WorldWideScience

Sample records for biomimetic total synthesis

  1. A Biomimetic Strategy to Access the Silybins: Total Synthesis of (−)-Isosilybin A

    OpenAIRE

    McDonald, Benjamin R.; Nibbs, Antoinette E.; Scheidt, Karl A.

    2014-01-01

    We report the first asymmetric, total synthesis of (−)-isosilybin A. A late-stage catalytic biomimetic cyclization of a highly functionalized chalcone is employed to form the characteristic benzopyranone ring. A robust and flexible approach to this chalcone provides an entry to the preparation of the entire isomeric family of silybin natural products.

  2. β-Keto-dioxinones and β,δ-diketo-dioxinones in biomimetic resorcylate total synthesis.

    Science.gov (United States)

    Cookson, Rosa; Barrett, Tim N; Barrett, Anthony G M

    2015-03-17

    Resorcylates are a large group of bioactive natural products that are biosynthesized from acetate and malonate units via the intermediacy of polyketides. These polyketides undergo cyclization reactions to introduce the aromatic core. The bioactivities of the resorcylates including resorcylate macrocyclic lactones include anticancer, antimalarial, mycotoxicity, antifungal, and antibiotic properties, and several compounds in the series are already in use in medicine. Examples are prodrugs derived from mycophenolic acid as immunosuppressants and the Hsp-90 inhibitor, AT13387, which is in phase-II clinical trials for the treatment of small cell lung cancer and melanoma. In consequence of these biological activities, methods for the concise synthesis of diverse resorcylates are of considerable importance. In natural product chemistry, biomimetic total synthesis can have significant advantages including functional group tolerance in key steps, the minimization of the use of protection and deprotection reactions and the shortening of the total number of synthetic steps. This Account provides a description of our adaption of the dioxinone chemistry of Hyatt, Clemens, and Feldman for the synthesis and retro-Diels-Alder reactions of diketo-dioxinones. Such dioxinones, which were synthesized by a range of C-acylation reactions, were found to undergo retro-Diels-Alder reactions on heating to provide the corresponding triketo-ketenes with the loss of acetone. The ketene reactive intermediates were rapidly trapped both inter- and intramolecularly with alcohols to provide the corresponding β,δ,ζ-triketo-esters. These compounds, which consist of keto-enol mixtures, readily undergo cycloaromatization to produce resorcylate esters and macrocyclic lactones. We have established the use of diketo-dioxinones as key general intermediates for the synthesis of diverse resorcylate natural products and for the synthesis of new classes of compounds for the generation of medicinal chemistry

  3. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from Aspergillus versicolor

    Science.gov (United States)

    A new prenylated indole alkaloid, versicolamide B, was isolated from cultures of Aspergillus versicolor NRRL 35600. The structure was assigned by 2D NMR data, and confirmed by a biomimetic total synthesis. Versicolamide B is the first member of the paraherquamide-stephacidin family of alkaloids fo...

  4. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  5. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    OpenAIRE

    V. Kulcitki

    2012-01-01

    The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  6. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  7. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  8. Biomimetic synthesis for precursor of muscone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Muscone is a precious fragrant compound scarce in nature. Many attempts have been made to synthesize this unique natural product. In this work, the one- carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. Benzimidazolium salt was used as the tetrahydrofolate coenzyme model at formic acid oxidation level and di-Grignard reagent as the nucleophile to which one-carbon unit was transferred; the biomimetic synthesis of 2,15- hexade-canedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of benzimidazolium salt with Grignard reagent. And an impor-tant useful method for the synthesis of muscone is provided.

  9. First total synthesis of Boehmenan

    Indian Academy of Sciences (India)

    Yamu Xia; Xiaoli Dai; Haixin Liu; Chen Chai

    2014-05-01

    The first total synthesis of dilignan Boehmenan has been achieved. A biomimetic oxidative coupling of the ferulic acid methyl ester in the presence of silver oxide is the crucial step in the synthesis sequence, generating the dihydrobenzofuran skeleton. Hydroxyl group was protected with DHP and reducted with LiAlH4 to afford the intermediate diol. The diol was condensated with the derivative of ferulic acid, then removed the protecting groups, to get Boehmenan. Meanwhile, a study on the ring-opening reaction of the intermediate dihydrobenzofuran neolignan under base conditions was described.

  10. Stereocontrolled total synthesis of hedyotol A.

    Science.gov (United States)

    Kawabe, Yusuke; Ishikawa, Ryo; Akao, Yusuke; Yoshida, Atsushi; Inai, Makoto; Asakawa, Tomohiro; Hamashima, Yoshitaka; Kan, Toshiyuki

    2014-04-01

    The total synthesis of hedyotol A (1), a natural product isolated from Hedyotis lawsoniae (DC.) Wight et Arn. (Rubiaceae), was accomplished in a highly stereocontrolled manner. Key steps include an L-proline-catalyzed cross-aldol reaction and the biomimetic construction of a furofuran lignan skeleton through a quinomethide intermediate. PMID:24660822

  11. Biomimetic synthesis of aragonite superstructures using hexamethylenetetramine

    International Nuclear Information System (INIS)

    In this paper, biomimetic synthesis of aragonite superstructures using a low molecular weight organic-hexamethylenetetramine (HMT) as an additive in the presence of CO2 supplied by an ammonium carbonate ((NH4)2CO3) diffusion method at room temperature was studied. The products were characterized by scanning or transmission electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffractometry, and selected area electron diffraction. The results showed the aragonite superstructures especially dumbbell-flower-like ones were obtained. The formation process of calcium carbonate (CaCO3) in HMT aqueous solution was investigated, suggesting that the products transformed from calcite to vaterite primarily, and then changed into a mixture of aragonite and calcite with an increase of reaction time. The formation mechanism of CaCO3 in HMT solution was also discussed, revealing that aragonite might be controlled by HMT molecules and NH4+ ions together. - Graphical abstract: The well-defined aragonite hierarchical superstructures are formed using hexamethylenetetramine in aqueous solution. Highlights: → Aragonite superstructures are formed with hexamethylenetetramine at about 25 deg. C. → Dumbbell-flower-like aragonite produces when hexamethylenetetramine/Ca2+=10:1. → CaCO3 formation in hexamethylenetetramine solution violates the Ostwald ripening. → Hexamethylenetetramine and NH4+ might control the growth of aragonite together.

  12. Total Synthesis of (-)-Cardiopetaline.

    Science.gov (United States)

    Nishiyama, Yoshitake; Yokoshima, Satoshi; Fukuyama, Tohru

    2016-05-20

    The total synthesis of (-)-cardiopetaline, an aconitine-type natural product, has been accomplished. Our synthesis involved a Wagner-Meerwein rearrangement of a sulfonyloxirane that enabled, in a single step, the construction of the bicyclo[3.2.1] system in the aconitine skeleton and effective introduction of oxygen functional groups at the appropriate positions. PMID:27166640

  13. Total Synthesis of Teixobactin.

    Science.gov (United States)

    Giltrap, Andrew M; Dowman, Luke J; Nagalingam, Gayathri; Ochoa, Jessica L; Linington, Roger G; Britton, Warwick J; Payne, Richard J

    2016-06-01

    The first total synthesis of the cyclic depsipeptide natural product teixobactin is described. Synthesis was achieved by solid-phase peptide synthesis, incorporating the unusual l-allo-enduracididine as a suitably protected synthetic cassette and employing a key on-resin esterification and solution-phase macrolactamization. The synthetic natural product was shown to possess potent antibacterial activity against a range of Gram-positive pathogenic bacteria, including a virulent strain of Mycobacterium tuberculosis and methicillin-resistant Staphylococcus aureus (MRSA). PMID:27191730

  14. Total synthesis of atropurpuran.

    Science.gov (United States)

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.0(4,9).0(4,12)]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  15. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  16. Biomimetics

    Indian Academy of Sciences (India)

    P Ramachandra Rao

    2003-06-01

    The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a few natural materials and systems and explore how ideas from nature are being interpreted and modified to suit efforts aimed at designing better machines and synthesising newer materials.

  17. Total Synthesis of Millingtonine.

    Science.gov (United States)

    Brown, Patrick D; Lawrence, Andrew L

    2016-07-11

    Millingtonine is a glycosidic alkaloid that exists as a pair of pseudo-enantiomeric diastereomers. Consideration of the likely biosynthetic origins of this unusual natural product has resulted in the development of a seven-step total synthesis. Results from this synthetic work provide evidence in support of a proposed network of biosynthetic pathways that can account for the formation of several phenylethanoid natural products. PMID:27249628

  18. Total synthesis of teixobactin.

    Science.gov (United States)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-01-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product. PMID:27484680

  19. Total synthesis of ochnaflavone

    OpenAIRE

    Monica M. Ndoile; van Heerden, Fanie R

    2013-01-01

    The first total syntheses of ochnaflavone, an asymmetric biflavone consisting of apigenin and luteolin moieties, and the permethyl ether of 2,3,2'',3''-tetrahydroochnaflavone have been achieved. The key steps in the synthesis of ochnaflavone were the formation of a diaryl ether and ring cyclization of an ether-linked dimeric chalcone to assemble the two flavone nuclei. Optimal experimental conditions for the oxidative cyclization to form ochnaflavone were established.

  20. Total synthesis of ochnaflavone

    Directory of Open Access Journals (Sweden)

    Monica M. Ndoile

    2013-07-01

    Full Text Available The first total syntheses of ochnaflavone, an asymmetric biflavone consisting of apigenin and luteolin moieties, and the permethyl ether of 2,3,2'',3''-tetrahydroochnaflavone have been achieved. The key steps in the synthesis of ochnaflavone were the formation of a diaryl ether and ring cyclization of an ether-linked dimeric chalcone to assemble the two flavone nuclei. Optimal experimental conditions for the oxidative cyclization to form ochnaflavone were established.

  1. Total Synthesis of (-)-Daphenylline.

    Science.gov (United States)

    Yamada, Ryosuke; Adachi, Yohei; Yokoshima, Satoshi; Fukuyama, Tohru

    2016-05-10

    Total synthesis of (-)-daphenylline, a hexacyclic Daphniphyllum alkaloid, was achieved. Construction of the tricyclic DEF ring system was initiated by asymmetric Negishi coupling followed by an intramolecular Friedel-Crafts reaction. Installation of a side chain onto the tricyclic core was carried out through Sonogashira coupling, stereocontrolled Claisen rearrangement by taking advantage of the characteristic conformation of the tricyclic DEF core, and the stereoselective alkylation of a lactone. After the introduction of a glycine unit, the ABC ring system was stereoselectively constructed through intramolecular cycloaddition of the cyclic azomethine ylide. PMID:27062676

  2. Crystallization at Inorganic-Organic Interfaces: Biominerals and Biomimetic Synthesis

    Science.gov (United States)

    Mann, Stephen; Archibald, Douglas D.; Didymus, Jon M.; Douglas, Trevor; Heywood, Brigid R.; Meldrum, Fiona C.; Reeves, Nicholas J.

    1993-09-01

    Crystallization is an important process in a wide range of scientific disciplines including chemistry, physics, biology, geology, and materials science. Recent investigations of biomineralization indicate that specific molecular interactions at inorganic-organic interfaces can result in the controlled nucleation and growth of inorganic crystals. Synthetic systems have highlighted the importance of electrostatic binding or association, geometric matching (epitaxis), and stereochemical correspondence in these recognition processes. Similarly, organic molecules in solution can influence the morphology of inorganic crystals if there is molecular complementarity at the crystal-additive interface. A biomimetic approach based on these principles could lead to the development of new strategies in the controlled synthesis of inorganic nanophases, the crystal engineering of bulk solids, and the assembly of organized composite and ceramic materials.

  3. Total synthesis of (-)-spinosyn A.

    Science.gov (United States)

    Mergott, Dustin J; Frank, Scott A; Roush, William R

    2004-08-17

    A convergent, highly stereoselective total synthesis of (-)-spinosyn A (1) is described. Key features of the synthesis include the transannular Diels-Alder reaction of macrocyclic pentaene 11 and the transannular Morita-Baylis-Hillman cyclization of 12 that generates tetracycle 26. The total synthesis of (-)-spinosyn A was completed by a sequence involving the highly beta-selective glycosidation reaction of 13 and glycosyl imidate 30. PMID:15173590

  4. Dihydrobenzofuran Neolignanamides: Laccase-Mediated Biomimetic Synthesis and Antiproliferative Activity.

    Science.gov (United States)

    Cardullo, Nunzio; Pulvirenti, Luana; Spatafora, Carmela; Musso, Nicolò; Barresi, Vincenza; Condorelli, Daniele Filippo; Tringali, Corrado

    2016-08-26

    The biomimetic synthesis of a small library of dihydrobenzofuran neolignanamides (the natural trans-grossamide (4) and the related compounds 21-28) has been carried out through an eco-friendly oxidative coupling reaction mediated by Trametes versicolor laccase. These products, after complete spectroscopic characterization, were evaluated for their antiproliferative activity against Caco-2 (colon carcinoma), MCF-7 (mammary adenocarcinoma), and PC-3 (prostate cancer) human cells, using an MTT bioassay. The racemic neolignamides (±)-21 and (±)-27, in being the most lipophilic in the series, were potently active, with GI50 values comparable to or even lower than that of the positive control 5-FU. The racemates were resolved through chiral HPLC, and the pure enantiomers were subjected to ECD measurements to establish their absolute configurations at C-2 and C-3. All enantiomers showed potent antiproliferative activity, with, in particular, a GI50 value of 1.1 μM obtained for (2R,3R)-21. The effect of (±)-21 on the Caco-2 cell cycle was evaluated by flow cytometry, and it was demonstrated that (±)-21 exerts its antiproliferative activity by inducing cell cycle arrest and apoptosis. PMID:27504537

  5. Biomimetic Synthesis of Calcium-Deficient Hydroxyapatite in a Natural Hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hutchens, Stacy A [ORNL; Benson, Roberto S. [University of Tennessee, Knoxville (UTK); Evans, Barbara R [ORNL; O' Neill, Hugh Michael [ORNL; Rawn, Claudia J [ORNL

    2006-01-01

    A novel composite material consisting of calcium-deficient hydroxyapatite (CdHAP) biomimetically deposited in a bacterial cellulose hydrogel was synthesized and characterized. Cellulose produced by Gluconacetobacter hansenii was purified and sequentially incubated in solutions of calcium chloride followed by sodium phosphate dibasic. A substantial amount of apatite (50-90% of total dry weight) was homogeneously incorporated throughout the hydrogel after this treatment. X-ray diffractometry (XRD) showed that CdHAP crystallites had formed in the cellulose. XRD further demonstrated that the CdHAP was comprised of 10-50nm anisotropic crystallites elongated in the c-axis, similar to natural bone apatite. Fourier transform infrared (FTIR) spectroscopy demonstrated that hydroxyl IR bands of the cellulose shifted to lower wave numbers indicating that a coordinate bond had possibly formed between the CdHAP and the cellulose hydroxyl groups. FTIR also suggested that the CdHAP had formed from an octacalcium phosphate precursor similar to physiological bone. Scanning electron microscopy (SEM) images confirmed that uniform ?1 mm spherical CdHAP particles comprised of nanosized crystallites with a lamellar morphology had formed in the cellulose. The synthesis of the composite mimics the natural biomineralization of bone indicating that bacterial cellulose can be used as a template for biomimetic apatite formation. This composite may have potential use as an orthopedic biomaterial.

  6. Total Synthesis of Propolisbenzofuran B†

    OpenAIRE

    Jones, Brian T.; Avetta, Christopher T.; Thomson, Regan J.

    2014-01-01

    The first total synthesis of propolisbenzofuran B, a bioactive natural product isolated from honeybee propolis resin, is reported. The convergent synthesis makes use of a silicon-tether controlled oxidative ketone–ketone cross-coupling and a novel benzofuran-generating cascade reaction to deliver the core structure of the natural product from readily prepared precursors.

  7. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  8. Diastereoselective Total Synthesis of (-)-Galiellalactone.

    Science.gov (United States)

    Kim, Taewoo; Han, Young Taek; An, Hongchan; Kim, Kyeojin; Lee, Jeeyeon; Suh, Young-Ger

    2015-12-18

    An enantioselective total synthesis of (-)-galiellalactone has been accomplished. The key features of the synthesis involve the highly stereoselective construction of the cis-trisubstituted cyclopentane intermediate by a Pd(0)-catalyzed cyclization, the stereospecific introduction of an angular hydroxyl group by Riley oxidation, and the efficient construction of the tricyclic system of (-)-galiellalactone via a combination of diastereoselective Hosomi-Sakurai crotylation and ring-closing metathesis (RCM). PMID:26544529

  9. Biomimetic synthesis of coexistence of vaterite-calcite phases controlled by histidine-grafted-chitosan

    Science.gov (United States)

    Chen, Zhangxu; Xin, Meihua; Li, Mingchun; Xu, Jianpeng; Li, Xianxue; Chen, Xiaodong

    2014-10-01

    Biomimetic synthesis vaterite is promising in improving the application of calcium carbonate and providing a novel method for controlling synthesis other biomaterials. For the first time, the histidine-grafted-chitosan (NHCS) is used as an organic matrix to biomimetic synthesis of calcium carbonate. Effect of the pH value on the morphology and polymorph is investigated. The products are characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and field-emission scanning electron microscope (FESEM). The results show that the sole rhombohedral calcite phase can form in absence of NHCS, whereas the coexistence of vaterite-calcite phases is gained in the presence of NHCS. At pH=8.0, the content of vaterite reaches 93.7 wt%, but it drops to 62.2 wt% at pH 6.5. In addition, a possible mechanism is proposed to explain the formation of coexistence of vaterite-calcite phases in the study. The result indicates that NHCS is an effective template and pH responsive for biomimetic synthesis of vaterite, and offers a novel method for controlling synthesis of other biomaterials.

  10. Stereoselective Total Synthesis of Mycalamides

    Institute of Scientific and Technical Information of China (English)

    Masahiro Toyota

    2005-01-01

    @@ 1Introduction Mycalamides A (1a) and B (1b) are potent antiviral compounds from a New Zealand sponge of the genus Mycale. Apart from their antitumor property, mycalamide A (1a) exhibits immunosuppressive action by blocking T-cell activation in mice and is significantly more potent than FK-506 and cyclosporine A. Because of their intriguing biological activity, unique structures and scarce supply of these natural products, mycalamides A (1a) and B (1b) have attracted considerable attention as target molecules for total synthesis, and total, formal, or partial syntheses of this family of compounds have been reported[1,2].

  11. Total Synthesis of the Ammosamides

    Science.gov (United States)

    Hughes, Chambers C.; Fenical, William

    2010-01-01

    The ammosamides A-C are chlorinated pyrrolo[4,3,2-de]quinoline metabolites isolated from the marine-derived Streptomyces strain CNR-698. The natural products, which possess a dense array of heteroatoms, were synthesized in 17–19 steps from 4-chloroisatin. That the five nitrogen atoms were introduced at the appropriate time and in a suitable oxidation state was key to the success of the total synthesis. Compared to synthetic deschloro ammosamide B, natural ammosamide B is much less susceptible to oxidative degradation. PMID:20131899

  12. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

  13. Biomimetic synthesis of oriented hydroxyapatite mediated by nonionic surfactants

    International Nuclear Information System (INIS)

    Highly oriented organization of hydroxyapatite (HAP) nanorods was achieved through a simple reflux method using mixtures of triblock copolymer pluronic P123 and tween-60 as the mediated agents. Raft-like organized complexes were prepared when the nanorods were only directed by the mixed surfactants. Bundles of nanorod-like HAP crystals were obtained when urea was used as the cosurfactant. These HAP nanorods with a large amount of uniform 4 nm worm-like mesopores were arranged in parallel to each other along the c axis of HAP. The raft-like complexes might be mediated by the reverse lamellar micelles. And the added urea transformed the reverse lamellar micelles into hexagonal ones due to its association with the surfactant molecules by hydrogen bonds, resulting in the formation of bundles of nanorod-like HAP crystals. The regulation of the oriented HAP complexes in morphology extends the understanding of biomineralization and permits controllable design of biomimetic materials. In addition, the c-axis oriented raft-like HAP complex has great potential in selective bio-absorption and separation

  14. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling ‡

    OpenAIRE

    Kozlowski, Marisa C.; Morgan, Barbara J.; Linton, Elizabeth C.

    2009-01-01

    This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses ar...

  15. Enantioselective Total Synthesis of (+)-Gliocladin C

    OpenAIRE

    Overman, Larry E.; Shin, Youseung

    2007-01-01

    The first total synthesis of gliocladin C, a fungal-derived marine alkaloid containing a rare trioxopiperazine fragment, is reported. This asymmetric synthesis establishes the absolute configuration of this structurally novel natural product.

  16. Concise Enantiospecific Total Synthesis of Tubingensin A

    OpenAIRE

    Goetz, Adam E.; Silberstein, Amanda L.; Corsello, Michael A.; Garg, Neil K.

    2014-01-01

    We report the enantiospecific total synthesis of (+)-tubingensin A. Our synthesis features an aryne cyclization to efficiently introduce the vicinal quaternary stereocenters of the natural product and proceeds in only nine steps (longest linear sequence) from known compounds.

  17. Synthesis and characterization of biomimetic citrate-based biodegradable composites.

    Science.gov (United States)

    Tran, Richard T; Wang, Liang; Zhang, Chang; Huang, Minjun; Tang, Wanjin; Zhang, Chi; Zhang, Zhongmin; Jin, Dadi; Banik, Brittany; Brown, Justin L; Xie, Zhiwei; Bai, Xiaochun; Yang, Jian

    2014-08-01

    Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked. PMID:23996976

  18. Environment-friendly biomimetic synthesis of TiO2 nanomaterials for photocatalytic application

    International Nuclear Information System (INIS)

    We have demonstrated an environment-friendly biomimetic synthesis method for the preparation of TiO2 nanomaterials with different crystal phases and morphologies. This is the first time that it has been found that the crystal phase of TiO2 can be controlled just by using different biotemplates, and cannot be changed by calcination up to 750 °C. In our experiment, anatase TiO2 was obtained by using yeast and albumen templates, while rutile TiO2 was formed by using dandelion pollen as the template. (paper)

  19. Biomimetic approach for the synthesis of N, N'-diarylsubstituted formamidines catalyzed by β-cyclodextrin in water

    Institute of Scientific and Technical Information of China (English)

    Dipak R.Patil; Dipak S.Dalal

    2012-01-01

    An environmentally benign and highly efficient biomimetic approach for the synthesis of N,N'-diarylsubstituted formamidines in water catalyzed β-cyclodextrin is described under neutral condition with quantitative yields of products.β-Cyclodextrin has been recovered and reused.

  20. Total synthesis of solanoeclepin A

    Science.gov (United States)

    Tanino, Keiji; Takahashi, Motomasa; Tomata, Yoshihide; Tokura, Hiroshi; Uehara, Taketo; Narabu, Takashi; Miyashita, Masaaki

    2011-06-01

    Cyst nematodes are troublesome parasites that live on, and destroy, a range of important host vegetable plants. Damage caused by the potato cyst nematode has now been reported in over 50 countries. One approach to eliminating the problem is to stimulate early hatching of the nematodes, but key hatching stimuli are not naturally available in sufficient quantities to do so. Here, we report the first chemical synthesis of solanoeclepin A, the key hatch-stimulating substance for potato cyst nematode. The crucial steps in our synthesis are an intramolecular cyclization reaction for construction of the highly strained tricyclo[5.2.1.01,6]decane skeleton (DEF ring system) and an intramolecular Diels-Alder reaction of a furan derivative for the synthesis of the ABC carbon framework. The present synthesis has the potential to contribute to addressing one of the critical food issues of the twenty-first century.

  1. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    Science.gov (United States)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  2. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  3. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO3 nanofibers, SrCO3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO2. - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  4. Total Synthesis of (-)-Luminacin D.

    Science.gov (United States)

    Malassis, Julien; Bartlett, Nathan; Hands, Kane; Selby, Matthew D; Linclau, Bruno

    2016-05-01

    A second-generation synthesis of (-)-luminacin D based on an early stage introduction of the trisubstituted epoxide group is reported, allowing access to the natural product in an improved yield and a reduced number of steps (5.4%, 17 steps vs 2.6%, 19 steps). A full account of the optimization work is provided, with the reversal of stereoselection in the formation of the C4 alcohol in equally excellent diastereoselectivity as the key improvement. PMID:27054953

  5. The total synthesis of (–)-crispatene

    OpenAIRE

    Miller, Aubry K.; Byun, Daniel H.; Beaudry, Christopher M.; Trauner, Dirk

    2004-01-01

    The total synthesis of the molluscan polypropionate (–)-crispatene is described. The synthesis features a palladium-catalyzed cross-coupling to establish a sensitive conjugated tetraene and its Lewis acid-catalyzed cycloisomerization to yield the bicyclo[3.1.0]hexene core of the natural product. The absolute configuration of (–)-crispatene and related molecules is established.

  6. Total synthesis of (±)-isophellibiline

    OpenAIRE

    Funk, Raymond L.; Belmar, Johannes

    2012-01-01

    The total synthesis of (±)-isophellibiline is described. This represents the first synthesis of a member of the nonaromatic homoerythrinan family of alkaloids. The tetracyclic ring system of the natural product was quickly assembled by a strategy that features a retrocycloaddition/cycloaddition reaction of an amidodioxin, an intramolecular Heck reaction and a 6π-electrocyclic ring closure of a dienoic acid.

  7. A modified total synthesis of cystothiazole A

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A modified total synthesis of cystothiazole A is described. In this synthetic strategy, a one-step transformation of acylated oxazolidinone to β-ketoester has been successfully applied, thus making the synthetic route more efficient. This method may also be potentially applied in synthesis of other related β-substituted-β-methoxyl acrylates (bb-MOAs).

  8. Total Synthesis of (±)-Hibiscone C

    OpenAIRE

    Ungureanu, Sinziana; Meadows, Maggie; Smith, Joel; Duff, David B.; Burgess, James M.; Goess, Brian C.

    2011-01-01

    A total synthesis of (±)- hibiscone C, one member of the furanosteroid family of natural products that also includes viridin and wortmannin, is reported. Two new pathways for formation of the key diacyl furan subunit are described.

  9. The First Total Synthesis of Isoliquiritin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A first total synthesis of isoliquiritin was accomplished starting from p-hydroxy- benzaldehyde and 2,4-dihydroxyacetylphenone. The key step is condensation reaction. In synthetic process need not protect the hydroxy group of reacting substance.

  10. Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility

    Science.gov (United States)

    Pérez-Donoso, José M.; Monrás, Juan P.; Bravo, Denisse; Aguirre, Adam; Quest, Andrew F.; Osorio-Román, Igor O.; Aroca, Ricardo F.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2012-01-01

    Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl2, K2TeO3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods. CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, “greener” methods to synthesize cadmium-containing QDs. PMID:22292028

  11. Biomimetic, mild chemical synthesis of CdTe-GSH quantum dots with improved biocompatibility.

    Directory of Open Access Journals (Sweden)

    José M Pérez-Donoso

    Full Text Available Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs or quantum dots (QDs have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH-capped CdTe QDs (CdTe-GSH resembling conditions found in biological systems is described. Using only CdCl(2, K(2TeO(3 and GSH, highly fluorescent QDs were obtained under pH, temperature, buffer and oxygen conditions that allow microorganisms growth. These CdTe-GSH NPs displayed similar size, chemical composition, absorbance and fluorescence spectra and quantum yields as QDs synthesized using more complicated and expensive methods.CdTe QDs were not freely incorporated into eukaryotic cells thus favoring their biocompatibility and potential applications in biomedicine. In addition, NPs entry was facilitated by lipofectamine, resulting in intracellular fluorescence and a slight increase in cell death by necrosis. Toxicity of the as prepared CdTe QDs was lower than that observed with QDs produced by other chemical methods, probably as consequence of decreased levels of Cd(+2 and higher amounts of GSH. We present here the simplest, fast and economical method for CdTe QDs synthesis described to date. Also, this biomimetic protocol favors NPs biocompatibility and helps to establish the basis for the development of new, "greener" methods to synthesize cadmium-containing QDs.

  12. Total synthesis of palau'amine

    OpenAIRE

    Namba, Kosuke; Takeuchi, Kohei; Kaihara, Yukari; Oda, Masataka; Nakayama, Akira; Nakayama, Atsushi; YOSHIDA, Masahiro; Tanino, Keiji

    2015-01-01

    Palau'amine has received a great deal of attention in the past two decades as an attractive synthetic target by virtue of its intriguing molecular architecture and significant immunosuppressive activity. Here we report the total synthesis of palau'amine characterized by the construction of an ABDE tetracyclic ring core including a trans-bicylo[3.3.0]octane skeleton at a middle stage of total synthesis. The ABDE tetracyclic ring core is constructed by a cascade reaction of a cleavage of the N–...

  13. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  14. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    International Nuclear Information System (INIS)

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described

  15. Total synthesis of insect antifeedant drimane sesquiterpenes.

    NARCIS (Netherlands)

    Jansen, B.J.M.

    1993-01-01

    The investigations described in this thesis deal with the total synthesis of sesquiterpenes of the drimane family, named for their widespread occurrence in the stem bark of South American Drimys species. These compounds contain the bicyclofarnesol nucleus 1 , which is invariably oxi

  16. Enantioselective Total Synthesis of (+)-Salvileucalin B

    OpenAIRE

    Levin, Sergiy; Nani, Roger R.; Reisman, Sarah E.

    2011-01-01

    An enantioselective total synthesis of the diterpenoid natural product (+)-salvileucalin B is reported. Key findings include a copper-catalyzed arene cyclopropanation reaction to provide the unusual norcaradiene core and a reversible retro-Claisen rearrangement of a highly functionalized norcaradiene intermediate.

  17. Total Synthesis of (-)-Nemorosone and (+)-Secohyperforin.

    Science.gov (United States)

    Sparling, Brian A; Tucker, James K; Moebius, David C; Shair, Matthew D

    2015-07-17

    A general strategy for the synthesis of polycyclic polyprenylated acylphloroglucinols is described in which a scalable, Lewis acid catalyzed epoxide-opening cascade cyclization is used to furnish common intermediate 4. The utility of this approach is exemplified by the total syntheses of both ent-nemorosone and (+)-secohyperforin, which were each accomplished in four steps from this intermediate. PMID:26125288

  18. Total Synthesis of balanol, Part 2

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Kelly, Nicholas; Tedenborg, Lars;

    1997-01-01

    A convergent enantioselective total synthesis of the natural product (-)-balanol (1) is described. In addition to benzophenone fragment 8, key intermediates are chiral bicyclic aziridine 3 and the corresponding epoxide 4, both of which undergo highly regio- and stereoselective nucleophilic ring...

  19. Enantioselective Total Synthesis of Plectosphaeroic Acid B

    OpenAIRE

    Jabri, Salman Y.; Overman, Larry E.

    2013-01-01

    The first total synthesis of a member of the plectosphaeroic acid family of fungal natural products is reported. Key steps include the late-stage formation of the hindered N6–C9″ bond and stereoselective introduction of the two methylthio substituents.

  20. Total synthesis of (S)-equol.

    Science.gov (United States)

    Heemstra, Jennifer M; Kerrigan, Sean A; Doerge, Daniel R; Helferich, William G; Boulanger, William A

    2006-11-23

    The first enantioselective total synthesis of (S)-equol is reported. The described route relies on an Evans alkylation to form the stereocenter and an intramolecular Buchwald etherification to generate the chroman ring. Key features of this method include its brevity, its scalability, and the low cost of starting materials. [reaction: see text]. PMID:17107042

  1. The total synthesis of pantocin B.

    Science.gov (United States)

    Sutton, A E; Clardy, J

    2000-02-10

    [reaction: see text] Pantocin B, an unusual antibiotic produced by Erwinia herbicola, effectively controls E. amylovora, the pathogen causing the plant disease fire blight. A total synthesis of pantocin B from L-alanine, glycine, and L-malic acid is reported. PMID:10814312

  2. The total synthesis of (-)-cryptocaryol A.

    Science.gov (United States)

    Dias, L C; Kuroishi, P K; de Lucca, E C

    2015-03-28

    A stereoselective total synthesis of (-)-cryptocaryol A (1) is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring. PMID:25695350

  3. Biomimetic synthesis of cellular SiC based ceramics from plant precursor

    Indian Academy of Sciences (India)

    O P Chakrabarti; H S Maiti; R Majumdar

    2004-10-01

    A novel biomimetic approach in designing and fabricating engineering ceramic materials has gained much interest in recent times. Following this approach, synthesis has been made of dense Si–SiC duplex ceramic composites and highly porous SiC ceramics in the image of the morphological features inherent in the caudex stem of a local monocotyledonous plant. The process route involves making of a carbonaceous biopreform and its subsequent reaction with an infiltrating silicon melt to yield the biomorphic Si–SiC ceramic composites with flexural strength and Young’s modulus of 264 MPa and 247 Gpa, respectively and loss in weight of only ∼ 9% during oxidative heating up to 1200°C in flowing air. The Si–SiC composites were transformed into porous (49 vol.%) SiC ceramics with complete preservation of microcellular anatomy of the parent plant, by depleting residual silicon phase in channel pores through reaction with carbon. SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports.

  4. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  5. First Total Synthesis of Gliomasolide C and Formal Total Synthesis of Sch-725674.

    Science.gov (United States)

    Seetharamsingh, B; Khairnar, Pankaj V; Reddy, D Srinivasa

    2016-01-01

    Syntheses of two 14-membered macrolides Sch-725674 and Gliomasolide C are described here. The first total synthesis of Gliomasolide C, the short synthesis of Sch-725674, and regioselective Wacker oxidation of internal olefin are the highlights of this disclosure. In addition, a key macrocycle with orthogonal functionalities was designed and synthesized on a gram scale for the generation of analogues. PMID:26633579

  6. Total synthesis of (±)-antroquinonol d.

    Science.gov (United States)

    Sulake, Rohidas S; Jiang, Yan-Feng; Lin, Hsiao-Han; Chen, Chinpiao

    2014-11-21

    Total synthesis of (±)-antroquinonol D, which is isolated from very expensive and rarely found Antrodia camphorata and which has potential anticancer properties, was achieved from 4-methoxyphenol. In addition, a Michael addition to dimethoxy cyclohexadienones was studied. The main step involved chelation and substrate-controlled diastereoselective reduction of cyclohexenone and lactonization. Lactone synthesis facilitated the diastereoselective reduction of ketone, which help control the desired stereochemistry at the crucial stereogenic center in the natural product. Other key reactions in the synthesis involved a Michael addition of dimethyl malonate on cyclohexadienone, dihydroxylation, and Wittig olefination. A sesquiterpene side chain was synthesized through coupling with geranyl phenyl sulfide and Bouveault-Blanc reduction. PMID:25375772

  7. Nineteen-step total synthesis of (+)-phorbol.

    Science.gov (United States)

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S

    2016-04-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from many chemists and biologists owing to its intriguing chemical structure and the medicinal potential of phorbol esters. Access to useful quantities of phorbol and related analogues has relied on isolation from natural sources and semisynthesis. Despite efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies, owing to its complexity and unusual placement of oxygen atoms. Purely synthetic enantiopure phorbol has remained elusive, and biological synthesis has not led to even the simplest members of this terpene family. Recently, the chemical syntheses of eudesmanes, germacrenes, taxanes and ingenanes have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis in which powerful C-C bond constructions and C-H bond oxidations go hand in hand. Here we implement a two-phase terpene synthesis strategy to achieve enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this synthesis route is not to displace isolation or semisynthesis as a means of generating the natural product per se, but rather to enable access to analogues containing unique placements of oxygen atoms that are otherwise inaccessible. PMID:27007853

  8. Total Synthesis of (±)-Integrifolin.

    Science.gov (United States)

    Shimomaki, Katsuya; Kusama, Hiroyuki; Iwasawa, Nobuharu

    2016-07-11

    The total synthesis of (±)-integrifolin has been achieved for the first time through the stereoselective preparation of the bicyclo[5.3.0]decane skeleton based on the tungsten-catalyzed cyclization of acyclic trienynes under photoirradiation conditions. Further key transformations of the cyclized product are the Tamao oxidation through cyclic silyl ether, the introduction of two oxygen functionalities by the oxidation of the diene and the construction of three exo-methylene moieties. PMID:27147582

  9. Total Synthesis and Stereochemical Assignment of Callyspongiolide.

    Science.gov (United States)

    Zhou, Jingjing; Gao, Bowen; Xu, Zhengshuang; Ye, Tao

    2016-06-01

    Total synthesis of four callyspongiolide stereoisomers led to unambiguous assignment of relative and absolute stereochemistry of the natural product. Key features of the convergent, fully stereocontrolled route include the use of Krische allylation, Kiyooka Aldol reaction, Kociénski-Julia olefination, Still-Gennari olefination, Yamaguchi macrocyclization, and Sonogashira coupling reaction. Biological evaluation of the synthesized compounds against an array of cancer cells revealed that the stereochemistry of the macrolactone core played an important role. PMID:27227371

  10. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    Science.gov (United States)

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-01

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate. PMID:25679542

  11. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa

    Science.gov (United States)

    Anjum, Sumaira; Abbasi, Bilal Haider

    2016-01-01

    In vitro-derived cultures of plants offer a great potential for rapid biosynthesis of chemical-free antimicrobial silver nanoparticles (AgNPs) by enhancing their phytochemical reducing potential. Here, we developed an efficient protocol for in vitro micropropagation of a high-value endangered medicinal plant species, Phlomis bracteosa, in order to explore its biogenic potential in biomimetic synthesis of antimicrobial AgNPs. Murashige and Skoog medium supplemented with 2.0 mg/L thidiazuron was found to be more efficient in inducing optimum in vitro shoot regeneration (78%±4.09%), and 2.0 mg/L indole-3-butyric acid was used for maximum root induction (86%±4.457%). Antimicrobial AgNPs were successfully synthesized by using aqueous extract (rich in total phenolics and flavonoids content) of in vitro derived plantlets of P. bracteosa. Ultraviolet–visible spectroscopy of synthesized AgNPs showed characteristic surface plasmon band in the range of 420–429 nm. The crystallinity, size, and shape of the AgNPs were characterized by X-ray diffraction and scanning electron microscopy. Face-centered cubic AgNPs of almost uniform spherical size (22.41 nm) were synthesized within a short time (1 hour) at room temperature. Fourier-transform infrared spectroscopy revealed that the polyphenols were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further endorsed the presence of elemental silver in synthesized AgNPs. These biosynthesized AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens. The present work highlighted the potent role of in vitro-derived plantlets of P. bracteosa for feasible biosynthesis of antimicrobial AgNPs, which can be used as nanomedicines in many biomedical applications.

  12. Total synthesis of human beta-lipotropin.

    OpenAIRE

    Blake, J; Li, C. H.

    1983-01-01

    The total synthesis of human beta-lipotropin has been accomplished by the new segment-coupling method in aqueous solution. The peptides Ac-Arg-beta-lipotropin-(61-89) (I) and [GlyS60]-beta-lipotropin-(1-60) (II) were synthesized by the solid-phase method. Reaction of peptide I with citraconic anhydride followed by brief digestion with trypsin to remove the acetylarginyl group, gave Ia. Reaction of peptide II with citraconic anhydride gave the citraconyl peptide IIa. Ia and IIa were coupled to...

  13. Total synthesis of insect antifeedant drimane sesquiterpenes.

    OpenAIRE

    Jansen, B.J.M.

    1993-01-01

    The investigations described in this thesis deal with the total synthesis of sesquiterpenes of the drimane family, named for their widespread occurrence in the stem bark of South American Drimys species. These compounds contain the bicyclofarnesol nucleus 1 , which is invariably oxidized at C-11 and/or C-12 and often at other sites as well (see figure 8.1).A few rearranged drimanes, e.g., (+)-colorata-4(13),8-dienolide 6 , and (-)-muzigadial 7 , are also isolated from natural products. The re...

  14. Biomimetic synthesis and antiproliferative properties of racemic natural(-) and unnnatural(+) glyceollin I

    Science.gov (United States)

    A 14-step biomimetic synthetic route to glyceollin I in ca. 1.5% overall yield has been developed. In addition to being useful for the elaboration of analogs that can contribute to SAR, this route provides practical access to analytical standards that may be used for quality control purposes when gl...

  15. Total synthesis of diterpenoid steenkrotin A.

    Science.gov (United States)

    Pan, Saiyong; Xuan, Jun; Gao, Beiling; Zhu, An; Ding, Hanfeng

    2015-06-01

    A concise and diastereoselective total synthesis of the diterpenoid (±)-steenkrotin A is described for the first time. The strategy mainly features three key ring formations: 1) a rhodium-catalyzed O-H bond insertion followed by an intramolecular carbonyl-ene reaction to build up the tetrahydrofuran subunit; 2) sequential SmI2 -mediated Ueno-Stork and ketyl-olefin cyclizations to construct the [5,7] spirobicyclic skeleton; and 3) an intramolecular aldol condensation/vinylogous retro-aldol/aldol sequence to form the final six-membered ring with inversion of the relative configuration at the C7 position. PMID:25891977

  16. The Total Synthesis of Inostamycin A.

    Science.gov (United States)

    Yu, Guangri; Jung, Byunghyuck; Lee, Hee-Seung; Kang, Sung Ho

    2016-02-12

    The first total synthesis of inostamycin A is described. With efficient and stereoselective synthetic routes to aldehyde 3 and ketone 4 developed through asymmetric aldol reactions, addition reactions and reduction, and with chiral building blocks, the two large fragments were coupled with remarkable anti stereoselectivity and efficiency by aldol condensation. The coupling reaction provided the complete carbon skeleton with all the requisite functional groups and stereogenic centers for inostamycin A. The two quaternary carbons at C20 and C16 of ketone 4 were elaborated in a highly stereocontrolled manner by addition reactions of the transmetallated 5 to ethyl ketone 6 and the transmetallated 7 to methyl ketone 8, respectively, in which the use of LaCl3 for transmetallation was critical for high coupling efficiency. PMID:26800259

  17. In situ biomimetic synthesis, characterization and in vitro investigation of bone-like nanohydroxyapatite in starch matrix

    International Nuclear Information System (INIS)

    In this work, we report the synthesis of bone-like hydroxyapatite (HAp) nanorods in wheat starch matrix via a biomimetic process. Characterization of the samples was performed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Scanning and transmission electron microscopy (SEM and TEM) were used to determine the size, shape and morphology of nano-HAp. The results indicate that, the shape and morphology of nHAp is influenced by the presence of starch as a template agent and rod-like nHAp similar to the inorganic component in the human body is obtained at room temperature. In vitro bioactivity of the synthesized HAp nanocomposites was finally verified by comparison of the HAp's structures and morphology before and after immersion in simulated body fluid (SBF) solution for 3, 7, and 14 days.

  18. Synthesis of Biomimetic Superhydrophobic Surface through Electrochemical Deposition on Porous Alumina

    Institute of Scientific and Technical Information of China (English)

    Jiadao Wang; Ang Li; Haosheng Chen; Darong Chen

    2011-01-01

    The superhydrophobicity of plant leaves is a benefit of the hierarchical structures of their surfaces. These structures have been imitated in the creation of synthetic surfaces. In this paper, a novel process for fabrication of biomimetic hierarchical structures by electrochemical deposition of a metal on porous alumina is described. An aluminum specimen was anodically oxidized to obtain a porous alumina template, which was used as an electrode to fabricate a surface with micro structures through electrochemical deposition of a metal such as nickel and copper after the enlargement of pores. Astonishingly, a hierarchical structure with nanometer pillars and micrometer clusters was synthesized in the pores of the template. The nanometer pillars were determined by the nanometer pores. The formation of micrometer clusters was related to the thin walls of the pores and the crystallization of the metal on a flat surface. From the as-prepared biomimetic surfaces, lotus-leaf-like superhydrophobic surfaces with nickel and copper deposition were achieved.

  19. Development and application of biomimetic electrospun nanofibers in total joint replacement

    Science.gov (United States)

    Song, Wei

    Failure of osseointegration (direct anchorage of an implant by bone formation at the bone-implant surface) and implant infection (such as that caused by Staphylococcus aureus, S. aureus) are the two main causes of implant failure and loosening. There is a critical need for orthopedic implants that promote rapid osseointegration and prevent bacterial colonization, particularly when placed in bone compromised by disease or physiology of the patients. A better understanding of the key factors that influence cell fate decisions at the bone-implant interface is required. Our study is to develop a class of "bone-like" nanofibers (NFs) that promote osseointegration while preventing bacterial colonization and subsequent infections. This research goal is supported by our preliminary data on the preparation of coaxial electrospun NFs composed of polycaprolactone (PCL) and polyvinyl alcohol (PVA) polymers arranged in a core-sheath shape. The PCL/PVA NFs are biocompatible and biodegradable with appropriate fiber diameter, pore size and mechanical strength, leading to enhanced cell adhesion, proliferation and differentiation of osteoblast precursor cells. The objective is to develop functionalized "bone-like" PCL/PVA NFs matrix embedded with antibiotics (doxycycline (Doxy), bactericidal and anti-osteoclastic) on prosthesis surface. Through a rat tibia implantation model, the Doxy incorporated coaxial NFs has demonstrated excellent in promoting osseointegration and bacteria inhibitory efficacy. NFs coatings significantly enhanced the bonding between implant and bone remodeling within 8 weeks. The SA-induced osteomyelitis was prevented by the sustained release of Doxy from NFs. The capability of embedding numerous bio-components including proteins, growth factors, drugs, etc. enables NFs an effective solution to overcome the current challenged issue in Total joint replacement. In summary, we proposed PCL/PVA electrospun nanofibers as promising biomaterials that can be applied on

  20. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  1. Synthesis of the Biomimetic Polymer: Aliphatic Diamine and RGDS Modified Poly(d,l-lactic acid)

    Institute of Scientific and Technical Information of China (English)

    Xu Feng NIU; Yuan Liang WANG; Yan Feng LUO; Jun PAN; Juan Fang SHANG; Li Xia GUO

    2005-01-01

    A novel poly(d,l-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, 13C NMR and amino acid analyzer (AAA).

  2. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze-thawing and freeze-drying

    Indian Academy of Sciences (India)

    S Nayar; A K Pramanick; A Guha; B K Mahato; M Gunjan; A Sinha

    2008-06-01

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM microscopy. The characterization of such nano-structured composites would allow researchers to design new systems, tailoring properties for different applications.

  3. Synthesis of biomimetic cerium oxide by bean sprouts bio-template and its photocatalytic performance

    Institute of Scientific and Technical Information of China (English)

    周梦凯; 张凯; 陈丰; 陈志刚

    2016-01-01

    Biomimetic nano CeO2 materials were prepared by using bean sprouts as bio-template through impregnation and thermal decomposition. For characterization of structure, X-ray diffraction spectroscopy (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectra (UV-Vis/DRS) nitrogen adsorp-tion-desorption measurements and Labsolar H2 system were adopted. The results demonstrated that the samples prepared at 550 ºC not only completely removed the original bio-template, but also retained the morphology and microstructure of bean sprouts. Then the biomorphic structure of fluorite structure CeO2 material was obtained. Micro-pores with a diameter of about 2–3 nm were distributed among the particles, which provided more favorable channel for the photocatalytic reaction. Biomimetic CeO2 materials exhibited clear red shift (50 nm) compared with powder CeO2, which could be excited by visible irradiation. Biomimetic CeO2 materials dis-played the superior photocatalytic activity for the hydrogen production by water splitting under the sunlight irradiation, the hydrogen yield could reach 400μmol/g catalyst after 6 h.

  4. Total Synthesis of Rubriflordilactone B.

    Science.gov (United States)

    Yang, Peng; Yao, Ming; Li, Jian; Li, Yong; Li, Ang

    2016-06-01

    Taking advantage of a 6π electrocyclization-aromatization strategy, we accomplished the first and asymmetric total synthesis of rubriflordilactone B, a heptacyclic Schisandraceae bisnortriterpenoid featuring a tetrasubstituted arene moiety. The left-hand fragment was accessed through a chiral-pool-based route, and linked to the right-hand fragment by a Sonogashira coupling. The cis geometry of the electrocyclization substrates was established by hydrogenation or hydrosilylation of the alkyne. An electrocyclization-aromatization sequence finally built the multisubstituted arene. The hydrosilylation approach was of significant advantage in terms of reaction scale, reproducibility, and intermediate stability. The structure of synthetic rubriflordilactone B was validated by X-ray crystallographic analysis, and found to be consistent with that reported for the authentic natural product based on an independent X-ray crystallographic analysis. However, obvious differences in the NMR spectra of the synthetic and authentic samples suggest that the authentic samples subjected to X-ray crystallography and NMR spectroscopy were two different compounds. PMID:27121027

  5. Total Synthesis of a Diacetonide Derivative of Thuggacin A.

    Science.gov (United States)

    Yadav, Jhillu S; Dutta, Palash

    2016-03-01

    A highly stereoselective total synthesis of the diacetonide derivative of the antibiotic thuggacin A has been described. The synthesis features the stereoselective Stille cross-coupling reaction to set up the whole carbon framework, aldol condensation to construct the highly substituted conjugated diene, non-Evans syn aldol, CBS reduction, Hantzsch's thiazole synthesis, Horner-Wadsworth-Emmons reaction, and Shiina's macrolactonization. PMID:26856208

  6. Total Synthesis of the Cyanolide A Aglycon

    OpenAIRE

    Gesinski, Michael R.; Rychnovsky, Scott D.

    2011-01-01

    The synthesis of the potent molluscicide, cyanolide A, has been achieved in 10 steps without the use of protecting groups. The synthesis features a key Sakurai macrocyclization/dimerization reaction that simultaneously forms both tetrahydropyran rings and the macrocycle of the natural product.

  7. The total synthesis of cannabisin G

    Directory of Open Access Journals (Sweden)

    YAMU XIA

    2010-12-01

    Full Text Available A convenient method for the synthesis of lignanamide cannabisin G, starting from vanillin, was developed. The convergent synthesis was based on the Stobbe reaction as C–C bond-forming steps to give the skeleton of lignan, which was condensed with a derivative of tyramine to obtain synthetic cannabisin G for the first time.

  8. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca10(PO4)6(OH)2, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  9. Total synthesis of (±)-divanillyltetrahydrofuran ferulate

    Indian Academy of Sciences (India)

    Ya-Mu Xia; Jia You; Qi Wang

    2010-05-01

    A convenient method for the synthesis of sesquilignan threo- and erythro-(±)-divanillyltetrahydrofuran ferulate is described. The synthesis was based on a unified synthetic strategy involving two Stobbe condensations to give the skeleton of lignan, and then reduction reaction to form meso- and threo-(±)-secoisolanciresinol. meso- and threo-(±)-secoisolanciresinol were separated by flash column chromatography, followed by intramolecular reaction with TsCl to afford the key intermediate meso- or threo-(±)-shonanin, then condensation with ferulaic acid to obtain sesquilignan threo- or its analogue erythro-(±)-divanillyltetrahydrofuran ferulate.

  10. Total Synthesis of (±)-Mitorubrinic Acid

    OpenAIRE

    Marsini, Maurice A.; Gowin, Kristoffer M.; Pettus, Thomas R. R.

    2006-01-01

    (±)-Mitorubrinic acid, a member of the azaphilone family of natural products, has been constructed in 12 steps. Key aspects of the synthesis include elaboration and oxidative dearomatization of an isocoumarin intermediate to provide the azaphilone nucleus with a disubstituted, unsaturated carboxylic acid side chain.

  11. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    Energy Technology Data Exchange (ETDEWEB)

    Gergulova, R., E-mail: rumigg@yahoo.com; Tepavitcharova, S., E-mail: rumigg@yahoo.com; Rabadjieva, D., E-mail: rumigg@yahoo.com; Sezanova, K., E-mail: rumigg@yahoo.com; Ilieva, R., E-mail: rumigg@yahoo.com [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia (Bulgaria); Alexandrova, R.; Andonova-Lilova, B. [Institute of Experimental Morphology, Pathology and Anthropology with Museum, BAS, Acad. G. Bonchev Str., Bl. 25, Sofia (Bulgaria)

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  12. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    International Nuclear Information System (INIS)

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg2+ or Zn2+ yielded monophase β-tricalcium phosphate additionally modified with Mg2+ or Zn2+ (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated

  13. First total synthesis of prasinic acid and its anticancer activity.

    Science.gov (United States)

    Chakor, Narayan; Patil, Ganesh; Writer, Diana; Periyasamy, Giridharan; Sharma, Rajiv; Roychowdhury, Abhijit; Mishra, Prabhu Dutt

    2012-11-01

    The first total synthesis of prasinic acid is being reported along with its biological evaluation. The ten step synthesis involved readily available and cheap starting materials and can easily be transposed to large scale manufacturing. The crucial steps of the synthesis included the formation of two different aromatic units (7 and 9) and their coupling reaction. The synthetic prasinic acid exhibited moderate antitumor activity (IC(50) 4.3-9.1 μM) in different lines of cancer cells. PMID:23031589

  14. Total Synthesis of the Antitumor Antibiotic Basidalin.

    Science.gov (United States)

    Acosta, Jaime A M; Muddala, Ramesh; Barbosa, Luiz C A; Boukouvalas, John

    2016-08-01

    The first synthesis of the tetronamide antibiotic basidalin was accomplished in five steps and 39% overall yield from readily available 4-bromo-2-triisopropylsilyloxyfuran and 2-formyl-1,3-dithiane. Highlights include: (i) regio- and stereocontrolled assemblage of a pivotal (Z)-γ-ylidene-β-bromobutenolide intermediate by stereodirected vinylogous aldol condensation (SVAC), (ii) installation of the amino group via aza-Michael addition/elimination, and crucially (iii) facile access to basidalin by late-stage dithiane removal. PMID:27347696

  15. Study Toward the Total Synthesis of Pyrenophorin

    OpenAIRE

    Everaldo F. Santos Filho; Italo Ricardo S. Araujo; Mirela Garcia; Jefferson L. Princival

    2012-01-01

    Macrodiolides are macrocyclic compounds containing two ester groups in a cyclic chain. Of this class of compounds, Pyrenophorin (1) shows antifungal activity, and is produced from the pathogenic fungus Pyrenophora avenae. As this substance, derived from nature, is isolated in small quantities, an asymmetric synthesis using a simple and efficient methodology would be of great interest. The proposed synthetic route starts with the protection of propargyl alcohol 3 using DHP and feldspar as cata...

  16. Asymmetric Total Synthesis of Soraphen A: a Flexible Alkyne Strategy**

    OpenAIRE

    Trost, Barry M.; Sieber, Joshua D.; Qian, Wei; Dhawan, Rajiv; Ball, Zachary T.

    2009-01-01

    The alkyne functional group can be a valuable handle for organic synthesis since the alkyne can function both as a nucleophile or as an electrophile when activated with an appropriate metal catalyst. Herein, we exploit this dual nature of the alkyne moiety for the concise total synthesis of the natural product soraphen A.

  17. First total synthesis of (+/-)-3-hydroxy-11-norcytisine

    DEFF Research Database (Denmark)

    Yohannes, Daniel; Hansen, Camilla Petrycer; Akireddy, Srinivasa Rao; Hauser, Terry A; Kiser, Melanie N; Gurnon, Nicholas J; Day, Cynthia S; Bhatti, Balwinder; Caldwell, William S

    2008-01-01

    The first total synthesis of the natural product 3-hydroxy-11-norcytisine ( 1), structurally related to cytisine ( 2), a benchmark ligand at neuronal nicotinic acetylcholine receptors (NNRs), has been achieved. The synthesis permits the unambiguous confirmation of the structure originally propose...

  18. Study Toward the Total Synthesis of Pyrenophorin

    Directory of Open Access Journals (Sweden)

    Everaldo F. Santos Filho

    2012-06-01

    Full Text Available Macrodiolides are macrocyclic compounds containing two ester groups in a cyclic chain. Of this class of compounds, Pyrenophorin (1 shows antifungal activity, and is produced from the pathogenic fungus Pyrenophora avenae. As this substance, derived from nature, is isolated in small quantities, an asymmetric synthesis using a simple and efficient methodology would be of great interest. The proposed synthetic route starts with the protection of propargyl alcohol 3 using DHP and feldspar as catalyst. Compound 5 obtained in this reaction was then subjected to acid-base reaction between the acetylenic proton and 1 eq. n-BuLi, leading to formation of the acetylide 5A. The 1,2- addition reaction between 5A and g-valerolactone (6 leads to the formation of alkinone 7 in 67% yield. Subsequently, compound 7 was subjected to a ketalization reaction using the same feldspar catalyst. Ketal 8 was formed under concomitant removal of the THP group. The product of this reaction (8 was then submitted to a reduction reaction of the triple bond to form olefin 9 with E configuration. Currently, the conditions for obtaining 10 by oxidation using Jones reagent, are being optimized. Compound 10,    obtained as described, is being subjected to a macrolactonization reaction. Various conditions including the use of enzymes are being studied. In addition, a study involving the enantioselective synthesis of (R,R-(--pyrenophorin, using enzymatic kinetic resolution of the racemic mixture of compound 8, is in progress in the group

  19. Biomimetic Synthesis of Oiigostilbenes%二苯乙烯类低聚物的仿生合成

    Institute of Scientific and Technical Information of China (English)

    李文玲; 臧鹏; 李洪福; 杨世霞

    2012-01-01

    天然二苯乙烯低聚物是一类自然界分布广泛的多酚化合物,因其结构复杂且生物活性多样而受到密切关注,但此类化合物天然资源的稀少极大限制了其构效关系的调查及活性药物的筛选。近年来许多化学家对此类低聚物的仿生合成方法做了广泛而深入的研究,已形成一个新的研究热点。本文详尽综述了迄今三十多年来二苯乙烯类低聚物的仿生合成研究进展,包括在不同介质中的酶催化或金属氧化剂催化的氧化偶联方法、光催化的异构化及强酸催化下的环合反应,由不同的二苯乙烯前体通过仿生合成途径,构建出结构多样的二苯乙烯低聚物。此外,本文对该类低聚物的仿生合成研究前景做了展望。%Natural oligostilbenes are a class of plant polyphenols widely distributed in nature, and have received considerable attention in the chemical and biological fields because of their structural complexity as well as their diverse bioactivities. These oligomers and their derivatives are potentially useful leading compounds for drug development. Further investigations of structure-activity of oligostilbenes to screen active drugs were limited for their scarce availability in natural raw materials. Biosynthetic strategies towards these oligomers are studied widely and intensively by a number of chemists in recent years and has been a hot research topic. In this paper, the progress in the studies on the biomimetic synthesis of oligostilbenes over the past thirty years is reviewed in detail, including oxidative coupling reactions catalyzed by enzymes or metallic oxidants in various reaction mediums, isomerization under UV irradiation and cyclization induced by several strong acids. Diverse complex molecular architectures of oligostilbenes are thus constructed from a wide array of stilbene precursors through biomimetic routes. The future synthetic trend of oligostilbenes is also prospected.

  20. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis

    International Nuclear Information System (INIS)

    Based on the principles of biomineralization, flakelike hydroxyapatite/chondroitin sulfate composites were synthesized through biomimetic method using Ca(NO3)2.4H2O and (NH4)3PO4.3H2O as reagents and chondroitin sulfate as template. The crystalline phase, microstructure, chemical composition, morphology and thermal behavior of the composites obtained in the experiment were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscope (TEM), Thermogravimetry-Differential thermal analyzer (TG-DTA) and Elemental analyzer, respectively. The interaction between the functional groups of ChS and HA was investigated by electrical conductivity and UV-vis spectrum. The results demonstrate that the as-prepared powders with small amount of carbonate have the component similar to human bone. It can be concluded that the nucleation and growth of HA crystals occurred through the chemical interactions between the HA crystals and preorganized functional groups of the ChS template. Furthermore, the concentration of ChS significantly affects the morphology of the composites. Short fiberlike crystals could be obtained at a low concentration of ChS, but flakelike crystals could be synthesized using a high concentration (≥0.5 wt%) of ChS as template

  1. Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method

    Science.gov (United States)

    Zhang, Li; Yang, Guangrui; He, Guoxu; Wang, Li; Liu, Qiaoru; Zhang, Qiuxia; Qin, Dezhi

    2012-08-01

    In the present work, it is reported for Lysozyme-conjugated HgS nanocrystals with tunable sizes prepared at Lysozyme (Lyso) aqueous solutions by using biomimetic method. The obtained HgS nanoparticles with good dispersibility have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). The Lysozyme molecules can control nucleation and growth of HgS crystals by binding on the surface of nanocrystals to stabilize protein-capped nanoparticles. Quantum confinement effect of Lyso-conjugated HgS nanocrystals has been confirmed by UV-vis spectra. The nanoparticles exhibit a well-defined emission feature at about 470 nm. Fourier transform infrared (FT-IR) data are used to envisage the binding of nanoparticles with functional groups of Lysozyme. The results of circular dichroism (CD) spectra indicated that the formation of HgS nanocrystals can lead to conformational change of Lysozyme.

  2. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Mark Young; Trevor Douglas

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  3. Total Synthesis of (+)-Rubriflordilactone A.

    Science.gov (United States)

    Goh, Shermin S; Chaubet, Guilhem; Gockel, Birgit; Cordonnier, Marie-Caroline A; Baars, Hannah; Phillips, Andrew W; Anderson, Edward A

    2015-10-19

    Two enantioselective total syntheses of the nortriterpenoid natural product rubriflordilactone A are described, which use palladium- or cobalt-catalyzed cyclizations to form the CDE rings, and converge on a late-stage synthetic intermediate. These key processes are set up through the convergent coupling of a common diyne component with appropriate AB-ring aldehydes, a strategy that sets the stage for the synthetic exploration of other members of this family of natural products. PMID:26337920

  4. First total synthesis of (±)-sepicanin A

    Institute of Scientific and Technical Information of China (English)

    Jin Hui Yang; Wen Qian Huang; Jun Shan Luo; Dong Dong Guo; Yu Heng Zhang; Hong Jun Li

    2012-01-01

    A facile approach for the first total synthesis of naturally occurring geranylated flavanoids sepicanin A has been obtained with total yield 16% starting from 2,4,6-trihydroxyacetophenone after four steps.The key step was the protic acids (HCl or p-TsOH)-catalyzed benzopyrone formation in a protic polar solvent by deprotection and cyclization of chalcone in one step.

  5. First total synthesis of (±)-abyssinoflavanone V

    Institute of Scientific and Technical Information of China (English)

    Jin Hui Yang; Yan Min Zhao; Cong Bin Ji

    2008-01-01

    The total synthesis of (±)-abyssinoflavanone V was first achieved through C-prenylation, selective protection of phenolic hydroxyl group, aldol condensation, cyclization and deprotection starting from cheap 4-hydroxybenzaldehyde and 2,4,6-trihydroxyacetophenone, with total yield 24%. All structures of new compounds were confirmed by IR, 1H NMR and MS.

  6. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers

    International Nuclear Information System (INIS)

    Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on sulfonic-terminated self-assembled monolayer (SAM) in 1.5SBF with F- at 50 oC for 7 days. F- ions showed a marked effect on the composition and morphology of deposited HAp crystals. In the absence of F- ions, HAp containing CO32- were formed on SAM, and worm-like crystals of 200-300 nm in length aggregated to form a spherical morphology. When F- was added, HAp crystals containing both CO32- and F- were formed on SAM. Needle-shaped crystals of high aspect ratio and 1-2 μm in length grew elongated along the c-axial direction. In addition, these needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. After the process of ripening, the needles in bundle grew to large size of up to 10 μm in length, and still kept no crystal-crystal fusion like enamel HAp crystals. The formation of enamel-like HAp can be attributed to the substitute of F- for OH- by disturbing the normal progress of HAp formation on SAM. The results suggest potential applications in preparing a novel dental material by a simple method. -- Graphical abstract: Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on self-assembled monolayer (SAM) by a biomimetic process. The needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. Display Omitted

  7. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong [Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632 (China); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, 510632 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, 510632 (China)]. E-mail: tzhangym@jnu.edu.cn; Zhong Mei [Department of Stomatology, Affiliated Hospital of Jinan University, Guangzhou, 510632 (China)

    2007-05-16

    Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on sulfonic-terminated self-assembled monolayer (SAM) in 1.5SBF with F{sup -} at 50 {sup o}C for 7 days. F{sup -} ions showed a marked effect on the composition and morphology of deposited HAp crystals. In the absence of F{sup -} ions, HAp containing CO{sub 3} {sup 2-} were formed on SAM, and worm-like crystals of 200-300 nm in length aggregated to form a spherical morphology. When F{sup -} was added, HAp crystals containing both CO{sub 3} {sup 2-} and F{sup -} were formed on SAM. Needle-shaped crystals of high aspect ratio and 1-2 {mu}m in length grew elongated along the c-axial direction. In addition, these needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. After the process of ripening, the needles in bundle grew to large size of up to 10 {mu}m in length, and still kept no crystal-crystal fusion like enamel HAp crystals. The formation of enamel-like HAp can be attributed to the substitute of F{sup -} for OH{sup -} by disturbing the normal progress of HAp formation on SAM. The results suggest potential applications in preparing a novel dental material by a simple method. -- Graphical abstract: Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on self-assembled monolayer (SAM) by a biomimetic process. The needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. Display Omitted.

  8. The Total Synthesis of (+)-Pleuromutilin and Novel Analogues

    OpenAIRE

    Fazakerley, Neal James

    2014-01-01

    The increasing emergence of multi-drug-resistant microorganisms has led the World Health Organisation to plead for action to be taken against antimicrobial resistance. The fungal secondary metabolite (+)-pleuromutilin displays antibacterial activity with a novel mode of action: pleuromutilin derivatives bind to functionally important nucleotides within the peptidyl transfer centre of the prokaryotic ribosome and inhibit bacterial protein synthesis.The first non-racemic total synthesis of the ...

  9. Total synthesis and stereochemical revision of (+)-aeruginosin 298-A.

    Science.gov (United States)

    Wipf, P; Methot, J L

    2000-12-28

    [structure:see text] Novel routes toward both enantiomers of the bicyclic proline surrogate 2-carboxy-6-hydroxyoctahydroindole, i.e., Choi, were developed on the basis of the oxidative cyclization of L-tyrosine. Synthesis of the proposed sequence of (+)-aeruginosin 298-A did not provide the natural product. Incorporation of a D-leucine residue, in contrast, led to the total synthesis of this thrombin inhibitor. PMID:11150202

  10. Total Synthesis and Absolute Configuration of the Marine Norditerpenoid Xestenone

    Directory of Open Access Journals (Sweden)

    Hiroaki Miyaoka

    2009-11-01

    Full Text Available Xestenone is a marine norditerpenoid found in the northeastern Pacific sponge Xestospongia vanilla. The relative configuration of C-3 and C-7 in xestenone was determined by NOESY spectral analysis. However the relative configuration of C-12 and the absolute configuration of this compound were not determined. The authors have now achieved the total synthesis of xestenone using their developed one-pot synthesis of cyclopentane derivatives employing allyl phenyl sulfone and an epoxy iodide as a key step. The relative and absolute configurations of xestenone were thus successfully determined by this synthesis.

  11. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  12. Synthesis and Characterization of Biomimetic Hydroxyapatite Nanoconstruct Using Chemical Gradient across Lipid Bilayer.

    Science.gov (United States)

    Koirala, Mukund Bahadur; Nguyen, Tuyen Duong Thanh; Pitchaimani, Arunkumar; Choi, Seong-O; Aryal, Santosh

    2015-12-16

    In this study, we synthesized biomimetic hydroxyapatite nanoconstruct (nanosized hydroxyapatite, NHAp) using a double emulsion technique combined with a chemical gradient across a lipid bilayer for surface modification of a titanium (Ti) implant. The synthesized NHAp was characterized by dynamic light scattering, X-ray diffraction, transmission electron microscopy, and Fourier transform infrared (FTIR) spectroscopy, and it was further tested for its biocompatibility and in vitro proliferation efficacy using normal human osteoblasts (NHOst). The results showed that the synthesized NHAp had a hydrodynamic diameter of ∼200 nm with high aqueous stability. The chemistry of the NHAp was confirmed by FTIR spectroscopic analysis. Typical FTIR vibrational bands corresponding to the phosphate group (PO4(3-)) present in hydroxyapatite (HAp) were observed at 670, 960, and 1000 cm(-1). A broad band at 3500 cm(-1) confirmed the presence of a structural -OH group in the NHAp. Powder X-ray crystallographic diffraction further confirmed the formation of NHAp with characteristic reflections in (002), (211), (130), and (213) planes at respective 2θ degrees. These reflection planes are similar to those of typical HAp crystallized toward (002) and (211) crystallographic planes. The mechanism of the formation of NHAp was studied using the fluorescence resonance energy transfer (FRET) technique. The FRET study showed the fluorescent recovery of a donor fluorophore and the mechanism of the insertion of lipids into nanodroplets obtained from the first water-in-oil (w/o) emulsion during the formation of the second oil-in-water (o/w) emulsion. With these confirmations, we further studied NHOst cell proliferation on a Ti surface. When NHOst were cultured on the Ti surface coated with the NHAp, a distinct proliferation pattern and cell-cell communication via cytoplasmic extension on the substrate surface were observed. In contrast, a bare Ti surface showed diminished cell size with minimal

  13. Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: structural and magnetic characterization

    Science.gov (United States)

    Del Bianco, L.; Lesci, I. G.; Fracasso, G.; Barucca, G.; Spizzo, F.; Tamisari, M.; Scotti, R.; Ciocca, L.

    2015-06-01

    We realized the synthesis of a novel nanogranular system consisting of magnetite nanoparticles embedded in biomimetic carbonate hydroxyapatite (HA), for prospective uses in bone tissue engineering. An original two-step method was implemented: in the first step, magnetite nanoparticles are prepared by refluxing an aqueous solution of Fe(SO4) and Fe2(SO4)3 in an excess of tetrabutilammonium hydroxide acting as surfactant; then, the magnetite nanoparticles are coated with a Ca(OH)2 layer, to induce the growth of HA directly on their surface, by reaction of Ca(OH)2 with HPO42-. Two nanogranular samples were collected with magnetite content ˜0.8 and ˜4 wt%. The magnetite nanoparticles and the composite material were investigated by x-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. These analyses provided information on the structure of the nanoparticles (mean size ˜6 nm) and revealed the presence of surface hydroxyl groups, which promoted the subsequent growth of the HA phase, featuring a nanocrystalline lamellar structure. The magnetic study, by a superconducting quantum interference device magnetometer, has shown that both the as-prepared and the HA-coated magnetite nanoparticles are superparamagnetic at T = 300 K, but the magnetization relaxation process is dominated by dipolar magnetic interactions of comparable strength. In the three samples, a collective frozen magnetic regime is established below T ˜ 20 K. These results indicate that the magnetite nanoparticles tend to form agglomerates in the as-prepared state, which are not substantially altered by the HA growth, coherently with the creation of electrostatic hydrogen bonds among the surface hydroxyl groups.

  14. Methods for Improving Enzymatic Trans-glycosylation for Synthesis of Human Milk Oligosaccharide Biomimetics

    DEFF Research Database (Denmark)

    Zeuner, Birgitte; Jers, Carsten; Mikkelsen, Jørn Dalgaard;

    2014-01-01

    synthesis is a novel field of research in advanced food ingredient chemistry, involving the use of rare enzymes, which have until now mainly been studied for their biochemical significance, not for targeted biosynthesis applications. For the enzymatic synthesis of biofunctional glycans reaction parameter...... optimization to promote “reverse” catalysis with glycosidases is currently preferred over the use of glycosyl transferases. Numerous methods exist for minimizing the undesirable glycosidase-catalyzed hydrolysis and for improving the trans-glycosylation yields. This review provides an overview of the approaches......, enzyme recycling, and/or the use of cosolvents may significantly improve trans-glycosylation and biocatalytic productivity of the enzymatic reactions. Protein engineering is also a promising technique for obtaining high trans-glycosylation yields, and proof-of-concept for reversing sialidase activity...

  15. Biomimetic, Mild Chemical Synthesis of CdTe-GSH Quantum Dots with Improved Biocompatibility

    OpenAIRE

    Pérez-Donoso, José M.; Monrás, Juan P; Denisse Bravo; Adam Aguirre; Quest, Andrew F.; Igor O Osorio-Román; Aroca, Ricardo F.; Chasteen, Thomas G.; Vásquez, Claudio C.

    2012-01-01

    Multiple applications of nanotechnology, especially those involving highly fluorescent nanoparticles (NPs) or quantum dots (QDs) have stimulated the research to develop simple, rapid and environmentally friendly protocols for synthesizing NPs exhibiting novel properties and increased biocompatibility. In this study, a simple protocol for the chemical synthesis of glutathione (GSH)-capped CdTe QDs (CdTe-GSH) resembling conditions found in biological systems is described. Using only CdCl(2), K(...

  16. The total synthesis of 3b-hydroxynagilactone F

    NARCIS (Netherlands)

    Reuvers, J.T.A.

    1985-01-01

    The investigations described in this thesis deal with the total synthesis of physiologically active nor- and bisnorditerpenoid dilactones (fig.1).The goal was to design a synthetic route for this class of natural products and its derivatives. From a retrosynthe

  17. Total Synthesis of (±)-7-epi-Nemorosone

    Science.gov (United States)

    Zhang, Qiang; Porco, John A.

    2012-01-01

    A concise total synthesis of (±)-7-epi-nemorosone is reported. Our synthetic approach establishes a viable route to polycyclic polyprenylated acylphloroglucinol natural products (PPAP’s) bearing a C-7 endo prenyl sidechain. Key steps include retro-aldol-vinyl cerium addition to a hydroxy adamantane core scaffold and palladium-mediated deoxygenation. PMID:22449198

  18. Total Synthesis of Three New Dihydrostilbenes from Bulbophllum odoratissimum

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A total synthesis of three new dihydrostilbenes, 1, 2 and 3, which were isolated from Bulbophyllum odoratissimum Lindl. with significant cytotoxicity toward human cancer cell lines,was developed via Horner reaction etc. The natural products 1, 2 and 3 were obtained in 5.8%,6.6% and 5.9%, respectively.

  19. The First Total Synthesis of Triprenylquinone and Hydroquinones

    Institute of Scientific and Technical Information of China (English)

    Chun Hong LI; Xue Song CHEN; Guang Lian ZHOU; Zhi Xiang XIE; Ying LI

    2005-01-01

    First total synthesis of triprenylquinone and hydroquinones, three naturally occurring compound 1, 2 and (±) 3, have been achieved from readily available 2-bromo-5-methyl-1,4-dimethoxybenzene 4 and geranyl bromide. The triprenylquinone and hydroquinones precursor were readily prepared with use of a Julia reaction.

  20. Toward the total synthesis of ent-progesterone

    Czech Academy of Sciences Publication Activity Database

    Kapras, Vojtěch; Jahn, Ullrich

    Praha : Czech Chemical Society, 2014. s. 37. [Liblice 2014. Advances in Organic, Bioorganic and Pharmaceutical Chemistry /49./. 07.11.2014-09.11.2014, Lázně Bělohrad] Institutional support: RVO:61388963 Keywords : ent- steroids * total synthesis * radical cyclization Subject RIV: CC - Organic Chemistry

  1. Expedient total synthesis of pyrrothine natural products and analogs

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Givskov, Michael Christian; Nielsen, John

    2007-01-01

    This paper describes an expedient and straightforward total synthesis of the two pyrrothine natural products holomycin (7 steps, 11% overall) and xenorhabdin I (7 steps, 11% overall) and analogs thereof via a common late-stage intermediate. The pathway proceeds via the pyrrothine hydrochloride...

  2. Rifamycin Biosynthetic Congeners: Isolation and Total Synthesis of Rifsaliniketal and Total Synthesis of Salinisporamycin and Saliniketals A and B.

    Science.gov (United States)

    Feng, Yu; Liu, Jun; Carrasco, Yazmin P; MacMillan, John B; De Brabander, Jef K

    2016-06-01

    We describe the isolation, structure elucidation, and total synthesis of the novel marine natural product rifsaliniketal and the total synthesis of the structurally related variants salinisporamycin and saliniketals A and B. Rifsaliniketal was previously proposed, but not observed, as a diverted metabolite from a biosynthetic precursor to rifamycin S. Decarboxylation of rifamycin provides salinisporamycin, which upon truncation with loss of the naphthoquinone ring leads to saliniketals. Our synthetic strategy hinged upon a Pt(II)-catalyzed cycloisomerization of an alkynediol to set the dioxabicyclo[3.2.1]octane ring system and a fragmentation of an intermediate dihydropyranone to forge a stereochemically defined (E,Z)-dienamide unit. Multiple routes were explored to assemble fragments with high stereocontrol, an exercise that provided additional insights into acyclic stereocontrol during stereochemically complex fragment-assembly processes. The resulting 11-14 step synthesis of saliniketals then enabled us to explore strategies for the synthesis and coupling of highly substituted naphthoquinones or the corresponding naphthalene fragments. Whereas direct coupling with naphthoquinone fragments proved unsuccessful, both amidation and C-N bond formation tactics with the more electron-rich naphthalene congeners provided an efficient means to complete the first total synthesis of rifsaliniketal and salinisporamycin. PMID:27232659

  3. Biomimetic composite microspheres of collagen/chitosan/nano-hydroxyapatite: In-situ synthesis and characterization.

    Science.gov (United States)

    Teng, Shu-Hua; Liang, Mian-Hui; Wang, Peng; Luo, Yong

    2016-01-01

    The collagen/chitosan/hydroxyapatite (COL/CS/HA) composite microspheres with a good spherical form and a high dispersity were successfully obtained using an in-situ synthesis method. The FT-IR and XRD results revealed that the inorganic phase in the microspheres was crystalline HA containing carbonate ions. The morphology of the composite microspheres was dependent on the HA content, and a more desirable morphology was achieved when 20 wt.% HA was contained. The composite microspheres exhibited a narrow particle distribution, most of which ranged from 5 to 10 μm. In addition, the needle-like HA nano-particles were uniformly distributed in the composite microspheres, and their crystallinity and crystal size decreased with the HA content. PMID:26478351

  4. Rambutan peels promoted biomimetic synthesis of bioinspired zinc oxide nanochains for biomedical applications

    Science.gov (United States)

    Yuvakkumar, R.; Suresh, J.; Saravanakumar, B.; Joseph Nathanael, A.; Hong, Sun Ig; Rajendran, V.

    2015-02-01

    A naturally occurring rambutan peel waste was employed to synthesis bioinspired zinc oxide nanochains. Rambutan peels has the ability of ligating zinc ions as a natural ligation agent resulting in zinc oxide nanochains formation due to its extended polyphenolic system over incubation period. Successful formation of zinc oxide nanochains was confirmed employing transmission electron microscopy studies. About 60% and ∼40% cell viability was lost and 50% and 10% morphological change was observed in 7 and 4 days incubated ZnO treated cells compared with control. Moreover, 50% and 55% of cell death was observed at 24 and 48 h incubation with 7 days treated ZnO cells and hence alters and disturbs the growth of cancer cells and could be used for liver cancer cell treatment.

  5. The Catalytic Enantioselective Total Synthesis of (+)‐Liphagal

    DEFF Research Database (Denmark)

    Day, Joshua J.; McFadden, Ryan M.; Virgil, Scott C.;

    2011-01-01

    Ring a ding: The first catalytic enantioselective total synthesis of the meroterpenoid natural product (+)-liphagal is disclosed. The approach showcases a variety of technology including enantioselective enolate alkylation, a photochemical alkyne-alkene [2+2] reaction, microwaveassisted metal...... establish the trans homodecalin system found in the natural product...... catalysis, and an intramolecular aryne capture cyclization reaction. Pivotal to the successful completion of the synthesis was a sequence involving ring expansion from a [6-5-4] tricycle to a [6-7] bicyclic core followed by stereoselective hydrogenation of a sterically occluded tri-substituted olefin to...

  6. Catalytic Asymmetric Total Synthesis of Hedyosumins A, B, and C.

    Science.gov (United States)

    Sun, Wang-Bin; Wang, Xuan; Sun, Bing-Feng; Zou, Jian-Ping; Lin, Guo-Qiang

    2016-03-18

    The first and asymmetric total synthesis of hedyosumins A, B, and C was accomplished in 13-14 steps from simple starting materials. The essential tools that allow us to access the tetracyclic skeleton include an organocatalytic [4 + 3] cycloaddition reaction, an intramolecular aldol condensation, and an intramolecular carboxymercuration/demercuration enabled lactonization. A CBS-catalyzed asymmetric reduction was employed to boost the ee of the synthetic natural products to an excellent level. This synthesis established the absolute configurations of hedyosumins A, B, and C. PMID:26925758

  7. Concise total synthesis and structural revision of (+)-pestalazine B.

    Science.gov (United States)

    Pérez-Balado, Carlos; de Lera, Angel R

    2010-11-21

    A convergent synthesis of the proposed structure of (+)-pestalazine B has been achieved in 4 steps using the N-alkylation of an unprotected tryptophan diketopiperazine with a 3a-bromopyrrolidinoindoline as the key step. Although its structure was confirmed by X-ray analysis, the spectroscopic data did not match those of the natural product. The versatility of the methodology allowed the preparation of several diastereomers, and the database generated led to the proposal of an isomeric structure for the natural alkaloid where the d-leucine and d-phenylalanine residues exchanged positions, which was corroborated by total synthesis. PMID:20848034

  8. Stereoselective synthesis of epoxides and diepoxides. Applications in total synthesis of natural products and analogues

    OpenAIRE

    García Ruiz, María Cristina

    2014-01-01

    The present work is on the total synthesis of the natural compounds and/or analogues of Bengamides, Gummiferol and Depudecin. The target molecules, selected in virtue of their prominent biological activity as antibiotic and antitumor agents are featured by the presence of one or two epoxide groups and were synthesized by application of a novel methodology of asymmetric epoxidation based on the use of a new class of chiral sulfur ylides. The aim of every total synthesis discussed in this thesi...

  9. Short, Enantioselective Total Synthesis of Highly Oxidized Taxanes.

    Science.gov (United States)

    Yuan, Changxia; Jin, Yehua; Wilde, Nathan C; Baran, Phil S

    2016-07-11

    In the realm of natural product chemistry, few isolates have risen to the level of fame justifiably accorded to Taxol (1) and its chemical siblings. This report describes the most concise route to date for accessing the highly oxidized members of this family. As representative members of taxanes containing five oxygen atoms, decinnamoyltaxinine E (2) and taxabaccatin III (3), have succumbed to enantioselective total synthesis for the first time in only 18 steps from a simple olefin starting material. The strategy holistically mimics nature's approach (two-phase synthesis) and features a carefully choreographed sequence of stereoselective oxidations and a remarkable redox-isomerization to set the key trans-diol present in 2 and 3. This work lays the critical groundwork necessary to access even higher oxidized taxanes such as 1 in a more practical fashion, thus empowering a medicinal chemistry campaign that is not wedded to semi-synthesis. PMID:27240325

  10. [Biomimetic sensors in biomedical research].

    Science.gov (United States)

    Gayet, Landry; Lenormand, Jean-Luc

    2015-01-01

    The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine. PMID:26152170

  11. Total synthesis and development of bioactive natural products

    OpenAIRE

    TATSUTA, Kuniaki

    2008-01-01

    The first total synthesis and development of a variety of bioactive natural products have been accomplished by using carbohydrates as a chiral source. In addition, practically useful intermediates have been created, analogs of natural products have been prepared, their structure-activity relationships studied, and the large-scale preparations of medicinally useful compounds established. The key target molecules have been the “Big Four” antibiotics (macrolides, aminoglycosides, β-lactams and t...

  12. Total synthesis of an oxepine natural product, (±)-janoxepin.

    Science.gov (United States)

    Doveston, Richard G; Steendam, René; Jones, Stuart; Taylor, Richard J K

    2012-02-17

    The total synthesis of (±)-janoxepin, a novel antiplasmodial d-leucine derived oxepine-pyrimidinone-ketopiperazine isolated from the fungus Aspergillus janus, is described. The cornerstones of the synthetic route are pyrimidinone preparation, ring-closing metathesis, aldol introduction of the enamide, and dihydro-oxepine elaboration. This synthetic route proved very efficient for the formation of a number of janoxepin analogues, including dihydro-janoxepin and tetrahydro-janoxepin. PMID:22288766

  13. First total synthesis of two nematicidal prenylated flavanones

    Institute of Scientific and Technical Information of China (English)

    Jin Hui Yang; Shi Zhi Jiang; Yan Min Zhao; Yun Feng Li; Cong Bin Ji; Wan Yi Liu

    2009-01-01

    The total synthesis of(±)-8-(3-methylbut-2-enyl)-2-phenyl-2,3-dihydrochromen-4-one and(±)-2-(4-hydroxyphenyl)-8-(3-methylbut-2-enyl)-2,3-dihydrochromen-4-one was first achieved through C-prenylation,protection of phenolic hydroxyl group,aldol condensation,cyclization and deprotection starting from cheap benzaldehyde,4-hydroxybenzaldehyde and 2-hydroxyacetophenone,with total yield of 20 and 16.3%.All structures of new compounds were confirmed by IR,1H NMR and MS.

  14. A Highly Convergent Total Synthesis of Leustroducsin B.

    Science.gov (United States)

    Trost, Barry M; Biannic, Berenger; Brindle, Cheyenne S; O'Keefe, B Michael; Hunter, Thomas J; Ngai, Ming-Yu

    2015-09-16

    Leustroducsin B exhibits a large variety of biological activities and unique structural features. An efficient and highly convergent total synthesis of Leustroducsin B was achieved in 17 longest linear and 39 total steps by disconnecting the molecule into three fragments having similar levels of complexity. These pieces were connected via a highly efficient chelate-controlled addition of a vinyl zincate to an α-hydroxy ketone and a silicon-mediated cross-coupling. The stereochemistry of the central and western fragments was set catalytically in high yields and excellent de by a zinc-ProPhenol-catalyzed aldol reaction and a palladium-catalyzed asymmetric allylic alkylation. PMID:26313159

  15. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A

    International Nuclear Information System (INIS)

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A

  16. Total synthesis of the marine cyanobacterial cyclodepsipeptide apratoxin A

    OpenAIRE

    Chen, Jiehao; Forsyth, Craig J.

    2004-01-01

    A total synthesis of apratoxin A was developed. Apratoxin A, isolated from Lyngbya spp. cyanobacteria, is representative of a growing class of marine cyanobacterial cyclodepsipeptides wherein discrete polypeptide and polyketide domains are merged by ester and amide or amide-derived linkages. In the apratoxins, the N terminus of the peptide domain [(Pro)-(N-Me-Ile)-(N-Me-ala)-(O-Me-Tyr)-(moCys)] is a modified vinylogous cysteine that is joined to a novel ketide [3,7-dihydroxy-2,5,8,8-tetrameth...

  17. Total Synthesis and Biological Assessment of Mandelalide A.

    Science.gov (United States)

    Brütsch, Tobias Michael; Bucher, Pascal; Altmann, Karl-Heinz

    2016-01-22

    A new convergent total synthesis of the marine macrolide mandelalide A (1) has been developed that is based on macrocyclic ring closure by a Shiina-type macrolactonization and the construction of the requisite precursor seco acid by a highly efficient Sonogashira cross-coupling reaction between two fragments of comparable complexity. Key steps in the elaboration of the acid building block were the enantioselective, catalytic addition of a protected acetylene to crotonaldehyde and the construction of the tetrahydropyran unit that is embedded in the macrocycle by means of an acid-catalyzed Prins reaction. The synthesis of the alcohol fragment features the formation of the trisubstituted tetrahydrofuran ring through an acetal cleavage/epoxide opening cascade reaction and a rarely used radical alkynylation of a primary alkyl iodide. Intriguingly, the dihydroxylation of a terminal double bond as part of the synthesis of this building block gave the same major product for both the α- and β-AD-mix reagents, albeit with moderate or low selectivity. Synthetic mandelalide A (1) was a potent proliferation inhibitor of A549, HT460, and H1299 human lung cancer cells in vitro, but not of SK-N-SH neuroblastoma cells. However, in no case did we observe complete cell kill even at the highest compound concentration tested (5 μm). PMID:26639765

  18. Cobalt-catalyzed diastereoselective synthesis of C-furanosides. Total synthesis of (-)-isoaltholactone.

    Science.gov (United States)

    Nicolas, Lionel; Izquierdo, Eva; Angibaud, Patrick; Stansfield, Ian; Meerpoel, Lieven; Reymond, Sébastien; Cossy, Janine

    2013-12-01

    An array of C-aryl and C-vinyl furanosides were prepared in good yields and diastereoselectivities from C-halogeno furanosides either with aryl Grignard or with vinyl Grignard using the convenient Co(acac)3/TMEDA catalytic system. This method is illustrated by the total synthesis of the (-)-isoaltholactone. PMID:24127819

  19. Total synthesis of cytotoxic metabolite ( ± )-desmethyldiaportinol from Ampelomyces sp.

    Science.gov (United States)

    Saeed, Aamer; Qasim, Muhammad

    2014-01-01

    A concise total synthesis of ( ± )-desmethyldiaportinol isolated from Ampelomyces sp. is described. Microwave-assisted cyclocondensation of 3,5-dimethoxyhomopthalic acid with 3,4-dibromobutanoyl chloride afforded the 3-(2,3-dibromopropyl)-6, 8-dimethoxyisocoumarin in 2-3 min as the pivotal step. The 3,4-dibromobutanoyl chloride was itself synthesised from 3-butenoic acid via bromination in carbon tetrachloride at room temperature to yield 3,4-dibromobutanoic acid followed by reaction with thionyl chloride. The replacement of bromo- by hydroxyl substituent was achieved under mild conditions involving the refluxing in a mixture of acetone and water to provide ( ± )-3-(2,3-dihydroxypropyl)-6,8-dimethoxyisocoumarin which on complete demethylation furnished the title natural product. PMID:24303787

  20. Total Synthesis and Stereochemical Revision of Phacelocarpus 2-Pyrone A.

    Science.gov (United States)

    Ronson, Thomas O; Burns, Michael J; Voelkel, Martin H H; Evans, Kieren J; Lynam, Jason M; Taylor, Richard J K; Fairlamb, Ian J S

    2015-12-21

    The first total synthesis of phacelocarpus 2-pyrone A is reported. The original natural compound was tentatively assigned (by NMR spectroscopy) as containing two cis-alkenes and a trans-vinyl ether connected to a 2-pyrone ring motif. Our computational predictions indicated that a cis-vinyl ether motif was equally feasible. Attempts to prepare the trans-vinyl ether were met with no success. The all cis-target compound was synthesised in nine steps, employing key regio- and stereoselective reactions including Au(I)-catalysed vinyl etherification, Wittig alkenylation and end-game Stille macrocyclisation. Analysis of the NMR data enabled identification and confirmation of the correct structure of phacelocarpus 2-pyrone A, containing a cis-vinyl ether. Our studies pave the way for future development of methodologies to these structurally distinct pyrone skipped-polyenyne natural products. PMID:26568186

  1. Catalytic asymmetric total synthesis of (-)-galanthamine and (-)-lycoramine.

    Science.gov (United States)

    Li, Lei; Yang, Qiao; Wang, Yuan; Jia, Yanxing

    2015-05-18

    The catalytic asymmetric total syntheses of (-)-galanthamine (1) and (-)-lycoramine (2) have been achieved by using a conceptually new strategy featuring two metal-catalyzed reactions as the key steps. A new method for the construction of 3,4-fused benzofurans has been developed through a palladium-catalyzed intramolecular Larock annulation reaction, which was successfully applied to the construction of the ABD tricyclic skeleton of 1 and 2. To achieve the asymmetric synthesis of 1 and 2, a Sc(III)/N,N'-dioxide complex was used to catalyze the enantioselective conjugate addition of 3-alkyl-substituted benzofuranone to methyl vinyl ketone for the construction of a chiral quaternary carbon center. PMID:25847447

  2. Sustainable Biomimetic Approach to Nanomaterials and Applications of Nano-Catalysts in Green Synthesis and Environmental Remediation.

    Science.gov (United States)

    The presentation summarizes our sustainable chemical synthesis activity involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions. The synthesis of heterocyclic compounds, coupling reactions, and a vari...

  3. Studies towards the total synthesis of novel marine diterpene havellockate. Construction of the tetracyclic core

    OpenAIRE

    Mehta, Goverdhan; Kumaran, Senthil R

    2001-01-01

    The synthesis of the tetracyclic core present in the novel marine diterpenoid havellockate 1 has been accomplished from the readily available endo-dicyclopentadienone-10-ethylene ketal 3 as a prelude to the projected total synthesis of the natural product.

  4. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic nad+/nadh co-factors and [cp*rh(bpy)h]+ for selective organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Jochen; Hollman, Frank; Ho, The Vinh; Schnyder, Adrian; Fish, Richard H.; Schmid, Andreas

    2004-03-09

    The biocatalytic, regioselective hydroxylation of 2-hydroxybiphenyl to the corresponding catechol was accomplished utilizing the monooxygenase 2-hydroxybiphenyl 3-monooxygenase (HbpA). The necessary natural nicotinamide adenine dinucleotide (NAD{sup +}) co-factor for this biocatalytic process was replaced by a biomimetic co-factor, N-benzylnicotinamide bromide, 1a. The interaction between the flavin (FAD) containing HbpA enzyme and the corresponding biomimetic NADH compound, N-benzyl-1,4-dihdronicotinamide, 1b, for hydride transfers, was shown to readily occur. The in situ recycling of the reduced NADH biomimic 1b from 1a was accomplished with [Cp*Rh(bpy)H](Cl); however, productive coupling of this regeneration reaction to the enzymatic hydroxylation reaction was not totally successful, due to a deactivation process concerning the HbpA enzyme peripheral groups; i.e., -SH or -NH{sub 2} possibly reacting with the precatalyst, [Cp*Rh(bpy)(H{sub 2}O)](Cl){sub 2}, and thus inhibiting the co-factor regeneration process. The deactivation mechanism was studied, and a promising strategy of derivatizing these peripheral -SH or -NH{sub 2} groups with a polymer containing epoxide was successful in circumventing the undesired interaction between HbpA and the precatalyst. This latter strategy allowed tandem co-factor regeneration using 1a or 2a, [Cp*Rh(bpy)(H2O)](Cl){sub 2}, and formate ion, in conjunction with the polymer bound, FAD containing HbpA enzyme to provide the catechol product.

  5. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    OpenAIRE

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera lea...

  6. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  7. Biomimetic synthesis of poly(lactic-co-glycolic acid/multi-walled carbon nanotubes/apatite composite membranes

    Directory of Open Access Journals (Sweden)

    H. L. Zhang

    2012-08-01

    Full Text Available Bioactive guided tissue regeneration (GTR membrane has had some success for periodontal therapy. In this study, poly(lactic-co-glycolic acid (PLGA/multi-walled carbon nanotubes (MWNTs composite membranes were incubated in three supersaturated calcification solutions (SCS of different pH values for 21 days to prepare a PLGA/MWNTs/apatite composite. Scanning electron microscope (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, energy dispersive spectroscopy (EDS, water contact angle measurement and mechanical testing were used for characterization. It was found that after 21 days incubation, apatite with low crystallite size and crystallinity was formed on the PLGA/MWNTs composite membranes. The Ca-poor carbapatite was similar in morphology and composition to that of natural bone. The size and shape of the apatite crystals immersed in three SCS were different from each other. The hydrophilicity and mechanical properties of the PLGA/MWNTs composite membranes were significantly enhanced after mineralization. This indicated that biomimetic mineralization may be an effective method to improve the biocompatibility and bone inductivity of certain materials. The PLGA/MWNTs/apatite composites may be potentially useful in GTR applications, particularly as GTR membranes for periodontal tissue regeneration.

  8. Substrate-Controlled Asymmetric Total Synthesis and Structure Revision of (-)-Bisezakyne A.

    Science.gov (United States)

    Shin, Iljin; Lee, Dongjoo; Kim, Hyoungsu

    2016-09-01

    The first asymmetric total synthesis and subsequent structure revision of (-)-bisezakyne A, a Laurencia C15 acetogenin from Alpysia oculifera, has been accomplished. Our substrate-controlled synthesis of this oxolane natural product features a highly stereoselective "protecting-group-dependent" intramolecular amide enolate alkylation strategy for the synthesis of the key 9,10-trans-9,12-cis-10-hydroxytetrahydrofuran intermediate through "nonchelate" control. In addition, our synthesis determined the absolute configuration of the halogenated marine natural product. PMID:27551943

  9. A Global and Local Desymmetrization Approach to the Synthesis of Steroidal Alkaloids: Stereocontrolled Total Synthesis of Paspaline

    OpenAIRE

    Sharpe, Robert J.; Johnson, Jeffrey S.

    2015-01-01

    A stereocontrolled total synthesis of the indole diterpenoid natural product paspaline is described. Key steps include a highly diastereoselective enzymatic desymmetrization, substrate-directed epoxidation, Ireland-Claisen rearrangement, and diastereotopic group selective C–H acetoxylation to assemble the target with excellent stereofidelity. The route and results described herein outline complementary conceptual disconnections in the arena of steroid natural product synthesis.

  10. Synthesis of 1-Substituted Isoquinolines by Heterocyclization of TosMIC Derivatives: Total Synthesis of Cassiarin A.

    Science.gov (United States)

    Gutiérrez, Sara; Coppola, Anna; Sucunza, David; Burgos, Carolina; Vaquero, Juan J

    2016-07-15

    A new method for the synthesis of 1-substituted isoquinolines by a heterocyclization that involves α-benzyl TosMIC derivatives and different electrophiles has been developed. This methodology has been successfully applied to a total synthesis of cassiarin A, an alkaloid with potent antiplasmodial activity against Plasmodium falciparum. PMID:27351205

  11. The CP molecule labyrinth: a paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis.

    Science.gov (United States)

    Nicolaou, K C; Baran, Phil S

    2002-08-01

    Imagine an artist carving a sculpture from a marble slab and finding gold nuggets in the process. This thought is not a far-fetched description of the work of a synthetic chemist pursuing the total synthesis of a natural product. At the end of the day, he or she will be judged by the artistry of the final work and the weight of the gold discovered in the process. However, as colorful as this description of total synthesis may be, it does not entirely capture the essence of the endeavor, for there is much more to be told, especially with regard to the contrast of frustrating failures and exhilarating moments of discovery. To fully appreciate the often Herculean nature of the task and the rewards that accompany it, one must sense the details of the enterprise behind the scenes. A more vivid description of total synthesis as a struggle against a tough opponent is perhaps appropriate to dramatize these elements of the experience. In this article we describe one such endeavor of total synthesis which, in addition to reaching the target molecule, resulted in a wealth of new synthetic strategies and technologies for chemical synthesis. The total synthesis of the CP molecules is compared to Theseus' most celebrated athlos (Greek for exploit, accomplishment): the conquest of the dreaded Minotaur, which he accomplished through brilliance, skill, and bravery having traversed the famous labyrinth with the help of Ariadne. This story from Greek mythology comes alive in modern synthetic expeditions toward natural products as exemplified by the total synthesis of the CP molecules which serve as a paradigm for modern total synthesis endeavors, where the objectives are discovery and invention in the broader sense of organic synthesis. PMID:12203464

  12. Total Synthesis of the Proposed Structure of the Macrolide Queenslandonand Towards the Total Synthesis of Natural Products Leiodermatolide and (–)-Englerin A

    OpenAIRE

    Navickas, Vaidotas

    2011-01-01

    The dissertation consists of three parts. The first part deals with the total synthesis of macrolide queenslandon. Key steps in the synthesis were a cross metathesis reaction to construct the aliphatic fragment and a Mitsunobu macrolactonization to give a macrolactone. All chiral centers were established from D-(+)-ribose. The proposed structure of the macrolide queenslandon has been reached and it was proved that the postulated structure was proposed incorrectly. The second part describ...

  13. Total synthesis and evaluation of [18F]MHMZ

    DEFF Research Database (Denmark)

    Herth, Matthias M; Debus, Fabian; Piel, Markus;

    2008-01-01

    Radiochemical labeling of MDL 105725 using the secondary labeling precursor 2-[(18)F]fluoroethyltosylate ([(18)F]FETos) was carried out in yields of approximately 90% synthesizing [(18)F]MHMZ in a specific activity of approximately 50MBq/nmol with a starting activity of approximately 3GBq. Overall...... radiochemical yield including [(18)F]FETos synthon synthesis, [(18)F]fluoroalkylation and preparing the injectable [(18)F]MHMZ solution was 42% within a synthesis time of approximately 100 min. The novel compound showed excellent specific binding to the 5-HT(2A) receptor (K(i)=9.0 nM) in vitro and promising in...

  14. Enantioselective total synthesis of (R)-(−)-complanine

    OpenAIRE

    Kamanos, Krystal A D; Jonathan M. Withey

    2012-01-01

    A route is described for the enantioselective synthesis of (R)-(−)-complanine, a marine natural product isolated from Eurythoe complanata, and known to be a causative agent in inflammation. An organocatalytic, asymmetric oxyamination of a homoconjugated all-Z-dienal intermediate provides versatile and efficient access to the natural product.

  15. Enantioselective total synthesis of (R)-(−)-complanine

    OpenAIRE

    Kamanos, Krystal A D; Jonathan M. Withey

    2012-01-01

    A route is described for the enantioselective synthesis of (R)-(−)-complanine, a marine natural product isolated from Eurythoe complanata, and known to be a causative agent in inflammation. An organocatalytic, asymmetric oxyamination of a homoconjugated all-Z-dienal intermediate provides versatile and efficient access to the natural product.

  16. The total chemical synthesis of polymer/graphene nanocomposite films.

    Science.gov (United States)

    Salvatierra, Rodrigo V; Cava, Carlos E; Roman, Lucimara S; Oliveira, Marcela M; Zarbin, Aldo J G

    2016-01-28

    A versatile and room temperature synthesis of thin films of polymer/graphene is reported. Drastically differing from other methods, not only the polymer but also the graphene are completely built from their simplest monomers (thiophene and benzene) in a one-pot polymerization reaction at a liquid-liquid interface. The materials were characterized and electronic properties are presented. PMID:26658554

  17. A Concise Total Synthesis of S-(+)-Tylophorine

    Institute of Scientific and Technical Information of China (English)

    JIN,Zhong; WANG,Qing-Min; LI,Hao; LIU,Yu-Xiu; LI,Shi-Pu; HUANG,Run-Qiu

    2004-01-01

    @@ Phenanthroindolizidine alkaloids, which exhibit extensively biological properties, are widely present at various plants of the Asclepiadaceae family.[1] The significantly biological importance of these natural products has attracted considerable synthetic efforts.[2] We herein report an efficiently asyinmetric synthesis of S-(+)-tylophorine (1), as a typically representative alkaloids.

  18. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    Science.gov (United States)

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  19. Expedient access to enantiopure cyclopentanic natural products: total synthesis of (-)-cyclonerodiol.

    Science.gov (United States)

    Pérez Morales, Carmen; Mar Herrador, M; Quílez del Moral, José F; Barrero, Alejandro F

    2015-01-01

    Following the principles of collective total synthesis, a number of natural products sharing an optically pure, multifunctional, cyclopentanic core were synthesized from a common precursor: plinol A (1). This intermediate was efficiently obtained in only four steps from (-)-linalool (2) using as the key step a Ti(III)-mediated diastereoselective radical cyclization. The feasibility of this approach was confirmed with the expedient enantiospecific synthesis of cyclonerodiol (3), and the formal synthesis of chocol G (4) and piperitone (5). PMID:25920207

  20. Total Synthesis of Nominal Cyclocinamide B and Investigation into the Identity of the Cyclocinamides

    OpenAIRE

    Curzon, Stephanie S.; Garcia, Jessica M.; Konopelski, Joseph P.

    2014-01-01

    The total synthesis of nominal cyclocinamide B, a cyclic peptide marine natural product, is reported together with an isomer of nominal cyclocinamide A. Initial attempts at the synthesis of the title compounds by inclusion of a turn inducer failed. However, direct synthesis succeeded in formation of the 14-membered cyclic peptide structure. Comparison of the data from all synthetic cyclocinamide A and B compounds with those of the natural products leads to the conclusion that the two natural ...

  1. Progress Toward the Total Synthesis of Vinigrol and Hibarimicin B

    OpenAIRE

    Milgram, Benjamin Charles

    2013-01-01

    Vinigrol is a structurally unique diterpenoid natural product featuring a tricyclo[4.4.4.0.4a,8a]tetradecene carbon skeleton containing eight contiguous stereocenters and a challenging oxygenation pattern. Vinigrol has been demonstrated to possess a wide array of biological activities including tumor necrosis factor (TNF) antagonism, antihypertensive activity, and platelet aggregation inhibitory activity. Our first-generation plan for the synthesis of vinigrol utilized a cascade reaction sequ...

  2. Total Synthesis of Kealiinines A-C, Kealiiquinone, 2-Deoxy-2-aminokealiiquinone and Study Towards Total Synthesis of Spirocalcaridines A-B

    Science.gov (United States)

    Das, Jayanta Kumar

    Our group is mainly interested in the total synthesis of imidazole-containing alkaloids along with other kinds of alkaloids. A new family of imidazole alkaloids, the Leucetta alkaloids, is a group of 60 or so 2-aminoimidazole natural products found in marine sponges, which have received substantial attention recently because of their challenging structures and strong biological activities. Over the past few years, our laboratory has developed several synthetic methods for the total synthesis of 2-aminoimidazole alkaloids using site selective functionalization of polyhaloimidazoles. By using the above synthetic strategy, the development of high yielding and protecting group-free total syntheses of the reported structures of the Leucetta alkaloids kealiinine A-C has been accomplished. In addition to the challenging syntheses of these, our data unequivocally prove that the reported structures of those natural products did not match synthetic material due to discrepancies in the interpretation of spectroscopic data during initial isolation and characterization. Finally, the correct structure assignment was achieved with the help of extensive experimentation using 2D NMR spectroscopy (HMBC, HSQC and ROESY) and X-ray crystallography of these synthetic natural products. A second set of targets was accessed using a biosynthetic guided strategy according to which, kealiinine C would serve as a precursor to kealiiquinone and 2-deoxy-2-aminokealiiquinone. The synthesis of both alkaloids was completed from a late stage intermediate from the kealiinine C synthesis by oxidation. Although the first total synthesis of kealiiquinone was accomplished by Ohta et al. in 1995, the current method was protecting group-free and required only 6 steps in comparison to 12 steps by the Japanese group. The first total synthesis of the 2-amino congener was also accomplished. After successful syntheses of those natural products, in collaboration with Dr. Mandal's group, the cytotoxicity of these

  3. A carbohydrate approach for the formal total synthesis of (−-aspergillide C

    Directory of Open Access Journals (Sweden)

    Pabbaraja Srihari

    2014-12-01

    Full Text Available An enantioselective formal total synthesis of aspergillide C is accomplished using commercially available tri-O-acetyl-D-galactal employing a Ferrier-type C-glycosylation, utilizing a Trost hydrosilylation and protodesilylation as key reactions.

  4. Total synthesis and allelopathic activity of cytosporones A-C

    Energy Technology Data Exchange (ETDEWEB)

    Zamberlam, Charles E.M.; Meza, Alisson; Lima, Denis P. de; Beatriz, Adilson [Centro de Ciencias Exatas e Tecnologia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Leite, Carla Braga; Marques, Maria Rita [Centro de Ciencias Biologicas e da Saude, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil)

    2012-07-01

    The search for efficient, environmentally friendly herbicides has been the focus of numerous studies on the organic synthesis of compounds isolated from natural sources. Cytosporones, which are phenolic lipids isolated from fungi, exhibit noteworthy biological properties. This paper reports the preparation of cytosporones A-C from the same starting material through a short synthetic route, with good yields. All compounds were tested for allelopathic activity on lettuce (Lactuca sativa L) seeds. Cytosporone A and its methylated precursor showed remarkable allelopathic activity, inhibiting seed germination and plantule growth. (author)

  5. Total synthesis and allelopathic activity of cytosporones A-C

    International Nuclear Information System (INIS)

    The search for efficient, environmentally friendly herbicides has been the focus of numerous studies on the organic synthesis of compounds isolated from natural sources. Cytosporones, which are phenolic lipids isolated from fungi, exhibit noteworthy biological properties. This paper reports the preparation of cytosporones A-C from the same starting material through a short synthetic route, with good yields. All compounds were tested for allelopathic activity on lettuce (Lactuca sativa L) seeds. Cytosporone A and its methylated precursor showed remarkable allelopathic activity, inhibiting seed germination and plantule growth. (author)

  6. Total Synthesis of Sporolide B and 9-epi-Sporolide B

    OpenAIRE

    Nicolaou, K. C.; Wang, Jianhua; Tang, Yefeng; Botta, Lorenzo

    2010-01-01

    The total synthesis of the structurally unique secondary metabolite sporolide B (1b, Figure 1) is described. The total synthesis of 1b was developed on the basis of preliminary studies that revealed the reactivity of an appropriate o-quinone as a diene system toward a number of indene derivatives as dienophiles, first in intermolecular and thence intramolecular settings. Thus, substrates were devised (37, Scheme 5; 75, Scheme 11) that underwent exquisite intramolecular [4+2] cycloaddition rea...

  7. Total synthesis of amiclenomycin, an inhibitor of biotin biosynthesis.

    Science.gov (United States)

    Mann, Stéphane; Carillon, Sophie; Breyne, Olivier; Marquet, Andrée

    2002-01-18

    We describe the first synthesis of amiclenomycin, a natural product that has been found to inhibit biotin biosynthesis and, as a consequence, to exhibit antibiotic properties. Structure 1, with a trans relationship between the ring substituents. had previously been proposed for amiclenomycin on the basis of its 1H NMR spectrum. We have prepared the trans and cis isomers 1 and 2 by unequivocal routes and we conclude that the natural product is in fact the cis isomer 2. The properly substituted cyclohexadienyl rings were constructed first. A cycloaddition reaction between 1,2-di(phenylsulfonyl)ethylene and the N-allyloxycarbonyl diene 13, followed by reductive elimination of the phenylsulfinyl groups, gave the cis isomer 15. To obtain the trans isomer, the O-trimethylsilyl diene was used to give the cis hydroxylated Diels-Alder adduct 33, which was transformed into the corresponding trans amino derivative by means of a Mitsunobu reaction. The L-alpha-amino acid functionality was introduced by means of a Strecker reaction on the aldehydes 16 and 42, followed by enzymatic hydrolysis with immobilised pronase. PMID:11843156

  8. Biomimetically inspired short access to the 2-aminoimidazole-fused tetracyclic core of (+/-)-dibromoagelaspongin.

    Science.gov (United States)

    Picon, Sylvain; Tran, Huu Dau Elise; Martin, Marie-Thérèse; Retailleau, Pascal; Zaparucha, Anne; Al-Mourabit, Ali

    2009-06-18

    A six-step synthesis of the tetracyclic core of the natural compound (+/-)-dibromoagelaspongin, isolated from Agelas sp. Sponge, was achieved from the commercially available 5-aminopentan-1-ol, 2-trichloroacetylpyrrole, and 2-aminopyrimidine. Following a biomimetic inspired approach, successive oxidative reactions including the final DMDO biomimetic oxidation gave the interesting triaminomethane-fused core. PMID:19445491

  9. Divergent solid-phase synthesis of natural product-inspired bipartite cyclodepsipeptides: total synthesis of seragamide A.

    Science.gov (United States)

    Arndt, Hans-Dieter; Rizzo, Stefano; Nöcker, Christina; Wakchaure, Vijay N; Milroy, Lech-Gustav; Bieker, Vanessa; Calderon, Abram; Tran, Tuyen T N; Brand, Silke; Dehmelt, Leif; Waldmann, Herbert

    2015-03-27

    Macrocyclic natural products (NPs) and analogues thereof often show high affinity, selectivity, and metabolic stability, and methods for the synthesis of NP-like macrocycle collections are of major current interest. We report an efficient solid-phase/cyclorelease method for the synthesis of a collection of macrocyclic depsipeptides with bipartite peptide/polyketide structure inspired by the very potent F-actin stabilizing depsipeptides of the jasplakinolide/geodiamolide class. The method includes the assembly of an acyclic precursor chain on a polymeric carrier, terminated by olefins that constitute complementary fragments of the polyketide section and cyclization by means of a relay-ring-closing metathesis (RRCM). The method was validated in the first total synthesis of the actin-stabilizing cyclodepsipeptide seragamide A and the synthesis of a collection of structurally diverse bipartite depsipeptides. PMID:25694199

  10. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    Science.gov (United States)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  11. Total Synthesis, Structure Revision, and Absolute Configuration of (−)-Brevenal

    OpenAIRE

    Fuwa, Haruhiko; Ebine, Makoto; Bourdelais, Andrea J.; Baden, Daniel G.; Sasaki, Makoto

    2006-01-01

    Total synthesis of structure 1 originally proposed for brevenal, a nontoxic polycyclic ether natural product isolated from the Florida red tide dinoflagellate, Karenia brevis, was accomplished. The key features of the synthesis involved (i) convergent assembly of the pentacyclic polyether skeleton based on our developed Suzuki–Miyaura coupling chemistry and (ii) stereoselective construction of the multi-substituted (E,E)-dienal side chain by using copper(I) thiophen-2-carboxylate (CuTC)-promo...

  12. Total synthesis of furospongolide and related furanolipid analogues as potential anti-tumour agents

    OpenAIRE

    Harrold, Donal Patrick

    2014-01-01

    This thesis details the design, development and execution of innovative methodology in the total synthesis of the terpene-derived marine natural product, furospongolide. It also outlines the synthetic routes used to prepare a novel range of furanolipids derivatives and subsequent evaluation of their potential as antitumour agents. The first chapter is a review of the literature describing efforts undertaken towards the synthesis of biologically active furanosesterterpenoid marine natural prod...

  13. Total synthesis of (3S, 5R, 3'S, 5'R)-capsorubin

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Daniel; Constantino, Mauricio G.; Donate, Paulo M. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Quimica

    2009-07-01

    The total synthesis of enantiomerically enriched (3S, 5R, 3'S, 5'R)-capsorubin (1) by aldol condensation of (1R, 4S)-1-(4-hydroxy-1,2,2-trimethyl-cyclopentyl)ethanone (2a) and crocetindial (3) is described. An alternative, short eight-step synthesis of the optically active compound 2a (ee 89%) is also reported. (author)

  14. Modular Total Synthesis of Protein Kinase C Activator (-)-Indolactam V.

    Science.gov (United States)

    Haynes-Smith, Jeremy; Diaz, Italia; Billingsley, Kelvin L

    2016-05-01

    A concise, eight-step total synthesis of (-)-indolactam V, a nanomolar agonist of protein kinase C, is reported. The synthesis relies upon an efficient copper-catalyzed amino acid arylation to establish the indole C4-nitrogen bond. This cross-coupling method is applicable to a range of hydrophobic amino acids, providing a platform for further diversification of indolactam alkaloid scaffolds and studies on their potent biological activity. PMID:27074538

  15. Enantioselective modular synthesis of cyclohexenones: total syntheses of (+)-crypto- and (+)-infectocaryone.

    Science.gov (United States)

    Franck, Géraldine; Brödner, Kerstin; Helmchen, Günter

    2010-09-01

    A modular synthesis of cyclohexenones is described and applied to the first enantioselective total syntheses of (+)-crypto- and (+)-infectocaryone. Key steps in the synthesis of cyclohexenones are an iridium-catalyzed allylic alkylation, nucleophilic allylation, and ring-closing metathesis. On the way to (+)-cryptocaryone, a catch and release strategy involving an iodolactonization/elimination and a regioselective C-acylation were used. PMID:20677804

  16. Stereoselective total synthesis of the potent anti-asthmatic compound CMI-977 (LDP-977)

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Luiz Carlos; Farina, Lui Strambi; Ferreira, Marco Antonio Barbosa, E-mail: ldias@iqm.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica

    2013-02-15

    A short and efficient stereoselective total synthesis of CMI-977 (LDP-977), a potent and orally active anti-asthmatic compound, was developed. The key steps involve a highly diastereoselective Mukaiyama oxidative cyclization, which provides the trans-THF (tetrahydrofuran) unit and a Seyferth-Gilbert homologation to construct the triple bond in the target molecule. The synthesis of the key chiral building block was performed using Jacobsen hydrolytic kinetic resolution. (author)

  17. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    Science.gov (United States)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  18. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong;

    2012-01-01

    Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... or with inactive (mutant) aquaporins, were also similarly prepared. The separation performance of these membranes was evaluated by cross-flow reverse osmosis (RO) tests. Compared to the controls, the active ABM achieved significantly higher water permeability (∼4L/m2hbar) with comparable NaCl rejection (∼97......%) at an applied pressure of 5bar. Its permeability was ∼40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR), which clearly demonstrates the great potential of the TFC ABM for desalination applications....

  19. Streamlined Total Synthesis of Uncialamycin and Its Application to the Synthesis of Designed Analogues for Biological Investigations.

    Science.gov (United States)

    Nicolaou, K C; Wang, Yanping; Lu, Min; Mandal, Debashis; Pattanayak, Manas R; Yu, Ruocheng; Shah, Akshay A; Chen, Jason S; Zhang, Hongjun; Crawford, James J; Pasunoori, Laxman; Poudel, Yam B; Chowdari, Naidu S; Pan, Chin; Nazeer, Ayesha; Gangwar, Sanjeev; Vite, Gregory; Pitsinos, Emmanuel N

    2016-07-01

    From the enediyne class of antitumor antibiotics, uncialamycin is among the rarest and most potent, yet one of the structurally simpler, making it attractive for chemical synthesis and potential applications in biology and medicine. In this article we describe a streamlined and practical enantioselective total synthesis of uncialamycin that is amenable to the synthesis of novel analogues and renders the natural product readily available for biological and drug development studies. Starting from hydroxy- or methoxyisatin, the synthesis features a Noyori enantioselective reduction, a Yamaguchi acetylide-pyridinium coupling, a stereoselective acetylide-aldehyde cyclization, and a newly developed annulation reaction that allows efficient coupling of a cyanophthalide and a p-methoxy semiquinone aminal to forge the anthraquinone moiety of the molecule. Overall, the developed streamlined synthesis proceeds in 22 linear steps (14 chromatographic separations) and 11% overall yield. The developed synthetic strategies and technologies were applied to the synthesis of a series of designed uncialamycin analogues equipped with suitable functional groups for conjugation to antibodies and other delivery systems. Biological evaluation of a select number of these analogues led to the identification of compounds with low picomolar potencies against certain cancer cell lines. These compounds and others like them may serve as powerful payloads for the development of antibody drug conjugates (ADCs) intended for personalized targeted cancer therapy. PMID:27266267

  20. Enantioselective Total Synthesis of (+)-Steenkrotin A and Determination of Its Absolute Configuration.

    Science.gov (United States)

    Pan, Saiyong; Gao, Beiling; Hu, Jialei; Xuan, Jun; Xie, Hujun; Ding, Hanfeng

    2016-01-18

    The first enantioselective total synthesis of (+)-steenkrotin A has been achieved in 18 steps and 4.2 % overall yield. The key features of the strategy entail a Rh-catalyzed O-H bond insertion followed by an intramolecular carbonyl-ene reaction, two sequential SmI2 -mediated Ueno-Stork and ketyl-olefin cyclizations, and a cascade intramolecular aldol condensation/vinylogous retro-aldol/aldol process with inversion of the relative configuration at the C7 position. The absolute configuration of (+)-steenkrotin A was determined based on the stepwise construction of the stereocenters during the total synthesis. PMID:26660855

  1. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H

    Directory of Open Access Journals (Sweden)

    Masashi Yokoya

    2015-08-01

    Full Text Available The first total synthesis of (±-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3 stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H via the C3-C4 double bond formation in an early stage based on the Avendaño’s protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenylmethyl-piperazine-2,5-dione (8 in 18 steps (8.3% overall yield. The synthesis provides unambiguous evidence supporting the original structure of renieramycin I.

  2. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  3. Effective Length Design of Humanoid Robot Fingers Using Biomimetic Optimization

    OpenAIRE

    Byoung-Ho Kim

    2015-01-01

    In this study, we propose an effective design method for the phalangeal parameters and the total size of humanoid robot fingers based on a biomimetic optimization. For the optimization, an interphalangeal joint coordination parameter and the length constraints inherent in human fingers are considered from a biomimetic perspective. A reasonable grasp formulation is also taken into account from the viewpoint of power grasping, where the grasp space of a humanoid robot finger is importantly cons...

  4. Formal Total Synthesis of Diazonamide A by Indole Oxidative Rearrangement.

    Science.gov (United States)

    David, Nadège; Pasceri, Raffaele; Kitson, Russell R A; Pradal, Alexandre; Moody, Christopher J

    2016-07-25

    A short formal total synthesis of the marine natural product diazonamide A is described. The route is based on indole oxidative rearrangement, and a number of options were investigated involving migration of tyrosine or oxazole fragments upon oxidation of open chain or macrocyclic precursors. The final route proceeds from 7-bromoindole by sequential palladium-catalysed couplings of an oxazole fragment at C-2, followed by a tyrosine fragment at C-3. With the key 2,3-disubstituted indole readily in hand, formation of a macrocyclic lactam set the stage for the crucial oxidative rearrangement to a 3,3-disubstituted oxindole. Notwithstanding the concomitant formation of the unwanted indoxyl isomer, the synthesis successfully delivered, after deprotection, the key oxindole intermediate, thereby completing a formal total synthesis of diazonamide A. PMID:27346186

  5. A stereoselective total synthesis of the novel triquinane sesquiterpene cucumin E

    OpenAIRE

    Mehta, Goverdhan; Umarye, Jayant D

    2001-01-01

    A total synthesis of cucumin E, a recently isolated triquinane natural product with a new carbon framework, has been achieved. The key step is the flash vacuum pyrolysis (FVP)-induced cyclobutane fragmentation in a readily available pentacyclic caged dione to deliver the triquinane skeleton with functionalization in all the three five-membered rings suitable for further elaboration to the natural product.

  6. Total Synthesis and Complete Stereostructure of a Marine Macrolide Glycoside, (-)-Lyngbyaloside B.

    Science.gov (United States)

    Fuwa, Haruhiko; Yamagata, Naoya; Okuaki, Yuta; Ogata, Yuya; Saito, Asami; Sasaki, Makoto

    2016-05-10

    We have described in detail the total synthesis of both the proposed and correct structures of (-)-lyngbyaloside B, which facilitated the elucidation of the complete stereostructure of this natural product. Our study began with the total synthesis of 13-demethyllyngbyaloside B, in which an esterification/ring-closing metathesis (RCM) strategy was successfully used for the efficient construction of the macrocycle. We also established reliable methods for the introduction of the conjugated diene side chain and the l-rhamnose residue onto the macrocyclic framework. However, the esterification/RCM strategy proved ineffective for the parent natural product because of the difficulties in acylating the sterically encumbered C-13 tertiary alcohol; macrolactionization of a seco-acid was also extensively investigated under various conditions without success. We finally completed the total synthesis of the proposed structure of (-)-lyngbyaloside B by means of a macrolactonization that involves an acyl ketene as the reactive species. However, the NMR spectroscopic data of our synthetic material did not match those of the authentic material, which indicated that the proposed structure must be re-examined. Inspection of the NMR spectroscopic data of the natural product and molecular mechanics calculations led us to postulate that the configuration of the C-10, C-11, and C-13 stereogenic centers had been incorrectly assigned in the proposed structure. Finally, our revised structure of (-)-lyngbyaloside B was unambiguously verified through total synthesis. PMID:27112323

  7. Enantioselective total synthesis of a novel polyketide natural product(+)-integrasone, an HIV-1 integrase inhibitor

    OpenAIRE

    Mehta, Goverdhan; Roy, Subhrangsu

    2005-01-01

    Enantioselective total synthesis of the recently isolated, novel polyketide natural product (+)-integrasone has been accomplished from the readily available Diels-Alder adduct of cyclopentadiene and p-benzoquinone. An enzymatically desymmetrized epoxyquinone building block has been elaborated through a series of regio-, chemo- and stereocontrolled steps to the final bicyclic framework of the natural product.

  8. Total synthesis of the putative structure of the novel triquinane natural product isocapnellenone

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A; Umarye, Jayant D

    2002-01-01

    A total synthesis of the ‘putative structure’ 7, attributed to the novel triquinane sesquiterpene isolated recently from two Buddelia species has been accomplished. The spectral data for 7 is a complete mismatch with those reported for the natural product and warrants a revision of the assigned structure.

  9. The first total synthesis of the novel triquinane natural products pleurotellol and pleurotellic acid

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A

    2003-01-01

    The first total synthesis of the triquinane based sesquiterpenoid antibiotics (±)-pleurotellol and (±)-pleurotellic acid isolated from the fermentation broth of Pleurotellus hypnophilus have been accomplished. The triquinane based bis-enone system obtained via photo-thermal metathesis in a caged pentacyclic dione has been elaborated to the natural products through carefully crafted functional group transformations.

  10. First total synthesis of yanuthones: novel farnesylated epoxycyclohexenoid marine natural products

    OpenAIRE

    Mehta, Goverdhan; Pan, Subhas Chandra

    2005-01-01

    The total synthesis of the recently isolated marine natural products of mixed biosynthetic origin, yanuthones A, 13 C and 22-deacylyanuthone A,has been accomplished following a short regio- and stereocontrolled approach involving the key intermediacy of 2-farnesyl-p-benzoquinone.

  11. First Total Synthesis of an Analogue of (±)—Hypargenin B

    Institute of Scientific and Technical Information of China (English)

    AnPaiLI; HuiWANG; 等

    2002-01-01

    First total synthesis of (±)-hypargenin B methyl ether 2 was accomplished via a strategy of AC→ABC,in which CrO3/H2O/NaOAc/HOAc system was utilized for introducing 7-keto group in order to aviod dehydration of benzyl tertiary alcohol.

  12. First Total Synthesis of an Analogue of (±)-Hypargenin B

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    First total synthesis of (±)-hypargenin B methyl ether 2 was accomplished via a  strategy of AC→ABC, in which CrO3/H2O/NaOAc/HOAc system was utilized for introducing  7-keto group in order to avoid dehydration of benzyl tertiary alcohol.

  13. First Total Synthesis of (±)-Abieta-8, 11, 13-trien-7β-ol

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The first total synthesis of (±)-abieta-8, 11, 13-trien-7β-ol (7) was accomplished via a strategy of AC→ABC, in which the reduction of the ketone 6 with LiAlH4 gave exclusively the title compound.

  14. Cu-Mediated Stille Reactions of Sterically Congested Fragments: Towards the Total Synthesis of Zoanthamine

    DEFF Research Database (Denmark)

    Nielsen, Thomas E.; Le Quement, Sebastian; Juhl, Martin; Tanner, David Ackland

    2005-01-01

    A study on the Stille reaction of alkenyl iodides and starmanes with structural resemblance to retrosynthetic fragments of a projected total synthesis of the marine alkaloid zoanthamine was carried out. A range of reaction conditions was examined, and a protocol developed by Corey utilizing excess...

  15. Buchner and Beyond: Arene Cyclopropanation as Applied to Natural Product Total Synthesis

    OpenAIRE

    Reisman, Sarah E.; Nani, Roger R.; Levin, Sergiy

    2011-01-01

    Buchner and Curtius first reported the cyclopropanation of arenes in 1885. Since the initial discovery, the Buchner reaction has been the subject of significant research by both physical and synthetic organic chemists. Described herein is a brief overview of the Buchner reaction and related arene cyclopropanation processes, with an emphasis on their application to natural product total synthesis.

  16. The Taumycin A Macrocycle: Asymmetric Total Synthesis and Revision of Relative Stereochemistry

    OpenAIRE

    deGruyter, Justine N.; Maio, William A.

    2014-01-01

    The first asymmetric total synthesis and revision of the relative configuration of the 12-membered taumycin A macrocycle is described. Key to the success of this work was a novel α-keto ketene macrocyclization that provided an efficient means by which to access two diastereomers of the desired macrolide without the need to employ additional coupling agents or unnecessary oxidation state adjustments.

  17. The Stille reaction in natural product synthesis : the total synthesis of 14,15-anhydrovirginiamycin M2

    OpenAIRE

    Jordan, Stuart Ian

    1997-01-01

    The thesis describes synthetic studies directed towards the total synthesis of 14,15-anhydrovirginiamycin M2, a streptogramin antibiotic of the virginiamycin family. This novel natural product shows pronounced antibacterial activity against a wide range of potentially lethal bacteria. The Introduction summarises the main therapeutic uses, isolation, structural determination, biosynthesis, and mode of action of the virginiamycins. Also included is a review of synthetic approaches which have b...

  18. Asymmetric Synthesis of Decahydroquinolines via Organocatalysis: Total Synthesis of (+)-Lycoposerramine Z and (-)-Cermizine B

    OpenAIRE

    Luque Corredera, Carlos

    2014-01-01

    [eng] 1) The treatment of a tert-butyl beta-keto ester tethered to an omega-amino monoprotected group with crotonaldehyde using LiOH as the base, furnishes domino reactions involving the consecutive formation of two C-C bonds and one C-N bond in a sequence that comprises an intermolecular Michael process, followed by intramolecular aldol and aza-Michael reactions. This general methodology for the diastereoselective synthesis of 5-oxodecahydroquinolines implies a biscyclization and the format...

  19. Hierarcially biomimetic bone materials: from nanometer to millimeter

    Institute of Scientific and Technical Information of China (English)

    ZHANG W.; CUI F. Z.; LIAO S. S.

    2001-01-01

    @@ The bone composite was produced by biomimetic synthesis. It shows some features of natural bone in both composition and microstructure. And the collagen moleculars and the nano-crystal hydroxyapatite assemble into ultrastructure similar to natural bone. It possesses porous structure with porosity from 100μm to 500μm after mixed with PLA (poly lactic acid).

  20. A Laboratory Exercise to Introduce Inorganic Biomimetic Compounds.

    Science.gov (United States)

    Baird, Donald M.

    1985-01-01

    Biomimetic chemistry is concerned with the synthesis of small, molecular weight molecules which mimic the properties of metal-containing sites within certain biologically significant species. A series of experiments for an advanced undergraduate laboratory is described as a way to introduce this area into the chemistry curriculum. (JN)

  1. The Total Synthesis of Insect Antifeedant (-)-Dihydroclerodin Starting from R-(-)-Carvone

    OpenAIRE

    Meulemans, T.M.

    2000-01-01

    The first total synthesis of the natural enantiomer of the insect-antifeedant dihydroclerodin ( 1 ) and lupulin C ( 268 ) has been achieved in 18 and 17 steps respectively starting from R-(-)-carvone ( 2 ). A new strategy was developed in which the hexahydrofuro[2,3- b ]furan fragment was introduced in the beginning of the synthesis, via a remarkably diastereoselective Mukaiyama reaction of silyl enol ether 135 with 2-methoxy-hexahydrofuro[2,3- b ]furan ( 156 ), which gave only two of the pos...

  2. A Pot-Economical Approach to the Total Synthesis of Sch-725674.

    Science.gov (United States)

    Bodugam, Mahipal; Javed, Salim; Ganguly, Arghya; Torres, Jessica; Hanson, Paul R

    2016-02-01

    A pot-economical total synthesis of antifungal Sch-725674, 1, is reported. The approach takes advantage of a number of one-pot, sequential transformations, including a phosphate tether-mediated one-pot, sequential RCM/CM/chemoselective hydrogenation protocol, a one-pot tosylation/acrylation sequence, and a one-pot, sequential Finkelstein reaction/Boord olefination/acetonide deprotection procedure to streamline the synthesis route by reducing isolation and purification procedures, thus saving time. Overall, an asymmetric route has been developed that is efficiently accomplished in seven pots from phosphate (S,S)-triene and with minimal purification. PMID:26760683

  3. Asymmetric Total Synthesis of Propindilactone G, Part 3: The Final Phase and Completion of the Synthesis.

    Science.gov (United States)

    Liang, Xin-Ting; You, Lin; Li, Yuan-He; Yu, Hai-Xin; Chen, Jia-Hua; Yang, Zhen

    2016-05-01

    Two independent synthetic approaches were evaluated for the final phase of the asymmetric total synthesis of propindilactone G (1). The key steps that led to the completion of the asymmetric total synthesis included: 1) an intermolecular oxidative heterocoupling reaction of enolsilanes to link the core structure to the side chain; 2) an intermolecular Wittig reaction for the formation of the α,β,γ,δ-unsaturated ester; and 3) a regio- and stereoselective OsO4 -catalyzed dihydroxylation of an α,β,γ,δ-unsaturated enone, followed by an intramolecular lactonization reaction to afford the final product. These reactions enabled the synthesis of (+)-propindilactone G in only 20 steps. As a consequence of our synthetic studies, the structure of (+)-propindilactone G has been revised. Furthermore, the direct oxidative coupling strategy for ligation of the core of propindilactone G with its side chain may find application in the syntheses of other natural products and complex molecules. PMID:26991640

  4. Diastereoselective total synthesis of (±)-schindilactone a, Part 3: The final phase and completion.

    Science.gov (United States)

    Ren, Wei-Wu; Chen, Zhi-Xing; Xiao, Qing; Li, Yong; Sun, Tian-Wen; Zhang, Zi-Yang; Ye, Qin-Da; Meng, Fan-Ke; You, Lin; Zhao, Ming-Zhe; Xu, Ling-Min; Tang, Ye-Feng; Chen, Jia-Hua; Yang, Zhen

    2012-10-01

    The final phase for the total synthesis of (±)-schindilactone A (1) is described herein. Two independent synthetic approaches were developed that featured Pd-thiourea-catalyzed cascade carbonylative annulation reactions to construct intermediate 3 and a RCM reaction to make intermediate 4. Other important steps that enabled the completion of the synthesis included: 1) A Ag-mediated ring-expansion reaction to form vinyl bromide 17 from dibromocyclopropane 30; 2) a Pd-catalyzed coupling reaction of vinyl bromide 17 with a copper enolate to synthesize ketoester 16; 3) a RCM reaction to generate oxabicyclononenol 10 from diene 11; 4) a cyclopentenone fragment in substrate 8 was constructed through a Co-thiourea-catalyzed Pauson-Khand reaction (PKR); 5) a Dieckmann-type condensation to successfully form the A ring of schindilactone A (1). The chemistry developed for the total synthesis of schindilactone A (1) will shed light on the synthesis of other family members of schindilactone A. PMID:22761030

  5. Total synthesis of (+)-gelsemine via an organocatalytic Diels-Alder approach.

    Science.gov (United States)

    Chen, Xiaoming; Duan, Shengguo; Tao, Cheng; Zhai, Hongbin; Qiu, Fayang G

    2015-01-01

    The structurally complex alkaloid gelsemine was previously thought to have no significant biological activities, but a recent study has shown that it has potent and specific antinociception in chronic pain. While this molecule has attracted significant interests from the synthetic community, an efficient synthetic strategy is still the goal of many synthetic chemists. Here we report the asymmetric total synthesis of (+)-gelsemine, including a highly diastereoselective and enantioselective organocatalytic Diels-Alder reaction, an efficient intramolecular trans-annular aldol condensation furnishing the prolidine ring and establishing the configuration of the C20 quaternary carbon stereochemical centre. The entire gelsemine skeleton was constructed through a late-stage intramolecular SN2 substitution. The enantiomeric excess of this total synthesis is over 99%, and the overall yield is around 5%. PMID:25995149

  6. Total synthesis and absolute configuration assignment of MRSA active garcinol and isogarcinol.

    Science.gov (United States)

    Socolsky, Cecilia; Plietker, Bernd

    2015-02-01

    A short total synthesis of (±)-garcinol and (±)-isogarcinol, two endo-type B PPAPs with reported activity against methiciline resistant Staphylococcus aureus (MRSA), is presented. The separation of framework-constructing from framework-decorating steps and the application of two highly regio- and stereoselective Pd-catalysed allylations, that is, the Pd-catalysed decarboxylative Tsuji-Trost allylation and the diastereoselective Pd-catalysed allyl-allyl cross-coupling, are key elements that allowed the total synthesis to be accomplished within 13 steps starting from acetylacetone. After separation of the enantiomers the absolute configurations of the four natural products (i.e., (-)-garcinol, (+)-guttiferone E (i.e., ent-garcinol), (-)-isogarcinol, and (+)-isoxanthochymol (i.e., ent-isogarcinol)) were assigned based on ECD spectroscopy. PMID:25537962

  7. Stereocontrolled total synthesis of neuroprotectin D1 / protectin D1 and its aspirin-triggered stereoisomer

    OpenAIRE

    Petasis, Nicos A.; Yang, Rong; Winkler, Jeremy W.; Zhu, Min; Uddin, Jasim; Bazan, Nicolas G.; Serhan, Charles N.

    2012-01-01

    Neuroprotectin D1 / protectin D1, a potent anti-inflammatory, proresolving, and neuroprotective lipid mediator derived biosynthetically from docosahexaenoic acid, was prepared in enantiomerically pure form via total organic synthesis. The synthetic strategy is highly stereocontrolled and convergent, featuring epoxide opening of glycidol starting materials for the introduction of the 10(R) and 17(S) hydroxyl groups. The desired alkene Z geometry was secured via the cis-reduction of alkyne prec...

  8. Enantioselective Total Synthesis and Confirmation of the Absolute and Relative Stereochemistry of Streptorubin B

    OpenAIRE

    Hu, Dennis X.; Clift, Michael D.; Lazarski, Kiel E.; Thomson, Regan J.

    2010-01-01

    The enantioselective total synthesis of the pyrrolophane natural product streptorubin B is described. Key steps in the concise route include application of a one-pot enantioselective aldol cyclization/Wittig reaction and an anionic oxy-Cope rearrangement to forge the crucial 10-membered ring. Comparisons between CD-spectra of synthetic and natural samples of streptorubin B, coupled with X-ray crystallography, allowed for the determination of the absolute stereochemistry of this natural produc...

  9. Total synthesis and biological evaluation of tubulysin U, tubulysin V, and their analogues.

    Science.gov (United States)

    Balasubramanian, Ranganathan; Raghavan, Bhooma; Begaye, Adrian; Sackett, Dan L; Fecik, Robert A

    2009-01-22

    A stereoselective total synthesis of the cytotoxic natural products tubulysin U, tubulysin V, and its unnatural epimer epi-tubulysin V, is reported. Simplified analogues containing N,N-dimethyl-D-alanine as a replacement for the N-terminal N-Me-pipecolinic acid residue of the tubulysins are also disclosed. Biological evaluation of these natural products and analogues provided key information with regard to structural and stereochemical requirements for antiproliferative activity and tubulin polymerization inhibition. PMID:19102699

  10. Studies towards the total synthesis of eleutherobin and other marine natural products

    OpenAIRE

    Mowat, Jeffrey Stuart

    2012-01-01

    The primary focus of the research described in this document relates to the development and application of new synthetic methodologies relevant for the concise construction of four natural products. In Chapter 2, a discussion of our investigation of the total synthesis of eleutherobin (1) is disclosed. Eleutherobin (1), first isolated in 1997 from the rare soft coral Eleutherobia sp., is a member of a class of microtubule stabilising natural products. Although it displays potent cytotoxicity,...

  11. Recent Advances in the Total Synthesis of Tetramic Acid-Containing Natural Products

    OpenAIRE

    Wen-Ju Bai; Chen Lu; Xiqing Wang

    2016-01-01

    With incredible bioactivities and fascinating structural complexities, tetramic acid- (TA-) containing natural products have attracted favorable attention among the organic chemistry community. Although the construction of the TA core is usually straightforward, the intricate C3-side chain sometimes asks for some deliberative strategy so as to fulfill an elegant total synthesis. This review mainly covers some exceptional synthetic examples for each type of natural product in recent years, sho...

  12. First total synthesis of the marine natural products clavulolactones II and III.

    Science.gov (United States)

    Miller, Charlotte M; Benneche, Tore; Tius, Marcus A

    2015-04-01

    The first total synthesis of the marine prostanoids clavulolactones II and III is presented from an easily accessible chiral, non-racemic cyclopentenone intermediate. Key steps involve selective TBDMS deprotection, selective reduction of the β-side chain and aldol condensation. Clavulolactones II and III were successfully prepared from (S)-4-((tert-butyldimethylsilyl)oxy) cyclopent-2-en-1-one over nine steps, in overall yields of 21 and 7% respectively. PMID:25733336

  13. Organisational culture, organisational learning and total quality management: a literature review and synthesis.

    Science.gov (United States)

    Bloor, G

    1999-01-01

    As health services face increasing pressure to meet the expectations of different stakeholders, they must continuously improve and learn from their experience. Many fail in attempts at continuous improvement programs because managers have not understood the complexity of making changes in organisations with multiple subcultures and interests. This article examines the related concepts of organisational culture, organisational learning and total quality management and shows how a synthesis of this knowledge can assist in developing continuous organisational learning and improvement. PMID:10662226

  14. Total synthesis of the endogenous inflammation resolving lipid resolvin D2 using a common lynchpin

    OpenAIRE

    John Li; May May Leong; Alastair Stewart; Mark A. Rizzacasa

    2013-01-01

    The total synthesis of the endogenous inflammation resolving eicosanoid resolvin D2 (1) is described. The key steps involved a Wittig reaction between aldehyde 5 and the ylide derived from phosphonium salt 6 to give enyne 17 and condensation of the same ylide with aldehyde 7 to afford enyne 11. Desilylation of 11 followed by hydrozirconation and iodination gave the vinyl iodide 4 and Sonogashira coupling between this compound and enyne 3 provided alkyne 18. Acetonide deprotection, partial red...

  15. Total Synthesis of (±)-Paroxetine by Diastereoconvergent Cobalt-Catalysed Arylation

    OpenAIRE

    Despiau, Carole F; Dominey, Andrew P; Harrowven, David C.; Linclau, Bruno

    2014-01-01

    A total synthesis of paroxetine is reported, with a diastereoselective and diastereoconvergent cobalt-catalysed sp3–sp2 coupling reaction involving a 3-substituted 4-bromo-N-Boc-piperidine (Boc = tert-butoxycarbonyl) substrate as a key step. A 9:1 diastereoselectivity was obtained, while a control experiment involving a conformationally locked 3-substituted 4-bromo-tert-butyl cyclohexane ring proceeded with essentially complete stereoselectivity.

  16. First- and second-generation total synthesis of ciguatoxin CTX3C

    OpenAIRE

    Inoue, Masayuki; Miyazaki, Keisuke; Uehara, Hisatoshi; Maruyama, Megumi; Hirama, Masahiro

    2004-01-01

    More than 20,000 people suffer annually from ciguatera seafood poisoning in subtropical and tropical regions. The extremely low content of the causative neurotoxins, designated as ciguatoxins, in fish has hampered isolation, detailed biological studies, and preparation of anti-ciguatoxin antibodies for detecting these toxins. Furthermore, the large (3 nm in length) and complex molecular structure of ciguatoxins has impeded chemists from completing their total synthesis. In this article, the f...

  17. Total synthesis of (+/-)-11 alpha-hydroxyprogesterone by cyclization of a polyunsaturated epoxide.

    OpenAIRE

    van Tamelen, E E; Faler, D L

    1985-01-01

    The total synthesis of a typical 11-hydroxylated steroid, (+/-)-11 alpha-hydroxyprogesterone, was achieved by picric acid-catalyzed tricyclization of a polyunsaturated epoxide appropriately substituted with ketal, hydroxyl, and acetylenic units. This epoxide was prepared by a multistage sequence featuring two successive alkylations of intermediary, monocyclic sulfones. The first sulfone intermediate was obtained by means of a short sequence starting from levulinic acid and diethyl succinate a...

  18. Biomimetic sensor design

    Science.gov (United States)

    Lee, Ju Hun; Jin, Hyo-Eon; Desai, Malav S.; Ren, Shuo; Kim, Soyoun; Lee, Seung-Wuk

    2015-11-01

    Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.

  19. Amelogenin and Enamel Biomimetics

    OpenAIRE

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recen...

  20. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  1. Biomimetic synthesis of needle-like fluorescent calcium phosphate/carbon dot hybrid composites for cell labeling and copper ion detection.

    Science.gov (United States)

    Guo, Shanshan; Lu, Shousi; Xu, Pingxiang; Ma, Yi; Zhao, Liang; Zhao, Yuming; Gu, Wei; Xue, Ming

    2016-05-01

    Herein, we report a biomimetic method to synthesize needle-like calcium phosphate (CaP) with dimensions of ∼130 nm length and ∼30 nm width using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. In addition to acting as the template, the CDs enable the CaP/CDs hybrid composites to emit blue fluorescence under UV excitation. Moreover, the prepared CaP/CDs exhibited a negligible cytotoxicity towards HeLa cells. The potential of these CaP/CDs as a fluorescent probe for cell labeling was tested. In addition, it was demonstrated that the CaP/CDs were capable of selective detection of copper ions in drinking water. PMID:27052495

  2. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  3. Total synthesis of Herbarin A and B, determination of their antioxidant properties and toxicity in zebrafish embryo model.

    Science.gov (United States)

    Heimberger, Julia; Cade, Hannah C; Padgett, Jihan; Sittaramane, Vinoth; Shaikh, Abid

    2015-03-15

    Herbarin A and B were isolated from the fungal strains of Cladosporium herbarum found in marine sponges Aplysina aerophoba and Callyspongia aerizusa. Total synthesis of Herbarin A and B was achieved by carrying out a multi-step synthesis approach, and the antioxidant properties were evaluated using FRAP assay. Toxicity of these compounds was determined using a zebrafish embryo model. PMID:25690788

  4. Total Synthesis, Proof of Absolute Configuration, and Biosynthetic Origin of Stylopsal, the First Isolated Sex Pheromone of Strepsiptera

    Czech Academy of Sciences Publication Activity Database

    Lagoutte, Roman; Šebesta, Petr; Jiroš, Pavel; Kalinová, Blanka; Jirošová, Anna; Straka, J.; Černá, K.; Šobotník, Jan; Cvačka, Josef; Jahn, Ullrich

    2013-01-01

    Roč. 19, č. 26 (2013), s. 8515-8524. ISSN 0947-6539 R&D Projects: GA ČR GAP506/10/1466 Institutional support: RVO:61388963 Keywords : asymmetric synthesis * configuration determination * pheromones * total synthesis * Wittig reactions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013

  5. Toward the Enantioselective Total Synthesis of Lyngbyatoxin A: On the Stereocontrolled Introduction of the Quaternary Stereogenic Centre

    DEFF Research Database (Denmark)

    Tønder, Janne Ejrnæs; Tanner, David Ackland

    2003-01-01

    This paper deals with an approach to the enantioselective total synthesis of Lyngbyatoxin A, with focus on the stereocontrolled introduction of the quaternary stereogenic centre. The key step in the synthesis involves an enantiospecific Lewis-acid mediated rearrangement of chiral vinyl epoxides...

  6. A Strategy for Complex Dimer Formation When Biomimicry Fails: Total Synthesis of Ten Coccinellid Alkaloids

    OpenAIRE

    Sherwood, Trevor C.; Trotta, Adam H.; Snyder, Scott A.

    2014-01-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature’s presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strat...

  7. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2014-11-01

    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  8. Biomimetic synthesis and characterization of semiconducting hybrid organic–inorganic composite materials based on polyaniline–polyethylene glycol–CdS system

    Indian Academy of Sciences (India)

    A Singh; N P Singh; R A Singh

    2011-07-01

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of cadmium sulphide by passing H2S gas and mixing the resultant colloid with the acidic solution of aniline. in situ polymerization of adsorbed anilinium ions on anionic surface of CdS resulted in hybrids. Water–soluble polyethylene glycol led to diffusion–limited growth of polyaniline and CdS resulting in a nanosized hybrid material as indicated by UV-visible spectra, X-ray diffraction (XRD) and scanning electron microscopy (SEM). AC impedance spectroscopic studies on binary and ternary nanocomposites of polyaniline with polyethylene glycol and cadmium sulphide separately and triple hybrid system have been reported. Equivalent circuits were determined and discussed in the light of contributions made from different sources such as grain, grain boundary and electrode.

  9. Tris(triazolyl)borate ligands of intermediate steric bulk for the synthesis of biomimetic structures with hydrogen bonding and solubility in hydrophilic solvents.

    Science.gov (United States)

    Gardner, Sean R; Papish, Elizabeth T; Monillas, Wesley H; Yap, Glenn P A

    2008-12-01

    Tris(triazolyl)borate ligands (Ttz) of intermediate steric bulk were synthesized to investigate their potential for hydrogen bonding and improved solubility in hydrophilic solvents as applied to biomimetic chemistry. The crystal structure of 3-phenyl-5-methyl-1,2,4-triazole (Htz(Ph,Me)) revealed hydrogen bonding and pi stacking interactions. The new ligand salt, potassium tris(3-phenyl-5-methyl-1,2,4-triazolyl)borate (KTtz(Ph,Me)) was synthesized as the first example of a Ttz ligand of intermediate steric bulk. Metathesis between KTtz(Ph,Me) and NaCl followed by recrystallization produced [NaTtz(Ph,Me)].6CH3OH in which the geometry around the sodium is octahedral with an unusual N(3)O(3) donor set; this structure also shows that a hydrogen bonding network is formed by methanol molecules and triazole nitrogens. (Ttz(Ph,Me))ZnCl was synthesized and characterized crystallographically as [(Ttz(Ph,Me))ZnCl].0.5CH3OH in which the zinc is tetrahedral and the triazole rings are within hydrogen bonding distance of CH(3)OH. All of these new compounds are methanol soluble to varying degrees and Htz(Ph,Me) and KTtz(Ph,Me) are soluble in methanol/water mixtures. PMID:18848725

  10. Enantioselective total synthesis of the novel tricyclic sesquiterpene (−)-sulcatine G. Absolute configuration of the natural product

    OpenAIRE

    Mehta, Goverdhan; Sreenivas, K.

    2002-01-01

    An enantioselective total synthesis of (−)-sulcatine G 4 from the readily available (+)-diquinane diol 6 has been accomplished. This leads to the establishment of the absolute configuration of the natural product (+)-sulcatine G as 1.

  11. Recent Advances in the Total Synthesis of Tetramic Acid-Containing Natural Products

    Directory of Open Access Journals (Sweden)

    Wen-Ju Bai

    2016-01-01

    Full Text Available With incredible bioactivities and fascinating structural complexities, tetramic acid- (TA- containing natural products have attracted favorable attention among the organic chemistry community. Although the construction of the TA core is usually straightforward, the intricate C3-side chain sometimes asks for some deliberative strategy so as to fulfill an elegant total synthesis. This review mainly covers some exceptional synthetic examples for each type of natural product in recent years, showcasing the great achievements as well as unsettled obstacles in this area, in the hope of accelerating the synthetic and biological investigations for this unique type of natural product.

  12. Total Synthesis and the Biological Activities of (±-Norannuradhapurine

    Directory of Open Access Journals (Sweden)

    Surachai Nimgirawath

    2008-12-01

    Full Text Available The structure previously assigned to the phenolic noraporphine alkaloid, (--norannuradhapurine has been confirmed by a total synthesis of the racemic alkaloid in which the key step involved the formation of the C ring by a radical-initiated cyclization. although inactive against Staphylococcus aureus ATCC25932, Escherichia coli ATCC10536 and Candida albicans ATCC90028, (±-norannuradhapurine inhibits the production of NO, PGE2, TNF-a, IL-1b and IL-6 and the expression of iNOS and COX-2 in RAW 264.7 macrophages stimulated with LPS in vitro.

  13. Flexible Total Synthesis of (±)-Aureothin, a Potent Antiproliferative Agent.

    Science.gov (United States)

    Henrot, Matthias; Jean, Alexandre; Peixoto, Philippe A; Maddaluno, Jacques; De Paolis, Michaël

    2016-06-17

    Amenable to late-stage preparation of analogues, a flexible and convergent total synthesis of (±)-aureothin is presented. The strategy was based on a desymmetrization of α,α'-dimethoxy-γ-pyrone by a process combining 1,4-addition and alkylation of vinylogous enolate to stereoselectively reach the backbone of the target. Palladium-catalyzed cyanation of an elaborated and isomerizable E,Z dienyl motif followed by Pinner cyclization enabled the construction of the tetrahydrofuran motif while a first approach based on a late-stage oxidation was unsuccessful. PMID:27213834

  14. Total synthesis of the endogenous inflammation resolving lipid resolvin D2 using a common lynchpin

    Directory of Open Access Journals (Sweden)

    John Li

    2013-12-01

    Full Text Available The total synthesis of the endogenous inflammation resolving eicosanoid resolvin D2 (1 is described. The key steps involved a Wittig reaction between aldehyde 5 and the ylide derived from phosphonium salt 6 to give enyne 17 and condensation of the same ylide with aldehyde 7 to afford enyne 11. Desilylation of 11 followed by hydrozirconation and iodination gave the vinyl iodide 4 and Sonogashira coupling between this compound and enyne 3 provided alkyne 18. Acetonide deprotection, partial reduction and ester hydrolysis then gave resolvin D2 (1.

  15. Total synthesis of all stereoisomers of eudesm-11-en-4-ol.

    OpenAIRE

    Kesselmans, R.P.W.

    1992-01-01

    In this thesis the total synthesis of all stereoisomers of eudesm-11-en-4-ol e.g. selin-11-en-4α-ol I , intermedeol II , neointermedeol III , paradisiol IV , amiteol V , 7- epi -amiteol VI , 5- epi -neointermedeol VII , and 5- epi -paradisiol VIII is described.The natural occurrences and the difficulties encountered in the structural elucidation of these eudesmanes are described in chapter 1. The eudesm-11-en-4-ols occur in a wide range of plant species, some of which are used in medicine, or...

  16. Total Synthesis of Epothilones B and D: Stannane Equivalents for β-Keto Ester Dianions

    OpenAIRE

    Keck, Gary E.; Giles, Robert L.; Cee, Victor J.; Wager, Carrie A.; Yu, Tao; Kraft, Matthew B.

    2008-01-01

    Studies leading to a total synthesis of Epothilones B and D are described. The overall synthetic plan was based on late stage fragment assembly of two segments representing C1-C9 and C10-C21 of the structure. The C1-C9 fragment was prepared by elaboration of commercially available (2R)-3-hydroxy-2-methylpropanoate at both ends of the three carbon unit. Introduction of carbons 1–4 containing the gem-dimethyl unit was achieved in a convergent manner using a diastereoselective addition of a stan...

  17. Total synthesis of leopolic acid A, a natural 2,3-pyrrolidinedione with antimicrobial activity

    Science.gov (United States)

    Dhavan, Atul A; Kaduskar, Rahul D; Musso, Loana; Scaglioni, Leonardo; Martino, Piera Anna

    2016-01-01

    Summary The first total synthesis of leopolic acid A, a fungal metabolite with a rare 2,3-pyrrolidinedione nucleus linked to an ureido dipeptide, was designed and carried out. Crucial steps for the strategy include a Dieckmann cyclization to obtain the 2,3-pyrrolidinedione ring and a Wittig olefination to install the polymethylene chain. An oxazolidinone-containing leopolic acid A analogue was also synthesized. The antibacterial activity showed by both compounds suggests that they could be considered as promising candidates for future developments.

  18. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    Science.gov (United States)

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-01-01

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application. PMID:27438862

  19. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  20. Biomimetic Cilia Based on MEMS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2008-01-01

    A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.

  1. On the synthesis of tailored biomimetic hydroxyapatite nanoplates through a bioinspired approach in the presence of collagen or chitosan and L-arginine

    International Nuclear Information System (INIS)

    Controlling the structure of hydroxyapatite nanocrystals is vital for acquiring a consistent product. In an effort to synthesize crystals mimicking the morphology of natural bone's apatite, a bioinspired process was developed based on the use of a natural biomacromolecule, collagen or chitosan, in conjunction with L-arginine to direct the formation of hydroxyapatite from H3PO4 and Ca(OH)2. Different cases were investigated by employing various concentrations of the precursors and two molar ratios of Ca/P 1/1 and 10/6. The reaction was carried out at basic pH conditions and at biomimetic temperature (40 °C). The resulting aqueous suspensions were characterized in terms of their rheological behavior, whereas the derived powders were fully evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and Raman spectroscopy. The analysis showed that in all cases, the only phase detected was hydroxyapatite of a plate-like morphology very similar to that of natural apatite. The homogeneity of the morphology and the crystal size distribution depend on the precursors' final concentration with the mean size ranging from 5 nm up to 20 nm. The powder that demonstrated the best characteristics in terms of homogeneity was that produced in the presence of collagen for molar ratio of Ca/P 1/1. - Highlights: • Hydroxyapatite nanoplates similar to those of bone's apatite were developed. • A novel approach simulating the biomineralization environment was developed. • L-Arginine was combined with collagen or chitosan to direct HAp nucleation. • Depending on reaction conditions a very homogeneous nanostructure is attained

  2. Synthesis and photo-catalytic H2 evolution of three novel biomimetic photocatalysts based on [FeFe]-Hases model compound

    Science.gov (United States)

    Zheng, Hui-Qin; Rao, Heng; Wang, Jun; Fan, Yao-Ting; Hou, Hong-Wei

    2015-01-01

    Three new biomimetic photocatalyts based on [2Fe2S]-Hases model compound, namely {(μ-pdte) [Fe(CO)3][Fe(CO)2L], μ-pdte = μ2-S(CH2)2CH[(CH2)3COOCH3]S-μ2, L = CO(1), L = PPh3(2)}, (μ-pdte) [Fe(CO)3] [Fe(CO) (phen)] (3), have been synthesized and characterized by elemental analysis, spectroscopy and particularly X-ray crystallography crystal structure analysis for 1. Visible-light-driven H2 evolution catalyzed by 1-3 in the presence of EY2- as PS, and TEA as electron donor, the maximum H2 yield of 136.2 μmol(17 TON vs. catalyst 2) is detected at pH 11 with 2 of 4 × 10-4 M, EY2- of 4 × 10-4 M, TEA of 10% (v:v) in CH3CN/H2O (v:v,1:1) after 4.5 h irradiation. After that, the effect of the substituent species of catalyst on H2 evolution, the stability of photo-catalytic system and the probable H2 evolution mechanism are also carefully discussed by CV, fluorescence quenching, fluorescence lifetime et al. The result illustrates 2 has been found to be a potential catalyst for conversion of solar energy to clean hydrogen energy under visible light-driven despite that the H2 evolution activity is not high enough in this stage.

  3. On the synthesis of tailored biomimetic hydroxyapatite nanoplates through a bioinspired approach in the presence of collagen or chitosan and L-arginine

    Energy Technology Data Exchange (ETDEWEB)

    Tsetsekou, A., E-mail: athtse@metal.ntua.gr; Brasinika, D.; Vaou, V.; Chatzitheodoridis, E.

    2014-10-01

    Controlling the structure of hydroxyapatite nanocrystals is vital for acquiring a consistent product. In an effort to synthesize crystals mimicking the morphology of natural bone's apatite, a bioinspired process was developed based on the use of a natural biomacromolecule, collagen or chitosan, in conjunction with L-arginine to direct the formation of hydroxyapatite from H{sub 3}PO{sub 4} and Ca(OH){sub 2}. Different cases were investigated by employing various concentrations of the precursors and two molar ratios of Ca/P 1/1 and 10/6. The reaction was carried out at basic pH conditions and at biomimetic temperature (40 °C). The resulting aqueous suspensions were characterized in terms of their rheological behavior, whereas the derived powders were fully evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction analysis and Raman spectroscopy. The analysis showed that in all cases, the only phase detected was hydroxyapatite of a plate-like morphology very similar to that of natural apatite. The homogeneity of the morphology and the crystal size distribution depend on the precursors' final concentration with the mean size ranging from 5 nm up to 20 nm. The powder that demonstrated the best characteristics in terms of homogeneity was that produced in the presence of collagen for molar ratio of Ca/P 1/1. - Highlights: • Hydroxyapatite nanoplates similar to those of bone's apatite were developed. • A novel approach simulating the biomineralization environment was developed. • L-Arginine was combined with collagen or chitosan to direct HAp nucleation. • Depending on reaction conditions a very homogeneous nanostructure is attained.

  4. Synthesis of derivatives of tetronic acid and pulvinic acid. Total synthesis of norbadione A; Synthese de derives de l'acide tetronique et de l'acide pulvinique. Synthese totale de la norbadione A

    Energy Technology Data Exchange (ETDEWEB)

    Mallinger, A

    2008-11-15

    When vegetables like mushrooms are contaminated by radioactive caesium 137, this radioactive caesium is associated to norbadione A, a natural pigment present in two mushroom species and which can be used as a caesium decorporation agent or maybe as protection agent against ionizing radiations. Within this perspective, this research report describes the biosynthesis and the structure and properties of the norbadione A and of pulvinic acids (physicochemical properties, anti-oxidizing properties). Then, it presents the various tetronic acids (3-acyl-, 3-alkyl-, 3-alkoxy-, 3-aryl-tetronic acids and non 3-substituted tetronic acids), their synthesis path as they are described in the literature, and presents a new synthesis approach using a tandem reaction (with different esters or hydroxy esters) and the synthesis of tetronic acids. The author also proposes a new synthesis way for methyl pulvinates, and finally reports the work on the development of a total synthesis of the norbadione A.

  5. Effective Length Design of Humanoid Robot Fingers Using Biomimetic Optimization

    Directory of Open Access Journals (Sweden)

    Byoung-Ho Kim

    2015-10-01

    Full Text Available In this study, we propose an effective design method for the phalangeal parameters and the total size of humanoid robot fingers based on a biomimetic optimization. For the optimization, an interphalangeal joint coordination parameter and the length constraints inherent in human fingers are considered from a biomimetic perspective. A reasonable grasp formulation is also taken into account from the viewpoint of power grasping, where the grasp space of a humanoid robot finger is importantly considered to determine the phalangeal length parameters. The usefulness of the devised biomimetic optimization method is shown through the design examples of various humanoid robot fingers. In fact, the optimization-based finger design method enables us to determine effectively the proper phalangeal size of humanoid robot fingers for human-like object handling tasks. In addition, we discuss its contribution to the structural configuration and coordinated motion of a humanoid robot finger, and address its practical availability in terms of effective finger design.

  6. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  7. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  8. Decision-making regarding total knee replacement surgery: A qualitative meta-synthesis

    Directory of Open Access Journals (Sweden)

    Ong Bie

    2007-04-01

    Full Text Available Abstract Background Knee osteoarthritis is a highly prevalent condition that can result in disability and reduced quality of life. The evidence suggests that total knee replacement surgery (TKR is an effective intervention for patients with severe knee problems, but there is also an unmet need for this treatment in the UK. To help understand the reason for this unmet need, the aim of this study was to explore the factors that influence the decision-making process of TKR surgery by synthesising the available evidence from qualitative research on this topic. Methods A meta-synthesis was undertaken. This involved sevens steps: getting started, deciding what is relevant to the initial interest, reading the studies, determining how the studies are related, translating the studies into one another, synthesising translations, and finally, expressing the synthesis. Second-order and third-order interpretations regarding decision-making in TKR surgery were drawn from the literature. Results Ten qualitative studies were found and are included in the synthesis. The evidence suggests that social and cultural categories of aging have shaped the expectation of knee osteoarthritis, and this in turn shapes patients' expectations of treatment options. The role of the health care professional was the strongest theme to emerge across all ten studies. Coping strategies and life context determine short and longer-term outcomes of TKR. Conclusion The decision-making process regarding TKR surgery is extremely complex, as patients have weigh up numerous considerations before they can make a decision about surgery. By synthesising ten qualitative studies, we have illuminated the importance of the health care professional during this process.

  9. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  10. Asymmetric Total Synthesis of Propindilactone G, Part 2: Enantioselective Construction of the Fully Functionalized BCDE Ring System.

    Science.gov (United States)

    Zhang, Jia-Jun; You, Lin; Wang, Yue-Fan; Li, Yuan-He; Liang, Xin-Ting; Zhang, Bo; Yang, Shou-Liang; Su, Qi; Chen, Jia-Hua; Yang, Zhen

    2016-05-01

    The enantioselective synthesis of the fully functionalized BCDE tetracyclic ring system of propindilactone G (A) is reported. Several synthetic methods were developed and applied to achieve this goal, including: 1) an asymmetric Diels-Alder reaction in the presence of Hayashi's catalyst for the synthesis of optically pure key intermediate 3; 2) an intramolecular Pauson-Khand reaction (PKR) for the stereoselective synthesis of the BCDE ring with an all-carbon chiral quaternary center at the C13 position by using the TMS-substituted acetylene as the substrate; and 3) Pd-catalyzed reductive hydrogenolysis for the stereoselective synthesis of the fully functionalized BCDE tetracyclic ring system. The chemistry developed herein provided a greater understanding of the total synthesis propindilactone G (A) and its analogues. PMID:26991420

  11. Total Synthesis of Flocoumafen via Knoevenagel Condensation and Intramolecular Ring Cyclization: General Access to Natural Products

    Directory of Open Access Journals (Sweden)

    Mankil Jung

    2012-02-01

    Full Text Available The total synthesis and structure determination of cis- and trans-flocoumafen was described. The key synthetic steps involve Knoevenagel condensation with p-methoxybenzaldehyde, in situ decarboxylation and intramolecular ring cyclization to construct the tetralone skeleton. Stereospecific reduction of the O-alkylated ketone 13 afforded good yield of precusor alcohol 5. Final coupling of alcohol 5 with 4-hydroxy-coumarin yielded flocoumafen (1. Separation and structure determination of cis- and trans-flocoumafen through 2D NMR analyses-assisted computer simulation techniques for the evaluation of anticoagulant activities are reported for the first time. This method is useful for generating the core tetralone skeleton of 4-hydroxycoumarin derivatives and provides a generalized access to various warfarin type anticoagulants.

  12. Asymmetric total synthesis of (-)-lingzhiol via a Rh-catalysed [3+2] cycloaddition.

    Science.gov (United States)

    Long, Rong; Huang, Jun; Shao, Wenbin; Liu, Song; Lan, Yu; Gong, Jianxian; Yang, Zhen

    2014-01-01

    The development of efficient reactions for the one-pot construction of bicyclic ring systems bearing two quaternary carbon centres at their bridgehead positions represents a significant challenge to synthetic chemistry. The development of new methods capable of overcoming this challenge is highly desirable, because this motif can be found in a wide range of natural products with significant biological activities. Herein, we report an efficient [3+2] cycloaddition reaction between an enal and an alleno rhodium species, which was generated in situ from the corresponding enynol via a retro metal-propargylation reaction, to give [3.3.0] and [3.4.0] bicyclic systems bearing two quaternary atoms at their bridgehead positions. The developed chemistry has been successfully applied to the asymmetric total synthesis of natural product (-)-lingzhiol (4) for the first time in 17 steps. PMID:25483390

  13. Total Synthesis and Anti-Viral Activities of an Extract of Radix isatidis

    Directory of Open Access Journals (Sweden)

    Li-Wei He

    2014-12-01

    Full Text Available Radix isatidis (Banlangen, a famous traditional Chinese medicine, has been used for thousands of years in China due to its anti-viral activity. Through our research, we inferred that the anti-viral activity of Radix isatidis depended on the water-soluble part. Among the components of this extract, the isoquinoline derivative 1 was isolated for the first time and has shown better anti-viral activity than other constituents. In this study, to solve the problem of sourcing sufficient quantities of compound 1, a total synthesis route is described, and several analogues are also evaluated for their anti-viral activities. Among them, compound 8 shown potent anti-viral activity with an IC50 value of 15.3 µg/mL. The results suggested that isoquinoline derivatives possessed potent anti-viral activity and are worthy further development.

  14. Total synthesis of five lipoteichoic acids of Clostridium difficile

    DEFF Research Database (Denmark)

    Hogendorf, Wouter Frederik Johan; Gisch, Nicolas; Schwudke, Dominik;

    2014-01-01

    The emergence of hypervirulent resistant strains have made Clostridium difficile a notorious nosocomial pathogen and has resulted in a renewed interest in preventive strategies, such as vaccines based on (synthetic) cell wall antigens. Recently, the structure of the lipoteichoic acid (LTA) of this...... species has been elucidated. Additionally, this LTA was found to induce the formation of protective antibodies against C. difficile in rabbits and mice. The LTA from C. difficile is isolated as a microheterogenous mixture, differing in size and composition, impeding any structure-activity relationship...... studies. To ensure reliable biological results, pure and well-defined synthetic samples are required. In this work the total synthesis of LTAs from C. difficile with defined chain length is described and the initial biological results are presented....

  15. Stereoselective Total Synthesis of Atractylodemayne A, a Conjugated 2(E),8(Z),10(E)-Triene-4,6-diyne.

    Science.gov (United States)

    Schmidt, Bernd; Audörsch, Stephan

    2016-03-01

    The first total synthesis of the polyacetylene natural product atractylodemayne A is reported. Stereoselective construction of the conjugated 8(Z),10(E)-diene moiety was achieved through a tethered ring-closing metathesis approach, comprising a Ru-catalyzed RCM followed by a base-induced elimination. A Pd-catalyzed Cadiot-Chodkiewicz coupling was used for the synthesis of the diyne. Overall, atractylodemayne A was synthesized in nine steps for the longest linear sequence. PMID:26886865

  16. Peloruside B, a Potent Antitumor Macrolide from the New Zealand Marine Sponge Mycale hentscheli: Isolation, Structure, Total Synthesis and Bioactivity

    OpenAIRE

    Singh, A. Jonathan; Xu, Chun-Xiao; Xu, Xiaoming; West, Lyndon M.; Wilmes, Anja; Chan, Ariane; Hamel, Ernest; John H Miller; Peter T. Northcote; Ghosh, Arun K.

    2010-01-01

    Peloruside B (2), a natural congener of peloruside A (1), was isolated in sub-milligram quantities from the New Zealand marine sponge Mycale hentscheli. Peloruside B promotes microtubule polymerization and arrests cells in the G2M phase of mitosis similar to paclitaxel, and its bioactivity was comparable to that of peloruside A. NMR-directed isolation, structure elucidation, structure confirmation by total synthesis and bioactivity of peloruside B are described in this article. The synthesis ...

  17. Total synthesis, structural, and biological evaluation of stylissatin A and related analogs.

    Science.gov (United States)

    Shaheen, Farzana; Jabeen, Almas; Ashraf, Samreen; Nadeem-Ul-Haque, Muhammad; Shah, Zafar Ali; Ziaee, Muhammad Asad; Dastagir, Nida; Ganesan, A

    2016-09-01

    The natural product cyclic peptide stylissatin A (1a) was reported to inhibit nitric oxide production in LPS-stimulated murine macrophage RAW 264.7 cells. In the current study, solid-phase total synthesis of stylissatin A was performed by using a safety-catch linker and yielded the peptide with a trans-Phe(7) -Pro(6) linkage, whereas the natural product is the cis rotamer at this position as evidenced by a marked difference in NMR chemical shifts. In order to preclude the possibility of 1b being an epimer of the natural product, we repeated the synthesis using d-allo-Ile in place of l-Ile and a different site for macrocyclization. The resulting product (d-allo-Ile(2) )-stylissatin A (1c) was also found to have the trans-Phe(7) -Pro(6) peptide conformations like rotamer 1b. Applying the second route to the synthesis of stylissatin A itself, we obtained stylissatin A natural rotamer 1a accompanied by rotamer 1b as the major product. Rotamers 1a, 1b, and the epimer 1c were separable by HPLC, and 1a was found to match the natural product in structure and biological activity. Six related analogs 2-7 of stylissatin A were synthesized on Wang resin and characterized by spectral analysis. The natural product (1a), the rotamer (1b), and (d-allo-Ile(2) )-stylissatin A (1c) exhibited significant inhibition of NO(.) . Further investigations were focused on 1b, which also inhibited proliferation of T-cells and inflammatory cytokine IL-2 production. The analogs 2-7 weakly inhibited NO(.) production, but strongly inhibited IL-2 cytokine production compared with synthetic peptide 1b. All analogs inhibited the proliferation of T-cells, with analog 7 having the strongest effect. In the analogs, the Pro(6) residue was replaced by Glu/Ala, and the SAR indicates that the nature of this residue plays a role in the biological function of these peptides. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27526945

  18. Development of a strategy for the asymmetric synthesis of polycyclic polyprenylated acylphloroglucinols via N-amino cyclic carbamate hydrazones: application to the total synthesis of (+)-clusianone.

    Science.gov (United States)

    Garnsey, Michelle R; Lim, Daniel; Yost, Julianne M; Coltart, Don M

    2010-11-19

    A broadly applicable asymmetric synthetic strategy utilizing N-amino cyclic carbamate alkylation that provides access to the various stereochemical permutations of a common structural motif found in many polycyclic polyprenylated acylphloroglucinols is described. The utility of this methodology is demonstrated through the first asymmetric total synthesis of the antiviral agent (+)-clusianone. PMID:20977254

  19. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg;

    2009-01-01

    peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays......To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays....

  20. Biomimetic strengthening polylactide scaffold materials for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    XU Guofu; MOU Shenzhou; ZHOU Lingping; LIAO Susan; YIN Zhimin; CUI Fuzhai

    2007-01-01

    In this paper,a new polylactide(PLA)-based scaffold composite by biomimetic synthesis was designed.The novel composite mainly consists ofnano-hydroxyapatite (n-HA),which is the main inorganic content in natural bone tissue for the PLA.The crystal degree of the n-HA in the composite is low and the crystal size is very small,which is similar to that of natural bone.The compressive strength of the composite is higher than that of the PLA scaffold.Using the osteoblast culture technique,we detected cell behaviors on the biomaterial in vitro by SEM,and the cell affinity of the composite was found to be higher than that of the PLA scaffold.The biomimetic three-dimensional porous composite can serve as a kind of excellent scaffold material for bone tissue engineering because of its microstructure and properties.

  1. A Convergent Enantioselective Total Synthesis of (-)-Perhydrohistrionicotoxin with an Intramolecular Imino Ene-type Reaction as a Key Step

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Hagberg, Lars

    1998-01-01

    A convergent enantioselective total synthesis of the neurotoxic spirocyclic alkaloid (-)-perhydrohistrionicotoxin (2) is described. A Lewis acid-mediated intramolecular imine ene-type reaction was used for the key spirocyclisation step (14 to 3, with 3 being obtained as a single diastereoisomer...

  2. Total synthesis and structural confirmation of the marine natural product Dysinosin A: a novel inhibitor of thrombin and Factor VIIa.

    Science.gov (United States)

    Hanessian, Stephen; Margarita, Roberto; Hall, Adrian; Johnstone, Shawn; Tremblay, Martin; Parlanti, Luca

    2002-11-13

    The structure and absolute configuration of the marine antithrombotic product dysinosin A was confirmed by total synthesis. The strategy involved disconnections to three subunits, of which two were synthesized from the readily available l-glutamic acid, d-leucine, and d-mannitol. The Grubbs olefin metathesis carbocyclization reaction was utilized to prepare two intermediates. PMID:12418860

  3. A new isochroman-4-one derivative from the peel of Musa sapientum L. and its total synthesis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new isochroman-4-one, 7,8-dihydroxy-3-methylisochroman-4-one was isolated from water soluble fraction of Musa sapientum L. Its structure was determined by spectroscopic evidences and its total synthesis has also been reported. The compound showed potent antihypertensive activity.

  4. First total synthesis of a guanidine alkaloid Nitensidine D using immobilized ionic liquid, microwaves and formamidinesulfinic acid

    Indian Academy of Sciences (India)

    Shallu; M L Sharma; Jasvinder Singh

    2014-11-01

    An efficient first total synthesis of a naturally occurring guanidine alkaloid, Nitensidine D isolated from ethanol extract of Pterogyne nitens has been described. Geraniol has been used as the starting material. N-alkylation of phthalimide has been achieved using immobilized ionic liquid and formamidinesulfinic acid acts as the guanylating reagent.

  5. Concise synthetic approaches to naturally occurring β-hydroxyphenylarsonic: first total synthesis of papanerine, its derivative, and praecansone B

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue; Lee, Yong Rok [Yeungnam Univ., Gyeongsan (Korea, Republic of); Kim, Sung Hong [Korea Basic Science Institute, Daegu (Korea, Republic of)

    2012-04-15

    The total synthesis of biologically interesting β-hydroxyphenylarsonic, papanerine (1), its derivative 2, praecansone B (3), and pongapinone A (4) has been accomplished starting from commercially available 2,4-dihydroxyacetophenone or 6-methoxy-2,4-dihydroxyacetophenone in 3 steps by a convergent strategy through ben zopyran formations, O-methylation, and coupling reactions.

  6. First total synthesis of (+)-broussonetine W: glycosidase inhibition of natural product & analogs.

    Science.gov (United States)

    Song, Ying-Ying; Kinami, Kyoko; Kato, Atsushi; Jia, Yue-Mei; Li, Yi-Xian; Fleet, George W J; Yu, Chu-Yi

    2016-06-14

    The first total synthesis of (+)-broussonetine W (4), a naturally-occurring pyrrolidine iminosugar isolated from the traditional Chinese medical plant Broussonetia kazinoki SIEB (Moraceae), has been completed through a concise synthetic route starting from the readily available d-arabinose derived cyclic nitrone 10 in 11 steps and 31% overall yield, with regioselective installation of the α,β-unsaturated ketone functional group by the elimination of HBr from α-bromoketone as the key step. A number of analogs of (+)-broussonetine W (4) with variable side chain length, different polyhydroxylated pyrrolidine core configurations or saturated cyclohexanones have also been prepared to explore the glycosidase inhibition and the preliminary structure-activity relationship of this intriguing class of compounds. Glycosidase inhibition studies identified the natural product (+)-broussonetine W (4) as a selective and potent inhibitor of β-galactosidase (IC50 = 0.03 μM), while its enantiomer was a selective and potent inhibitor of α-glucosidase (IC50 = 0.047 μM). It was found that the configuration of the polyhydroxylated pyrrolidine ring played a key role on their glycosidase inhibitory activities. The length of side chain and α,β-unsaturated ketone functional group also exhibited some effect on their glycosidase inhibition. PMID:27184090

  7. Protecting-group-free and catalysis-based total synthesis of the ecklonialactones.

    Science.gov (United States)

    Hickmann, Volker; Alcarazo, Manuel; Fürstner, Alois

    2010-08-18

    A concise and protecting-group-free total synthesis of optically pure ecklonialactones A (1) and B (2) is described. The successful route to these oxylipins isolated from various brown algae involves five transition-metal-catalyzed transformations in the longest linear sequence of 13 steps. The first chiral center was set by a rhodium-catalyzed 1,4-addition of an alkenyl boronate to the commercial butenolide 11, which was controlled by Carreira's carvone-derived diene ligand 21. Other key steps involve a ring-closing olefin metathesis effected by the ruthenium indenylidene complex 22 for the formation of the five-membered carbocycle, a vanadium-catalyzed, hydroxy-directed epoxidation, and a ring-closing alkyne metathesis (RCAM) to forge the macrocyclic ring. Because of the unusually high propensity of the oxirane of the ecklonialactones for ring-opening, this transformation was best achieved with [(Ph(3)SiO)(3)Mo[triple bond]CPh].OEt(2) (34) as the catalyst, which is a representative of a new generation of highly tolerant yet remarkably efficient molybdenum alkylidyne complexes. The ancillary triphenylsilanolate ligands in 34 temper the Lewis acidity of the molybdenum center and are not able to nucleophilically open the fragile epoxide ring. The final reduction of the cycloalkyne formed in the RCAM step to the required (Z)-alkene was accomplished either by Lindlar reduction or with the aid of nickel boride. PMID:20698670

  8. Toward the Total Synthesis of Scleritodermin A: Preparation of the C1-N15 Fragment

    OpenAIRE

    Sellanes, Diver; Manta, Eduardo; Serra, Gloria

    2007-01-01

    The synthesis of the C1-N15 fragment of the marine natural product Scleritodermin A has been accomplished through a short and stereocontrolled sequence. Highlights of this route include the synthesis of the novel ACT fragment and the formation of the α-keto amide linkage by the use of a highly activated α, β-ketonitrile.

  9. Application of cyclic phosphonamide reagents in the total synthesis of natural products and biologically active molecules

    OpenAIRE

    Thilo Focken; Stephen Hanessian

    2014-01-01

    A review of the synthesis of natural products and bioactive compounds adopting phosphonamide anion technology is presented highlighting the utility of phosphonamide reagents in stereocontrolled bond-forming reactions. Methodologies utilizing phosphonamide anions in asymmetric alkylations, Michael additions, olefinations, and cyclopropanations will be summarized, as well as an overview of the synthesis of the employed phosphonamide reagents.

  10. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  11. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  12. Total Synthesis of Clavosolide A via Tandem Allylic Oxidation/Oxa-Conjugate Addition Reaction

    Science.gov (United States)

    Baker, Joseph B.; Kim, Hyoungsu; Hong, Jiyong

    2015-01-01

    The tandem allylic oxidation/oxa-conjugate addition reaction promoted by the gem-disubstituent effect in conjunction with the NHC-mediated oxidative esterification was explored for the facile synthesis of clavosolide A. PMID:26236051

  13. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product

    OpenAIRE

    Fuwa, Haruhiko

    2016-01-01

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetr...

  14. Cytotoxic 1,3-Thiazole and 1,2,4-Thiadiazole Alkaloids from Penicillium oxalicum: Structural Elucidation and Total Synthesis

    Directory of Open Access Journals (Sweden)

    Zheng Yang

    2016-02-01

    Full Text Available Two new thiazole and thiadiazole alkaloids, penicilliumthiamine A and B (2 and 3, were isolated from the culture broth of Penicillium oxalicum, a fungus found in Acrida cinerea. Their structures were elucidated mainly by spectroscopic analysis, total synthesis and X-ray crystallographic analysis. Biological evaluations indicated that compound 1, 3a and 3 exhibit potent cytotoxicity against different cancer cell lines through inhibiting the phosphorylation of AKT/PKB (Ser 473, one of important cancer drugs target.

  15. Total synthesis of peloruside A via kinetic lactonization and relay RCM cyclization reactions (and identification of iso-peloruside A)

    OpenAIRE

    Hoye, Thomas R.; Jeon, Junha; Kopel, Lucas C.; Ryba, Troy D.; Tennakoon, Manomi A.; Wang, Yini

    2010-01-01

    A convergent total synthesis of peloruside A (1) is described. The key strategic features are a diastereoselective lactonization to generate a C5-C9 valerolactone from the C2-symmetric ketone 4, which comprises C1–C9 of 1, and a relay ring closing metathesis (RRCM) reaction to produce a dehydrovalerolactone 20, which embodies C13–C19. A new isomer of 1, the valerolactone iso-peloruside A (iso-1), was identified.

  16. The Total Synthesis of Galbulimima Alkaloid (+/-) G. B. 13 and the Development of an Anomalous Heck Reaction

    OpenAIRE

    Larson, Kimberly Katherine

    2009-01-01

    This dissertation describes our strategy for the total synthesis of Galbulimima alkaloid ()-G. B. 13. First, an overview of the isolation and structural classification of the twenty-eight alkaloids in the Galbulimima family is presented. Proposals for the biosyntheses of these natural products as well as the determination of their absolute stereochemical relationships are discussed. Additionally, the biological and medicinal properties of himbacine, another Galbulimima alkaloid, are present...

  17. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  18. Total Synthesis of the Posttranslationally Modified Polyazole Peptide Antibiotic Plantazolicin A.

    Science.gov (United States)

    Wada, Hiroki; Williams, Huw E L; Moody, Christopher J

    2015-12-01

    The power of rhodium-carbene methodology in chemistry is demonstrated by the synthesis of a structurally complex polyazole antibiotic. Plantazolicin A, a novel soil-bacterium metabolite, comprises a linear array of 10 five-membered rings in two pentacyclic regions that derive from ribosomal peptide synthesis followed by extensive posttranslational modification. The compound possesses potent antimicrobial activity, and is selectively active against the anthrax-causing organism. A conceptually different synthesis of plantazolicin A is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate up to six of the seven oxazole rings of the antibiotic. NMR spectroscopic studies and molecular modeling reveal a likely dynamic hairpin conformation with a hinge region around the two isoleucine residues. The compound has modest activity against methicillin-resistant Staphylococcus aureus (MRSA). PMID:26473502

  19. Biomimetic Dye Aggregate Solar Cells

    OpenAIRE

    Marek, Peter L.

    2012-01-01

    A biomimetic self-assembling dye, which forms aggregates that mimic the natural light-harvesting system of special photosynthetic active bacteria, has been investigated towards its applicability to solar cells. This fully synthetic dye, self-assembles to orderly structured nano- to micrometer sized rod-shaped aggregates, which might improve solar cells based on conventional organic dyes. In order to use the full potential of the dye aggregates, the self-assembly needed to be controlled and a ...

  20. Total Chemical Synthesis,Assembly of Human Torque Teno Virus Genome

    Institute of Scientific and Technical Information of China (English)

    Zheng Hou; Gengfu Xiao

    2011-01-01

    Torque teno virus(TTV)is a nonenveloped virus containing a single-stranded,circular DNA genome of approximately 3.8kb.We completely synthesized the 3808 nucleotides of the TTV(SANBAN isolate)genome,which contains a hairpin structure and a GC-rich region.More than 100 overlapping oligonucleotides were chemically synthesized and assembled by polymerise chain assembly reaction(PCA),and the synthesis was completed with splicing by overlap extension(SOEing).This study establishes the methodological basis of the chemical synthesis of a viral genome for use as a live attenuated vaccine or gene therapy vector.

  1. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2014-06-01

    Full Text Available Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined.

  2. Total synthesis of desoxycyclomarin C and the cyclomarazines A and B.

    Science.gov (United States)

    Barbie, Philipp; Kazmaier, Uli

    2016-07-01

    Removing the β-hydroxy group from the prenylated tryptophan moiety of cyclomarins simplifies the synthesis of these interesting natural products significantly, without having a noteworthy effect on the anti-tuberculosis activity of the cyclomarins. In contrast, cyclomarazines did not show biological activity. PMID:27241664

  3. Biosynthesis and Total Synthesis Studies on The Jadomycin Family of Natural Products

    OpenAIRE

    Sharif, Ehesan U.; O’Doherty, George A.

    2012-01-01

    Jadomycins are unique angucycline polyketides, which are produced by soil bacteria Streptomyces venezuelae under specific nutrient and environmental conditions. Their unique structural complexity and biological activities have engendered extensive study of the jadomycin class of natural compounds in terms of biological activity, biosynthesis, and synthesis.

  4. Oxidative allylic rearrangement of cycloalkenols: Formal total synthesis of enantiomerically pure trisporic acid B

    Directory of Open Access Journals (Sweden)

    Bernhard Westermann

    2011-04-01

    Full Text Available Enantiomerically highly enriched unsaturated β-ketoesters bearing a quaternary stereocenter can be utilized as building blocks for the synthesis of natural occurring terpenes, i. a., trisporic acid and its derivatives. An advanced building block has been synthesized in a short reaction sequence, which involves an oxidative allylic rearrangement initiated by pyridinium dichromate (PDC as the key step.

  5. Total Synthesis of (±)-Strychnine via a [4+2]-Cycloaddition/Rearrangement Cascade

    OpenAIRE

    Zhang, Hongjun; Boonsombat, Jutatip; Padwa, Albert

    2007-01-01

    A new strategy for the synthesis of the Strychnos alkaloid (±)-strychnine has been developed and is based on an intramolecular [4+2]-cycloaddition/rearrangement cascade of an indolyl substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide.

  6. Design, synthesis, and characterization of biomimetic oligomers

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler

    Peptides and proteins made from the 20 canonical amino acids are responsible for many processes necessary for organisms to function. Beside their composition, proteins obtain their activity and unique selectivity through an ability to display functionalities accurately in the three-dimensional sp...

  7. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2010-01-01

    The paper illustrates how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. Using biomimetics involves a search for relevant cases, a proper analysis of the...... of biomimetic studies of sense organs in animals....

  8. Generating a Generation of Proteasome Inhibitors: From Microbial Fermentation to Total Synthesis of Salinosporamide A (Marizomib and Other Salinosporamides

    Directory of Open Access Journals (Sweden)

    Barbara C. Potts

    2010-03-01

    Full Text Available The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1 is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1.

  9. The Efficient and Enantiospecific Total Synthesis of Cyclopenta[b]phenanthrenes Structurally-related to Neurosteroids

    OpenAIRE

    Qian, Mingxing; Covey, Douglas F.

    2010-01-01

    We report an efficient synthesis of cyclopenta[b]phenanthrenes functionalized at C-3 and C-8 from an optically pure Hajos-Parrish ketone. The key step is a neutral alumina catalyzed Michael addition of a Hajos-Parrish ketone derivative (4) to 1,7-octadien-3-one (2) in 98% yield. This Michael addition product went through Krapcho decarbomethoxylation, aldol condensation, lithium liquid ammonia reduction, Wacker oxidation and acid catalyzed cyclization to form cyclopenta[b]phenanthrene (1a) in ...

  10. Total Synthesis of Two 4, 5-Dioxo-seco-eudesmane Sesquiterpenes

    Institute of Scientific and Technical Information of China (English)

    Li Jing FANG; Chen Xi ZHANG; Jin Chun CHEN; Guo Jun ZHENG; Yu Lin LI

    2005-01-01

    A facile synthetic route to two seco-eudesmane, 4, 5-dioxo-10-epi-4, 5-seco-γeudesmane (1) and 4, 5-dioxo-10-epi-4, 5-seco-γ-eudesmol (2) from (+)-dihydrocarvone has been described. Avoiding expensive reagents, this highly economic method especially suits for the synthesis of 4, 5-seco-eudesman-type and ophianon-type sesquiterpenes with a double bond at position 11 and 12.

  11. Total synthesis of the aristolochic acids, their major metabolites, and related compounds.

    Science.gov (United States)

    Attaluri, Sivaprasad; Iden, Charles R; Bonala, Radha R; Johnson, Francis

    2014-07-21

    Plants from the Aristolochia genus have been recommended for the treatment of a variety of human ailments since the time of Hippocrates. However, many species produce the highly toxic aristolochic acids (AAs), which are both nephrotoxic and carcinogenic. For the purposes of extensive biological studies, a versatile approach to the synthesis of the AAs and their major metabolites was devised based primarily on a Suzuki-Miyaura coupling reaction. The key to success lies in the preparation of a common ring-A precursor, namely, the tetrahydropyranyl ether of 2-nitromethyl-3-iodo-4,5-methylendioxybenzyl alcohol (27), which was generated in excellent yield by oxidation of the aldoxime precursor 26. Suzuki-Miyaura coupling of 27 with a variety of benzaldehyde 2-boronates was accompanied by an aldol condensation/elimination reaction to give the desired phenanthrene intermediate directly. Deprotection of the benzyl alcohol followed by two sequential oxidation steps gave the desired phenanthrene nitrocarboxylic acids. This approach was used to synthesize AAs I-IV and several other related compounds, including AA I and AA II bearing an aminopropyloxy group at position-6, which were required for further conversion to fluorescent biological probes. Further successful application of the Suzuki-Miyaura coupling reaction to the synthesis of the N-hydroxyaristolactams of AA I and AA II then allowed the synthesis of the putative, but until now elusive, N-acetoxy- and N-sulfonyloxy-aristolactam metabolites. PMID:24877584

  12. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (-)-Aspewentins A, B, and C.

    Science.gov (United States)

    Liu, Yiyang; Virgil, Scott C; Grubbs, Robert H; Stoltz, Brian M

    2015-09-28

    The direct α-vinylation of carbonyl compounds to form a quaternary stereocenter is a challenging transformation. It was discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (-)-aspewentins A, B, and C is demonstrated. PMID:26230413

  13. Influence of the Total Gas Flow at Different Reaction Times for CVD-Graphene Synthesis on Polycrystalline Nickel

    Directory of Open Access Journals (Sweden)

    M. P. Lavin-Lopez

    2016-01-01

    Full Text Available Optimization of the total gas flow (CH4+H2 during the reaction step for different reaction times for CVD-graphene synthesis on polycrystalline nickel foil using an atmospheric pressure set-up is reported. A thickness value related to number of graphene layers in each of the synthesized samples was determined using an Excel-VBA application. This method assigned a thickness value between 1 and 1000 and provided information on the percentage of each type of graphene (monolayer, bilayer, and multilayer deposited onto the polycrystalline nickel sheet. The influence of the total gas flow during the reaction step and the reaction time was studied in detail. Optical microscopy showed that samples were covered with different types of graphene, such as multilayer, few-layer, bilayer, and monolayer graphene. The synthesis variables were optimized according to the thickness value and the results were verified by Raman spectroscopy. The best conditions were obtained with a reaction temperature of 980°C, a CH4/H2 flow rate ratio of 0.07 v/v, a reaction time of 1 minute, and a total gas flow of 80 NmL/min. In the sample obtained under the optimized conditions, 80% of the area was covered with monolayer graphene and less than 1% with multilayer graphene.

  14. Recent approaches to the total synthesis of phytoprostanes, isoprostanes and neuroprostanes as important products of lipid oxidative stress and biomarkers of disease

    Czech Academy of Sciences Publication Activity Database

    Jahn, Emanuela; Durand, T.; Galano, J. M.; Jahn, Ullrich

    2014-01-01

    Roč. 108, č. 4 (2014), s. 301-319. ISSN 0009-2770 Institutional support: RVO:61388963 Keywords : lipids * oxidative stress * phytoprostanes * isoprostanes * neuroprostanes * total synthesis Subject RIV: CC - Organic Chemistry Impact factor: 0.272, year: 2014

  15. Total Synthesis of Plakilactones C, B and des-Hydroxyplakilactone B by the Oxidative Cleavage of Gracilioether Furanylidenes.

    Science.gov (United States)

    Norris, Matthew D; Perkins, Michael V

    2016-08-01

    A chemoselective oxidative cleavage of synthetic gracilioether B, 11-epi-gracilioether C benzoate, and des-hydroxygracilioether C with pyridinium chlorochromate, which proceeds with loss of the furanyl acetate, has enabled total synthesis and stereochemical elucidation of the marine sponge metabolites (4R,6R)-plakilactone C, (4R,6R,9R)-plakilactone B, and (4R,6R)-des-hydroxyplakilactone B. des-Hydroxygracilioether C, the putative biosynthetic precursor to hippolachnin A, was also found to undergo a facile ene cyclization on treatment with SnCl4. PMID:27359169

  16. Biomimetic implant coatings.

    Science.gov (United States)

    Eisenbarth, E; Velten, D; Breme, J

    2007-02-01

    Biomaterials and tissue engineering technologies are becoming increasingly important in biomedical practice, particularly as the population ages. Cellular responses depend on topographical properties of the biomaterial at the nanometer scale. Structures on biomaterial surfaces are used as powerful tools to influence or even control interactions between implants and the biological system [; ]. The influence of nanometer sized surface structures on osteoblastlike cell interactions was tested with niobium oxide coatings on polished titanium slices (cp-Ti grade 2). The aim of the study was to investigate the influence of nanoscopic surface structures on osteoblast interactions in order to support collagen I production and cell adhesion. The coatings were done by means of the sol-gel process. The surface structure was adjusted by annealing of the metaloxide ceramic coatings due to temperature depended crystal growth. The applied annealing temperatures were 450, 550 and 700 degrees C for 1 h, corresponding to Ra-numbers of 7, 15 and 40 nm. The surfaces were characterized by means of AFM, DTA/TG, diffractometry and white light interferometry. The cell reactions were investigated concerning adhesion kinetics, migration, spreading, cell adhesion, and collagen I synthesis. The smooth surface (Ra=7 nm) resulted in the fastest cell anchorage and cell migration. The closest cell adhesion was reached with the surface structure of Ra=15 nm. The roughest surface (Ra=40 nm) impedes the cell migration as well as a proper spreading of the cells. The best results concerning cell adhesion and spreading was reached with an intermediate surface roughness of Ra=15 nm of the niobium oxide coating on cp-titanium slices. PMID:16828342

  17. Total synthesis and structural validation of cyclodepsipeptides solonamide A and B

    DEFF Research Database (Denmark)

    Kitir, Betül; Baldry, Mara; Ingmer, Hanne; Olsen, Christian Adam

    2014-01-01

    from the marine bacterium Photobacterium halotolerance and were found to inhibit virulence gene expression in the serious human pathogen, Staphylococcus aureus. They act by interfering with the agr quorum sensing system and show resemblance to the endogenous S. aureus quorum sensing peptide......, autoinducing peptide I (AIP-I). To enable more comprehensive studies, we embarked on the chemical synthesis of solonamides A and B. The key synthetic steps were formation of the (R)-β-hydroxy-fatty-acids by stereo-selective aldol reactions and a cyclative macrolactamization, which proceeded under highly dilute...

  18. Methods for biomimetic remineralization of human dentine: a systematic review.

    Science.gov (United States)

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system. PMID:25739078

  19. Enantioselective total synthesis of (−)-epoxyquinols A and B. Novel, convenient access to chiral epoxyquinone building blocks through enzymatic desymmetrization

    OpenAIRE

    Mehta, Goverdhan; Islam, Kabirul

    2004-01-01

    Following our recent total synthesis of the biologically potent natural products epoxyquinols A and B in racemic form, we have now accomplished the total synthesis of the (−)-epoxyquinols A and B, anti-podes of the angiogenesis inhibiting natural products, through a protocol that involves enzymatic desymmetrization of a versatile epoxyquinone derivative, readily available from the Diels–Alder adduct of cyclopentadiene and p-benzoquinone.

  20. Researches and developments of biomimetics in tribology

    Institute of Scientific and Technical Information of China (English)

    DAI Zhendong; TONG Jin; REN Luquan

    2006-01-01

    Animals and plants have developed optimal geometric structures, smart topological materials and multi-functional surface textures with excellent tribological characteristics through the evolution of thousand millions of years and become models for tribological design. This paper puts forward the definition and fundament of biomimetic tribology, investigates the status of self-cleaning of liquid-solid interface, adhesion between animals' feet and solid surface, wear characteristics of biological surfaces and biomimetic design, as well as the friction and bionic design on liquid-solid interface. The further developments of the tribological biomimetics are discussed.

  1. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-01-01

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379

  2. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  3. Heronapyrrole D: A case of co-inspiration of natural product biosynthesis, total synthesis and biodiscovery

    Directory of Open Access Journals (Sweden)

    Jens Schmidt

    2014-05-01

    Full Text Available The heronapyrroles A–C have first been isolated from a marine-derived Streptomyces sp. (CMB-0423 in 2010. Structurally, these natural products feature an unusual nitropyrrole system to which a partially oxidized farnesyl chain is attached. The varying degree of oxidation of the sesquiterpenyl subunit in heronapyrroles A–C provoked the hypothesis that there might exist other hitherto unidentified metabolites. On biosynthetic grounds a mono-tetrahydrofuran-diol named heronapyrrole D appeared a possible candidate. We here describe a short asymmetric synthesis of heronapyrrole D, its detection in cultivations of CMB-0423 and finally the evaluation of its antibacterial activity. We thus demonstrate that biosynthetic considerations and the joint effort of synthetic and natural product chemists can result in the identification of new members of a rare class of natural products.

  4. Monitoring the catalytic synthesis of glycerol carbonate by real-time attenuated total reflection FTIR spectroscopy

    NARCIS (Netherlands)

    Calvino-Casilda, V.; Mul, G.; Fernandez, J.F.; Rubio-Marcos, F.; Banares, M.A.

    2011-01-01

    In situ Attenuated Total Reflectance FTIR spectroscopy was used to study the carbonylation of glycerol with urea. Cobalt oxide nanoparticles, Co3O4, hierarchically dispersed on zinc oxide microparticles, ZnO, were used as catalysts. The present work demonstrates that in situ real-time attenuated tot

  5. Total Synthesis of Trimethoprim%甲氧苄啶的全合成

    Institute of Scientific and Technical Information of China (English)

    冀亚飞; 李前荣

    2001-01-01

    对甲酚为起始原料,以总收率40.6%的高收率合成了杀菌增效剂甲氧苄啶.对 甲酚进行溴化、水解反应得到4-羟基-3,5-二溴苯甲醛;该化合物以甲醇钠甲醇溶液 进行甲氧基化反应获得4-羟基-3,5-二甲氧基苯甲醛的酚钠盐,然后直接以硫酸二甲 酯进行甲基化反应得到3,4,5-三甲氧基苯甲醛;用其通过与甲醇钠、丙烯氰的甲醇溶 液反应得到肉桂氰衍生物;该衍生物先经碱催化的1,3-质子转移异构化到烯醚结构, 再与甲醇加成,直接与胍缩合环化,最终得到甲氧苄啶.%Antibacterial synergist trimethoprim was synthesized from p-cresol in an overall yield as high as 40. 6%. p-cresol was brominated and hydrolyzed to give 3, 5-dibromo-4-hydroxyben- zaldehyde, which was methoxylated by methanolic sodium methoxide associated with cuprous chloride and dimethyfformamide(DMF)as catalyst at 125℃ (ca. 0.SMPa)to provide sodium phenolate of 3,5- dimethoxy-4-hydroxybenzaldehyde, from which 3,4,5-trimethoxybenzaldehyde was obtained by methy lation directly with dimethylsuffate in aqueous sodium hydroxide. Efficient synthesis of trimethoprim from 3,4,5-trimethoxybenzaldehyde was accomplished by condensation with methanolic sodium methox ide, methanol and acrylonitrile via prior base-catalyzed 1,3-prototropic isomerization of cinnamonitrile converted into the enol ether, followed by addition with methanol at 90℃ (ca. 0.05MPa)and cyclo condensation directly with guanidine in dimethyl sulfoxide(DMSO)at 110℃ with the removal of methanol. "One-pot" method was used in the synthesis starting from economical, convenient and envi ronmental awareness.

  6. Biomimetic catalysis: Taking on the turnover challenge

    Science.gov (United States)

    Hooley, Richard J.

    2016-03-01

    Emulating the efficiency with which enzymes catalyse reactions has often been used as inspiration to develop self-assembled cages. Now two studies present approaches to achieving catalyst turnover -- one of the biggest challenges in achieving truly biomimetic catalysis.

  7. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  8. Sol–gel auto-combustion synthesis of totally immiscible NiAg alloy

    International Nuclear Information System (INIS)

    Highlights: ► Chemically synthesized immiscible NiAg alloy nanoparticles without protecting matrix. ► A chemical method providing both a nonequilibrium thermal process and a good mixing of precursors. ► Observation of extinction planes in NiAg alloy. -- Abstract: Immiscible crystalline NiAg alloy was successfully synthesized by the newly developed sol–gel auto-combustion method. The structure and composition were examined by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). All evidence supports that homogeneous NiAg alloy with FCC structure was synthesized. The differential thermal analysis and thermogravimetry (DTA–TG) measurement shows that the alloy has a good thermal stability until 315 °C. Unusually some extinction planes are observed in the XRD pattern and HRTEM images. The random distribution of atoms and the large difference between Ni and Ag atom form factors should be regarded as the main reasons for the observation of the extinction planes. The quenching like nonequilibrium thermal process in the combustion is taken as the key factor in the synthesis of immiscible alloy. And the addition of ethylene glycol in the precursors is found to benefit the formation of NiAg alloy.

  9. Total synthesis of proanthocyanidin A1, A2, and their stereoisomers.

    Science.gov (United States)

    Sharma, Pradeep K; Romanczyk, Leo J; Kondaveti, Leelakrishna; Reddy, Bollu; Arumugasamy, Jeeva; Lombardy, Richard; Gou, Yanni; Schroeter, Hagen

    2015-05-15

    The first novel stereoselective synthesis of naturally occurring A1 (1) and A2 proanthocyanidins (2) has been achieved. The key synthetic steps involved (a) the formation of a coupled product (13 or 14) between an open chain C-ring C-4 hydroxyethoxy analogue of either (+)-catechin or (-)-epicatechin with 5,7,3',3'-tetra-O-benzyl-(+)-catechin/-(-)-epicatechin in the presence of bentonite clay K-10, (b) removal of benzyl protecting groups under mild catalytic hydrogenation conditions to form the desired A-type compound in situ as a mixture of diastereomers via ketal/oxonium ion/carbonium ion formation, and (c) separation of the diasteromers via silica gel column chromatography. The structures of A1 and A2 proanthocyanidins were unequivocally established by analytical comparison to the natural products. Following this methodology, an additional six diastereomers of proanthocyanidins A1 and A2 have been synthesized. A plausible mechanism for the formation of the A-type linkage in proanthocyanidins has been proposed. PMID:25927567

  10. Total synthesis of the large non-ribosomal peptide polytheonamide B

    Science.gov (United States)

    Inoue, Masayuki; Shinohara, Naoki; Tanabe, Shintaro; Takahashi, Tomoaki; Okura, Ken; Itoh, Hiroaki; Mizoguchi, Yuki; Iida, Maiko; Lee, Nayoung; Matsuoka, Shigeru

    2010-04-01

    Polytheonamide B is by far the largest non-ribosomal peptide known at present, and displays extraordinary cytotoxicity (EC50 = 68 pg ml-1, mouse leukaemia P388 cells). Its 48 amino-acid residues include a variety of non-proteinogenic D- and L-amino acids, and the absolute stereochemistry of these amino acids alternate in sequence. These structural features induce the formation of a stable β-strand-type structure, giving rise to an overall tubular structure over 30 Å in length. In a biological setting, this fold is believed to transport cations across the lipid bilayer through a pore, thereby acting as an ion channel. Here, we report the first chemical construction of polytheonamide B. Our synthesis relies on the combination of four key stages: syntheses of non-proteinogenic amino acids, a solid-phase assembly of four fragments of polytheonamide B, silver-mediated connection of the fragments and, finally, global deprotection. The synthetic material now available will allow studies of the relationships between its conformational properties, channel functions and cytotoxicity.

  11. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan

    2011-02-07

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm){sup 2}, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of {approx}3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  12. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian;

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE...

  13. First Total Synthesis of Hyacinthacine A6 from the Protected Derivative of Polyhydroxylated Pyrrolidine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Tao-xiang; ZHOU Ling; AO Xiao-ping

    2008-01-01

    (1S,2R,3R,5R,7aR)-1,2-Dihydroxy-3-hydroxymethy1-5-methylpyrrolizidine(hyacinthacine A6,1) was synthesized by Wittig's methodology via the reaction of aldehyde 6,prepared from the partially protected derivative of polyhydroxylatcd pyrrolidine,with appropriated ylides,followed by cyclization through the internal reductive amination process of the resulting a,β-unsaturated ketone 7,and total deprotection.

  14. Synthesis,Charactcrization and Antibacterial Property of Strontium Half and Totally Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIN Yingguang; YANG Zhuoru; CHENG Jiang; WANG Lianshi

    2008-01-01

    Nanoparticles of hydroxyapatite(HAP),strontium half substituted hydroxyapatite(SrCaHAP) and strontium totally substituted hydroxyapatite(SrHAP)were prepared by sol-gel-supercritical fluid drying (SCFD) method.The nanoparticles were characterized by element content analysis,FT-IR,XRD and TEM,and the effects of strontium substitution on crystal structure.crystallinity,particle shape and antibacterial propemes of the nanoparticles on Escherichia coli,Staphylococcus aureus,Lactobacillus were researched.Results show that strontium can half and totally substitute for calcium and enter the structure of apatite according to the initial atomic ratios of Sr/[Sr+Ca] as 0.5,1.The substitution decreases the IR wavenumbers of SrCaHAP and SrHAP, and changes the morphology of the nanoparticles from short rod shaped HAP to needle shaped SrCaHAE and back to short rod shaped SrHAP.The crystallinity of HAP is higher than that of SrCaHAP, but is lower thall that of SrHAP.Moreove~the antibacterial property of SrCaHAP and SrHAP are improved after the calcium is half and totally substituted by strontium.

  15. Biomimetic Active Touch with Fingertips and Whiskers.

    Science.gov (United States)

    Lepora, Nathan F

    2016-01-01

    This study provides a synthetic viewpoint that compares, contrasts, and draws commonalities for biomimetic perception over a range of tactile sensors and tactile stimuli. Biomimetic active perception is formulated from three principles: (i) evidence accumulation based on leading models of perceptual decision making; (ii) action selection with an evidence-based policy, here based on overt focal attention; and (iii) sensory encoding of evidence based on neural coding. Two experiments with each of three biomimetic tactile sensors are considered: the iCub (capacitive) fingertip, the TacTip (optical) tactile sensor, and BIOTACT whiskers. For each sensor, one experiment considers a similar task (perception of shape and location) and the other a different tactile perception task. In all experiments, active perception with a biomimetic action selection policy based on focal attention outperforms passive perception with static or random action selection. The active perception also consistently reaches superresolved accuracy (hyperacuity) finer than the spacing between tactile elements. Biomimetic active touch thus offers a common approach for biomimetic tactile sensors to accurately and robustly characterize and explore non-trivial, uncertain environments analogous to how animals perceive the natural world. PMID:27168603

  16. Efficient Total Chemical Synthesis of (13) C=(18) O Isotopomers of Human Insulin for Isotope-Edited FTIR.

    Science.gov (United States)

    Dhayalan, Balamurugan; Fitzpatrick, Ann; Mandal, Kalyaneswar; Whittaker, Jonathan; Weiss, Michael A; Tokmakoff, Andrei; Kent, Stephen B H

    2016-03-01

    Isotope-edited two-dimensional Fourier transform infrared spectroscopy (2 D FTIR) can potentially provide a unique probe of protein structure and dynamics. However, general methods for the site-specific incorporation of stable (13) C=(18) O labels into the polypeptide backbone of the protein molecule have not yet been established. Here we describe, as a prototype for the incorporation of specific arrays of isotope labels, the total chemical synthesis-via a key ester insulin intermediate-of 97 % enriched [(1-(13) C=(18) O)Phe(B24) ] human insulin: stable-isotope labeled at a single backbone amide carbonyl. The amino acid sequence as well as the positions of the disulfide bonds and the correctly folded structure were unambiguously confirmed by the X-ray crystal structure of the synthetic protein molecule. In vitro assays of the isotope labeled [(1-(13) C=(18) O)Phe(B24) ] human insulin showed that it had full insulin receptor binding activity. Linear and 2 D IR spectra revealed a distinct red-shifted amide I carbonyl band peak at 1595 cm(-1) resulting from the (1-(13) C=(18) O)Phe(B24) backbone label. This work illustrates the utility of chemical synthesis to enable the application of advanced physical methods for the elucidation of the molecular basis of protein function. PMID:26715336

  17. Contact kinematics of biomimetic scales

    International Nuclear Information System (INIS)

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate

  18. Biomimetic use of genetic algorithms

    CERN Document Server

    Dessalles, Jean-Louis

    2011-01-01

    Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.

  19. Biomimetic mechanism for micro aircraft

    Science.gov (United States)

    Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)

    2005-01-01

    A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.

  20. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær;

    2015-01-01

    The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One...... barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...... organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these...

  1. Isolation and Total Synthesis of Stolonines A–C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera

    Directory of Open Access Journals (Sweden)

    Trong D. Tran

    2015-07-01

    Full Text Available Cnemidocarpa stolonifera is an underexplored marine tunicate that only occurs on the tropical to subtropical East Coast of Australia, with only two pyridoacridine compounds reported previously. Qualitative analysis of the lead-like enhanced fractions of C. stolonifera by LC-MS dual electrospray ionization coupled with PDA and ELSD detectors led to the identification of three new natural products, stolonines A–C (1–3, belonging to the taurine amide structure class. Structures of the new compounds were determined by NMR and MS analyses and later verified by total synthesis. This is the first time that the conjugates of taurine with 3-indoleglyoxylic acid, quinoline-2-carboxylic acid and β-carboline-3-carboxylic acid present in stolonines A–C (1–3, respectively, have been reported. An immunofluorescence assay on PC3 cells indicated that compounds 1 and 3 increased cell size, induced mitochondrial texture elongation, and caused apoptosis in PC3 cells.

  2. Isolation and Total Synthesis of Stolonines A-C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera.

    Science.gov (United States)

    Tran, Trong D; Pham, Ngoc B; Ekins, Merrick; Hooper, John N A; Quinn, Ronald J

    2015-07-01

    Cnemidocarpa stolonifera is an underexplored marine tunicate that only occurs on the tropical to subtropical East Coast of Australia, with only two pyridoacridine compounds reported previously. Qualitative analysis of the lead-like enhanced fractions of C. stolonifera by LC-MS dual electrospray ionization coupled with PDA and ELSD detectors led to the identification of three new natural products, stolonines A-C (1-3), belonging to the taurine amide structure class. Structures of the new compounds were determined by NMR and MS analyses and later verified by total synthesis. This is the first time that the conjugates of taurine with 3-indoleglyoxylic acid, quinoline-2-carboxylic acid and β-carboline-3-carboxylic acid present in stolonines A-C (1-3), respectively, have been reported. An immunofluorescence assay on PC3 cells indicated that compounds 1 and 3 increased cell size, induced mitochondrial texture elongation, and caused apoptosis in PC3 cells. PMID:26204949

  3. Concise total synthesis of water soluble metatacarboline A, C, D, E and F and its anticancer activity.

    Science.gov (United States)

    Naveen, Badher; Mudiraj, Anwita; Khamushavalli, Geeviman; Babu, Phanithi Prakash; Nagarajan, Rajagopal

    2016-05-01

    The simple, concise, protecting group free and first total synthesis of Metatacarboline alkaloids (abbreviated as Mc) Mc A, C, D, E and F are reported. The core structure of metatacarboline alkaloids has been constructed by the classical Wittig reaction as key step from easily accessible starting materials with 40-75% overall yields. These synthesized compounds have been subjected to evaluate for their anticancer activity using C6 glioma cell lines. Mc D and Mc F showed significant antiproliferative activity, which was confirmed by MTT and Clonogenic assay. FACS analysis showed that Mc D and Mc F arrested the cell cycle at sub G0/G1 and G2/M phase of cell cycle respectively. Further, Western blot analysis and immunohistochemistry of Mc D treated cells revealed activation of caspase dependent downstream signaling which led to apoptosis. PMID:26927685

  4. Total Synthesis of 4,5-Didehydroguadiscine: A Potent Melanogenesis Inhibitor from the Brazilian Medicinal Herb, Hornschuchia obliqua.

    Science.gov (United States)

    Tanabe, Genzoh; Sugano, Youta; Shirato, Miki; Sonoda, Naoki; Tsutsui, Nozomi; Morikawa, Toshio; Ninomiya, Kiyofumi; Yoshikawa, Masayuki; Muraoka, Osamu

    2015-07-24

    The first total synthesis of the 7,7-dimethylaporphinoid, 4,5-didehydroguadiscine (6), originally isolated from the stems and roots of Hornschuchia oblique (Annonaceae), was achieved by the condensation of homopiperonylamine (7) with an α,α-dimethylphenylacetic acid derivative (8) and subsequent Pschorr reaction of the resulting benzylisoquinoline intermediate (22). The reported (13)C NMR data were partially revised on the basis of the analysis of HMBC spectra measured under different conditions. The melanogenesis inhibitory activity (IC50 = 4.7 μM) of 6 was 40 times stronger than that of arbutin (174 μM), which was used as reference standard. Furthermore, 6 was the most potent natural melanogenesis inhibitor within this class of compounds. PMID:26135746

  5. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  6. Total Synthesis of Purported Cephalosporolides H and I, Penisporolide B, and Their Stereoisomers.

    Science.gov (United States)

    Wang, Jian; Tong, Rongbiao

    2016-05-20

    Development of a unified, bioinspired synthetic strategy to access four possible diastereomers of unique 2,2-dimethyl-[5,5]-spiroacetal-cis-fused-γ-lactone (Me2SAFL) is reported, featuring pyridinium chlorochromate (PCC)-promoted oxidative ring expansion of β-hydroxy cyclic ethers and dehydrative ring-contraction rearrangement of 10-membered lactones. Synthetic utility of this strategy was demonstrated by total syntheses of 12 Me2SAFLs, corresponding to the purported cephalosporolide H (CesH), cephalosporolide I (CesI), and penisporolide B (PenB) and their possible diastereomers. Comprehensive NMR data analysis suggested that the tricyclic Me2SAFL core of CesH, CesI, and PenB should be revised to the same relative (3R*, 4R*, 6S*, 9R*) configuration and that the side chains required an unknown constitutional structure revision. PMID:27137949

  7. Total observed organic carbon (TOOC in the atmosphere: a synthesis of North American observations

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2008-04-01

    Full Text Available Measurements of organic carbon compounds in both the gas and particle phases made upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC in the atmosphere over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m−3 from the cleanest site (Trinidad Head to the most polluted (Mexico City. Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketone and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source

  8. Total Observed Organic Carbon (TOOC: A synthesis of North American observations

    Directory of Open Access Journals (Sweden)

    C. L. Heald

    2007-12-01

    Full Text Available Measurements of organic carbon compounds in both the gas and particle phases measured upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 μgC m−3 from the cleanest site (Trinidad Head to the most polluted (Mexico City. Organic aerosol makes up 3–17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketene and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink.

  9. Total Observed Organic Carbon (TOOC): A Synthesis of North American Observations

    Science.gov (United States)

    Heald, C. L.; Goldstein, A. H.; Allan, J. D.; Aiken, A. C.; Apel, E.; Atlas, E. L.; Baker, A. K.; Bates, T. S.; Beyersdorf, A. J.; Blake, D. R.; Campos, T.; Coe, H.; Crounse, J. D.; DeCarlo, P. F.; de Gouw, J. A.; Dunlea, E. J.; Flocke, F. M.; Fried, A.; Goldan, P.; Griffin, R. J.; Herndon, S. C.; Holloway, J. S.; Holzinger, R.; Jimenez, J. L.; Junkermann, W.

    2007-01-01

    Measurements of organic carbon compounds in both the gas and particle phases made upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) in the atmosphere over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 microg C/cubic m from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3-17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketone and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink.

  10. Biomimetic mineral coatings in dental and orthopaedic implantology

    OpenAIRE

    Liu, Y.; Groot; Hunziker, E.B.

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers generated by biomimetic methods resemble bone mineral, and can be degraded within a biological milieu. The biomimetic coating technique involves the nucleation and growth of bone-like crystals upo...

  11. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard;

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena that...

  12. Biomimetics, color, and the arts

    Science.gov (United States)

    Schenk, Franziska

    2015-03-01

    Color as dramatic, dynamic and dazzling as the iridescent hues on the wings of certain butterflies has never been encountered in the art world. Unlike and unmatched by the chemical pigments of the artists' palette, this changeable color is created by transparent, colorless nanostructures that, as with prisms, diffract and reflect light to render spectral color visible. Until now, iridescent colors, by their very nature, have defied artists' best efforts to fully capture these rainbow hues. Now, for the first time, the artist and researcher Franziska Schenk employs latest nature-inspired color-shift technology to actually simulate the iridescence of butterflies and beetles on canvas. Crucially, studying the ingenious ways in which a range of such displays are created by insects has provided the artist with vital clues on how to adapt and adopt these challenging optical nano-materials for painting. And indeed, after years of meticulous and painstaking research both in the lab and studio, the desired effect is achieved. The resulting paintings, like an iridescent insect, do in fact fluctuate in perceived color - depending on the light and viewing angle. In tracing the artist's respective biomimetic approach, the paper not only provides an insight into the new color technology's evolution and innovative artistic possibilities, but also suggests what artists can learn from nature.

  13. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  14. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...... membrane-based sensor and/or separation devices? In the development of biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. Generally, each class of transport proteins conducts specific molecular species in and out of the cell while...... generally have a lower turnover but are capable of transport against gradients. For both classes of proteins, their unique flux-properties make them interesting as candidates in biomimetic sensor/separation devices. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually...

  15. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.;

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......% rejection for urea and a water permeability around 10 L/(m2h) with 2M NaCl as draw solution. Our results demonstrate the feasibility of using aquaporin proteins in biomimetic membranes for technological applications....

  16. Total synthesis of cis-hydroazulene sesquiterpenes. Base-induced and -directed elimination and rearrangement reactions of perhydronaphthalene-1,4-diol monosulfonate esters.

    NARCIS (Netherlands)

    Jenniskens, L.H.D.

    1992-01-01

    The total synthesis of a number of cis-fused hydroazulene sesquiterpenes is described in this thesis. In this synthetic study, ample attention is paid to the mechanistic aspects of the base- induced and -directed rearrangement and elimination reactions of perhydronaphthalene-1,4-diol monosulfonate e

  17. Enantioselective total synthesis of bioactive natural product (+)-Sch642305: a structurally novel inhibitor of bacterial DNA primase and HIV-1 Tat transactivation

    OpenAIRE

    Mehta, Goverdhan; Shinde, Harish M

    2005-01-01

    The total synthesis of the bioactive natural product (+)-Sch 642305 has been achieved from a readily available chiral building block using an RCM protocol to construct the key decalactone moiety; our approach is notable for its built-in flexibility and is diversity oriented.

  18. Enantioselective total synthesis of epoxyquinone natural products (−)-phyllostine, (+)-epoxydon, (+)-epiepoxydon and (−)-panepophenanthrin: access to versatile chiral building blocks through enzymatic kinetic resolution

    OpenAIRE

    Mehta, Goverdhan; Islam, Kabirul

    2004-01-01

    A new enzyme mediated protocol to access versatile chiral building blocks for the synthesis of epoxyquinone natural products is delineated. Total syntheses of (−)-phyllostine, (+)-epoxydon, (+)-epiepoxydon and (−)-panepophenanthrin have been accomplished to demonstrate the efficacy of this approach.

  19. Asymmetric Total Synthesis of (+)- and (−)-Clusianone and (+)- and (−)Clusianone Methyl Enol Ether via ACC Alkylation and Evaluation of their Anti-HIV Activity

    OpenAIRE

    Garnsey, Michelle R.; Matous, James A.; Kwiek, Jesse J; Coltart, Don M.

    2011-01-01

    The total asymmetric synthesis of (+)- and (−)-clusianone and (+)- and (−)-clusianone methyl enol ether is reported. Asymmetric induction is achieved through the use of ACC alkylation, providing the key intermediates with an er of 99:1. The four synthetic compounds were evaluated for their anti-HIV activity. Both (+)- and (−)-clusianone displayed significant anti-HIV activity.

  20. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  1. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  2. 杀结核菌素的全合成研究%An Improved Total Synthesis of Tubercidin

    Institute of Scientific and Technical Information of China (English)

    黄海洋; 阮志忠; 胡韬; 肖强

    2014-01-01

    Tubercidin is a naturally occurring pyrrolo[2,3-d]pyrimidine nucleoside with significantly biological activities, such as anti-schistosomal, antibacterial and antitumor. An improved total synthesis of tubercidin is reported using microwave promoted Vorbrüggen glycosylation as the key step. Thus, tubercidin was synthesized in 3 steps with 74%overal yield using 6-chloro-7-bromo-pyrrolo[2,3-d]pyrimidine and 1-O-acetyl-2,3,5-O-tribenzoyl-β-D-ribose as starting materials. The applica-tion of micromave irridated one-pot reaction is also reported in the synthesis of 7-deazapurine nucleosides using potassium nonafluoro-1-butanesulfonate, trimethylsilyl chloride and silylation reagent [hexamethyldisilazane or N,O-bis(trimethyl-silyl)acetamide].%杀结核菌素是一个吡咯[2,3-d]嘧啶核苷天然产物,具有显著的抗血吸虫感染、抗菌和抗肿瘤活性。报道了以微波促进的Vorbrüggen糖基化反应为关键步骤,以6-氯-7-溴-吡咯[2,3-d]嘧啶和1-O-乙酰基-2,3,5-O-三苯甲酰基-β-D-呋喃核糖为原料,经过3步反应以74%的总收率完成了杀结核菌素的全合成。同时研究了以全氟丁基磺酸钾、三甲基氯硅烷和硅基化试剂[六甲基二硅胺烷或者N,O-双(三甲基硅基)乙酰胺]在微波加热下一锅法合成7-去氮嘌呤核苷的方法。

  3. Total syntheses of hyperforin and papuaforins A-C, and formal synthesis of nemorosone through a gold(I)-catalyzed carbocyclization.

    Science.gov (United States)

    Bellavance, Gabriel; Barriault, Louis

    2014-06-23

    The remarkable biological activities of polyprenylated polycyclic acylphloroglucinols (PPAPs) combined with their highly decorated bicyclo[3.3.1]nonane-2,4,9-trione frameworks have inspired synthetic organic chemists over the last decade. The concise total syntheses of four natural products PPAPs; hyperforin and papuaforins A-C, and the formal synthesis of nemorosone are reported. Key to the realization of this strategy is the short and scalable synthesis of densely substituted PPAP scaffolds through a gold(I)-catalyzed 6-endo-dig carbocyclization of cyclic enol ethers for late-stage functionalization. PMID:24838522

  4. Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids.

    Science.gov (United States)

    Calder, Ewen D D; McGonagle, Fiona I; Harkiss, Alexander H; McGonagle, Grant A; Sutherland, Andrew

    2014-08-15

    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramolecular biaryl Heck coupling reaction, catalyzed using the Hermann-Beller palladacycle was used to effect the key step during the synthesis of the natural products. PMID:25060853

  5. Major intrinsic proteins in biomimetic membranes.

    Science.gov (United States)

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  6. A totally phosphine-free synthesis of metal telluride nanocrystals by employing alkylamides to replace alkylphosphines for preparing highly reactive tellurium precursors.

    Science.gov (United States)

    Yao, Dong; Liu, Yi; Zhao, Wujun; Wei, Haotong; Luo, Xintao; Wu, Zhennan; Dong, Chunwei; Zhang, Hao; Yang, Bai

    2013-10-21

    Despite the developments in the wet chemical synthesis of high-quality semiconductor nanocrystals (NCs) with diverse elemental compositions, telluride NCs are still irreplaceable materials owing to their excellent photovoltaic and thermoelectric performances. Herein we demonstrate the dissolution of elemental tellurium (Te) in a series of alkylamides by sodium borohydride (NaBH4) reduction at relatively low temperature to produce highly reactive precursors for hot-injection synthesis of telluride NCs. The capability to tune the reactivity of Te precursors by selecting injection temperature permits control of NC size over a broad range. The current preparation of Te precursors is simple, economical, and totally phosphine-free, which will promote the commercial synthesis and applications of telluride NCs. PMID:24056800

  7. Total Synthesis of Laulimalide: Assembly of the Fragments and Completion of the Synthesis of the Natural Product and a Potent Analogue

    OpenAIRE

    Trost, Barry M.; Amans, Dominique; Seganish, W. Michael; Chung, Cheol K.

    2012-01-01

    In this manuscript, we report the full account of our efforts to couple the northern and the southern building blocks, whose synthesis were described in the preceding paper, along with the modifications required which ultimately lead to a successful synthesis of laulimalide. Key highlights include an exceptionally efficient and atom-economical intramolecular ruthenium-catalyzed alkene-alkyne coupling to build the macrocycle followed by a highly stereoselective 1,3-allylic isomerization promot...

  8. Synthesis of unusual alpha-amino acids and study of the effect of their incorporation into antimicrobial peptides. Total synthesis of biactive marine natural products and analogues thereof

    OpenAIRE

    El Marrouni El Ghazaoui, Abdellatif

    2012-01-01

    The principle theme of this thesis was the synthesis of bioactive compounds. To this end, this work was focus on two main projects. The first one, which was carried out in the Department of Chemistry of the University of Girona under the supervision of Dr Montserrat Heras, concerned the synthesis of new unnatural amino acids bearing a pyrimidine ring within their side chain for incorporation into the antimicrobial peptide BP100 following a rational design in order to improve its biological pr...

  9. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  10. Piezoelectric Templates - New Views on Biomineralization and Biomimetics.

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template's piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V(-1) compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  11. Biomimetic Route to Calcium Phosphate Coated Polymeric Nanoparticles: Influence of Different Functional Groups and pH

    OpenAIRE

    Schoeller, Katrin; Ethirajan, Anitha; Zeller, Anke; Landfester, Katharina

    2011-01-01

    The controlled synthesis of organic-inorganic hybrid particles with selective morphology using polymeric nanoparticles as templates offers an effective biomimetic route to design composite materials with interesting properties for various potential applications. In this study, the formation of hybrid particles via the bio-inspired mineralization of calcium phosphate (CaP) on the surface of different surface-functionalized polymeric nanoparticles is reported. The versatile miniemulsion polymer...

  12. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  13. Improved Total Synthesis and Biological Evaluation of Potent Apratoxin S4 Based Anticancer Agents with Differential Stability and Further Enhanced Activity

    OpenAIRE

    Chen, Qi-Yin; Liu, Yanxia; Cai, Weijing; Luesch, Hendrik

    2014-01-01

    Apratoxins are cytotoxic natural products originally isolated from marine cyanobacteria that act by preventing cotranslational translocation early in the secretory pathway to downregulate receptor levels and inhibit growth factor secretion, leading to potent antiproliferative activity. Through rational design and total synthesis of an apratoxin A/E hybrid, apratoxin S4 (1a), we have previously improved the antitumor activity and tolerability in vivo. Compound 1a and newly designed analogues a...

  14. Asymmetric Total Synthesis of (+)- and (−)-Clusianone and (+)- and (−)Clusianone Methyl Enol Ether via ACC Alkylation and Evaluation of their Anti-HIV Activity

    Science.gov (United States)

    Garnsey, Michelle R.; Matous, James A.; Kwiek, Jesse J.; Coltart, Don M.

    2011-01-01

    The total asymmetric synthesis of (+)- and (−)-clusianone and (+)- and (−)-clusianone methyl enol ether is reported. Asymmetric induction is achieved through the use of ACC alkylation, providing the key intermediates with an er of 99:1. The four synthetic compounds were evaluated for their anti-HIV activity. Both (+)- and (−)-clusianone displayed significant anti-HIV activity. PMID:21414776

  15. Preparation of amino-substituted indenes and 1,4-dihydronaphthalenes using a one-pot multireaction approach: total synthesis of oxybenzo[c]phenanthridine alkaloids

    OpenAIRE

    Ewen D. D. Calder; McGonagle, Fiona I.; Harkiss, Alexander H.; McGonagle, Grant A.; Sutherland, Andrew

    2014-01-01

    Allylic trichloroacetimidates bearing a 2-vinyl or 2-allylaryl group have been designed as substrates for a one-pot, two-step multi-bond-forming process leading to the general preparation of aminoindenes and amino-substituted 1,4-dihydronaphthalenes. The synthetic utility of the privileged structures formed from this one-pot process was demonstrated with the total synthesis of four oxybenzo[c]phenanthridine alkaloids, oxychelerythrine, oxysanguinarine, oxynitidine, and oxyavicine. An intramol...

  16. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  17. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...

  18. Action of Chicory Fructooligosaccharides on Biomimetic Membranes

    OpenAIRE

    Barbosa, A. F.; Henrique, R. S.; A. S. Lucho; V. Paffaro; J.M. Schneedorf

    2014-01-01

    Fructooligosaccharides from chicory (FOSC) are functional prebiotic foods recognized to exert several well-being effects in human health and animal production, as decreasing blood lipids, modulating the gut immune system, enhancing mineral bioavailability, and inhibiting microbial growth, among others. Mechanisms of actions directly on cell metabolism and structure are however little known. In this sense this work was targeted to investigate the interaction of FOSC with biomimetic membranes (...

  19. Design of graded biomimetic osteochondral composite scaffolds

    OpenAIRE

    Tampieri, Anna; Sandri, Monica; Landi, Elena; Pressato, Daniele; Francioli, Silvia; Quarto, Rodolfo; Martin, Ivan

    2008-01-01

    With the ultimate goal to generate suitable materials for the repair of osteochondral defects, in this work we aimed at developing composite osteochondral scaffolds organized in different integrated layers, with features which are biomimetic for articular cartilage and subchondral bone and can differentially support formation of such tissues. A biologically inspired mineralization process was first developed to nucleate Mg-doped hydroxyapatite crystals on type I collagen fibers during their s...

  20. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    Science.gov (United States)

    Wang, Zhenlong; Hang, Guanrong; Wang, Yangwei; Li, Jian; Du, Wei

    2008-04-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s-1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s-1 and 22° s-1, respectively.

  1. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    International Nuclear Information System (INIS)

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s−1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s−1 and 22° s−1, respectively

  2. Biomimetic Composite Structural T-joints

    Institute of Scientific and Technical Information of China (English)

    Vimal Kumar Thummalapalli; Steven L.Donaldson

    2012-01-01

    Biological structural fixed joints exhibit unique attributes,including highly optimized fiber paths which minimize stress concentrations.In addition,since the joints consist of continuous,uncut fiber architectures,the joints enable the organism to transport information and chemicals from one part of the body to the other.To the contrary,sections of man-made composite material structures are often joined using bolted or bonded joints,which involve low strength and high stress concentrations.These methods are also expensive to achieve.Additional functions such as fluid transport,electrical signal delivery,and thermal conductivity across the joints typically require parasitic tubes,wires,and attachment clips.By using the biomimetic methods,we seek to overcome the limitations which are present in the conventional methods. In the present work,biomimetic co-cured composite sandwich T-joints were constructed using unidirectional glass fiber,epoxy resin,and structural foam.The joints were fabricated using the wet lay-up vacuum bag resin infusion method.Foam sandwich T-joints with multiple continuous fiber architectures and sandwich foam thickness were prepared.The designs were tested in quasi-static bending using a mechanical load frame.The significantweight savings using the biomimetic approaches is discussed,as well as a comparison of failure modes versus architecture is described.

  3. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  4. Advances in total synthesis: A new approach to the synthesis of pteridic acids A and B [Avanços em síntese total: Uma nova abordagem para a síntese dos ácidos pterídicos A e B

    Directory of Open Access Journals (Sweden)

    David Rodrigues da Rocha

    2009-08-01

    Full Text Available This communication overview the total synthesis of pteridic acids A and B recently published by L. C. Dias and A. G. Salles Jr.in The Journal of Organic Chemistry which was achieved by a new synthetic route. These natural products are among the mostcomplex molecules already synthesized in Brazil.

  5. Total Synthesis of Cyclomarin A, a Marine Cycloheptapeptide with Anti-Tuberculosis and Anti-Malaria Activity.

    Science.gov (United States)

    Barbie, Philipp; Kazmaier, Uli

    2016-01-15

    An efficient synthetic protocol for the stereoselective synthesis of cyclomarin A is reported. Key steps in the syntheses of the building blocks are an asymmetric chelate-enolate Claisen rearrangement, an asymmetric hydrogenation, and highly diastereoselective additions of organozinc and -titanium reagents. PMID:26699807

  6. Stereoselective 6-exo radical cyclization using cis-vinyl sulfoxide: practical total synthesis of CTX3C.

    Science.gov (United States)

    Yamashita, Shuji; Ishihara, Yuuki; Morita, Hiroyuki; Uchiyama, Junichi; Takeuchi, Katsutoshi; Inoue, Masayuki; Hirama, Masahiro

    2011-03-25

    Ciguatoxins, the principal causative toxins of ciguatera seafood poisoning, are large ladder-like polycyclic ethers. We report a highly stereoselective 6-exo radical cyclization/ring-closing olefin metathesis sequence to construct the syn/trans-fused polyether system. The new method was applied to the practical synthesis of ciguatoxin CTX3C. PMID:21250701

  7. Biomimetics of human movement: functional or aesthetic?

    International Nuclear Information System (INIS)

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  8. Towards the LIVING envelope: Biomimetics for building envelope adaptation

    NARCIS (Netherlands)

    Badarnah Kadri, L.

    2012-01-01

    Several biomimetic design strategies are available for various applications, though the research on biomimetics as a design tool in architecture is still challenging. This is due to a lack of systematic design tools required for identifying relevant organisms, or natural systems, and abstracting the

  9. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius;

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... biomimetic membrane arrays....

  10. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2008-01-01

    Purpose – The purpose of this paper is to illustrate how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. The paper reviews a number of biomimetic studies of...... sense organs in animals and illustrates how a formal search method developed at University of Toronto can be applied to sensor design. Design/methodology/approach – Using biomimetics involves a search for relevant cases, a proper analysis of the biological solutions, identification of design principles...... ideas or the search gives too many results. This is handled by a more advanced search strategy where the search is either widened or it is focused further mainly using biological synonyms. Findings – A major problem in biomimetic design is finding the relevant analogies to actual design tasks in nature...

  11. 仿生合成羟基锡酸锌包覆碳酸钙及其对PVC的阻燃研究%Biomimetic synthesis of zinc hydroxystannate-coated calcium carbonate and its application in PVC*

    Institute of Scientific and Technical Information of China (English)

    焦运红; 彭飞; 徐建中; 谢吉星; 王宁

    2011-01-01

    Taking sodium dodecyl benzene suffonate(SDBS)as the template in the water solution, zinc hydroxystannate-coated calcium carbonate (ZHSCC-1)was prepared by biominetic synthesis method, and zinc hydroxystannate-coated calcium carbonate (ZHSCC-2)was also prepared in water solution without SDBS. Both ZHSCC-1 and ZHSCC-2 were studied as the flame retardant of PVC. The results showed that, when ZHSCC at the same addition level, not only the flame retardant and smoke suppressant effects of ZHSCC-1 were better than those of ZHSCC-2, but also the beneficial effects of the former were better than those of the latter.%采用仿生合成的方法,以十二烷基苯磺酸钠(SDBS)为模板,在水溶液中制备了羟基锡酸锌包覆碳酸钙(ZHSCC-1),并将其和不添加SDBS模板制备的羟基锡酸锌包覆碳酸钙(ZHSCC-2)分别应用在PVC 中进行对比研究.结果表明:在ZHSCC含量相同时,ZHSCC-1对PVC的阻燃消烟效果明显优于ZHSCC-2,且前者对PVC的拉伸强度、断裂伸长率、抗冲强度的有益影响都优于后者.

  12. Diverted Total Synthesis of Promysalin Analogs Demonstrates That an Iron-Binding Motif Is Responsible for Its Narrow-Spectrum Antibacterial Activity.

    Science.gov (United States)

    Steele, Andrew D; Keohane, Colleen E; Knouse, Kyle W; Rossiter, Sean E; Williams, Sierra J; Wuest, William M

    2016-05-11

    Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere. PMID:27096543

  13. Radical Beckmann Rearrangement and Its Application in the Formal Total Synthesis of Antimalarial Natural Product Isocryptolepine via C-H Activation.

    Science.gov (United States)

    Mahajan, Pankaj S; Humne, Vivek T; Tanpure, Subhash D; Mhaske, Santosh B

    2016-07-15

    The Beckmann rearrangement of ketoximes, mediated by ammonium persulfate-dimethyl sulfoxide as a reagent, has been achieved under neutral conditions. Based on the radical trapping and (18)O-labeling experiments, the transformation follows a mechanism involving a radical pathway. The scope and generality of the developed protocol has been demonstrated by 19 examples. The developed protocol and Pd-catalyzed intramolecular double C-H activation were used as key steps in the formal total synthesis of antimalarial natural product isocryptolepine. PMID:27377995

  14. Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3

    Science.gov (United States)

    Karas, John; Shabanpoor, Fazel; Hossain, Mohammed Akhter; Wade, John D.; Scanlon, Denis B.

    2013-01-01

    Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3), in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity. PMID:24288548

  15. Total Chemical Synthesis of a Heterodimeric Interchain Bis-Lactam-Linked Peptide: Application to an Analogue of Human Insulin-Like Peptide 3

    Directory of Open Access Journals (Sweden)

    John Karas

    2013-01-01

    Full Text Available Nonreducible cystine isosteres represent important peptide design elements in that they can maintain a near-native tertiary conformation of the peptide while simultaneously extending the in vitro and in vivo half-life of the biomolecule. Examples of these cystine mimics include dicarba, diselenide, thioether, triazole, and lactam bridges. Each has unique physicochemical properties that impact upon the resulting peptide conformation. Each also requires specific conditions for its formation via chemical peptide synthesis protocols. While the preparation of peptides containing two lactam bonds within a peptide is technically possible and reported by others, to date there has been no report of the chemical synthesis of a heterodimeric peptide linked by two lactam bonds. To examine the feasibility of such an assembly, judicious use of a complementary combination of amine and acid protecting groups together with nonfragment-based, total stepwise solid phase peptide synthesis led to the successful preparation of an analogue of the model peptide, insulin-like peptide 3 (INSL3, in which both of the interchain disulfide bonds were replaced with a lactam bond. An analogue containing a single disulfide-substituted interchain lactam bond was also prepared. Both INSL3 analogues retained significant cognate RXFP2 receptor binding affinity.

  16. Challenges in biomimetic design and innovation

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael; Shu, Li

    is a key issue in design and innovation work where problem identification and systematic search for suitable solution principle are major activities. One way to deal with this challenge is to use a biology search method. The use of such a method is illustrated with a case story describing the design...... including the terminology and knowledge organisation. It is often easy to recognise the splendour of a biological solution, but it can be much more difficult to understand the underlying mechanisms. Another challenge in biomimetic design is the search and identification of relevant solutions in nature. This...

  17. Tailored antireflective biomimetic nanostructures for UV applications

    Energy Technology Data Exchange (ETDEWEB)

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  18. Effect of urea on biomimetic aggregates

    Directory of Open Access Journals (Sweden)

    F.H. Florenzano

    1997-02-01

    Full Text Available The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic, monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied, which leads to an increase in the area per headgroup and also in the loss of counterion affinities

  19. Effect of urea on biomimetic aggregates.

    Science.gov (United States)

    Florenzano, F H; Politi, M J

    1997-02-01

    The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers) was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic), monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied), which leads to an increase in the area per headgroup and also in the loss of counterion affinities. PMID:9239302

  20. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  1. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight the...... possibilities and challenges. Biomimetics for engineering design is explored through an experiment involving 12 design engineering students. For 7 selected problem areas they searched biology literature available at a university library and identified a number of biological solutions. Central solution...

  2. Arg-Gly-Asp (RGD) Modified Biomimetic Polymeric Materials

    Institute of Scientific and Technical Information of China (English)

    Xufeng NIU; Yuanliang WANG; Yanfeng LUO; Juan XIN; Yonggang LI

    2005-01-01

    The new generation of biomaterials focuses on the design of biomimetic polymeric materials that are capable of eliciting specific cellular responses and directing new tissue formation. Since Arg-Gly-Asp (RGD) sequences have been found to promote cell adhesion in 1984, numerous polymers have been functionalized with RGD peptides for tissue engineering applications. This review gave the advance in RGD modified biomimetic polymeric materials,focusing on the mechanism of RGD, the surface and bulk modification of polymer with RGD peptides and the evaluation in vitro and in vivo of the modified biomimetic materials.

  3. Biomimetic multifunctional surfaces inspired from animals.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2016-08-01

    Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. PMID:27085632

  4. Biomimetic autonomous robot inspired by the Cyanea capillata (Cyro)

    International Nuclear Information System (INIS)

    A biomimetic robot inspired by Cyanea capillata, termed as ‘Cyro’, was developed to meet the functional demands of underwater surveillance in defense and civilian applications. The vehicle was designed to mimic the morphology and swimming mechanism of the natural counterpart. The body of the vehicle consists of a rigid support structure with linear DC motors which actuate eight mechanical arms. The mechanical arms in conjunction with artificial mesoglea create the hydrodynamic force required for propulsion. The full vehicle measures 170 cm in diameter and has a total mass of 76 kg. An analytical model of the mechanical arm kinematics was developed. The analytical and experimental bell kinematics were analyzed and compared to the C. capillata. Cyro was found to reach the water surface untethered and autonomously from a depth of 182 cm in five actuation cycles. It achieved an average velocity of 8.47 cm s−1 while consuming an average power of 70 W. A two-axis thrust stand was developed to calculate the thrust directly from a single bell segment yielding an average thrust of 27.9 N for the whole vehicle. Steady state velocity during Cyro's swimming test was not reached but the measured performance during its last swim cycle resulted in a cost of transport of 10.9 J (kg ⋅ m)−1 and total efficiency of 0.03. (paper)

  5. Total synthesis of pinnatoxins A and G and revision of the mode of action of pinnatoxin A.

    Science.gov (United States)

    Araoz, Romulo; Servent, Denis; Molgó, Jordi; Iorga, Bogdan I; Fruchart-Gaillard, Carole; Benoit, Evelyne; Gu, Zhenhua; Stivala, Craig; Zakarian, Armen

    2011-07-13

    Pinnatoxins belong to an emerging class of potent marine toxins of the cyclic imine group. Detailed studies of their biological effects have been impeded by unavailability of the complex natural product from natural sources. This work describes the development of a robust, scalable synthetic sequence relying on a convergent strategy that delivered a sufficient amount of the toxin for detailed biological studies and its commercialization for use by other research groups and regulatory agencies. A central transformation in the synthesis is the highly diastereoselective Ireland-Claisen rearrangement of a complex α,α-disubstituted allylic ester based on a unique mode for stereoselective enolization through a chirality match between the substrate and the lithium amide base. With synthetic pinnatoxin A, a detailed study has been performed that provides conclusive evidence for its mode of action as a potent inhibitor of nicotinic acetylcholine receptors selective for the human neuronal α7 subtype. The comprehensive electrophysiological, biochemical, and computational studies support the view that the spiroimine subunit of pinnatoxins is critical for blocking nicotinic acetylcholine receptor subtypes, as evidenced by analyzing the effect of a synthetic analogue of pinnatoxin A containing an open form of the imine ring. Our studies have paved the way for the production of certified standards to be used for mass-spectrometric determination of these toxins in marine matrices and for the development of tests to detect these toxins in contaminated shellfish. PMID:21644584

  6. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  7. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  8. Design, Synthesis, and Investigation of Protein Kinase C Inhibitors: Total Syntheses of (+)-Calphostin D, (+)- Phleichrome, Cercosporin and New Photoactive Perylenequinones

    OpenAIRE

    Morgan, Barbara J.; Dey, Sangeeta; Johnson, Steven W.; Kozlowski, Marisa C.

    2009-01-01

    The total syntheses of the PKC inhibitors (+)-calphostin D, (+)-phleichrome, cercosporin, and 10 novel perylenequinones are detailed. The highly convergent and flexible strategy developed employed an enantioselective oxidative biaryl coupling and a double cuprate epoxide opening, allowing the selective syntheses of all the possible stereoisomers in pure form. In addition, this strategy permitted rapid access to a broad range of analogs, including those not accessible from the natural products...

  9. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight the...... possibilities and challenges. Biomimetics for engineering design is explored through an experiment involving 12 design engineering students. For 7 selected problem areas they searched biology literature available at a university library and identified a number of biological solutions. Central solution...... principles were formulated and used for designing technical items that could be used to solve the initial problems. Experiences are that biomimetic design can be made successfully using commonly available biological literature and internet resources and that designers without detailed biological knowledge...

  10. Biomimetics materials, structures and processes : examples, ideas and case studies

    CERN Document Server

    Bruckner, Dietmar; Hellmich, Christian; Schmiedmayer, Heinz-Bodo; Stachelberger, Herbert; Gebeshuber, Ille

    2011-01-01

    The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

  11. Research trends in biomimetic medical materials for tissue engineering: commentary.

    Science.gov (United States)

    Park, Ki Dong; Wang, Xiumei; Lee, Jae Young; Park, Kyung Min; Zhang, ShengMin; Noh, Insup

    2016-01-01

    We introduce our active experts' communications and reviews (Part II) of 2015 Korea-China Joint Symposium on Biomimetic Medical Materials in Republic of Korea, which reflect their perspectives on current research trends of biomimetic medical materials for tissue regeneration in both Korea and China. The communications covered three topics of biomimetics, i.e., 1) hydrogel for therapeutics and extracellular matrix environments, 2) design of electrical polymers for communications between electrical sources and biological systems and 3) design of biomaterials for nerve tissue engineering. The reviews in the Part II will cover biomimetics of 3D bioprinting materials, surface modifications, nano/micro-technology as well as clinical aspects of biomaterials for cartilage. PMID:27026826

  12. Total synthesis of avermectins part 2: enantioselective synthesis of the C10-C25 northern fragment and final steps for the construction of the 22,23-dihydroavermectin B1b aglycone

    International Nuclear Information System (INIS)

    The total synthesis of the aglycone of 22,23-dihydroavermectin B1b involves a retrosynthetic two building-blocks approach. A Stille Pd(O) catalysed cross-coupling reaction is carried out between a northern C10-C25 E-vinylstannane and a southern C1-C9 vinyl iodide. The final steps include successive removal of the carboxyl β-(trimethylsilyl)ethyl protecting group of the intermediate secoester, macrolactonization under Yonemitsu's conditions and removal of the 5-O-TBS protecting group. These last steps have been carried out with the aid of a relay study from commercial Ivermectin; a macrolactone opening reaction of the aglycone in the presence of Ti(OiPr)4 has been developed where the crucial Δ3,4 double bond as well as the configuration at C-2 where totally preserved. (authors). 46 refs., 10 figs., 2 tabs

  13. A review paper on biomimetic calcium phosphate coatings

    OpenAIRE

    Lin, X.; De Groot,, P.A.J.; Wang, D.; Hu, Q; Wismeijer, D.; Liu, Y

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation ...

  14. Biomimetic Nanotechnology: A Powerful Means to address Global Challenges

    OpenAIRE

    Ille C. Gebeshuber; Majlis, Burhanuddin Y.

    2010-01-01

    Biomimetic nanotechnology is a prominent research area at the meeting place of life sciences with engineering and physics: it is a continuously growing field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a field that has the potential to substantially support successful mastering of major global challenges. The Millennium Project was commissioned by the United Nations Secretary-General in 2002 to develop a concrete action plan for the world to...

  15. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    OpenAIRE

    Chuanjun Han; Han Zhang; Jie Zhang

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficie...

  16. Discovery, Total Synthesis and Key Structural Elements for the Immunosuppressive Activity of Cocosolide, a Symmetrical Glycosylated Macrolide Dimer from Marine Cyanobacteria.

    Science.gov (United States)

    Gunasekera, Sarath P; Li, Yang; Ratnayake, Ranjala; Luo, Danmeng; Lo, Jeannette; Reibenspies, Joseph H; Xu, Zhengshuang; Clare-Salzler, Michael J; Ye, Tao; Paul, Valerie J; Luesch, Hendrik

    2016-06-01

    A new dimeric macrolide xylopyranoside, cocosolide (1), was isolated from the marine cyanobacterium preliminarily identified as Symploca sp. from Guam. The structure was determined by a combination of NMR spectroscopy, HRMS, X-ray diffraction studies and Mosher's analysis of the base hydrolysis product. Its carbon skeleton closely resembles that of clavosolides A-D isolated from the sponge Myriastra clavosa, for which no bioactivity is known. We performed the first total synthesis of cocosolide (1) along with its [α,α]-anomer (26) and macrocyclic core (28), thus leading to the confirmation of the structure of natural 1. The convergent synthesis featured Wadsworth-Emmons cyclopropanation, Sakurai annulation, Yamaguchi macrocyclization/dimerization reaction, α-selective glycosidation and β-selective glycosidation. Compounds 1 and 26 potently inhibited IL-2 production in both T-cell receptor dependent and independent manners. Full activity requires the presence of the sugar moiety as well as the intact dimeric structure. Cocosolide also suppressed the proliferation of anti-CD3-stimulated T-cells in a dose-dependent manner. PMID:27139508

  17. Biomimetic mineral coatings in dental and orthopaedic implantology

    Institute of Scientific and Technical Information of China (English)

    Yue-lian LIU; Klaas de GROOT; Ernst B.HUNZIKER

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers genelated by biomi-metic methods resemble bone mineral, and can be degraded within a biological milieu.The biomimetic coating technique involves the nuclea-tion and growth of bone-like crystals upon a pretreated substrate by immersing this in a supersaturated solution of calcium phosphate under physiological conditions of temperature (37~C) and pH (7.4). The method, originally developed by Kokubo in 1990, has since undergone improvement and refinement by several groups of investigators.Biomimetic coatings are valuable in that they can serve as a vehicle for the slow and sustained release of osteogenic agents at the site of implantation. This attribute is rendered possible by the near-physiological conditions under which these coatings are prepared, which permits an incorporation of binactive agents into the inorganic crystal latticework rather than their nlere superficial adsorption onto preformed layers. In addition, the biomimetic coating technique can be applied to implants of an organic as well as of an inorganic nature and to those with irregular surface geometries, which is not possible using conventional methodologies.

  18. Autoradiographic studies on mucilage synthesis in Chara vulgaris antheridium with the use of 3H-fucose in total darkness and light

    International Nuclear Information System (INIS)

    Autoradiographic studies with 3H-fucose have shown that this precursor of polysaccharide compounds is incorporated into manubria and antheridial mucilage of Chara vulgaris both in the light and in the darkness. The dynamic of this process is lower in total darkness. The decrease in overall labelling of antheridium (manubria an mucilage) reflects secondary metabolic changes both in proliferative phase and in spermiogenesis. The pulse (2 and 5 min) incubations with the isotope confirm the intensive mucilage translocation which at later developmental stages is more dynamic than at earlier ones. It can explain previously observed decrease in manubria radioactivity at later stages after long (40 min) incubation, because PAS-positive polysaccharide synthesis is simultaneous with their fast translocation to the antheridial space. The present and previous autoradiographic and cytophotometric data taken altogether confirm the assumption about a nutritive role of mucilage filling Chara antheridium during the process of spermatogenesis. (author). 19 refs, 7 figs

  19. Autoradiographic studies on mucilage synthesis in Chara vulgaris antheridium with the use of {sup 3}H-fucose in total darkness and light

    Energy Technology Data Exchange (ETDEWEB)

    Gosek, A. [Lodz Univ. (Poland)

    1996-12-31

    Autoradiographic studies with {sup 3}H-fucose have shown that this precursor of polysaccharide compounds is incorporated into manubria and antheridial mucilage of Chara vulgaris both in the light and in the darkness. The dynamic of this process is lower in total darkness. The decrease in overall labelling of antheridium (manubria an mucilage) reflects secondary metabolic changes both in proliferative phase and in spermiogenesis. The pulse (2 and 5 min) incubations with the isotope confirm the intensive mucilage translocation which at later developmental stages is more dynamic than at earlier ones. It can explain previously observed decrease in manubria radioactivity at later stages after long (40 min) incubation, because PAS-positive polysaccharide synthesis is simultaneous with their fast translocation to the antheridial space. The present and previous autoradiographic and cytophotometric data taken altogether confirm the assumption about a nutritive role of mucilage filling Chara antheridium during the process of spermatogenesis. (author). 19 refs, 7 figs.

  20. Synthesis, structure and total conductivity of A-site doped LaTiO3−δ perovskites

    International Nuclear Information System (INIS)

    Highlights: • A-site divalent alkaline earth metal doped LaTiO3−δ perovskites were synthesised by sol–gel method. • Structural studies revealed no change in crystal symmetry but change in cell dimensions after doping. • After doping divalent cations in A-site, an enhancement in total conductivity was observed in LaTiO3−δ. • Temperature dependent electrical property was observed in all synthesised perovskites. - Abstract: Oxygen deficient perovskites LaTiO3−δ and La0.8A0.2TiO3−δ (A = Ba, Sr, Ca) were synthesized by sol–gel method. The effect of divalent dopants on microstructure is investigated in detail using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The oxidation states of La3+ and Ti3+ ions have been deduced using X-ray Photoelectron Spectroscopy (XPS). Impedance spectroscopy was used to analyze the total conductivity, an increase in conductivity was observed after doping in the A-site with divalent cations Ba, Ca and Sr. Among the investigated perovskites La0.8Ca0.2TiO3−δ exhibited the maximum conductivity of 1.22 × 10−2 S/cm in air atmosphere at 650 °C

  1. Synthesis, structure and total conductivity of A-site doped LaTiO{sub 3−δ} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Bradha, M. [Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore 641 004, TN (India); Hussain, S.; Chakravarty, Sujay [UGC-DAE CSR, Kalpakkam Node, Kokilamedu 603 104, TN (India); Amarendra, G. [UGC-DAE CSR, Kalpakkam Node, Kokilamedu 603 104, TN (India); Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, TN (India); Ashok, Anuradha, E-mail: anu.machina@gmail.com [Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore 641 004, TN (India)

    2015-03-25

    Highlights: • A-site divalent alkaline earth metal doped LaTiO{sub 3−δ} perovskites were synthesised by sol–gel method. • Structural studies revealed no change in crystal symmetry but change in cell dimensions after doping. • After doping divalent cations in A-site, an enhancement in total conductivity was observed in LaTiO{sub 3−δ}. • Temperature dependent electrical property was observed in all synthesised perovskites. - Abstract: Oxygen deficient perovskites LaTiO{sub 3−δ} and La{sub 0.8}A{sub 0.2}TiO{sub 3−δ} (A = Ba, Sr, Ca) were synthesized by sol–gel method. The effect of divalent dopants on microstructure is investigated in detail using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The oxidation states of La{sup 3+} and Ti{sup 3+} ions have been deduced using X-ray Photoelectron Spectroscopy (XPS). Impedance spectroscopy was used to analyze the total conductivity, an increase in conductivity was observed after doping in the A-site with divalent cations Ba, Ca and Sr. Among the investigated perovskites La{sub 0.8}Ca{sub 0.2}TiO{sub 3−δ} exhibited the maximum conductivity of 1.22 × 10{sup −2} S/cm in air atmosphere at 650 °C.

  2. Development of a Biomimetic Quadruped Robot

    Institute of Scientific and Technical Information of China (English)

    Thanhtam Ho; Sunghac Choi; Sangyoon Lee

    2007-01-01

    This paper presents the design and prototype of a small quadruped robot whose walking motion is realized by two piezocomposite actuators. In the design, biomimetic ideas are employed to obtain the agility of motions and sustainability of a heavy load. The design of the robot legs is inspired by the leg configuration of insects, two joints (hip and knee) of the leg enable two basic motions, lifting and stepping. The robot frame is designed to have a slope relative to the horizontal plane, which makes the robot move forward. In addition, the bounding locomotion of quadruped animals is implemented in the robot. Experiments show that the robot can carry an additional load of about 100 g and run with a fairly high velocity. The quadruped prototype can be an important step towards the goal of building an autonomous mobile robot actuated by piezocomposite actuators.

  3. Biomimetics for architecture & design nature, analogies, technology

    CERN Document Server

    Pohl, Göran

    2015-01-01

    This book provides the readers with a timely guide to the application of biomimetic principles in architecture and engineering design. As a result of a combined effort by two internationally recognized authorities, the biologist Werner Nachtigall and the architect Göran Pohl, the book describes the principles which can be used to compare nature and technology, and at the same time it presents detailed explanations and examples showing how biology can be used as a source of inspiration and “translated” in building and architectural solutions (biomimicry). Even though nature cannot be directly copied, the living world can provide architects and engineers with a wealth of analogues and inspirations for their own creative designs. But how can analysis of natural entities give rise to advanced and sustainable design? By reporting on the latest bionic design methods and using extensive artwork, the book guides readers through the field of nature-inspired architecture, offering an extraordinary resource for pro...

  4. Biomimetic electrospun nanofibers for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram [Nanoscience and Nanotechnology Initiative (NUSNNI), Faculty of Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2006-09-15

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  5. Biomimetic accommodating lens with implementation in MEMS

    Science.gov (United States)

    Hogan, Alexander L.; Baker, Brian; Fisher, Charles; Naylor, Stephen; Fettig, Doug; Harvey, Ian R.

    2012-03-01

    We describe an accommodating lens patterned after the crystalline lens of the eye. Our biomimetic MEMS design calls to mind the zonules of zinn which pull radially to stretch the crystalline lens of the eye to modify the optical path. We present initial characterization of the prototype macro-scale device constructed through traditional machining techniques and using a PDMS polymer lens. Testing of the macro-scale lens indicated a 22% change in focal length through the range of radial stretching, with degradation of the spherical lens shape but no hysteresis after low-cycle testing. We also demonstrate a MEMS implementation of the lens actuator constructed using the Sandia SUMMiT-V ™ surface micromachining process. The optical path of this system is approximately 300 microns in diameter, providing a platform to potential applications improving mobile camera optics and medical imaging.

  6. Stability of biomimetic ferrofluids established by a systematic study using microwave irradiation at defined wattages

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Soumya, E-mail: soumya_524@yahoo.in [Materials Science and Technology Division, National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India); Jenamoni, Krishna [Department of Biotechnology, Amity University, Sector-125, Noida 201303 (India); Nayar, Suprabha [Materials Science and Technology Division, National Metallurgical Laboratory, Council of Scientific and Industrial Research, Jamshedpur 831007 (India)

    2012-10-15

    An established biomimetic process for the synthesis of aqueous ferrofluids using polymers has been subjected to systematic microwave irradiation at different wattages primarily to see if the magnetization could be increased by microwave irradiation and if so how would it affect the stability of the fluid. Care has been taken to maintain ambient conditions of synthesis even after three cycles of microwave irradiation before oxidation and ten cycles after it, so as not to violate the basic principles of the process. Detailed characterization using, x-ray diffractometry, transmission electron microscopy, fourier transform infra-red spectroscopy, dynamic light scattering, thermo-gravimetric analysis, differential thermal analysis and vibrating sample magnetometry showed that these fluids containing iron oxide nanoparticles-poly(vinyl) alcohol nanocomposites are highly stable in the proportions established by us. Measurements at five different wattages double the saturation magnetization but the stability remains unaffected compared to the one without microwave irradiation, forcing us to believe that the incubation of the iron salt solution and the polymer in the right proportion before oxidation is what contributes to the stability and that increasing the number of cycles of microwave irradiation at this stage, perhaps, would have led to a more pronounced effect. - Highlights: Black-Right-Pointing-Pointer Single step biomimetic synthesis of aqueous ferrofluids. Black-Right-Pointing-Pointer Role of polyvinyl alcohol as a surfactant and as a template for nucleation and growth of iron oxide nanoparticles. Black-Right-Pointing-Pointer Heat treatment by microwave irradiation in a systematic and periodic manner. Black-Right-Pointing-Pointer High colloidal stability. Black-Right-Pointing-Pointer Increase in saturation magnetization with increasing wattage.

  7. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  8. Biomimetic control over size, shape and aggregation in magnetic nanoparticles

    Science.gov (United States)

    Sommerdijk, Nico

    2013-03-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in both geological and biomineralizing systems, which also has many technological applications, e.g. in ferrofluids, inks, magnetic data storage materials and as contrast agents in magnetic resonance imaging. As its magnetic properties depend largely on the size and shape of the crystals, control over crystal morphology is an important aspect in the application of magnetite nanoparticles, both in biology and synthetic systems. Indeed, in nature organisms such as magnetotactic bacteria demonstrate a precise control over the magnetite crystal morphology, resulting in uniform and monodisperse nanoparticles. The magnetite formation in these bacteria is believed to occur through the co-precipitation of Fe(II) and Fe(III) ions, which is also the most widely applied synthetic route in industry. Synthetic strategies to magnetite with controlled size and shape exist, but involve high temperatures and rather harsh chemical conditions. However, synthesis via co-precipitation generally yields poor control over the morphology and therefore over the magnetic properties of the obtained crystals. Here we demonstrate that by tuning the reaction kinetics we can achieve biomimetic control over the size and shape of magnetite crystals but also over their organization in solution as well as their magnetic properties. We employ amino acids-based polymers to direct the formation of magnetite in aqueous media at room temperature via both the co-precipitation and the partial oxidation method. By using 2D and 3D (cryo)TEM it is shown that acidic amino acid monomers are most effective in affecting the magnetite particle morphology. By changing the composition of the polymers we can tune the morphology, the dispersibility as well as the magnetic properties of these nanoparticles.

  9. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Veronesi, Francesca; Giavaresi, Gianluca; Guarino, Vincenzo; Raucci, Maria Grazia; Sandri, Monica; Tampieri, Anna; Ambrosio, Luigi; Fini, Milena

    2015-09-01

    Tissue engineering (TE) represents a valid alternative to traditional surgical therapies for the management of bone defects that do not regenerate spontaneously. Scaffolds, one of the most important component of TE strategy, should be biocompatible, bioactive, osteoconductive, and osteoinductive. The aim of this study was to evaluate the biological properties and bone regeneration ability of a porous poly(ɛ-caprolactone) (PCL) scaffold, incorporating MgCO3 -doped hydroxyapatite particles, uncoated (PCL_MgCHA) or coated by apatite-like crystals via biomimetic treatment (PCL_MgCHAB). It was observed that both scaffolds are not cytotoxic and, even if cell viability was similar on both scaffolds, PCL_MgCHAB showed higher alkaline phosphatase and collagen I (COLL I) production at day 7. PCL_MgCHA induced more tumor necrosis factor-α release than PCL_MgCHAB, while osteocalcin was produced less by both scaffolds up to 7 days and no significant differences were observed for transforming growth factor-β synthesis. The percentage of new bone trabeculae growth in wide defects carried out in rabbit femoral distal epiphyses was significantly higher in PCL_MgCHAB in comparison with PCL_MgCHA at 4 weeks and even more at 12 weeks after implantation. This study highlighted the role of a biomimetic composite scaffold in bone regeneration and lays the foundations for its future employment in the clinical practice. PMID:25689266

  10. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Zheng, Nan; Wang, Hongyu; Lu, Fangzheng; Li, Sanming

    2016-01-01

    The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science. PMID:26478410

  11. Greener Biomimetic Approach to the Synthesis of Nanomaterials and Nanocomposite

    Science.gov (United States)

    A brief account of greener production of nanoparticles which reduces or eliminates the use and generation of hazardous substances is presented. The utility of vitamins B1 and B2, which can function both as reducing and capping agents, provides an extremely simple, one-pot, greene...

  12. Artificial biodegradable materials for tissue engineering: synthesis and biomimetic modification

    Czech Academy of Sciences Publication Activity Database

    Kotelnikov, Ilya; Pop-Georgievski, Ognen; Novotná, Katarína; Kučka, Jan; Bačáková, Lucie; Proks, Vladimír; Rypáček, František

    Prague : Institute of Macromolecular Chemistry AS CR, 2013. L22. ISBN 978-80-85009-76-7. [Workshop "Career in Polymers" /5./. 12.07.2013-13.07.2013, Prague] Institutional support: RVO:61389013 ; RVO:67985823 Keywords : tissue engineering * biodegradable materials Subject RIV: CD - Macromolecular Chemistry

  13. Synthesis and mode of action of oligomeric sesquiterpene lactones.

    Science.gov (United States)

    Li, Chao; Jones, Alexander X; Lei, Xiaoguang

    2016-05-01

    Covering: up to 2015In this highlight we describe two case studies from our laboratory, involving the biomimetic syntheses and the biological mechanism elucidation of the bioactive oligomeric sesquiterpenoids, (+)-ainsliadimer A () and (-)-ainsliatrimer A (). Ainsliadimer A possesses potent anti-inflammatory activity by inhibition of the NF-κB signalling pathway via binding at a previously untargeted allosteric site. (-)-Ainsliatrimer A induces apoptosis in cancer cells by activation of PPARγ. Furthermore, we highlight a new bioorthogonal ligation (TQ-ligation) developed in our laboratory which facilitates the target identification of complex natural products via pre-target fluorescence imaging and affinity chromatography. Generally, this paper will discuss the complete process from total synthesis to biological studies of complex natural products, and from the establishment of new bio-orthogonal chemistry to successful target identification. Our approach provides a systematic and efficient methodology for addressing the challenge of natural product target identification. PMID:26510522

  14. Biomimetic polymers in analytical chemistry. Part 1: preparation and applications of MIP (Molecularly Imprinted Polymers) in extraction and separation techniques

    International Nuclear Information System (INIS)

    MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented. (author)

  15. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible to...

  16. Design and Dynamic Analysis of a Novel Biomimetic Robotics Hip Joint

    OpenAIRE

    Bingyan Cui; Liwen Chen; Zhijun Wang; Yuanhao Zhao; Zhanxian Li; Zhenlin Jin

    2015-01-01

    In order to increase the workspace and the carrying capacity of biomimetic robotics hip joint, a novel biomimetic robotics hip joint was developed. The biomimetic robotics hip joint is mainly composed of a moving platform, frame, and 3-RRR orthogonal spherical parallel mechanism branched chains, and has the characteristics of compact structure, large bearing capacity, high positioning accuracy, and good controllability. The functions of the biomimetic robotics hip joint are introduced, such a...

  17. Total synthesis of gracilioether F. Development and application of Lewis acid promoted ketene–alkene [2+2] cycloadditions and late-stage C—H oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Rasik, Christopher M. [Indiana Univ., Bloomington, IN (United States); Brown, M. Kevin [Indiana Univ., Bloomington, IN (United States)

    2014-12-22

    The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late-stage carboxylic acid directed C(sp³)—H oxidation. The synthesis requires only eight steps from norbornadiene.

  18. Revealing the Mechanisms behind SnO2 Nanoparticle Formation and Growth during Hydrothermal Synthesis: An In Situ Total Scattering Study

    Energy Technology Data Exchange (ETDEWEB)

    Billinge S. J.; Jensen, K.M.O.; Christensen, M.; Juhas, P.; Tyrsted, C.; Bojesen, E.D.; Lock, N.; Iversen, B.B.

    2012-03-15

    The formation and growth mechanisms in the hydrothermal synthesis of SnO{sub 2} nanoparticles from aqueous solutions of SnCl{sub 4} {center_dot} 5H{sub 2}O have been elucidated by means of in situ X-ray total scattering (PDF) measurements. The analysis of the data reveals that when the tin(IV) chloride precursor is dissolved, chloride ions and water coordinate octahedrally to tin(IV), forming aquachlorotin(IV) complexes of the form [SnCl{sub x}(H{sub 2}O){sub 6-x}]{sup (4-x)+} as well as hexaaquatin(IV) complexes [Sn(H{sub 2}O){sub 6-y}(OH){sub y}]{sup (4-y)+}. Upon heating, ellipsoidal SnO{sub 2} nanoparticles are formed uniquely from hexaaquatin(IV). The nanoparticle size and morphology (aspect ratio) are dependent on both the reaction temperature and the precursor concentration, and particles as small as 2 nm can be synthesized. Analysis of the growth curves shows that Ostwald ripening only takes place above 200 C, and in general the growth is limited by diffusion of precursor species to the growing particle. The c-parameter in the tetragonal lattice is observed to expand up to 0.5% for particle sizes down to 2-3 nm as compared to the bulk value. SnO{sub 2} nanoparticles below 3-4 nm do not form in the bulk rutile structure, but as an orthorhombic structural modification, which previously has only been reported at pressures above 5 GPa. Thus, adjustment of the synthesis temperature and precursor concentration not only allows control over nanoparticle size and morphology but also the structure.

  19. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    Science.gov (United States)

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. PMID:25701776

  20. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Energy Technology Data Exchange (ETDEWEB)

    I-Ching Kuan; Chia-Chi Lee; Bing-Hong Tsai; Shiow-Ling Lee; Wei-Ting Lee; Chi-Yang Yu [Department of Bioengineering, Tatung Univ., Taipei, Taiwan (China)

    2013-04-15

    We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil) and n-hexane content (w/w of oil) were evaluated using response surface methodology (RSM) combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 deg C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 deg C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 deg C or room temperature.

  1. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the

  2. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  3. Effects of Biomimetic Surface Designs on Furrow Opener Performance

    Institute of Scientific and Technical Information of China (English)

    Jin Tong; Ballel. Z. Moayad; Yun-hai Ma; Ji-yu Sun; Dong-hui Chen; Hong-lei Jia; Lu-quan Ren

    2009-01-01

    The effects of biomimetic designs of tine furrow opener surface on equivalent pressure and pressure in the direction of motion on opener surface against soil were studied by finite element method (FEM) simulation and the effects of these designs on tool force and power requirements were examined experimentally. Geometrical structures of the cuticle surfaces of dung beetle (Copris ochus Motschulsky) were examined by stereoscopy. The structures of the cuticle surfaces and Ultra High Mo-lecular Weight Polyethylene (UHMWPE) material were modeled on surface of tine furrow opener as biomimetic designs. Seven furrow openers were analyzed in ANSYS program (a FEM simulation software). The biomimetic furrow opener surfaces with UHMWPE structures were found to have lower equivalent pressure and pressure in the direction of motion as compared to the conventional surface and to the biomimetic surfaces with textured steel-35 structures. It was found that the tool force and power were increased with the cutting depth and operating speed and the biomimetic furrow opener with UHMWPE tubular section ridges showed the lowest resistance and power requirement against soil.

  4. Sustainability assessment of a lightweight biomimetic ceiling structure

    International Nuclear Information System (INIS)

    An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions. (paper)

  5. Sustainability assessment of a lightweight biomimetic ceiling structure.

    Science.gov (United States)

    Antony, Florian; Grießhammer, Rainer; Speck, Thomas; Speck, Olga

    2014-03-01

    An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions. PMID:24503487

  6. Conventional vs Biomimetic Approaches to the Exploration of Mars

    Science.gov (United States)

    Ellery, A.

    It is not usual to refer to convention in planetary exploration missions by virtue of the innovation required for such projects. The term conventional refers to the methodologies, tools and approaches typically adopted in engineering that are applied to such missions. Presented is a "conventional" Mars rover mission in which the author was involved - ExoMars - into which is interspersed references to examples where biomimetic approaches may yield superior capabilities. Biomimetics is a relatively recently active area of research which seeks to examine how biological systems solve the problem of survival in the natural environment. Biological organisms are autonomous entities that must survive in a hostile world adapting both adaptivity and robustness. It is not then surprising that biomimetics is particularly useful when applied to robotic elements of a Mars exploration mission. I present a number of areas in which biomimetics may yield new solutions to the problem of Mars exploration - optic flow navigation, potential field navigation, genetically-evolved neuro-controllers, legged locomotion, electric motors implementing muscular behaviour, and a biomimetic drill based on the wood wasp ovipositor. Each of these techniques offers an alternative approach to conventional ones. However, the perceptive hurdles are likely to dwarf the technical hurdles in implementing many of these methods in the near future.

  7. Biomimetic Polymers for Cardiac Tissue Engineering

    Science.gov (United States)

    2016-01-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  8. Biomimetic Pattern Recognition Theory and Its Applications

    Institute of Scientific and Technical Information of China (English)

    WANGShoujue; ZHAOXingtao

    2004-01-01

    Biomimetic pattern recogntion (BPR),which is based on “cognition” instead of “classification”,is much closer to the function of human being. The basis of BPR is the Principle of homology-continuity (PHC),which means the difference between two samples of the same class must be gradually changed. The aim of BPR is to find an optimal covering in the feature space, which emphasizes the “similarity” among homologous group members, rather than “division” in traditional pattern recognition. Some applications of BPR are surveyed, in which the results of BPR are much better than the results of Support Vector Machine. A novel neuron model, Hyper sausage neuron (HSN), is shown as a kind of covering units in BPR. The mathematical description of HSN is given and the 2-dimensional discriminant boundary of HSN is shown. In two special cases, in which samples are distributed in a line segment and a circle, both the HSN networks and RBF networks are used for covering. The results show that HSN networks act better than RBF networks in generalization, especially for small sample set, which are consonant with the results of the applications of BPR. And a brief explanation of the HSN networks' advantages in covering general distributed samples is also given.

  9. Biomimetic visual detection based on insect neurobiology

    Science.gov (United States)

    O'Carroll, David C.

    2001-11-01

    With a visual system that accounts for as much as 30% of the lifted mass, flying insects such as dragonflies and hoverflies invest more in vision than any other animal. Impressive visual performance is subserved by a surprisingly simple visual system. In a typical insect eye, between 2,000 and 30,000 pixels in the image are analyzed by fewer than 200,000 neurons in underlying neural circuits. The combination of sophisticated visual processing with an approachable level of complexity has made the insect visual system a leading model for biomimetic approaches to computer vision. Much neurobiological research has focused on neural circuits used for detection of moving patterns (e.g. optical flow during flight) and moving targets (e.g. prey). Research from several labs has led to great advances in our understanding of the neural mechanisms involved, and has spawned neuromorphic hardware based on key processes identified in neurobiological experiments. Despite its attractions, the highly non-linear nature of several key stages in insect visual processing presents a challenge to understanding. I will describe examples of adaptive elements of neural circuits in the fly visual system which analyze the direction and velocity of wide-field optical flow patterns and the result of experiments that suggest that these non-linearities may contribute to robust responses to natural image motion.

  10. Biomimetic Polymers for Cardiac Tissue Engineering.

    Science.gov (United States)

    Peña, Brisa; Martinelli, Valentina; Jeong, Mark; Bosi, Susanna; Lapasin, Romano; Taylor, Matthew R G; Long, Carlin S; Shandas, Robin; Park, Daewon; Mestroni, Luisa

    2016-05-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  11. Development of Underwater Microrobot with Biomimetic Locomotion

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2006-01-01

    Full Text Available Microrobots have powerful applications in biomedical and naval fields. They should have a compact structure, be easy to manufacture, have efficient locomotion, be driven by low voltage and have a simple control system. To meet these purposes, inspired by the leg of stick insects, we designed a novel type of microrobot with biomimetic locomotion with 1-DOF (degree of freedom legs. The locomotion includes two ionic conducting polymer film (ICPF actuators to realize the 2-DOF motion. We developed several microrobots with this locomotion. Firstly, we review a microrobot, named Walker-1, with 1-DOF motion. And then a new microrobot, named Walker-2, utilizing six ICPF actuators, with 3-DOF motion is introduced. It is 47 mm in diameter and 8 mm in height (in static state. It has 0.61 g of dried weight. We compared the two microrobot prototypes, and the result shows that Walker-2 has some advantages, such as more flexible moving motion, good balance, less water resistance, more load-carrying ability and so on. We also compared it with some insect-inspired microrobots and some microrobots with 1-DOF legs, and the result shows that a microrobot with this novel type of locomotion has some advantages. Its structure has fewer actuators and joints, a simpler control system and is compact. The ICPF actuator decides that it can be driven by low voltage (less than 5 V and move in water. A microrobot with this locomotion has powerful applications in biomedical and naval fields.

  12. Mineralization of Zein Films by Biomimetic Process

    Institute of Scientific and Technical Information of China (English)

    JIN Xiaoning; ZHANG Yanxiang; MA Ying; ZENG Sheng; WANG Shaozhen; MA Yalu

    2015-01-01

    The transparent or opaque zein film was prepared by a phase separation method with a zein ethanol aqueous solution. The circular zein film was self-assembled on the air-water interface. According to the images by scanning elec-tron microscopy, the upper surface of film is flat and smooth and the downward surface presents a complex reticulation structure of corn protein fiber. Zein film as a biomimetic mineralization template is used to synthesize calcium phosphate crystals by a bioinspired mineralization process. Randomly oriented apatite crystals appear on the both surfaces of zein film after immersion in 10´simulated body fluid, and the phase composition and morphology of the deposited calcium apatite are also distinguished from deposited location and immersion time. The phase transformation process from dical-cium phosphate dihydrate into hydroxyapatite (HAp) phase was investigated by X-ray powder diffraction, transmission electron microscopy and Fourier transform infrared spectroscopy, respectively. Based on the results by energy dispersive X-ray spectroscopy, the Ca/P ratio of the deposited apatite increases with the transformation from DCPD to HAp. The HAp/Zein films possess the excellent biodegradable structural features, and the coating of HAp crystallites has some potential applications for bone repair and regeneration.

  13. Tribological and electrochemical studies on biomimetic synovial fluids

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this study, tribological and electrochemical performances of the new biomimetic synovial fluids were studied according to different composition concentrations, including hyaluronic acid, albumin and alendronic acid sodium. By using Taguchi method, the composition contents of the biomimetic synovial fluids were designed. Items such as friction coefficient, mean scar diameter and viscosity were investigated via a four-ball tribo-tester, viscosity meter and optical microscope. Polarization studies were carried out to analyze the electrochemical behaviour of the fluids. Results showed that hyaluronic acid dominates the viscosity of the fluids. High albumin concentration will reduce friction, while increasing wear rate due to the electro-chemical effect. Alendronic acid sodium is found to reduce the biocorrosion of CoCrMo as well as provide better lubricating. In conclusion, biomimetic synovial fluids partially recover the functions of natural synovial fluids and provide good lubricating property.

  14. Biomimetic Nanotechnology: A Powerful Means to address Global Challenges

    CERN Document Server

    Gebeshuber, Ille C

    2010-01-01

    Biomimetic nanotechnology is a prominent research area at the meeting place of life sciences with engineering and physics: it is a continuously growing field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a field that has the potential to substantially support successful mastering of major global challenges. The Millennium Project was commissioned by the United Nations Secretary-General in 2002 to develop a concrete action plan for the world to reverse the grinding poverty, hunger and disease affecting billions of people. It states 15 Global Challenges: sustainable development, water, population and resources, democratization, long-term perspectives, information technology, the rich-poor gap, health, capacity to decide, peace and conflict, status of women, transnational crime, energy, science and technology and global ethics. The possible contributions to master these challenges with the help of biomimetic nanotechnology will be discussed in detail.

  15. PEM Fuel Cells Redesign Using Biomimetic and TRIZ Design Methodologies

    Science.gov (United States)

    Fung, Keith Kin Kei

    Two formal design methodologies, biomimetic design and the Theory of Inventive Problem Solving, TRIZ, were applied to the redesign of a Proton Exchange Membrane (PEM) fuel cell. Proof of concept prototyping was performed on two of the concepts for water management. The liquid water collection with strategically placed wicks concept demonstrated the potential benefits for a fuel cell. Conversely, the periodic flow direction reversal concepts might cause a potential reduction water removal from a fuel cell. The causes of this water removal reduction remain unclear. In additional, three of the concepts generated with biomimetic design were further studied and demonstrated to stimulate more creative ideas in the thermal and water management of fuel cells. The biomimetic design and the TRIZ methodologies were successfully applied to fuel cells and provided different perspectives to the redesign of fuel cells. The methodologies should continue to be used to improve fuel cells.

  16. Total synthesis of the bicyclo[6.3.0]undecane-based sesquiterpene (±)-asterisca-3(15),6-diene. Revision of the relative stereochemistry of the natural product

    OpenAIRE

    Mehta, Goverdhan; Umarye, Jayant D

    2001-01-01

    The first total synthesis of the novel bicyclic sesquiterpene hydrocarbon asterisca-3(15),6-diene is reported. As a consequence, the natural product is shown to possess structure 4 with a trans-5,8 ring fusion and not the previously assigned cis-asterisca-3(15),6-diene 3.

  17. An Improved High Yield Total Synthesis and Cytotoxicity Study of the Marine Alkaloid Neoamphimedine: An ATP-Competitive Inhibitor of Topoisomerase IIα and Potent Anticancer Agent

    Directory of Open Access Journals (Sweden)

    Linfeng Li

    2014-09-01

    Full Text Available Recently, we characterized neoamphimedine (neo as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%. In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM. We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis.

  18. Total synthesis and in vitro bioevaluation of clavaminols A, C, H & deacetyl clavaminol H as potential chemotherapeutic and antibiofilm agents.

    Science.gov (United States)

    Vijai Kumar Reddy, T; Jyotsna, A; Prabhavathi Devi, B L A; Prasad, R B N; Poornachandra, Y; Ganesh Kumar, C

    2016-09-14

    A highly concise and expedient total synthesis of bioactive clavaminols (1-4) has been executed using commercially available achiral compound decanol. The synthetic strategy relied on trans-Wittig olefination, Sharpless asymmetric epoxidation, regioselective azidolysis and in situ detosylation followed by reduction as key reactions with good overall yield. Based on biological evaluation studies of all the synthesized compounds, it was observed that the clavaminol A (1) exhibited good cytotoxicity against DU145 and SKOV3 cell lines with IC50 value of 10.8 and 12.5 μM, respectively. Clavaminol A (1) and deacetyl clavaminol H (3) displayed selective promising inhibition towards Gram-positive pathogenic bacterial strains and showed good antifungal activity against the tested Candida strains. In addition, compounds 1 and 3 have demonstrated significant bactericidal activity. Compound 3 was found to be equipotent to the standard drug Miconazole displaying MFC value of 15.6 μg/mL against Candida albicans MTCC 854, C. albicans MTCC 1637, C. albicans MTCC 3958 and Candida glabrata MTCC 3019. Compounds 1 and 3 were also able to inhibit the biofilm formation of Micrococcus luteus MTCC 2470 and Staphylococcus aureus MLS16 MTCC 2940. Clavaminol A (1) increased the levels of reactive oxygen species (ROS) accumulation in M. luteus MTCC 2470. PMID:27187861

  19. Total synthesis of (-)- and (+)-tedanalactam

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Parameswaran, P.S.; Tilve, S.G.

    , S. G. J. Org. Chem. 2009, 74, 3591. (b) Patre, R.; Gawas, S.; Sen, S.; Parameswaran, P. S.; Tilve, S. G. Tetrahedron Lett. 2007, 48, 3517. (c) Parvatkar, P.; Parameswaran, P. S.; Tilve, S. G. Tetrahedron Lett. 2007, 48, 7870. (d) Majik, M. S... for their therapeutic usage and a few are isolated as natural products. Tedanalactam, a cis-3,4-epoxy-2-piperidone 1 was first isolated from sponge Tedania ignis in 1994 by Cronan and Cardellina. 3 Recently in 2007, Lago and Kato 4 found it in leaves of Piper...

  20. [Total synthesis of nordihydroguaiaretic acid].

    Science.gov (United States)

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized. PMID:11499030

  1. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  2. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.;

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination...

  3. Effects of Oxygen Transfer Limitation and Kinetic Control on Biomimetic Catalytic Oxidation of Toluene

    Institute of Scientific and Technical Information of China (English)

    罗伟平; 刘大为; 孙俊; 邓伟; 盛文兵; 刘强; 郭灿城

    2014-01-01

    Under oxygen transfer limitation and kinetic control, liquid-phase catalytic oxidation of toluene over metalloporphyrin was studied. An improved technique of measuring dissolved oxygen levels for gas-liquid reaction at the elevated temperature and pressure was used to take the sequential data in the oxidation of toluene catalyzed by metalloporphyrin. By this technique the corresponding control step of toluene oxidation could be obtained by varying reaction conditions. When the partial pressure of oxygen in the feed is lower than or equal to 0.070 MPa at 463 K, the oxidation of toluene would be controlled by oxygen transfer, otherwise the reaction would be controlled by kinetics. The effects of both oxygen transfer and kinetic control on the toluene conversion and the selectivity of benzaldehyde and benzyl alcohol in biomimetic catalytic oxidation of toluene were systematically investigated. Three conclusions have been made from the experimental results. Firstly, under the oxygen transfer limitation the toluene conversion is lower than that under kinetic control at the same oxidation conditions. Secondly, under the oxygen transfer limitation the total selectivity of benzaldehyde and benzyl alcohol is lower than that under kinetic control with the same conversion of toluene. Finally, under the kinetics control the oxidation rate of toluene is zero-order with respect to oxygen. The experimental results are identical with the biomimetic catalytic mechanism of toluene oxidation over metalloporphyrins.

  4. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    Science.gov (United States)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  5. Framing biomimetics in a strategic orientation perspective (biopreneuring)

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2015-01-01

    This paper discusses how design originally rooted in biology can be translated into applications outside its original domain (biomimetics), and thus become strategically important for commercial organisations. This paper will also discuss how concepts from organisation and management theory can h...

  6. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta;

    2006-01-01

    This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...

  7. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren;

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...

  8. Diffraction from relief gratings on a biomimetic elastomer cast

    International Nuclear Information System (INIS)

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  9. Design and Implementation of a Modular Biomimetic Infochemical Communication System

    NARCIS (Netherlands)

    Rácz, Z.; Cole, M.; Gardner, J.W.; Chowdhury, M.F.; Bula, W.P.; Gardeniers, J.G.E.; Karout, S.; Capurro, A.; Pearce, T.C.

    2013-01-01

    We describe here the design and implementation of a novel biomimetic infochemical communication system that employs airborne molecules alone to communicate over space and time. The system involves the design and fabrication of a microsystem capable of producing and releasing a precise mix of biosynt

  10. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring.

    Science.gov (United States)

    Han, Chuanjun; Zhang, Han; Zhang, Jie

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal. PMID:27019582

  11. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    Directory of Open Access Journals (Sweden)

    Chuanjun Han

    2015-01-01

    Full Text Available In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal.

  12. Structural Design and Sealing Performance Analysis of Biomimetic Sealing Ring

    Science.gov (United States)

    Han, Chuanjun

    2015-01-01

    In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal. PMID:27019582

  13. A biomimetic tactile sensing system based on polyvinylidene fluoride film

    Science.gov (United States)

    Xin, Yi; Tian, Hongying; Guo, Chao; Li, Xiang; Sun, Hongshuai; Wang, Peiyuan; Qian, Chenghui; Wang, Shuhong; Wang, Cheng

    2016-02-01

    Polyvinylidene fluoride (PVDF) film has been widely investigated as a sensing material due to its outstanding properties such as biocompatibility, high thermal stability, good chemical resistance, high piezo-, pyro- and ferro-electric properties. This paper reports on the design, test, and analysis of a biomimetic tactile sensor based on PVDF film. This sensor consists of a PVDF film with aluminum electrodes, a pair of insulating layers, and a "handprint" friction layer with a copper foil. It is designed for easy fabrication and high reliability in outputting signals. In bionics, the fingerprint of the glabrous skin plays an important role during object handling. Therefore, in order to enhance friction and to provide better manipulation, the ridges of the fingertips were introduced into the design of the proposed tactile sensor. And, a basic experimental study on the selection of the high sensitivity fingerprint type for the biomimetic sensor was performed. In addition, we proposed a texture distinguish experiment to verify the sensor sensitivity. The experiment's results show that the novel biomimetic sensor is effective in discriminating object surface characteristics. Furthermore, an efficient visual application program (LabVIEW) and a quantitative evaluation method were proposed for the verification of the biomimetic sensor. The proposed tactile sensor shows great potential for contact force and slip measurements.

  14. 3D Modelling of Biological Systems for Biomimetics

    Institute of Scientific and Technical Information of China (English)

    Shujun Zhang; Kevin Hapeshi; Ashok K. Bhattacharya

    2004-01-01

    With the advanced development of computer-based enabling technologies, many engineering, medical, biology,chemistry, physics and food science etc have developed to the unprecedented levels, which lead to many research and development interests in various multi-discipline areas. Among them, biomimetics is one of the most promising and attractive branches of study. Biomimetics is a branch of study that uses biological systems as a model to develop synthetic systems.To learn from nature, one of the fundamental issues is to understand the natural systems such animals, insects, plants and human beings etc. The geometrical characterization and representation of natural systems is an important fundamental work for biomimetics research. 3D modeling plays a key role in the geometrical characterization and representation, especially in computer graphical visualization. This paper firstly presents the typical procedure of 3D modelling methods and then reviews the previous work of 3D geometrical modelling techniques and systems developed for industrial, medical and animation applications. Especially the paper discusses the problems associated with the existing techniques and systems when they are applied to 3D modelling of biological systems. Based upon the discussions, the paper proposes some areas of research interests in 3D modelling of biological systems and for Biomimetics.

  15. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  16. Chiral discrimination in biomimetic systems: Phenylalanine

    Indian Academy of Sciences (India)

    K Thirumoorthy; K Soni; T Arun; N Nandi

    2007-09-01

    Chiral discrimination and recognition is important in peptide biosynthesis, amino acid synthesis and drug designing. Detailed structural information is available about the peptide synthesis in ribosome. However, no detailed study is available about the discrimination in peptide synthesis. We study the conformational energy variation of neutral methoxy phenyl alanine molecule as a function of its different dihedral angle to locate the minimum energy conformation using quantum chemical theory. We compared the intermolecular energy surfaces of phenyl alanine molecule in its neutral and zwitterionic state using quantum chemical theory as a function of distance and mutual orientation. The energy surfaces are studied with rigid geometry by varying the distance and orientation. The potential energy surfaces of - and - pairs are found to be dissimilar and reflect the underlying chirality of the homochiral pair and racemic nature of the heterochiral pair. The intermolecular energy surface of homochiral pair is more favourable than the corresponding energy surface of heterochiral pair.

  17. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. PMID:26117767

  18. A Biomimetic Approach to Lubricate Engineering Materials

    DEFF Research Database (Denmark)

    Røn, Troels

    electrostatic repulsion between charged PAA blocks, hindering the facile formation of the lubricating layer under cyclic tribological stress. It is well known that graft copolymers anchor more efficiently to surfaces than their diblock counterparts, thus the synthesis and study on lubricating capabilities of...

  19. Total synthesis of cyclomarins A, C and D, marine cyclic peptides with interesting anti-tuberculosis and anti-malaria activities.

    Science.gov (United States)

    Barbie, Philipp; Kazmaier, Uli

    2016-07-01

    Cyclomarins are cyclic heptapeptides containing four unusual amino acids. New synthetic protocols toward their synthesis have been developed, leading to the synthesis and biological evaluation of three natural occurring cyclomarins. Interestingly, cyclomarins address two completely different targets: Clp C1, a subunit of the caseinolytic protease of Mycobacterium tuberculosis (MTB), as well as PfAp3Ase of Plasmodium falciparum. Therefore, cyclomarins are interesting lead structures for the development of drugs against tuberculosis and malaria. PMID:27241518

  20. Piezoelectric Templates – New Views on Biomineralization and Biomimetics

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-05-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V‑1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature.

  1. Design and Dynamic Analysis of a Novel Biomimetic Robotics Hip Joint

    Directory of Open Access Journals (Sweden)

    Bingyan Cui

    2015-01-01

    Full Text Available In order to increase the workspace and the carrying capacity of biomimetic robotics hip joint, a novel biomimetic robotics hip joint was developed. The biomimetic robotics hip joint is mainly composed of a moving platform, frame, and 3-RRR orthogonal spherical parallel mechanism branched chains, and has the characteristics of compact structure, large bearing capacity, high positioning accuracy, and good controllability. The functions of the biomimetic robotics hip joint are introduced, such as the technical parameters, the structure and the driving mode. The biomimetic robotics hip joint model of the robot is established, the kinematics equation is described, and then the dynamics are analyzed and simulated with ADAMS software. The proposed analysis methodology can be provided a theoretical base for biomimetic robotics hip joint of the servo motor selection and structural design. The designed hip joint can be applied in serial and parallel robots or any other mechanisms.

  2. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    OpenAIRE

    Xia Pu; Guangji Li; Hanlu Huang

    2016-01-01

    ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark s...

  3. Electrospun polyvinyl alcohol-collagen-hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    Science.gov (United States)

    Song, Wei; Markel, David C.; Wang, Sunxi; Shi, Tong; Mao, Guangzhao; Ren, Weiping

    2012-03-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol-collagen-hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic-organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications.

  4. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    International Nuclear Information System (INIS)

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol–collagen–hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic–organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications. (paper)

  5. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  6. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  7. Biomimetic Adhesive Materials Containing Cyanoacryl Group for Medical Application

    Directory of Open Access Journals (Sweden)

    Sueng Hwan Jo

    2014-10-01

    Full Text Available For underwater adhesives with biocompatible and more flexible bonds using biomimetic adhesive groups, DOPA-like adhesive molecules were modified with cyanoacrylates to obtain different repeating units and chain length copolymers. The goal of this work is to copy the mechanisms of underwater bonding to create synthetic water-borne underwater medical adhesives through blending of the modified DOPA and a triblock copolymer (PEO-PPO-PEO for practical application to repair wet living tissues and bones, and in turn, to use the synthetic adhesives to test mechanistic hypotheses about the natural adhesive. The highest values in stress and modulus of the biomimetic adhesives prepared in wet state were 165 kPa and 33 MPa, respectively.

  8. Synthesis of the Tricyclic Core of Guanacastepene A, Decarboxylative Rearrangement of Allenylic N-Tosyl Carbamates and Phosphine-catalyzed Intramolecular γ-Umpolung Addition of α-Aminoalkylallenic Esters, and the Enantioselective Total Synthesis of (+)-Ibophyllidine

    OpenAIRE

    Andrews, Ian Paul

    2012-01-01

    Chapter 1 The synthesis of the tricyclic core of the diterpene guanacastepene A is described. Based on previous studies in the laboratory of professor Ohyun Kwon, the densely functionalized six-membered ring of the natural product was constructed utilizing an intermolecular Diels-Alder cycloaddition between maleic anhydride and a highly substituted alkoxydiene. The requisite diene was synthesized via a Stille cross coupling reaction for which an efficient synthesis of the necessary vinyl st...

  9. Methods for biomimetic remineralization of human dentine: A systematic review

    OpenAIRE

    Chris Ying Cao; May Lei Mei; Quan-Li Li; Edward Chin Man Lo; Chun Hung Chu

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved wi...

  10. Biomimetics in Modern Organizations – Laws or Metaphors?

    OpenAIRE

    Markus Schatten; Miroslav Zugaj

    2011-01-01

    Biomimetics, the art and science of imitating nature and life for technological solutions is discussed from a modern organization theory perspective. The main hypothesis of this article is that there are common laws in nature that are applicable to living, social and likewise organizational systems. To take advantage of these laws, the study of nature's principles for their application to organizations is proposed - a process which is in product and technology design known as bionic creativit...

  11. Neural Networks Integrated Circuit for Biomimetics MEMS Microrobot

    OpenAIRE

    Ken Saito; Kazuaki Maezumi; Yuka Naito; Tomohiro Hidaka; Kei Iwata; Yuki Okane; Hirozumi Oku; Minami Takato; Fumio Uchikoba

    2014-01-01

    In this paper, we will propose the neural networks integrated circuit (NNIC) which is the driving waveform generator of the 4.0, 2.7, 2.5 mm, width, length, height in size biomimetics microelectromechanical systems (MEMS) microrobot. The microrobot was made from silicon wafer fabricated by micro fabrication technology. The mechanical system of the robot was equipped with small size rotary type actuators, link mechanisms and six legs to realize the ant-like switching behavior. The NNIC generat...

  12. Biomimetic Architecture in Building Envelope Maintenance (A Literature)

    OpenAIRE

    Agus Salim N.A.; Mydin M.A.O; Ulang N. H. Md.

    2014-01-01

    The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its natur...

  13. Applied Biomimetics: A New Fresh Look of Textiles

    OpenAIRE

    Mirela Teodorescu

    2014-01-01

    Biomimetics is a new research field that deals with extraction and imitation of functional principles of nature and applying them in engineering. Due to the perfection of structures and mechanisms found in the natural world, scientists came to the conclusion that these may constitute reliable sources of inspiration and viable solutions for technological problems they face today. Industrial applications have rapidly developed. Trying to synthesize all information about this extremely large fie...

  14. Biomimetic supramolecular metallohosts for binding and activation of dioxygen

    OpenAIRE

    Sprakel, Vera Stefanie Irene

    2004-01-01

    Host-guest chemistry involves the binding of a specific substrate in a receptor via molecular recognition based on supramolecular interactions. Metal-containing derivatives of receptors for the selective supramolecular binding of dihydroxybenzene substrates, which receptors model oxygen binding enzymes both in structure and in function are described in this thesis with the ultimate goal to realize biomimetic catalysis. A PY2-appended receptor 1 and a TPA-appended receptor 2 and the bis-copper...

  15. Advances in surfaces and osseointegration in implantology. Biomimetic surfaces

    OpenAIRE

    Albertini, Matteo; Fernandez Yagüe, Marc; Lázaro Calvo, Pedro; Herrero Climent, Mariano; Ríos Santos, José Vicente; Bullón, Pedro; Gil Mur, Francisco Javier

    2015-01-01

    The present work is a revision of the processes occurring in osseointegration of titanium dental implants according to different types of surfaces -namely, polished surfaces, rough surfaces obtained from subtraction methods, as well as the new hydroxyapatite biomimetic surfaces obtained from thermochemical processes. Hydroxyapatite’s high plasma-projection temperatures have proven to prevent the formation of crystalline apatite on the titanium dental implant, but lead to the formation of amor...

  16. Flight mechanism and design of biomimetic micro air vehicles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper summaries the investigations on natural flyers and development of bio-mimetic micro air vehicles(MAVs)at NUAA,China,where the authors have led a group to conduct research for a decade. The investigations include the studies of low Reynolds number aerodynamics,unsteady computational fluid dynamics and flight control for the fixed-wing MAVs,the bird-like MAVs,the dragonfly-like MAVs and the bee-like MAVs.

  17. Flisht mechanism and design of biomimetic micro air vehicles

    Institute of Scientific and Technical Information of China (English)

    ANG HaiSong; XIAO TianHang; DUAN WenBo

    2009-01-01

    This paper summaries the investigations on natural flyers and development of bio-mimetic micro air vehicles(MAVs)at NUAA,China,where the authors have led a group to conduct research for a decade.The investigations include the studies of low Reynolds number aerodynamics,unsteady computational fluid dynamics and flight control for the fixed-wing MAVs,the bird-like MAVs,the dragonfly-like MAVs and the bee-like MAVs.

  18. Membrane Assembly Driven by a Biomimetic Coupling Reaction

    OpenAIRE

    Budin, Itay; Devaraj, Neal K.

    2011-01-01

    One of the major goals of synthetic biology is the development of non-natural cellular systems. In this work we describe a catalytic biomimetic coupling reaction capable of driving the de novo self-assembly of phospholipid membranes. Our system features a copper catalyzed azide-alkyne cycloaddition that results in the formation of a triazole containing phospholipid analog. Concomitant assembly of membranes occurs spontaneously, not requiring preexisting membranes to house catalysts or precurs...

  19. Bone Regeneration Mediated by Biomimetic Mineralization of a Nanofiber Matrix

    OpenAIRE

    Mata, Alvaro; Geng, Yanbiao; Henrikson, Karl; Aparicio, Conrado; Stock, Stuart; Satcher, Robert L.; Stupp, Samuel I.

    2010-01-01

    Rapid bone regeneration within a three-dimensional defect without the use of bone grafts, exogenous growth factors, or cells remains a major challenge. We report here on the use of self-assembling peptide nanostructured gels to promote bone regeneration that have the capacity to mineralize in biomimetic fashion. The main molecular design was the use of phosphoserine residues in the sequence of a peptide amphiphile known to nucleate hydroxyapatite crystals on the surfaces of nanofibers. We tes...

  20. Biomimetic Fabrication of Hydroxyapatite Microcapsules by Using Apatite Nuclei

    OpenAIRE

    Yao, Takeshi; Yabutsuka, Takeshi

    2010-01-01

    When the pH or the temperature of SBF is raised, fine particles of calcium phosphate are precipitated in the fluid. It was found that these particles are very active for forming hydroxyapatite from SBF and these particles were named Apatite Nuclei. By the discovery of Apatite Nuclei, it became possible to develop various multifunctional biomaterials possesing high bioaffinity in micron or nano scale by using biomimetic method. The authors have successfully encapsulated Ag, PLA and silicagel m...

  1. Development of biomimetic microengineered hydrogel fibers for tendon regeneration

    OpenAIRE

    Costa-Almeida, R.; Gasperini, Luca; Rodrigues, Márcia T.; Babo, P. M.; Mano, J.F; Reis, R.L.; Gomes, Manuela E.

    2015-01-01

    Musculoskeletal diseases are one of the leading causes of disability worldwide. Tendon injuries are responsible for substantial morbidity, pain and disability. Tissue engineering strategies aim at translating tendon structure into biomimetic materials. The main goal of the present study is to develop microengineered hydrogel fibers through the combination of microfabrication and chemical interactions between oppositely charged polyelectrolytes. For this, methacrylated hyaluronic acid (MeHA) a...

  2. Fabrication of Biomimetic Water Strider Legs Covered with Setae

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2009-01-01

    Water striders have remarkable water-repellent legs that enable them to stand effortlessly and move quickly on water. Fluid physics indicates this feature is due to a surface-tension effect caused by the special hierarchical structure of the legs, which are covered with a large number of inclined setae with fine nanogrooves inducing water resistance. This inspires us to fabricate special water-repellent structure on functional surfaces through the cooperation between the surface treatment and the surface micro- and nanostructures, which may bring great advantages in a wide variety of applications. In this paper we present a procedure for fabricating biomimetic water strider legs covered with setae using Polycarbonate Track-Etched (PCTE) membranes as templates. By choosing appropriate membrane lengths, diameters, pitches and densities of the setae, the biomimetic legs can be fabricated conveniently and at a low cost. Furthermore we investigated the relationship between stiffness of the molding materials, high aspect ratio and density, which affect the fidelity of fabrication and self adhesion, to optimize the stability of setae. The knowledge we gained from this study will offer important insights into the biomimetic design and fabrication of water strider setae.

  3. Biomimetic coating of calcium phosphate on biometallic materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The bio-mimetic apatite coating is made up of larger number of globules with size of 1-5μm. Each globule is a group of numerous flakes with a size range of 100-200nm to 30μm in length and 0.1-1μm in thickness. In-vitro and in-vivo studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much promising.

  4. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  5. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Nayar, Suprabha, E-mail: Suprabha.nayar@gmail.com [National Metallurgical Laboratory, Jamshedpur (India); Guha, Avijit [National Metallurgical Laboratory, Jamshedpur (India)

    2009-05-05

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  6. Waste utilization for the controlled synthesis of nanosized hydroxyapatite

    International Nuclear Information System (INIS)

    This work uses biomolecules in waste and medicinally important materials for the synthesis of hydroxyapatite nanoparticles. Orange and potato peel, eggshell, papaya leaf and calendula flower extracts have varied biomolecules, which exert a significant, control on the in situ synthesis of nanosized hydroxyapatite particles. The biomimetic synthesis of inorganic particles using known matrices is already well established, however, there are only a few reports using compound extracts. The synthesized nanocomposite has been characterized using X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy studies. Role of varied biomolecules in controlled inorganic synthesis may have tremendous technological impact.

  7. Total protein

    Science.gov (United States)

    The total protein test measures the total amount of two classes of proteins found in the fluid portion of your ... nutritional problems, kidney disease or liver disease . If total protein is abnormal, you will need to have more ...

  8. Total protein

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003483.htm Total protein To use the sharing features on this page, please enable JavaScript. The total protein test measures the total amount of two classes ...

  9. Total Synthesis and Biological Evaluation of a Series of Macrocyclic Hybrids and Analogues of the Antimitotic Natural Products Dictyostatin, Discodermolide and Taxol

    OpenAIRE

    Paterson, Ian; Naylor, Guy J.; Gardner, Nicola M.; Guzmán, Ester; Wright, Amy E.

    2010-01-01

    The design, synthesis and biological evaluation of a series of hybrids and analogues of the microtubule-stabilising anticancer agents dictyostatin, discodermolide and taxol is described. A 22-membered macrolide scaffold was prepared by adapting earlier synthetic routes directed towards dictyostatin and discodermolide, taking advantage of the distinctive structural and stereochemical similarities between these two polyketide-derived marine natural products. Initial endeavours towards accessing...

  10. Peptide synthesis by enzymatic catalysis: new application to the total radiosynthesis of the tritiated leucine-enkephalin hormone, using Y carboxypeptidase

    International Nuclear Information System (INIS)

    A new method of enzymatic labelling of peptide hormones is described. The enzyme used, a protease, Y carboxypeptidase is able, in some conditions, to catalyze the formation of peptide bounds. This property has been used for the synthesis of a pentapeptide, the tritiated leucine-enkephalin, with the incorporation of every radioactive amino acid. The specific radioactivity of the labelled molecule is 139 Ci/mmole and its biological properties (receptor binding and immunoreactivity) are identical with native leucine-enkephalin properties

  11. Studies Towards the Total Synthesis of Di- and Sesterterpenes with Dicyclopenta[a,d]cyclooctane Skeletons. Three-component Approach to the A/B Rings Building Block

    Directory of Open Access Journals (Sweden)

    J. Wicha

    2005-09-01

    Full Text Available Sesqui- and sesterterpenes of ophiobolin and fusicoccin families are important synthetic targets because of complexity of structure and potentially useful physiological activities, including anti-tumor activity. A synthesis of versatile building blocks for these terpenoids is described. Cyclopenta[8]annulene rings system with properly dislocated substituents was constructed using as key steps ring closing metathesis reaction and Wagner - Meerwein rearrangement. Ring closing metathesis reaction leading to cyclopenta[8]annulene was studied in detail.

  12. Plants and Animals as Concept Generators for the Development of Biomimetic Cable Entry Systems

    Institute of Scientific and Technical Information of China (English)

    Tom Masseiter; Uwe Scharf; Thomas Speck

    2008-01-01

    Many animals and plants have high potential to serve as concept generators for developing biomimetic materials and structures. We present some ideas based on structural and functional properties of plants and animals that led to the development of two types of biomimetic cable entry systems. Those systems have been realized on the level of functional demonstrators.

  13. A future of living machines?: International trends and prospects in biomimetic and biohybrid systems

    Science.gov (United States)

    Prescott, Tony J.; Lepora, Nathan; Vershure, Paul F. M. J.

    2014-03-01

    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent.

  14. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  15. MGF-Ct24E改性聚乳酸的合成、表征及其对成骨细胞增殖的评价%Synthesis, characterization and osteoblasts proliferation of a novel biomimetic material based on MGF-Ct24E modified poly (D, L-lactic acid)

    Institute of Scientific and Technical Information of China (English)

    罗嘉; 李玉筱; 王品品; 王远亮

    2013-01-01

    力生长因子(MGF)是骨修复重建的一种重要生长因子.以二环己基碳二亚胺为缩合剂,将MGF羧基端E结构域24肽(MGF-Ct24E)共价接枝到丁二胺改性的聚乳酸上(DPLA),制得了新型MGF-Ct24E改性聚乳酸仿生材料(MGF Ct24E-DPLA).采用氨基酸分析和高效液相色谱对MGF-Ct24E含量进行了定性定量表征,静态水接触角和吸水率测定了MGF-Ct24E DPLA材料的亲水性,MTT法评价了其对成骨细胞的增殖作用.结果表明,MGF-Ct24E成功引入到DPLA中,接枝效率为24.7%,并且和DPLA相比,MGF-Ct24E-DPLA材料具有更好的亲水性和促进成骨细胞增殖的能力.因此这种新型MGF-Ct24E改性聚乳酸仿生材料有望成为骨组织工程领域中一种卓越的生物材料.%Mechano-growth factor (MGF) is one of the most important growth factors of bone regeneration. A novel biomimetic poly (D, L-lactic acid) (PDLLA) modification was designed and synthesized based on MGF-Ct24E grafted butanediamine modified PDLLA (DPLA). MGF-Ct24Es were grafted into the side chain of DP-LA via a stable covalent amide bond by using dicyclohexylcarbodiimide (DCC) as the condensing agent to produce biomimetic DPLA materials (MGF-Ct24E-DPLA). Amino acid analyzer (AAA) and high performance liquid chromatography (HPLC) were used to characterize the MGF-Ct24E-DPLA. The hydrophilicity of MGF-Ct24E-DPLA was evaluated by means of the water-uptake ratios and static water contact angle. Data revealed that the grafting efficiency of MGF-Ct24E was about 24. 7%. MGF-Ct24E-MPLA had better hydrophilicity than DPLA. The osteoblasts behavior of proliferation, on glass, DPLA and MGF-Ct24E-DPLA films was investigated and the results indicated that the introduction of MGF-Ct24E could improve osteoblasts proliferation. The MGF-Ct24EMPLA with higher bioactivity may have potential application for bone tissue engineering.

  16. Asymmetric synthesis of beta-amino-alpha-hydroxy esters via SET induced tandem processes: Application to the total synthesis of natural products with anti-beta-amino-alpha-hydroxy motif

    Czech Academy of Sciences Publication Activity Database

    Hidasová, Denisa; Jahn, Ullrich

    Praha: Czech Chemical Society, 2015. s. 73. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] R&D Projects: GA ČR GA13-40188S Institutional support: RVO:61388963 Keywords : assymetric synthesis * beta-amino-alfa-hydroxy esters * Michael addition Subject RIV: CC - Organic Chemistry

  17. Aza-Quaternary Scaffolds from Selective Bond Cleavage of Bridgehead-Substituted 7-Azabicyclo[2.2.1]heptane: Total Synthesis of (+)-Cylindricines C-E and (-)-Lepadiformine A.

    Science.gov (United States)

    Pandey, Ganesh; Janakiram, Vaitla

    2015-09-01

    A novel bridgehead-substituted aza-bicyclic framework has been designed and developed in both enantiomeric forms through an asymmetric desymmetrization reaction. Strategic exploitation of the ring strain in the aza-bicyclic framework has been utilized for the construction of the chiral aza-quaterenary scaffolds by selective bond fragmentation processes. Furthermore, a strategically designed precursor is employed for selective bond cleavage to initiate a cascade rearrangement for the total synthesis of the 1-azaspirotricyclic marine alkaloids (+)-cylindricines C, D, and E, as well as (-)-lepadiformine A. An oxidation/retro-aldol/aza-Michael sequence generated three new chiral centers with the required configuration in one pot. PMID:26220441

  18. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications

    International Nuclear Information System (INIS)

    This study describes the design and synthesis of bacterial cellulose/hydroxyapatite nanocomposites for bone healing applications using a biomimetic approach. Bacterial cellulose (BC) with various surface morphologies (pellicles and tubes) was negatively charged by the adsorption of carboxymethyl cellulose (CMC) to initiate nucleation of calcium-deficient hydroxyapatite (cdHAp). The cdHAp was grown in vitro via dynamic simulated body fluid (SBF) treatments over a one week period. Characterization of the mineralized samples was done with X-ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM) with Energy Dispersive Spectroscopy (EDS). The amount of cdHAp observed varied among different samples. XPS demonstrated that the atomic presence of calcium and phosphorus ranged from 0.44 at.% to 7.71 at.% Ca and 0.27 at.% to 11.18 at.% P. The Ca/P overall ratio ranged from 1.22 to 1.92. FESEM images showed that the cdHAp crystal size increased with increasing nanocellulose fibril density. To determine the viability of the scaffolds in vitro, the morphology and differentiation of osteoprogenitor cells was analyzed using fluorescence microscopy and alkaline phosphatase gene expression. The presence of cdHAp crystals on BC surfaces resulted in increased cell attachment.

  19. Biomimetic Catalysts for Oxidation of Veratryl Alcohol, a Lignin Model Compound

    Directory of Open Access Journals (Sweden)

    Marcelino Maneiro

    2013-03-01

    Full Text Available Kraft pulp has to be bleached to eliminate the chromophoric structures, which cause a darkening of the pulp. In Nature, an equivalent role is assumed by ligninolytic enzymes such as lignin peroxidases, manganese peroxidases and laccases. The development of low molecular weight manganese peroxidase mimics may achieve environmentally-safe bleaching catalysts for the industry. Herein we report the synthesis and characterization of six manganese(III complexes 1–6, incorporating dianionic hexadentate Schiff base ligands (H2L1-H2L4 and different anions. Complex 4, Mn2L22(H2O2(DCA2 was crystallographically characterized. Complexes 1–4 behave as more efficient mimics of peroxidase in contrast to 5–6. We have studied the use of these complexes as catalysts for the degradation of the lignin model compound veratryl alcohol. The biomimetic catalysts were used in conjunction with chlorine-free inexpensive co-oxidants as dioxygen or hydrogen peroxide. Yields up to 30% of veratryl alcohol conversion to veratraldehyde have been achieved at room temperature in presence of air flow using 0.5% of catalyst.

  20. Optimizing the Production of Biodiesel Using Lipase Entrapped in Biomimetic Silica

    Directory of Open Access Journals (Sweden)

    Chi-Yang Yu

    2013-04-01

    Full Text Available We entrapped lipase from Pseudomonas cepacia in polyallylamine-mediated biomimetic silica, and then applied entrapped lipase to the synthesis of biodiesel with soybean oil or waste cooking oil as a feedstock. The effects of reaction temperature, substrate molar ratio (methanol/oil and n-hexane content (w/w of oil were evaluated using response surface methodology (RSM combined with Box-Behnken design. The optimal reaction conditions for soybean oil were 43.6 °C, substrate molar ratio of 4.3%, and 75% n-hexane. The predicted and experimental values of biodiesel conversion were 79% and 76%, respectively. The optimal reaction conditions for waste cooking oil were 43.3 °C, substrate molar ratio of 5%, and 38% n-hexane. The predicted and experimental values of conversion were 68% and 67%, respectively. The conversion efficiency remained the same even after 1-month storage of entrapped lipase at 4 °C or room temperature.