the biomimetic design owns a larger flow velocity fluctuation than that of the non-biomimetic one, which in turn results in a faster photocatalytic reaction speed. Such a biomimetic design paves the way for the design of more efficient planar reactors and may also find applications in other microfluidic systems that involve the use of microchannels. PMID:26958102

  2. Biomimetics for NASA Langley Research Center: Year 2000 Report of Findings From a Six-Month Survey

    Science.gov (United States)

    Siochi, Emilie J.; Anders, John B., Jr.; Cox, David E.; Jegley, Dawn C.; Fox, Robert L.; Katzberg, Stephen J.

    2002-01-01

    This report represents an attempt to see if some of the techniques biological systems use to maximize their efficiency can be applied to the problems NASA faces in aeronautics and space exploration. It includes an internal survey of resources available at NASA Langley Research Center for biomimetics research efforts, an external survey of state of the art in biomimetics covering the Materials, Structures, Aerodynamics, Guidance and Controls areas. The Biomimetics Planning team also included ideas for potential research areas, as well as recommendations on how to implement this new program. This six-month survey was conducted in the second half of 1999.

  3. Biomimetic membranes and methods of making biomimetic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  4. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  5. Bio-microfluidics: biomaterials and biomimetic designs.

    Science.gov (United States)

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  6. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  7. Biomimetic artificial sphincter muscles: status and challenges

    Science.gov (United States)

    Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert

    2016-04-01

    Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.

  8. Engineering Tough Materials: Biomimetic Eggshell

    Science.gov (United States)

    2015-01-30

    at 300 oC indicates the intra-crystalline protein degradation conditions. Figure 4.6, shows the TGA analysis of pure calcite crystals that were...synthesized using the same parameters with that of BSA-entrapped calcites. Comparison of TGA analysis of eggshell crystals and biomimetic synthesis of BSA...powder and analysed using TGA under the same experimental conditions. The result of the TGA analysis of eggshell powder is shown in Figure 4.6. Similar

  9. The role of biomimetism in developing nanostructured inorganic matrices for drug delivery.

    Science.gov (United States)

    Roveri, Norberto; Palazzo, Barbara; Iafisco, Michele

    2008-08-01

    Biomimetism of synthetic biomaterials can be carried out at different levels, such as composition, structure, morphology, bulk and surface chemical-physical properties. Biomaterials can be turned into biomimetic imprinting of all these characteristics in order not only to optimise their interaction with biological tissues, but also to mimic biogenic materials in their functionalities. This review outlines the biomimetic chemical-physical properties of inorganic matrices in controlling drug release. This review is restricted to phosphates and silica among inorganic biomaterials proposed as drug delivery vehicles. By mimicking nature, we can design and synthesise inorganic smart materials that are reactive towards biological tissues and can release bioactive molecules by a kinetic that is controlled not only by the matrix tailored chemical-physical properties, but also by the response to stimuli induced by physiological or pathological processes.

  10. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  11. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  12. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  13. Ceramic adhesive restorations and biomimetic dentistry: tissue preservation and adhesion.

    Science.gov (United States)

    Tirlet, Gil; Crescenzo, Hélène; Crescenzo, Dider; Bazos, Panaghiotis

    2014-01-01

    Thanks to sophisticated adhesive techniques in contemporary dentistry, and the development of composite and ceramic materials, it is possible to reproduce a biomimetic match between substitution materials and natural teeth substrates. Biomimetics or bio-emulation allows for the association of two fundamental parameters at the heart of current therapeutic treatments: tissue preservation and adhesion. This contemporary concept makes the retention of the integrity of the maximum amount of dental tissue possible, while offering exceptional clinical longevity, and maximum esthetic results. It permits the conservation of the biological, esthetic, biomechanical and functional properties of enamel and dentin. Today, it is clearly possible to develop preparations allowing for the conservation of the enamel and dentin in order to bond partial restorations in the anterior and posterior sectors therefore limiting, as Professor Urs Belser from Geneva indicates, "the replacement of previous deficient crowns and devitalized teeth whose conservation are justified but whose residual structural state are insufficient for reliable bonding."1 This article not only addresses ceramic adhesive restoration in the anterior area, the ambassadors of biomimetic dentistry, but also highlights the possibility of occasionally integrating one or two restorations at the heart of the smile as a complement to extensive rehabilitations that require more invasive treatment.

  14. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2010-01-01

    The paper illustrates how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. Using biomimetics involves a search for relevant cases, a proper analysis...... of biomimetic studies of sense organs in animals....

  15. Biomimetic Coacervate Environments for Protein Analysis

    Science.gov (United States)

    Perry, Sarah; McCall, Patrick; Srivastava, Samavayan; Kovar, David; Gardel, Margaret; Tirrell, Matthew

    2015-03-01

    Living cells have evolved sophisticated intracellular organization strategies that are challenging to reproduce synthetically. Biomolecular function depends on both the structure of the molecule itself and the properties of the surrounding medium. The ability to simulate the in vivo environment and isolate biological networks for study in an artificial milieu without sacrificing the crowding, structure, and compartmentalization of a cellular environment, represent engineering challenges with tremendous potential to impact both biological studies and biomedical applications. Emerging experience has shown that polypeptide-based complex coacervation (electrostatically-driven liquid-liquid phase separation) produces a biomimetic microenvironment capable of tuning protein biochemical activity. We have investigated the effect of polypeptide-based coacervates on the dynamic self-assembly of cytoskeletal actin filaments. Coacervate materials are able to directly affect the nucleation and assembly dynamics. We observe effects that can be attributed to the length and chemical specificity of the encapsulating polypeptides, as well as the overall crowded nature of a polymer-rich coacervate phase. Coacervate-based systems are particularly attractive for use in biochemical assays because the compartmentalization afforded by liquid-liquid phase separation does not necessarily inhibit the transport of molecules across the compartmental barrier.

  16. Cosmeceutical product consisting of biomimetic peptides: antiaging effects in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Gazitaeva ZI

    2017-01-01

    Full Text Available Zarema I Gazitaeva,1 Anna O Drobintseva,2 Yongji Chung,3 Victoria O Polyakova,2 Igor M Kvetnoy2 1Institute of Beauty Fijie, Moscow, 2Department of Pathomorphology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russian Federation; 3Caregen Co., Ltd. Research Center, Seoul, South Korea Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.Patients and methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure. Cell culture, immunocytochemistry, and confocal microscopy methods were used in this study.Results: Biomimetic peptides regulate the synthesis of proteins Ki-67, type I procollagen, AP-1, and SIRT6 in cell cultures of human fibroblasts. They contribute to the activation of regeneration processes and initiation of mechanisms that prevent aging. Intradermal administration of complex of biomimetic peptides produces a more dense arrangement of collagen fibers in the dermis and increased size of the fibers after 2 weeks. The complex of biomimetic peptides was effective in the in vivo experiments, where an increase in the proliferative and synthetic activities of fibroblasts was observed.Conclusion: This investigation showed that the studied peptides have biological effects, testifying the stimulation of reparative processes in the skin under their control. Keywords: biomimetic peptides, skin aging, collagen, reparation processes, mesotherapy

  17. Nanobiotechnology of Biomimetic Membranes

    CERN Document Server

    Martin, Donald K

    2007-01-01

    About the Series: Fundamental Biomedical Technologies features titles in multidisciplinary, technology-driven areas, providing the foundations for breakthrough advances in medicine and biology. The term technology refers, in a vigorously unrestrictive sense, to a broad array of engineering disciplines, the sciences of computation and informatics, mathematical models exploiting and advancing methods of mathematical physics, and the development of novel, experimental discovery devices. Titles in this series are designed and selected to provide high-level visionary input for specialists, while presenting overviews of emerging fields for those in related areas. Volumes in this series aim to provide technologists with the material to gain competent entry into biomedical research and biomedical researchers to understand and embrace novel technological foundations and tools. About the Series Editor: Mauro Ferrari is a professor in the Brown Institute of Molecular Medicine, a professor of internal medicine in the div...

  18. Biomimetic microenvironments for regenerative endodontics.

    Science.gov (United States)

    Kaushik, Sagar N; Kim, Bogeun; Walma, Alexander M Cruz; Choi, Sung Chul; Wu, Hui; Mao, Jeremy J; Jun, Ho-Wook; Cheon, Kyounga

    2016-01-01

    Regenerative endodontics has been proposed to replace damaged and underdeveloped tooth structures with normal pulp-dentin tissue by providing a natural extracellular matrix (ECM) mimicking environment; stem cells, signaling molecules, and scaffolds. In addition, clinical success of the regenerative endodontic treatments can be evidenced by absence of signs and symptoms; no bony pathology, a disinfected pulp, and the maturation of root dentin in length and thickness. In spite of the various approaches of regenerative endodontics, there are several major challenges that remain to be improved: a) the endodontic root canal is a strong harbor of the endodontic bacterial biofilm and the fundamental etiologic factors of recurrent endodontic diseases, (b) tooth discolorations are caused by antibiotics and filling materials, (c) cervical root fractures are caused by endodontic medicaments, (d) pulp tissue is not vascularized nor innervated, and (e) the dentin matrix is not developed with adequate root thickness and length. Generally, current clinical protocols and recent studies have shown a limited success of the pulp-dentin tissue regeneration. Throughout the various approaches, the construction of biomimetic microenvironments of pulp-dentin tissue is a key concept of the tissue engineering based regenerative endodontics. The biomimetic microenvironments are composed of a synthetic nano-scaled polymeric fiber structure that mimics native pulp ECM and functions as a scaffold of the pulp-dentin tissue complex. They will provide a framework of the pulp ECM, can deliver selective bioactive molecules, and may recruit pluripotent stem cells from the vicinity of the pulp apex. The polymeric nanofibers are produced by methods of self-assembly, electrospinning, and phase separation. In order to be applied to biomedical use, the polymeric nanofibers require biocompatibility, stability, and biodegradability. Therefore, this review focuses on the development and application of the

  19. Biomimetic graphene films and their properties

    Science.gov (United States)

    Zhang, Yong-Lai; Chen, Qi-Dai; Jin, Zhi; Kim, Eunkyoung; Sun, Hong-Bo

    2012-07-01

    Biomimetic fabrication has long been considered a short cut to the rational design and production of artificial materials or devices that possess fascinating properties, just like natural creatures. Considering the fact that graphene exhibits a lot of exceptional properties in a wide range of scientific fields, biomimetic fabrication of graphene multiscale structures, denoted as biomimetic graphene, is of great interest in both fundamental research and industrial applications. Especially, the combination of graphene with biomimetic structures would realize structural and functional integrity, and thus bring a new opportunity of developing novel graphene-based devices with remarkable performance. In this feature article, we highlight the recent advances in biomimetic graphene films and their structure-defined properties. Functionalized graphene films with multiscale structures inspired from a wide range of biomaterials including rose petals, butterfly wings, nacre and honeycomb have been collected and presented. Moreover, both current challenges and future perspectives of biomimetic graphene are discussed. Although research of the so-called ``biomimetic graphene'' is still at an early stage, it might become a ``hot topic'' in the near future.

  20. Framing biomimetics in a strategic orientation perspective (biopreneuring)

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2015-01-01

    This paper discusses how design originally rooted in biology can be translated into applications outside its original domain (biomimetics), and thus become strategically important for commercial organisations. This paper will also discuss how concepts from organisation and management theory can...... somewhat overlooked. This paper fills some of that void. Business orientation literature is applied to identify some of the key strategic aspects associated with commercial translations. In closing, this paper briefly sketches out some key implications for business research and for affected decision-makers....

  1. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  2. Challenges in Commercializing Biomimetic Membranes

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-01-01

    The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379

  3. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  4. X-ray Emission Spectroscopy of Biomimetic Mn Coordination Complexes.

    Science.gov (United States)

    Jensen, Scott C; Davis, Katherine M; Sullivan, Brendan; Hartzler, Daniel A; Seidler, Gerald T; Casa, Diego M; Kasman, Elina; Colmer, Hannah E; Massie, Allyssa A; Jackson, Timothy A; Pushkar, Yulia

    2017-06-15

    Understanding the function of Mn ions in biological and chemical redox catalysis requires precise knowledge of their electronic structure. X-ray emission spectroscopy (XES) is an emerging technique with a growing application to biological and biomimetic systems. Here, we report an improved, cost-effective spectrometer used to analyze two biomimetic coordination compounds, [Mn(IV)(OH)2(Me2EBC)](2+) and [Mn(IV)(O)(OH)(Me2EBC)](+), the second of which contains a key Mn(IV)═O structural fragment. Despite having the same formal oxidation state (Mn(IV)) and tetradentate ligands, XES spectra from these two compounds demonstrate different electronic structures. Experimental measurements and DFT calculations yield different localized spin densities for the two complexes resulting from Mn(IV)-OH conversion to Mn(IV)═O. The relevance of the observed spectroscopic changes is discussed for applications in analyzing complex biological systems such as photosystem II. A model of the S3 intermediate state of photosystem II containing a Mn(IV)═O fragment is compared to recent time-resolved X-ray diffraction data of the same state.

  5. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  6. PREFACE: Symposium 13: Ceramics for Medicine, Biotechnology and Biomimetics

    Science.gov (United States)

    Ohtsuki, Chikara

    2011-10-01

    Preface to Symposium 13 (Ceramics for Medicine, Biotechnology and Biomimetics) of the International Congress on Ceramics III, 14-18 November 2010, Osaka, Japan Ceramic materials are now widely used in biomedical fields, such as applications of artificial bones, joints and teeth. The high potential of ceramics to exhibit biological functionality is expected to produce novel materials supporting biotechnology. These applications are governed by the interactions of materials and biological molecules. So far, 'bioceramics' is a type of biomaterial used for repairing damaged tissues. The orthopaedic application of bioceramics has advanced rapidly since the invention of Bioglass® that was found to encourage direct bonding with living bone. Hydroxyapatite and calcium phosphate ceramics are now popular bioceramics for use in artificial bones. While the bone-bonding behavior of materials was understood phenomenologically, very little has been known about the mechanism of either hard or soft tissue attachment or tissue growth on ceramic-based materials, such as glasses, glass-ceramics, ceramic composites and organic-inorganic hybrids. This symposium discussed the scientific understanding of the interface between biomedical materials and soft/hard tissues, and the design and construction of nanoscopic interfaces. It also involved establishment of biomimetic structures, characterization of natural life-related hard and soft tissues, and their formation mechanisms for a wide range of applications in biotechnology through 45 oral presentations including 5 invited lectures and 45 posters. I wish to express my sincere appreciation to the organizers of this symposium in the ICC3 conference. I am also grateful to the invited speakers, all the participants and organizing committee of the ICC3. It is my great pleasure that this proceedings could be published as the fruit of this symposium's achievement, which includes the contributions in all aspect of scientific understanding and

  7. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  8. Development of a Molecularly Imprinted Biomimetic Electrode

    Directory of Open Access Journals (Sweden)

    Evangelyn C. Alocilja

    2007-08-01

    Full Text Available The technique of molecular imprinting produces artificial receptor sites in apolymer that can be used in a biomimetic sensor. This research extends previous studies ofa molecularly imprinted polymer (MIP biomimetic sensor for the small drug theophylline.The presence of theophylline in the biomimetic sensor was monitored by analyzing thepeak currents from cyclic voltammetry experiments. The functional working range of theMIP modified electrode was 2 - 4 mM theophylline. The concentration of theophyllinethat resulted in the best signal was 3 mM. The MIP sensor showed no response to thestructurally related molecule caffeine, and therefore was selective to the target analytetheophylline. This research will provide the foundation for future studies that will result indurable biomimetic sensors that can offer a viable alternative to current sensors.

  9. Biomimetic design method for innovation and sustainability

    CERN Document Server

    Helfman Cohen, Yael

    2017-01-01

    Presenting a novel biomimetic design method for transferring design solutions from nature to technology, this book focuses on structure-function patterns in nature and advanced modeling tools derived from TRIZ, the theory of inventive problem-solving. The book includes an extensive literature review on biomimicry as an engine of both innovation and sustainability, and discusses in detail the biomimetic design process, current biomimetic design methods and tools. The structural biomimetic design method for innovation and sustainability put forward in this text encompasses (1) the research method and rationale used to develop and validate this new design method; (2) the suggested design algorithm and tools including the Findstructure database, structure-function patterns and ideality patterns; and (3) analyses of four case studies describing how to use the proposed method. This book offers an essential resource for designers who wish to use nature as a source of inspiration and knowledge, innovators and sustain...

  10. Biomimetic mechanism for micro aircraft

    Science.gov (United States)

    Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)

    2005-01-01

    A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.

  11. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  12. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  13. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.

    Science.gov (United States)

    Bhushan, Bharat

    2011-01-01

    The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  14. Directed Fluid Flow Produced by Arrays of Magnetically Actuated Core-Shell Biomimetic Cilia

    Science.gov (United States)

    Fiser, B. L.; Shields, A. R.; Evans, B. A.; Superfine, R.

    2010-03-01

    We have developed a novel core-shell microstructure that we use to fabricate arrays of flexible, magnetically actuated biomimetic cilia. Our biomimetic cilia mimic the size and beat shape of biological cilia in order to replicate the transport of fluid driven by cilia in many biological systems including the determination of left-right asymmetry in the vertebrate embryonic nodal plate and mucociliary clearance in the lung. Our core-shell structures consist of a flexible poly(dimethylsiloxane) (PDMS) core surrounded by a shell of nickel approximately forty nanometers thick; by using a core-shell structure, we can tune the mechanical and magnetic properties independently. We present the fabrication process and the long-range transport that occurs above the beating biomimetic cilia tips and will report on progress toward biomimetic cilia induced flow in viscoelastic fluids similar to mucus in the human airway. These flows may have applications in photonics and microfluidics, and our structures may be further useful as sensors or actuators in microelectromechanical systems.

  15. Touch stimulated pulse generation in biomimetic single-layer graphene

    Science.gov (United States)

    Sul, Onejae; Chun, Hyunsuk; Choi, Eunseok; Choi, Jungbong; Cho, Kyeongwon; Jang, Dongpyo; Chun, Sungwoo; Park, Wanjun; Lee, Seung-Beck

    2016-02-01

    Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac

  16. Clarity of objectives and working principles enhances the success of biomimetic programs.

    Science.gov (United States)

    Wolff, Jonas; Wells, David; Reid, Chris; Blamires, Sean John

    2017-08-18

    Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examining three flagship examples of biomimetic design approaches from different disciplines: (1) the creation of gecko-inspired adhesives; (2) the synthesis of spider silk, and (3) the derivation of computer algorithms from natural self-organizing systems. We find that identification of the elemental working principles is the most crucial step in the biomimetic design process. It bears the highest risk of failure (e.g. losing the target function) due to false assumptions about the working principle. Common problems that hamper successful implementation are: (i) a discrepancy between biological functions and the desired properties of the product, (ii) uncertainty about objectives and applications, (iii) inherent limits in methodologies, and (iv) false assumptions about the biology of the models. Projects that aim for multi-functional products are particularly challenging to accomplish. We suggest a simplification, modularisation and specification of objectives, and a critical assessment of the suitability of the model. Comparative analyses, experimental manipulation, and numerical simulations followed by tests of artificial models have led to the successful extraction of working principles. A searchable database of biological systems would optimize the choice of a model system in top-down approaches that start at an engineering problem. Only when biomimetic projects become more predictable will there be wider acceptance of biomimetics as an innovative problem-solving tool among engineers and industry. © 2017 IOP Publishing Ltd.

  17. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    sticking between the gripping device and the micropart, which hinders the automation of picking and releasing operations. This paper presents the identification and use of biological analogies to solve the problem of sticking during microassembly. Selected release techniques based on DNA transcription......This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...... and the abscission process in plants inspired concepts of new automated handling devices for microobjects. The design, development and testing of a gripping device based on biological principles for the automated handling and assembly of a microscrew is presented....

  18. A biomimetic nanosponge that absorbs pore-forming toxins

    Science.gov (United States)

    Hu, Che-Ming J.; Fang, Ronnie H.; Copp, Jonathan; Luk, Brian T.; Zhang, Liangfang

    2013-05-01

    Detoxification treatments such as toxin-targeted anti-virulence therapy offer ways to cleanse the body of virulence factors that are caused by bacterial infections, venomous injuries and biological weaponry. Because existing detoxification platforms such as antisera, monoclonal antibodies, small-molecule inhibitors and molecularly imprinted polymers act by targeting the molecular structures of toxins, customized treatments are required for different diseases. Here, we show a biomimetic toxin nanosponge that functions as a toxin decoy in vivo. The nanosponge, which consists of a polymeric nanoparticle core surrounded by red blood cell membranes, absorbs membrane-damaging toxins and diverts them away from their cellular targets. In a mouse model, the nanosponges markedly reduce the toxicity of staphylococcal alpha-haemolysin (α-toxin) and thus improve the survival rate of toxin-challenged mice. This biologically inspired toxin nanosponge presents a detoxification treatment that can potentially treat a variety of injuries and diseases caused by pore-forming toxins.

  19. Biomimetic materials design for cardiac tissue regeneration.

    Science.gov (United States)

    Dunn, David A; Hodge, Alexander J; Lipke, Elizabeth A

    2014-01-01

    Cardiovascular disease is the leading cause of death worldwide. In the absence of sufficient numbers of organs for heart transplant, alternate approaches for healing or replacing diseased heart tissue are under investigation. Designing biomimetic materials to support these approaches will be essential to their overall success. Strategies for cardiac tissue engineering include injection of cells, implantation of three-dimensional tissue constructs or patches, injection of acellular materials, and replacement of valves. To replicate physiological function and facilitate engraftment into native tissue, materials used in these approaches should have properties that mimic those of the natural cardiac environment. Multiple aspects of the cardiac microenvironment have been emulated using biomimetic materials including delivery of bioactive factors, presentation of cell-specific adhesion sites, design of surface topography to guide tissue alignment and dictate cell shape, modulation of mechanical stiffness and electrical conductivity, and fabrication of three-dimensional structures to guide tissue formation and function. Biomaterials can be engineered to assist in stem cell expansion and differentiation, to protect cells during injection and facilitate their retention and survival in vivo, and to provide mechanical support and guidance for engineered tissue formation. Numerous studies have investigated the use of biomimetic materials for cardiac regeneration. Biomimetic material design will continue to exploit advances in nanotechnology to better recreate the cellular environment and advance cardiac regeneration. Overall, biomimetic materials are moving the field of cardiac regenerative medicine forward and promise to deliver new therapies in combating heart disease.

  20. Developing a biomimetic tooth bud model.

    Science.gov (United States)

    Smith, Elizabeth E; Zhang, Weibo; Schiele, Nathan R; Khademhosseini, Ali; Kuo, Catherine K; Yelick, Pamela C

    2017-01-08

    A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  2. Biomimetic endodontics: the final evolution?

    Science.gov (United States)

    Clark, David J

    2007-07-01

    We are seeing a gradual evolution by a small but growing number of endodontists and general dentists toward delicate biomimetic, microscope-based shaping. This old-fashioned respect for periradicular dentin is paired with microscopes, ultrasonics, and an appreciation for root morphology. Although no 2 roots are the same, general anatomic patterns allow the microscope-equipped clinician to search for major pulpal regions that will yield a high probability of cleaning and shaping the clinically available pulpal zones. There are complex, anatomically improbable, and clinically impossible areas of pulp that are beyond the reach of even the most gifted hands. Regardless, the clinician has the responsibility to begin each procedure seeking perfection and joyfully finishing with excellence. The shapes that were introduced during the Schilder (crown-down) era have served as a transitional technique to allow the first real 3-dimensional compaction of gutta-percha. Nonetheless, endodontics is in the end a restoratively driven procedure. Large, arbitrary, round shapes create beautiful endodontics but can dramatically weaken the tooth. The shaping philosophy advanced in this treatise allows perfectly adequate shapes to achieve the hydraulics needed for modern obturation. It will require different skills and materials to shape, pack, and restore the exotic architecture of nature. (See Tables 1 to 3.).

  3. Biomimetics, color, and the arts

    Science.gov (United States)

    Schenk, Franziska

    2015-03-01

    Color as dramatic, dynamic and dazzling as the iridescent hues on the wings of certain butterflies has never been encountered in the art world. Unlike and unmatched by the chemical pigments of the artists' palette, this changeable color is created by transparent, colorless nanostructures that, as with prisms, diffract and reflect light to render spectral color visible. Until now, iridescent colors, by their very nature, have defied artists' best efforts to fully capture these rainbow hues. Now, for the first time, the artist and researcher Franziska Schenk employs latest nature-inspired color-shift technology to actually simulate the iridescence of butterflies and beetles on canvas. Crucially, studying the ingenious ways in which a range of such displays are created by insects has provided the artist with vital clues on how to adapt and adopt these challenging optical nano-materials for painting. And indeed, after years of meticulous and painstaking research both in the lab and studio, the desired effect is achieved. The resulting paintings, like an iridescent insect, do in fact fluctuate in perceived color - depending on the light and viewing angle. In tracing the artist's respective biomimetic approach, the paper not only provides an insight into the new color technology's evolution and innovative artistic possibilities, but also suggests what artists can learn from nature.

  4. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    Science.gov (United States)

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe

    2012-02-14

    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.

  5. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  6. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration.

    Science.gov (United States)

    Green, David W; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a "water-tight" barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  7. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  8. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  9. A New Absorbable Synthetic Substitute With Biomimetic Design for Dural Tissue Repair.

    Science.gov (United States)

    Shi, Zhidong; Xu, Tao; Yuan, Yuyu; Deng, Kunxue; Liu, Man; Ke, Yiquan; Luo, Chengyi; Yuan, Tun; Ayyad, Ali

    2016-04-01

    Dural repair products are evolving from animal tissue-derived materials to synthetic materials as well as from inert to absorbable features; most of them lack functional and structural characteristics compared with the natural dura mater. In the present study, we evaluated the properties and tissue repair performance of a new dural repair product with biomimetic design. The biomimetic patch exhibits unique three-dimensional nonwoven microfiber structure with good mechanical strength and biocompatibility. The animal study showed that the biomimetic patch and commercially synthetic material group presented new subdural regeneration at 90 days, with low level inflammatory response and minimal to no adhesion formation detected at each stage. In the biological material group, no new subdural regeneration was observed and severe adhesion between the implant and the cortex occurred at each stage. In clinical case study, there was no cerebrospinal fluid leakage, and all the postoperation observations were normal. The biomimetic structure and proper rate of degradation of the new absorbable dura substitute can guide the meaningful reconstruction of the dura mater, which may provide a novel approach for dural defect repair.

  10. Minimally invasive restorative dentistry: a biomimetic approach.

    Science.gov (United States)

    Malterud, Mark I

    2006-08-01

    When providing dental treatment for a given patient, the practitioner should use a minimally invasive technique that conserves sound tooth structure as a clinical imperative. Biomimetics is a tenet that guides the author's practice and is generally described as the mimicking of natural life. This can be accomplished in many cases using contemporary composite resins and adhesive dental procedures. Both provide clinical benefits and support the biomimetic philosophy for treatment. This article illustrates a minimally invasive approach for the restoration of carious cervical defects created by poor hygiene exacerbated by the presence of orthodontic brackets.

  11. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  12. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  13. Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

    Directory of Open Access Journals (Sweden)

    Stefan Landkammer

    2016-07-01

    Full Text Available Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

  14. Engineering Design of an Adaptive Leg Prosthesis Using Biological Principles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Dentel, Andy; Invarsdottir, Thorunn

    2010-01-01

    The biomimetic design process is explored through a design case: An adaptive leg prosthesis. The aim is to investigate if the biomimetic design process can be carried out with a minimum of biological knowledge and without using advanced design methods. In the design case biomimetic design was suc...... was successfully carried out using library search resulting in 14 biological analogies for the design problem 'shape adaption'. It is proposed that search results are handled using special cards describing the biological phenomena and the functional principles....

  15. Biomimetic oxidations using transition metal complex catalysts; Sen`i kinzoku sakutai wo mochiiru seigoseigata sanka shokubai hanno

    Energy Technology Data Exchange (ETDEWEB)

    Murahashi, S. [Osaka University, Osaka (Japan). Faculty of Engineering Science

    1995-12-15

    Simulation of the functions of flavoenzyme and cytochrome P-450 with transition metal complex catalysts led to the discovery of biomimetic catalytic oxidation. The first section highlights the catalytic oxidation of secondary amides to nitrones by simulation of flavoenzymes. The second section is the simulation of the function of cytochrome P-450 with low valent ruthenium complexes and peroxides. Biomimetic ruthenium-paralyzed oxidations of tertiary amides, amides, {beta}-lactams, alkenes, and alkanes can be performed selectively under mild conditions. These general approaches provide highly useful strategies for synthesis of fine chemicals and biologically active compounds. 15 refs.

  16. Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration

    OpenAIRE

    2013-01-01

    The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i) cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii) the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii) the cellulose matrix was mixed with a calcium silicate solution in order to introduce ...

  17. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    OpenAIRE

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have be...

  18. Dopamine modulated ionic permeability in mesoporous silica sphere based biomimetic compartment.

    Science.gov (United States)

    Liu, Wei; Yang, Xiaohai; He, Dinggeng; He, Leiliang; Li, Li; Liu, Yu; Liu, Jianbo; Wang, Kemin

    2016-06-01

    The building of artificial systems with similar structure and function as cellular compartments will expand our understanding of compartmentalization related biological process and facilitate the construction of biomimetic highly functional structures. Herein, surface phenylboronic acid functionalized mesoporous silica sphere was developed as a biomimetic dopamine gated compartment, in which the ionic permeability can be well modulated through the dopamine-binding induced charge reversal. As the phenylboronic acid is negatively charged, the negatively charged 1, 3, 6, 8-pyrenetetrasulfonic acid (TPSA) was hindered from permeation into the biomimetic compartment. However, the presence of dopamine and its binding with phenylboronic acid reversed the gatekeeper shell from negative to positive charged and gated the permeation of TPSA into the interior. The dopamine gated permeation phenomenon resembles that in biological system, and thus the phenylboronic acid functionalized mesoporous silica sphere was taken as a simple model for dopamine gated ion channel decorated biological compartment. It will also contribute to the development of artificial cell and responsive nanoreactor.

  19. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  20. Energy-based and biomimetic robotics

    NARCIS (Netherlands)

    Folkertsma, Gerrit Adriaan

    2017-01-01

    All physical systems interact by exchanging power, or energy. This energy can be explicitly taken into account when designing robotic systems, in dynamic models of systems and controllers, leading to more insight in energy-related effects. In this thesis, a biomimetic cheetah robot is developed, by

  1. Calcifying tissue regeneration via biomimetic materials chemistry

    OpenAIRE

    Green, David W.; Goto, Tazuko K.; Kim, Kye-Seong; Jung, Han-Sung

    2014-01-01

    Materials chemistry is making a fundamental impact in regenerative sciences providing many platforms for tissue development. However, there is a surprising paucity of replacements that accurately mimic the structure and function of the structural fabric of tissues or promote faithful tissue reconstruction. Methodologies in biomimetic materials chemistry have shown promise in replicating morphologies, architectures and functional building blocks of acellular mineralized tissues dentine, enamel...

  2. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by usin...

  3. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...

  4. Crustacean-derived biomimetic components and nanostructured composites.

    Science.gov (United States)

    Grunenfelder, Lessa Kay; Herrera, Steven; Kisailus, David

    2014-08-27

    Over millions of years, the crustacean exoskeleton has evolved into a rigid, tough, and complex cuticle that is used for structural support, mobility, protection of vital organs, and defense against predation. The crustacean cuticle is characterized by a hierarchically arranged chitin fiber scaffold, mineralized predominately by calcium carbonate and/or calcium phosphate. The structural organization of the mineral and organic within the cuticle occurs over multiple length scales, resulting in a strong and tough biological composite. Here, the ultrastructural details observed in three species of crustacean are reviewed: the American lobster (Homarus americanus), the edible crab (Cancer pagurus), and the peacock mantis shrimp (Odontodactylus scyllarus). The Review concludes with a discussion of recent advances in the development of biomimetics with controlled organic scaffolding, mineralization, and the construction of nanoscale composites, inspired by the organization and formation of the crustacean cuticle. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Artificial lateral line with biomimetic neuromasts to emulate fish sensing

    Energy Technology Data Exchange (ETDEWEB)

    Yang Yingchen; Chen Nannan; Tucker, Craig; Hu Huan; Liu Chang [Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 (United States); Nguyen, Nam; Lockwood, Michael; Jones, Douglas L [Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Bleckmann, Horst, E-mail: changliu@northwestern.ed, E-mail: dl-jones@uiuc.ed [Institut fuer Zoologie, Universitaet Bonn, Poppelsdorfer Schloss, D-53115 Bonn (Germany)

    2010-03-15

    Hydrodynamic imaging using the lateral line plays a critical role in fish behavior. To engineer such a biologically inspired sensing system, we developed an artificial lateral line using MEMS (microelectromechanical system) technology and explored its localization capability. Arrays of biomimetic neuromasts constituted an artificial lateral line wrapped around a cylinder. A beamforming algorithm further enabled the artificial lateral line to image real-world hydrodynamic events in a 3D domain. We demonstrate that the artificial lateral line system can accurately localize an artificial dipole source and a natural tail-flicking crayfish under various conditions. The artificial lateral line provides a new sense to man-made underwater vehicles and marine robots so that they can sense like fish.

  6. Biomimetic approaches with smart interfaces for bone regeneration.

    Science.gov (United States)

    Sailaja, G S; Ramesh, P; Vellappally, Sajith; Anil, Sukumaran; Varma, H K

    2016-11-05

    A 'smart tissue interface' is a host tissue-biomaterial interface capable of triggering favourable biochemical events inspired by stimuli responsive mechanisms. In other words, biomaterial surface is instrumental in dictating the interface functionality. This review aims to investigate the fundamental and favourable requirements of a 'smart tissue interface' that can positively influence the degree of healing and promote bone tissue regeneration. A biomaterial surface when interacts synergistically with the dynamic extracellular matrix, the healing process become accelerated through development of a smart interface. The interface functionality relies equally on bound functional groups and conjugated molecules belonging to the biomaterial and the biological milieu it interacts with. The essential conditions for such a special biomimetic environment are discussed. We highlight the impending prospects of smart interfaces and trying to relate the design approaches as well as critical factors that determine species-specific functionality with special reference to bone tissue regeneration.

  7. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  8. Biomimetics of human movement: functional or aesthetic?

    Science.gov (United States)

    Harris, Christopher M

    2009-09-01

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  9. Patterns of Growth—Biomimetics and Architectural Design

    Directory of Open Access Journals (Sweden)

    Petra Gruber

    2017-04-01

    Full Text Available This paper discusses the approach of biomimetic design in architecture applied to the theme of growth in biology by taking two exemplary research projects at the intersection of arts and sciences. The first project, ‘Biornametics’, dealt with patterns from nature; the second project ‘Growing as Building (GrAB’ took on biological growth as a specific theme for the transfer to architecture and the arts. Within a timeframe of five years (2011–2015, the research was conducted under the Program for Arts-based Research PEEK (Programm zur Entwicklung und Erschliessung der Künste of the Austrian Science Fund FWF (Fonds zur Förderung der wissenschaftlichen Forschung. The underlying hypothesis was that growth processes in nature have not been studied for transfer into technology and architecture yet and that, with advanced software tools, promising applications could be found. To ensure a high degree of innovation, this research was done with an interdisciplinary team of architects, engineers, and scientists (mainly biologists to lay the groundwork for future product-oriented technological solutions. Growth, as one of the important characteristics of living organisms, is used as a frame for research into systems and principles that shall deliver innovative and sustainable solutions in architecture and the arts. Biomimetics as a methodology was used to create and guide information transfer from the life sciences to innovative proto-architectural solutions. The research aimed at transferring qualities present in biological growth; for example, adaptiveness, exploration, or local resource harvesting into technical design and production processes. In contrast to our current building construction, implementing principles of growth could potentially transform building towards a more integrated and sustainable setting, a new living architecture. Tools and methods, especially Quality Function Deployment (QFD for matching biological role models with

  10. Biologic

    CERN Document Server

    Kauffman, L H

    2002-01-01

    In this paper we explore the boundary between biology and the study of formal systems (logic). In the end, we arrive at a summary formalism, a chapter in "boundary mathematics" where there are not only containers but also extainers ><, entities open to interaction and distinguishing the space that they are not. The boundary algebra of containers and extainers is to biologic what boolean algebra is to classical logic. We show how this formalism encompasses significant parts of the logic of DNA replication, the Dirac formalism for quantum mechanics, formalisms for protein folding and the basic structure of the Temperley Lieb algebra at the foundations of topological invariants of knots and links.

  11. Principles of goal-directed spatial robot navigation in biomimetic models.

    Science.gov (United States)

    Milford, Michael; Schulz, Ruth

    2014-11-01

    Mobile robots and animals alike must effectively navigate their environments in order to achieve their goals. For animals goal-directed navigation facilitates finding food, seeking shelter or migration; similarly robots perform goal-directed navigation to find a charging station, get out of the rain or guide a person to a destination. This similarity in tasks extends to the environment as well; increasingly, mobile robots are operating in the same underwater, ground and aerial environments that animals do. Yet despite these similarities, goal-directed navigation research in robotics and biology has proceeded largely in parallel, linked only by a small amount of interdisciplinary research spanning both areas. Most state-of-the-art robotic navigation systems employ a range of sensors, world representations and navigation algorithms that seem far removed from what we know of how animals navigate; their navigation systems are shaped by key principles of navigation in 'real-world' environments including dealing with uncertainty in sensing, landmark observation and world modelling. By contrast, biomimetic animal navigation models produce plausible animal navigation behaviour in a range of laboratory experimental navigation paradigms, typically without addressing many of these robotic navigation principles. In this paper, we attempt to link robotics and biology by reviewing the current state of the art in conventional and biomimetic goal-directed navigation models, focusing on the key principles of goal-oriented robotic navigation and the extent to which these principles have been adapted by biomimetic navigation models and why.

  12. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  13. The progress of olfactory transduction and biomimetic olfactory-based biosensors

    Institute of Scientific and Technical Information of China (English)

    WU ChunSheng; WANG LiJiang; ZHOU Jun; ZHAO LuHang; WANG Ping

    2007-01-01

    Olfaction is a very important sensation for all animals. Recently great progress has been made in the research of olfactory transduction. Especially the novel finding of the gene superfamily encoding olfactory receptors has led to rapid advances in olfactory transduction. These advances also promoted the research of biomimetic olfactory-based biosensors and some obvious achievements have been obtained due to their potential commercial prospects and promising industrial applications. This paper briefly introduces the biological basis of olfaction, summarizes the progress of olfactory signal transduction in the olfactory neuron, the olfactory bulb and the olfactory cortex, outlines the latest developments and applications of biomimetic olfactory-based biosensors. Finally, the olfactory biosensor based on light addressable potentiometric sensor (LAPS) is addressed in detail based on our recent work and the research trends of olfactory biosensors in future are discussed.

  14. Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy

    Science.gov (United States)

    Martín-Palma, Raúl J.; Lakhtakia, Akhlesh

    2017-06-01

    Although humans have long been imitating biological structures to serve their particular purposes, only a few decades ago engineered biomimicry began to be considered a technoscientific discipline with a great problem-solving potential. The three methodologies of engineered biomimicry-viz., bioinspiration, biomimetic, and bioreplication-employ and impact numerous technoscientific fields. For producing fuels and electricity by artificial photosynthesis, both processes and porous surfaces inspired by plants and certain marine animals are under active investigation. Biomimetically textured surfaces on the subwavelength scale have been shown to reduce the reflectance of photovoltaic solar cells over the visible and the near-infrared regimes. Lenticular compound lenses bioreplicated from insect eyes by an industrially scalable technique offer a similar promise.

  15. Biomimetic and microbial approaches to solar fuel generation.

    Science.gov (United States)

    Magnuson, Ann; Anderlund, Magnus; Johansson, Olof; Lindblad, Peter; Lomoth, Reiner; Polivka, Tomas; Ott, Sascha; Stensjö, Karin; Styring, Stenbjörn; Sundström, Villy; Hammarström, Leif

    2009-12-21

    them with good catalytic efficiency. The catalytic sites of hydrogenases are now the center of attention of biomimetic efforts, providing prospects for catalytic hydrogen production with inexpensive metals. Thus, we might complete the water-to-fuel conversion: light + 2H(2)O --> 2H(2) + O(2). This reaction formula is to some extent already elegantly fulfilled by cyanobacteria and green algae, water-splitting photosynthetic microorganisms that under certain conditions also can produce hydrogen. An alternative route to hydrogen from solar energy is therefore to engineer these organisms to produce hydrogen more efficiently. This Account describes our original approach to combine research in these two fields: mimicking structural and functional principles of both Photosystem II and hydrogenases by synthetic chemistry and engineering cyanobacteria to become better hydrogen producers and ultimately developing new routes toward synthetic biology.

  16. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian;

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE......)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self...

  17. Cell Interactions within Biomimetic Apatite Microenvironments

    OpenAIRE

    Tsang, Eric

    2014-01-01

    Bioactive ceramics, such as calcium phosphate-based materials, have been studied extensively for the regeneration of bone tissue. Accelerated apatite coatings prepared from biomimetic methods is one approach that has had a history of success in both in vitro and in vivo studies for bone regeneration [1]-[4]. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this thesis evaluates the in vitro i...

  18. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  19. Towards the LIVING envelope: Biomimetics for building envelope adaptation

    NARCIS (Netherlands)

    Badarnah Kadri, L.

    2012-01-01

    Several biomimetic design strategies are available for various applications, though the research on biomimetics as a design tool in architecture is still challenging. This is due to a lack of systematic design tools required for identifying relevant organisms, or natural systems, and abstracting the

  20. Plant Surfaces: Structures and Functions for Biomimetic Innovations

    Science.gov (United States)

    Barthlott, Wilhelm; Mail, Matthias; Bhushan, Bharat; Koch, Kerstin

    2017-04-01

    An overview of plant surface structures and their evolution is presented. It combines surface chemistry and architecture with their functions and refers to possible biomimetic applications. Within some 3.5 billion years biological species evolved highly complex multifunctional surfaces for interacting with their environments: some 10 million living prototypes (i.e., estimated number of existing plants and animals) for engineers. The complexity of the hierarchical structures and their functionality in biological organisms surpasses all abiotic natural surfaces: even superhydrophobicity is restricted in nature to living organisms and was probably a key evolutionary step with the invasion of terrestrial habitats some 350-450 million years ago in plants and insects. Special attention should be paid to the fact that global environmental change implies a dramatic loss of species and with it the biological role models. Plants, the dominating group of organisms on our planet, are sessile organisms with large multifunctional surfaces and thus exhibit particular intriguing features. Superhydrophilicity and superhydrophobicity are focal points in this work. We estimate that superhydrophobic plant leaves (e.g., grasses) comprise in total an area of around 250 million km2, which is about 50% of the total surface of our planet. A survey of structures and functions based on own examinations of almost 20,000 species is provided, for further references we refer to Barthlott et al. (Philos. Trans. R. Soc. A 374: 20160191, 1). A basic difference exists between aquatic non-vascular and land-living vascular plants; the latter exhibit a particular intriguing surface chemistry and architecture. The diversity of features is described in detail according to their hierarchical structural order. The first underlying and essential feature is the polymer cuticle superimposed by epicuticular wax and the curvature of single cells up to complex multicellular structures. A descriptive terminology

  1. Biomimetic poly(glycerol sebacate) (PGS) membranes for cardiac patch application.

    Science.gov (United States)

    Rai, Ranjana; Tallawi, Marwa; Barbani, Niccoletta; Frati, Caterina; Madeddu, Denise; Cavalli, Stefano; Graiani, Gallia; Quaini, Federico; Roether, Judith A; Schubert, Dirk W; Rosellini, Elisabetta; Boccaccini, Aldo R

    2013-10-01

    In this study biomimetic poly(glycerol sebacate) PGS matrix was developed for cardiac patch application. The rationale was that such matrices would provide conducive environment for the seeded cells at the interphase with PGS. From the microstructural standpoint, PGS was fabricated into dense films and porous PGS scaffolds. From the biological aspect, biomimetic PGS membranes were developed via covalently binding peptides Tyr-Ile-Gly-Ser-Arg (YIGSR) and Gly-Arg-Gly-Asp-Ser-Pro (GRGDSP), corresponding to the epitope sequences of laminin and fibronectin, respectively onto the surface. To improve and enhance homogenous binding of peptides onto the PGS surface, chemical modification of its surface was carried out. A sequential regime of alkaline hydrolysis with 0.01 M NaOH for 5 min and acidification with 0.01 M HCl for 25s was optimal. More COOH chemical group was exposed without causing deleterious effect on the bulk properties of the polymer as revealed by the physicochemical analysis carried out. HPLC analysis, chemical imaging and ToF-SIMS were able to establish the successful homogenous functionalization of PGS membranes with the peptides. Finally, the developed biomimetic membranes supported the adhesion and growth of rat and human cardiac progenitor cells.

  2. Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations.

    Science.gov (United States)

    Brouillet, Fabien; Laurencin, Danielle; Grossin, David; Drouet, Christophe; Estournes, Claude; Chevallier, Geoffroy; Rey, Christian

    2015-08-01

    Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1-20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.

  3. Biomimetics: forecasting the future of science, engineering, and medicine.

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  4. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    Science.gov (United States)

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-07-18

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application.

  5. Tailored antireflective biomimetic nanostructures for UV applications

    Energy Technology Data Exchange (ETDEWEB)

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  6. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  7. Erythrocentaurin, Biosynthesis Postulation and Biomimetic Synthesis

    Institute of Scientific and Technical Information of China (English)

    LEI,Jun; YUAN,Xiang-Hui; LIU,Zhu-Lan; LIU,Jian-Li

    2004-01-01

    @@ Erythrocentaurin is a relatively simple nature product isolated from the root of Gentiana macrophylla Pall.[1] The co-existed of gentiopicroside from the same species led to speculation that erythrocentaurin is a biosynthesis product of gentiopicroside. The transformation of secologanin to carbocyclic aglycone under biomimetic condition has already known (Scheme 1).[2,3] The postulated biosynthesis pathway of erythrocentaurin may be in the same way. In the process the cyclic hemiacetal of the aglycone opened to the dialdehyde which then undergoes a vinylogous aldol reaction, and then dehydroxylation and double bond migration to the title compound (Scheme 2).

  8. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  9. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes......). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device....

  10. Preparation of Biologically Active Materials by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to form the apatite nuclei on a surface of the substrate,the substrate was placed on or in CaO,SiO2-based glass particles which were soaked in a simulated body fluid with ion concentrations nearly equal to those of human blood plasma,and to make the apatite nuclei grow on the substrate in situ,the substrate was soaked in another solution highly supersaturated with respect to the apatite. The induction period for the apatite nucleation varied from 0 to 4 days depending on the kind of the substrate. The thickness of the apatite layer increases linearly with increasing soaking time in the second solution.The rate of growth of the apatite layer increases with increasing degree of the supersaturation and temperature of the second solution, reaching 7um/d in a solution with ion concentrations which is as 1.5 times as those of the simulated body fluid at 60 ℃. The adhesive strength of the apatite layer to the substrate varies depending on the kind and roughness of the substrate. Polyethyleneterephthalate and polyethersulfone plates abraded with No.400 diamond paste show adhesive strengths of as high as 4 MPa. This type of composite of the bone-like apatite with metals, ceramics and organic polymers might be useful not only as highly bioactive hard tissue-repairing materials with analogous mechanical properties to those of the hard tissues, but also as highly biocompatible soft tissue-repairing materials with ductility.

  11. Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review.

    Science.gov (United States)

    Kuttappan, Shruthy; Mathew, Dennis; Nair, Manitha B

    2016-12-01

    Bone is a natural composite material consisting of an organic phase (collagen) and a mineral phase (calcium phosphate, especially hydroxyapatite). The strength of bone is attributed to the apatite, while the collagen fibrils are responsible for the toughness and visco-elasticity. The challenge in bone tissue engineering is to develop such biomimetic composite scaffolds, having a balance between biological and biomechanical properties. This review summarizes the current state of the field by outlining composite scaffolds made of gelatin/collagen in combination with bioactive ceramics for bone tissue engineering application.

  12. Biomimetization of butterfly wings by the conformal-evaporated-film-by-rotation technique for photonics

    Science.gov (United States)

    Martín-Palma, R. J.; Pantano, C. G.; Lakhtakia, A.

    2008-08-01

    Mimetization of biological structures aims to take advantage of their spatial features for the development of devices of tailored functionality. In this work, we replicated the wing of a butterfly at the micro- and nanoscales by implementing the conformal-evaporated-film-by-rotation (CEFR) technique. Chalcogenide glasses were used due to their good optical and mechanical properties. Morphological characterization and optical measurements indicate high-fidelity replication of the original biotemplate; furthermore, the optical properties of the butterfly wings have a structural origin. The CEFR technique might be useful for the fabrication of highly efficient, biomimetic optical devices.

  13. Imprinting Technology in Electrochemical Biomimetic Sensors

    Directory of Open Access Journals (Sweden)

    Manuela F. Frasco

    2017-03-01

    Full Text Available Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.

  14. Imprinting Technology in Electrochemical Biomimetic Sensors.

    Science.gov (United States)

    Frasco, Manuela F; Truta, Liliana A A N A; Sales, M Goreti F; Moreira, Felismina T C

    2017-03-06

    Biosensors are a promising tool offering the possibility of low cost and fast analytical screening in point-of-care diagnostics and for on-site detection in the field. Most biosensors in routine use ensure their selectivity/specificity by including natural receptors as biorecognition element. These materials are however too expensive and hard to obtain for every biochemical molecule of interest in environmental and clinical practice. Molecularly imprinted polymers have emerged through time as an alternative to natural antibodies in biosensors. In theory, these materials are stable and robust, presenting much higher capacity to resist to harsher conditions of pH, temperature, pressure or organic solvents. In addition, these synthetic materials are much cheaper than their natural counterparts while offering equivalent affinity and sensitivity in the molecular recognition of the target analyte. Imprinting technology and biosensors have met quite recently, relying mostly on electrochemical detection and enabling a direct reading of different analytes, while promoting significant advances in various fields of use. Thus, this review encompasses such developments and describes a general overview for building promising biomimetic materials as biorecognition elements in electrochemical sensors. It includes different molecular imprinting strategies such as the choice of polymer material, imprinting methodology and assembly on the transduction platform. Their interface with the most recent nanostructured supports acting as standard conductive materials within electrochemical biomimetic sensors is pointed out.

  15. Incorporation of proteins into biomimetic hydroxyapatite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y.; Groot, K. de [Leiden Univ. (Netherlands). Biomaterials Research Group; IsoTis, Bilthoven (Netherlands); Layrolle, P. [IsoTis, Bilthoven (Netherlands); Blitterswijk, C.A. van [IsoTis, Bilthoven (Netherlands); Twente Univ., Enschede (Netherlands)

    2001-07-01

    Hydroxyapatite coating was biomimetically deposited on titanium alloy (Ti6Al4V). Various concentrations (10 ng/ml - 1 {mu}g/ml) of bovine serum albumin (BSA) were added into a supersaturated calcium phosphate solution (CPS) at physiological temperature and pH of 7.4. Pre-treated Ti6Al4V plates were immersed into such solution for 48 hours at 37 C. BSA was co-precipitated with the crystals during the coating process. A white and thick (30 - 50 {mu}m) coating was uniformly deposited on titanium surfaces. The produced coatings were evaluated and protein release was measured. Results revealed: at higher BSA concentrations in the solution, the coating changed its microstructure; the crystal size of the coating and the coating thickness decreased indicating a crystal growth inhibition. Loading amounts of protein in the coating increased with higher concentration in the solution. Protein was incorporated into whole layer of coating and lead to a slow release. These results indicated that biomimetic hydroxyapatite coatings are suitable carriers for proteins. (orig.)

  16. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I

    Directory of Open Access Journals (Sweden)

    Qian YZ

    2016-08-01

    Full Text Available Yunzhu Qian,1,2 Hanbang Chen,1 Yang Xu,1 Jianxin Yang,2 Xuefeng Zhou,3 Feimin Zhang,1 Ning Gu3 1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 2Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 3School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China Abstract: Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES nanofibrous architecture and collagen I (COL I-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid/poly(caprolactone (PLGA/PCL; 7:3 w/w was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell

  17. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2016-11-01

    Full Text Available Additive manufacturing (AM, sometimes called three-dimensional (3D printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  18. Nanoviscosity Measurements Revealing Domain Formation in Biomimetic Membranes.

    Science.gov (United States)

    Hasan, Imad Younus; Mechler, Adam

    2017-02-07

    Partitioning of lipid molecules in biomimetic membranes is a model system for the study of naturally occurring domains, such as rafts, in biological membranes. The existence of nanometer scale membrane domains in binary lipid mixtures has been shown with microscopy methods; however, the nature of these domains has not been established unequivocally. A common notion is to ascribe domain separation to thermodynamic phase equilibria. However, characterizing thermodynamic phases of single bilayer membranes has not been possible due to their extreme dimensions: the size of the domains falls to the order of tens to hundreds of nanometers whereas the membrane thickness is only a few nanometers. Here, we present direct measurements of phase transitions in single bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) phospholipid mixtures using quartz crystal microbalance-based nanoviscosity measurements. Coexisting thermodynamic phases have been successfully identified, and a phase diagram was constructed for the single bilayer binary lipid system. It was demonstrated that domain separation only takes place in planar membranes, and thus, it is absent in liposomes and not detectable in calorimetric measurements on liposome suspensions. On the basis of energetic analysis, the main transition was identified as the breaking of van der Waals interactions between the acyl chains.

  19. Cuttlebone: Characterisation, Application and Development of Biomimetic Materials

    Institute of Scientific and Technical Information of China (English)

    Joseph Cadman; Shiwei Zhou; Yuhang Chen; Qing Li

    2012-01-01

    Cuttlebone signifies a special class of ultra-lightweight cellular natural material possessing unique chemical,mechanical and structural properties,which have drawn considerable attention in the literature.The aim of this paper is to better understand the mechanical and biological roles of cuttlebone.First,the existing literature concerning the characterisation and potential applications inspired by this remarkable biomaterial is critiqued.Second,the finite element-based homogenisation method is used to verify that morphological variations within individual cuttlebone samples have minimal impact on the effective mechanical properties.This finding agrees with existing literature,which suggests that cuttlebone strength is dictated by the cuttlefish habitation depth.Subsequently,this homogenisation approach is further developed to characterise the effective mechanical bulk modulus and biofluidic permeability that cuttlebone provides,thereby quantifying its mechanical and transporting functionalities to inspire bionic design of structures and materials for more extensive applications.Finally,a brief rationale for the need to design a biomimetic material inspired by the cuttlebone microstructure is provided,based on the preceding investigation.

  20. Biomimetic MEMS sensor array for navigation and water detection

    Science.gov (United States)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  1. Biomimetic solution against dewetting in a highly hydrophobic nanopore.

    Science.gov (United States)

    Picaud, Fabien; Paris, Guillaume; Gharbi, Tijani; Balme, Sébastien; Lepoitevin, Mathilde; Tangaraj, Vidhyadevi; Bechelany, Mikhael; Janot, Jean Marc; Balanzat, Emmanuel; Henn, François

    2016-06-14

    A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications.

  2. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2014-06-01

    Full Text Available In this paper, we will propose the neural networks integrated circuit (NNIC which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generates the driving waveform using synchronization phenomena such as biological neural networks. The driving waveform can operate the actuators of the MEMS microrobot directly. Therefore, the NNIC bare chip realizes the robot control without using any software programs or A/D converters. The microrobot performed forward and backward locomotion, and also changes direction by inputting an external single trigger pulse. The locomotion speed of the microrobot was 26.4 mm/min when the step width was 0.88 mm. The power consumption of the system was 250 mWh when the room temperature was 298 K.

  3. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.

    Science.gov (United States)

    Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen

    2016-11-09

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  4. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    Directory of Open Access Journals (Sweden)

    Carolin C. Lechner

    2015-08-01

    Full Text Available Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed.

  5. Biomimetic membranes with aqueous nano channels but without proteins: impedance of impregnated cellulose ester filters.

    Science.gov (United States)

    Kocherginsky, Nikolai M; Lvovich, Vadim F

    2010-12-01

    Earlier we have shown that many important properties of ionic aqueous channels in biological membranes can be imitated using simple biomimetic membranes. These membranes are composed of mixed cellulose ester-based filters, impregnated with isopropyl myristate or other esters of fatty acids, and can be used for high-throughput drug screening. If the membrane separates two aqueous solutions, combination of relatively hydrophilic polymer support with immobilized carboxylic groups results in the formation of thin aqueous layers covering inner surface of the pores, while the pore volume is filled by lipid-like substances. Because of these aqueous layers biomimetic membranes even without proteins have a cation/anion ion selectivity and specific (per unit of thickness) electrical properties, which are similar to typical properties of biological membranes. Here we describe frequency-dependent impedance of the isopropyl myristate-impregnated biomimetic membranes in the 4-electrode arrangement and present the results as Bode and Nyquist diagrams. When the membranes are placed in deionized water, it is possible to observe three different dispersion processes in the frequency range 0.1 Hz to 30 kHz. Only one dispersion is observed in 5 mM KH(2)PO(4) solution. It is suggested that these three dispersion features are determined by (a) conductivity in aqueous structures/channels, formed near the internal walls of the filter pores at high frequencies, (b) dielectric properties of the whole membrane at medium frequencies, determined by polymer support, aqueous layers and impregnating oil, and, finally, (c) by the processes in hydrated liquid crystal structures formed in pores by impregnating oil in contact with water at low frequencies.

  6. Biomimetics materials, structures and processes : examples, ideas and case studies

    CERN Document Server

    Bruckner, Dietmar; Hellmich, Christian; Schmiedmayer, Heinz-Bodo; Stachelberger, Herbert; Gebeshuber, Ille

    2011-01-01

    The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

  7. Clues for biomimetics from natural composite materials

    Science.gov (United States)

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  8. Progress of Biomimetic Artificial Nose and Tongue

    Science.gov (United States)

    Wang, Ping; Liu, Qingjun

    2009-05-01

    As two of the basic senses of human beings, olfaction and gustation play a very important role in daily life. These two types of chemical sensors are important for recognizing environmental conditions. Electronic nose and electronic tongue, which mimics animals' olfaction and gustation to detect odors and chemical components, have been carried out due to their potential commercial applications for biomedicine, food industry and environmental protection. In this report, the biomimetic artificial nose and tongue is presented. Firstly, the smell and taste sensors mimicking the mammalian olfaction and gustation was described, and then, some mimetic design of electronic nose and tongue for odorants and tastants detection are developed. Finally, olfactory and gustatory biosensors are presented as the developing trends of this field.

  9. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  10. Metallofoldamers supramolecular architectures from helicates to biomimetics

    CERN Document Server

    Maayan, Galia

    2013-01-01

    Metallofoldamers are oligomers that fold into three-dimensional structures in a controlled manner upon coordination with metal ions. Molecules in this class have shown an impressive ability to form single-handed helical structures and other three-dimensional architectures. Several metallofoldamers have been applied as sensors due to their selective folding when binding to a specific metal ion, while others show promise for applications as responsive materials on the basis of their ability to fold and unfold upon changes in the oxidation state of the coordinated metal ion, and as novel catalysts. Metallofoldamers: From Helicates to Biomimetic Architectures describes the variety of interactions between oligomers and metal species, with a focus on non-natural synthetic molecules. Topics covered include: the major classes of foldamers and their folding driving force metalloproteins and metalloenzymes helicates: self-assembly, structure and applications abiotic metallo-DNA metallo-PNA and iDNA metallopeptides inte...

  11. Development of a Biomimetic Quadruped Robot

    Institute of Scientific and Technical Information of China (English)

    Thanhtam Ho; Sunghac Choi; Sangyoon Lee

    2007-01-01

    This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.

  12. Biomimetic organic-inorganic nanocomposite coatings for titanium implants.

    Science.gov (United States)

    Sikirić, Maja Dutour; Gergely, Csilla; Elkaim, Rene; Wachtel, Ellen; Cuisinier, Frederic J G; Füredi-Milhofer, Helga

    2009-06-01

    A new class of organic-inorganic nanocomposites, to be used as coatings for surface enhancement of metal implants for bone replacement and repair, has been prepared by a biomimetic three-step procedure: (1) embedding amorphous calcium phosphate (ACP) particles between organic polyelectrolyte multilayers (PE MLs), (2) in situ transformation of ACP to octacalcium phospate (OCP) and/or poorly crystalline apatite nanocrystals by immersion of the material into a metastable calcifying solution (MCS) and (3) deposition of a final PE ML. The organic polyelectrolytes used were poly-L-glutamic acid and poly-L-lysine. The nanocomposites obtained by each successive step were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDS), and XRD, and their suitability as coatings for metal implants was examined by mechanical and in vitro biological tests. Coatings obtained by the first deposition step are mechanically unstable and therefore not suitable. During the second step, upon immersion into MCS, ACP particles were transformed into crystalline calcium phosphate, with large platelike OCP crystals as the top layer. After phase transformation, the nanocomposite was strongly attached to the titanium, but the top layer did not promote cell proliferation. However, when the coating was topped with an additional PE ML (step 3), smoother surfaces were obtained, which facilitated cell adhesion and proliferation as shown by in vitro biological tests using primary human osteoblasts (HO) directly seeded onto the nanocomposites. In fact, cell proliferation on nanocomposites with top PE MLs was far superior than on any of the individual components and was equivalent to proliferation on the golden standard (plastic).

  13. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    Science.gov (United States)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.

    2015-10-01

    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  15. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    Science.gov (United States)

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-06

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues.

  16. Special section on biomimetics of movement.

    Science.gov (United States)

    Carpi, Federico; Erb, Rainer; Jeronimidis, George

    2011-12-01

    Movement in biology is an essential aspect of survival for many organisms, animals and plants. Implementing movement efficiently to meet specific needs is a key attribute of natural living systems, and can provide ideas for man-made developments. If we had to find a subtitle able to essentially convey the aim of this special section, it could read as follows: 'taking inspiration from nature for new materials, actuators, structures and controls for systems that move'. Our world is characterized by a huge variety of technical, engineering systems that move. They surround us in countless products that integrate actuators for different kinds of purposes. Basically, any kind of mechatronic system, such as those used for consumer products, machines, vehicles, industrial systems, robots, etc, is based on one or more devices that move, according to different implementations and motion ranges, often in response to external and internal stimuli. Despite this, technical solutions to develop systems that move do not evolve very quickly as they rely on traditional and well consolidated actuation technologies, which are implemented according to known architectures and with established materials. This fact limits our capability to overcome challenges related to the needs continuously raised by new fields of application, either at small or at large scales. Biomimetics-based approaches may provide innovative thinking and technologies in the field, taking inspiration from nature for smart and effective solutions. In an effort to disseminate current advances in this field, this special section collects some papers that cover different topics. A brief synopsis of the content of each contribution is presented below. The first paper, by Lienhard et al [1], deals with bioinspiration for the realization of structural parts in systems that passively move. It presents a bioinspired hingeless flapping mechanism, considered as a solution to the kinematics of deployable systems for

  17. Study of biocompatible and biological materials

    CERN Document Server

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  18. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  19. Bioinspiration: applying mechanical design to experimental biology.

    Science.gov (United States)

    Flammang, Brooke E; Porter, Marianne E

    2011-07-01

    The production of bioinspired and biomimetic constructs has fostered much collaboration between biologists and engineers, although the extent of biological accuracy employed in the designs produced has not always been a priority. Even the exact definitions of "bioinspired" and "biomimetic" differ among biologists, engineers, and industrial designers, leading to confusion regarding the level of integration and replication of biological principles and physiology. By any name, biologically-inspired mechanical constructs have become an increasingly important research tool in experimental biology, offering the opportunity to focus research by creating model organisms that can be easily manipulated to fill a desired parameter space of structural and functional repertoires. Innovative researchers with both biological and engineering backgrounds have found ways to use bioinspired models to explore the biomechanics of organisms from all kingdoms to answer a variety of different questions. Bringing together these biologists and engineers will hopefully result in an open discourse of techniques and fruitful collaborations for experimental and industrial endeavors.

  20. Tubular inverse opal scaffolds for biomimetic vessels

    Science.gov (United States)

    Zhao, Ze; Wang, Jie; Lu, Jie; Yu, Yunru; Fu, Fanfan; Wang, Huan; Liu, Yuxiao; Zhao, Yuanjin; Gu, Zhongze

    2016-07-01

    There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially oriented elliptical pattern microstructures on their surfaces. It is demonstrated that these tailored tubular scaffolds can effectively make endothelial cells to form an integrated hollow tubular structure on their inner surface and induce smooth muscle cells to form a circumferential orientation on their outer surface. These features of our tubular scaffolds make them highly promising for the construction of biomimetic blood vessels.There is a clinical need for tissue-engineered blood vessels that can be used to replace or bypass damaged arteries. The success of such grafts depends strongly on their ability to mimic native arteries; however, currently available artificial vessels are restricted by their complex processing, controversial integrity, or uncontrollable cell location and orientation. Here, we present new tubular scaffolds with specific surface microstructures for structural vessel mimicry. The tubular scaffolds are fabricated by rotationally expanding three-dimensional tubular inverse opals that are replicated from colloidal crystal templates in capillaries. Because of the ordered porous structure of the inverse opals, the expanded tubular scaffolds are imparted with circumferentially

  1. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  2. Sustainability assessment of a lightweight biomimetic ceiling structure.

    Science.gov (United States)

    Antony, Florian; Grießhammer, Rainer; Speck, Thomas; Speck, Olga

    2014-03-01

    An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions.

  3. Numerical Analysis of Erosion Caused by Biomimetic Axial Fan Blade

    Directory of Open Access Journals (Sweden)

    Jun-Qiu Zhang

    2013-01-01

    Full Text Available Damage caused by erosion has been reported in several industries for a wide range of situations. In the present work, a new method is presented to improve the erosion resistance of machine components by biomimetic method. A numerical investigation of solid particle erosion in the standard and biomimetic configuration blade of axial fan is presented. The analysis consists in the application of the discrete phase model, for modeling the solid particles flow, and the Eulerian conservation equations to the continuous phase. The numerical study employs computational fluid dynamics (CFD software, based on a finite volume method. User-defined function was used to define wear equation. Gas/solid flow axial fan was simulated to calculate the erosion rate of the particles on the fan blades and comparatively analyzed the erosive wear of the smooth surface, the groove-shaped, and convex hull-shaped biomimetic surface axial flow fan blade. The results show that the groove-shaped biomimetic blade antierosion ability is better than that of the other two fan blades. Thoroughly analyze of antierosion mechanism of the biomimetic blade from many factors including the flow velocity contours and flow path lines, impact velocity, impact angle, particle trajectories, and the number of collisions.

  4. Applying Biomimetic Algorithms for Extra-Terrestrial Habitat Generation

    Science.gov (United States)

    Birge, Brian

    2012-01-01

    The objective is to simulate and optimize distributed cooperation among a network of robots tasked with cooperative excavation on an extra-terrestrial surface. Additionally to examine the concept of directed Emergence among a group of limited artificially intelligent agents. Emergence is the concept of achieving complex results from very simple rules or interactions. For example, in a termite mound each individual termite does not carry a blueprint of how to make their home in a global sense, but their interactions based strictly on local desires create a complex superstructure. Leveraging this Emergence concept applied to a simulation of cooperative agents (robots) will allow an examination of the success of non-directed group strategy achieving specific results. Specifically the simulation will be a testbed to evaluate population based robotic exploration and cooperative strategies while leveraging the evolutionary teamwork approach in the face of uncertainty about the environment and partial loss of sensors. Checking against a cost function and 'social' constraints will optimize cooperation when excavating a simulated tunnel. Agents will act locally with non-local results. The rules by which the simulated robots interact will be optimized to the simplest possible for the desired result, leveraging Emergence. Sensor malfunction and line of sight issues will be incorporated into the simulation. This approach falls under Swarm Robotics, a subset of robot control concerned with finding ways to control large groups of robots. Swarm Robotics often contains biologically inspired approaches, research comes from social insect observation but also data from among groups of herding, schooling, and flocking animals. Biomimetic algorithms applied to manned space exploration is the method under consideration for further study.

  5. Mineralization of Zein Films by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaoning; ZHANG Yanxiang; MA Ying; ZENG Sheng; WANG Shaozhen; MA Yalu

    2015-01-01

    The transparent or opaque zein film was prepared by a phase separation method with a zein ethanol aqueous solution. The circular zein film was self-assembled on the air-water interface. According to the images by scanning elec-tron microscopy, the upper surface of film is flat and smooth and the downward surface presents a complex reticulation structure of corn protein fiber. Zein film as a biomimetic mineralization template is used to synthesize calcium phosphate crystals by a bioinspired mineralization process. Randomly oriented apatite crystals appear on the both surfaces of zein film after immersion in 10´simulated body fluid, and the phase composition and morphology of the deposited calcium apatite are also distinguished from deposited location and immersion time. The phase transformation process from dical-cium phosphate dihydrate into hydroxyapatite (HAp) phase was investigated by X-ray powder diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy, respectively. Based on the results by energy dispersive X-ray spectroscopy, the Ca/P ratio of the deposited apatite increases with the transformation from DCPD to HAp. The HAp/Zein films possess the excellent biodegradable structural features, and the coating of HAp crystallites has some potential applications for bone repair and regeneration.

  6. Software architecture of biomimetic underwater vehicle

    Science.gov (United States)

    Praczyk, Tomasz; Szymak, Piotr

    2016-05-01

    Autonomous underwater vehicles are vehicles that are entirely or partly independent of human decisions. In order to obtain operational independence, the vehicles have to be equipped with a specialized software. The main task of the software is to move the vehicle along a trajectory with collision avoidance. Moreover, the software has also to manage different devices installed on the vehicle board, e.g. to start and stop cameras, sonars etc. In addition to the software embedded on the vehicle board, the software responsible for managing the vehicle by the operator is also necessary. Its task is to define mission of the vehicle, to start, to stop the mission, to send emergency commands, to monitor vehicle parameters, and to control the vehicle in remotely operated mode. An important objective of the software is also to support development and tests of other software components. To this end, a simulation environment is necessary, i.e. simulation model of the vehicle and all its key devices, the model of the sea environment, and the software to visualize behavior of the vehicle. The paper presents architecture of the software designed for biomimetic autonomous underwater vehicle (BAUV) that is being constructed within the framework of the scientific project financed by Polish National Center of Research and Development.

  7. Biomimetic and microbial reduction of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Potter, W.T.; Le, U.; Ronda, S. [Univ. of Tulsa, OK (United States)] [and others

    1995-12-31

    The biomimetic reduction of nitric oxide (NO) to nitrous oxide (N{sub 2}O) by dithiothreitol in the presence of cyanocobalamin and cobalt-centered porphyrins has been investigated. Reactions were monitored directly using Fourier Transform Infrared (FTIR) Spectroscopy vapor-phase spectra. Reaction rates were twofold faster for the corrin than for the cobalt-centered porphyrins. The stoichiometry showed the loss of two molecules of NO per molecule of N{sub 2}O produced. We have also demonstrated that the facultative anaerobe and chemoautotroph, Thiobacillus denitrificans, can be cultured anoxically in batch reactors using NO as a terminal electron acceptor with reduction to elemental nitrogen (N{sub 2}). We have proposed that the concentrated stream of NO{sub x}, as obtained from certain regenerable processes for the gas desulfurization and NO{sub x} removal, could be converted to N{sub 2} for disposal by contact with a culture of T. denitrificans. Four heterotrophic bacteria have also been identified that may be grown in batch cultures with succinate, yeast extract, or heat and alkali pretreated sewage sludge as carbon and energy sources and NO as a terminal electron acceptor. These are Paracoccus dentrificans, Pseudomonas denitrificans, Alcaligens denitrificans, and Thiophaera pantotropha.

  8. Development of Underwater Microrobot with Biomimetic Locomotion

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2006-01-01

    Full Text Available Microrobots have powerful applications in biomedical and naval fields. They should have a compact structure, be easy to manufacture, have efficient locomotion, be driven by low voltage and have a simple control system. To meet these purposes, inspired by the leg of stick insects, we designed a novel type of microrobot with biomimetic locomotion with 1-DOF (degree of freedom legs. The locomotion includes two ionic conducting polymer film (ICPF actuators to realize the 2-DOF motion. We developed several microrobots with this locomotion. Firstly, we review a microrobot, named Walker-1, with 1-DOF motion. And then a new microrobot, named Walker-2, utilizing six ICPF actuators, with 3-DOF motion is introduced. It is 47 mm in diameter and 8 mm in height (in static state. It has 0.61 g of dried weight. We compared the two microrobot prototypes, and the result shows that Walker-2 has some advantages, such as more flexible moving motion, good balance, less water resistance, more load-carrying ability and so on. We also compared it with some insect-inspired microrobots and some microrobots with 1-DOF legs, and the result shows that a microrobot with this novel type of locomotion has some advantages. Its structure has fewer actuators and joints, a simpler control system and is compact. The ICPF actuator decides that it can be driven by low voltage (less than 5 V and move in water. A microrobot with this locomotion has powerful applications in biomedical and naval fields.

  9. Mineralization of Zein Films by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    JIN; Xiaoning; ZHANG; Yanxiang; MA; Ying; ZENG; Sheng; WANG; Shaozhen; MA; Yalu

    2015-01-01

    The transparent or opaque zein film was prepared by a phase separation method with a zein ethanol aqueous solution.The circular zein film was self-assembled on the air-water interface.According to the images by scanning electron microscopy,the upper surface of film is flat and smooth and the downward surface presents a complex reticulation structure of corn protein fiber.Zein film as a biomimetic mineralization template is used to synthesize calcium phosphate crystals by a bioinspired mineralization process.Randomly oriented apatite crystals appear on the both surfaces of zein film after immersion in lOxsimulated body fluid,and the phase composition and morphology of the deposited calcium apatite are also distinguished from deposited location and immersion time.The phase transformation process from dicalcium phosphate dihydrate into hydroxyapatite(HAp) phase was investigated by X-ray powder diffraction,transmission electron microscopy and Fourier transform infrared spectroscopy,respectively.Based on the results by energy dispersive X-ray spectroscopy,the Ca/P ratio of the deposited apatite increases with the transformation from DCPD to HAp.The HAp/Zein films possess the excellent biodegradable structural features,and the coating of HAp crystallites has some potential applications for bone repair and regeneration.

  10. Biomimetic optical sensor for aerospace applications

    Science.gov (United States)

    Frost, Susan A.; Gorospe, George E.; Wright, Cameron H. G.; Barrett, Steven F.

    2015-05-01

    We report on a fiber optic sensor based on the physiological aspects of the eye and vision-related neural layers of the common housefly (Musca domestica) that has been developed and built for aerospace applications. The intent of the research is to reproduce select features from the fly's vision system that are desirable in image processing, including high functionality in low-light and low-contrast environments, sensitivity to motion, compact size, lightweight, and low power and computation requirements. The fly uses a combination of overlapping photoreceptor responses that are well approximated by Gaussian distributions and neural superposition to detect image features, such as object motion, to a much higher degree than just the photoreceptor density would imply. The Gaussian overlap in the biomimetic sensor comes from the front-end optical design, and the neural superposition is accomplished by subsequently combining the signals using analog electronics. The fly eye sensor is being developed to perform real-time tracking of a target on a flexible aircraft wing experiencing bending and torsion loads during flight. We report on results of laboratory experiments using the fly eye sensor to sense a target moving across its field of view.

  11. A multi-electrode biomimetic electrolocation sensor

    Science.gov (United States)

    Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.

    2012-04-01

    We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.

  12. Biomimetic visual detection based on insect neurobiology

    Science.gov (United States)

    O'Carroll, David C.

    2001-11-01

    With a visual system that accounts for as much as 30% of the lifted mass, flying insects such as dragonflies and hoverflies invest more in vision than any other animal. Impressive visual performance is subserved by a surprisingly simple visual system. In a typical insect eye, between 2,000 and 30,000 pixels in the image are analyzed by fewer than 200,000 neurons in underlying neural circuits. The combination of sophisticated visual processing with an approachable level of complexity has made the insect visual system a leading model for biomimetic approaches to computer vision. Much neurobiological research has focused on neural circuits used for detection of moving patterns (e.g. optical flow during flight) and moving targets (e.g. prey). Research from several labs has led to great advances in our understanding of the neural mechanisms involved, and has spawned neuromorphic hardware based on key processes identified in neurobiological experiments. Despite its attractions, the highly non-linear nature of several key stages in insect visual processing presents a challenge to understanding. I will describe examples of adaptive elements of neural circuits in the fly visual system which analyze the direction and velocity of wide-field optical flow patterns and the result of experiments that suggest that these non-linearities may contribute to robust responses to natural image motion.

  13. Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device

    Energy Technology Data Exchange (ETDEWEB)

    Modesto-Lopez, Luis B.; Thimsen, Elijah J.; Collins, Aaron M.; Blankenship, R. E.; Biswas, Pratim

    2010-01-01

    Photosynthesis is an efficient process by which solar energy is converted into chemical energy. Green photosynthetic bacteria such as Chloroflexus aurantiacus have supramolecular antenna complexes called chlorosomes attached to their cytoplasmic membrane that increase the cross section for light absorption even in low-light conditions. Self-assembled bacteriochlorophyll pigments in the chlorosome interior play a key role in the efficient transfer and funneling of the harvested energy. In this work it was demonstrated that chlorosomes can be rapidly and precisely size-characterized online in real time using an electrospray-assisted mobility-based technique. Chlorosomes were electrospray-deposited onto TiO{sub 2} nanostructured films with columnar morphology to fabricate a novel biomimetic device to overcome the solvent compatibility issues associated with biological particles and synthetic dyes. The assembled unit retained the viability of the chlorosomes, and the harvesting of sunlight over a broader range of wavelengths was demonstrated. It was shown that the presence of chlorosomes in the biomimetic device had a 30-fold increase in photocurrent.

  14. Biomimetic hemocompatible coatings through immobilization of hyaluronan derivatives on metal surfaces.

    Science.gov (United States)

    Thierry, Benjamin; Winnik, Françoise M; Merhi, Yahye; Griesser, Hans J; Tabrizian, Maryam

    2008-10-21

    Biomimetic coatings offer exciting options to modulate the biocompatibility of biomaterials. The challenge is to create surfaces that undergo specific interactions with cells without promoting nonspecific fouling. This work reports an innovative approach toward biomimetic surfaces based on the covalent immobilization of a carboxylate terminated PEGylated hyaluronan (HA-PEG) onto plasma functionalized NiTi alloy surfaces. The metal substrates were aminated via two different plasma functionalization processes. Hyaluronan, a natural glycosaminoglycan and the major constituent of the extracellular matrix, was grafted to the substrates by reaction of the surface amines with the carboxylic acid terminated PEG spacer using carbodiimide chemistry. The surface modification was monitored at each step by X-ray photoelectron spectroscopy (XPS). HA-immobilized surfaces displayed increased hydrophilicity and reduced fouling, compared to bare surfaces, when exposed to human platelets (PLT) in an in vitro assay with radiolabeled platelets (204.1 +/- 123.8 x 10 (3) PLT/cm (2) vs 538.5 +/- 100.5 x 10 (3) PLT/cm (2) for bare metal, p surfaces were successfully created as demonstrated by XPS chemical imaging. The bioactive surfaces described present unique features, which result from the synergy between the intrinsic biological properties of hyaluronan and the chemical composition and morphology of the polymer layer immobilized on a metal surface.

  15. Synthesis of magnetite nanoparticles for bio- and nanotechnology: genetic engineering and biomimetics of bacterial magnetosomes.

    Science.gov (United States)

    Lang, Claus; Schüler, Dirk; Faivre, Damien

    2007-02-12

    Magnetotactic bacteria (MTB) have the ability to navigate along the Earth's magnetic field. This so-called magnetotaxis is a result of the presence of magnetosomes, organelles which comprise nanometer-sized intracellular crystals of magnetite (Fe(3)O(4)) enveloped by a membrane. Because of their unique characteristics, magnetosomes have a high potential for nano- and biotechnological applications, which require a specifically designed particle surface. The functionalization of magnetosomes is possible either by chemical modification of purified particles or by genetic engineering of magnetosome membrane proteins. The second approach is potentially superior to chemical approaches as a large variety of biological functions such as protein tags, fluorophores, and enzymes may be directly incorporated in a site-specific manner during magnetosome biomineralization. An alternative to the bacterial production of magnetosomes are biomimetic approaches, which aim to mimic the bacterial biomineralization pathway in vitro. In MTB a number of magnetosome proteins with putative functions in the biomineralization of the nanoparticles have been identified by genetic and biochemical approaches. The initial results obtained by several groups indicate that some of these proteins have an impact on nanomagnetite properties in vitro. In this article the key features of magnetosomes are discussed, an overview of their potential applications are given, and different strategies are proposed for the functionalization of magnetosome particles and for the biomimetism of their biomineralization pathway.

  16. Biomimetics Micro Robot with Active Hardware Neural Networks Locomotion Control and Insect-Like Switching Behaviour

    Directory of Open Access Journals (Sweden)

    Ken Saito

    2012-11-01

    Full Text Available In this paper, we presented the 4.0, 2.7, 2.5 mm, width, length, height size biomimetics micro robot system which was inspired by insects. The micro robot system was made from silicon wafer fabricated by micro electro mechanical systems (MEMS technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the insect‐like switching behaviour. In addition, we constructed the active hardware neural networks (HNN by analogue CMOS circuits as a locomotion controlling system. The HNN utilized the pulse‐type hardware neuron model (P‐HNM as a basic component. The HNN outputs the driving pulses using synchronization phenomena such as biological neural networks. The driving pulses can operate the actuators of the biomimetics micro robot directly. Therefore, the HNN realized the robot control without using any software programs or A/D converters. The micro robot emulated the locomotion method and the neural networks of an insect with rotary type actuators, link mechanisms and HNN. The micro robot performed forward and backward locomotion, and also changed direction by inputting an external trigger pulse. The locomotion speed was 26.4 mm/min when the step width was 0.88 mm.

  17. Development of Navigation Schemes for Grouped Mobile Robots Leading to Biomimetic Applications

    Directory of Open Access Journals (Sweden)

    Ming-Hsin Chen

    2012-03-01

    Full Text Available Biomimetic autonomous group manipulation of mobile robots has great potential in artificial intelligence, smart life, and automation related applications. In addition, it is also possible to use it as a tool for exploring the behavior of biological group motion in groups such as geese and fish. In order to fulfill these goals, fundamental capabilities of identification, navigation, and communication between robots must be established. In this work, key schemes are proposed for carrying out subsequent navigation tasks. By integrating omni-wheel mobile robots with X-Bee communication protocols, Arduino controls, IR range finders, and CMOS cameras, as well as with wiimote multi-zone localization, tasks such as obstacle and collision avoidance, object following, autonomous movement, and the indoor localization of group robots are implemented as the first step toward the autonomous control of group robots for subsequent biomimetic and smart life applications. With the resolution of these key issues, more realistic scenarios can be designed to achieve real group robot applications for indoor service in the future.

  18. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-02-21

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity.

  19. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    Directory of Open Access Journals (Sweden)

    Abdalla Abdal-hay

    2017-02-01

    Full Text Available Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles (NPs rapidly nucleated and deposited from surrounding biological minerals within chitosan (CTS matrices using hydrothermal technique. After that, freeze-drying method was applied on the composite solution to form the desired porous 3D architecture. Interestingly, the porosity and pore size of composite scaffold were not significantly affected by the particles size and particles content within the CTS matrix. Our results demonstrated that the compression modulus of porous composite scaffold is twice higher than that of plain CTS scaffold, indicating a maximization of the chemical interaction between polymer matrix and apatite NPs. Cytocompatibility test for MC3T3-E1 pre-osteoblasts cell line using MTT-indirect assay test showed that the fabricated 3D microporous nanocomposite scaffold possesses higher cell proliferation and growth than that of pure CTS scaffold. Collectively, our results suggest that the newly developed highly porous apatite/CTS nanocomposite scaffold as an alternative of hydroxyapatite/CTS scaffold may serve as an excellent porous 3D platform for bone tissue regeneration.

  20. Biologically inspired intelligent robots

    Science.gov (United States)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  1. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  2. Effective Length Design of Humanoid Robot Fingers Using Biomimetic Optimization

    Directory of Open Access Journals (Sweden)

    Byoung-Ho Kim

    2015-10-01

    Full Text Available In this study, we propose an effective design method for the phalangeal parameters and the total size of humanoid robot fingers based on a biomimetic optimization. For the optimization, an interphalangeal joint coordination parameter and the length constraints inherent in human fingers are considered from a biomimetic perspective. A reasonable grasp formulation is also taken into account from the viewpoint of power grasping, where the grasp space of a humanoid robot finger is importantly considered to determine the phalangeal length parameters. The usefulness of the devised biomimetic optimization method is shown through the design examples of various humanoid robot fingers. In fact, the optimization-based finger design method enables us to determine effectively the proper phalangeal size of humanoid robot fingers for human-like object handling tasks. In addition, we discuss its contribution to the structural configuration and coordinated motion of a humanoid robot finger, and address its practical availability in terms of effective finger design.

  3. Tribological and electrochemical studies on biomimetic synovial fluids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study, tribological and electrochemical performances of the new biomimetic synovial fluids were studied according to different composition concentrations, including hyaluronic acid, albumin and alendronic acid sodium. By using Taguchi method, the composition contents of the biomimetic synovial fluids were designed. Items such as friction coefficient, mean scar diameter and viscosity were investigated via a four-ball tribo-tester, viscosity meter and optical microscope. Polarization studies were carried out to analyze the electrochemical behaviour of the fluids. Results showed that hyaluronic acid dominates the viscosity of the fluids. High albumin concentration will reduce friction, while increasing wear rate due to the electro-chemical effect. Alendronic acid sodium is found to reduce the biocorrosion of CoCrMo as well as provide better lubricating. In conclusion, biomimetic synovial fluids partially recover the functions of natural synovial fluids and provide good lubricating property.

  4. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    Science.gov (United States)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  5. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  6. 仿生法沉积磷灰石层的研究进展%Progress in the Study of Biomimetic Process for Depositing Apatite Coatings

    Institute of Scientific and Technical Information of China (English)

    付涛; 徐可为

    2001-01-01

    仿生法沉积磷灰石层模仿了自然界磷灰石的 沉积过程,为生物材料的研制开辟了新途径。本文对生物模仿沉积磷灰石方法的过程、机制 以及涂层的力学和生物学性能作了介绍。%The biomimetic method, which mimics the natural dep osition of biologic apatite, has opened up a new way to develop biomaterials. Th is paper gives a brief introduction of various biomimetic methods to deposit apatite coatings, and the mechanical and biological properties of the coatings.

  7. Biomimetic photo-actuation: progress and challenges

    Science.gov (United States)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  8. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  9. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  10. Design and Implementation of a Modular Biomimetic Infochemical Communication System

    NARCIS (Netherlands)

    Rácz, Z.; Cole, M.; Gardner, J.W.; Chowdhury, M.F.; Bula, W.P.; Gardeniers, J.G.E.; Karout, S.; Capurro, A.; Pearce, T.C.

    2013-01-01

    We describe here the design and implementation of a novel biomimetic infochemical communication system that employs airborne molecules alone to communicate over space and time. The system involves the design and fabrication of a microsystem capable of producing and releasing a precise mix of biosynt

  11. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  12. Osteoclastic resorption of biomimetic calcium phosphate coatings in vitro.

    NARCIS (Netherlands)

    Leeuwenburgh, S.C.G.; Layrolle, P.; Barrere, F.; Bruijn, J.G.M. de; Schoonman, J.; Blitterswijk, C.A. van; Groot, K. de

    2001-01-01

    A new biomimetic method for coating metal implants enables the fast formation of dense and homogeneous calcium phosphate coatings. Titanium alloy (Ti6Al4V) disks were coated with a thin, carbonated, amorphous calcium phosphate (ACP) by immersion in a saturated solution of calcium, phosphate, magnesi

  13. Hierarcially biomimetic bone materials: from nanometer to millimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG W.; CUI F. Z.; LIAO S. S.

    2001-01-01

    @@ The bone composite was produced by biomimetic synthesis. It shows some features of natural bone in both composition and microstructure. And the collagen moleculars and the nano-crystal hydroxyapatite assemble into ultrastructure similar to natural bone. It possesses porous structure with porosity from 100μm to 500μm after mixed with PLA (poly lactic acid).

  14. An efficient biomimetic coating methodology for a prosthetic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Adawy, Alaa, E-mail: a.adawy@science.ru.nl [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Abdel-Fattah, Wafa I. [Biomaterials Department, National Research Centre, Giza (Egypt)

    2013-04-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6 h of the whole soaking process. Highlights: ► The manuscript describes a fast and efficient biomimetic coating methodology. ► This methodology can be used for metallic implants. ► 316L was coated with crystalline hydroxyapatite. ► Addition of strontium and zinc lead to the deposition of brushite. ► Coating of all synthetic solutions is highly crystalline.

  15. Flexible fabrication of biomimetic bamboo-like hybrid microfibers.

    Science.gov (United States)

    Yu, Yue; Wen, Hui; Ma, Jingyun; Lykkemark, Simon; Xu, Hui; Qin, Jianhua

    2014-04-23

    Biomimetic and flexible bamboo-like hybrid fibers are produced using a novel one-step strategy. By combining a droplet microfluidic technique with a wet-spinning process, biocompatible microfibers are incorporated with polymer spheres or multicellular spheroids. As a result of the controllability of this approach, it has potential applications in materials science and tissue engineering.

  16. A biomimetic tactile sensing system based on polyvinylidene fluoride film

    Science.gov (United States)

    Xin, Yi; Tian, Hongying; Guo, Chao; Li, Xiang; Sun, Hongshuai; Wang, Peiyuan; Qian, Chenghui; Wang, Shuhong; Wang, Cheng

    2016-02-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensing material due to its outstanding properties such as biocompatibility, high thermal stability, good chemical resistance, high piezo-, pyro- and ferro-electric properties. This paper reports on the design, test, and analysis of a biomimetic tactile sensor based on PVDF film. This sensor consists of a PVDF film with aluminum electrodes, a pair of insulating layers, and a "handprint" friction layer with a copper foil. It is designed for easy fabrication and high reliability in outputting signals. In bionics, the fingerprint of the glabrous skin plays an important role during object handling. Therefore, in order to enhance friction and to provide better manipulation, the ridges of the fingertips were introduced into the design of the proposed tactile sensor. And, a basic experimental study on the selection of the high sensitivity fingerprint type for the biomimetic sensor was performed. In addition, we proposed a texture distinguish experiment to verify the sensor sensitivity. The experiment's results show that the novel biomimetic sensor is effective in discriminating object surface characteristics. Furthermore, an efficient visual application program (LabVIEW) and a quantitative evaluation method were proposed for the verification of the biomimetic sensor. The proposed tactile sensor shows great potential for contact force and slip measurements.

  17. Use of biomimetic forward osmosis membrane for trace organics removal

    DEFF Research Database (Denmark)

    Madsen, Henrik T.; Bajraktari, Niada; Helix Nielsen, Claus

    2015-01-01

    organic pollutants, which limits the applicability of the forward osmosis process. In this study a newly developed biomimetic membrane was tested for the removal of three selected trace organics that can be considered as a bench marking test for a membrane[U+05F3]s ability to reject small neutral organic...

  18. Biomimetic flavin-catalysed reactions for organic synthesis.

    Science.gov (United States)

    Iida, H; Imada, Y; Murahashi, S-I

    2015-07-28

    Using simple riboflavin related compounds as biomimetic catalysts, catalytic oxidation of various substrates with hydrogen peroxide or molecular oxygen can be performed selectively under mild conditions. The principle of these reactions is fundamental and will provide a wide scope for environmentally benign future practical methods.

  19. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...

  20. Design and Implementation of a Modular Biomimetic Infochemical Communication System

    NARCIS (Netherlands)

    Rácz, Z.; Cole, M.; Gardner, J.W.; Chowdhury, M.F.; Bula, W.P.; Gardeniers, Johannes G.E.; Karout, S.; Capurro, A.; Pearce, T.C.

    2013-01-01

    We describe here the design and implementation of a novel biomimetic infochemical communication system that employs airborne molecules alone to communicate over space and time. The system involves the design and fabrication of a microsystem capable of producing and releasing a precise mix of

  1. Array of Biomimetic Hair Sensor Dedicated for Flow Pattern Recognition

    NARCIS (Netherlands)

    Dagamseh, A.M.K.; Bruinink, C.M.; Kolster, Marcel; Wiegerink, Remco J.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    Flow sensor arrays can be used to extract features from flow fields rather than averaging or providing local measurements provided the sensors in the array structure can be interrogated individually. This paper addresses the latest developments in fabrication and array interfacing of biomimetic

  2. Biomimetics and the Development of Humanlike Robots as the Ultimate Challenge

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2011-01-01

    Evolution led to effective solutions to nature's challenges and they were improved over millions of years. Humans have always made efforts to use nature as a model for innovation and problems solving. These efforts became more intensive in recent years where systematic studies of nature are being made towards better understanding and applying more sophisticated capabilities. Making humanlike robots, including the appearance, functions and intelligence, poses the ultimate challenges to biomimetics. For many years, making such robots was considered science fiction, but as a result of significant advances in biologically inspired technologies, such robots are increasingly becoming an engineering reality. There are already humanlike robots that walk, talk, interpret speech, make eye-contact and facial expressions, as well as perform many other humanlike functions. In this paper, the state-of-the-art of humanlike robots, potential applications and issues of concern will be reviewed.

  3. Biomimetic Transmembrane Channels with High Stability and Transporting Efficiency from Helically Folded Macromolecules.

    Science.gov (United States)

    Lang, Chao; Li, Wenfang; Dong, Zeyuan; Zhang, Xin; Yang, Feihu; Yang, Bing; Deng, Xiaoli; Zhang, Chenyang; Xu, Jiayun; Liu, Junqiu

    2016-08-08

    Membrane channels span the cellular lipid bilayers to transport ions and molecules into cells with sophisticated properties including high efficiency and selectivity. It is of particular biological importance in developing biomimetic transmembrane channels with unique functions by means of chemically synthetic strategies. An artificial unimolecular transmembrane channel using pore-containing helical macromolecules is reported. The self-folding, shape-persistent, pore-containing helical macromolecules are able to span the lipid bilayer, and thus result in extraordinary channel stability and high transporting efficiency for protons and cations. The lifetime of this artificial unimolecular channel in the lipid bilayer membrane is impressively long, rivaling those of natural protein channels. Natural channel mimics designed by helically folded polymeric scaffolds will display robust and versatile transport-related properties at single-molecule level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Towards understanding biomineralization:calcium phosphate in a biomimetic minerallzation process

    Institute of Scientific and Technical Information of China (English)

    Yu-rong CAI; Rui-kang TANG

    2009-01-01

    Biomineralization processes result in organic/inorganic hybrid materials with complex shapes,hiemrchi-cal structures.and superior matefial properties. Recent developments in biominemlization and biomatarials have demonstrated that calcium phosphate particles play an important role in the formation of hard tissues in nature. In this paper,current concepts in biominemlization,such as nano assembly,biomimetic shell structure,and their applications are introduced. It is confirmed experimentally that enamel-or bone-liked apatita can be achieved by oriented aggregations using nano calcium phosphates as starting matarials. The assembly of calcium phosphate can be either promoted or inhibited by diflerent biomolecules so that the kinetics can he regulated biologically.In this paper,the role of nano calcium phosphate in tissue repair is highligllted Furthermore,a new,interesting result on biomimetie mineralization 1s Introduced,which can offer an artificial shell for living cells via a biomimatic method .

  5. Biomimetic Preparation and Dual-Color Bioimaging of Fluorescent Silicon Nanoparticles.

    Science.gov (United States)

    Wu, Sicong; Zhong, Yiling; Zhou, Yanfeng; Song, Bin; Chu, Binbin; Ji, Xiaoyuan; Wu, Yanyan; Su, Yuanyuan; He, Yao

    2015-11-25

    Fluorescent silicon nanoparticles (SiNPs), as the most important zero-dimensional silicon nanostructures, hold high promise for long-awaited silicon-based optic applications. There currently remain major challenges for the green, inexpensive, and mass production of fluorescent SiNPs, resulting in difficulties in sufficiently exploiting the properties of these remarkable materials. Here, we show that fluorescent small-sized (∼3.8 nm) SiNPs can be produced through biomimetic synthesis in rapid (10 min), low-cost, and environmentally benign manners. The as-prepared SiNPs simultaneously feature bright fluorescence (quantum yield (QY), ∼15-20%), narrow emission spectral width (full width at half-maximum (fwhm), ∼30 nm), and nontoxicity, making them as high-quality fluorescent probes for biological imaging in vitro and in vivo.

  6. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules

    Science.gov (United States)

    Liang, Kang; Ricco, Raffaele; Doherty, Cara M.; Styles, Mark J.; Bell, Stephen; Kirby, Nigel; Mudie, Stephen; Haylock, David; Hill, Anita J.; Doonan, Christian J.; Falcaro, Paolo

    2015-06-01

    Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.

  7. Surface chemistry and effects on bone regeneration of a novel biomimetic synthetic bone filler.

    Science.gov (United States)

    Morra, Marco; Giavaresi, Gianluca; Sartori, Maria; Ferrari, Andrea; Parrilli, Annapaola; Bollati, Daniele; Baena, Ruggero Rodriguez Y; Cassinelli, Clara; Fini, Milena

    2015-04-01

    The paper presents results of physico-chemical and biological investigations of a surface-engineered synthetic bone filler. Surface analysis confirms that the ceramic phosphate granules present a collagen nanolayer to the surrounding environment. Cell cultures tests show that, in agreement with literature reports, surface-immobilized collagen molecular cues can stimulate progression along the osteogenic pathway of undifferentiated human mesenchymal cells. Finally, in vivo test in a rabbit model of critical bone defects shows statistically significant increase of bone volume and mineral apposition rate between the biomimetic bone filler and collagen-free control. All together, obtained data confirm that biomolecular surface engineering can upgrade the properties of implant device, by promoting more specific and targeted implant-host cells interactions.

  8. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules.

    Science.gov (United States)

    Liang, Kang; Ricco, Raffaele; Doherty, Cara M; Styles, Mark J; Bell, Stephen; Kirby, Nigel; Mudie, Stephen; Haylock, David; Hill, Anita J; Doonan, Christian J; Falcaro, Paolo

    2015-06-04

    Enhancing the robustness of functional biomacromolecules is a critical challenge in biotechnology, which if addressed would enhance their use in pharmaceuticals, chemical processing and biostorage. Here we report a novel method, inspired by natural biomineralization processes, which provides unprecedented protection of biomacromolecules by encapsulating them within a class of porous materials termed metal-organic frameworks. We show that proteins, enzymes and DNA rapidly induce the formation of protective metal-organic framework coatings under physiological conditions by concentrating the framework building blocks and facilitating crystallization around the biomacromolecules. The resulting biocomposite is stable under conditions that would normally decompose many biological macromolecules. For example, urease and horseradish peroxidase protected within a metal-organic framework shell are found to retain bioactivity after being treated at 80 °C and boiled in dimethylformamide (153 °C), respectively. This rapid, low-cost biomimetic mineralization process gives rise to new possibilities for the exploitation of biomacromolecules.

  9. Biomimetic Assembly Lines Producing Natural Product Analogs: Strategies from a Versatile Manifold to Skeletally Diverse Scaffolds.

    Science.gov (United States)

    Oguri, Hiroki

    2016-04-01

    Biosynthetic assembly lines have evolved in nature, adopting divergent processes to produce a vast number of secondary metabolites. Inspired by these biogenetic processes, this account introduces recent investigations by my research group to formulate a synthetic strategy for establishing a biomimetic assembly line. With the aim not only to construct natural product-relevant scaffolds within 5-7 steps, but also to systematically diversify skeletal and stereochemical properties and functional groups, divergent synthetic processes exploiting a versatile manifold have been developed. This approach allows for cost-effective production of skeletally diverse and biologically active natural product analogs inaccessible by other means. Discovery of several lead candidates for a neglected tropical disease is a proof-of-concept of this synthetic approach. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Real-time biomimetic Central Pattern Generators in an FPGA for hybrid experiments.

    Science.gov (United States)

    Ambroise, Matthieu; Levi, Timothée; Joucla, Sébastien; Yvert, Blaise; Saïghi, Sylvain

    2013-01-01

    This investigation of the leech heartbeat neural network system led to the development of a low resources, real-time, biomimetic digital hardware for use in hybrid experiments. The leech heartbeat neural network is one of the simplest central pattern generators (CPG). In biology, CPG provide the rhythmic bursts of spikes that form the basis for all muscle contraction orders (heartbeat) and locomotion (walking, running, etc.). The leech neural network system was previously investigated and this CPG formalized in the Hodgkin-Huxley neural model (HH), the most complex devised to date. However, the resources required for a neural model are proportional to its complexity. In response to this issue, this article describes a biomimetic implementation of a network of 240 CPGs in an FPGA (Field Programmable Gate Array), using a simple model (Izhikevich) and proposes a new synapse model: activity-dependent depression synapse. The network implementation architecture operates on a single computation core. This digital system works in real-time, requires few resources, and has the same bursting activity behavior as the complex model. The implementation of this CPG was initially validated by comparing it with a simulation of the complex model. Its activity was then matched with pharmacological data from the rat spinal cord activity. This digital system opens the way for future hybrid experiments and represents an important step toward hybridization of biological tissue and artificial neural networks. This CPG network is also likely to be useful for mimicking the locomotion activity of various animals and developing hybrid experiments for neuroprosthesis development.

  11. Real-time biomimetic Central Pattern Generators into FPGA for hybrid experiments

    Directory of Open Access Journals (Sweden)

    Matthieu eAmbroise

    2013-11-01

    Full Text Available This article investigates the neural network system in the leech heartbeat and develops a real-time biomimetic digital hardware using few-resource implementation for hybrid experiments. The leech heartbeat neural network is one of the most simple central pattern generators (CPG. In biology, CPG provide for rhythmic bursts of spikes and is the basis for all muscles contractions orders (heartbeat and locomotion (walking, running….. The leech neural network system was already investigated and this CPG has been already formalized with Hodgkin-Huxley neural model (HH that is the most complex neuron model. However, the resources needed for a neural model is proportional to its complexity. To answer to this issue, this article describes a biomimetic implementation into FPGA (Field Programmable Gate Array of a network of 240 CPGs using a simple model (Izhikevich model and by proposing a new synapse model: activity dependent depression synapse. The architecture of the network implementation allows working on a single computation core. This digital system works in real-time, needs few resources and has the same bursting activity behavior than complex model. To validate our implementation of this CPG, we compare it firstly with a simulation of the complex model. Then we match its activity with the pharmacological data of the activity of the rat’s spinal cord. This digital system allows future hybrid experiments and will be a great step towards hybridation between biological tissue and artificial neural network. This network of CPG could be also useful for mimic the activity of a different animal locomotion or developing hybrid experiments for neuroprosthesis development.

  12. Do Biomimetic Students Think Outside the Box?

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2017-01-01

    analysed. The empirical material comprises 111 students working on 28 different functional design problems. On average teams identify 9.0 relevant biological phenomena and manage to produce a physical proof-of-principle for the selected biological analogy. 39% of the analogies can be characterised as well...

  13. Fabrication of biomimetic nanomaterials and their effect on cell behavior

    Science.gov (United States)

    Porri, Teresa Jane

    Cells in vivo respond to an intricate combination of chemical and mechanical signals. The corneal epithelium, a structure which prevents the admission of bacteria and undesirable molecules into the eye, grows on a basement membrane which presents both nanoscale topographic and adhesive chemical signals. An effective approach to biomaterials design takes advantage of the synergistic effects of the multiple cellular inputs which are available to engineer cell-substrate interactions. We have previously demonstrated the effects of nanoscale topography on a variety of corneal epithelial cell behaviors. To gain a better understanding of cell-level control in vivo, we employ a systems-level approach which looks at the effect of nanoscale topography in conjunction with a biomimetic surface chemistry. First, we discuss a novel method of fabricating nanoscale topography through templated electroless deposition of gold into PVP-coated polycarbonate membranes. This technique creates nanowires of gold with an uniform outer diameter that is dependent upon the size of the pores in the membrane used, and a nanowire length that is dependent upon the extent of etching into the polymer membrane. The gold nanowires can be modified with self-assembled monolayers (SAMs) of alkanethiols. Using these substrates, we study the effect of topographic length scale and surface chemistry on cells attached to a discontinuous nanoscale topography, and find a transition in cellular behavior at a length scale (between 600 and 2000 nm inter-wire spacing) that is commensurate with the transition length scale seen on surfaces presenting continuous grooves and ridges. Secondly, we study the effect of non-fouling peptide-modified SAMs on cellular behavior. We examine the effect of co-presented RGD and AG73 peptides and show that cell spreading is a function of the relative ratios of RGD and AG73 present on the surface. Finally, we explore the combinatorial effects of biologically relevant chemistry with

  14. Biomimetic Synthesis of Noble Metal Nanocrystals and the Mechanism Studies

    Science.gov (United States)

    Ruan, Lingyan

    Nanostructured materials with dimensions reaching the nanoscale possess novel properties different from their bulk counterparts. Engineering nanomaterials to exploit their improved functions show important applications in catalysis, electrocatalysis, electronics, optoelectronics, and energy devices. One of the challenges to date is to develop methods for producing nanomaterials in a controllable and predictable fashion. We seek to develop novel biomimetic synthetic protocols for programmable nanomaterial synthesis, i.e., using biomolecules with specific material recognition properties to manipulate nanomaterial morphologies and structures. Starting with three Pt binding peptides with distinct recognition properties, i.e., a Pt material specific peptide BP7A and two Pt facet specific peptides T7 (Pt {100} facet specific) and S7 (Pt {111} facet specific), we demonstrate a rational creation of Pt bipyramids, a new type of shape for Pt nanocrystals. The BP7A peptide is found to be able to introduce twinning during Pt nanocrystal growth. We use it to generate single twinned seeds for Pt nanocrystals. Together with targeted facet stabilization using T7/S7 peptides, Pt {100} bipyramid and {111} bipyramid are successfully synthesized for the first time. We further utilize the twin introducing property of the BP7A peptide to generate ultrathin Pt nanowire with high twin densities. We show that the Pt nanowire possesses higher electrocatalytic activity and durability in oxygen reduction and methanol oxidation reactions due to its one-dimensional nanostructure and the presence of dense twin defects, demonstrating the concept of defect engineering in nanocrystals as a strategy in the design of novel electrocatalyst. The organic-inorganic interface is a key issue in many fields including colloidal syntheses and biomimetics, the understanding of which can enable the design of new material synthetic strategies. We aim to understand how the Pt binding peptides modulate the

  15. Color-producing mechanism of morpho butterfly wings and biomimetics; Cho no hasshoku kiko to biomimetics

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-07-01

    Although the synthetic dyes and pigments originating in the 19th century are now at the height of their prosperity, there is an earnest hope for technology for realizing `supercolor.` If it is presumed that the features of such supercolor are to be found in outstanding clearness and high resistance to fading in the presence of ultraviolet rays, etc., the supercolor will be quite tough to deal with. When attention is steered toward the living world, however, there are cases of easily producing such by morphogenesis at the level of several tens of nanometers. In this paper, the development of a novel material is presented from the viewpoint of biomimetic engineering that the author et al. are engaged in. The coloring on the wings of a butterfly Morpho Sulkowskyi of South American origin is the product of interaction between light and the physical, microscopic structure of scales, and the coloring is extremely clear and remains free of fading except in case the microstructure is destroyed. This mechanism is applied for the development of a supercolor fiber. As the result, a structurally coloring fiber is created by stretching a molten composite string. In this effort, reformed polyester and polyamide different in refraction factor are used in place of substance layers and air layers on the butterfly wings. (NEDO)

  16. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.

    Science.gov (United States)

    Menges, Achim

    2012-03-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.

  17. Models and prototypes of biomimetic devices to architectural purposes

    Directory of Open Access Journals (Sweden)

    Silvia Titotto

    2014-12-01

    Full Text Available This paper presents some results of an ongoing interdisciplinary research about models and prototypes of biomimetic devices via installations and the focus of this paper is to outline this research role in architectural purposes as it perpasses the cultural and heritage contexts by being a way of understanding and living in the world as well as taking place in the world as devices or environments that pass on to future generations to use, learn from and be inspired by. Both the theoretical and the experimental work done so far point out that installations built with association of laser cutting and rapid prototyping techniques might be on the best feasible ways for developing and testing new technologies involved in biomimetic devices to architectural purposes that put both tectonics and nature as their central theme. 

  18. Biomimetic Adhesive Materials Containing Cyanoacryl Group for Medical Application

    Directory of Open Access Journals (Sweden)

    Sueng Hwan Jo

    2014-10-01

    Full Text Available For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.

  19. Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles

    Science.gov (United States)

    Yang, Caiyun; Cao, Changqian; Cai, Yao; Xu, Huangtao; Zhang, Tongwei; Pan, Yongxin

    2017-03-01

    Recent studies have demonstrated that ferrimagnetic magnetoferritin nanoparticles are a promising novel magnetic nanomaterial in biomedical applications, including biocatalysis, imaging, diagnostics, and tumor therapy. Here we investigated the PEGylation of human H-ferritin (HFn) proteins and the possible influence on biomimetic synthesis of magnetoferritin nanoparticles. The outer surface of HFn proteins was chemically modified with different PEG molecular weights (PEG10K and PEG20K) and different modification ratios (HFn subunit:PEG20K = 1:1, 1:2, 1:4). The PEGylated HFn proteins were used for biomimetic synthesis of ferrimagnetic magnetoferritin nanoparticles. We found that, compared with magnetoferritin using non-PEGylated HFn protein templates, the synthesized magnetoferritin using the PEGylated HFn protein templates possessed larger magnetite cores, higher magnetization and relaxivity values, and improved thermal stability. These results suggest that the PEGylation of H-ferritin may improve the biomineralization of magnetoferritin nanoparticles and enhance their biomedical applications.

  20. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiMing; WU WenJian; HU BiRu

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou-flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands, And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hyperspectral imaging.

  1. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  2. Biomimetic adhesive materials containing cyanoacryl group for medical application.

    Science.gov (United States)

    Jo, Sueng Hwan; Sohn, Jeong Sun

    2014-10-17

    For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO) for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.

  3. Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization.

    Science.gov (United States)

    Jiang, Wenge; Chu, Xiaobin; Wang, Ben; Pan, Haihua; Xu, Xurong; Tang, Ruikang

    2009-08-06

    Phase transformation is an important strategy in biomineralization. However, the role of biomolecules in the mineral transition is poorly understood despite the fact that the biomineralization society greatly highlights the organic controls in the formation of the inorganic phase. Here, we report an induced biomimetic phase transformation from brushite (a widely used calcium phosphate precursor in biological cement) to hydroxyapatite (main inorganic composition of skeletal mineral) by citrate (a rich organic component in bone tissue). The transformation in the absence of the organic additive cannot be spontaneously initiated in an aqueous solution with a pH of 8.45 (no phase transition is detected in 4 days), which is explained by a high interfacial energy barrier between brushite-solution and hydroxyapatite-solution interfaces. Citrate can oppositely regulate these two interfaces, which decreases and increases the stabilities of brushite and hydroxyapatite surfaces in the solution, respectively. Thus, the interfacial energy barrier can be greatly reduced in the presence of citrate and the reaction is triggered; e.g., at 1 mM citrate, the total transformation from brushite to hydroxyapatite can be completed within 3 days. The relationship between the transition kinetics and citrate concentration is also studied. The work reveals how the organic components direct solid-solid phase transformation, which can be understood by an energetic control of the interfacial barrier. It is emphasized that the terms of interfacial energy must be taken into account in the studies of phase transformation. We suggest that this biomimetic approach may provide an in-depth understanding of biomineralization.

  4. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  5. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics

    Directory of Open Access Journals (Sweden)

    Scott A Saunders

    2009-11-01

    Full Text Available Scott A SaundersMirrorMonitor Creativity, Royersford, PA USAAbstract: First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement, few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology’s most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer® restoratives are also reviewed. Finally, plausible “next-phase” trends in current nanorestorative research are judiciously examined, including 1 calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2 restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.Keywords: nanostructure, dental restorative, resin-based composite, biomimetic, amelogenin

  6. Automated sampling and data processing derived from biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Vissing, Thomas; Boesen, P.

    2009-01-01

    Recent advances in biomimetic membrane systems have resulted in an increase in membrane lifetimes from hours to days and months. Long-lived membrane systems demand the development of both new automated monitoring equipment capable of measuring electrophysiological membrane characteristics and new....... The combined solution provides a cost efficient and fast way to acquire, process and administrate large amounts of voltage clamp data that may be too laborious and time consuming to handle manually....

  7. Biomimetic Architecture in Building Envelope Maintenance (A Literature)

    OpenAIRE

    2014-01-01

    The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its natur...

  8. Biomimetic Crawling Motion of Soft and Slender Gel-worm

    Institute of Scientific and Technical Information of China (English)

    Song Miao LIANG; Jian XU; Li Na ZHANG

    2006-01-01

    Inspired by the locomotion of terrestrial limbless animals, the present work attempt to study the motion of biomimetic system based on poly(vinyl alcohol)/dimethylsulfoxide gel. The system was operated in air by employing a non-contacted DC electric field. The results showed that the gel exhibited a long-range snail-like motion and had a very fast response rate.

  9. Methods for Biomimetic Remineralization of Human Dentine: A Systematic Review

    OpenAIRE

    Chris Ying Cao; May Lei Mei; Quan-Li Li; Edward Chin Man Lo; Chun Hung Chu

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved wi...

  10. Flisht mechanism and design of biomimetic micro air vehicles

    Institute of Scientific and Technical Information of China (English)

    ANG HaiSong; XIAO TianHang; DUAN WenBo

    2009-01-01

    This paper summaries the investigations on natural flyers and development of bio-mimetic micro air vehicles(MAVs)at NUAA,China,where the authors have led a group to conduct research for a decade.The investigations include the studies of low Reynolds number aerodynamics,unsteady computational fluid dynamics and flight control for the fixed-wing MAVs,the bird-like MAVs,the dragonfly-like MAVs and the bee-like MAVs.

  11. Flight mechanism and design of biomimetic micro air vehicles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper summaries the investigations on natural flyers and development of bio-mimetic micro air vehicles(MAVs)at NUAA,China,where the authors have led a group to conduct research for a decade. The investigations include the studies of low Reynolds number aerodynamics,unsteady computational fluid dynamics and flight control for the fixed-wing MAVs,the bird-like MAVs,the dragonfly-like MAVs and the bee-like MAVs.

  12. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren;

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes....

  13. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  14. Biomimetic coating of calcium phosphate on biometallic materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The bio-mimetic apatite coating is made up of larger number of globules with size of 1-5μm. Each globule is a group of numerous flakes with a size range of 100-200nm to 30μm in length and 0.1-1μm in thickness. In-vitro and in-vivo studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much promising.

  15. Methods for Biomimetic Remineralization of Human Dentine: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Chris Ying Cao

    2015-03-01

    Full Text Available This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system.

  16. ENDOXY - Development of a Biomimetic Oxygenator-Test-Device.

    Directory of Open Access Journals (Sweden)

    Maren Dietrich

    Full Text Available This study focusses on the development of a biomimetic oxygenator test device. Due to limited biocompatibility, current oxygenators do not allow mid- to long-term therapy. Tissue engineering uses autologous cell sources to overcome the immunogenic barriers of biomaterials. Surface coating with endothelial cells might improve hemocompatibility and thus prevent immunogenic reactions of the body. In this study this concept is applied to endothelialise a gas-permeable membrane to develop a biomimetic oxygenator test-device (ENDOXY.ENDOXY-a multifunctional test-system was developed to endothelialise a gas-permeable membrane suitable for cell culture and to test the cell retention under shear stress and to measure gas transfer through it.Successful endothelialisation of the membrane was achieved and cells showed characteristic endothelial morphologies. They stained positive for endothelial markers. The number of cells aligned with shear stress and cell retention after blood perfusing experiments was high. Gas transfer is observed via uncoated and endothelialised membranes.The study showed promising results with regard to system design, endothelialisation, and cell retention under shear stress conditions. It strongly encourages further research into the system by testing different membrane materials to design a biomimetic membrane surface and pave way for a fully hemocompatible oxygenator.

  17. Methods for biomimetic remineralization of human dentine: a systematic review.

    Science.gov (United States)

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-03-02

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system.

  18. Direct laser writing: biomimetic photonics and superresolution nanolithography

    Science.gov (United States)

    Gu, Min

    2014-03-01

    Biomimetic photonics is inspired by nature's ability to self-assemble complex nanostructured materials with superior properties to that of conventional materials. Biomimetic engineering of novel nanophotonic devices has led to optical nano-fountains, artificial compound eyes and optical gas sensors. Direct laser writing (DLW) is a powerful tool toward the development of ultimate three-dimensional (3D) biomimetic photonic devices. Here we demonstrate the fabrication (DWL) of a novel class of 3D photonic microstructures inspired by a recent finding in butterfly wing-scales and show that these nano-engineered 3D gyroid structures have the ability to redirect circularly polarized light as a chiral beamsplitter. Because of the increasing demand for realising nanogeometries, the diffraction-limited resolution associated with DLW, should be overcomed to access to the nanoscale. We will report on our recent progress on optical beam nanolithography by using the superresolution photoinduction-inhibited nanolithography (SPIN) technique. The smallest feature size of 9 nm for free-standing lines has been demonstrated.

  19. Fabrication of Biomimetic Water Strider Legs Covered with Setae

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2009-01-01

    Water striders have remarkable water-repellent legs that enable them to stand effortlessly and move quickly on water. Fluid physics indicates this feature is due to a surface-tension effect caused by the special hierarchical structure of the legs, which are covered with a large number of inclined setae with fine nanogrooves inducing water resistance. This inspires us to fabricate special water-repellent structure on functional surfaces through the cooperation between the surface treatment and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications. In this paper we present a procedure for fabricating biomimetic water strider legs covered with setae using Polycarbonate Track-Etched (PCTE) membranes as templates. By choosing appropriate membrane lengths, diameters, pitches and densities of the setae, the biomimetic legs can be fabricated conveniently and at a low cost. Furthermore we investigated the relationship between stiffness of the molding materials, high aspect ratio and density, which affect the fidelity of fabrication and self adhesion, to optimize the stability of setae. The knowledge we gained from this study will offer important insights into the biomimetic design and fabrication of water strider setae.

  20. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  1. Biomimetic aquaporin membranes coming of age

    DEFF Research Database (Denmark)

    Tang, Chuyang; Wang, Zhining; Petrinić, Irena

    2015-01-01

    Membrane processes have been widely used for water purification because of their high stability, efficiency, low energy requirement and ease of operation. Traditional desalting membranes are mostly dense polymeric films with a "trade off" effect between permeability and selectivity. Biological me...

  2. Optical Biosensors to Explore Biological Systems

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Mogensen, Klaus Bo; Andersen, Nils H. Skovgaard

    2016-01-01

    the capability of different light based techniques for biosensing. As the first example, surface enhanced Raman spectroscopy (SERS) is performed in onion using silver plasmonic nanostructures. Our studies detect different molecular compounds present in the plant based on their SERS signals. SERS imaging allows......The study of live biological systems requires the use of advanced techniques that provide high structural and chemical information and at the same time, avoid damage in the system and modification of the structural/chemical features. Techniques based on interaction with light have shown...... protein may be used as an efficient sensor in an organic environment via a biomimetic membrane model. The combination of both biomimetic membranes and protein membranes as a signal transduction medium has interesting applications in biology and medicine. It is crucial that the matrix where a protein...

  3. Biomimetic artificial inorganic enzyme-free self-propelled microfish robot for selective detection of Pb(2+) in water.

    Science.gov (United States)

    Moo, James Guo Sheng; Wang, Hong; Zhao, Guanjia; Pumera, Martin

    2014-04-07

    The availability of drinking water is of utmost importance for the world population. Anthropogenic pollutants of water, such as heavy-metal ions, are major problems in water contamination. The toxicity assays used range from cell assays to animal tests. Herein, we replace biological toxicity assays, which use higher organisms, with artificial inorganic self-propelled microtubular robots. The viability and activity of these robots are negatively influenced by heavy metals, such as Pb(2+) , in a similar manner to that of live fish models. This allows the establishment of a lethal dose (LD50 ) of heavy metal for artificial inorganic microfish robots. The self-propelled microfish robots show specific response to Pb(2+) compared to other heavy metals, such as Cd(2+) , and can be used for selective determination of Pb(2+) in water. It is a first step towards replacing the biological toxicity assays with biomimetic inorganic autonomous robotic systems.

  4. Emission properties of biomimetic composites for dentistry

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Kashkarov, V. M.; Ippolitov, Yu. A.; Prutskij, T.

    Biocomposites based on carbonate-substituted hydroxyapatite synthesized from the biological source of calcium (Goloshchapov et al., 2013) and organic primer on the basis of amino acids found in the enamel tubules of teeth, namely, arginine, histidine, lysine and hyaluronic acid were obtained and studied in this work. Incorporation of organic primer into biocomposite formulation allowed us to obtain the emission characteristics (luminescence) that were identical to those inherent to the native tissues of the human tooth (enamel and dentine).

  5. Biomimetics for Treating Biofilm-Embedded Infections

    Science.gov (United States)

    2012-12-17

    Host defense proteins (HDPs) are an essential component of the innate immune system and display broad- spectrum action against bacteria , yeast, and... fungus by specifically disrupting their membranes rather than binding to specific molecular targets. Importantly, this mechanism is associated with a...the HDPs (smHDPs) which have robust activity against bacteria and markedly lower toxicity. The approach is to capture the structural and biological

  6. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    drug candidates and in separation technologies, where an exciting example is water purification device based on biomimetic membranes containing aquaporins (highly water selective proteins). However, there are many challenges that must be overcome in order to build biomimetic membrane-based devices...

  7. The application of the organic matrix to the biomimetic materials synthesis%有机基质在仿生材料合成中的应用

    Institute of Scientific and Technical Information of China (English)

    杨林; 郭玉明; 王键吉

    2000-01-01

      利用有机基质的模板作用通过仿生合成可以制备出性能优异的无机材料。文章综述了两亲有机分子、有机高分子、生物大分子三种有机基质在仿生材料合成中的应用,并对仿生材料合成这一新兴研究领域的发展趋势及广阔前景作了进一步的展望。%  Using the templating of the organic matrix, the inorganic materials with excellent properties can be perpared by the biomimetic synthesis. Application of three types of organic matrices(amphiphilic molecules, organic polymers and biological macromolecules) to the biomimetic materials synthesis is reviewed in this paper. The developing trend and broad prospects of the biomimetic materials synthesis is also discussed.

  8. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  9. Modulation and interactions of charged biomimetic membranes with bivalent ions

    Science.gov (United States)

    Kazadi Badiambile, Adolphe

    The biological membrane of an eukaryotic cell is a two-dimensional structure of mostly phospholipids with embedded proteins. This two-dimensional structure plays many key roles in the life of a cell. Transmembrane proteins, for example, play the role of a gate for different ions (such as Ca2+). Also found are peripheral proteins that are used as enzymes for different purposes in the inner leaflet of the plasma membrane. Phospholipids, in particular play three key roles. Firstly, some members of this group are used to store energy. Secondly, the hydrophobic and hydrophilic properties inherent to phospholipids enable them to be used as building blocks of the cell membrane by forming an asymmetric bilayer. This provides a shielding protection against the outer environment while at the same time keeping the organelles and cytosol from leaking out of the cell. Finally lipids are involved in regulating the aggregation of proteins in the membrane. In addition, some subspecies such as phosphatidylinositol (PtdIns) are second messenger molecules in their own right, thus playing an important role in cellular signaling events. In my work presented in this thesis, I am focusing on the role of some phospholipids as signaling molecules and in particular the physicochemical underpinnings that could be used in their spatiotemporal organization in the cellular plasma membrane. I am specifically concerned with the important family of phosphatidylinositol lipids. PtdIns are very well known for their role as signaling molecules in numerous cell events. They are located in the inner leaflet of the plasma membrane as well as part of the membrane of other organelles. Studies of these signaling molecules in their in vivo environment present many challenges: Firstly, the complexity of interactions due to the numerous entities present in eukaryotic cell membranes makes it difficult to establish clear cause and effect relationships. Secondly, due to their size, our inability to probe these

  10. Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments

    Science.gov (United States)

    Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.

    2011-06-01

    The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).

  11. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID).

  12. Oriented and Ordered Biomimetic Remineralization of the Surface of Demineralized Dental Enamel Using HAP@ACP Nanoparticles Guided by Glycine

    Science.gov (United States)

    Wang, Haorong; Xiao, Zuohui; Yang, Jie; Lu, Danyang; Kishen, Anil; Li, Yanqiu; Chen, Zhen; Que, Kehua; Zhang, Qian; Deng, Xuliang; Yang, Xiaoping; Cai, Qing; Chen, Ning; Cong, Changhong; Guan, Binbin; Li, Ting; Zhang, Xu

    2017-01-01

    Achieving oriented and ordered remineralization on the surface of demineralized dental enamel, thereby restoring the satisfactory mechanical properties approaching those of sound enamel, is still a challenge for dentists. To mimic the natural biomineralization approach for enamel remineralization, the biological process of enamel development proteins, such as amelogenin, was simulated in this study. In this work, carboxymethyl chitosan (CMC) conjugated with alendronate (ALN) was applied to stabilize amorphous calcium phosphate (ACP) to form CMC/ACP nanoparticles. Sodium hypochlorite (NaClO) functioned as the protease which decompose amelogenin in vivo to degrade the CMC-ALN matrix and generate HAP@ACP core-shell nanoparticles. Finally, when guided by 10 mM glycine (Gly), HAP@ACP nanoparticles can arrange orderly and subsequently transform from an amorphous phase to well-ordered rod-like apatite crystals to achieve oriented and ordered biomimetic remineralization on acid-etched enamel surfaces. This biomimetic remineralization process is achieved through the oriented attachment (OA) of nanoparticles based on non-classical crystallization theory. These results indicate that finding and developing analogues of natural proteins such as amelogenin involved in the biomineralization by natural macromolecular polymers and imitating the process of biomineralization would be an effective strategy for enamel remineralization. Furthermore, this method represents a promising method for the management of early caries in minimal invasive dentistry (MID). PMID:28079165

  13. Biomimetic control based on a model of chemotaxis in Escherichia coli.

    Science.gov (United States)

    Tsuji, Toshio; Suzuki, Michiyo; Takiguchi, Noboru; Ohtake, Hisao

    2010-01-01

    In the field of molecular biology, extending now to the more comprehensive area of systems biology, the development of computer models for synthetic cell simulation has accelerated extensively and has begun to be used for various purposes, such as biochemical analysis. These models, describing the highly efficient environmental searching mechanisms and adaptability of living organisms, can be used as machine-control algorithms in the field of systems engineering. To realize this biomimetic intelligent control, we require a stripped-down model that expresses a series of information-processing tasks from stimulation input to movement. Here we selected the bacterium Escherichia coli as a target organism because it has a relatively simple molecular and organizational structure, which can be characterized using biochemical and genetic analyses. We particularly focused on a motility response known as chemotaxis and developed a computer model that includes not only intracellular information processing but also motor control. After confirming the effectiveness and validity of the proposed model by a series of computer simulations, we applied it to a mobile robot control problem. This is probably the first study showing that a bacterial model can be used as an autonomous control algorithm. Our results suggest that many excellent models proposed thus far for biochemical purposes can be applied to problems in other fields.

  14. A Biomimetic Approach to Robot Locomotion in Unstructured and Slippery Environments

    Institute of Scientific and Technical Information of China (English)

    Giovanni La Spina; Thomas Hesselberg; John Williams; Julian F V Vincent

    2005-01-01

    While much attention has been given to bio-robotics in recent years, not much of this has been given to the challenging subject of locomotion in slippery conditions. This study begins to rectify this by proposing a biomimetic approach to generating the friction required to give sufficient propulsive force on a slippery substrate. We took inspiration from a successful biological solution-that of applying hair-like structures to the propulsive appendages, similar to the setae found in nereid polychaetes living in muddy habitats. We began by examining the morphology and themean locomotion parameters of one of the most common nereids: Nereis diversicolor. Following this study, we designed and fabricated a robotic system with appendages imitating the biological shape found in the worm. A flexible control system was developed to allow most of the locomotion parameters observed in the real worm to be applied to the robot. Experiments on three different natural substrates ranging from fine sand to gravel showed that, whereas a plate attached to the appendage generated most thrust on a small particle substrate, a bundle of artificial setae attached to the appendage generated most thrust on a large particle substrate. On all types of substrate tested, an appendage without any attachment did significantly worse than one with. This suggests that hair-like structures can be advantageous.

  15. Anti-wear properties on 20CrMnTi steel surfaces with biomimetic non-smooth units

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In order to gain a sufficient wear resistance for applications, the biomimetic non-smooth units in concave were fabricated on the surfaces of 20CrMnTi steel using a biomimetic laser remelting technology. The diameter and distribution of the concaves were optimized using orthogonal experiment. The microstructures of the biomimetic non-smooth units were examined. The anti-wear behaviors were investigated by the rolling wear test with lubricant. The results of wear tests indicated that the biomimetic surfaces exhibit a higher anti-wear ability than the smooth surfaces. The biomimetic surface with concaves of 250 μm in diameter and transverse distance of 270 μm and longitudinal distance of 400 μm exhibits the best anti-wear property. The enhancement of wear resistance can be mainly attributed to the action of biomimetic non-smooth units and the super fined microstructure and hardness in the biomimetic unit zones.

  16. Biomimetic proteolipid vesicles for targeting inflamed tissues

    Science.gov (United States)

    Molinaro, R.; Corbo, C.; Martinez, J. O.; Taraballi, F.; Evangelopoulos, M.; Minardi, S.; Yazdi, I. K.; Zhao, P.; De Rosa, E.; Sherman, M. B.; de Vita, A.; Toledano Furman, N. E.; Wang, X.; Parodi, A.; Tasciotti, E.

    2016-09-01

    A multitude of micro- and nanoparticles have been developed to improve the delivery of systemically administered pharmaceuticals, which are subject to a number of biological barriers that limit their optimal biodistribution. Bioinspired drug-delivery carriers formulated by bottom-up or top-down strategies have emerged as an alternative approach to evade the mononuclear phagocytic system and facilitate transport across the endothelial vessel wall. Here, we describe a method that leverages the advantages of bottom-up and top-down strategies to incorporate proteins derived from the leukocyte plasma membrane into lipid nanoparticles. The resulting proteolipid vesicles--which we refer to as leukosomes--retained the versatility and physicochemical properties typical of liposomal formulations, preferentially targeted inflamed vasculature, enabled the selective and effective delivery of dexamethasone to inflamed tissues, and reduced phlogosis in a localized model of inflammation.

  17. Evolving Marine Biomimetics for Regenerative Dentistry

    Directory of Open Access Journals (Sweden)

    David W. Green

    2014-05-01

    Full Text Available New products that help make human tissue and organ regeneration more effective are in high demand and include materials, structures and substrates that drive cell-to-tissue transformations, orchestrate anatomical assembly and tissue integration with biology. Marine organisms are exemplary bioresources that have extensive possibilities in supporting and facilitating development of human tissue substitutes. Such organisms represent a deep and diverse reserve of materials, substrates and structures that can facilitate tissue reconstruction within lab-based cultures. The reason is that they possess sophisticated structures, architectures and biomaterial designs that are still difficult to replicate using synthetic processes, so far. These products offer tantalizing pre-made options that are versatile, adaptable and have many functions for current tissue engineers seeking fresh solutions to the deficiencies in existing dental biomaterials, which lack the intrinsic elements of biofunctioning, structural and mechanical design to regenerate anatomically correct dental tissues both in the culture dish and in vivo.

  18. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    Science.gov (United States)

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.

  19. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  20. A Novel Soft Biomimetic Microrobot with Two Motion Attitudes

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2012-12-01

    Full Text Available  A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7

  1. Biomimetic proopiomelanocortin suppresses capsaicin-induced sensory irritation in humans

    Directory of Open Access Journals (Sweden)

    Sayed Ali Fatemi

    2016-01-01

    Full Text Available Sensitive skin is a frequently mentioned cosmetic complaint. Addition of a biomimetic of neuromediator has recently appeared as a promising new way to cure skin care product problems. This study was aimed to assess the inhibitory effect of a biomimetic lipopeptide derived from proopiomelanocortin (bPOMC on capsaicin-induced sensory irritation in human volunteers and also to compare its protective effect with that of the well-known anti irritant strontium chloride. The effect of each test compound was studied on 28 selected healthy volunteers with sensitive skin in accordance with a double-blind vehicle-controlled protocol. From day 1 to day 13 each group was applied the test compound (bPOMC or strontium chloride to one wing of the nose and the corresponding placebo (vehicle to the other side twice daily. On days 0 and 14, acute skin irritation was induced by capsaicin solution and quantified using clinical stinging test assessments. Following the application of capsaicin solution, sensory irritation was evaluated using a 4-point numeric scale. The sensations perceived before and after treatment (on days 0 and 14 was calculated for the two zones (test materials and vehicle. Ultimately the percentage of variation between each sample and the placebo and also the inhibitory effect of bPOMC compared to that of strontium chloride were reported. Clinical results showed that after two weeks treatment, the levels of skin comfort reported in the group treated with bPOMC were significantly higher than those obtained in the placebo group and the inhibitory effect of bPOMC was about 47% higher than that of strontium chloride. The results of the present study support the hypothesis that biomimetic peptides may be effective on sensitive skin.

  2. Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, Michele, E-mail: michele.iafisco@istec.cnr.it; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna

    2014-02-01

    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO{sub 3} ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical–physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg–CO{sub 3}-apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg–CO{sub 3}-apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO{sub 4}. As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality. - Highlights: • Biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr were prepared. • Biological-like amounts of Mg and CO{sub 3} were inserted to mimic the composition of bone apatite. • The addition of increasing

  3. 3-D Locomotion control for a biomimetic robot fish

    Institute of Scientific and Technical Information of China (English)

    Zhigang ZHANG; Shuo WANG; Min TAN

    2004-01-01

    This paper concerns with 3-D locomotion control methods for a biomimetic robot fish. The system architecture of the fish is firstly presented based on a physical model of carangiform fish. The robot fish has a flexible body, a rigid caudal fin and a pair of pectoral fins, driven by several servomotors. The motion control of the robot fish are then divided into speed control, orientation control, submerge control and transient motion control, corresponding algorithms are detailed respectively.Finally, experiments and analyses on a 4-1ink, radio-controlled robot fish prototype with 3-D locomotion show its good performance.

  4. Biomimetic Synthesis of Complex Flavonoids Isolated from Daemonorops "Dragon's Blood".

    Science.gov (United States)

    Schmid, Matthias; Trauner, Dirk

    2017-09-25

    The dragonbloodins are a pair of complex flavonoid trimers that have been isolated from the palm tree Daemonorops draco, one of the sources of the ancient resin known as "dragon's blood". We present a short synthesis that clarifies their relative configurations and sheds light on their origin in Nature. This synthesis features biomimetic cascade reactions that involve both ionic and radical intermediates. The biogenetic relationships between dracorhodin, the dracoflavans C, and the dragonbloodins A1 and A2 are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Fabrication and characterization of three-dimensional biomimetic chiral composites.

    Science.gov (United States)

    Turner, Mark D; Schröder-Turk, Gerd E; Gu, Min

    2011-05-09

    Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.

  6. Acoustic beam control in biomimetic projector via velocity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2016-07-04

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  7. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  8. Hyaluronan: from biomimetic to industrial business strategy.

    Science.gov (United States)

    Murano, Erminio; Perin, Danilo; Khan, Riaz; Bergamin, Massimo

    2011-04-01

    Hyaluronan (hyaluronic acid) is a naturally occurring polysaccharide of a linear repeating disaccharide unit consisting of beta-(1-->4)-linked D-glucopyranuronic acid and beta-(1-->3)-linked 2-acetamido-2-deoxy-D-glucopyranose, which is present in extracellular matrices, the synovial fluid of joints, and scaffolding that comprises cartilage. In its mechanism of synthesis, its size, and its physico-chemical properties, hyaluronan is unique amongst other glycosaminoglycans. The network-forming, viscoelastic and its charge characteristics are important to many biochemical properties of living tissues. It is an important pericellular and cell surface constituent; its interaction with other macromolecules such as proteins, participates in regulating cell behavior during numerous morphogenic, restorative, and pathological processes in the body. The knowledge of HA in diseases such as various forms of cancers, arthritis and osteoporosis has led to new impetus in research and development in the preparation of biomaterials for surgical implants and drug conjugates for targeted delivery. A concise and focused review on hyaluronan is timely. This review will cover the following important aspects of hyaluronan: (i) biological functions and synthesis in nature; (ii) current industrial production and potential biosynthetic processes of hyaluronan; (iii) chemical modifications of hyaluronan leading to products of commercial significance; and (iv) and the global market position and manufacturers of hyaluronan.

  9. Biomimetic silica encapsultation of living cells

    Science.gov (United States)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  10. Hydrogen photoproduction by use of photosynthetic organisms and biomimetic systems.

    Science.gov (United States)

    Allakhverdiev, Suleyman I; Kreslavski, Vladimir D; Thavasi, Velmurugan; Zharmukhamedov, Sergei K; Klimov, Vyacheslav V; Nagata, Toshi; Nishihara, Hiroshi; Ramakrishna, Seeram

    2009-02-01

    Hydrogen can be important clean fuel for future. Among different technologies for hydrogen production, oxygenic natural and artificial photosyntheses using direct photochemistry in synthetic complexes have a great potential to produce hydrogen, since both use clean and cheap sources: water and solar energy. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms such as algae and cyanobacteria, water is split into electrons and protons, which during primary photosynthetic process are redirected by photosynthetic electron transport chain, and ferredoxin, to the hydrogen-producing enzymes hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. In contrast, nitrogenase is insensitive to O2, but has lower activity. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (>10%). Our review examines the main pathways of H2 photoproduction by using of photosynthetic organisms and biomimetic photosynthetic systems.

  11. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Science.gov (United States)

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility.

  12. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  13. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites.

    Science.gov (United States)

    Pascaud, Patricia; Gras, Pierre; Coppel, Yannick; Rey, Christian; Sarda, Stéphanie

    2013-02-19

    Bisphosphonates (BPs) are well established as successful antiresorptive agents for the prevention and treatment of bone diseases such as osteoporosis and Paget's disease. The aim of this work was to clarify the reaction mechanisms between a BP molecule, tiludronate, and the nanocrystalline apatite surface. The adsorption of tiludronate on well-characterized synthetic biomimetic nanocrystalline apatites with homogeneous but different compositions and surface characteristics was investigated to determine the effect of the nanocrystalline apatite substrate on the adsorption behavior. The results show that the adsorption of tiludronate on nanocrystalline biomimetic apatite surfaces varies over a large range. The most immature apatitic samples exhibited the highest affinity and the greatest amount adsorbed at saturation. Maturation of the nanocrystals induces a decrease of these values. The amount of phosphate ion released per adsorbed BP molecule varied, depending on the nanocrystalline substrate considered. The adsorption mechanism, although associated with a release of phosphate ions, cannot be considered as a simple ion exchange process involving one or two phosphate ions on the surface. A two-step process is proposed consisting of a surface binding of BP groups to calcium ions associated with a proton release inducing the protonation of surface orthophosphate ions and their eventual solubilization.

  14. Computation of Unsteady Flow Past a Biomimetic Fin

    Institute of Scientific and Technical Information of China (English)

    Hao Liu; Naomi Kato

    2004-01-01

    The unsteady hydrodynamics of a biomimetic fin attached to a cylindrical body has been studied numerically using a computational fluid dynamic (CFD) simulator based on an in-house solver of the Navier-Stokes equations, combined with a recently developed multi-block, overset grid method. The fin-body CFD model is based on a mechanical pectoral fin device, which consists of a cylindrical body and an asymmetric fin and can mimic flapping, rowing and feathering motions of the pectoral fins in fishes. First the multi-block, overset grid method incorporated into the NS solver was verified through an extensive study of unsteady flows past a single fin undergoing rowing and feathering motion. Then unsteady flows past the biomimetic fin-body model undergoing the same motions were computed and compared with the measurements of forces of the mechanical pectoral fin, which shows good agreement in both time-varying and time-averaged hydrodynamic forces. The relationship between force generation and vortex dynamics points to the importance of the match in fin kinematics between power and recovery strokes and implies that an optimal selection of parameters of phase lags between and amplitudes of rowing and feathering motions can improve the performance of labriform propulsion in terms of either maximum force generation or minimum mechanical power.

  15. Gambogic acid-loaded biomimetic nanoparticles in colorectal cancer treatment

    Science.gov (United States)

    Zhang, Zhen; Qian, Hanqing; Yang, Mi; Li, Rutian; Hu, Jing; Li, Li; Yu, Lixia; Liu, Baorui; Qian, Xiaoping

    2017-01-01

    Gambogic acid (GA) is expected to be a potential new antitumor drug, but its poor aqueous solubility and inevitable side effects limit its clinical application. Despite these inhe rent defects, various nanocarriers can be used to promote the solubility and tumor targeting of GA, improving antitumor efficiency. In addition, a cell membrane-coated nanoparticle platform that was reported recently, unites the customizability and flexibility of a synthetic copolymer, as well as the functionality and complexity of natural membrane, and is a new synthetic biomimetic nanocarrier with improved stability and biocompatibility. Here, we combined poly(lactic-co-glycolic acid) (PLGA) with red blood-cell membrane (RBCm), and evaluated whether GA-loaded RBCm nanoparticles can retain and improve the antitumor efficacy of GA with relatively lower toxicity in colorectal cancer treatment compared with free GA. We also confirmed the stability, biocompatibility, passive targeting, and few side effects of RBCm-GA/PLGA nanoparticles. We expect to provide a new drug carrier in the treatment of colorectal cancer, which has strong clinical application prospects. In addition, the potential antitumor drug GA and other similar drugs could achieve broader clinical applications via this biomimetic nanocarrier.

  16. Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather

    Institute of Scientific and Technical Information of China (English)

    Huawei Chen; Fugang Rao; Xiaopeng Shang; Deyuan Zhang; Ichiro Hagiwara

    2013-01-01

    Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection.As typical property of bird feather,herringbone riblets align along the shaft of each feather,which is caused by perfect link of barbs,especially for the primary and secondary feathers of wings.Such herringbone riblets of feather are assumed to have great impact on drag reduction.In this paper,microstructures of secondary feathers of adult pigeons are investigated by SEM,and their structural parameters are statistically obtained.Based on quantitative analysis of feather structure,novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag.In comparison with traditional microgroove riblets and other drag reduction structures,the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16%,much higher than others.Moreover,the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.

  17. In vitro remineralization of hybrid layers using biomimetic analogs.

    Science.gov (United States)

    Lin, Hui-Ping; Lin, Jun; Li, Juan; Xu, Jing-Hong; Mehl, Christian

    Resin-dentin bond degradation is a major cause of restoration failures. The major aim of the current study was to evaluate the impact of a remineralization medium on collagen matrices of hybrid layers of three different adhesive resins using nanotechnology methods. Coronal dentin surfaces were prepared from freshly extracted premolars and bonded to composite resin using three adhesive resins (FluoroBond II, Xeno-III-Bond, and iBond). From each tooth, two central slabs were selected for the study. The slabs used as controls were immersed in a simulated body fluid (SBF). The experimental slabs were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs (biomineralization medium (BRM)). Eight slabs per group were retrieved after 1, 2, 3, and 4 months, respectively and immersed in Rhodamine B for 24 h. Confocal laser scanning microscopy was used to evaluate the permeability of hybrid layers to Rhodamine B. Data were analyzed by analysis of variance (ANOVA) and Tukey's honest significant difference (HSD) tests. After four months, all BRM specimens exhibited a significantly smaller fluorescent area than SBF specimens, indicating a remineralization of the hybrid layer (P≤0.05). A clinically applicable biomimetic remineralization delivery system could potentially slow down bond degradation.

  18. In vitro remineralization of hybrid layers using biomimetic analogs*

    Science.gov (United States)

    Lin, Hui-ping; Lin, Jun; Li, Juan; Xu, Jing-hong; Mehl, Christian

    2016-01-01

    Resin-dentin bond degradation is a major cause of restoration failures. The major aim of the current study was to evaluate the impact of a remineralization medium on collagen matrices of hybrid layers of three different adhesive resins using nanotechnology methods. Coronal dentin surfaces were prepared from freshly extracted premolars and bonded to composite resin using three adhesive resins (FluoroBond II, Xeno-III-Bond, and iBond). From each tooth, two central slabs were selected for the study. The slabs used as controls were immersed in a simulated body fluid (SBF). The experimental slabs were immersed in a Portland cement-based remineralization medium that contained two biomimetic analogs (biomineralization medium (BRM)). Eight slabs per group were retrieved after 1, 2, 3, and 4 months, respectively and immersed in Rhodamine B for 24 h. Confocal laser scanning microscopy was used to evaluate the permeability of hybrid layers to Rhodamine B. Data were analyzed by analysis of variance (ANOVA) and Tukey’s honest significant difference (HSD) tests. After four months, all BRM specimens exhibited a significantly smaller fluorescent area than SBF specimens, indicating a remineralization of the hybrid layer (P≤0.05). A clinically applicable biomimetic remineralization delivery system could potentially slow down bond degradation. PMID:27819133

  19. A biomimetic projector with high subwavelength directivity based on dolphin biosonar

    Science.gov (United States)

    Zhang, Yu; Gao, Xiaowei; Zhang, Sai; Cao, Wenwu; Tang, Liguo; Wang, Ding; Li, Yan

    2014-09-01

    Based on computed tomography of a Yangtze finless porpoise's biosonar system, a biomimetic structure was designed to include air cavity, gradient-index material, and steel outer-structure mimicking air sacs, melon, and skull, respectively. The mainlobe pressure was about three times higher, the angular resolution was one order of magnitude higher, and the effective source size was orders of magnitude larger than those of the subwavelength source without the biomimetic structure. The superior subwavelength directivity over a broad bandwidth suggests potential applications of this biomimetic projector in underwater sonar, medical ultrasonography, and other related applications.

  20. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  1. Pharmacological and spectral studies of synthetic biomimetic copper complexes derived from 3-hydroxyflavone derivatives as anti-inflammatory agents

    Directory of Open Access Journals (Sweden)

    K. Nagashri

    2016-09-01

    Full Text Available Novel biomimetic ligands were synthesized by the condensation of 3-hydroxyflavone, 2-aminophenol(L1/2-aminobenzoic acid (L2 and-aminothiazole (L3. Their Cu(II complexes have also been synthesized and characterized on the basis of 1H NMR, IR, UV–Vis spectra, elemental analyses, molar conductivity, ESR, electrochemical behaviour and thermal analyses. The antimicrobial activities (MIC values of the ligands, copper complexes and standard drugs have been evaluated using the serial dilution technique against the bacterial species Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris and Pseudomonas aeruginosa and fungal species Aspergillus niger, Rhizopus stolonifer, Aspergillus flavus, Rhizoctonia bataicola and Candida albicans. The anti-inflammatory and SOD activities of the investigated compounds are also promising and allow the selection of a lead compound for further biological studies.

  2. Synthesis, characterization and antibacterial activity against Gram positive and Gram negative bacteria of biomimetically coated silver nanoparticles.

    Science.gov (United States)

    Amato, Elvio; Diaz-Fernandez, Yuri A; Taglietti, Angelo; Pallavicini, Piersandro; Pasotti, Luca; Cucca, Lucia; Milanese, Chiara; Grisoli, Pietro; Dacarro, Cesare; Fernandez-Hechavarria, Jose M; Necchi, Vittorio

    2011-08-02

    In the present work, we describe a simple procedure to produce biomimetically coated silver nanoparticles (Ag NPs), based on the postfunctionalization and purification of colloidal silver stabilized by citrate. Two biological capping agents have been used (cysteine Cys and glutathione GSH). The composition of the capped colloids has been ascertained by different techniques and antibacterial tests on GSH-capped Ag NPs have been conducted under physiological conditions, obtaining values of Minimum Inhibitory Concentration (MIC) of 180 and 15 μg/mL for Staphylococcus aureus and Escherichia coli, respectively. The antibacterial activity of these GSH capped NPs can be ascribed to the direct action of metallic silver NPs, rather than to the bulk release of Ag(+).

  3. Biomimetic-Inspired Infrared Sensors from Zn3P2 Microwires: Study of Their Photoconductivity and Infrared Spectrum Properties

    Directory of Open Access Journals (Sweden)

    M. Israelowitz

    2014-01-01

    Full Text Available The fire beetle, Melanophila acuminata (Coleoptera: Buprestidae, senses infrared radiation at wavelengths of 3 and 10–25 microns via specialized protein-containing sensilla. Although the protein denatures outside of a biological system, this detection mechanism has inspired our bottom-up approach to produce single zinc phosphide microwires via vapour transport for IR sensing. The Zn3P2 microwires were immobilized and electrical contact was made by dielectrophoresis. Photoconductivity measurements have been extended to the near IR range, spanning the Zn3P2 band gaps. Purity and integrity of the Zn3P2 microwires including infrared light scattering properties were confirmed by infrared transmission microscopy. This biomimetic microwire shows promise for infrared chip development.

  4. Mirrors Containing Biomimetic Shape-Control Actuators

    Science.gov (United States)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  5. Biomimetic structural engineering of P22 virus-like particles for catalysis and immune modulation

    Science.gov (United States)

    Schwarz, Benjamin

    Within biology molecules are arranged in hierarchical structures that coordinate and control the many processes that allow for complex organisms to exist. Proteins and other functional macromolecules are often studied outside their natural nanostructural context because it remains difficult to create controlled arrangements of proteins at this size scale. Viruses are elegantly simple nano-systems that exist at the interface of living organisms and non-living biological machines. Studied and viewed primarily as pathogens to be combatted, viruses have emerged as models of structural efficiency at the nanoscale and have spurred the development of biomimetic nanoparticle systems. Virus-like particles (VLPs) are noninfectious protein cages derived from viruses or other cage-forming systems. VLPs provide incredibly regular scaffolds for building at the nanoscale. In this work I have utilized the VLP derived from the bacteriophage P22 as a platform for the organization of enzymes, antigens, and immune-stimulating proteins inside and outside the capsid through purely genetic means. In the case of enzymes, encapsulation of a two-enzyme pathway has led to the development of metabolic nanoparticle catalysts and an expanded understanding of the control that structure exerts on metabolic flux. These same structural elements applied to the delivery of protein subunit antigens directed at cytotoxic T cell immunity result in drastically enhanced antigen processing and lasting immunological memory. Lastly, presentation of immune-stimulating proteins from the Tumor Necrosis Factor Super Family on the surface of the P22 VLP enhances the cell signaling efficiency of these compounds 50-fold and provides strategies for the application of these proteins as immune modulatory oncology therapeutics. In all of these cases, the reintroduction of nanostructure to these protein systems, reminiscent of their natural environment, has led to both new technologies and a better understanding of the

  6. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    Science.gov (United States)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  7. Hierarchical Surface Architecture of Plants as an Inspiration for Biomimetic Fog Collectors.

    Science.gov (United States)

    Azad, M A K; Barthlott, W; Koch, K

    2015-12-01

    Fog collectors can enable us to alleviate the water crisis in certain arid regions of the world. A continuous fog-collection cycle consisting of a persistent capture of fog droplets and their fast transport to the target is a prerequisite for developing an efficient fog collector. In regard to this topic, a biological superior design has been found in the hierarchical surface architecture of barley (Hordeum vulgare) awns. We demonstrate here the highly wettable (advancing contact angle 16° ± 2.7 and receding contact angle 9° ± 2.6) barbed (barb = conical structure) awn as a model to develop optimized fog collectors with a high fog-capturing capability, an effective water transport, and above all an efficient fog collection. We compare the fog-collection efficiency of the model sample with other plant samples naturally grown in foggy habitats that are supposed to be very efficient fog collectors. The model sample, consisting of dry hydrophilized awns (DH awns), is found to be about twice as efficient (fog-collection rate 563.7 ± 23.2 μg/cm(2) over 10 min) as any other samples investigated under controlled experimental conditions. Finally, a design based on the hierarchical surface architecture of the model sample is proposed for the development of optimized biomimetic fog collectors.

  8. Coupling process study of lipid production and mercury bioremediation by biomimetic mineralized microalgae.

    Science.gov (United States)

    Peng, Yang; Deng, Aosong; Gong, Xun; Li, Xiaomin; Zhang, Yang

    2017-11-01

    Considering the high concentration of mercury in industrial wastewater, such as coal-fired power plants and gold mining wastewater, this research study investigated the coupling process of lipid production and mercury bioremediation using microalgae cells. Chlorella vulgaris modified by biomimetic mineralization. The cultivation was divided in two stages: a natural cultivation for 7days and 5days of Hg(2+) addition (10-100μg/L) for cultivation at different pH values (4-7) after inoculation. Next, the harvested cells were eluted, and lipid was extracted. The fluorescein diacetate (FDA) dye tests demonstrated that the mineralized layer enhanced the biological activity of microalgae cells in Hg(2+) contaminated media. Hg distribution tests showed that the Hg removal capacity of modified cells was increased from 62.85% to 94.74%, and 88.72% of eluted Hg(2+) concentration was observed in modified cells compared to 48.42% of raw cells, implying that more mercury was transferred from lipid and residuals into elutable forms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Inspection and analysis of the walls of fluid filled tubes by active electrolocation: a biomimetic approach

    Science.gov (United States)

    Gottwald, Martin; Mayekar, Kavita; Reiswich, Vladislav; Bousack, Herbert; Damalla, Deepak; Biswas, Shubham; Metzen, Michael G.; von der Emde, Gerhard

    2011-04-01

    During their nocturnal activity period, weakly electric fish employ a process called "active electrolocation" for navigation and object detection. They discharge an electric organ in their tail, which emits electrical current pulses, called electric organ discharges (EOD). Local EODs are sensed by arrays of electroreceptors in the fish's skin, which respond to modulations of the signal caused by nearby objects. Fish thus gain information about the size, shape, complex impedance and distance of objects. Inspired by these remarkable capabilities, we have designed technical sensor systems which employ active electrolocation to detect and analyse the walls of small, fluid filled pipes. Our sensor systems emit pulsed electrical signals into the conducting medium and simultaneously sense local current densities with an array of electrodes. Sensors can be designed which (i) analyse the tube wall, (ii) detect and localize material faults, (iii) identify wall inclusions or objects blocking the tube (iv) and find leakages. Here, we present first experiments and FEM simulations on the optimal sensor arrangement for different types of sensor systems and different types of tubes. In addition, different methods for sensor read-out and signal processing are compared. Our biomimetic sensor systems promise to be relatively insensitive to environmental disturbances such as heat, pressure, turbidity or muddiness. They could be used in a wide range of tubes and pipes including water pipes, hydraulic systems, and biological systems. Medical applications include catheter based sensors which inspect blood vessels, urethras and similar ducts in the human body.

  10. Biomimetic active emulsions capture cell dynamics and direct bio-inspired materials

    Science.gov (United States)

    Ehrlicher, Allen; Amstad, Esther; Segmehl, Jana; Nakamura, Fumihiko; Stossel, Thomas; Pollak, Martin; Weitz, David

    2013-03-01

    The main biopolymers which make up the cellular cytoskeleton and provide cells with their shape are well understood, yet, how they organize into structures and set given cellular behavior remains unclear. We have reconstituted minimal networks of actin, a ubiquitous biopolymer, along with an associated motor protein myosin II to create biomimetic networks which replicate cell structure and actively contract when selectively provided with ATP. We emulsify these networks in 10-100 micron drops, provide a system to investigate strain-mediated protein interactions and network behavior in confined cell-similar volumes. These networks allow us to study strain-mediated protein-specific interactions in an actin network at a precision impossible in vivo. Using this system, we have identified strain-dependent behavior in actin cross linking proteins; mechanotransduction of signaling proteins in Filamin A, and unique catch-bond behavior in Alpha-actinin. This understanding of biopolymer self-organization to set cell mechanics, will help clarify how biology both generates and reacts to force; moreover this system provides a highly controlled platform for studying non-equilibrium materials, and creating microscopic building block for a entirely new class of active materials.

  11. Repetitive Biomimetic Self-healing of Ca2+-Induced Nanocomposite Protein Hydrogels

    Science.gov (United States)

    Chen, Jun; Dong, Qiuchen; Ma, Xiaoyu; Fan, Tai-Hsi; Lei, Yu

    2016-08-01

    Self-healing is a capacity observed in most biological systems in which the healing processes are autonomously triggered after the damage. Inspired by this natural behavior, researchers believed that a synthetic material possessing similar self-recovery capability could also be developed. Albeit various intrinsic self-healing systems have been developed over the past few decades, restriction on the biocompatibility due to the required synthetic conditions under extreme pH and with poisonous cross-linker significantly limits their application in biomedical field. In this study, a highly biocompatible nanocomposite protein hydrogel with excellent biomimetic self-healing property is presented. The self-healing protein gel is made by inducing calcium ions into the mixture of heat-induced BSA nano-aggregates and pristine BSA molecules at room temperature and under physiological pH due to the ion-mediated protein-protein association and the bridging effect of divalent Ca2+ ions. The as-prepared protein hydrogel shows excellent repetitive self-healing properties without using any external stimuli at ambient condition. Such outstanding self-recovery performance was quantitatively evaluated/validated by both dynamic and oscillatory rheological analysis. Moreover, with the presence of calcium ions, the self-healing behavior can be significantly facilitated/enhanced. Finally, the superior biocompatibility demonstrated by in vitro cytotoxicity analysis suggests that it is a promising self-healing material well-suited for biomedical applications.

  12. Butterfly scales as bionic templates for complex ordered nanophotonic materials: A pathway to biomimetic plasmonics

    Science.gov (United States)

    Jakšić, Zoran; Pantelić, Dejan; Sarajlić, Milija; Savić-Šević, Svetlana; Matović, Jovan; Jelenković, Branislav; Vasiljević-Radović, Dana; Ćurčić, Srećko; Vuković, Slobodan; Pavlović, Vladimir; Buha, Jelena; Lačković, Vesna; Labudović-Borović, Milica; Ćurčić, Božidar

    2013-08-01

    In this paper we propose a possible use of butterfly scales as templates for ordered 2D or 3D nanophotonic materials, with complexity not easily reproducible by conventional micro/nanofabrication methods. Functionalization through laminar nanocompositing is utilized to impart novel properties to the biological scaffold. An extremely wide variability of butterfly scale forms, shapes, sizes and fine structures is observed in nature, many of them already possessing peculiar optical properties. Their nanophotonic functionalization ensures a large choice of forms and functions, including enhanced light localization, light and plasmon waveguiding and general metamaterial behavior, to mention a few. We show that one is able to achieve a combination of plasmonics and bionics, resulting in functionalities seldom if ever met in nature. As an illustration we have analyzed the photonic properties of the nanostructured scales on the wings of Purple Emperor butterflies Apatura ilia, Apatura iris and Sasakia charonda. Their intricate nanometer-sized structures produce remarkable ultraviolet-blue iridescence, spectrally and directionally narrow. We present our analysis of their plasmonic/nanophotonic functionalization including preliminary calculations and initial experimental results. As a simple example, we used radiofrequent sputtering to produce nanoaperture-based plasmonic structures at a fraction of the cost and necessary engineering efforts compared to the conventional top-down methods. We conclude that the described pathway to biomimetic plasmonics offers potentials for significant expansion of the nanophotonic and nanoplasmonic material toolbox.

  13. Biomimetic Mineralization on a Macroporous Cellulose-Based Matrix for Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Odeta Petrauskaite

    2013-01-01

    Full Text Available The aim of this study is to investigate the biomimetic mineralization on a cellulose-based porous matrix with an improved biological profile. The cellulose matrix was precalcified using three methods: (i cellulose samples were treated with a solution of calcium chloride and diammonium hydrogen phosphate; (ii the carboxymethylated cellulose matrix was stored in a saturated calcium hydroxide solution; (iii the cellulose matrix was mixed with a calcium silicate solution in order to introduce silanol groups and to combine them with calcium ions. All the methods resulted in a mineralization of the cellulose surfaces after immersion in a simulated body fluid solution. Over a period of 14 days, the matrix was completely covered with hydroxyapatite crystals. Hydroxyapatite formation depended on functional groups on the matrix surface as well as on the precalcification method. The largest hydroxyapatite crystals were obtained on the carboxymethylated cellulose matrix treated with calcium hydroxide solution. The porous cellulose matrix was not cytotoxic, allowing the adhesion and proliferation of human osteoblastic cells. Comparatively, improved cell adhesion and growth rate were achieved on the mineralized cellulose matrices.

  14. Current practicality of nanotechnology in dentistry. Part 1: Focus on nanocomposite restoratives and biomimetics.

    Science.gov (United States)

    Saunders, Scott A

    2009-01-01

    First described in 1959 by physicist Richard P Feynman, who saw it as an unavoidable development in the progress of science, nanotechnology has been part of mainstream scientific theory with potential medical and dental applications since the early 1990s. Nanoparticles, nanospheres, nanorods, nanotubes, nanofibers, dendrimers and other nanostructures have been studied for various applications to biologic tissues and systems. While many layers of nanotechnologic capability have been envisioned for oral health in the last decade (eg, oral hygiene maintenance, local anesthesia, even whole-tooth replacement), few of these applications have been developed. Part 1 of a three-part series reviews the current clinical utility of nanotechnology's most tangible contribution to dentistry to date: the restoration of tooth structure with nanocomposites. Characterized by filler-particle sizes of ≤100 nm, these materials can offer esthetic and strength advantages over conventional microfilled and hybrid resin-based composite (RBC) systems, primarily in terms of smoothness, polishability and precision of shade characterization, plus flexural strength and microhardness similar to those of the better-performing posterior RBCs. Available comparative data for nanocomposites and organically-modified ceramic (Ormocer(®)) restoratives are also reviewed. Finally, plausible "next-phase" trends in current nanorestorative research are judiciously examined, including 1) calcium-, phosphate-, and fluoride-ion-releasing nanocomposites for anticaries applications and 2) restorative systems based on biomimetic emulation of the nanomolecular assembly processes inherent in dental enamel formation using nanorods, nanospheres, and recombinant amelogenins.

  15. Methods for Improving Enzymatic Trans-glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard

    2014-01-01

    Recently, significant progress has been made within enzymatic synthesis of biomimetic, functional glycans, including, for example, human milk oligosaccharides. These compounds are mainly composed of N-acetylglucosamine, fucose, sialic acid, galactose, and glucose, and their controlled enzymatic s...

  16. Influence of the Chemical Design on the Coherent Photoisomerization of Biomimetic Molecular Switches

    Directory of Open Access Journals (Sweden)

    Olivucci Massimo

    2013-03-01

    Full Text Available Ultrafast transient absorption spectroscopy reveals the effect of chemical substitutions on the photoreaction kinetics of biomimetic photoswitches displaying coherent dynamics. Ground state vibrational coherences are no longer observed when the excited state lifetime exceeds 300fs.

  17. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  18. Electrospun Polymeric Scaffolds with Enhanced Biomimetic Properties for Tissue Engineering Applications

    OpenAIRE

    Fiorani, Andrea

    2014-01-01

    This PhD Thesis is focused on the development of fibrous polymeric scaffolds for tissue engineering applications and on the improvement of scaffold biomimetic properties. Scaffolds were fabricated by electrospinning, which allows to obtain scaffolds made of polymeric micro or nanofibers. Biomimetism was enhanced by following two approaches: (1) the use of natural biopolymers, and (2) the modification of the fibers surface chemistry. Gelatin was chosen for its bioactive properties and cellu...

  19. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)

    2014-02-15

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  20. Biomimetic Control of Mechanical Systems Equipped with Musculotendon Actuators

    Institute of Scientific and Technical Information of China (English)

    Javier Moreno-Valenzuela; Adriana Salinas-Avila

    2011-01-01

    This paper addresses the problem of modelling, control, and simulation of a mechanical system actuated by an agonist-antagonist musculotendon subsystem. Contraction dynamics is given by case I of Zajac's model. Saturated semi positive proportional-derivative-type controllers with switching as neural excitation inputs are proposed. Stability theory of switched system and SOSTOOLS, which is a sum of squares optimization toolbox of Matlab, are used to determine the stability of the obtained closed-loop system. To corroborate the obtained theoretical results numerical simulations are carried out. As additional contribution, the discussed ideas are applied to the biomimetic control of a DC motor, i.e., the position control is addressed assuming the presence of musculotendon actuators. Real-experiments corroborate the expected results.

  1. Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon

    Science.gov (United States)

    Yan, Yang; Liu, Lin; Cai, Zihe; Xu, Jiwen; Xu, Zhou; Zhang, Di; Hu, Xiaobin

    2016-08-01

    Among many thermo-photochromic materials, the color-changing behavior caused by temperature and light is usually lack of a full color response. And the study on visible light-stimuli chromic response is rarely reported. Here, we proposed a strategy to design a thermo-photochromic chameleon biomimetic material consisting of photonic poly(N-isopropylacrylamide-co-methacrylic acid) copolymer and plasmonic nanoparticles which has a vivid color change triggered by temperature and light like chameleons. We make use of the plasmonic nanoparticles like gold nanoparticles and silver nanoparticles to increase the sensitivity of the responsive behavior and control the lower critical solution temperature of the thermosensitive films by tuning the polymer chain conformation transition. Finally, it is possible that this film would have colorimetric responses to the entire VIS spectrum by the addition of different plasmonic nanoparticles to tune the plasmonic excitation wavelength. As a result, this method provides a potential use in new biosensors, military and many other aspects.

  2. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

  3. Biomimetic Templating of Porous Lamellar Silicas by Vesicular Surfactant Assemblies

    Science.gov (United States)

    Tanev, Peter T.; Pinnavaia, Thomas J.

    1996-03-01

    A biomimetic templating approach to the synthesis of lamellar silicas is demonstrated. The procedure is based on the hydrolysis and cross-linking of a neutral silicon alkoxide precursor in the interlayered regions of multilamellar vesicles formed from a neutral diamine bola-amphiphile. Unlike earlier surfactant-templating approaches, this method produces porous lamellar silicas (designated MSU-V) with vesicular particle morphology, exceptional thermal stability, a high degree of framework cross-linking, unusually high specific surface area and pore volume, and sorption properties that are typical of pillared lamellar materials. This approach circumvents the need for a separate pillaring step in building porosity into a lamellar host structure and offers new opportunities for the direct fabrication of adsorbents, catalysts, and nanoscale devices.

  4. Biomimetics in Modern Organizations – Laws or Metaphors?

    Directory of Open Access Journals (Sweden)

    Markus Schatten

    2011-06-01

    Full Text Available Biomimetics, the art and science of imitating nature and life for technological solutions is discussed from a modern organization theory perspective. The main hypothesis of this article is that there are common laws in nature that are applicable to living, social and likewise organizational systems. To take advantage of these laws, the study of nature’s principles for their application to organizations is proposed – a process which is in product and technology design known as bionic creativity engineering. In a search for most interesting concepts borrowed from nature we found amoeba organizations, the theory of autopoiesis or self-creation, neural networks, heterarchies, as well as fractals and bioteaming which are described and reviewed. Additionally other concepts like swarm intelligence, stigmergy, as well as genesis and reproduction, are introduced. In the end all these ideas are summarized and guidelines for further research are given.

  5. A gait planning method applied to hexapod biomimetic robot locomotion

    Institute of Scientific and Technical Information of China (English)

    Chen Fu; Yan Jihong; Zang Xizhe; Zhao Jie

    2009-01-01

    In order to fulfill the goal of autonomous walking on rough terrain, a distributed gait planning method applied to hexapod biomimetic robot locomotion is proposed based on the research effort of gait coordination mechanism of stick insect. The mathematical relation of walking velocity and gait pattern was depicted, a set of local rules operating between adjacent legs were put forward, and a distributed network of local rules for gait control was constructed. With the interaction of adjacent legs, adaptive adjustment of phase sequence fluctuation of walking legs resulting from change of terrain conditions or variety of walking speed was implemented to generate statically stable gait. In the simulation experiments, adaptive adjustment of inter-leg phase sequence and smooth transition of velocity and gait pattern were realized, and static stableness was ensured simultaneously, which provided the hexapod robot with the capability of walking on rough terrain stably and expeditiously.

  6. Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization.

    Science.gov (United States)

    Salama, Ahmed; El-Sakhawy, Mohamed

    2016-11-01

    The current article investigates the effect of bioactive cellulose/wool blend on calcium phosphate biomimetic mineralization. Regenerated cellulose/wool blend was prepared by dissolution-regeneration of neat cellulose and natural wool in 1-butyl-3-methyl imidazolium chloride [Bmim][Cl], as a solvent for the two polymers. Crystalline hydroxyapatite nanofibers with a uniform size, shape and dimension were formed after immersing the bioactive blend in simulated body fluid. The cytotoxicity of cellulose/wool/hydroxyapatite was studied using animal fibroblast baby hamster kidney cells (BHK-21) and the result displayed good cytocompatability. This research work presents a green processing method for the development of novel cellulose/wool/hydroxyapatite hybrid materials for tissue engineering applications.

  7. A New Candidate for Guided Tissue Regeneration: Biomimetic Eggshell Membrane

    Directory of Open Access Journals (Sweden)

    Yuanyuan Duan

    2011-01-01

    Full Text Available Periodontal disease that involves the deterioration of tooth supporting structures is the primary cause of tooth loss among adults. Guided tissue regeneration (GTR technique is a commonly used surgical procedure for the treatment of periodontal diseases by using a barrier membrane. Natural eggshell membrane (ESM is a semi-permeable membrane consisting of two individual layers with fibrous meshwork structures. With the aid of successful preparation of soluble eggshell membrane proteins (SEP from natural ESM in the previous study, we hypothesized that one new type of biomimetic nanofibrous eggshell membrane could be successfully constructed by sequential electrospinning method. This proposed membrane is composed of two interconnected nanofibrous layers with different density and porosity which can mimic the composition, morphology and structure of natural ESM. It is expected to greatly enhance the periodontal tissue regeneration as well as physically maintain the space for tissue repair, thus to be a promising and cost-effective GTR membrane candidate.

  8. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius;

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... modified partitions were similar and significantly lower than for arrays formed using untreated ETFE partitions. For single side n-hexene modification average membrane array lifetimes were not significantly changed compared to untreated ETFE. Double-sided n-hexene modification greatly improved average...... membrane array lifetimes compared to membrane arrays formed across untreated ETFE partitions. n-hexene modifications resulted in BLM membrane arrays which over time developed significantly lower conductance (Gm) and higher capacitance (Cm) values compared to the other membranes with the strongest effect...

  9. Braking Performance of a Biomimetic Squid-Like Underwater Robot

    Institute of Scientific and Technical Information of China (English)

    Md.Mahbubar Rahman; Sinpei Sugimori; Hiroshi Miki; Risa Yamamoto; Yugo Sanada; Yasuyuki Toda

    2013-01-01

    In this study,the braking performance of the undulating fin propulsion system ofa biomimetic squid-like underwater robot was investigated through free run experiment and simulation of the quasi-steady mathematical model.The quasi-steady equations of motion were solved using the measured and calculated hydrodynamic forces and compared with free-run test results.Various braking strategies were tested and discussed in terms of stopping ability and the forces acting on the stopping stage.The stopping performance of the undulating fin propulsion system tured out to be excellent considering the short stopping time and short stopping distance.This is because of the large negative thrust produced by progressive wave in opposite direction.It was confirmed that the undulating fin propulsion system can effectively perform braking even in complex underwater explorations.

  10. Efficient Enzyme-Free Biomimetic Sensors for Natural Phenol Detection.

    Science.gov (United States)

    Ferreira Garcia, Luane; Ribeiro Souza, Aparecido; Sanz Lobón, Germán; Dos Santos, Wallans Torres Pio; Alecrim, Morgana Fernandes; Fontes Santiago, Mariângela; de Sotomayor, Rafael Luque Álvarez; de Souza Gil, Eric

    2016-08-13

    The development of sensors and biosensors based on copper enzymes and/or copper oxides for phenol sensing is disclosed in this work. The electrochemical properties were studied by cyclic and differential pulse voltammetry using standard solutions of potassium ferrocyanide, phosphate/acetate buffers and representative natural phenols in a wide pH range (3.0 to 9.0). Among the natural phenols herein investigated, the highest sensitivity was observed for rutin, a powerful antioxidant widespread in functional foods and ubiquitous in the plant kingdom. The calibration curve for rutin performed at optimum pH (7.0) was linear in a broad concentration range, 1 to 120 µM (r = 0.99), showing detection limits of 0.4 µM. The optimized biomimetic sensor was also applied in total phenol determination in natural samples, exhibiting higher stability and sensitivity as well as distinct selectivity for antioxidant compounds.

  11. Biomimetic Superhydrophobic Biobased Polyurethane-Coated Fertilizer with Atmosphere "Outerwear".

    Science.gov (United States)

    Xie, Jiazhuo; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Xu, Jing; Zhao, Qinghua

    2017-05-10

    The development of efficient biobased controlled-release fertilizers has captured much research attention because of the environmental concerns and food scarcity problems. In this work, a biomimetic superhydrophobic biobased polyurethane-coated fertilizer (SBPF) was successfully fabricated by increasing surface roughness and reducing surface energy of polyurethane (PU) coating. The green PU coating was synthesized from low-cost, biodegradable, and renewable cottonseed oil. The nutrient release longevity of SBPF revealed 2-fold enhancement compared with the normal biobased PU-coated fertilizer (BPF). The significant improvement of nutrient release characteristics can be attributed to the atmosphere "outerwear" which ensured the nonwetting contact of water with superhydrophobic surfaces in gas state instead of in liquid state. The new concept introduced in this study can inform the development of the next generation of biobased controlled release fertilizers.

  12. Biomimetic Nanotubes Based on Cyclodextrins for Ion-Channel Applications.

    Science.gov (United States)

    Mamad-Hemouch, Hajar; Ramoul, Hassen; Abou Taha, Mohammad; Bacri, Laurent; Huin, Cécile; Przybylski, Cédric; Oukhaled, Abdelghani; Thiébot, Bénédicte; Patriarche, Gilles; Jarroux, Nathalie; Pelta, Juan

    2015-11-11

    Biomimetic membrane channels offer a great potential for fundamental studies and applications. Here, we report the fabrication and characterization of short cyclodextrin nanotubes, their insertion into membranes, and cytotoxicity assay. Mass spectrometry and high-resolution transmission electron microscopy were used to confirm the synthesis pathway leading to the formation of short nanotubes and to describe their structural parameters in terms of length, diameter, and number of cyclodextrins. Our results show the control of the number of cyclodextrins threaded on the polyrotaxane leading to nanotube synthesis. Structural parameters obtained by electron microscopy are consistent with the distribution of the number of cyclodextrins evaluated by mass spectrometry from the initial polymer distribution. An electrophysiological study at single molecule level demonstrates the ion channel formation into lipid bilayers, and the energy penalty for the entry of ions into the confined nanotube. In the presence of nanotubes, the cell physiology is not altered.

  13. Natural bone-like biomimetic surface modification of titanium

    Science.gov (United States)

    Yoon, Il-Kyu; Hwang, Ji-Young; Jang, Won-Cheoul; Kim, Hae-Won; Shin, Ueon Sang

    2014-05-01

    An implantable metallic surface consisting of titanium (Ti) was modified with natural bone-mimicking CNT-Gelatin-HA nanohybrids to create a new surface with similar properties to the surrounding bone tissue in terms of the chemical constitution, nanotopography, wettability, and biocompatibility. The biomimetic surface modification was achieved through the covalent immobilization of carbon nanotubes (CNTs) onto the Ti surface, the covalent tethering of gelatin molecules onto the CNT surface, and then the deposition of hydroxyl apatite (HA) crystals onto the gelatin-tethered CNTs in SBF solution. The SEM microscopic images demonstrated that the modified Ti surface continually maintained a fibrous structure of CNTs, but that the CNT fibers were hybridized with gelatin and HA in a multi-core-shell structure of similar constitution to that of the collagen fibers of natural bone. The new surface of the Ti substrates showed significantly higher mechanical properties and favorable wettability and biocompatibility.

  14. Piezoelectrically Actuated Biomimetic Self-Contained Quadruped Bounding Robot

    Institute of Scientific and Technical Information of China (English)

    Thanhtam Ho; Sangyoon Lee

    2009-01-01

    This paper presents the development of a mesoscale self-contained quadruped mobile robot that employs two pieces of piezocomposite actuators for the bounding locomotion. The design of the robot leg is inspired by legged insects and animals,and the biomimetic concept is implemented in the robot in a simplified form, such that each leg of the robot has only one degree of freedom. The lack of degree of freedom is compensated by a slope of the robot frame relative to the horizontal plane. For the implementation of the self-contained mobile robot, a small power supply circuit is designed and installed on the robot. Experimental results show that the robot can locomote at about 50 mm.s-1 with the circuit on board, which can be considered as a significant step toward the goal of building an autonomous legged robot actuated by piezoelectric actuators.

  15. Biomimetic Yeast Cell Typing—Application of QCMs

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2009-10-01

    Full Text Available Artificial antibodies represent a key factor in the generation of sensing systems for the selective detection of bioanalytes of variable sizes. With biomimetic surfaces, the important model organism Saccharomyces cerevisiae and several of its growth stages may be detected. Quartz crystal microbalances (QCM with 10 MHz fundamental frequency and coated with polymers imprinted with synchronized yeast cells are presented, which are able to detect duplex cells with high selectivity. Furthermore, a multichannel quartz crystal microbalance (MQCM was designed and optimized for the measurement in liquids. This one-chip system based on four-electrode geometry allows the simultaneous detection of four analytes and, thus, provides a monitoring system for biotechnology and process control. For further standardization of the method, synthetic stamps containing plastic yeast cells in different growth stages were produced and utilized for imprinting. Mass-sensitive measurements with such MIPs resulted in the same sensor characteristics as obtained for those imprinted with native yeast cells.

  16. A Novel Bio-mimetic Wireless Micro Robot for Endoscope

    Institute of Scientific and Technical Information of China (English)

    YE Dong-dong; YAN Guo-zheng; WANG Kua-dong; MA Guan-ying

    2008-01-01

    A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscope that wireless module is used for communicating and power transfer. The fabricated micro robot system is detailedly described, including structure, micro robot locomotion principle, communication control module and wireless power transfer module. The experimental results show that the driving force of the lineaar actuator can reach to 2.55 N and supplying power is up to 480 mW DC power for receiving coil in the proposed system, which all fulfill the need of the micro robot system. The micro robot can creep reliably in the large intestine of pig and other contact environments.

  17. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Joachim Habel

    2015-07-01

    Full Text Available In recent years, aquaporin biomimetic membranes (ABMs for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs, block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

  18. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    NARCIS (Netherlands)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicat

  19. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing

    NARCIS (Netherlands)

    Marx, Uwe; Andersson, Tommy B; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B; Hoeng, Julia; de Jong, Wim H; Kojima, Hajime; Kuehnl, Jochen; Leist, Marcel; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J A M; Steger-Hartmann, Thomas; Tagle, Danilo A; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian

    2016-01-01

    The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various

  20. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species.

  1. Biomimetics on seed dispersal: survey and insights for space exploration.

    Science.gov (United States)

    Pandolfi, Camilla; Izzo, Dario

    2013-06-01

    Seeds provide the vital genetic link and dispersal agent between successive generations of plants. Without seed dispersal as a means of reproduction, many plants would quickly die out. Because plants lack any sort of mobility and remain in the same spot for their entire lives, they rely on seed dispersal to transport their offspring throughout the environment. This can be accomplished either collectively or individually; in any case as seeds ultimately abdicate their movement, they are at the mercy of environmental factors. Thus, seed dispersal strategies are characterized by robustness, adaptability, intelligence (both behavioral and morphological), and mass and energy efficiency (including the ability to utilize environmental sources of energy available): all qualities that advanced engineering systems aim at in general, and in particular those that need to enable complex endeavors such as space exploration. Plants evolved and adapted their strategy according to their environment, and taken together, they enclose many desirable characteristics that a space mission needs to have. Understanding in detail how plants control the development of seeds, fabricate structural components for their dispersal, build molecular machineries to keep seeds dormant up to the right moment and monitor the environment to release them at the right time could provide several solutions impacting current space mission design practices. It can lead to miniaturization, higher integration and packing efficiency, energy efficiency and higher autonomy and robustness. Consequently, there would appear to be good reasons for considering biomimetic solutions from plant kingdom when designing space missions, especially to other celestial bodies, where solid and liquid surfaces, atmosphere, etc constitute and are obviously parallel with the terrestrial environment where plants evolved. In this paper, we review the current state of biomimetics on seed dispersal to improve space mission design.

  2. Biomimetic stratified scaffold design for ligament-to-bone interface tissue engineering.

    Science.gov (United States)

    Lu, Helen H; Spalazzi, Jeffrey P

    2009-07-01

    The emphasis in the field of orthopaedic tissue engineering is on imparting biomimetic functionality to tissue engineered bone or soft tissue grafts and enabling their translation to the clinic. A significant challenge in achieving extended graft functionality is engineering the biological fixation of these grafts with each other as well as with the host environment. Biological fixation will require re-establishment of the structure-function relationship inherent at the native soft tissue-to-bone interface on these tissue engineered grafts. To this end, strategic biomimicry must be incorporated into advanced scaffold design. To facilitate integration between distinct tissue types (e.g., bone with soft tissues such as cartilage, ligament, or tendon), a stratified or multi-phasic scaffold with distinct yet continuous tissue regions is required to pre-engineer the interface between bone and soft tissues. Using the ACL-to-bone interface as a model system, this review outlines the strategies for stratified scaffold design for interface tissue engineering, focusing on identifying the relevant design parameters derived from an understanding of the structure-function relationship inherent at the soft-to-hard tissue interface. The design approach centers on first addressing the challenge of soft tissue-to-bone integration ex vivo, and then subsequently focusing on the relatively less difficult task of bone-to-bone integration in vivo. In addition, we will review stratified scaffold design aimed at exercising spatial control over heterotypic cellular interactions, which are critical for facilitating the formation and maintenance of distinct yet continuous multi-tissue regions. Finally, potential challenges and future directions in this emerging area of advanced scaffold design will be discussed.

  3. Spider silk as a novel high performance biomimetic muscle driven by humidity.

    Science.gov (United States)

    Agnarsson, Ingi; Dhinojwala, Ali; Sahni, Vasav; Blackledge, Todd A

    2009-07-01

    The abrupt halt of a bumble bee's flight when it impacts the almost invisible threads of an orb web provides an elegant example of the amazing strength and toughness of spider silk. Spiders depend upon these properties for survival, yet the impressive performance of silk is not limited solely to tensile mechanics. Here, we show that silk also exhibits powerful cyclic contractions, allowing it to act as a high performance mimic of biological muscles. These contractions are actuated by changes in humidity alone and repeatedly generate work 50 times greater than the equivalent mass of human muscle. Although we demonstrate that this response is general and occurs weakly in diverse hydrophilic materials, the high modulus of spider silk is such that it generates exceptional force. Furthermore, because this effect already operates at the level of single silk fibers, only 5 microm in diameter, it can easily be scaled across the entire size range at which biological muscles operate. By contrast, the most successful synthetic muscles developed so far are driven by electric voltage, such that they cannot scale easily across large ranges in cross-sectional areas. The potential applicability of silk muscles is further enhanced by our finding that silkworm fibers also exhibit cyclic contraction because they are already available in commercial quantities. The simplicity of using wet or dry air to drive the biomimetic silk muscle fibers and the incredible power generated by silk offer unique possibilities in designing lightweight and compact actuators for robots and micro-machines, new sensors, and green energy production.

  4. New family of glutathionyl-biomimetic ligands for affinity chromatography of glutathione-recognising enzymes.

    Science.gov (United States)

    Melissis, S C; Rigden, D J; Clonis, Y D

    2001-05-11

    Three anthraquinone glutathionyl-biomimetic dye ligands, comprising as terminal biomimetic moiety glutathione analogues (glutathionesulfonic acid, S-methyl-glutathione and glutathione) were synthesised and characterised. The biomimetic ligands were immobilised on agarose gel and the affinity adsorbents, together with a nonbiomimetic adsorbent bearing Cibacron Blue 3GA, were studied for their purifying ability for the glutathione-recognising enzymes, NAD+-dependent formaldehyde dehydrogenase (FaDH) from Candida boidinii, NAD(P)+-dependent glutathione reductase from S. cerevisiae (GSHR) and recombinant maize glutathione S-transferase I (GSTI). All biomimetic adsorbents showed higher purifying ability for the target enzymes compared to the nonbiomimetic adsorbent, thus demonstrating their superior effectiveness as affinity chromatography materials. In particular, the affinity adsorbent comprising as terminal biomimetic moiety glutathionesulfonic acid (BM1), exhibited the highest purifying ability for FaDH and GSTI, whereas, the affinity adsorbent comprising as terminal biomimetic moiety methyl-glutathione (BM2) exhibited the highest purifying ability for GSHR. The BM1 adsorbent was integrated in a facile two-step purification procedure for FaDH. The purified enzyme showed a specific activity equal to 79 U/mg and a single band after sodium dodecylsulfate-polyacrylamide gel electrophoresis analysis. Molecular modelling was employed to visualise the binding of BM1 with FaDH, indicating favourable positioning of the key structural features of the biomimetic dye. The anthraquinone moiety provides the driving force for the correct positioning of the glutathionyl-biomimetic moiety in the binding site. It is located deep in the active site cleft forming many favourable hydrophobic contacts with hydrophobic residues of the enzyme. The positioning of the glutathione-like biomimetic moiety is primarily achieved by the strong ionic interactions with the Zn2+ ion of FaDH and Arg

  5. Biomimetic modification of synthetic hydrogels by incorporation of adhesive peptides and calcium phosphate nanoparticles: in vitro evaluation of cell behavior

    Directory of Open Access Journals (Sweden)

    M Bongio

    2011-12-01

    Full Text Available The ultimate goal of this work was to develop a biocompatible and biomimetic in situ crosslinkable hydrogel scaffold with an instructive capacity for bone regenerative treatment. To this end, synthetic hydrogels were functionalized with two key components of the extracellular matrix of native bone tissue, i.e. the three-amino acid peptide sequence RGD (which is the principal integrin-binding domain responsible for cell adhesion and survival of anchorage-dependent cells and calcium phosphate (CaP nanoparticles in the form of hydroxyapatite (which are similar to the inorganic phase of bone tissue. Rat bone marrow osteoblast-like cells (OBLCs were encapsulated in four different biomaterials (plain oligo(poly(ethylene glycol fumarate (OPF, RGD-modified OPF, OPF enriched with CaP nanoparticles and RGD-modified OPF enriched with CaP nanoparticles and cell survival, cell spreading, proliferation and mineralized matrix formation were determined via cell viability assay, histology and biochemical analysis for alkaline phosphatase activity and calcium. This study showed that RGD peptide sequences promoted cell spreading in OPF hydrogels and hence play a crucial role in cell survival during the early stage of culture, whereas CaP nanoparticles significantly enhanced cell-mediated hydrogel mineralization. Although cell spreading and proliferation activity were inhibited, the combined effect of RGD peptide sequences and CaP nanoparticles within OPF hydrogel systems elicited a better biological response than that of the individual components. Specifically, both a sustained cell viability and mineralized matrix production mediated by encapsulated OBLCs were observed within these novel biomimetic composite systems.

  6. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  7. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells on biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, Jiawei; Boer, de Jan; Groot, de Klaas

    2008-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the prolife

  8. A MIP-based biomimetic sensor for the impedimetric detection of histamine in different pH environments

    Energy Technology Data Exchange (ETDEWEB)

    Bongaers, E.; Alenus, J.; Horemans, F.; Weustenraed, A.; Cleij, T.J. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); Lutsen, L. [IMEC, Division IMOMEC, Diepenbeek (Belgium); Vanderzande, D.; Wagner, P. [Institute for Materials Research, Hasselt University, Diepenbeek (Belgium); IMEC, Division IMOMEC, Diepenbeek (Belgium); Troost, F.J.; Brummer, R.J. [Gastroenterology and Hepatology, Department of Internal Medicine, Nutrition and Toxicology Research Institute Maastricht (NUTRIM), Maastricht University, Maastricht (Netherlands)

    2010-04-15

    The development of novel biosensors is a rapidly growing field. Substituting the biological receptor layer from the biosensor with a synthetic receptor opens the door for the development of biomimetic sensors that are chemically and physically inert, as opposed to the sensors containing biological recognition elements. Using molecularly imprinted polymers (MIPs) the specificity and affinity of biological receptors can be mimicked. In addition, a MIP-based sensor can measure in harsh environments. Histamine occurs in harsh environments in food and bodily fluids and is chosen as the target molecule for impedimetric detection. When 10 nM histamine is present in pH neutral environments, the impedance increases 45% with respect to the impedance of the sensor without histamine. Specificity is tested with respect to histidine. The influence of the pH on the performance of the sensor is tested. In a pH range of pH 5-12 the MIPs are stable, although they exhibit a varying degree of protonation. The same holds true for the target molecule of which the protonation also varies with the pH of the solution. It is shown that the pH dependent degree of protonation of both the MIP and the histamine has a large impact on the binding of histamine to the nanocavity in the MIP. Hence, the detection of histamine by a MIP-based sensor is affected by the pH of the solution. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  9. Self-assembly and interactions of biomimetic thin films

    Science.gov (United States)

    Handa, Hitesh

    Bilayer lipid membranes create the natural environment for the immobilization of functional proteins and have been used as a model for understanding structure and properties of cell membranes. The development of biomimetic surfaces requires in depth knowledge of surface science, self-assembly, immobilization techniques, nanofabrication, biomolecular interactions and analytical techniques. This research is focused on synthesizing and characterizing biomimetic artificial surfaces for fundamental studies in membrane structure and better understanding of specific and non-specific interactions. The other main focus is on surface engineering of self-assembled, nanostructured interfaces that mimic cell membranes. These structures provide a powerful bottom-up approach to the studies of the structure and functionality of cell membranes and their interactions with other molecules. One of the advantages of this approach is that the complexity of the system can be controlled and gradually increased to add functionalities. This dissertation provides a first single molecule force measurement of the specific interactions between Salmonella typhimurium and P22 bacteriophage. This dissertation also provides a novel model system for the confined crystallization of drug molecules such as aspirin using the concept of phospholipid bilayer assembly at surfaces. The results will impact the development of biosensors and drug delivery. The defense will focus on the preparation and bio-recognition interactions between a monolayer of bacteriophage P22, covalently bound to glass substrates through a bifunctional cross linker 3-aminopropyltrimethoxysilane, and the outer membrane of Salmonella, lipopolysaccharides (LPS). The LPS bilayer was deposited on poly (ethylenimine)-modified mica from their sonicated unilamellar vesicle solution. The specific binding of Salmonella typhimurium to the phage monolayer was studied by enzyme-linked immunosorbent assay (ELISA) and atomic force microscopy (AFM

  10. Electroactive biomimetic collagen-silver nanowire composite scaffolds

    Science.gov (United States)

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-07-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2 and a charge injection capacity of 0.3 mC cm-2, which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications.Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2

  11. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.

    Science.gov (United States)

    Zhao, Min; Ou, Sha; Wu, Chuan-De

    2014-04-15

    Metalloporphyrins are the active sites in monooxygenases that oxidize a variety of substrates efficiently and under mild conditions. Researchers have developed artificial metalloporphyrins, but these structures have had limited catalytic applications. Homogeneous artificial metalloporphyrins can undergo catalytic deactivation via suicidal self-oxidation, which lowers their catalytic activity and sustainability relative to their counterparts in Nature. Heme molecules in protein scaffolds can maintain high efficiency over numerous catalytic cycles. Therefore, we wondered if immobilizing metalloporphyrin moieties within porous metal-organic frameworks (MOFs) could stabilize these structures and facilitate the molecular recognition of substrates and produce highly efficient biomimetic catalysis. In this Account, we describe our research to develop multifunctional porphyrinic frameworks as highly efficient heterogeneous biomimetic catalysts. Our studies indicate that porous porphyrinic frameworks provide an excellent platform for mimicking the activity of biocatalysts and developing new heterogeneous catalysts that effect new chemical transformations under mild conditions. The porous structures and framework topologies of the porphyrinic frameworks depend on the configurations, coordination donors, and porphyrin metal ions of the metalloporphyrin moieties. To improve the activity of porous porphyrinic frameworks, we have developed a two-step synthesis that introduces the functional polyoxometalates (POMs) into POM-porphyrin hybrid materials. To tune the pore structures and the catalytic properties of porphyrinic frameworks, we have designed metalloporphyrin M-H8OCPP ligands with four m-benzenedicarboxylate moieties, and introduced the secondary auxiliary ligands. The porphyrin metal ions and the secondary functional moieties that are incorporated into porous metal-organic frameworks greatly influence the catalytic properties and activities of porphyrinic frameworks in

  12. Natural production of biological optical systems

    Science.gov (United States)

    Choi, Seung Ho; Kim, Young L.

    2015-03-01

    Synthesis and production in nature often provide ideas to design and fabricate advanced biomimetic photonic materials and structures, leading to excellent physical properties and enhanced performance. In addition, the recognition and utilization of natural or biological substances have been typical routes to develop biocompatible and biodegradable materials for medical applications. In this respect, biological lasers utilizing such biomaterials and biostructures have been received considerable attention, given a variety of implications and potentials for bioimaging, biosensing, implantation, and therapy. However, without relying on industrial facilities, eco-friendly massive production of such optical components or systems has not yet been investigated. We show examples of bioproduction of biological lasers using agriculture and fisheries. We anticipate that such approaches will open new possibilities for scalable eco-friendly `green' production of biological photonics components and systems.

  13. Plants as concept generators for biomimetic light-weight structures with variable stiffness and self-repair mechanisms

    Institute of Scientific and Technical Information of China (English)

    Thomas Speck; Tom Masselter; Bettina Prüm; Olga Speck; Rolf Luchsinger; Siegfried Fink

    2004-01-01

    Plants possess many structural and functional properties that have a high potential to serve as concept generators for the production of biomimetic technical materials and structures. We present data on two features of plants (variable stiffness due to pressure changes in cellular structures and rapid self-repair functions) that may be used as models for biomimetic projects.

  14. Induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus

    CSIR Research Space (South Africa)

    Ripamonti, U

    2008-01-01

    Full Text Available Long-term studies in the non-human primate Chacma baboon Papio ursinus were set to investigate the induction of bone formation by biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) biomimetic matrices. HA/β-TCP biomimetic matrices in a pre...

  15. Biomimetic organization of collagen matrices to template bone-like microstructures.

    Science.gov (United States)

    Wingender, Brian; Bradley, Patrick; Saxena, Neha; Ruberti, Jeffrey W; Gower, Laurie

    2016-01-01

    The mineralized extracellular matrix (ECM) of bone is essential in vertebrates to provide structure, locomotion, and protect vital organs, while also acting as a calcium and phosphate reservoir to maintain homeostasis. Bone's structure comprises mainly structural collagen fibrils, hydroxyapatite nanocrystals and water, and it is the organization of the densely-packed collagen matrix that directs the organization of the mineral crystallites. Biogenic mineralization occurs when osteoblasts release "mineral bearing globules" which fuse into the preformed collagen matrix, and upon crystallization of this amorphous precursor, the fibrils become embedded with [001] oriented nanocrystals of hydroxyapatite. Our prior work has shown that this nanostructured organization of bone can be reproduced in vitro using the polymer-induced liquid-precursor (PILP) process. In this report, our focus is on using biomimetic processing to recreate both the nano- and micro-structure of lamellar bone. We first applied molecular crowding techniques to acidic, type-I collagen solutions to form dense, liquid crystalline collagen (LCC) scaffolds with cholesteric order. We subsequently mineralized these LCCs via the PILP process to achieve a high degree of intrafibrillar mineral, with compositions and organization similar to that of native bone and with a "lamellar" microstructure generated by the twisting LCC template. In depth characterization of the nano- and micro-structure was performed, including optical and electron microscopy, X-ray and electron diffraction, and thermogravimetric analyses. The results of this work lead us closer to our goal of developing hierarchically structured, collagen-hydroxyapatite composites which can serve as fully synthetic, bioresorbable, load-bearing bone substitutes that are remodeled by the native BRU. Copyright © 2016 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  16. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  17. Biological Inspiration in Human Centred Robotics

    Institute of Scientific and Technical Information of China (English)

    HU Huo-sheng; LIU Jin-dong; Calderon Carlos A

    2004-01-01

    Human centred robotics (HCR) concerns with the development of various kinds of intelligent systems and robots that will be used in environments coexisting with humans. These systems and robots will be interactive and useful assistants/companions for people in different ages, situations, activities and environments in order to improve the quality of life. This paper presents the autors' current research work toward the development of advanced theory and technologies for HCR applications, based on inspiration from biological systems. More specifically, both bio-mimetic system modelling and robot learning by imitation are discussed respectively, and some preliminary results are demonstrated.

  18. Role of magnesium on the biomimetic deposition of calcium phosphate

    Science.gov (United States)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  19. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-23

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  20. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin

    2016-02-23

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important method of providing water. In nature, through millions of year evolution, some animals and plants in many of the arid regions have developed unique and highly efficient systems with delicate microstructures and composition for the purpose of fog collection to survive the harsh conditions. With the unique ability of fog collection, these creatures could readily cope with insufficient access to fresh water or lack of precipitation. These natural examples have inspired the design and fabrication of artificial fog collection materials and devices. In this chapter, we will first introduce some natural examples for their unique fog collection capability, and then give some examples of the bioinspired materials and devices that are fabricated artificially to mimic these natural creatures for the purpose of fog collection. We believe that the biomimetic strategy is one of the most promising routes for the design and fabrication of functional materials and devices for the solution of the global water crisis.

  1. A synthetic leaf: the biomimetic potential of graphene oxide

    Science.gov (United States)

    Lamb, Marilla; Koch, George W.; Morgan, Eric R.; Shafer, Michael W.

    2015-03-01

    Emerging materials such as graphene oxide (GO) have micro and nano features that are functionally similar to those in plant cell walls involved in water transport. Therefore, it may now be possible to design and build biomimetic trees to lift water via mechanisms similar to those employed by trees, allowing for potential applications such as passive water pumping, filtering, and evaporative cooling. The tallest trees can raise large volumes of water to over 100 meters using only the vapor pressure gradient between their leaves and the atmosphere. This phenomenon occurs in all terrestrial plants when capillary forces generated in the microscopic pores in the cell walls of leaves are collectively applied to large diameter xylem conduits. The design of a synthetic tree that mimics these mechanisms will allow water to be moved to heights greater than is currently possible by any engineered system that does not require the use of a positive pressure pump. We are testing the suitability of membranous GO as the leaf of a synthetic tree and present an analysis in support of this design. In addition, we include results from a preliminary design using ceramics.

  2. Biomimetic polymers of plant cutin: an approach from molecular modeling.

    Science.gov (United States)

    San-Miguel, Miguel A; Oviedo, Jaime; Heredia-Guerrero, Jose Alejandro; Heredia, Antonio; Benitez, Jose Jesus

    2014-07-01

    Biomimetics of materials is based on adopting and reproducing a model in nature with a well-defined functionality optimized through evolution. An example is barrier polymers that protect living tissues from the environment. The protecting layer of fruits, leaves, and non-lignified stems is the plant cuticle. The cuticle is a complex system in which the cutin is the main component. Cutin is a biopolyester made of polyhydroxylated carboxylic acids of 16 and 18 carbon atoms. The biosynthesis of cutin in plants is not well understood yet, but a direct chemical route involving the self-assembly of either molecules or molecular aggregates has been proposed. In this work, we present a combined study using experimental and simulation techniques on self-assembled layers of monomers selectively functionalized with hydroxyl groups. Our results demonstrate that the number and position of the hydroxyl groups are critical for the interaction between single molecules and the further rearrangement. Also, the presence of lateral hydroxyl groups reinforces lateral interactions and favors the bi-dimensional growth (2D), while terminal hydroxyl groups facilitate the formation of a second layer caused by head-tail interactions. The balance of 2D/3D growth is fundamental for the plant to create a protecting layer both large enough in 2D and thick enough in 3D.

  3. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  4. Deep Reduced PEDOT Films Support Electrochemical Applications: Biomimetic Color Front

    Science.gov (United States)

    Martinez, Jose G.; Berrueco, Beatriz; Otero, Toribio F.

    2015-01-01

    Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers (CPs) move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced CPs. Here, we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1 cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, toward the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, toward the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation model explains those results. PMID:25717472

  5. On the need for a biomimetic breast device

    Science.gov (United States)

    Danos, Nicole; German, Rebecca

    2016-11-01

    The function of the mammary gland, a key anatomical innovation that led to the rise of mammals, is governed by solid-fluid mechanics. There is strong evidence that these mechanical interactions regulate the production of milk and the transport of milk through the lactiferous ducts and into the infant's mouth. Solid-fluid mechanics determine the rate of milk flow and therefore may affect the safe coordination of sucking, swallowing and breathing in the infant. Additionally, links between breastfeeding, the material properties of the gland and breast cancer have been shown repeatedly. However, there is to date no direct way of characterizing breast mechanics during the physiological function for which it has evolved: infant feeding. We are developing an engineered biomimetic breast in which we can experimentally manipulate both structural and material properties of the gland. The device will be tested with an animal model of infant feeding, the pig, to measure the direct effect of gland mechanics on infant feeding. Data from these studies may lead to better designed feeding bottles for infants, milk pumps for both humans and agricultural mammals, and will provide the control mechanical environmental for studies of breast cancer mechanobiology.

  6. Optimal design and motion control of biomimetic robotic fish

    Institute of Scientific and Technical Information of China (English)

    YU JunZhi; WANG Long; ZHAO Wei; TAN Min

    2008-01-01

    This paper is concerned with the design, optimization, and motion control of a radio-controlled, multi-link, free-swimming biomimetic robotic fish based on an opti-mized kinematic and dynamic model of fish swimming. The performance of the robotic fish is determined by both the fish's morphological characteristics and ki-nematic parameters. By applying ichthyologic theories of propulsion, a design framework that takes into consideration both mechatronic constraints in physical realization and feasibility of control methods is presented, under which a multiple linked robotic fish that integrates both the carangiform and anguilliform swimming modes can be easily developed. Taking account of both theoretic hydrodynamic issues and practical problems in engineering realization, the optimal link-length-ratios are numerically calculated by an improved constrained cyclic variable method, which are successfully applied to a series of real robotic fishes. The rhythmic movements of swimming are driven by a central pattern generator (CPG) based on nonlinear oscillations, and up-and-down motion by regulating the rotating angle of pectoral fins. The experimental results verify that the presented scheme and method are effective in design and implementation.

  7. Design of a biomimetic polymer-composite hip prosthesis.

    Science.gov (United States)

    Bougherara, Habiba; Bureau, Martin; Campbell, Melissa; Vadean, Aurelian; Yahia, L'Hocine

    2007-07-01

    A new biomimetic composite hip prosthesis (stem) was designed to obtain properties similar to those of the contiguous bone, in particular stiffness, to allow normal loading of the surrounding femoral bone. This normal loading would reduce excessive stress shielding, known to result in bone loss, and micromotions at the bone-implant interface, leading to aseptic prosthetic loosening. The design proposed is based on a hollow substructure made of hydroxyapatite-coated, continuous carbon fiber (CF) reinforced polyamide 12 (PA12) composite with an internal soft polymer-based core. Different composite configurations were studied to match the properties of host tissue. Nonlinear three-dimensional analysis of the hip prosthesis was carried out using a three-dimensional finite element bone model based on the composite femur. The performance of composite-based hip and titanium alloy-based (Ti-6Al-4V) stems embedded into femoral bone was compared. The effect of core stiffness and ply configuration was also analyzed. Results show that stresses in composite stem are lower than those in Ti stem, and that the femoral bone implanted with composite structure sustains more load than the one implanted with Ti stem. Micromotions in the composite stem are significantly smaller than those in Ti stem over the entire bone-implant surface because of the favorable interfacial stress distribution.

  8. Biomimetic Experimental Research on Hexapod Robot's Locomotion Planning

    Institute of Scientific and Technical Information of China (English)

    HUANG Lin; HAN Bao-ling; LUO Qing-sheng; ZHANG Chun-lin; XU Jia

    2009-01-01

    To provide hexapod robots with strategies of locomotion planning,observation experiments were operated on a kind of ant with the use of high speed digital photography and computer assistant analysis.Through digitalization of original analog video,locomotion characters of ants were obtained,the biomimetic foundation was laid for polynomial trajectory planning of multi-legged robots,which was deduced with mathematics method.In addition,five rules were concluded,which apply to hexapod robots marching locomotion planning.The first one is the fundamental strategy of multi-legged robots' leg trajectory planning.The second one helps to enhance the static and dynamic stability of multi-legged robots.The third one can improve the validity and feasibility of legs' falling points.The last two give criterions of multi-legged robots' toe trajectory figures and practical recommendatory constraints.These five rules give a good method for marching locomotion planning of multi-legged robots,and can be expended to turning planning and any other special locomotion.

  9. Biomechanics and biomimetics in insect-inspired flight systems

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-01-01

    Insect- and bird-size drones—micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 104–105 or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems. This article is part of the themed issue ‘Moving in a moving medium: new perspectives on flight’. PMID:27528780

  10. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  11. Biomimetic Architecture in Building Envelope Maintenance (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim N.A.

    2014-01-01

    Full Text Available The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its nature course. The designers are not exception influenced by this concept when the form, shape, texture and colour inspired them in their design. The domination of building form will affect the building envelope as the skin of the structure. A clear impact on building failure is begun with building envelope appearance without a proper maintenance. The faults in building design place a heavy burden on the building for the rest of its operational life and there is no compensation for it. In such situations, the responsibility falls on the shoulders of the designer.

  12. Biomimetic affinity purification of Candida antarctica lipase B.

    Science.gov (United States)

    Yao, Hongyan; Zhang, Tian; Xue, Hongwei; Tang, Kexuan; Li, Rongxiu

    2011-12-15

    Candida antarctica lipase B (CalB) is one of the most widely used biocatalysts in organic synthesis. The traditional method for purification of CalB is a multi-step, high cost and low recovery procedure. Biomimetic affinity purification had high efficiency purification. We selected 298 ligand columns from a 700-member library of synthetic ligands to screen Pichia pastoris protein extract. Of the 298, three columns (named as A9-14, A9-10, and A11-33) had one-step purification effect, and A9-14 of these affinity ligands, had both high purification and recovery. The one-step recovery of CalB reached 73% and the purification reached 91% upon purification. The active groups of A9-14 were cyclohexylamine and propenylamine. Furthermore, both A9-14 and A9-10 had the same R1 active group of cyclohexylamine which might act the main binding role for CalB. The synthetic ligand A9-14 had a binding capacity of 0.4 mg/mL and had no negative effects on its hydrolytic activity. Unlike a natural affinity ligand, this synthetic ligand is highly stable to resist 1M NaOH, and thus has great potential for industrial scale production of CalB.

  13. Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

    Science.gov (United States)

    Pan, Yongping; Yu, Haoyong

    2017-06-01

    This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

  14. Biomimetically Enhanced Demineralized Bone Matrix for Bone Regenerative Applications

    Directory of Open Access Journals (Sweden)

    Sriram eRavindran

    2015-10-01

    Full Text Available Demineralized bone matrix (DBM is one of the most widely used bone graft materials in dentistry. However, the ability of DBM to reliably and predictably induce bone regeneration has always been a cause for concern. The quality of DBM varies greatly depending on several donor dependent factors and also manufacturing techniques. In order to standardize the quality and to enable reliable and predictable bone regeneration, we have generated a biomimetically-enhanced version of DBM (BE-DBM using clinical grade commercial DBM as a control. We have generated the BE-DBM by incorporating a cell-derived pro-osteogenic extracellular matrix (ECM within clinical grade DBM. In the present study, we have characterized the BE-DBM and evaluated its ability to induce osteogenic differentiation of human marrow derived stromal cells (HMSCs with respect to clinical grade commercial DBM. Our results indicate that the BE-DBM contains significantly more pro-osteogenic factors than DBM and enhances HMSC differentiation and mineralized matrix formation in vitro and in vivo. Based on our results, we envision that the BE-DBM has the potential to replace DBM as the bone graft material of choice.

  15. Biomimetic antimicrobial cloak by graphene-oxide agar hydrogel.

    Science.gov (United States)

    Papi, Massimiliano; Palmieri, Valentina; Bugli, Francesca; De Spirito, Marco; Sanguinetti, Maurizio; Ciancico, Carlotta; Braidotti, Maria Chiara; Gentilini, Silvia; Angelani, Luca; Conti, Claudio

    2016-12-01

    Antibacterial surfaces have an enormous economic and social impact on the worldwide technological fight against diseases. However, bacteria develop resistance and coatings are often not uniform and not stable in time. The challenge is finding an antibacterial coating that is biocompatible, cost-effective, not toxic, and spreadable over large and irregular surfaces. Here we demonstrate an antibacterial cloak by laser printing of graphene oxide hydrogels mimicking the Cancer Pagurus carapace. We observe up to 90% reduction of bacteria cells. This cloak exploits natural surface patterns evolved to resist to microorganisms infection, and the antimicrobial efficacy of graphene oxide. Cell integrity analysis by scanning electron microscopy and nucleic acids release show bacteriostatic and bactericidal effect. Nucleic acids release demonstrates microorganism cutting, and microscopy reveals cells wrapped by the laser treated gel. A theoretical active matter model confirms our findings. The employment of biomimetic graphene oxide gels opens unique possibilities to decrease infections in biomedical applications and chirurgical equipment; our antibiotic-free approach, based on the geometric reduction of microbial adhesion and the mechanical action of Graphene Oxide sheets, is potentially not affected by bacterial resistance.

  16. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10(3) kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  17. Actuation control of a PiezoMEMS biomimetic robotic jellyfish

    Science.gov (United States)

    Alejandre, Alvaro; Olszewski, Oskar; Jackson, Nathan

    2017-06-01

    Biomimetic micro-robots try to mimic the motion of a living system in the form of a synthetically developed microfabricated device. Dynamic motion of living systems have evolved through the years, but trying to mimic these motions is challenging. Micro-robotics are particular challenging as the fabrication of devices and controlling the motion in 3 dimensions is difficult. However, micro-scale robotics have potential to be used in a wide range of applications. MEMS based robots that can move and function in a liquid environment is of particular interest. This paper describes the development of a piezoMEMS based device that mimics the movement of a jellyfish. The paper focuses on the development of a finite element model that investigates a method of controlling the individual piezoelectric beams in order to create a jet propulsion motion, consisting of a quick excitation pulse followed by a slow recovery pulse in order to maximize thrust and velocity. By controlling the individual beams or legs of the jellyfish robot the authors can control the robot to move precisely in 3 dimensions.

  18. Dopamine-melanin nanofilms for biomimetic structural coloration.

    Science.gov (United States)

    Wu, Tong-Fei; Hong, Jong-Dal

    2015-02-09

    This article describes the formation of dopamine-melanin thin films (50-200 nm thick) at an air/dopamine solution interface under static conditions. Beneath these films, spherical melanin granules formed in bulk liquid phase. The thickness of dopamine-melanin films at the interface relied mainly on the concentration of dopamine solution and the reaction time. A plausible mechanism underlining dopamine-melanin thin film formation was proposed based on the hydrophobicity of dopamine-melanin aggregates and the mass transport of the aggregates to the air/solution interface as a result of convective flow. The thickness of the interfacial films increased linearly with the dopamine concentration and the reaction time. The dopamine-melanin thin film and granules (formed in bulk liquid phase) with a double-layered structure were transferred onto a solid substrate to mimic the (keratin layer)/(melanin granules) structure present in bird plumage, thereby preparing full dopamine-melanin thin-film reflectors. The reflected color of the thin-film reflectors depended on the film thickness, which could be adjusted according to the dopamine concentration. The reflectance of the resulted reflectors exhibited a maximal reflectance value of 8-11%, comparable to that of bird plumage (∼11%). This study provides a useful, simple, and low-cost approach to the fabrication of biomimetic thin-film reflectors using full dopamine-melanin materials.

  19. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces.

    Science.gov (United States)

    Albertini, Matteo; Fernandez-Yague, Marc; Lázaro, Pedro; Herrero-Climent, Mariano; Rios-Santos, Jose-Vicente; Bullon, Pedro; Gil, Francisco-Javier

    2015-05-01

    The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite's high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amorphous calcium phosphate (i.e., with no crystal structure) instead. This layer produce some osseointegration yet the calcium phosphate layer will eventually dissolve and leave a gap between the bone and the dental implant, thus leading to osseointegration failure due to bacterial colonization. A new surface -recently obtained by thermochemical processes- produces, by crystallization, a layer of apatite with the same mineral content as human bone that is chemically bonded to the titanium surface. Osseointegration speed was tested by means of minipigs, showing bone formation after 3 to 4 weeks, with the security that a dental implant can be loaded. This surface can be an excellent candidate for immediate or early loading procedures.

  20. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    Science.gov (United States)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer–nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  1. Biomechanics and biomimetics in insect-inspired flight systems.

    Science.gov (United States)

    Liu, Hao; Ravi, Sridhar; Kolomenskiy, Dmitry; Tanaka, Hiroto

    2016-09-26

    Insect- and bird-size drones-micro air vehicles (MAV) that can perform autonomous flight in natural and man-made environments are now an active and well-integrated research area. MAVs normally operate at a low speed in a Reynolds number regime of 10(4)-10(5) or lower, in which most flying animals of insects, birds and bats fly, and encounter unconventional challenges in generating sufficient aerodynamic forces to stay airborne and in controlling flight autonomy to achieve complex manoeuvres. Flying insects that power and control flight by flapping wings are capable of sophisticated aerodynamic force production and precise, agile manoeuvring, through an integrated system consisting of wings to generate aerodynamic force, muscles to move the wings and a control system to modulate power output from the muscles. In this article, we give a selective review on the state of the art of biomechanics in bioinspired flight systems in terms of flapping and flexible wing aerodynamics, flight dynamics and stability, passive and active mechanisms in stabilization and control, as well as flapping flight in unsteady environments. We further highlight recent advances in biomimetics of flapping-wing MAVs with a specific focus on insect-inspired wing design and fabrication, as well as sensing systems.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  2. Research on biomimetic underwater vehicles for underwater ISR

    Science.gov (United States)

    Szymak, Piotr; Praczyk, Tomasz; Naus, Krzysztof; Szturomski, Bogdan; Malec, Marcin; Morawski, Marcin

    2016-05-01

    Autonomous Biomimetic Underwater Vehicles BUVs driven by an undulating propulsion are a new branch in an area of an underwater robotics. They imitate both the construction and kinematics of a motion of underwater living organisms, e.g. fishes. Such vehicles have several features crucial from the point of view of military applications, e.g. larger secrecy and potential range of operation. The paper presents results of the research on BUVs carried out within two (Polish and EDA) projects both led by Polish Naval Academy. At the beginning, the initial efforts in building Polish BUV called CyberFish are included. Then, selected results of the tests of subsystems, e.g. navigational and 3D model of BUV built within national project are described. Next, the initial research achieved in the international project are showed. At the end, the schedule of the research planned to carry out within both projects is inserted. The paper is mainly focused on the hardware development of the BUVs.

  3. Biomimetic Scaffold Design for Functional and Integrative Tendon Repair

    Science.gov (United States)

    Zhang, Xinzhi; Bogdanowicz, Danielle; Erisken, Cevat; Lee, Nancy M.; Lu, Helen H.

    2012-01-01

    Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscore the clinical need for alternative grafting solutions. The two critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiologically relevant mechanical properties but also be able to facilitate functional graft integration by promoting the regeneration of the native tendon-to-bone interface. Centered on these design goals, this review will highlight current approaches to functional and integrative tendon repair. In particular, the application of biomimetic design principles through the use of nanofiber- and nanocomposite-based scaffolds for tendon tissue engineering will be discussed. This review will begin with nanofiber-based approaches to functional tendon repair, followed by a section highlighting the exciting research on tendon-to-bone interface regeneration, with an emphasis on implementation of strategic biomimicry in nanofiber scaffold design and the concomitant formation of graded multi-tissue systems for integrative soft tissue repair. This review will conclude with a summary and future directions section. PMID:22244070

  4. Advances in biomimetic regeneration of elastic matrix structures.

    Science.gov (United States)

    Sivaraman, Balakrishnan; Bashur, Chris A; Ramamurthi, Anand

    2012-10-01

    Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

  5. Biomimetic self-cleaning surfaces: synthesis, mechanism and applications.

    Science.gov (United States)

    Xu, Quan; Zhang, Wenwen; Dong, Chenbo; Sreeprasad, Theruvakkattil Sreenivasan; Xia, Zhenhai

    2016-09-01

    With millions of years of natural evolution, organisms have achieved sophisticated structures, patterns or textures with complex, spontaneous multifunctionality. Among all the fascinating characteristics observed in biosystems, self-cleaning ability is regarded as one of the most interesting topics in biomimicry because of its potential applications in various fields such as aerospace, energy conversion and biomedical and environmental protection. Recently, in-depth studies have been carried out on various compelling biostructures including lotus leaves, shark skins, butterfly wings and gecko feet. To understand and mimic their self-cleaning mechanisms in artificial structures, in this article, recent progress in self-cleaning techniques is discussed and summarized. Based on the underlying self-cleaning mechanisms, the methods are classified into two categories: self-cleaning with water and without water. The review gives a succinct account of the detailed mechanisms and biomimetic processes applied to create artificial self-cleaning materials and surfaces, and provides some examples of cutting-edge applications such as anti-reflection, water repellence, self-healing, anti-fogging and micro-manipulators. The prospectives and directions of future development are also briefly proposed.

  6. Mechanics of tunable helices and geometric frustration in biomimetic seashells

    Science.gov (United States)

    Guo, Qiaohang; Chen, Zi; Li, Wei; Dai, Pinqiang; Ren, Kun; Lin, Junjie; Taber, Larry A.; Chen, Wenzhe

    2014-03-01

    Helical structures are ubiquitous in nature and engineering, ranging from DNA molecules to plant tendrils, from sea snail shells to nanoribbons. While the helical shapes in natural and engineered systems often exhibit nearly uniform radius and pitch, helical shell structures with changing radius and pitch, such as seashells and some plant tendrils, add to the variety of this family of aesthetic beauty. Here we develop a comprehensive theoretical framework for tunable helical morphologies, and report the first biomimetic seashell-like structure resulting from mechanics of geometric frustration. In previous studies, the total potential energy is everywhere minimized when the system achieves equilibrium. In this work, however, the local energy minimization cannot be realized because of the geometric incompatibility, and hence the whole system deforms into a shape with a global energy minimum whereby the energy in each segment may not necessarily be locally optimized. This novel approach can be applied to develop materials and devices of tunable geometries with a range of applications in nano/biotechnology.

  7. Biomimetic 3D tissue printing for soft tissue regeneration.

    Science.gov (United States)

    Pati, Falguni; Ha, Dong-Heon; Jang, Jinah; Han, Hyun Ho; Rhie, Jong-Won; Cho, Dong-Woo

    2015-09-01

    Engineered adipose tissue constructs that are capable of reconstructing soft tissue with adequate volume would be worthwhile in plastic and reconstructive surgery. Tissue printing offers the possibility of fabricating anatomically relevant tissue constructs by delivering suitable matrix materials and living cells. Here, we devise a biomimetic approach for printing adipose tissue constructs employing decellularized adipose tissue (DAT) matrix bioink encapsulating human adipose tissue-derived mesenchymal stem cells (hASCs). We designed and printed precisely-defined and flexible dome-shaped structures with engineered porosity using DAT bioink that facilitated high cell viability over 2 weeks and induced expression of standard adipogenic genes without any supplemented adipogenic factors. The printed DAT constructs expressed adipogenic genes more intensely than did non-printed DAT gel. To evaluate the efficacy of our printed tissue constructs for adipose tissue regeneration, we implanted them subcutaneously in mice. The constructs did not induce chronic inflammation or cytotoxicity postimplantation, but supported positive tissue infiltration, constructive tissue remodeling, and adipose tissue formation. This study demonstrates that direct printing of spatially on-demand customized tissue analogs is a promising approach to soft tissue regeneration.

  8. Measuring shear force transmission across a biomimetic glycocalyx

    Science.gov (United States)

    Bray, Isabel; Young, Dylan; Scrimgeour, Jan

    Human blood vessels are lined with a low-density polymer brush known as the glycocalyx. This brush plays an active role in defining the mechanical and biochemical environment of the endothelial cell in the blood vessel wall. In addition, it is involved in the detection of mechanical stimuli, such as the shear stress from blood flowing in the vessel. In this work, we construct a biomimetic version of the glycocalyx on top of a soft deformable substrate in order to measure its ability to modulate the effects of shear stress at the endothelial cell surface. The soft substrate is stamped on to a glass substrate and then enclosed inside a microfluidic device that generates a controlled flow over the substrate. The hydrogel chemistry has been optimized so that it reliably stamps into a defined shape and has consistent mechanical properties. Fluorescent microbeads embedded in the gel allow measurement of the surface deformation, and subsequently, calculation of the shear force at the surface of the soft substrate. We investigate the effect of the major structural elements of the glycocalyx, hyaluronic acid and charged proteoglycans, on the magnitude of the shear force transmitted to the surface of the hydrogel.

  9. Conducting IPN actuator/sensor for biomimetic vibrissa system

    Science.gov (United States)

    Festin, N.; Plesse, C.; Pirim, P.; Chevrot, C.; Vidal, F.

    2014-03-01

    Electroactive polymers, or EAPs, are polymers that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime make them very attractive for various applications including robotics. Conducting IPNs were fabricated by oxidative polymerization of 3,4-ethylenedioxythiophene within a flexible Solid Polymer Electrolytes (SPE) combining poly(ethylene oxide) and Nitrile Butadiene Rubber. SPE mechanical properties and ionic conductivities in the presence of 1-ethyl-3- methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) have been characterized. The presence of the elastomer within the SPE greatly improves the actuator performances. The free strain as well as the blocking force was characterized as a function of the actuator length. The sensing properties of those conducting IPNs allow their integration into a biomimetic perception prototype: a system mimicking the tactile perception of rat vibrissae.

  10. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  11. Multifunctional and biomimetic fish collagen/bioactive glass nanofibers: fabrication, antibacterial activity and inducing skin regeneration in vitro and in vivo.

    Science.gov (United States)

    Zhou, Tian; Sui, Baiyan; Mo, Xiumei; Sun, Jiao

    2017-01-01

    The development of skin wound dressings with excellent properties has always been an important challenge in the field of biomedicine. In this study, biomimetic electrospun fish collagen/bioactive glass (Col/BG) nanofibers were prepared. Their structure, tensile strength, antibacterial activity and biological effects on human keratinocytes, human dermal fibroblasts and human vascular endothelial cells were investigated. Furthermore, the Sprague Dawley rat skin defect model was used to validate their effect on wound healing. The results showed that compared with pure fish collagen nanofibers, the tensile strength of the Col/BG nanofibers increased to 21.87±0.21 Mpa, with a certain degree of antibacterial activity against Staphylococcus aureus. It was also found that the Col/BG nanofibers promoted the adhesion, proliferation and migration of human keratinocytes. Col/BG nanofibers induced the secretion of type one collagen and vascular endothelial growth factor by human dermal fibroblasts, which further stimulated the proliferation of human vascular endothelial cells. Animal experimentation indicated that the Col/BG nanofibers could accelerate rat skin wound healing. This study developed a type of multifunctional and biomimetic fish Col/BG nanofibers, which had the ability to induce skin regeneration with adequate tensile strength and antibacterial activity. The Col/BG nanofibers are also easily available and inexpensive, providing the possibility for using as a functional skin wound dressing.

  12. Iron porphyrin-modified PVDF membrane as a biomimetic material and its effectiveness on nitric oxide binding

    Science.gov (United States)

    Can, Faruk; Demirci, Osman Cahit; Dumoulin, Fabienne; Erhan, Elif; Arslan, Leyla Colakerol; Ergenekon, Pınar

    2017-10-01

    Nitric oxide (NO) is a reactive gas well-known as an air pollutant causing severe environmental problems. NO is also an important signaling molecule having a strong affinity towards heme proteins in the body. Taking this specialty as a model, a biomimetic membrane was developed by modification of the membrane surface with iron-porphyrin which depicts very similar structure to heme proteins. In this study, PVDF membrane was coated with synthesized (4-carboxyphenyl)-10,15,20-triphenyl-porphyrin iron(III) chloride (FeCTPP) to promote NO fixation on the surface. The coated membrane was characterized in terms of ATR-IR spectra, contact angle measurement, chemical composition, and morphological structure. Contact angle of original PVDF first decreased sharply after plasma treatment and surface polymerization steps but after incorporation of FeCTPP, the surface acquired its hydrophobicity again. NO binding capability of modified membrane surface was evaluated on the basis of X-ray Photoelectron. Upon exposure to NO gas, a chemical shift of Fe+3 and appearance of new N peak was observed due to the electron transfer from NO ligand to Fe ion with the attachment of nitrosyl group to FeCTPP. This modification brings the functionality to the membrane for being used in biological systems such as membrane bioreactor material in biological NO removal technology.

  13. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Science.gov (United States)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  14. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - In Vivo - the Helicobacter pylori Infection.

    Directory of Open Access Journals (Sweden)

    Andrea Fulgione

    Full Text Available The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals.Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection.Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies.The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled.These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection.

  15. Preparation of microcellular composites with biomimetic structure via supercritical fluid technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new microcellular composite material with a biomimetic structure has been prepared via the supercritical fluid (SCF) technology. The resultant material has a clear biomimetic structure like bamboo and wood. The skin region is enriched with oriented high-strength thermotropic liquid crystal polymer fibrils, while the core region with polystyrene (PS) micro-cells. The diameter and density of micro- cells can be controlled by the processing parameters such as temperature and pressure. And the skin thickness can be controlled conveniently by varying the composition of polystyrene and liquid crystal polymer.

  16. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...

  17. Biomimetic TiO2 formation from interfacial sol-gel chemistry leading to new photocatalysts

    Science.gov (United States)

    Jaffer Al-Timimi, Iman A.; Onwukwe, Uche K.; Worsley, Myles P.; Sermon, Paul A.

    2016-09-01

    The surfaces of Portobello mushroom spores (PMS) have been used to produce Au and Ag nanoparticles, which are held thereon. They have then been overcoated with TiOx. These adsorbed more methyl orange (MO) pollutant from water than commercial P25 TiO2. After calcination they form biomimetic TiO2 (PMS) and removal of the biotemplate, they catalyse faster rates of MO from water (molecules/mg/s) than P25 anataserutile. Other biotemplates are now anticipated that will yield biomimetic photocatalysts with higher turnover number (s-1) removal of endocrine disrupters from water.

  18. Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH

    Directory of Open Access Journals (Sweden)

    Soumia Belouafa

    2008-03-01

    Full Text Available Antiseptic apatite-based calcium phosphates were prepared as the single-phase powders. Phosphocalcic oxygenated apatites were synthesized from calcium salts and orthophosphate dissolved in oxygenated water solution at 30%, under the biomimetic conditions of 37 °C and pH 7.4. The characterization and chemical analysis of the synthesized biomimetic apatite powders were performed by scanning electron microscopy (SEM, powder X ray diffraction (XRD, Fourier-transformed infrared spectroscopy (FT-IR and chemical analysis. The obtained materials are a calcium deficient apatites with different morphologies.

  19. Biomimetic Enamel Regeneration Mediated by Leucine-Rich Amelogenin Peptide.

    Science.gov (United States)

    Kwak, S Y; Litman, A; Margolis, H C; Yamakoshi, Y; Simmer, J P

    2017-01-01

    We report here a novel biomimetic approach to the regeneration of human enamel. The approach combines the use of inorganic pyrophosphate (PPi) to control the onset and rate of enamel regeneration and the use of leucine-rich amelogenin peptide (LRAP), a nonphosphorylated 56-amino acid alternative splice product of amelogenin, to regulate the shape and orientation of growing enamel crystals. This study builds on our previous findings that show LRAP can effectively guide the formation of ordered arrays of needle-like hydroxyapatite (HA) crystals in vitro and on the known role mineralization inhibitors, like PPi, play in the regulation of mineralized tissue formation. Acid-etched enamel surfaces of extracted human molars, cut perpendicular or parallel to the direction of the enamel rods, were exposed to a PPi-stabilized supersaturated calcium phosphate (CaP) solution containing 0 to 0.06 mg/mL LRAP for 20 h. In the absence of LRAP, PPi inhibition was reversed by the presence of etched enamel surfaces and led to the formation of large, randomly distributed plate-like HA crystals that were weakly attached, regardless of rod orientation. In the presence of 0.04 mg/mL LRAP, however, densely packed mineral layers, comprising bundles of small needle-like HA crystals, formed on etched surfaces that were cut perpendicular to the enamel rods. These crystals were strongly attached, and their arrangement reflected to a significant degree the underlying enamel prism pattern. In contrast, under the same conditions with LRAP, little to no crystal formation was found on enamel surfaces that were cut parallel to the direction of the enamel rods. These results suggest that LRAP preferentially interacts with ab surfaces of mature enamel crystals, inhibiting their directional growth, thus selectively promoting linear growth along the c-axis of enamel crystals. The present findings demonstrate a potential for the development of a new approach to regenerate enamel structure and properties.

  20. Robust biomimetic-structural superhydrophobic surface on aluminum alloy.

    Science.gov (United States)

    Li, Lingjie; Huang, Tao; Lei, Jinglei; He, Jianxin; Qu, Linfeng; Huang, Peiling; Zhou, Wei; Li, Nianbing; Pan, Fusheng

    2015-01-28

    The following facile approach has been developed to prepare a biomimetic-structural superhydrophobic surface with high stabilities and strong resistances on 2024 Al alloy that are robust to harsh environments. First, a simple hydrothermal treatment in a La(NO3)3 aqueous solution was used to fabricate ginkgo-leaf like nanostructures, resulting in a superhydrophilic surface on 2024 Al. Then a low-surface-energy compound, dodecafluoroheptyl-propyl-trimethoxylsilane (Actyflon-G502), was used to modify the superhydrophilic 2024 Al, changing the surface character from superhydrophilicity to superhydrophobicity. The water contact angle (WCA) of such a superhydrophobic surface reaches up to 160°, demonstrating excellent superhydrophobicity. Moreover, the as-prepared superhydrophobic surface shows high stabilities in air-storage, chemical and thermal environments, and has strong resistances to UV irradiation, corrosion, and abrasion. The WCAs of such a surface almost remain unchanged (160°) after storage in air for 80 days, exposure in 250 °C atmosphere for 24 h, and being exposed under UV irradiation for 24 h, are more than 144° whether in acidic or alkali medium, and are more than 150° after 48 h corrosion and after abrasion under 0.98 kPa for 1000 mm length. The remarkable durability of the as-prepared superhydrophobic surface can be attributed to its stable structure and composition, which are due to the existence of lanthanum (hydr)oxides in surface layer. The robustness of the as-prepared superhydrophobic surface to harsh environments will open their much wider applications. The fabricating approach for such robust superhydrophobic surface can be easily extended to other metals and alloys.

  1. Natural Ventilation with Heat Recovery: A Biomimetic Concept

    Directory of Open Access Journals (Sweden)

    Zulfikar A. Adamu

    2015-05-01

    Full Text Available In temperate countries, heat recovery is often desirable through mechanical ventilation with heat recovery (MVHR. Drawbacks of MVHR include use of electric power and complex ducting, while alternative passive heat recovery systems in the form of roof or chimney-based solutions are limited to low rise buildings. This paper describes a biomimetic concept for natural ventilation with heat recovery (NVHR. The NVHR system mimics the process of water/mineral extraction from urine in the Loop of Henle (part of human kidney. Simulations on a facade-integrated Chamber successfully imitated the geometry and behaviour of the Loop of Henle (LoH. Using a space measuring 12 m2 in area and assuming two heat densities of 18.75 W/m2 (single occupancy or 30 W/m2 (double occupancy, the maximum indoor temperatures achievable are up to 19.3 °C and 22.3 °C respectively. These come with mean relative ventilation rates of 0.92 air changes per hour (ACH or 10.7 L·s−1 and 0.92 ACH (11.55 L·s−1, respectively, for the month of January. With active heating and single occupant, the LoH Chamber consumes between 65.7% and 72.1% of the annual heating energy required by a similar naturally ventilated space without heat recovery. The LoH Chamber could operate as stand-alone indoor cabinet, benefitting refurbishment of buildings and evading constraints of complicated ducting, external aesthetic or building age.

  2. Mechanics of Biomimetic Liposomes Encapsulating an Actin Shell.

    Science.gov (United States)

    Guevorkian, Karine; Manzi, John; Pontani, Léa-Lætitia; Brochard-Wyart, Françoise; Sykes, Cécile

    2015-12-15

    Cell-shape changes are insured by a thin, dynamic, cortical layer of cytoskeleton underneath the plasma membrane. How this thin cortical structure impacts the mechanical properties of the whole cell is not fully understood. Here, we study the mechanics of liposomes or giant unilamellar vesicles, when a biomimetic actin cortex is grown at the inner layer of the lipid membrane via actin-nucleation-promoting factors. Using a hydrodynamic tube-pulling technique, we show that tube dynamics is clearly affected by the presence of an actin shell anchored to the lipid bilayer. The same force pulls much shorter tubes in the presence of the actin shell compared to bare membranes. However, in both cases, we observe that the dynamics of tube extrusion has two distinct features characteristic of viscoelastic materials: rapid elastic elongation, followed by a slower elongation phase at a constant rate. We interpret the initial elastic regime by an increase of membrane tension due to the loss of lipids into the tube. Tube length is considerably shorter for cortex liposomes at comparable pulling forces, resulting in a higher spring constant. The presence of the actin shell seems to restrict lipid mobility, as is observed in the corral effect in cells. The viscous regime for bare liposomes corresponds to a leakout of the internal liquid at constant membrane tension. The presence of the actin shell leads to a larger friction coefficient. As the tube is pulled from a patchy surface, membrane tension increases locally, leading to a Marangoni flow of lipids. As a conclusion, the presence of an actin shell is revealed by its action that alters membrane mechanics.

  3. Patented Biologically-inspired Technological Innovations: A Twenty Year View

    Institute of Scientific and Technical Information of China (English)

    Richard H. C. Bonser

    2006-01-01

    Publication rate of patents can be a useful measure of innovation and productivity in fields of science and technology. To assess the growth in industrially-important research, I conducted an appraisal of patents published between 1985 and 2005 on online databases using keywords chosen to select technologies arising as a result of biological inspiration. Whilst the total number of patents increased over the period examined, those with biomimetic content had increased faster as a proportion of total patent publications. Logistic regression analysis reveals that we may be a little over half way through an initial innovation cycle inspired by biological systems.

  4. Tumor Microenvironment Modulation by Cyclopamine Improved Photothermal Therapy of Biomimetic Gold Nanorods for Pancreatic Ductal Adenocarcinomas.

    Science.gov (United States)

    Jiang, Ting; Zhang, Bo; Shen, Shun; Tuo, Yanyan; Luo, Zimiao; Hu, Yu; Pang, Zhiqing; Jiang, Xinguo

    2017-09-20

    Due to the rich stroma content and poor blood perfusion, pancreatic ductal adenocarcinoma (PDA) is a tough cancer that can hardly be effectively treated by chemotherapeutic drugs. Tumor microenvironment modulation or advanced design of nanomedicine to achieve better therapeutic benefits for PDA treatment was widely advocated by many reviews. In the present study, a new photothermal therapy strategy of PDA was developed by combination of tumor microenvironment modulation and advanced design of biomimetic gold nanorods. On one hand, biomimetic gold nanorods were developed by coating gold nanorods (GNRs) with erythrocyte membrane (MGNRs). It was shown that MGNRs exhibited significantly higher colloidal stability in vitro, stronger photothermal therapeutic efficacy in vitro, and longer circulation in vivo than GNRs. On the other hand, tumor microenvironment modulation by cyclopamine treatment successfully disrupted the extracellular matrix of PDA and improved tumor blood perfusion. Moreover, cyclopamine treatment significantly increased the accumulation of MGNRs in tumors by 1.8-fold and therefore produced higher photothermal efficiency in vivo than the control group. Finally, cyclopamine treatment combined with photothermal MGNRs achieved the most significant shrinkage of Capan-2 tumor xenografts among all the treatment groups. Therefore, with the integrated advantages of tumor microenvironment regulation and long-circulation biomimetic MGNRs, effective photothermal therapy of PDA was achieved. In general, this new strategy of combining tumor microenvironment modulation and advanced design of biomimetic nanoparticles might have great potential in PDA therapy.

  5. Non-resonant parametric amplification in biomimetic hair flow sensors: Selective gain and tunable filtering

    NARCIS (Netherlands)

    Droogendijk, H.; Bruinink, C.M.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2011-01-01

    We demonstrate that the responsivity of flow sensors for harmonic flows can be improved significantly by non-resonant parametric amplification. Using electrostatic spring softening by AC-bias voltages, increased responsivity and sharp filtering are achieved in our biomimetic flow sensors. Tunable

  6. Design and fabrication of a biomimetic gyroscope inspired by the fly's haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, R.A.; Boer, de M.J.; Sanders, R.G.P.; Krijnen, G.J.M.

    2012-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly's haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and their drive mode has been characterized. First measurements indicate excitable gyropscopes with natural freq

  7. Design and fabrication of a biomimetic gyroscope inspired by the fly’s haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, R.A.; Boer, de M.J.; Sanders, R.G.P.; Krijnen, G.J.M.

    2013-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly’s haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and partially characterized. First measurements indicate excitable gyropscopes with natural frequencies in the o

  8. Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, R.A.; Boer, de M.J.; Sanders, R.G.P.; Krijnen, G.J.M.

    2014-01-01

    Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are

  9. Preparation of biomimetic hydrophobic coatings on AZ91D magnesium alloy surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydrophobic coating has been a promising technology for improving surface performance. The surface performance of magnesium alloy has been limited in application. Furthermore, the hydrophobic of magnesium alloy is rarely investigated because magnesium alloy is an active metal alloy. In this paper, inspired by microstructure character of typical plant leaf surface such as lotus, the biomimetic hydrophobic coatings on AZ91D magnesium alloy surface were prepared by means of wet-chemical combining electroless. The samples were immersed into AgNO3 solution in wet-chemical method firstly. Then, biomimetic hydrophobic coatings were prepared by electroless after wet-method pretreatment. The microstructure was observed by SEM and the contact angles were measured by contact angle tester. The results indicated that the biomimetic hydrophobic coatings with uniform crystalline and dense structure could be obtained on AZ91D magnesium alloy surface. The results of contact angle revealed that the biomimetic nano-composite coatings were hydrophobic. The wet-chemical method treatment on the AZ91D magnesium alloy substrate provided a rough microstructure, thus improving adhesion of the coating and the substrate.

  10. Tunable sensor response by voltage-control in biomimetic hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Krijnen, G.J.M.

    2012-01-01

    We report improvements in detection limit and responsivity of biomimetic hair flow sensors by electrostatic spring-softening (ESS). Applying a DC-bias voltage to our capacitive flow sensors mediates large (80% and more) voltage-controlled electromechanical amplification of the flow signal for freque

  11. Tunable sensor response by voltage-control in biomimetic hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Krijnen, G.J.M.

    2012-01-01

    We report improvements in detection limit and responsivity of biomimetic hair flow sensors by electrostatic spring-softening (ESS). Applying a DC-bias voltage to our capacitive flow sensors mediates large (80% and more) voltage-controlled electro-mechanical amplification of the flow signal for frequ

  12. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  13. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2014-12-01

    Full Text Available A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene and cross-linker (phloroglucinol levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  14. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  15. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquapor...

  16. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats

    NARCIS (Netherlands)

    Barrère, F.; van der Valk, C.M.; Meijer, G.; Dalmeijer, R.A.J.; de Groot, K.; Layrolle, P.

    2003-01-01

    Biomimetic calcium phosphate (Ca-P) coatings were applied onto dense titanium alloy (Ti6Al4V) and porous tantalum (Ta) cylinders by immersion into simulated body fluid at 37 °C and then at 50 °C for 24 h. As a result, a homogeneous bone-like carbonated apatitic (BCA) coating, 30 m thick was deposite

  17. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  18. Channel-forming activity of syringomycin E in two mercury-supported biomimetic membranes

    NARCIS (Netherlands)

    Becucci, L.; Tramonti, V.; Fiore, A.; Fogliano, V.; Scaloni, A.; Guidelli, R.

    2015-01-01

    The lipodepsipeptide syringomycin E (SR-E) interacts with two mercury-supported biomimetic membranes, which consist of a self-assembled phospholipid monolayer (SAM) and of a tethered bilayer lipid membrane (tBLM) separated from the mercury surface by a hydrophilic tetraethyleneoxy (TEO) spacer that

  19. Assessment of bone ingrowth potential of biomimetic hydroxyapatite and brushite coated porous E-beam structures

    NARCIS (Netherlands)

    Biemond, J.E.; Eufrasio, T.S.; Hannink, G.J.; Verdonschot, N.J.J.; Buma, P.

    2011-01-01

    The bone ingrowth potential of biomimetic hydroxyapatite and brushite coatings applied on porous E-beam structure was examined in goats and compared to a similar uncoated porous structure and a conventional titanium plasma spray coating. Specimens were implanted in the iliac crest of goats for a per

  20. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  1. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2010-01-01

    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanop

  2. Non-degenerate parametric amplification and filtering in biomimetic hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Bruinink, C.M.; Sanders, R.G.P.; Krijnen, G.J.M.

    2011-01-01

    We report non-degenerate parametric amplification in our biomimetic MEMS hair-based flow-sensors with improved responsivity and sharp filtering through AC-biasing. To the best of our knowledge, this is the first flow sensor with tunable filtering by non-degenerate electromechanical parametric amplif

  3. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2010-01-01

    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanop

  4. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium con

  5. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Tahmasebi Birgani, Z.; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium co

  6. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  7. A biomimetic composite from solution self-assembly of chitin nanofibers in a silk fibroin matrix.

    Science.gov (United States)

    Jin, Jungho; Hassanzadeh, Pegah; Perotto, Giovanni; Sun, Wei; Brenckle, Mark A; Kaplan, David; Omenetto, Fiorenzo G; Rolandi, Marco

    2013-08-27

    A chitin nanofiber-silk biomimetic nanocomposite with enhanced mechanical properties is self-assembled from solution to yield ultrafine chitin nanofibers embedded in a silk matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  9. Nanotechnologies and chemical tools for cell biology

    Science.gov (United States)

    Chen, Xing

    This dissertation describes several nanotechnologies and chemical tools that I have developed to probe living cells. Chapter one gives a brief overview on the current status of biomedical and biotechnological applications of carbon nanotubes (CNTs). In this chapter, strategies for functionalization of CNTs with emphasis on biological applications are reviewed. Representative developments in biosensing, bioimaging, intracellular delivery, and tissue engineering are presented. Recent studies on toxicity of CNTs are also discussed. Chapter two describes the development of a nanoscale cell injector for delivery of cargo to the interior of living cells without physiological harm. A CNT attached to an atomic force microscope tip was functionalized with cargo via a disulfide linker. Penetration of cell membranes with this "nanoneedle", followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. Chapter three presents a biomimetic functionalization strategy for interfacing CNTs with biological systems. The potential biological applications of CNTs have been limited by their insolubility in aqueous environment and their intrinsic toxicity. We developed a biomimetic surface modification of CNTs using glycosylated polymers designed to mimic natural cell surface mucin glycoproteins interactions. Chapter four further extends the biomimetic strategy for functionalization of CNTs to glycosylated dendrimers. We developed a new class of amphiphilic bifunctional glycodendrimers that comprised carbohydrate units displayed in the periphery and a pyrene tail that bound to SWNT surface via pi-pi interactions. The glycodendrimer-coated CNTs were soluble in water, and noncytotoxic. We also demonstrated that the coated CNTs could interface with biological systems including proteins and cells. Chapter five presents a biosensing application of glycodenderimer-coated CNTs. SWNTN-FETs coated with glycodendrimers were

  10. Engineering vascularized bone grafts by integrating a biomimetic periosteum and β-TCP scaffold.

    Science.gov (United States)

    Kang, Yunqing; Ren, Liling; Yang, Yunzhi

    2014-06-25

    Treatment of large bone defects using synthetic scaffolds remain a challenge mainly due to insufficient vascularization. This study is to engineer a vascularized bone graft by integrating a vascularized biomimetic cell-sheet-engineered periosteum (CSEP) and a biodegradable macroporous beta-tricalcium phosphate (β-TCP) scaffold. We first cultured human mesenchymal stem cells (hMSCs) to form cell sheet and human umbilical vascular endothelial cells (HUVECs) were then seeded on the undifferentiated hMSCs sheet to form vascularized cell sheet for mimicking the fibrous layer of native periosteum. A mineralized hMSCs sheet was cultured to mimic the cambium layer of native periosteum. This mineralized hMSCs sheet was first wrapped onto a cylindrical β-TCP scaffold followed by wrapping the vascularized HUVEC/hMSC sheet, thus generating a biomimetic CSEP on the β-TCP scaffold. A nonperiosteum structural cell sheets-covered β-TCP and plain β-TCP were used as controls. In vitro studies indicate that the undifferentiated hMSCs sheet facilitated HUVECs to form rich capillary-like networks. In vivo studies indicate that the biomimetic CSEP enhanced angiogenesis and functional anastomosis between the in vitro preformed human capillary networks and the mouse host vasculature. MicroCT analysis and osteocalcin staining show that the biomimetic CSEP/β-TCP graft formed more bone matrix compared to the other groups. These results suggest that the CSEP that mimics the cellular components and spatial configuration of periosteum plays a critical role in vascularization and osteogenesis. Our studies suggest that a biomimetic periosteum-covered β-TCP graft is a promising approach for bone regeneration.

  11. Re-mineralizing dentin using an experimental tricalcium silicate cement with biomimetic analogs.

    Science.gov (United States)

    Li, Xin; De Munck, Jan; Yoshihara, Kumiko; Pedano, Mariano; Van Landuyt, Kirsten; Chen, Zhi; Van Meerbeek, Bart

    2017-05-01

    To characterize the re-mineralization potential of an experimental zirconium oxide (ZrO2) containing tricalcium silicate (TCS) cement, TCS 50, with the incorporation of biomimetic analogs at demineralized dentin. Class-I cavities were prepared in non- carious human third molars. The dentin cavities were demineralized using a pH-cycling protocol, involving 50 cyclic immersions in pH-4.8 and pH-7 baths for 0.5h and 2.5h, successively. The cavities were filled with TCS 50 with/without biomimetic analogs (3% polyacrylic acid, 8% sodium trimetaphosphate) being added to the mixed TCS 50 cement prior to application. The commercial hCSCs Biodentine (Septodont) and ProRoot MTA (Dentsply Sirona) served as controls. After 1 and 6 weeks storage in simulated body fluid (SBF), the polished specimen cross-sections were chemically characterized using a field-emission-gun Electron Probe Micro-Analysis (Feg- EPMA). EPMA line-scans and elemental mappings confirmed early re-mineralization induced by TCS 50 at 1 week. When biomimetic analogs were added to TCS 50, re-mineralization was more efficient after 6 weeks; the relative depth and intensity of re-mineralization were 79.7% and 76.6%, respectively, being significantly greater than at 1 week (pSignificance: The experimental TCS-based cement, TCS 50, proved to be capable of re-mineralizing artificially demineralized dentin. The incorporation of biomimetic analogs promoted re- mineralization upon 6-week SBF storage. However, re-mineralization appeared incomplete, this even for TCS 50 to which biomimetic analogs were added and upon 6-week SBF storage. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  12. Biomimetic ceramics for periodontal regeneration in infrabony defects: A systematic review.

    Science.gov (United States)

    Rai, Jasuma Jagdish; Kalantharakath, Thanveer

    2014-12-01

    Biomimetic materials are widely used in the treatment of osseous defects as an alternative to autogenous bone graft. The aim of this article was to review the literature and compare the quality of published articles on biomimetic ceramic material used for periodontal regeneration in the treatment of infrabony defects and to discuss the future direction of research. The bibliographic databases PubMed, Ebsco, and Google Scholar were searched from January 2000 to March 2014 for randomized control trials in which biomimetic ceramic graft material was compared with open flap debridement or in combination with any other regenerative material. To avoid the variability of the search terms, the thesaurus Mesh was used. The primary outcome variable assessed was clinical attachment level (CAL). The screening of eligible studies, assessment of the methodological quality of the trials, and data extraction were performed by two observers independently. Twenty-six articles were identified and included in this systematic review. The primary outcome was CAL. Out of the 26 studies, 24 showed more than 2 mm of CAL gain. The difference in CAL change between test and control groups varied from 1.2 mm to 5.88 mm with respect to different biomaterials/biomimetic materials, which was clinically and statistically significant. Meta-analysis was not done due to heterogeneity in results between studies. Overall, biomaterials were found to be more effective than open flap debridement in improving the attachment levels in intraosseous defects. Future research should aim at increasing the osteoinductive capacity of these biomimetic graft materials.

  13. Synthetic self-assembled models with biomimetic functions

    NARCIS (Netherlands)

    Fiammengo, Roberto; Crego-Calama, Mercedes; Reinhoudt, David N.

    2001-01-01

    Self-assembly can be considered a powerful tool in the hand of chemists for the understanding, modeling and mimicking of biological systems. The possibility of reproducing biological functions in synthetic systems obtained by self-assembly is envisioned as a modest but very important step towards th

  14. Biomimetic synthesis of hierarchically porous nanostructured metal oxide microparticles--potential scaffolds for drug delivery and catalysis.

    Science.gov (United States)

    Seisenbaeva, Gulaim A; Moloney, Micheal P; Tekoriute, Renata; Hardy-Dessources, Adeline; Nedelec, Jean-Marie; Gun'ko, Yurii K; Kessler, Vadim G

    2010-06-15

    Hierarchically porous hybrid microparticles, strikingly reminiscent in their structure of the silica skeletons of single-cell algae, diatoms, but composed of titanium dioxide, and the chemically bound amphiphilic amino acids or small proteins can be prepared by a simple one-step biomimetic procedure, using hydrolysis of titanium alkoxides modified by these ligands. The growth of the hierarchical structure results from the conditions mimicking the growth of skeletons in real diatoms--the self-assembly of hydrolysis-generated titanium dioxide nanoparticles, templated by the microemulsion, originating from mixing the hydrocarbon solvent and water on action of amino acids as surfactants. The obtained microsize nanoparticle aggregates possess remarkable chemical and thermal stability and are promising substrates for applications in drug delivery and catalysis. They can be provided with pronounced surface chirality through application of chiral modifying ligands. They display also high selectivity in sorption of phosphorylated biomolecules or medicines as demonstrated by (1)H and (31)P NMR studies and by in vitro modeling using (32)P-marked ATP as a substrate. The release of the adsorbed model compounds in an inert medium is a very slow process directed by desorption kinetics. It is enhanced, however, noticeably in contact with biological fluids modeling those of the tissues suffering inflammation, which makes the produced material highly attractive for application in medical implants. The developed synthetic approach has been applied successfully also for the preparation of analogous hybrid microparticles based on zirconium dioxide or aluminum sesquioxide.

  15. Enhancing CaP biomimetic growth on TiO2 cuboids nanoparticles via highly reactive facets.

    Science.gov (United States)

    Ruso, Juan M; Verdinelli, Valeria; Hassan, Natalia; Pieroni, Olga; Messina, Paula V

    2013-02-19

    Pure decahedral anatase TiO(2) particles with high content of reactive {001} facets were obtained from titanium(IV) tetrachloride (TiCl(4)) using a microemulsions droplet system at specific conditions as chemical microreactor. The product was systematically characterized by X-ray diffraction, field-emission scanning and transmission electron microscopy (FE-SEM, TEM), N(2) adsorption-desorption isotherms, FT-IR and UV-vis spectroscopy, and photoluminescence studies. The obtained cuboids around 90 nm in size have a uniform and dense surface morphology with a BET specific surface area of 11.91 m(2) g(-1) and a band gap energy (3.18 eV) slightly inferior to the anatase dominated by the less-reactive {101} surface (3.20 eV). The presence of reactive facets on titania anatase favors the biomimetic growth of amorphous tricalcium phosphate after the first day of immersion in simulated human plasma. The results presented here can facilitate and improve the integration of anchored implants and enhance the biological responses to the soft tissues.

  16. Experimental analysis of artificial dragonfly wings using black graphite and fiberglass for use in Biomimetic Micro Air Vehicles (BMAVs

    Directory of Open Access Journals (Sweden)

    Nair Praveena

    2015-01-01

    Full Text Available This article examines the suitability of two different materials which are black graphite carbon fiber and red pre-impregnated fiberglass from which to fabricate artificial dragonfly wing frames. These wings could be of use in Biomimetic Micro Aerial Vehicles (BMAV. BMAV are a new class of unmanned micro-sized air vehicles that mimic flying biological organisms. Insects, such as dragonflies, possess corrugated and complex vein structures that are difficult to mimic. Simplified dragonfly wing frames were fabricated from these materials and then a nano-composite film was adhered to them, which mimics the membrane of an actual dragonfly. Experimental analysis of these results showed that although black graphite carbon fiber and red pre-impregnated fiberglass offer some structural advantages, red pre-impregnated fiberglass was a less preferred option due to its warpage and shrinking effects. Black graphite carbon fiber with its high load bearing capability is a more suitable choice for consideration in future BMAV applications.

  17. Engineering nanomaterials with a combined electrochemical and molecular biomimetic approach

    Science.gov (United States)

    Dai, Haixia

    Biocomposite materials, such as bones, teeth, and shells, are created using mild aqueous solution-based processes near room temperature. Proteins add flexibility to these processes by facilitating the nucleation, growth, and ordering of specific inorganic materials into hierarchical structures. We aim to develop a biomimetic strategy for engineering technologically relevant inorganic materials with controlled compositions and structures, as Nature does, using proteins to orchestrate material formation and assembly. This approach involves three basic steps: (i) preparation of inorganic substrates compatible with combinatorial polypeptide screening; (ii) identification of inorganic-binding polypeptides and their engineering into inorganic-binding proteins; and (iii) protein-mediated inorganic nucleation and organization. Cuprous oxide (Cu2O), a p-type semiconductor, has been used to demonstrate all three steps. Zinc oxide (ZnO), an n-type semiconductor, has been used to show the generality of selected steps. Step (i), preparation of high quality inorganic substrates to select inorganic-binding polypeptides, was accomplished using electrochemical microfabrication to grow and pattern Cu2O and ZnO. Raman spectroscopy and x-ray photoelectron spectroscopy were used to verify phase purity and compositional stability of these surfaces during polypeptide screening. Step (ii), accomplished in collaboration with personnel in Prof Baneyx' lab at the University of Washington, involved incubating the inorganic substrates with the FliTrx(TM) random peptide library to identify cysteine-constrained dodecapeptides that bind the targeted inorganic. Insertion of a Cu2O-binding dodecapeptide into the DNA-binding protein TraI endowed the engineered TraI with strong affinity for Cu2O (Kd ≈ 10 -8 M). Finally, step (iii) involved nonequilibrium synthesis and organization of Cu2O nanoparticles, taking advantage of the inorganic and DNA recognition properties of the engineered TraI. The

  18. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  19. Biomimetic Synthesis of Oiigostilbenes%二苯乙烯类低聚物的仿生合成

    Institute of Scientific and Technical Information of China (English)

    李文玲; 臧鹏; 李洪福; 杨世霞

    2012-01-01

    天然二苯乙烯低聚物是一类自然界分布广泛的多酚化合物,因其结构复杂且生物活性多样而受到密切关注,但此类化合物天然资源的稀少极大限制了其构效关系的调查及活性药物的筛选。近年来许多化学家对此类低聚物的仿生合成方法做了广泛而深入的研究,已形成一个新的研究热点。本文详尽综述了迄今三十多年来二苯乙烯类低聚物的仿生合成研究进展,包括在不同介质中的酶催化或金属氧化剂催化的氧化偶联方法、光催化的异构化及强酸催化下的环合反应,由不同的二苯乙烯前体通过仿生合成途径,构建出结构多样的二苯乙烯低聚物。此外,本文对该类低聚物的仿生合成研究前景做了展望。%Natural oligostilbenes are a class of plant polyphenols widely distributed in nature, and have received considerable attention in the chemical and biological fields because of their structural complexity as well as their diverse bioactivities. These oligomers and their derivatives are potentially useful leading compounds for drug development. Further investigations of structure-activity of oligostilbenes to screen active drugs were limited for their scarce availability in natural raw materials. Biosynthetic strategies towards these oligomers are studied widely and intensively by a number of chemists in recent years and has been a hot research topic. In this paper, the progress in the studies on the biomimetic synthesis of oligostilbenes over the past thirty years is reviewed in detail, including oxidative coupling reactions catalyzed by enzymes or metallic oxidants in various reaction mediums, isomerization under UV irradiation and cyclization induced by several strong acids. Diverse complex molecular architectures of oligostilbenes are thus constructed from a wide array of stilbene precursors through biomimetic routes. The future synthetic trend of oligostilbenes is also prospected.

  20. A study on peripheral nerve regeneration via biomimetic conduits loaded with Schwann cells and nerve growth factor

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fengyi; ZHOU Peilan; WANG Ruilin; YANG Mingfu; ZHAO Weisheng; WEI Dian; ZHANG Tieliang; YAO Kangde; CUI Yuanlu

    2001-01-01

    @@ Guided tissue regeneration is a new approach in the reconstructive surgery of peripheral nerves. Biomimetic conducts were construct from the expanded vein onwhose inner surface composited with amnion filaments (cf. Fig 1).

  1. Biological surface science

    Science.gov (United States)

    Kasemo, Bengt

    2002-03-01

    Biological surface science (BioSS), as defined here is the broad interdisciplinary area where properties and processes at interfaces between synthetic materials and biological environments are investigated and biofunctional surfaces are fabricated. Six examples are used to introduce and discuss the subject: Medical implants in the human body, biosensors and biochips for diagnostics, tissue engineering, bioelectronics, artificial photosynthesis, and biomimetic materials. They are areas of varying maturity, together constituting a strong driving force for the current rapid development of BioSS. The second driving force is the purely scientific challenges and opportunities to explore the mutual interaction between biological components and surfaces. Model systems range from the unique water structures at solid surfaces and water shells around proteins and biomembranes, via amino and nucleic acids, proteins, DNA, phospholipid membranes, to cells and living tissue at surfaces. At one end of the spectrum the scientific challenge is to map out the structures, bonding, dynamics and kinetics of biomolecules at surfaces in a similar way as has been done for simple molecules during the past three decades in surface science. At the other end of the complexity spectrum one addresses how biofunctional surfaces participate in and can be designed to constructively participate in the total communication system of cells and tissue. Biofunctional surfaces call for advanced design and preparation in order to match the sophisticated (bio) recognition ability of biological systems. Specifically this requires combined topographic, chemical and visco-elastic patterns on surfaces to match proteins at the nm scale and cells at the micrometer scale. Essentially all methods of surface science are useful. High-resolution (e.g. scanning probe) microscopies, spatially resolved and high sensitivity, non-invasive optical spectroscopies, self-organizing monolayers, and nano- and microfabrication

  2. Sensors and actuators inherent in biological species

    Science.gov (United States)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  3. Biomimetics as a Model for Inspiring Human Innovation

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Electroactive polymers (EAP) are human made actuators that are the closest to mimic biological muscles. Technology was advanced to the level that biologically inspired robots are taking increasing roles in the world around us and making science fiction ideas a closer engineering reality. Artificial technologies (AI, AM, and others) are increasingly becoming practical tools for making biologically inspired devices and instruments with enormous potential for space applications. Polymer materials are used to produce figures that resemble human and animals. These materials are widely employed by the movie industry for making acting figures and by the orthopedic industry to construct cyborg components. There are still many challenges ahead that are critical to making such possibilities practical. The annual armwrestling contest is providing an exciting measure of how well advances in EAP are implemented to address the field challenges. There is a need to document natures inventions in an engineering form to possibly inspire new capabilities.

  4. Towards a biomimetic gyroscope inspired by the fly's haltere using microelectromechanical systems technology.

    Science.gov (United States)

    Droogendijk, H; Brookhuis, R A; de Boer, M J; Sanders, R G P; Krijnen, G J M

    2014-10-06

    Flies use so-called halteres to sense body rotation based on Coriolis forces for supporting equilibrium reflexes. Inspired by these halteres, a biomimetic gimbal-suspended gyroscope has been developed using microelectromechanical systems (MEMS) technology. Design rules for this type of gyroscope are derived, in which the haltere-inspired MEMS gyroscope is geared towards a large measurement bandwidth and a fast response, rather than towards a high responsivity. Measurements for the biomimetic gyroscope indicate a (drive mode) resonance frequency of about 550 Hz and a damping ratio of 0.9. Further, the theoretical performance of the fly's gyroscopic system and the developed MEMS haltere-based gyroscope is assessed and the potential of this MEMS gyroscope is discussed.

  5. Limits of Nature and Advances of Technology: What Does Biomimetics Have to Offer to Aquatic Robots?

    Directory of Open Access Journals (Sweden)

    F. E. Fish

    2006-01-01

    Full Text Available In recent years, the biomimetic approach has been utilized as a mechanism for technological advancement in the field of robotics. However, there has not been a full appreciation of the success and limitations of biomimetics. Similarities between natural and engineered systems are exhibited by convergences, which define environmental factors, which impinge upon design, and direct copying that produces innovation through integration of natural and artificial technologies. Limitations of this integration depend on the structural and mechanical differences of the two technologies and on the process by which each technology arises. The diversity of organisms that arose through evolutionary descent does not necessarily provide all possible solutions of optimal functions. However, in instances where organisms exhibit superior performance to engineered systems, features of the organism can be targeted for technology transfer. In this regard, cooperation between biologists and engineers is paramount.

  6. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  7. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties.

  8. Probing peptide and protein insertion in a biomimetic S-layer supported lipid membrane platform.

    Science.gov (United States)

    Damiati, Samar; Schrems, Angelika; Sinner, Eva-Kathrin; Sleytr, Uwe B; Schuster, Bernhard

    2015-01-27

    The most important aspect of synthetic lipid membrane architectures is their ability to study functional membrane-active peptides and membrane proteins in an environment close to nature. Here, we report on the generation and performance of a biomimetic platform, the S-layer supported lipid membrane (SsLM), to investigate the structural and electrical characteristics of the membrane-active peptide gramicidin and the transmembrane protein α-hemolysin in real-time using a quartz crystal microbalance with dissipation monitoring in combination with electrochemical impedance spectroscopy. A shift in membrane resistance is caused by the interaction of α-hemolysin and gramicidin with SsLMs, even if only an attachment onto, or functional channels through the lipid membrane, respectively, are formed. Moreover, the obtained results did not indicate the formation of functional α-hemolysin pores, but evidence for functional incorporation of gramicidin into this biomimetic architecture is provided.

  9. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  10. Removal of formaldehyde by hydroxyapatite layer biomimetically deposited on polyamide film.

    Science.gov (United States)

    Kawai, Takahiro; Ohtsuki, Chikara; Kamitakahara, Masanobu; Tanihara, Masao; Miyazaki, Toshiki; Sakaguchi, Yoshimitsu; Konagaya, Shigeji

    2006-07-01

    Some harmful volatile organic compounds (VOCs), such as formaldehyde, are regulated atmospheric pollutants. Therefore, development of a material to remove these VOCs is required. We focused on hydroxyapatite, which had been biomimetically coated on a polyamide film, as an adsorbent and found that formaldehyde was successfully removed by this adsorbent. The amount of formaldehyde adsorbed increased with the area of the polyamide film occupied by hydroxyapatite. The amount of adsorbed formaldehyde and its rate of adsorption were larger for hydroxyapatite deposited on polyamide film than for the commercially available calcined hydroxyapatite powder. This high adsorption ability is achieved by the use of nanosized particles of hydroxyapatite with low crystallinity and containing a large number of active surface sites. Therefore, hydroxyapatite biomimetically coated on organic substrates can become a candidate material for removing harmful VOCs such as formaldehyde.

  11. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    Science.gov (United States)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K. A. S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D. G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O'Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J. A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-10-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10-30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0-2.5 °C, during daily fluctuations that often exceeded 15°-20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature.

  12. Biomimetic Synthesis of FePt Nanoparticles on Multi-Walled Carbon Nanotubes for Functional Nanomaterials

    Science.gov (United States)

    Wang, Li; Wang, Jiku; Li, Zhuang

    2013-02-01

    We present a facile green biomimetic synthesis of FePt nanoparticles (NPs) on the sidewalls of multi-walled carbon nanotubes (CNTs). A core-shell globular protein, ferritin (Fr), was bound onto Z-glycine N-succinimidyl ester (Z-Gly-OSu) modified CNTs and served as precursor to create FePt NPs at the core part of Fr. Biomimetic synthesis of FePt NPs was carried out by chemical reducing of Fe2+ and PtCl_{6}^{2-} ions that transferred into the core part of Fr molecules. The created one-dimensional CNT-FePt nanohybrids were characterized by transmission electron microscopy and X-ray photoelectron spectroscopy. The synthesized CNT-FePt nanohybrids show multi-properties of high water-solubility, ferromagnetism, and electrocatalytic activity.

  13. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  14. Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite-Collagen-Polycaprolactone Composite Construct with Nano-Micro-Macro Hierarchical Structure for Large Bone Defect Treatment.

    Science.gov (United States)

    Wang, Jinbing; Wu, Dingyu; Zhang, Zhanzhao; Li, Jun; Shen, Yi; Wang, Zhenxing; Li, Yu; Zhang, Zhi-Yong; Sun, Jian

    2015-12-01

    Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.

  15. Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

    OpenAIRE

    Jordi Palacin; Cedric Pradalier; Mercè Teixidó; Tomàs Pallejà; Cedric Siegentahler; Marcel Tresanchez; Davinia Font

    2011-01-01

    This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic profile. During the design stage, four different propulsion systems were compared in terms of propu...

  16. Biomimetic Versus Sintered Calcium Phosphates: The In Vitro Behavior of Osteoblasts and Mesenchymal Stem Cells.

    Science.gov (United States)

    Sadowska, Joanna-Maria; Guillem-Marti, Jordi; Montufar, Edgar Benjamin; Espanol, Montserrat; Ginebra, Maria-Pau

    2017-02-21

    The fabrication of calcium phosphates using biomimetic routes, namely, precipitation processes at body temperature, results in distinct features compared to conventional sintered calcium phosphate ceramics, such as a high specific surface area (SSA) and micro- or nanometric crystal size. The aim of this article is to analyze the effects of these parameters on cell response, focusing on two bone cell types: rat mesenchymal stem cells (rMSCs) and human osteoblastic cells (SaOS-2). Biomimetic calcium-deficient hydroxyapatite (CDHA) was obtained by a low temperature setting reaction, and α-tricalcium phosphate (α-TCP) and β-tricalcium phosphate were subsequently obtained by sintering CDHA either at 1400°C or 1100°C. Sintered stoichiometric hydroxyapatite (HA) was also prepared using ceramic routes. The materials were characterized in terms of SSA, skeletal density, porosity, and pore size distribution. SaOS-2 cells and rMSCs were seeded either directly on the surfaces of the materials or on glass coverslips subsequently placed on top of the materials to expose the cells to the CaP-induced ionic changes in the culture medium, while avoiding any topography-related effects. CDHA produced higher ionic fluctuations in both cell culture media than sintered ceramics, with a strong decrease of calcium and a release of phosphate. Indirect contact cell cultures revealed that both cell types were sensitive to these ionic modifications, resulting in a decrease in proliferation rate, more marked for CDHA, this effect being more pronounced for rMSCs. In direct contact cultures, good cell adhesion was found on all materials, but, while cells were able to proliferate on the sintered calcium phosphates, cell number was significantly reduced with time on biomimetic CDHA, which was associated to a higher percentage of apoptotic cells. Direct contact of the cells with biomimetic CDHA resulted also in a higher alkaline phosphatase activity for both cell types compared to sintered Ca

  17. Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization

    OpenAIRE

    2016-01-01

    The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated i...

  18. A biomimetic peptide fluorosurfactant polymer for endothelialization of ePTFE with limited platelet adhesion

    OpenAIRE

    Larsen, Coby C.; Kligman, Faina; Tang, Chad; KOTTKE-MARCHANT, KANDICE; Marchant, Roger E.

    2007-01-01

    Endothelialization of expanded polytetrafluoroethylene (ePTFE) has the potential to improve long-term patency for small-diameter vascular grafts. Successful endothelialization requires ePTFE surface modification to permit cell attachment to this otherwise non-adhesive substrate. We report here on a peptide fluorosurfactant polymer (FSP) biomimetic construct that promotes endothelial cell (EC)-selective attachment, growth, shear stability, and function on ePTFE. The peptide FSP consists of a f...

  19. Highly controlled coating of a biomimetic polymer in TiO2 nanotubes

    OpenAIRE

    Loget, Gabriel; Yoo, Jeung Eun; Mazare, Anca; Wang, Lei; Schmuki,Patrik

    2016-01-01

    Highly controlled coating of biomimetic polydopamine (PDA) was achieved on titanium dioxide nanotubes (TiO2 NTs) by exposing TiO2 NT arrays to a slightly alkaline dopamine solution. The thin films act as photonic sensitizers (enhancing photocurrents and photodegradation) in the visible light range. The PDA coatings can furthermore be used as a platform for decorating the TiO2 NTs with different co-catalysts and metal nanoparticles (NPs).

  20. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely......-on-disk tribometry, employing compliant PDMS as tribopairs, has shown that BSM coatings generated on PDMS surface via spontaneous adsorption from aqueous solution has effective lubricating properties, but for very limited duration only....