WorldWideScience

Sample records for biomimetic polymer scaffold

  1. Electrospinning polymer blends for biomimetic scaffolds for ACL tissue engineering

    Science.gov (United States)

    Garcia, Vanessa Lizeth

    The anterior cruciate ligament (ACL) rupture is one of the most common knee injuries. Current ACL reconstructive strategies consist of using an autograft or an allograft to replace the ligament. However, limitations have led researchers to create tissue engineered grafts, known as scaffolds, through electrospinning. Scaffolds made of natural and synthetic polymer blends have the potential to promote cell adhesion while having strong mechanical properties. However, enzymes found in the knee are known to degrade tissues and affect the healing of intra-articular injuries. Results suggest that the natural polymers used in this study modify the thermal properties and tensile strength of the synthetic polymers when blended. Scanning electron microscopy display bead-free and enzyme biodegradability of the fibers. Raman spectroscopy confirms the presence of the natural and synthetic polymers in the scaffolds while, amino acid analysis present the types of amino acids and their concentrations found in the natural polymers.

  2. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.

    Science.gov (United States)

    Bao, Min; Lou, Xiangxin; Zhou, Qihui; Dong, Wen; Yuan, Huihua; Zhang, Yanzhong

    2014-02-26

    Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration). PMID:24476093

  3. Towards biomimetic scaffolds: anhydrous scaffold fabrication from biodegradable amine-reactive diblock copolymers.

    Science.gov (United States)

    Hacker, Michael; Tessmar, Jörg; Neubauer, Markus; Blaimer, Andrea; Blunk, Torsten; Göpferich, Achim; Schulz, Michaela B

    2003-11-01

    The development of biomimetic materials and their processing into three-dimensional cell carrying scaffolds is one promising tissue engineering strategy to improve cell adhesion, growth and differentiation on polymeric constructs developing mature and viable tissue. This study was concerned with the fabrication of scaffolds made from amine-reactive diblock copolymers, N-succinimidyl tartrate monoamine poly(ethylene glycol)-block-poly(D,L-lactic acid), which are able to suppress unspecific protein adsorption and to covalently bind proteins or peptides. An appropriate technique for their processing had to be both anhydrous, to avoid hydrolysis of the active ester, and suitable for the generation of interconnected porous structures. Attempts to fabricate scaffolds utilizing hard paraffin microparticles as hexane-extractable porogens failed. Consequently, a technique was developed involving lipid microparticles, which served as biocompatible porogens on which the scaffold forming polymer was precipitated in the porogen extraction media (n-hexane). Porogen melting during the extraction and polymer precipitation step led to an interconnected network of pores. Suitable lipid mixtures and their melting points, extraction conditions (temperature and time) and a low-toxic polymer solvent system were determined for their use in processing diblock copolymers of different molecular weights (22 and 42 kDa) into highly porous off-the-shelf cell carriers ready for easy surface modification towards biomimetic scaffolds. Insulin was employed to demonstrate the principal of instant protein coupling to a prefabricated scaffold. PMID:12922156

  4. Design of graded biomimetic osteochondral composite scaffolds

    OpenAIRE

    Tampieri, Anna; Sandri, Monica; Landi, Elena; Pressato, Daniele; Francioli, Silvia; Quarto, Rodolfo; Martin, Ivan

    2008-01-01

    With the ultimate goal to generate suitable materials for the repair of osteochondral defects, in this work we aimed at developing composite osteochondral scaffolds organized in different integrated layers, with features which are biomimetic for articular cartilage and subchondral bone and can differentially support formation of such tissues. A biologically inspired mineralization process was first developed to nucleate Mg-doped hydroxyapatite crystals on type I collagen fibers during their s...

  5. Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds.

    Science.gov (United States)

    Deplaine, H; Lebourg, M; Ripalda, P; Vidaurre, A; Sanz-Ramos, P; Mora, G; Prósper, F; Ochoa, I; Doblaré, M; Gómez Ribelles, J L; Izal-Azcárate, I; Gallego Ferrer, G

    2013-01-01

    Polymer-ceramic composites obtained as the result of a mineralization process hold great promise for the future of tissue engineering. Simulated body fluids (SBFs) are widely used for the mineralization of polymer scaffolds. In this work an exhaustive study with the aim of optimizing the mineralization process on a poly(L-lactic acid) (PLLA) macroporous scaffold has been performed. We observed that when an air plasma treatment is applied to the PLLA scaffold its hydroxyapatite nucleation ability is considerably improved. However, plasma treatment only allows apatite deposition on the surface of the scaffold but not in its interior. When a 5 wt % of synthetic hydroxyapatite (HAp) nanoparticles is mixed with PLLA a more abundant biomimetic hydroxyapatite layer grows inside the scaffold in SBF. The morphology, amount, and composition of the generated biomimetic hydroxyapatite layer on the pores' surface have been analyzed. Large mineralization times are harmful to pure PLLA as it rapidly degrades and its elastic compression modulus significantly decreases. Degradation is retarded in the composite scaffolds because of the faster and extensive biomimetic apatite deposition and the role of HAp to control the pH. Mineralized scaffolds, covered by an apatite layer in SBF, were implanted in osteochondral lesions performed in the medial femoral condyle of healthy sheep. We observed that the presence of biomimetic hydroxyapatite on the pore's surface of the composite scaffold produces a better integration in the subchondral bone, in comparison to bare PLLA scaffolds. PMID:23152082

  6. Biomimetic peptoid polymers

    Science.gov (United States)

    Zuckermann, Ronald N.; Chu, Tammy K.; Nam, Ki Tae

    2015-07-07

    The present invention provides for novel peptoid oligomers that are capable of self-assembling into two-dimensional sheet structures. The peptoid oligomers can have alternately hydrophilic or polar side-chains and hydrophobic or apolar side-chains. The peptoid oligomers, and the two-dimensional sheet structures, can be applied to biological applications where the peptoid plays a role as a biological scaffold or building block. Also, the two-dimensional sheet structures of the present invention can be used as two-dimensional nanostructures in device applications.

  7. Novel biodegradable, biomimetic and functionalised polymer scaffolds to prevent expansion of post-infarct left ventricular remodelling.

    OpenAIRE

    Giannessi, Daniela

    2011-01-01

    Abstract Over the past decade, a large number of strategies and technologies have been developed to reduce heart failure progression. Among these, cardiac tissue engineering is one of the most promising. Aim of this study is to develop a 3D scaffold to treat cardiac failure. A new three-block copolymer, obtained from δ-valerolactone and polyoxyethylene, was synthesised under high vacuum without catalyst. Copolymer/gelatine blends were microfabricated to obtain a ECM-like geometry. Struct...

  8. Biomimetic nanoclay scaffolds for bone tissue engineering

    Science.gov (United States)

    Ambre, Avinash Harishchandra

    Tissue engineering offers a significant potential alternative to conventional methods for rectifying tissue defects by evoking natural regeneration process via interactions between cells and 3D porous scaffolds. Imparting adequate mechanical properties to biodegradable scaffolds for bone tissue engineering is an important challenge and extends from molecular to macroscale. This work focuses on the use of sodium montmorillonite (Na-MMT) to design polymer composite scaffolds having enhanced mechanical properties along with multiple interdependent properties. Materials design beginning at the molecular level was used in which Na-MMT clay was modified with three different unnatural amino acids and further characterized using Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD). Based on improved bicompatibility with human osteoblasts (bone cells) and intermediate increase in d-spacing of MMT clay (shown by XRD), 5-aminovaleric acid modified clay was further used to prepare biopolymer (chitosan-polygalacturonic acid complex) scaffolds. Osteoblast proliferation in biopolymer scaffolds containing 5-aminovaleric acid modified clay was similar to biopolymer scaffolds containing hydroxyapatite (HAP). A novel process based on biomineralization in bone was designed to prepare 5-aminovaleric acid modified clay capable of imparting multiple properties to the scaffolds. Bone-like apatite was mineralized in modified clay and a novel nanoclay-HAP hybrid (in situ HAPclay) was obtained. FTIR spectroscopy indicated a molecular level organic-inorganic association between the intercalated 5-aminovaleric acid and mineralized HAP. Osteoblasts formed clusters on biopolymer composite films prepared with different weight percent compositions of in situ HAPclay. Human MSCs formed mineralized nodules on composite films and mineralized extracellular matrix (ECM) in composite scaffolds without the use of osteogenic supplements. Polycaprolactone (PCL), a synthetic polymer, was

  9. Biomimetic strengthening polylactide scaffold materials for bone tissue engineering

    Institute of Scientific and Technical Information of China (English)

    XU Guofu; MOU Shenzhou; ZHOU Lingping; LIAO Susan; YIN Zhimin; CUI Fuzhai

    2007-01-01

    In this paper,a new polylactide(PLA)-based scaffold composite by biomimetic synthesis was designed.The novel composite mainly consists ofnano-hydroxyapatite (n-HA),which is the main inorganic content in natural bone tissue for the PLA.The crystal degree of the n-HA in the composite is low and the crystal size is very small,which is similar to that of natural bone.The compressive strength of the composite is higher than that of the PLA scaffold.Using the osteoblast culture technique,we detected cell behaviors on the biomaterial in vitro by SEM,and the cell affinity of the composite was found to be higher than that of the PLA scaffold.The biomimetic three-dimensional porous composite can serve as a kind of excellent scaffold material for bone tissue engineering because of its microstructure and properties.

  10. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze-thawing and freeze-drying

    Indian Academy of Sciences (India)

    S Nayar; A K Pramanick; A Guha; B K Mahato; M Gunjan; A Sinha

    2008-06-01

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM microscopy. The characterization of such nano-structured composites would allow researchers to design new systems, tailoring properties for different applications.

  11. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Directory of Open Access Journals (Sweden)

    Wang Y

    2016-05-01

    Full Text Available Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC, was used to stabilize amorphous calcium phosphate (ACP to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the

  12. Electroactive biomimetic collagen-silver nanowire composite scaffolds

    Science.gov (United States)

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-07-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2 and a charge injection capacity of 0.3 mC cm-2, which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications.Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2

  13. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    Science.gov (United States)

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  14. Electroactive biomimetic collagen-silver nanowire composite scaffolds.

    Science.gov (United States)

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-08-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm(-2) and a charge injection capacity of 0.3 mC cm(-2), which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications. PMID:27385421

  15. Chitosan-based biomimetic scaffolds and methods for preparing the same

    OpenAIRE

    Filée, Patrick; Freichels, Astrid; Jérôme, Christine; Aqil, Abdelhafid; Colige, Alain; Tchemtchoua Tateu, Victor

    2010-01-01

    The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan-based scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one layer consists of a chitosan nanofiber scaffold membrane and at least one of the other layers of a por...

  16. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the

  17. Development of a biomimetic collagen-hydroxyapatite scaffold for bone tissue engineering using a SBF immersion technique.

    OpenAIRE

    Al-Munajjed, Amir A; Plunkett, Niamh A; Gleeson, John P.; Weber, Tim; Jungreuthmayer, Christian; Levingstone, Tanya; Hammer, Joachim; O'Brien, Fergal J.

    2009-01-01

    The objective of this study was to develop a biomimetic, highly porous collagen-hydroxyapatite (HA) composite scaffold for bone tissue engineering (TE), combining the biological performance and the high porosity of a collagen scaffold with the high mechanical stiffness of a HA scaffold. Pure collagen scaffolds were produced using a lyophilization process and immersed in simulated body fluid (SBF) to provide a biomimetic coating. Pure collagen scaffolds served as a control. The mechanical, mat...

  18. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  19. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  20. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts.

    Science.gov (United States)

    Elsayed, Y; Lekakou, C; Labeed, F; Tomlins, P

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell-matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8-1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. PMID:26838874

  1. The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP and Biogenic Silica (Bio-Silica, as Biomimetic Scaffolds for Bone Tissue Engineering: Fabrication of a Morphogenetically-Active Polymer

    Directory of Open Access Journals (Sweden)

    Florian Draenert

    2013-03-01

    Full Text Available Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fabricate a template that is functioning in a way mimicking the morphogenetic, inductive role(s of the native extracellular matrix. In the last few years, two naturally occurring polymers that are produced by deep-sea sponges, the biogenic polyphosphate (bio-polyP and biogenic silica (bio-silica have also been identified as promoting morphogenetic on both osteoblasts and osteoclasts. These polymers elicit cytokines that affect bone mineralization (hydroxyapatite formation. In this manner, bio-silica and bio-polyP cause an increased release of BMP-2, the key mediator activating the anabolic arm of the hydroxyapatite forming cells, and of RANKL. In addition, bio-polyP inhibits the progression of the pre-osteoclasts to functionally active osteoclasts. Based on these findings, new bioinspired strategies for the fabrication of bone biomimetic templates have been developed applying 3D-printing techniques. Finally, a strategy is outlined by which these two morphogenetically active polymers might be used to develop a novel functionally active polymer.

  2. Effect of biomimetic 3D environment of an injectable polymeric scaffold on MG-63 osteoblastic-cell response

    International Nuclear Information System (INIS)

    Solid PLGA microspheres were fabricated and characterized in terms of their in vitro degradation behaviour. Microsphere scaffolds were then modified covalently by P-15 (GTPGPQGIAGQRGVV) to obtain a 3D bioactive collagen surrogate matrix for bone filling applications. These scaffolds were characterized for surface topography, hydrophilicity and evaluated for their effect on osteoblastic activity of MG-63 cell line vis-a-vis 2D monolayer culture. AFM and contact angle experiments indicated enhanced nano-level roughness and hydrophilicity on P-15 modification. Modified scaffolds showed enhanced cell attachment, proliferation, extracellular matrix formation, mineralization and collagen type-I expression when compared to unmodified microspheres, prerequisite for bone filling applications. On long term in vitro cell culture, however, decreased cell viability was observed which may be attributed to the acidic microenvironment generated due to polymer degradation and reduction in nutrient diffusion through the copious ECM formed in 3D scaffolds. Though a higher cell count could be obtained in 2D monolayer cell culture, it was overshadowed by weak cell attachment, poor phenotypic characteristics, decreased cell viability and low mineralization levels, over 28 day cell culture studies. Results indicate that P-15 modified microsphere scaffolds may provide a natural, biomimetic 3D environment and may be successfully exploited for non-invasive bone filling applications.

  3. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  4. Biomimetic composite scaffolds based on mineralization of hydroxyapatite on electrospun poly(ɛ-caprolactone)/nanocellulose fibers.

    Science.gov (United States)

    Si, Junhui; Cui, Zhixiang; Wang, Qianting; Liu, Qiong; Liu, Chuntai

    2016-06-01

    A biomimetic nanocomposite scaffold with HA formation on the electrospun poly(ɛ-caprolactone) (PCL)/nanocellulose (NC) fibrous matrix was developed in this study. The electrospun PCL/NC fiber mat was built and then biomineralized by treatment in simulated body fluid (SBF). Using such a rapid and effective procedure, a continuous biomimetic crystalline HA layer could be successfully formed without the need of any additional chemical modification of the substrate surface. The results showed that the introduction of NC into composite fibers is an effective approach to induce the deposition of HA nucleus as well as to improve their distribution and growth of a crystalline HA layer on the fibrous scaffolds. The water contact angle (WCA) of the PCL/NC/HA scaffolds decreases with increasing NC content and mineralization time, resulting in the enhancement of their hydrophilicity. These results indicated that HA-mineralized on PCL/NC fiber can be prepared directly by simply using SBF immersion. PMID:27083369

  5. Bioactivity and bone healing properties of biomimetic porous composite scaffold: in vitro and in vivo studies.

    Science.gov (United States)

    Veronesi, Francesca; Giavaresi, Gianluca; Guarino, Vincenzo; Raucci, Maria Grazia; Sandri, Monica; Tampieri, Anna; Ambrosio, Luigi; Fini, Milena

    2015-09-01

    Tissue engineering (TE) represents a valid alternative to traditional surgical therapies for the management of bone defects that do not regenerate spontaneously. Scaffolds, one of the most important component of TE strategy, should be biocompatible, bioactive, osteoconductive, and osteoinductive. The aim of this study was to evaluate the biological properties and bone regeneration ability of a porous poly(ɛ-caprolactone) (PCL) scaffold, incorporating MgCO3 -doped hydroxyapatite particles, uncoated (PCL_MgCHA) or coated by apatite-like crystals via biomimetic treatment (PCL_MgCHAB). It was observed that both scaffolds are not cytotoxic and, even if cell viability was similar on both scaffolds, PCL_MgCHAB showed higher alkaline phosphatase and collagen I (COLL I) production at day 7. PCL_MgCHA induced more tumor necrosis factor-α release than PCL_MgCHAB, while osteocalcin was produced less by both scaffolds up to 7 days and no significant differences were observed for transforming growth factor-β synthesis. The percentage of new bone trabeculae growth in wide defects carried out in rabbit femoral distal epiphyses was significantly higher in PCL_MgCHAB in comparison with PCL_MgCHA at 4 weeks and even more at 12 weeks after implantation. This study highlighted the role of a biomimetic composite scaffold in bone regeneration and lays the foundations for its future employment in the clinical practice. PMID:25689266

  6. Bioimprinted Polymer Scaffolds for Selective Recognition of RGD Peptides

    Science.gov (United States)

    Bergmann, Nicole; Peppas, Nicholas A.

    2003-03-01

    Fibronectin and a number of other plasma and extracellular matrix (ECM) adhesion proteins contain the tetrapeptide arginine-glycine-aspartic acid-serine (RGDS), and this sequence can be summarily recognized and bound by integrins present on cell membranes. Upon integrin binding, cells adhere to the substrate, and this adherence encourages ECM deposition and other cellular remodeling events. By targeting specific chemical functional groups on the peptide using non-covalent molecular imprinting, biomimetic polymeric scaffolds can be designed to mimic protein-ECM binding both on the surface and in the bulk during polymer degradation. Methacrylic acid-ethylene glycol dimethacrylate (MAA-g-EGDMA) copolymer films were prepared by free-radical ultraviolet polymerization in the presence of RGDS to create novel imprinted matrices for possible tissue engineering scaffolds. SEM analysis revealed a highly macroporous structure in peptide-imprinted polymers compared to controls. Optimal crosslinking ratios for peptide imprinting were determined using a small molecular weight fluorescent tag, 4-chloro-7-nitrobenzofurazan, and analyzed using fluorescent microscopy. Higher crosslinking ratios yielded better template recognition and gels exhibited specific recognition in aqueous media to RGDS molecules when in the presence of similar tetrapeptides.

  7. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    International Nuclear Information System (INIS)

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds

  8. Biomimetic apatite-coated porous PVA scaffolds promote the growth of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Mao; Mohanty, Pravansu; Ghosh, Gargi, E-mail: gargi@umich.edu

    2014-11-01

    Recapitulating the native environment of bone tissue is essential to develop in vitro models of breast cancer bone metastasis. The bone is a composite material consisting of organic matrix and inorganic mineral phase, primarily hydroxyapatite. In this study, we report the mineralization of porous poly vinyl alcohol (PVA) scaffolds upon incubation in modified Hanks' Balanced Salt Solution (HBSS) for 14 days. Scanning electron microscopy, energy dispersive X-ray analysis, and X-ray diffraction analysis revealed that the deposited minerals have composition similar to hydroxyapatite. The study demonstrated that the rate of nucleation and growth of minerals was faster on surfaces of less porous scaffolds. However, upon prolonged incubation, formation of mineral layer was observed on the surface of all the scaffolds. In addition, the study also demonstrated that 3D mineralization only occurred for scaffolds with highly interconnected porous networks. The mineralization of the scaffolds promoted the adsorption of serum proteins and consequently, the adhesion and proliferation of breast cancer cells. - Highlights: • Porous PVA scaffolds fabricated via mechanical agitation followed by freeze-drying. • Mineralization of the scaffold was carried out by utilizing biomimetic approach. • Mineralization resulted in increased protein adsorption on the scaffold. • Increased breast cancer cell growth was observed on mineralized scaffolds.

  9. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  10. Integrating Biologically Inspired Nanomaterials and Table-top Stereolithography for 3D Printed Biomimetic Osteochondral Scaffolds

    OpenAIRE

    Castro, Nathan J.; O’Brien, Joseph; Zhang, Lijie Grace

    2015-01-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. I...

  11. Bio-mimetic hollow scaffolds for long bone replacement

    Science.gov (United States)

    Müller, Bert; Deyhle, Hans; Fierz, Fabienne C.; Irsen, Stephan H.; Yoon, Jin Y.; Mushkolaj, Shpend; Boss, Oliver; Vorndran, Elke; Gburek, Uwe; Degistirici, Özer; Thie, Michael; Leukers, Barbara; Beckmann, Felix; Witte, Frank

    2009-08-01

    The tissue engineering focuses on synthesis or regeneration of tissues and organs. The hierarchical structure of nearly all porous scaffolds on the macro, micro- and nanometer scales resembles that of engineering foams dedicated for technical applications, but differ from the complex architecture of long bone. A major obstacle of scaffold architecture in tissue regeneration is the limited cell infiltration as the result of the engineering approaches. The biological cells seeded on the three-dimensional constructs are finally only located on the scaffold's periphery. This paper reports on the successful realization of calcium phosphate scaffolds with an anatomical architecture similar to long bones. Two base materials, namely nano-porous spray-dried hydroxyapatite hollow spheres and tri-calcium phosphate powder, were used to manufacture cylindrically shaped, 3D-printed scaffolds with micro-passages and one central macro-canal following the general architecture of long bones. The macro-canal is built for the surgical placement of nerves or larger blood vessels. The micro-passages allow for cell migration and capillary formation through the entire scaffold. Finally, the nanoporosity is essential for the molecule transport crucial for signaling, any cell nutrition and waste removal.

  12. A Structurally and Functionally Biomimetic Biphasic Scaffold for Intervertebral Disc Tissue Engineering.

    Directory of Open Access Journals (Sweden)

    Andrew Tsz Hang Choy

    Full Text Available Tissue engineering offers high hopes for the treatment of intervertebral disc (IVD degeneration. Whereas scaffolds of the disc nucleus and annulus have been extensively studied, a truly biomimetic and mechanically functional biphasic scaffold using naturally occurring extracellular matrix is yet to be developed. Here, a biphasic scaffold was fabricated with collagen and glycosaminoglycans (GAGs, two of the most abundant extracellular matrix components in the IVD. Following fabrication, the scaffold was characterized and benchmarked against native disc. The biphasic scaffold was composed of a collagen-GAG co-precipitate making up the nucleus pulposus-like core, and this was encapsulated in multiple lamellae of photochemically crosslinked collagen membranes comprising the annulus fibrosus-like lamellae. On mechanical testing, the height of our engineered disc recovered by ~82-89% in an annulus-independent manner, when compared with the 99% recovery exhibited by native disc. The annulus-independent nature of disc height recovery suggests that the fluid replacement function of the engineered nucleus pulposus core might mimic this hitherto unique feature of native disc. Biphasic scaffolds comprised of 10 annulus fibrosus-like lamellae had the best overall mechanical performance among the various designs owing to their similarity to native disc in most aspects, including elastic compliance during creep and recovery, and viscous compliance during recovery. However, the dynamic mechanical performance (including dynamic stiffness and damping factor of all the biphasic scaffolds was similar to that of the native discs. This study contributes to the rationalized design and development of a biomimetic and mechanically viable biphasic scaffold for IVD tissue engineering.

  13. Development and potential of a biomimetic chitosan/type Ⅱ collagen scaffold for cartilage tissue engineering

    Institute of Scientific and Technical Information of China (English)

    SHI De-hai; CAI Dao-zhang; ZHOU Chang-ren; RONG Li-min; WANG Kun; XU Yi-chun

    2005-01-01

    Background Damaged articular cartilage has very limited capacity for spontaneous healing. Tissue engineering provides a new hope for functional cartilage repair. Creation of an appropriate cell carrier is one of the critical steps for successful tissue engineering. With the supposition that a biomimetic construct might promise to generate better effects, we developed a novel composite scaffold and investigated its potential for cartilage tissue engineering. Methods Chitosan of 88% deacetylation was prepared via a modified base reaction procedure. A freeze-drying process was employed to fabricate a three-dimensional composite scaffold consisting of chitosan and type Ⅱcollagen. The scaffold was treated with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide. Ultrastructure and tensile strength of the matrix were carried out to assess its physico-chemical properties. After subcutaneous implantation in rabbits, its in vivo biocompatibility and degradability of the scaffold were determined. Its capacity to sustain chondrocyte growth and biosynthesis was evaluated through cell-scaffold co-culture in vitro. Results The fabricated composite matrix was porous and sponge-like with interconnected pores measuring from 100-250 μm in diameter. After cross-linking, the scaffold displayed enhanced tensile strength. Subcutaneous implantation results indicated the composite matrix was biocompatible and biodegradable. In intro cell-scaffold culture showed the scaffold sustained chondrocyte proliferation and differentiation, and maintained the spheric chondrocytic phenotype. As indicated by immunohistochemical staining, the chondrocytes synthesized type Ⅱ collagen. Conclusions Chitosan and type Ⅱ collagen can be well blended and developed into a porous 3-D biomimetic matrix. Results of physico-chemical and biological tests suggest the composite matrix satisfies the constraints specified for a tissue-engineered construct and may be used as a chondrocyte

  14. Biomimetic Polymers for Cardiac Tissue Engineering

    Science.gov (United States)

    2016-01-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  15. Biomimetic Polymers for Cardiac Tissue Engineering.

    Science.gov (United States)

    Peña, Brisa; Martinelli, Valentina; Jeong, Mark; Bosi, Susanna; Lapasin, Romano; Taylor, Matthew R G; Long, Carlin S; Shandas, Robin; Park, Daewon; Mestroni, Luisa

    2016-05-01

    Heart failure is a morbid disorder characterized by progressive cardiomyocyte (CM) dysfunction and death. Interest in cell-based therapies is growing, but sustainability of injected CMs remains a challenge. To mitigate this, we developed an injectable biomimetic Reverse Thermal Gel (RTG) specifically engineered to support long-term CM survival. This RTG biopolymer provided a solution-based delivery vehicle of CMs, which transitioned to a gel-based matrix shortly after reaching body temperature. In this study we tested the suitability of this biopolymer to sustain CM viability. The RTG was biomolecule-functionalized with poly-l-lysine or laminin. Neonatal rat ventricular myocytes (NRVM) and adult rat ventricular myocytes (ARVM) were cultured in plain-RTG and biomolecule-functionalized-RTG both under 3-dimensional (3D) conditions. Traditional 2D biomolecule-coated dishes were used as controls. We found that the RTG-lysine stimulated NRVM to spread and form heart-like functional syncytia. Regarding cell contraction, in both RTG and RTG-lysine, beating cells were recorded after 21 days. Additionally, more than 50% (p value < 0.05; n = 5) viable ARVMs, characterized by a well-defined cardiac phenotype represented by sarcomeric cross-striations, were found in the RTG-laminin after 8 days. These results exhibit the tremendous potential of a minimally invasive CM transplantation through our designed RTG-cell therapy platform. PMID:27073119

  16. Bioactive Gyroid Scaffolds Formed by Sacrificial Templating of Nanocellulose and Nanochitin Hydrogels as Instructive Platforms for Biomimetic Tissue Engineering

    OpenAIRE

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khoshrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G.; Walther, Andreas

    2015-01-01

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geometries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering.

  17. Biomimetic Scaffold with Aligned Microporosity Designed for Dentin Regeneration

    Science.gov (United States)

    Panseri, Silvia; Montesi, Monica; Dozio, Samuele Maria; Savini, Elisa; Tampieri, Anna; Sandri, Monica

    2016-01-01

    Tooth loss is a common result of a variety of oral diseases due to physiological causes, trauma, genetic disorders, and aging and can lead to physical and mental suffering that markedly lowers the individual’s quality of life. Tooth is a complex organ that is composed of mineralized tissues and soft connective tissues. Dentin is the most voluminous tissue of the tooth and its formation (dentinogenesis) is a highly regulated process displaying several similarities with osteogenesis. In this study, gelatin, thermally denatured collagen, was used as a promising low-cost material to develop scaffolds for hard tissue engineering. We synthetized dentin-like scaffolds using gelatin biomineralized with magnesium-doped hydroxyapatite and blended it with alginate. With a controlled freeze-drying process and alginate cross-linking, it is possible to obtain scaffolds with microscopic aligned channels suitable for tissue engineering. 3D cell culture with mesenchymal stem cells showed the promising properties of the new scaffolds for tooth regeneration. In detail, the chemical–physical features of the scaffolds, mimicking those of natural tissue, facilitate the cell adhesion, and the porosity is suitable for long-term cell colonization and fine cell–material interactions. PMID:27376060

  18. Preparation of biomimetic photoresponsive polymer springs.

    Science.gov (United States)

    Iamsaard, Supitchaya; Villemin, Elise; Lancia, Federico; Aβhoff, Sarah-Jane; Fletcher, Stephen P; Katsonis, Nathalie

    2016-10-01

    Polymer springs that twist under irradiation with light, in a manner that mimics how plant tendrils twist and turn under the effect of differential expansion in different sections of the plant, show potential for soft robotics and the development of artificial muscles. The soft springs prepared using this protocol are typically 1 mm wide, 50 μm thick and up to 10 cm long. They are made from liquid crystal polymer networks in which an azobenzene derivative is introduced covalently as a molecular photo-switch. The polymer network is prepared by irradiation of a twist cell filled with a mixture of shape-persistent liquid crystals, liquid crystals having reactive end groups, molecular photo-switches, some chiral dopant and a small amount of photoinitiator. After postcuring, the soft polymer film is removed and cut into springs, the geometry of which is determined by the angle of cut. The material composing the springs is characterized by optical microscopy, scanning electron microscopy and tensile strength measurements. The springs operate at ambient temperature, by mimicking the orthogonal contraction mechanism that is at the origin of plant coiling. They shape-shift under irradiation with UV light and can be pre-programmed to either wind or unwind, as encoded in their geometry. Once illumination is stopped, the springs return to their initial shape. Irradiation with visible light accelerates the shape reversion. PMID:27583641

  19. Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Xie, Chaoming; Lu, Xiong; Han, Lu; Xu, Jielong; Wang, Zhenming; Jiang, Lili; Wang, Kefeng; Zhang, Hongping; Ren, Fuzeng; Tang, Youhong

    2016-01-27

    Biomimetic calcium phosphate mineralized graphene oxide/chitosan (GO/CS) scaffolds with hierarchical structures were developed. First, GO/CS scaffolds with large micropores (∼300 μm) showed high mechanical strength due to the electrostatic interaction between the oxygen-containing functional groups of GO and the amine groups of CS. Second, octacalcuim phosphate (OCP) with porous structures (∼1 μm) was biomimetically mineralized on the surfaces of the GO/CS scaffolds (OCP-GO/CS). The hierarchical microporous structures of OCP-GO/CS scaffolds provide a suitable environment for cell adhesion and growth. The scaffolds have exceptional adsorbability of nanoparticles. Bone morphogenetic protein-2 (BMP-2)-encapsulated bovine serum albumin (BSA) nanoparticles and Ag nanoparticles (Ag-NPs) were adsorbed in the scaffolds for enhancement of osteoinductivity and antibacterial properties, respectively. Antibacterial tests showed that the scaffolds exhibited high antibacterial properties against both Escherichia coli and Staphylococcus epidermidis. In vitro and in vivo experiments revealed that the scaffolds have good biocompatibility, enhanced bone marrow stromal cells proliferation and differentiation, and induced bone tissue regeneration. Thus, the biomimetic OCP-GO/CS scaffolds with immobilized growth factors and antibacterial agents might be excellent candidates for bone tissue engineering. PMID:26710937

  20. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    Science.gov (United States)

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation. PMID:26234364

  1. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  2. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  3. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    Directory of Open Access Journals (Sweden)

    Anna Maria Pappa

    2015-01-01

    Full Text Available Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM. Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL electrospun nanofibrous scaffolds, to serve as coatings for cardiovascular implants and guide tissue regeneration. Oxygen plasma treatment was applied in order to modify the surface chemistry of the scaffold and its effect on cell attachment and growth was evaluated. The conditions of the surface modification were properly adjusted in order to define those conditions of the treatment that result in surfaces favorable for cell growth, while maintaining morphological integrity and mechanical behavior. Goniometry (contact angle measurements, scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS measurements were used to evaluate the morphological and chemical changes induced by the plasma treatment. Moreover, depth-sensing nanoindentation was performed to study the resistance of the plasma-treated scaffolds to plastic deformation. Lastly, the cell studies indicated that all scaffolds were cytocompatible, with the plasma-treated ones expressing a more pronounced cell viability and adhesion. All the above findings demonstrate the great potential of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants.

  4. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake.

    Science.gov (United States)

    Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Martinez, Jonathan O; Powell, Sebastian T; Tampieri, Anna; Weiner, Bradley K; Tasciotti, Ennio

    2016-03-01

    Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release. PMID:26797709

  5. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Whatley, Benjamin R; Kuo, Jonathan; Shuai, Cijun; Wen Xuejun [Clemson-MUSC Bioengineering Program, Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States); Damon, Brooke J, E-mail: xjwen@clemson.edu, E-mail: xuejun@musc.edu [Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425 (United States)

    2011-03-24

    A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.

  6. Fabrication of a biomimetic elastic intervertebral disk scaffold using additive manufacturing

    International Nuclear Information System (INIS)

    A custom-designed three-dimensional additive manufacturing device was developed to fabricate scaffolds for intervertebral disk (IVD) regeneration. This technique integrated a computer with a device capable of 3D movement allowing for precise motion and control over the polymer scaffold resolution. IVD scaffold structures were designed using computer-aided design to resemble the natural IVD structure. Degradable polyurethane (PU) was used as an elastic scaffold construct to mimic the elastic nature of the native IVD tissue and was deposited at a controlled rate using ultra-fine micropipettes connected to a syringe pump. The elastic PU was extruded directly onto a collecting substrate placed on a freezing stage. The three-dimensional movement of the computer-controlled device combined with the freezing stage enabled precise control of polymer deposition using extrusion. The addition of the freezing stage increased the polymer solution viscosity and hardened the polymer solution as it was extruded out of the micropipette tip. This technique created scaffolds with excellent control over macro- and micro-structure to influence cell behavior, specifically for cell adhesion, proliferation, and alignment. Concentric lamellae were printed at a high resolution to mimic the native shape and structure of the IVD. Seeded cells aligned along the concentric lamellae and acquired cell morphology similar to native tissue in the outer portion of the IVD. The fabricated scaffolds exhibited elastic behavior during compressive and shear testing, proving that the scaffolds could support loads with proper fatigue resistance without permanent deformation. Additionally, the mechanical properties of the scaffolds were comparable to those of native IVD tissue.

  7. Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon

    Science.gov (United States)

    Yan, Yang; Liu, Lin; Cai, Zihe; Xu, Jiwen; Xu, Zhou; Zhang, Di; Hu, Xiaobin

    2016-08-01

    Among many thermo-photochromic materials, the color-changing behavior caused by temperature and light is usually lack of a full color response. And the study on visible light-stimuli chromic response is rarely reported. Here, we proposed a strategy to design a thermo-photochromic chameleon biomimetic material consisting of photonic poly(N-isopropylacrylamide-co-methacrylic acid) copolymer and plasmonic nanoparticles which has a vivid color change triggered by temperature and light like chameleons. We make use of the plasmonic nanoparticles like gold nanoparticles and silver nanoparticles to increase the sensitivity of the responsive behavior and control the lower critical solution temperature of the thermosensitive films by tuning the polymer chain conformation transition. Finally, it is possible that this film would have colorimetric responses to the entire VIS spectrum by the addition of different plasmonic nanoparticles to tune the plasmonic excitation wavelength. As a result, this method provides a potential use in new biosensors, military and many other aspects.

  8. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  9. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Gao X

    2015-11-01

    Full Text Available Xiang Gao,1,2,* Xiaohong Zhang,3,* Jinlin Song,1,2 Xiao Xu,4 Anxiu Xu,1 Mengke Wang,4 Bingwu Xie,1 Enyi Huang,2 Feng Deng,1,2 Shicheng Wei2–41College of Stomatology, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 3Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 4Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than

  10. Polymer Composition and Substrate Influences on the Adhesive Bonding of a Biomimetic, Cross-Linking Polymer

    Science.gov (United States)

    Matos-Pérez, Cristina R.; White, James D.; Wilker, Jonathan J.

    2012-01-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels, however bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examined the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) were distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to cyanoacrylate “Krazy” or “Super” glue. Performance was also examined using low (e.g., plastics) and high (e.g., metals, wood) energy surfaces. Adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  11. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer.

    Science.gov (United States)

    Matos-Pérez, Cristina R; White, James D; Wilker, Jonathan J

    2012-06-01

    Hierarchical biological materials such as bone, sea shells, and marine bioadhesives are providing inspiration for the assembly of synthetic molecules into complex structures. The adhesive system of marine mussels has been the focus of much attention in recent years. Several catechol-containing polymers are being developed to mimic the cross-linking of proteins containing 3,4-dihydroxyphenylalanine (DOPA) used by shellfish for sticking to rocks. Many of these biomimetic polymer systems have been shown to form surface coatings or hydrogels; however, bulk adhesion is demonstrated less often. Developing adhesives requires addressing design issues including finding a good balance between cohesive and adhesive bonding interactions. Despite the growing number of mussel-mimicking polymers, there has been little effort to generate structure-property relations and gain insights on what chemical traits give rise to the best glues. In this report, we examine the simplest of these biomimetic polymers, poly[(3,4-dihydroxystyrene)-co-styrene]. Pendant catechol groups (i.e., 3,4-dihydroxystyrene) are distributed throughout a polystyrene backbone. Several polymer derivatives were prepared, each with a different 3,4-dihyroxystyrene content. Bulk adhesion testing showed where the optimal middle ground of cohesive and adhesive bonding resides. Adhesive performance was benchmarked against commercial glues as well as the genuine material produced by live mussels. In the best case, bonding was similar to that obtained with cyanoacrylate "Krazy Glue". Performance was also examined using low- (e.g., plastics) and high-energy (e.g., metals, wood) surfaces. The adhesive bonding of poly[(3,4-dihydroxystyrene)-co-styrene] may be the strongest of reported mussel protein mimics. These insights should help us to design future biomimetic systems, thereby bringing us closer to development of bone cements, dental composites, and surgical glues. PMID:22582754

  12. Biomimetics

    Indian Academy of Sciences (India)

    P Ramachandra Rao

    2003-06-01

    The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a few natural materials and systems and explore how ideas from nature are being interpreted and modified to suit efforts aimed at designing better machines and synthesising newer materials.

  13. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius;

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...

  14. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    International Nuclear Information System (INIS)

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 μm, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  15. Fabrication and evaluation of biomimetic scaffolds by using collagen-alginate fibrillar gels for potential tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Sang Lin; Luo Dongmei; Xu Songmei; Wang Xiaoliang; Li Xudong, E-mail: xli20004@yahoo.com

    2011-03-12

    Pore architecture and its stable functionality under cell culturing of three dimensional (3D) scaffolds are of great importance for tissue engineering purposes. In this study, alginate was incorporated with collagen to fabricate collagen-alginate composite scaffolds with different collagen/alginate ratios by lyophilizing the respective composite gels formed via collagen fibrillogenesis in vitro and then chemically crosslinking. The effects of alginate amount and crosslinking treatment on pore architecture, swelling behavior, enzymatic degradation and tensile property of composite scaffolds were systematically investigated. The relevant results indicated that the present strategy was simple but efficient to fabricate highly interconnected strong biomimetic 3D scaffolds with nanofibrous surface. NIH3T3 cells were used as a model cell to evaluate the cytocompatibility, attachment to the nanofibrous surface and porous architectural stability in terms of cell proliferation and infiltration within the crosslinked scaffolds. Compared with the mechanically weakest crosslinked collagen sponges, the cell-cultured composite scaffolds presented a good porous architecture, thus permitting cell proliferation on the top surface as well as infiltration into the inner part of 3D composite scaffolds. These composite scaffolds with pore size ranging from 150 to 300 {mu}m, over 90% porosity, tuned biodegradability and water-uptake capability are promising for tissue engineering applications.

  16. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  17. Biomimetic oligosaccharide and peptide surfactant polymers designed for cardiovascular biomaterials

    Science.gov (United States)

    Ruegsegger, Mark Andrew

    A common problem associated with cardiovascular devices is surface induced thrombosis initiated by the rapid, non-specific adsorption of plasma proteins onto the biomaterial surface. Control of the initial protein adsorption is crucial to achieve the desired longevity of the implanted biomaterial. The cell membrane glycocalyx acts as a non-thrombogenic interface through passive (dense oligosaccharide structures) and active (ligand/receptor interactions) mechanisms. This thesis is designed to investigate biomimicry of the cell glycocalyx to minimize non-specific protein adsorption and promote specific ligand/receptor interactions. Biomimetic macromolecules were designed through the molecular-scale engineering of polymer surfactants, utilizing a poly(vinyl amine) (PVAm) backbone to which hydrophilic (dextran, maltose, peptide) and hydrophobic alkyl (hexanoyl or hexanal) chains are simultaneously attached. The structure was controlled through the molar feed ratio of hydrophobic-to-hydrophilic groups, which also provided control of the solution and surface-active properties. To mimic passive properties, a series of oligomaltose surfactants were synthesized with increasing saccharide length (n = 2, 7, 15 where n is number of glucose units) to investigate the effect of coating height on protein adsorption. The surfactants were characterized by infra red (IR) and nuclear magnetic resonance (NMR) spectroscopies for structural properties and atomic force microscopy (AFM) and contact angle goniometry for surface activity. Protein adsorption under dynamic flow (5 dyn/cm2) was reduced by 85%--95% over the bare hydrophobic substrate; platelet adhesion dropped by ˜80% compared to glass. Peptide ligands were incorporated into the oligosaccharide surfactant to promote functional activity of the passive coating. The surfactants were synthesized to contain 0%, 25%, 50%, 75%, and 100% peptide ligand density and were stable on hydrophobic surfaces. The peptide surface density was

  18. Molecular Design of Synthetic Biodegradable Polymers as Cell Scaffold Materials

    Institute of Scientific and Technical Information of China (English)

    WANG Shen-guo; WAN Yu-qing; CAI Qing; HE Bin; CHEN Wen-na

    2004-01-01

    Poly(lactic acid) and its copolymers are regarded as the most useful biomaterials. The good biocompatibility, biodegradability and mechanical properties of them make the synthetic biodegradable polymers have primary application to tissue engineering. The advantages and disadvantages of the synthetic biodegradable polymers as cell scaffold materials are evaluated. This article reviews the modification of polylactide-family aliphatic polymers to improve the cell affinity when the polymers are used as cell scaffolds. We have developed four main approaches: to modify polyester cell scaffolds in combination of plasma treating and collagen coating; to introduce hydrophilic segments into aliphatic polyester backbones; to introduce pendant functional groups into polyester chains; to modify polyester with dextran. The results of the cell cultures prove that the approaches mentioned above have improved the cell affinity of the polyesters and have modulated cell function such as adhesion, proliferation and migration.

  19. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  20. In vitro evaluation of biomimetic chitosan–calcium phosphate scaffolds with potential application in bone tissue engineering

    International Nuclear Information System (INIS)

    This work reports on the physicochemical properties and in vitro cytotoxicity assessment of chitosan–calcium phosphate (Cs–CP) scaffolds for bone tissue engineering, which were synthesized by a novel biomimetic co-precipitation method. X-ray diffraction (XRD) along with scanning electron microscopy (SEM) analysis confirmed the porous morphology of the scaffolds and the amorphous nature of the inorganic phase with different crystallite sizes and the formation of various forms of calcium phosphate. Compressive mechanical testing revealed that the Young's modulus of the biomaterials is in the range of human trabecular bone. In vitro tests were performed on the biomaterials for up to 14 days to study the behavior of the osteoblast-like human cell line (MG63), primary human osteoblasts (HOS) and human dermal microvascular endothelial cells (HDMEC). The cytotoxicity was evaluated by the MTS assay for cell metabolism and the detection of membrane integrity (lactate dehydrogenase-LDH release). An expression of the vascular endothelial growth factor (VEGF) in the cell supernatants was quantified by ELISA. Cell viability gave values close to untreated controls for MG63 and HOS, while in the case of HDMEC the viability after 2 weeks in the cell culture was between 80–90%. The cytotoxicity induced by the Cs–CP scaffolds on MG63, HOS and HDMEC in vitro was evaluated by the amount of LDH released, which is a sensitive and accurate marker for cellular toxicity. The increased levels of VEGF obtained in the osteoblast culture highlights its important role in the regulation of vascularization and bone remodeling. The biological responses of the Cs–CP scaffolds demonstrate a similar proliferation and differentiation characteristics of the cells comparable to the controls. These results reveal that biomimetic Cs–CP composite scaffolds are promising biomaterials for bone tissue engineering; their in vivo response remains to be tested. (paper)

  1. Rapid biomimetic mineralization of chitosan scaffolds with a precursor sacrificed method in ethanol/water mixed solution

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available Biomimetic mineralization was performed on a large scale by a rapid and efficient approach. Chitosan scaffolds were placed in a mixed solution of urea, ethanol and distilled water, followed by the introduction of dibasic sodium phosphate (0.1M and calcium chloride (0.1M with the molar ratio of 1.67. These mixed solvents was then adjusted to weakly alkaline by adding sodium hydroxide solution. Finally the reaction mixture was sealed and kept at 80ºC for predetermined time. The composition and morphology of the apatite and the hybrid scaffolds were investigated by X-ray diffraction (XRD, transmission electron microscopy (TEM, Fourier Transform Infrared spectroscopy (FTIR and environmental scanning electron microscopy (ESEM. The mechanism of nucleation and growth of crystals was discussed as well. The results revealed that chitosan scaffolds improved the crystallinity of hydroxyapatite (HAP crystals. With the extension of mineralization time, the mineral layers on the outer surface and inner section of chitosan scaffolds increased as well. Furthermore, the compressive strength and modulus of the HAP-chitosan scaffolds biocomposites increased to 0.55±0.003 and 29.29±1.25 MPa respectively. Such one-pot approach may be extended to the mineralization of other materials and will have a broad application in the future.

  2. Biomimetic macroporous hydrogels: protein ligand distribution and cell response to the ligand architecture in the scaffold.

    Science.gov (United States)

    Savina, Irina N; Dainiak, Maria; Jungvid, Hans; Mikhalovsky, Sergey V; Galaev, Igor Yu

    2009-01-01

    Macroporous hydrogels (MHs), cryogels, are a new type of biomaterials for tissue engineering that can be produced from any natural or synthetic polymer that forms a gel. Synthetic MHs are rendered bioactive by surface or bulk modifications with extracellular matrix components. In this study, cell response to the architecture of protein ligands, bovine type-I collagen (CG) and human fibrinogen (Fg), immobilised using different methods on poly(2-hydroxyethyl methacrylate) (pHEMA) macroporous hydrogels (MHs) was analysed. Bulk modification was performed by cross-linking cryo-co-polymerisation of HEMA and poly(ethylene glycol)diacrylate (PEGA) in the presence of proteins (CG/pHEMA and Fg/pHEMA MHs). The polymer surface was modified by covalent immobilisation of the proteins to the active epoxy (ep) groups present on pHEMA after hydrogel fabrication (CG-epHEMA and Fg-epHEMA MHs). The concentration of proteins in protein/pHEMA and protein-epHEMA MHs was 80-85 and 130-140 mug/ml hydrogel, respectively. It was demonstrated by immunostaining and confocal laser scanning microscopy that bulk modification resulted in spreading of CG in the polymer matrix and spot-like distribution of Fg. On the contrary, surface modification resulted in spot-like distribution of CG and uniform spreading of Fg, which evenly coated the surface. Proliferation rate of fibroblasts was higher on MHs with even distribution of the ligands, i.e., on Fg-epHEMA and CG/pHEMA. After 30 days of growth, fibroblasts formed several monolayers and deposited extracellular matrix filling the pores of these MHs. The best result in terms of cell proliferation was obtained on Fg-epHEMA. The ligands displayed on surface of these scaffolds were in native conformation, while in bulk-modified CG/pHEMA MHs most of the proteins were buried inside the polymer matrix and were less accessible for interactions with specific antibodies and cells. The method used for MH modification with bioligands strongly affects spatial

  3. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin;

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking....... The resulting nanoporous polymers exhibited a promising electroactivity....

  4. Facile one-pot synthesis of porphyrin based porous polymer networks (PPNs) as biomimetic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zou, LF; Feng, DW; Liu, TF; Chen, YP; Fordham, S; Yuan, S; Tian, J; Zhou, HC

    2015-01-01

    Stable porphyrin based porous polymer networks, PPN-23 and PPN-24, have been synthesized through a facile one-pot approach by the aromatic substitution reactions of pyrrole and aldehydes. PPN-24(Fe) shows high catalytic efficiency as a biomimetic catalyst in the oxidation reaction of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) in the presence of H2O2.

  5. Synthesis of the Biomimetic Polymer: Aliphatic Diamine and RGDS Modified Poly(d,l-lactic acid)

    Institute of Scientific and Technical Information of China (English)

    Xu Feng NIU; Yuan Liang WANG; Yan Feng LUO; Jun PAN; Juan Fang SHANG; Li Xia GUO

    2005-01-01

    A novel poly(d,l-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, 13C NMR and amino acid analyzer (AAA).

  6. Annealing free, clean graphene transfer using alternative polymer scaffolds

    International Nuclear Information System (INIS)

    We examine the transfer of graphene grown by chemical vapor deposition (CVD) with polymer scaffolds of poly(methyl methacrylate) (PMMA), poly(lactic acid) (PLA), poly(phthalaldehyde) (PPA), and poly(bisphenol A carbonate) (PC). We find that optimally reactive PC scaffolds provide the cleanest graphene transfers without any annealing, after extensive comparison with optical microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, and scanning tunneling microscopy. Comparatively, films transferred with PLA, PPA, PMMA/PC, and PMMA have a two-fold higher roughness and a five-fold higher chemical doping. Using PC scaffolds, we demonstrate the clean transfer of CVD multilayer graphene, fluorinated graphene, and hexagonal boron nitride. Our annealing free, PC transfers enable the use of atomically-clean nanomaterials in biomolecule encapsulation and flexible electronic applications. (paper)

  7. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    International Nuclear Information System (INIS)

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides

  8. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Baul, Upayan, E-mail: upayanb@imsc.res.in; Vemparala, Satyavani, E-mail: vani@imsc.res.in [The Institute of Mathematical Sciences, C.I.T. Campus, Taramani, Chennai 600113 (India); Kuroda, Kenichi, E-mail: kkuroda@umich.edu [Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan 48109 (United States)

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  9. A polymer scaffold for self-healing perovskite solar cells

    Science.gov (United States)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  10. Twigged streptavidin polymer as a scaffold for protein assembly.

    Science.gov (United States)

    Matsumoto, Takuya; Isogawa, Yuki; Minamihata, Kosuke; Tanaka, Tsutomu; Kondo, Akihiko

    2016-05-10

    Protein assemblies are an emerging tool that is finding many biological and bioengineering applications. We here propose a method for the site-specific assembly of proteins on a twigged streptavidin (SA) polymer using streptavidin as a functional scaffold. SA was genetically appended with a G tag (sortase A recognition sequence) and a Y tag (HRP recognition sequence) on its N- and C-termini, respectively, to provide G-SA-Y. G-SA-Y was polymerized using HPR-mediated tyrosine coupling, then fluorescent proteins were immobilized on the polymer by biotin-SA affinity and sortase A-mediated ligation. Fluorescence measurements showed that the proteins were immobilized in close proximity to each other. Hydrolyzing enzymes were also functionally assembled on the G-SA-Y polymer. The site-specific assembly of proteins on twigged SA polymer may find new applications in various biological and bioengineering fields. PMID:27002233

  11. Customized biomimetic scaffolds created by indirect three-dimensional printing for tissue engineering

    International Nuclear Information System (INIS)

    Three-dimensional printing (3DP) is a rapid prototyping technique that can create complex 3D structures by inkjet printing of a liquid binder onto powder biomaterials for tissue engineering scaffolds. Direct fabrication of scaffolds from 3DP, however, imposes a limitation on material choices by manufacturing processes. In this study, we report an indirect 3DP approach wherein a positive replica of desired shapes was printed using gelatin particles, and the final scaffold was directly produced from the printed mold. To create patient-specific scaffolds that match precisely to a patient's external contours, we integrated our indirect 3DP technique with imaging technologies and successfully created custom scaffolds mimicking human mandibular condyle using polycaprolactone and chitosan for potential osteochondral tissue engineering. To test the ability of the technique to precisely control the internal morphology of the scaffolds, we created orthogonal interconnected channels within the scaffolds using computer-aided-design models. Because very few biomaterials are truly osteoinductive, we modified inert 3D printed materials with bioactive apatite coating. The feasibility of these scaffolds to support cell growth was investigated using bone marrow stromal cells (BMSC). The BMSCs showed good viability in the scaffolds, and the apatite coating further enhanced cellular spreading and proliferation. This technique may be valuable for complex scaffold fabrication. (paper)

  12. Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    We report here an in situ process to produce nano-composite polymer hydrogels having surfaces patterned with hydroxyapatite (HA) nanoparticles (100 nm). Poly (vinyl alcohol) (PVA) has been used as a hydrogel forming medium. A three step process, comprising precipitation of HA nanoparticles in presence of PVA molecules and freeze thawing of obtained PVA-HA emulsion, followed by critical point drying, has been devised to produce three dimensional nanocomposite hydrogels. Interaction of Ca2+ with oxygen atoms of PVA and the hydrogen bonding characteristic of the polymer have been exploited to have controlled size distribution of HA in a continuous and macroporous network of PVA. A systematic variation in the polymer concentration could be correlated with microstructural features of the hydrogel.

  13. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage

    Science.gov (United States)

    Moutos, Franklin T.; Freed, Lisa E.; Guilak, Farshid

    2007-02-01

    Tissue engineering seeks to repair or regenerate tissues through combinations of implanted cells, biomaterial scaffolds and biologically active molecules. The rapid restoration of tissue biomechanical function remains an important challenge, emphasizing the need to replicate structural and mechanical properties using novel scaffold designs. Here we present a microscale 3D weaving technique to generate anisotropic 3D woven structures as the basis for novel composite scaffolds that are consolidated with a chondrocyte-hydrogel mixture into cartilage tissue constructs. Composite scaffolds show mechanical properties of the same order of magnitude as values for native articular cartilage, as measured by compressive, tensile and shear testing. Moreover, our findings showed that porous composite scaffolds could be engineered with initial properties that reproduce the anisotropy, viscoelasticity and tension-compression nonlinearity of native articular cartilage. Such scaffolds uniquely combine the potential for load-bearing immediately after implantation in vivo with biological support for cell-based tissue regeneration without requiring cultivation in vitro.

  14. Design and fabrication of biomimetic multiphased scaffolds for ligament-to-bone fixation.

    Science.gov (United States)

    He, Jiankang; Zhang, Wenyou; Liu, Yaxiong; Li, Xiang; Li, Dichen; Jin, Zhongmin

    2015-05-01

    Conventional ligament grafts with single material composition cannot effectively integrate with the host bones due to mismatched properties and eventually affect their long-term function in vivo. Here we presented a multi-material strategy to design and fabricate composite scaffolds including ligament, interface and bone multiphased regions. The interface region consists of triphasic layers with varying material composition and porous structure to mimic native ligament-to-bone interface while the bone region contains polycaprolactone (PCL) anchor and microchanneled ceramic scaffolds to potentially provide combined mechanical and biological implant-bone fixation. Finite element analysis (FEA) demonstrated that the multiphased scaffolds with interference value smaller than 0.5 mm could avoid the fracture of ceramic scaffold during the implantation process, which was validated by in-vitro implanting the multiphased scaffolds into porcine joint bones. Pull-out experiment showed that the initial fixation between the multiphased scaffolds with 0.47 mm interference and the host bones could withstand the maximum force of 360.31±97.51 N, which can be improved by reinforcing the ceramic scaffolds with biopolymers. It is envisioned that the multiphased scaffold could potentially induce the regeneration of a new bone as well as interfacial tissue with the gradual degradation of the scaffold and subsequently realize long-term biological fixation of the implant with the host bone. PMID:25746239

  15. Micro-computed tomography (μ-CT) as a potential tool to assess the effect of dynamic coating routes on the formation of biomimetic apatite layers on 3D-plotted biodegradable polymeric scaffolds

    OpenAIRE

    de Oliveira, A. L.; Malafaya, P. B.; Costa, S. A.; Sousa, R.A.; Reis, R.L.

    2007-01-01

    This work studies the influence of dynamic biomimetic coating procedures on the growth of bonelike apatite layers at the surface of starch/polycaprolactone (SPCL) scaffolds produced by a 3D-plotting technology. These systems are newly proposed for bone Tissue Engineering applications. After generating stable apatite layers through a sodium silicate-based biomimetic methodology the scaffolds were immersed in Simulated Body Fluid solutions (SBF) under static, agitation a...

  16. "Click & seed" approach to the biomimetic modification of polymers

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Jaroš, J.; Pop-Georgievski, Ognen; Popelka, Štěpán; Hampl, A.; Dvořák, P.; Rypáček, František

    Praha : Institute of Macromolecular Chemistry , 2009. s. 95. ISBN 978-80-85009-59-0. [Prague Meetings on Macromolecules /73./ New Frontiers in Macromolecular Science: From Macromolecular Concepts of Living Matter to Polymers for Better Quality of Life. 05.07.2009-09.07.2009, Prague] R&D Projects: GA AV ČR KJB400500904 Institutional research plan: CEZ:AV0Z40500505 Keywords : surface modification * cell cultivation Subject RIV: CD - Macromolecular Chemistry

  17. Biomimetic polymers in analytical chemistry. Part 1: preparation and applications of MIP (Molecularly Imprinted Polymers) in extraction and separation techniques

    International Nuclear Information System (INIS)

    MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented. (author)

  18. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler; Harris, Pernille; Fristrup, Peter;

    2015-01-01

    β-Peptoids are peptidomimetics based on N-alkylated β-aminopropionic acid residues (or N-alkyl-β-alanines). This type of peptide mimic has previously been incorporated in biologically active ligands and has been hypothesized to be able to exhibit foldamer properties. Here we show, for the first t...... novel biomimetics that display functional groups with high accuracy in three dimensions, which has potential for development of new functional materials....

  19. Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds : effect of static and dynamic coating conditions

    OpenAIRE

    de Oliveira, A. L.; Costa, S. A.; Sousa, R.A.; Reis, R.L.

    2009-01-01

    Apatite layers were grown on the surface of newly developed starch/polycaprolactone (SPCL)-based scaffolds by a 3D plotting technology. To produce the biomimetic coatings, a sodium silicate gel was used as nucleating agent, followed by immersion in a simulated body fluid (SBF) solution. After growing a stable apatite layer for 7 days, the scaffolds were placed in SBF under static, agitated (80 strokes min!1) and circulating flow perfusion (Q = 4 ml min!1; tR = 15 s) for up to 14 days...

  20. Hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    OpenAIRE

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Dean, Derrick; Jun, Ho-Wook

    2009-01-01

    Nanofibrous electrospun poly (ε-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2...

  1. A biomimetic multilayer nanofiber fabric fabricated by electrospinning and textile technology from polylactic acid and Tussah silk fibroin as a scaffold for bone tissue engineering.

    Science.gov (United States)

    Shao, Weili; He, Jianxin; Han, Qiming; Sang, Feng; Wang, Qian; Chen, Li; Cui, Shizhong; Ding, Bin

    2016-10-01

    To engineer bone tissue, a scaffold with good biological properties should be provided to approximate the hierarchical structure of collagen fibrils in natural bone. In this study, we fabricated a novel scaffold consisting of multilayer nanofiber fabrics (MLNFFs) by weaving nanofiber yarns of polylactic acid (PLA) and Tussah silk fibroin (TSF). The yarns were fabricated by electrospinning, and we found that spinnability, as well as the mechanical properties of the resulting scaffold, was determined by the ratio between polylactic acid and Tussah silk fibroin. In particular, a 9:1 mixture can be spun continuously into nanofiber yarns with narrow diameter distribution and good mechanical properties. Accordingly, woven scaffolds based on this mixture had excellent mechanical properties, with Young's modulus 417.65MPa and tensile strength 180.36MPa. For nonwoven scaffolds fabricated from the same materials, the Young's modulus and tensile strength were 2- and 4-fold lower, respectively. Woven scaffolds also supported adhesion and proliferation of mouse mesenchymal stem cells, and promoted biomineralization via alkaline phosphatase and mineral deposition. Finally, the scaffolds significantly enhanced the formation of new bone in damaged femoral condyle in rabbits. Thus, the scaffolds are potentially suitable for bone tissue engineering because of biomimetic architecture, excellent mechanical properties, and good biocompatibility. PMID:27287159

  2. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    International Nuclear Information System (INIS)

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity

  3. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sader, Marcia S., E-mail: msader@metalmat.ufrj.br [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil); Martins, Virginia C.A. [Depto. de Química e Física Molecular, IQSC/USP, SP (Brazil); Gomez, Santiago [Dept. Anatomía Patológica, Universidad de Cádiz, Cadiz (Spain); LeGeros, Racquel Z. [Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY (United States); Soares, Gloria A. [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil)

    2013-10-15

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity.

  4. Electrodeposition on nanofibrous polymer scaffolds: Rapid mineralization, tunable calcium phosphate composition and topography

    OpenAIRE

    He, Chuanglong; Xiao, Guiyong; Jin, Xiaobing; Sun, Chenghui; Ma, Peter X.

    2010-01-01

    We developed a straightforward, fast, and versatile technique to fabricate mineralized nanofibrous polymer scaffolds for bone regeneration in this work. Nanofibrous poly(l-lactic acid) scaffolds were fabricated using both electrospinning and phase separation techniques. An electrodeposition process was designed to deposit calcium phosphate on the nanofibrous scaffolds. Such scaffolds contain a high quality mineral coating on the fiber surface with tunable surface topography and chemical compo...

  5. Tuning mechanical properties of polymer-grafted nanoparticle networks by using biomimetic catch bonds

    Science.gov (United States)

    Mbanga, Badel L.; Iyer, Balaji V. S.; Yashin, Victor V.; Balazs, Anna C.

    Cross-linked networks of polymer-grafted nanoparticles (PGNs) constitute a class of composites with tunable mechanical properties that exhibit a self-healing behavior. A PGN network consists of nanoparticles that are decorated with end-grafted polymer chains. Reactive groups on the free ends of these grafted chains can form bonds with the chain ends on the nearby particles. We study these materials using a 3D computational model that encompasses the particle-particle interactions, the kinetics of bond formation and rupture, and the external forces applied to the network. In our model, a fraction of cross-links is formed through biomimetic ``catch'' bonds. In contrast to conventional ``slip'' bonds, catch bonds can effectively become stronger under a deformation. We show that by varying the fraction of these catch bonds in the network, the toughness, ductility, and tensile strength of the material could be tuned to desired levels.

  6. Sequential culture on biomimetic nanoclay scaffolds forms three-dimensional tumoroids.

    Science.gov (United States)

    Katti, Kalpana S; Molla, Md Shahjahan; Karandish, Fataneh; Haldar, Manas K; Mallik, Sanku; Katti, Dinesh R

    2016-07-01

    In recent times, the limitation of two-dimensional cultures and complexity of in vivo models has paved the way for the development of three-dimensional models for studying cancer. Here we report the development of a new tumor model using PCL/HAPClay scaffolds seeded with a sequential culture of human mesenchymal stem cells (hMSCs) followed by human prostate cancer cells (HPCCs). This nanocomposite system is used as a test-bed for studying cancer metastasis and efficacy of anti-cancer drugs using a polymersome delivery method. A novel sequential cell culture system in three-dimensional in vitro bone model provides a unique bone mimetic environment. The hMSCs seeded scaffolds are seeded with prostate cancer cells after the hMSCs have differentiated into osteoblasts. Sequential culture on the scaffolds has shown formation of tumoroids or microtissue consisting of organized, densely packed round cells with hypoxic core regions similar to in vivo tumors. Such tumoroids are not observed on HPCC seeded scaffolds or when HPCCs sequentially cultured with human osteoblast cells. Clearly, the newly differentiated hMSCs play a vital role in the ability of cancer cells to grow into tumoroids and cause disease. The PCL/HAPclay scaffold system seeded with the sequential culture of hMSCs, and HPCCs presents a good model system for study of the interactions between prostate cancer cells and bone microenvironment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1591-1602, 2016. PMID:26873510

  7. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Tambralli, Ajay; Blakeney, Bryan; Anderson, Joel; Kushwaha, Meenakshi; Andukuri, Adinarayana; Jun, Ho-Wook [Department of Biomedical Engineering, University of Alabama at Birmingham, 801 Shelby Building, 1825 University Boulevard, Birmingham, AL 35294 (United States); Dean, Derrick [Department of Materials Science and Engineering, University of Alabama at Birmingham, BEC 254, 1150 10th Ave South, Birmingham, AL 35294 (United States)], E-mail: hwjun@uab.edu

    2009-06-01

    Nanofibrous electrospun poly ({epsilon}-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications.

  8. A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers

    International Nuclear Information System (INIS)

    Nanofibrous electrospun poly (ε-caprolactone) (ePCL) scaffolds have inherent structural advantages, but lack of bioactivity has limited their usefulness in biomedical applications. Thus, here we report the development of a hybrid, nanostructured, extracellular matrix (ECM) mimicking scaffold by a combination of ePCL nanofibers and self-assembled peptide amphiphile (PA) nanofibers. The PAs have ECM mimicking characteristics including a cell adhesive ligand (RGDS) and matrix metalloproteinase-2 (MMP-2) mediated degradable sites. Transmission electron microscope imaging verified successful PA self-assembly into nanofibers (diameters of 8-10 nm) using a solvent evaporation method. This evaporation method was then used to successfully coat PAs onto ePCL nanofibers (diameters of 300-400 nm), to develop hybrid, bioactive scaffolds. Scanning electron microscope characterization showed that the PA coatings did not interfere with the porous ePCL nanofiber network. Human mesenchymal stem cells (hMSCs) were seeded onto the hybrid scaffolds to evaluate their bioactivity. Significantly greater attachment and spreading of hMSCs were observed on ePCL nanofibers coated with PA-RGDS as compared to ePCL nanofibers coated with PA-S (no cell adhesive ligand) and uncoated ePCL nanofibers. Overall, this novel strategy presents a new solution to overcome the current bioactivity challenges of electrospun scaffolds and combines the unique characteristics of ePCL nanofibers and self-assembled PA nanofibers to provide an ECM mimicking environment. This has great potential to be applied to many different electrospun scaffolds for various biomedical applications

  9. Biomimetic component coating on 3D scaffolds using high bioactivity of mesoporous bioactive ceramics

    Directory of Open Access Journals (Sweden)

    Yun HS

    2011-10-01

    Full Text Available Hui-suk Yun1, Sang-Hyun Kim2, Dongwoo Khang3, Jungil Choi4, Hui-hoon Kim2, Minji Kang31Functional Materials Division, Korea Institute of Materials Science, Gyeongnam, Korea; 2Department of Pharmacology, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Korea; 3School of Nano and Advanced Materials Science and Engineering and Center for NMBE, Gyeongsang National University, Jinju, Korea; 4Department of Anatomy, Institute of Health Science and School of Medicine, Gyeongsang National University, Jinju, Gyeongnam, KoreaBackground: Mesoporous bioactive glasses (MBGs are very attractive materials for use in bone tissue regeneration because of their extraordinarily high bone-forming bioactivity in vitro. That is, MBGs may induce the rapid formation of hydroxy apatite (HA in simulated body fluid (SBF, which is a major inorganic component of bone extracellular matrix (ECM and comes with both good osteoconductivity and high affinity to adsorb proteins. Meanwhile, the high bioactivity of MBGs may lead to an abrupt initial local pH variation during the initial Ca ion-leaching from MBGs at the initial transplant stage, which may induce unexpected negative effects on using them in in vivo application. In this study we suggest a new way of using MBGs in bone tissue regeneration that can improve the strength and make up for the weakness of MBGs. We applied the outstanding bone-forming bioactivity of MBG to coat the main ECM components HA and collagen on the MBG-polycarplolactone (PCL composite scaffolds for improving their function as bone scaffolds in tissue regeneration. This precoating process can also expect to reduce initial local pH variation of MBGs.Methods and materials: The MBG-PCL scaffolds were immersed in the mixed solution of the collagen and SBF at 37°C for 24 hours. The coating of ECM components on the MBG-PCL scaffolds and the effect of ECM coating on in vitro cell behaviors were confirmed.Results: The ECM components were fully

  10. Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

    OpenAIRE

    Anna Maria Pappa; Varvara Karagkiozaki; Silke Krol; Spyros Kassavetis; Dimitris Konstantinou; Charalampos Pitsalidis; Lazaros Tzounis; Nikos Pliatsikas; Stergios Logothetidis

    2015-01-01

    Electrospun nanofibrous scaffolds have been extensively used in several biomedical applications for tissue engineering due to their morphological resemblance to the extracellular matrix (ECM). Especially, there is a need for the cardiovascular implants to exhibit a nanostructured surface that mimics the native endothelium in order to promote endothelialization and to reduce the complications of thrombosis and implant failure. Thus, we herein fabricated poly-ε-caprolactone (PCL) electrospun na...

  11. Polymer scaffolds bearing azobenzene - Potential for optical information storage

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced. A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are...... particularly well suited for holographic storage. Notable figures of merits of liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacity expressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50......% or greater, and erasability. The implications of the main chain nature for polyester morphology and for the permanency of the induced anisotropy are discussed. The design and methods of preparation of other significantly different polymer scaffolds supporting cyanoazobenzene are elaborated...

  12. Vitronectin-Based, Biomimetic Encapsulating Hydrogel Scaffolds Support Adipogenesis of Adipose Stem Cells.

    Science.gov (United States)

    Clevenger, Tracy N; Hinman, Cassidy R; Ashley Rubin, Rebekah K; Smither, Kate; Burke, Daniel J; Hawker, Craig J; Messina, Darin; Van Epps, Dennis; Clegg, Dennis O

    2016-04-01

    Soft tissue defects are relatively common, yet currently used reconstructive treatments have varying success rates, and serious potential complications such as unpredictable volume loss and reabsorption. Human adipose-derived stem cells (ASCs), isolated from liposuction aspirate have great potential for use in soft tissue regeneration, especially when combined with a supportive scaffold. To design scaffolds that promote differentiation of these cells down an adipogenic lineage, we characterized changes in the surrounding extracellular environment during adipogenic differentiation. We found expression changes in both extracellular matrix proteins, including increases in expression of collagen-IV and vitronectin, as well as changes in the integrin expression profile, with an increase in expression of integrins such as αVβ5 and α1β1. These integrins are known to specifically interact with vitronectin and collagen-IV, respectively, through binding to an Arg-Gly-Asp (RGD) sequence. When three different short RGD-containing peptides were incorporated into three-dimensional (3D) hydrogel cultures, it was found that an RGD-containing peptide derived from vitronectin provided strong initial attachment, maintained the desired morphology, and created optimal conditions for in vitro 3D adipogenic differentiation of ASCs. These results describe a simple, nontoxic encapsulating scaffold, capable of supporting the survival and desired differentiation of ASCs for the treatment of soft tissue defects. PMID:26956095

  13. Grafting polymer brushes on biomimetic structural surfaces for anti-algae fouling and foul release.

    Science.gov (United States)

    Wan, Fei; Pei, Xiaowei; Yu, Bo; Ye, Qian; Zhou, Feng; Xue, Qunji

    2012-09-26

    Sylgard-184 silicone elastomer negative replica and resorcinol-formaldehyde (RF) positive replica were made by biomimicking the patterns of natural Trifolium and three other kinds of leaves using the micromolding lithography. An effective antifouling (AF) polymer, poly(3-sulfopropyl methacrylate) (PSPMA), was then grafted on these replica surfaces via the surface-initiated atom transfer radical polymerization (SI-ATRP). The AF property of the modified biomimetic surfaces was tested via the settlement assay with two microalgae in different sizes, and their fouling-release (FR) property was evaluated by the removal assay. The results indicate that the structure of microspines on Trifolium leaf can inhibit settlement of microalgae and facilitate the cell release. The AF property was improved by modification with PSPMA brushes. PMID:22931043

  14. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility

    International Nuclear Information System (INIS)

    Porous scaffolds have been widely used in tissue engineering because they can guide cells and tissues to grow, synthesize extracellular matrix and other biological molecules, and facilitate the formation of functional tissues and organs. Although various natural and synthetic biodegradable polymers have been used to fabricate the scaffolds, synthetic polymers have been more widely used for scaffolds since they have good mechanical strength, reproducible/controllable mechanical-chemical properties, and controllable biodegradation rates. However, the ‘hydrophobic character’ of common synthetic polymers is considered a limitation for tissue engineering applications because it can lead to a low initial cell seeding density, heterogeneous cell distribution in the scaffold, and slow cell growth due to insufficient absorption/diffusion of cell culture medium into scaffold and lack of specific interaction sites with cells. The hydrophilization of porous synthetic polymer scaffolds has been considered as one of the simple but effective approaches to achieve desirable in vitro cell culture and in vivo tissue regeneration within the scaffolds. In this review paper, representative synthetic biodegradable polymers and techniques to fabricate porous scaffolds are briefly summarized and their hydrophilization techniques to improve cell/tissue compatibility are discussed. (paper)

  15. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  16. Cell growth on pore-graded biomimetic TiO2 bone scaffolds.

    Science.gov (United States)

    Müller, Benjamin; Reseland, Janne Elin; Haugen, Håvard Jostein; Tiainen, Hanna

    2015-04-01

    In order to prevent soft tissue down-growth into osseous defect areas, membranes are used when placing bone graft materials. These membranes still show shortcomings in their performance and applications. In the current study, we choose an approach to integrate micro-porous surface structures into a macro-porous scaffold. Low porous surfaces were fabricated by dip-coatings. Four different material compositions (titanium dioxide, polycaprolactone, polycaprolactone/water, polycaprolactone/β-tricalcium phosphate) were characterised in terms of their appearance, architecture, topographical features and cell response. Titanium dioxide surfaces exhibited rougher and more complex textures, resulting in the highest number of osteosarcoma cells and distinct morphologies in terms of cell spreading. Polycaprolactone-based surfaces showed a smoother topography and enhanced microporosity, but the effect on secretion of the bone markers sclerostin and interleukin-6 from human osteoblasts was lower compared to secretion from cells cultured on titanium dioxide. β-Tricalcium phosphate modification of polycaprolactone did not show any significant improvement regarding cell-material interaction. Nevertheless, surfaces show potential in the mechanical blockage of epithelial and soft tissue cells and may still permit sufficient nutrient transport. PMID:25394623

  17. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    Science.gov (United States)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  18. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation.

    Science.gov (United States)

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(l-lactide-co-d,l-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA - improvement of compressive strength of calcium phosphate scaffolds - is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10mm hybrid scaffold were dynamically cultivated for 14days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. PMID:26652403

  19. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    International Nuclear Information System (INIS)

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis

  20. Biomimetic alginate/polyacrylamide porous scaffold supports human mesenchymal stem cell proliferation and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Yuan, Yasheng, E-mail: yuanyasheng@163.com [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China); Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 02114 (United States); Chi, Fanglu [Department of ENT-Head and Neck Surgery, EENT Hospital, Shanghai 200031 (China); Shanghai Medical School, Fudan University, 210029 (China)

    2014-09-01

    We describe the development of alginate/polyacrylamide (ALG/PAAm) porous hydrogels based on interpenetrating polymer network structure for human mesenchymal stem cell proliferation and chondrogenesis. Three ALG/PAAm hydrogels at molar ratios of 10/90, 20/80, and 30/70 were prepared and characterized with enhanced elastic and rubbery mechanical properties, which are similar to native human cartilage tissues. Their elasticity and swelling properties were also studied under different physiological pH conditions. Finally, in vitro tests demonstrated that human mesenchymal stem cells could proliferate on the as-synthesized hydrogels with improved alkaline phosphatase activities. These results suggest that ALG/PAAm hydrogels may be a promising biomaterial for cartilage tissue engineering. - Highlights: • ALG/PAAm hydrogels were prepared at different molar ratios for cartilage tissue engineering. • ALG/PAAm hydrogels feature an interpenetrating polymer network structure. • ALG/PAAm hydrogels demonstrate strengthened elastic and rubbery mechanical properties. • hMSCs could be cultured on the ALG/PAAm hydrogels for proliferation and chondrogenesis.

  1. Engineering stable topography in dense bio-mimetic 3D collagen scaffolds

    Directory of Open Access Journals (Sweden)

    T Alekseeva

    2012-01-01

    Full Text Available Topographic features are well known to influence cell behaviour and can provide a powerful tool for engineering complex, functional tissues. This study aimed to investigate the mechanisms of formation of a stable micro-topography on plastic compressed (PC collagen gels. The uni-directional fluid flow that accompanies PC of collagen gels creates a fluid leaving surface (FLS and a non-fluid leaving surface (non-FLS. Here we tested the hypothesis that the resulting anisotropy in collagen density and stiffness between FLS and non-FLS would influence the fidelity and stability of micro-grooves patterned on these surfaces. A pattern template of parallel-aligned glass fibres was introduced to the FLS or non-FLS either at the start of the compression or halfway through, when a dense FLS had already formed. Results showed that both early and late patterning of the FLS generated grooves that had depth (25 ±7 µm and 19 ±8 µm, respectively and width (55 ±11 µm and 50 ±12 µm, respectively which matched the glass fibre diameter (50 µm. In contrast, early and late patterning of the non-FLS gave much wider (151 ±50 µm and 89 ±14 µm, respectively and shallower (10 ±2.7 µm and 13 ±3.5 µm, respectively grooves than expected. The depth to width ratio of the grooves generated on the FLS remained unaltered under static culture conditions over 2 weeks, indicating that grooves were stable under long term active cell-mediated matrix remodelling. These results indicate that the FLS, characterised by a higher matrix collagen density and stiffness than the non-FLS, provides the most favourable mechanical surface for precise engineering of a stable micro-topography in 3D collagen hydrogel scaffolds.

  2. Multilayer micromolding of degradable polymer tissue engineering scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, Daniel; Ferrell, Nicholas; Sun, Yang [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH), 43210 (United States); Hansford, Derek J. [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH), 43210 (United States)], E-mail: hansford.4@osu.edu

    2008-04-01

    Precise surface geometrical morphologies have been shown to improve cellular proliferation, adhesion, and functionality. It has been found that cells respond strongly to feature dimensions a fraction of their size. In this paper, soft lithography techniques were applied to microfabricate polydimethylsiloxane molds with precisely controlled micro-scale patterns. Three-dimensional polycaprolactone (PCL) scaffolds were fabricated using a multilayer micromolding (MMM) method. Proper heating and stamping parameters were developed for micromolding PCL. This process allowed control of the size, shape, and spacing of support structures within the scaffold. The micromolding of multiple layers with independent features allowed for alignment between layers. The high porosity, abundant interconnections, and sharp features were inherent advantages of the scaffolds. Human osteosarcoma cells were seeded in the 3-D scaffolds for cell growth testing. Fluorescent microscopy and scanning electron micrographs showed that cells responded well to the 3-D scaffolds and the scaffolds regulated cell morphology and adhesion.

  3. Multilayer micromolding of degradable polymer tissue engineering scaffolds

    International Nuclear Information System (INIS)

    Precise surface geometrical morphologies have been shown to improve cellular proliferation, adhesion, and functionality. It has been found that cells respond strongly to feature dimensions a fraction of their size. In this paper, soft lithography techniques were applied to microfabricate polydimethylsiloxane molds with precisely controlled micro-scale patterns. Three-dimensional polycaprolactone (PCL) scaffolds were fabricated using a multilayer micromolding (MMM) method. Proper heating and stamping parameters were developed for micromolding PCL. This process allowed control of the size, shape, and spacing of support structures within the scaffold. The micromolding of multiple layers with independent features allowed for alignment between layers. The high porosity, abundant interconnections, and sharp features were inherent advantages of the scaffolds. Human osteosarcoma cells were seeded in the 3-D scaffolds for cell growth testing. Fluorescent microscopy and scanning electron micrographs showed that cells responded well to the 3-D scaffolds and the scaffolds regulated cell morphology and adhesion

  4. Biomimetic phosphorylcholine polymer grafting from polydimethylsiloxane surface using photo-induced polymerization.

    Science.gov (United States)

    Goda, Tatsuro; Konno, Tomohiro; Takai, Madoka; Moro, Toru; Ishihara, Kazuhiko

    2006-10-01

    The biomimetic synthetic phospholipid polymer containing a phosphorylcholine group, 2-methacryloyloxyethyl phosphorylcholine (MPC), has improved the surface property of biomaterials. Both hydrophilic and anti-biofouling surfaces were prepared on polydimethylsiloxane (PDMS) with MPC grafted by surface-initiated photo-induced radical polymerization. Benzophenone was used as the photoinitiator. The quantity of the adsorbed initiator on PDMS was determined by UV absorption and ellipsometry. The poly(MPC)-grafted PDMS surfaces were characterized by XPS, ATR-FTIR and static water contact angle (SCA) measurements. The SCA on PDMS decreased from 115 degrees to 25 degrees after the poly(MPC) grafting. The in vitro single protein adsorption on the poly(MPC)-grafted PDMS decreased 50-75% compared to the unmodified PDMS. The surface friction of the poly(MPC)-grafted PDMS was lower than the unmodified PDMS under wet conditions. The oxygen permeability of the poly(MPC)-grafted PDMS was as high as the unmodified PDMS. The tensile property of PDMS was maintained at about 90% of the ultimate stress and strain after the poly(MPC) grafting. The surface-modified PDMS is expected to be a novel medical elastomer which possesses an excellent surface hydrophilicity, anti-biofouling property, oxygen permeability and tensile property. PMID:16797692

  5. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    Science.gov (United States)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  6. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    This paper presents the design, fabrication, and characterization of a biomimetic jellyfish robot that uses ionic polymer metal composites (IPMCs) as flexible actuators for propulsion. The shape and swimming style of this underwater vehicle are based on the Aequorea victoria jellyfish, which has an average swimming speed of 20 mm s−1 and which is known for its high swimming efficiency. The Aequorea victoria is chosen as a model system because both its bell morphology and kinematic properties match the mechanical properties of IPMC actuators. This medusa is characterized by its low swimming frequency, small bell deformation during the contraction phase, and high Froude efficiency. The critical components of the robot include the flexible bell that provides the overall shape and dimensions of the jellyfish, a central hub and a stage used to provide electrical connections and mechanical support to the actuators, eight distinct spars meant to keep the upper part of the bell stationary, and flexible IPMC actuators that extend radially from the central stage. The bell is fabricated from a commercially available heat-shrinkable polymer film to provide increased shape-holding ability and reduced weight. The IPMC actuators constructed for this study demonstrated peak-to-peak strains of ∼0.7% in water across a frequency range of 0.1–1.0 Hz. By tailoring the applied voltage waveform and the flexibility of the bell, the completed robotic jellyfish with four actuators swam at an average speed 0.77 mm s−1 and consumed 0.7 W. When eight actuators were used the average speed increased to 1.5 mm s−1 with a power consumption of 1.14 W. (paper)

  7. Asymmetric collapse in biomimetic complex coacervates revealed by local polymer and water dynamics.

    Science.gov (United States)

    Ortony, Julia H; Hwang, Dong Soo; Franck, John M; Waite, J Herbert; Han, Songi

    2013-05-13

    Complex coacervation is a phenomenon characterized by the association of oppositely charged polyelectrolytes into micrometer-scale liquid condensates. This process is the purported first step in the formation of underwater adhesives by sessile marine organisms, as well as the process harnessed for the formation of new synthetic and protein-based contemporary materials. Efforts to understand the physical nature of complex coacervates are important for developing robust adhesives, injectable materials, or novel drug delivery vehicles for biomedical applications; however, their internal fluidity necessitates the use of in situ characterization strategies of their local dynamic properties, capabilities not offered by conventional techniques such as X-ray scattering, microscopy, or bulk rheological measurements. Herein, we employ the novel magnetic resonance technique Overhauser dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP), together with electron paramagnetic resonance (EPR) line shape analysis, to concurrently quantify local molecular and hydration dynamics, with species- and site-specificity. We observe striking differences in the structure and dynamics of the protein-based biomimetic complex coacervates from their synthetic analogues, which is an asymmetric collapse of the polyelectrolyte constituents. From this study we suggest charge heterogeneity within a given polyelectrolyte chain to be an important parameter by which the internal structure of complex coacervates may be tuned. Acquiring molecular-level insight to the internal structure and dynamics of dynamic polymer complexes in water through the in situ characterization of site- and species-specific local polymer and hydration dynamics should be a promising general approach that has not been widely employed for materials characterization. PMID:23540713

  8. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  9. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    International Nuclear Information System (INIS)

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation

  10. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Bindu P., E-mail: bindumelekkuttu@gmail.com; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D., E-mail: pdnair49@gmail.com

    2015-07-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation.

  11. Dexamethasone-releasing biodegradable polymer scaffolds fabricated by a gas-foaming/salt-leaching method.

    Science.gov (United States)

    Yoon, Jun Jin; Kim, Jung Hoe; Park, Tae Gwan

    2003-06-01

    Dexamethasone, a steroidal anti-inflammatory drug, was incorporated into porous biodegradable polymer scaffolds for sustained release. The slowly released dexamethasone from the degrading scaffolds was hypothesized to locally modulate the proliferation and differentiation of various cells. Dexamethasone containing porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a gas-foaming/salt-leaching method. Dexamethasone was loaded within the polymer phase of the PLGA scaffold in a molecularly dissolved state. The loading efficiency of dexamethasone varied from 57% to 65% depending on the initial loading amount. Dexamethasone was slowly released out in a controlled manner for over 30 days without showing an initial burst release. Release amount and duration could be adjusted by controlling the initial loading amount within the scaffolds. Released dexamethasone from the scaffolds drastically suppressed the proliferations of lymphocytes and smooth muscle cells in vitro. This study suggests that dexamethasone-releasing PLGA scaffolds could be potentially used either as an anti-inflammatory porous prosthetic device or as a temporal biodegradable stent for reducing intimal hyperplasia in restenosis. PMID:12699670

  12. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    Science.gov (United States)

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  13. Ionic Polymer-Metal Composites (IPMCs) as Biomimetic Sensors, Actuators and Artificial Muscles: A Review

    Science.gov (United States)

    Shahinpoor, M.; Bar-Cohen, Y.; Simpson, J. O.; Smith, J.

    1998-01-01

    This paper presents an introduction to ionic polymer-metal composites and some mathematical modeling pertaining to them. It further discusses a number of recent findings in connection with ion-exchange polymer-metal composites (IPMCS) as biomimetic sensors and actuators. Strips of these composites can undergo large bending and flapping displacement if an electric field is imposed across their thickness. Thus, in this sense they are large motion actuators. Conversely by bending the composite strip, either quasi-statically or dynamically, a voltage is produced across the thickness of the strip. Thus, they are also large motion sensors. The output voltage can be calibrated for a standard size sensor and correlated to the applied loads or stresses. They can be manufactured and cut in any size and shape. In this paper first the sensing capability of these materials is reported. The preliminary results show the existence of a linear relationship between the output voltage and the imposed displacement for almost all cases. Furthermore, the ability of these IPMCs as large motion actuators and robotic manipulators is presented. Several muscle configurations are constructed to demonstrate the capabilities of these IPMC actuators. This paper further identifies key parameters involving the vibrational and resonance characteristics of sensors and actuators made with IPMCS. When the applied signal frequency varies, so does the displacement up to a critical frequency called the resonant frequency where maximum deformation is observed, beyond which the actuator response is diminished. A data acquisition system was used to measure the parameters involved and record the results in real time basis. Also the load characterizations of the IPMCs were measured and it was shown that these actuators exhibit good force to weight characteristics in the presence of low applied voltages. Finally reported are the cryogenic properties of these muscles for potential utilization in an outer space

  14. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part II: Biomimetic potential and applications.

    Science.gov (United States)

    Ehrlich, H; Steck, E; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E; Richter, W

    2010-08-01

    In order to evaluate the biomedical potential of three-dimensional chitinous scaffolds of poriferan origin, chondrocyte culturing experiments were performed. It was shown for the first time that freshly isolated chondrocytes attached well to the chitin scaffold and synthesized an extracellular matrix similar to that found in other cartilage tissue engineering constructs. Chitin scaffolds also supported deposition of a proteoglycan-rich extracellular matrix of chondrocytes seeded bioconstructs in an in vivo environment. We suggest that chitin sponge scaffolds, apart from the demonstrated biomedical applications, are highly optimized structures for use as filtering systems, templates for biomineralization as well as metallization in order to produce catalysts. PMID:20478334

  15. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    Directory of Open Access Journals (Sweden)

    Balazs Farkas

    2015-11-01

    Full Text Available We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL. Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate (PPF, a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported.

  16. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies.

    Science.gov (United States)

    Farkas, Balazs; Rodio, Marina; Romano, Ilaria; Diaspro, Alberto; Intartaglia, Romuald; Beke, Szabolcs

    2015-01-01

    We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene fumarate) (PPF), a photo-polymerizable, biodegradable material. The polymer is blended with diethyl fumarate in 7:3 w/w to adjust the resin viscosity. The evaluation of the structural and mechanical properties of the fabricated hybrid thin film was performed by means of SEM and nanoindentation, respectively, while the chemical and degradation studies were conducted through thermogravimetric analysis, and FTIR. The photocuring efficiency was found to be dependent on the nanoparticle concentration. The MPExSL process yielded PPF thin films with a stable and homogenous dispersion of the embedded HA nanoparticles. Here, it was not possible to tune the stiffness and hardness of the scaffolds by varying the laser parameters, although this was observed for regular PPF scaffolds. Finally, the gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. PMID:26734513

  17. Preparation of bioactive porous HA/PCL composite scaffolds

    Science.gov (United States)

    Zhao, J.; Guo, L. Y.; Yang, X. B.; Weng, J.

    2008-12-01

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  18. Preparation of bioactive porous HA/PCL composite scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, J.; Guo, L.Y.; Yang, X.B. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Weng, J. [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jweng@swjtu.cn

    2008-12-30

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications.

  19. Preparation of bioactive porous HA/PCL composite scaffolds

    International Nuclear Information System (INIS)

    Porous hydroxyapatite (HA) bioceramic scaffold has been widely attracted the attention to act as a three-dimensional (3D) template for cell adhesion, proliferation, differentiation and thus promoting bone and cartilage regeneration because of its osteoinduction. However, the porous bioceramic scaffold is fragile so that it is not suitable to be applied in clinic for bone repair or replacement. Therefore, it is significant to improve the mechanical property of porous HA bioceramics while the interconnected structure is maintained for tissue ingrowth in vivo. In the present research, a porous composite scaffold composed of HA scaffold and polycaprolactone (PCL) lining was fabricated by the method of polymer impregnating to produce HA scaffold coated with PCL lining. Subsequently, the composite scaffolds were deposited with biomimetic coating for improving the bioactivity. The HA/PCL composite scaffolds with improved mechanical property and bioactivity is expected to be a promising bone substitute in tissue engineering applications

  20. Eliminating the skin-effect in polymer scaffolds made by thermally induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Kubies, Dana; Janoušková, Olga; Hummerová, Lenka; Koubková, Jana; Kumorek, Marta Maria; Sedlačík, Tomáš; Machová, Luďka; Rypáček, František

    Prague: Institute of Macromolecular Chemistry AS CR, 2015. s. 70. ISBN 978-80-85009-82-8. [Functional Polymers at Bio-Material Interfaces - 79th Prague Meeting on Macromolecules. 28.06.2015-02.07.2015, Prague] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : polymer scaffolds * biomaterial Subject RIV: CD - Macromolecular Chemistry

  1. Data on bone marrow stem cells delivery using porous polymer scaffold

    OpenAIRE

    Ramasatyaveni Geesala; Nimai Bar; Dhoke, Neha R.; Pratyay Basak; Amitava Das

    2015-01-01

    Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs) at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article “Porous polymer scaffold fo...

  2. Effect of Polymer Infiltration on the Flexural Behavior of β-Tricalcium Phosphate Robocast Scaffolds

    Directory of Open Access Journals (Sweden)

    Francisco J. Martínez-Vázquez

    2014-05-01

    Full Text Available The influence of polymer infiltration on the flexural strength and toughness of β-tricalcium phosphate (β-TCP scaffolds fabricated by robocasting (direct-write assembly is analyzed. Porous structures consisting of a tetragonal three-dimensional lattice of interpenetrating rods were impregnated with biodegradable polymers (poly(lactic acid (PLA and poly(ε-caprolactone (PCL by immersion of the structure in a polymer melt. Infiltration increased the flexural strength of these model scaffolds by a factor of 5 (PCL or 22 (PLA, an enhancement considerably greater than that reported for compression strength of analogue materials. The greater strength improvement in bending was attributed to a more effective transfer of stress to the polymer under this solicitation since the degree of strengthening associated to the sealing of precursor flaws in the ceramic rod surfaces should remain unaltered. Impregnation with either polymer also improved further than in compression the fracture energy of the scaffolds (by more than two orders of magnitude. This increase is associated to the extraordinary strengthening provided by impregnation and to a crack bridging toughening mechanism produced by polymer fibrils.

  3. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  4. Engineering of a polymer layered bio-hybrid heart valve scaffold

    International Nuclear Information System (INIS)

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve

  5. Biomimetic remineralization of demineralized dentine using scaffold of CMC/ACP nanocomplexes in an in vitro tooth model of deep caries.

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    Full Text Available Currently, it is still a tough task for dentists to remineralize dentine in deep caries. The aim of this study was to remineralize demineralized dentine in a tooth model of deep caries using nanocomplexes of carboxymethyl chitosan/amorphous calcium phosphate (CMC/ACP based on mimicking the stabilizing effect of dentine matrix protein 1 (DMP1 on ACP in the biomineralization of dentine. The experimental results indicate that CMC can stabilize ACP to form nanocomplexes of CMC/ACP, which is able to be processed into scaffolds by lyophilization. In the single-layer collagen model, ACP nanoparticles are released from scaffolds of CMC/ACP nanocomplexes dissolved and then infiltrate into collagen fibrils via the gap zones (40 nm to accomplish intrafibrillar mineralization of collagen. With this method, the completely demineralized dentine was partially remineralized in the tooth mode. This is a bottom-up remineralizing strategy based on non-classical crystallization theory. Since nanocomplexes of CMC/ACP show a promising effect of remineralization on demineralized dentine via biomimetic strategy, thereby preserving dentinal tissue to the maximum extent possible, it would be a potential indirect pulp capping (IPC material for the management of deep caries during vital pulp therapy based on the concept of minimally invasive dentistry (MID.

  6. Controllable dielectric and electrical performance of polymer composites with novel core/shell-structured conductive particles through biomimetic method

    International Nuclear Information System (INIS)

    Highlights: ► Conductive core/shell-structured particles were synthesized by biomimetic method. ► These particles with silica/poly(dopamine)/silver core and poly(dopamine) shell. ► Dielectric composites were prepared with resulted particles and silicone elastomer. ► The dielectric properties of the composites can be controlled by shell thickness. ► This biomimetic method is simple, nontoxic, efficient and easy to control. - Abstract: Novel silica/poly(dopamine)/silver (from inner to outer) (denoted as SiO2/PDA/Ag) conductive micro-particles were first synthesized by biomimetic poly(dopamine) coating. These micro-particles were then coated with a poly(dopamine) layer to form core/shell-structured particles, with silica/poly(dopamine)/silver core and poly(dopamine) shell (denoted as SiO2/PDA/Ag/PDA). This multilayer core/shell micro-particles were confirmed by scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscope. Polymer composites were then prepared by mechanical blending of poly(dimethyl siloxane) and the core/shell-structured particles. It was found that the silver layer and the poly(dopamine) shell had good adhesion with substrate and they kept intact even under violent shearing stress during mechanical mixing. The effect of the thickness of outermost poly(dopamine) shell as well as the loading amount of this filler on the dielectric and electrical properties of the composites was further studied. The results showed that the dielectric constant, dielectric loss, and conductivity of the composites decreased with increasing shell thickness (10–53 nm) at the same loading level. And the maximal dielectric constant of composites was achieved in the composites filled with SiO2/PDA/Ag/PDA (with 10–15 nm PDA shell) particles, which was much larger than that of the composite filled with SiO2/PDA/Ag particles without insulative PDA shell. At the same time, the composites can change from

  7. Developing bioactive composite scaffolds for bone tissue engineering

    Science.gov (United States)

    Chen, Yun

    Poly(L-lactic acid) (PLLA) films were fabricated using the method of dissolving and evaporation. PLLA scaffold was prepared by solid-liquid phase separation of polymer solutions and subsequent sublimation of solvent. Bonelike apatite coating was formed on PLLA films, PLLA scaffolds and poly(glycolic acid) (PGA) scaffolds in 24 hours through an accelerated biomimetic process. The ion concentrations in the simulated body fluid (SBF) were nearly 5 times of those in human blood plasma. The apatite formed was characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The apatite formed in 5SBF was similar in morphology and composition to that formed in the classical biomimetic process employing SBF or 1.5SBF, and similar to that of natural bone. This indicated that the biomimetic apatite coating process could be accelerated by using concentrated simulated body fluid at 37°C. Besides saving time, the accelerated biomimetic process is particularly significant to biodegradable polymers. Some polymers which degrade too fast to be coated with apatite by a classical biomimetic process, for example PGA, could be coated with bone-like apatite in an accelerated biomimetic process. Collagen and apatite were co-precipitated as a composite coating on poly(L-lactic acid) (PLLA) in an accelerated biomimetic process. The incubation solution contained collagen (1g/L) and simulated body fluid (SBF) with 5 times inorganic ionic concentrations as human blood plasma. The coating formed on PLLA films and scaffolds after 24 hours incubation was characterized using EDX, XRD, FTIR, and SEM. It was shown that the coating contained carbonated bone-like apatite and collagen, the primary constituents of natural bone. SEM showed a complex composite coating of submicron bone-like apatite particulates combined with collagen fibrils. This work provided an efficient process to obtain

  8. Biomimetic fiber mesh scaffolds based on gelatin and hydroxyapatite nano-rods: Designing intrinsic skills to attain bone reparation abilities.

    Science.gov (United States)

    Sartuqui, Javier; Gravina, A Noel; Rial, Ramón; Benedini, Luciano A; Yahia, L'Hocine; Ruso, Juan M; Messina, Paula V

    2016-09-01

    Intrinsic material skills have a deep effect on the mechanical and biological performance of bone substitutes, as well as on its associated biodegradation properties. In this work we have manipulated the preparation of collagenous derived fiber mesh frameworks to display a specific composition, morphology, open macroporosity, surface roughness and permeability characteristics. Next, the effect of the induced physicochemical attributes on the scaffold's mechanical behavior, bone bonding potential and biodegradability were evaluated. It was found that the scaffold microstructure, their inherent surface roughness, and the compression strength of the gelatin scaffolds can be modulated by the effect of the cross-linking agent and, essentially, by mimicking the nano-scale size of hydroxyapatite in natural bone. A clear effect of bioactive hydroxyapatite nano-rods on the scaffolds skills can be appreciated and it is greater than the effect of the cross-linking agent, offering a huge perspective for the upcoming progress of bone implant technology. PMID:27220014

  9. In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry

    OpenAIRE

    Nichols, Joan E.; Cortiella, Joaquin; Lee, Jungwoo; Niles, Jean A; Cuddihy, Meghan; Wang, Shaopeng; Cantu, Andrea; Mlcak, Ron; Valdivia, Esther; Yancy, Ryan; Bielitzki, Joseph; McClure, Matthew L.; Nicholas A. Kotov

    2008-01-01

    In vitro replicas of bone marrow can potentially provide a continuous source of blood cells for transplantation and serve as a laboratory model to examine human immune system dysfunctions and drug toxicology. Here we report the development of an in vitro artificial bone marrow based on a 3D scaffold with inverted colloidal crystal (ICC) geometry mimicking the structural topology of actual bone marrow matrix. To facilitate adhesion of cells, scaffolds were coated with a layer of transparent na...

  10. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    International Nuclear Information System (INIS)

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(ε-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications. (paper)

  11. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Chuang [North Carolina State University; Cai, Lei [ORNL; Sonawane, Bhushan [North Carolina State University; Wang, Shanfeng [ORNL; Dong, Jingyan [North Carolina State University

    2012-01-01

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly({var_epsilon}-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications.

  12. High-precision flexible fabrication of tissue engineering scaffolds using distinct polymers.

    Science.gov (United States)

    Wei, Chuang; Cai, Lei; Sonawane, Bhushan; Wang, Shanfeng; Dong, Jingyan

    2012-05-25

    Three-dimensional porous structures using biodegradable materials with excellent biocompatibility are critically important for tissue engineering applications. We present a multi-nozzle-based versatile deposition approach to flexibly construct porous tissue engineering scaffolds using distinct polymeric biomaterials such as thermoplastic and photo-crosslinkable polymers. We first describe the development of the deposition system and fabrication of scaffolds from two types of biodegradable polymers using this system. The thermoplastic sample is semi-crystalline poly(ε-caprolactone) (PCL) that can be processed at a temperature higher than its melting point and solidifies at room temperature. The photo-crosslinkable one is polypropylene fumarate (PPF) that has to be dissolved in a reactive solvent as a resin for being cured into solid structures. Besides the direct fabrication of thermoplastic PCL scaffolds, we specifically develop a layer molding approach for the fabrication of crosslinkable polymers, which traditionally can only be fabricated by stereolithography. In this approach, a thermoplastic supporting material (paraffin wax) is first deposited to make a mold for each specific layer, and then PPF is deposited on demand to fill the mold and cured by the UV light. The supporting material can be removed to produce a porous scaffold of crosslinked PPF. Both PCL and crosslinked PPF scaffolds fabricated using the developed system have been characterized in terms of compressive mechanical properties, morphology, pore size and porosity. Mouse MC3T3-E1 pre-osteoblastic cell studies on the fabricated scaffolds have been performed to demonstrate their capability of supporting cell proliferation and ingrowth, aiming for bone tissue engineering applications. PMID:22635324

  13. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.

    Science.gov (United States)

    Nail, Lindsay N; Zhang, Dawei; Reinhard, Jessica L; Grunlan, Melissa A

    2015-01-01

    Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect "self-fitting." In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described. PMID:26556112

  14. Polymer-Ceramic Spiral Structured Scaffolds for Bone Tissue Engineering: Effect of Hydroxyapatite Composition on Human Fetal Osteoblasts

    OpenAIRE

    Zhang, Xiaojun; Chang, Wei; Lee, Paul; Wang, Yuhao; Yang, Min; Li, Jun; Kumbar, Sangamesh G.; Yu, Xiaojun

    2014-01-01

    For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA), a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL) spiral scaffolds are augmented in...

  15. Surface modification tailors the characteristics of biomimetic coatings nucleated on starch-based polymers

    OpenAIRE

    de Oliveira, A. L.; Elvira, C.; Vásquez, Blanca; J. San Román; Reis, R. L.

    1999-01-01

    This work describes the influence of surface pretreatments over the nucleation and growth of an apatite layer, formed by a biomimetic process, on which a bioactive glass is used as a precursor of the calcium-phosphate (Ca-P) formation on the materials surface. SEVA-C, a corn starch-based biodegradable blend, was used as substrate. The surfaces were pretreated during various periods by: (i) physical methods, namely ultraviolet radiation (u.v.), and over exposure to ethylene oxide sterilization...

  16. Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating

    OpenAIRE

    Nooeaid, Patcharakamon; Li, Wei; Roether, Judith A.; Mourino, Viviana; Goudouri, Ourania-Menti; Schubert, Dirk W.; Boccaccini, Aldo R.

    2014-01-01

    Highly porous 45S5 Bioglass®-based scaffolds coated with two polymer layers were fabricated to serve as a multifunctional device with controlled drug release capability for bone regeneration applications. An interior poly(D,L-lactide)/poly(ethylene glycol)-(polypropylene glycol)-poly(ethylene glycol) triblock copolymer (Pluronic P123) coating improved the mechanical stability of Bioglass-based scaffolds, while an exterior natural polymer (alginate or gelatin) coating served as an antibiotic d...

  17. Apatite coated on organic polymers by biomimetic process: improvement in its adhesion to substrate by NaOH treatment.

    Science.gov (United States)

    Tanahashi, M; Yao, T; Kokubo, T; Minoda, M; Miyamoto, T; Nakamura, T; Yamamuro, T

    1994-01-01

    A dense, uniform and highly biologically active bone-like apatite layer can be formed in arbitrary thickness on any kind and shape of solid substrate surface by the following biomimetic method at ordinary temperature and pressure. First, a substrate is set in contact with particles of bioactive CaO SiO2 based glass soaked in a simulated body fluid (SBF) with inorganic ion concentrations nearly equal to those of human blood plasma. Second, the substrate is soaked in another solution with ion concentrations 1.5 times those of SBF (1.5 SBF). In the present study, organic polymer substrates treated with 5 M NaOH solution were subjected to the above mentioned biomimetic process. The induction periods for the apatite nucleation on polyethyleneterephthalate (PET), polymethylmethacrylate (PMMA), polyamide 6 (PA6), and polyethersulfone (PESF) substrates were reduced from 24 to 12 h with the NaOH treatment. The adhesive strength of the formed apatite layer were increased from 3.5 to 8.6 MPa, from 1.1 to 3.4 MPa, and from 0.6 to 5.3 MPa with the NaOH treatment, for PET, PMMA, and PA 6, respectively. It was assumed that highly polar groups, such as carboxyl and sulfinyl ones formed by the hydrolysis of an ester group on PET and PMMA and of an amide group on PA 6, or of a sulfonyl group on PESF with the NaOH treatment, attached a large number of hydrated silica dissolved from the glass particles, to accelerate the apatite nucleation, and also to form a strong bond with the apatite. The apatite-organic polymer composites thus obtained are expected to be useful as bone-repairing as well as soft tissue-repairing materials. PMID:8580541

  18. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect.

    Science.gov (United States)

    Abdelrasoul, Gaser N; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532nm laser, known as the photothermal effect. PMID:26249594

  19. Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings

    OpenAIRE

    Kim, Jinku; Magno, Maria Hanshella R.; Ortiz, Ophir; McBride, Sean; Darr, Aniq; Kohn, Joachim; Hollinger, Jeffrey O.

    2015-01-01

    Next-generation synthetic bone graft therapies will most likely be composed of resorbable polymers in combination with bioactive components. In this article, we continue our exploration of E1001(1k), a tyrosine-derived polycarbonate, as an orthopedic implant material. Specifically, we use E1001(1k), which is degradable, nontoxic, and osteoconductive, to fabricate porous bone regeneration scaffolds that were enhanced by two different types of calcium phosphate (CP) coatings: in one case, pure ...

  20. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  1. Understanding the role of dip-coating process parameters in the mechanical performance of polymer-coated bioglass robocast scaffolds.

    Science.gov (United States)

    Motealleh, Azadeh; Eqtesadi, Siamak; Perera, Fidel Hugo; Pajares, Antonia; Guiberteau, Fernando; Miranda, Pedro

    2016-12-01

    The effect of different dip-coating variables-solvent, deposition temperature and polymer concentration-on the mechanical performance of polycaprolactone-coated 45S5 bioglass robocast scaffolds is systematically analyzed in this work. The reproducible geometry of the scaffolds produced by this additive manufacturing technique makes them an optimal model system and facilitates the analysis. The results suggest that the mechanical performance of the hybrid scaffolds is improved monotonically with polymer concentration, but this concentration cannot be increased indefinitely if the macroporosity interconnectivity, and thus the scaffold׳s capacity to promote tissue ingrowth, are to be preserved. An optimal concentration, and therefore viscosity (~1-4Pas in the present case), exists for any given set of process variables (scaffold geometry and material, polymer, solvent and process temperature) that yields coatings with optimal reinforcement and minimal reduction of scaffold functionality. Solvent and process temperature do not directly affect the strengthening provided by the polymeric coating. However they can determine the maximum concentration at the critical viscosity, and thereby the maximum achievable mechanical performance of the resulting hybrid scaffold. PMID:27522314

  2. Nanofibre-assisted alignment of carbon nanotubes in macroscopic polymer matrix via a scaffold-based method

    Directory of Open Access Journals (Sweden)

    2010-01-01

    Full Text Available A facile way for alignment of carbon nanotubes in macroscopic polymer matrix was developed by combining electrospinning and in-situ polymerization. The approach is based on the formation of nanofibre scaffolds with wellaligned arrays, which is filled with carbon nanotubes (CNTs. CNTs will be well aligned in macroscopic polymer matrix when the aligned nanofibre scaffold containing CNTs has been incorporated into the poly(methyl methacrylate (PMMA matrix by in-situ polymerization. We demonstrate that this scaffold approach is broadly applicable and allows for the fabrication of nanocomposites with accurately aligned nanofillers. The results presented in this report show that the approach is ideal by using polyacrylonitrile (PAN nanofibres as a scaffold of multiwalled carbon nanotubes (MWNTs, and PMMA as the macroscopic polymer matrix. The tensile strength (7.2 wt% MWNTs/PAN nanofibres loadings reaches 48.61 MPa, 87% higher than that pure PMMA, and the tensile modulus is increased by 175%.

  3. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    OpenAIRE

    Wang Y; Van Manh H; Wang H; Zhong X; Zhang X; Li C

    2016-01-01

    Yao Wang,1 Ngo Van Manh,1,2 Haorong Wang,1 Xue Zhong,1 Xu Zhang,1 Changyi Li1 1School of Dentistry, Hospital of Stomatology, Tianjin Medical University, Tianjin, People’s Republic of China; 2Thaibinh University of Medicine and Pharmacy, Thaibinh, Vietnam Abstract: The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is ...

  4. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    Science.gov (United States)

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  5. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    Energy Technology Data Exchange (ETDEWEB)

    Abdelrasoul, Gaser N.; Farkas, Balazs; Romano, Ilaria; Diaspro, Alberto; Beke, Szabolcs, E-mail: szabolcs.beke@iit.it

    2015-11-01

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser.

  6. Nanocomposite scaffold fabrication by incorporating gold nanoparticles into biodegradable polymer matrix: Synthesis, characterization, and photothermal effect

    International Nuclear Information System (INIS)

    Nanoparticle incorporation into scaffold materials is a valuable route to deliver various therapeutic agents, such as drug molecules or large biomolecules, proteins (e.g. DNA or RNA) into their targets. In particular, gold nanoparticles (Au NPs) with their low inherent toxicity, tunable stability and high surface area provide unique attributes facilitating new delivery strategies. A biodegradable, photocurable polymer resin, polypropylene fumarate (PPF) along with Au NPs were utilized to synthesize a hybrid nanocomposite resin, directly exploitable in stereolithography (SL) processes. To increase the particles' colloidal stability, the Au NP nanofillers were coated with polyvinyl pyrrolidone (PVP). The resulting resin was used to fabricate a new type of composite scaffold via mask projection excimer laser stereolithography. The thermal properties of the nanocomposite scaffolds were found to be sensitive to the concentration of NPs. The mechanical properties were augmented by the NPs up to 0.16 μM, though further increase in the concentration led to a gradual decrease. Au NP incorporation rendered the biopolymer scaffolds photosensitive, i.e. the presence of Au NPs enhanced the optical absorption of the scaffolds as well, leading to possible localized temperature rise when irradiated with 532 nm laser, known as the photothermal effect. - Highlights: • Gold nanoparticle incorporation into biopolymer resin was realized. • Gold incorporation into biopolymer resin is a big step in tissue engineering. • Composite scaffolds were synthesized and thoroughly characterized. • Gold nanoparticles are remarkable candidates to be utilized as “transport vehicles”. • The photothermal effect was demonstrated using a 532-nm laser

  7. Biomimetic Cilia Based on MEMS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2008-01-01

    A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.

  8. Biomimetic electrospun nanofibers for tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram [Nanoscience and Nanotechnology Initiative (NUSNNI), Faculty of Engineering, National University of Singapore, 117576 Singapore (Singapore)

    2006-09-15

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  9. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2015-09-01

    Full Text Available The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched, and contained an active substance—bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA or hyperbranched 2,2-bis(hydroxymethylpropionic acid polyester-16-hydroxyl (bis-MPA initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol. The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  10. The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds

    Science.gov (United States)

    Zhao, J.; Duan, K.; Zhang, J. W.; Lu, X.; Weng, J.

    2010-05-01

    Polycaprolactone (PCL)-coated porous hydroxyapatite (HA) composite scaffolds were prepared by combining polymer impregnating method with dip-coating method. Three different PCL solution concentrations were used in dip-coating process to improve the mechanical properties of porous HA scaffolds. The results indicated that as the concentration of PCL solution increases the compressive strength significantly increased from 0.09 MPa to 0.51 MPa while the porosity decreased from 90% to 75% for the composite scaffolds. An interlaced structure was found inside the pore wall for all composite scaffolds due to the penetration of PCL. The porous HA/PCL composite scaffolds dip-coated with 10% PCL exhibited optimal combination of mechanical properties and pore interconnectivity, and may be a potential bone candidate for the tissue engineering applications.

  11. Development of polycaprolactone porous scaffolds by combining solvent casting, particulate leaching, and polymer leaching techniques for bone tissue engineering.

    Science.gov (United States)

    Thadavirul, Napaphat; Pavasant, Prasit; Supaphol, Pitt

    2014-10-01

    Sodium chloride and polyethylene glycol (PEG) were used as water-soluble porogens for the formation of porous polycaprolactone (PCL) scaffolds. The main purpose was to prepare and evaluate in vitro efficacy of highly interconnected, three-dimensional, porous polymeric scaffolds, as obtained from the combined particulate and polymer leaching techniques. Microscopic analysis confirmed the high interconnectivity of the pores and relatively uniform pore size of 378-435 μm. The PCL scaffolds were further characterized for their density and pore characteristics, water absorption and flow behaviors, and mechanical properties and the potential for their use as bone scaffolding materials was evaluated in vitro using mouse calvaria-derived preosteoblastic cells (MC3T3-E1). Evidently, the use of PEG as the secondary porogen not only improved the interconnectivity of the pore structures but also resulted in the PCL scaffolds that exhibited much better support for the proliferation and differentiation of the cultured bone cells. PMID:24132871

  12. ELECTROACTIVE AND NANOSTRUCTURED POLYMERS AS SCAFFOLD MATERIALS FOR NEURONAL AND CARDIAC TISSUE ENGINEERING

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conducting polymer, polyaniline (PANI), has been studied as a novel electroactive and electrically conductive material for tissue engineering applications. The biocompatibility of the conductive polymer can be improved by (I) covalently grafting various adhesive peptides onto the surface of prefabricated conducting polymer flms or into the polymer structures during the synthesis, (ii) co-electrospinning or blending with natural proteins to form conducting nanofibers or films, and (iii) preparing conducting polymers using biopolymers, such as collagen, as templates. In this paper, we mainly describe and review the approaches of covalently attaching oligopeptides to PANI and electrospinning PANI-gelatin blend nanofibers. The employment of such modified conducting polymers as substrates for enhanced cell attachment, proliferation and differentiation has been investigated with neuronal PC-12 cells and H9c2 cardiac myoblasts. For the electrospun PANIgelatin fibers, depending on the concentrations of PANI, H9c2 cells initially displayed different morphologies on the fibrous substrates, but after one week all cultures reached confluence of similar densities and morphologies. Furthermore, we observed, that conductive PANI, when maintained in an aqueous physiologic environment, retained a significant level of electrical conductivity for at least 100 h, even though this conductivity was decreasing over time. Preliminary data show that the application of micro-current stimulates the differentiation of PC-12 cells. All the results demonstrate the potential for using PANI as an electroactive polymer in the culture of excitable cells and open the possibility of using this material as an electroactive scaffold for cardiac and/or neuronal tissue engineering applications that require biocompatibility of conductive polymers.

  13. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    International Nuclear Information System (INIS)

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The KSV for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10−7–35.0 × 10−7 M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA

  14. Molecularly imprinted polymer based on MWCNT-QDs as fluorescent biomimetic sensor for specific recognition of target protein

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhaoqiang [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Annie Bligh, S.W. [Department of Life Sciences, Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, London W1W 6UW (United Kingdom); Tao, Lei; Quan, Jing [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Nie, Huali, E-mail: niehuali@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Zhu, Limin, E-mail: lzhu@dhu.edu.cn [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China); Gong, Xiao [College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620 (China)

    2015-03-01

    A novel molecularly imprinted optosensing material based on multi-walled carbon nanotube-quantum dots (MWCNT-QDs) has been designed and synthesized for its high selectivity, sensitivity and specificity in the recognition of a target protein bovine serum albumin (BSA). Molecularly imprinted polymer coated MWCNT-QDs using BSA as the template (BMIP-coated MWCNT-QDs) exhibits a fast mass-transfer speed with a response time of 25 min. It is found that the BSA as a target protein can significantly quench the luminescence of BMIP-coated MWCNT-QDs in a concentration-dependent manner that is best described by a Stern–Volmer equation. The K{sub SV} for BSA is much higher than bovine hemoglobin and lysozyme, implying a highly selective recognition of the BMIP-coated MWCNT-QDs to BSA. Under optimal conditions, the relative fluorescence intensity of BMIP-coated MWCNT-QDs decreases linearly with the increasing target protein BSA in the concentration range of 5.0 × 10{sup −7}–35.0 × 10{sup −7} M with a detection limit of 80 nM. - Highlights: • A novel fluorescent biomimetic sensor based on MWCNT-QDs was designed. • The sensor exhibited a fast mass-transfer speed with a response time of 25 min. • The sensor possessed a highly selective recognition to BSA.

  15. Development of the flow behavior model for 3D scaffold fabrication in the polymer deposition process by a heating method

    Science.gov (United States)

    Kim, Jong Young; Park, Jung Kyu; Hahn, Sei Kwang; Kwon, Tai Hun; Cho, Dong-Woo

    2009-10-01

    The flow behavior model for 3D scaffold fabrication in the polymer deposition process by the heating method was developed for enhanced efficiency of the deposition process. The analysis of the polymer flow property is very important in the fabrication process of precise micro-structures such as scaffolds. In this study, a deposition model considering fluid mechanics and heat transfer phenomena was built up and introduced for the estimation of the fluid behavior of molten polymer. The effectiveness of the simulation model was verified through comparison with the experimental result in the case of PCL biomaterial. In addition, the effects of various parameters, such as pressure, temperature and nozzle size, were predicted through simulation before experimental approaches. Through the fabrication of 3D scaffold, it is concluded that this model is useful in predicting the flow behavior characteristics in the micro-structure fabrication process, which is based on the heating method.

  16. Molecularly imprinted polymers as biomimetic receptors for fluorescence-based optical sensors

    Science.gov (United States)

    Moreno-Bondi, María C.; Urraca, Javier L.; Benito-Peña, Elena; Navarro-Villoslada, Fernando; Martins, Sofía A.; Orellana, Guillermo; Sellergren, Börje

    2007-07-01

    Molecularly imprinted polymers (MIPs), human-made polymers capable of recognizing a particular molecule in the presence of others due to the selective cavities of the material, have been successfully applied to the development of chromatographic and solid phase extraction methods. They have also been applied to the development of electrochemical, piezoelectrical and optical sensors. In parallel with the classification of biosensors, MIP-based devices can work according to two different detection schemes: (1) affinity sensors ("plastic-bodies") and, (2) catalytic sensors ("plastic-enzymes"). In the first case the change in a characteristic optical property, most frequently fluorescence, of the analyte or of the polymer is monitored, upon their mutual interaction. Alternatively, a fluorescent analogue of the target analyte can also be used to develop sensors based on competitive assays (MIAs). Optimization of the polymer composition and, in particular, a proper choice of the nature of the functional monomers involved in the polymerization process, is critical to prepare materials able to selectively interact with the analyte in aqueous media and with the fast kinetics required for analytical applications. Moreover, a rational design of fluorescent analogues of non-naturally fluorescent templates or of fluorescent monomers able to change its property upon interaction with the analyte, is also a bottle neck for wide application of this recognition elements in optical sensing. In this paper we present several approaches to address these issues namely the optimization of MIP composition and the design and synthesis of novel fluorophores for the analysis of antibiotics and mycotoxins in real samples.

  17. Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings.

    Science.gov (United States)

    Kim, Jinku; Magno, Maria Hanshella R; Ortiz, Ophir; McBride, Sean; Darr, Aniq; Kohn, Joachim; Hollinger, Jeffrey O

    2015-03-01

    Next-generation synthetic bone graft therapies will most likely be composed of resorbable polymers in combination with bioactive components. In this article, we continue our exploration of E1001(1k), a tyrosine-derived polycarbonate, as an orthopedic implant material. Specifically, we use E1001(1k), which is degradable, nontoxic, and osteoconductive, to fabricate porous bone regeneration scaffolds that were enhanced by two different types of calcium phosphate (CP) coatings: in one case, pure dicalcium phosphate dihydrate was precipitated on the scaffold surface and throughout its porous structure (E1001(1k) + CP). In the other case, bone matrix minerals (BMM) such as zinc, manganese and fluoride were co-precipitated within the dicalcium phosphate dihydrate coating (E1001(1k) + BMM). These scaffold compositions were compared against each other and against ChronOS (Synthes USA, West Chester, PA, USA), a clinically used bone graft substitute (BGS), which served as the positive control in our experimental design. This BGS is composed of poly(lactide co-ε-caprolactone) and beta-tricalcium phosphate. We used the established rabbit calvaria critical-sized defect model to determine bone regeneration within the defect for each of the three scaffold compositions. New bone formation was determined after 2, 4, 6, 8 and 12 weeks by micro-computerized tomography (μCT) and histology. The experimental tyrosine-derived polycarbonate, enhanced with dicalcium phosphate dihydrate, E1001(1k) + CP, supported significant bone formation within the defects and was superior to the same scaffold containing a mix of BMM, E1001(1k) + BMM. The comparison with the commercially available BGS was complicated by the large variability in bone formation observed for the laboratory preparations of E1001(1k) scaffolds. At all time points, there was a trend for E1001(1k) + CP to be superior to the commercial BGS. However, only at the 6-week time point did this trend reach statistical significance

  18. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    International Nuclear Information System (INIS)

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 ± 3%; pore size = 250-500 μm) had a compressive strength of 6.4 ± 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K2HPO4 solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  19. In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method

    Energy Technology Data Exchange (ETDEWEB)

    Fu Hailuo, E-mail: fuhailuo@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Fu Qiang, E-mail: fuharry@hotmail.com [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Zhou Nai [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Huang Wenhai, E-mail: whhuang@mail.tongji.edu.cn [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Rahaman, Mohamed N. [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Wang Deping [Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China); Liu Xin [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Institute of Bio-Engineering and IT Materials, Tongji University, Shanghai 200092 (China)

    2009-08-31

    Borate-based bioactive glass scaffolds with a microstructure similar to that of human trabecular bone were prepared using a polymer foam replication method, and evaluated in vitro for potential bone repair applications. The scaffolds (porosity = 72 {+-} 3%; pore size = 250-500 {mu}m) had a compressive strength of 6.4 {+-} 1.0 MPa. The bioactivity of the scaffolds was confirmed by the formation of a hydroxyapatite (HA) layer on the surface of the glass within 7 days in 0.02 M K{sub 2}HPO{sub 4} solution at 37 deg. C. The biocompatibility of the scaffolds was assessed from the response of cells to extracts of the dissolution products of the scaffolds, using assays of MTT hydrolysis, cell viability, and alkaline phosphatase activity. For boron concentrations below a threshold value (0.65 mM), extracts of the glass dissolution products supported the proliferation of bone marrow stromal cells, as well as the proliferation and function of murine MLO-A5 cells, an osteogenic cell line. Scanning electron microscopy showed attachment and continuous increase in the density of MLO-A5 cells cultured on the surface of the glass scaffolds. The results indicate that borate-based bioactive glass could be a potential scaffold material for bone tissue engineering provided that the boron released from the glass could be controlled below a threshold value.

  20. Biomimetic piezoelectric quartz crystal sensor with chloramphenicol-imprinted polymer sensing layer.

    Science.gov (United States)

    Ebarvia, Benilda S; Ubando, Isaiah E; Sevilla, Fortunato B

    2015-11-01

    The measurement of banned antibiotic like chloramphenicol is significant for customer protection and safety. The presence of residual antibiotics in foods and food products of animal origin could pose as health hazards and affect food quality for global acceptance. In this study, the potential of a chloramphenicol sensor based on molecularly imprinted polymer (MIP) coupled with a piezoelectric quartz crystal was explored. The MIP was prepared by precipitation polymerization at 60 °C. Methacrylic acid was used as monomer, trimethylolpropane trimethacrylate (TRIM) as crosslinker, and chloramphenicol as the template. Template removal on the resulting polymer was done by extraction using methanol-acetic acid. Characterization of the MIP and NIP were conducted by spectroscopic and microscopic methods. These further supported the imprinting and rebinding process of chloramphenicol to the polymer matrix. The chloramphenicol sensor was devised by spin-coating onto one side of the 10 MHz AT-cut quartz crystal the MIP suspension in polyvinylchloride-tetrahydrofuran (6:2:1 w/w/v) solution. Optimization of sensor response was performed by varying the type of cross-linker, amount of MIP sensing layer, curing time, and pH. The sensor exhibited good sensitivity of about 73 Hz/log (conc., µg mL(-1)) and good repeatability (rsd<10%). A linear relationship (r(2)=0.9901) between frequency shift and chloramphenicol concentration in the range of 1×10(-6) up to 1×10(-1) µg/mL was obtained. The sensor response was highly selective to chloramphenicol than with other compounds of similar chemical structures. Acceptable percent recovery was obtained for real sample analysis using the sensor. The proposed sensor could be a promising low cost and highly sensitive approach for residual chloramphenicol quantification in food products. PMID:26452956

  1. Characterization of fabricated three dimensional scaffolds of bio ceramic-polymer composite via microstereolithography technique

    International Nuclear Information System (INIS)

    Full-text: Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photo curable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photo curable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70 wt % of CPP, photo initiators and photo inhibitors. The 3D structure of disc (5 mm height x 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3. They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35 % and the dimensional shrinkage after sintering were 33 %. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bio ceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface. (author)

  2. Characterization of fabricated three dimensional scaffolds of bioceramic-polymer composite via microstereolithography technique

    Science.gov (United States)

    Talib, Marina; Covington, James A.; Bolarinwa, Aminat

    2014-02-01

    Microstereolithography is a method used for rapid prototyping of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photocurable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photocurable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70wt% of CPP, photoinitiators and photoinhibitors. The 3D structure of disc (5 mm height × 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3® . They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35% and the dimensional shrinkage after sintering were 33%. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bioceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface.

  3. Polymer-ceramic spiral structured scaffolds for bone tissue engineering: effect of hydroxyapatite composition on human fetal osteoblasts.

    Directory of Open Access Journals (Sweden)

    Xiaojun Zhang

    Full Text Available For successful bone tissue engineering, a scaffold needs to be osteoconductive, porous, and biodegradable, thus able to support attachment and proliferation of bone cells and guide bone formation. Recently, hydroxyapatites (HA, a major inorganic component of natural bone, and biodegrade polymers have drawn much attention as bone scaffolds. The present study was designed to investigate whether the bone regenerative properties of nano-HA/polycaprolactone (PCL spiral scaffolds are augmented in an HA dose dependent manner, thereby establishing a suitable composition as a bone formation material. Nano-HA/PCL spiral scaffolds were prepared with different weight ratios of HA and PCL, while porosity was introduced by a modified salt leaching technique. Human fetal osteoblasts (hFOBs were cultured on the nano-HA/PCL spiral scaffolds up to 14 days. Cellular responses in terms of cell adhesion, viability, proliferation, differentiation, and the expression of bone-related genes were investigated. These scaffolds supported hFOBs adhesion, viability and proliferation. Cell proliferation trend was quite similar on polymer-ceramic and neat polymer spiral scaffolds on days 1, 7, and 14. However, the significantly increased amount of alkaline phosphatase (ALP activity and mineralized matrix synthesis was evident on the nano-HA/PCL spiral scaffolds. The HA composition in the scaffolds showed a significant effect on ALP and mineralization. Bone phenotypic markers such as bone sialoprotein (BSP, osteonectin (ON, osteocalcin (OC, and type I collagen (Col-1 were semi-quantitatively estimated by reverse transcriptase polymerase chain reaction analysis. All of these results suggested the osteoconductive characteristics of HA/PCL nanocomposite and cell maturation were HA dose dependent. For instance, HA∶PCL = 1∶4 group showed significantly higher ALP mineralization and elevated levels of BSP, ON, OC and Col-I expression as compared other lower or higher ceramic

  4. Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bolbasov, E.N., E-mail: ebolbasov@gmail.com [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Anissimov, Y.G., E-mail: Y.Anissimov@Griffith.edu.au [Griffith University, School of Biomolecular and Physical Sciences, Brisbane, QLD (Australia); Pustovoytov, A.V., E-mail: andrius_222@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Khlusov, I.A., E-mail: khlusov63@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, A.A., E-mail: prim@niikf.tomsk.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, K.V., E-mail: zaitsev-kv@mail.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Lapin, I.N., E-mail: 201kiop@mail.ru [Tomsk State University, 634050, 36, Lenin Avenue, Tomsk (Russian Federation); Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation)

    2014-07-01

    A solution blow spinning technique is a method developed recently for making nonwoven webs of micro- and nanofibres. The principal advantage of this method compared to a more traditional electrospinning process is its significantly higher production rate. In this work, the solution blow spinning method was further developed to produce nonwoven polymeric scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride solution in acetone. A crucial feature of the proposed method is that high-voltage equipment is not required, which further improves the method's economics. Scanning electron microscopy analysis of the samples demonstrated that the surface morphology of the nonwoven materials is dependent on the polymer concentration in the spinning solution. It was concluded that an optimum morphology of the nonwoven scaffolds for medical applications is achieved by using a 5% solution of the copolymer. It was established that the scaffolds produced from the 5% solution have a fractal structure and anisotropic mechanical properties. X-ray diffraction, infrared spectroscopy, Raman spectroscopy and differential scanning calorimetry demonstrated that the fabricated nonwoven materials have crystal structures that exhibit ferroelectric properties. Gas chromatography has shown that the amount of acetone in the nonwoven material does not exceed the maximum allowable concentration of 0.5%. In vitro analysis, using the culture of motile cells, confirmed that the nonwoven material is non-toxic and does not alter the morpho-functional status of stem cells for short-term cultivation, and therefore can potentially be used in medical applications. - Highlights: • Solution blow spinning was used to fabricate nonwoven material based on VDF-TeFE. • The nonwoven material has complex spatial organization and high porosity. • It was established that the nonwoven material exhibits ferroelectric properties. • In vitro testing demonstrated that the material is non

  5. Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties

    International Nuclear Information System (INIS)

    A solution blow spinning technique is a method developed recently for making nonwoven webs of micro- and nanofibres. The principal advantage of this method compared to a more traditional electrospinning process is its significantly higher production rate. In this work, the solution blow spinning method was further developed to produce nonwoven polymeric scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride solution in acetone. A crucial feature of the proposed method is that high-voltage equipment is not required, which further improves the method's economics. Scanning electron microscopy analysis of the samples demonstrated that the surface morphology of the nonwoven materials is dependent on the polymer concentration in the spinning solution. It was concluded that an optimum morphology of the nonwoven scaffolds for medical applications is achieved by using a 5% solution of the copolymer. It was established that the scaffolds produced from the 5% solution have a fractal structure and anisotropic mechanical properties. X-ray diffraction, infrared spectroscopy, Raman spectroscopy and differential scanning calorimetry demonstrated that the fabricated nonwoven materials have crystal structures that exhibit ferroelectric properties. Gas chromatography has shown that the amount of acetone in the nonwoven material does not exceed the maximum allowable concentration of 0.5%. In vitro analysis, using the culture of motile cells, confirmed that the nonwoven material is non-toxic and does not alter the morpho-functional status of stem cells for short-term cultivation, and therefore can potentially be used in medical applications. - Highlights: • Solution blow spinning was used to fabricate nonwoven material based on VDF-TeFE. • The nonwoven material has complex spatial organization and high porosity. • It was established that the nonwoven material exhibits ferroelectric properties. • In vitro testing demonstrated that the material is non

  6. Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions

    International Nuclear Information System (INIS)

    The increasing use of biodegradable devices in tissue engineering and regenerative medicine means it is essential to study and understand their degradation behaviour. Accelerated degradation systems aim to achieve similar degradation profiles within a shorter period of time, compared with standard conditions. However, these conditions only partially mimic the actual situation, and subsequent analyses and derived mechanisms must be treated with caution and should always be supported by actual long-term degradation data obtained under physiological conditions. Our studies revealed that polycaprolactone (PCL) and PCL-composite scaffolds degrade very differently under these different degradation conditions, whilst still undergoing hydrolysis. Molecular weight and mass loss results differ due to the different degradation pathways followed (surface degradation pathway for accelerated conditions and bulk degradation pathway for simulated physiological conditions). Crystallinity studies revealed similar patterns of recrystallization dynamics, and mechanical data indicated that the scaffolds retained their functional stability, in both instances, over the course of degradation. Ultimately, polymer degradation was shown to be chiefly governed by molecular weight, crystallinity susceptibility to hydrolysis and device architecture considerations whilst maintaining its thermodynamic equilibrium

  7. POLYMER SCAFFOLDS BEARING AZOBENZENE —— POTENTIAL FOR OPTICAL INFORMATION STORAGE

    Institute of Scientific and Technical Information of China (English)

    Sφren Hvilsted; P.S. Ramanujam

    2001-01-01

    The fundamental optical storage mechanism of the laser light addressable azobenzene moiety is briefly introduced.A modular and flexible synthesis design furnishes polyester matrices covalently integrating cyanoazobenzene in regularly spaced side chains. Thin films of these materials are particularly well suited for holographic storage. Notable figures of merits of liquid crystalline polyesters are response time to blue-green laser light of the order of nanoseconds, storage capacity expressed as 5000 lines/mm, and high, permanent (almost nine years) diffraction efficiency of the order of 50% or greater,and erasability. The implications of the main chain nature for polyester morphology and for the permanency of the induced anisotropy are discussed. The design and methods of preparation of other significantly different polymer scaffolds supporting cyanoazobenzene are elaborated. Oligopeptides always result in amorphous materials, whereas copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these scaffolds affords materials that result in permanent anisotropy when exposed to interfering laser light.

  8. BIOMIMETIC SURFACE PREPARATION OF INERT POLYMER FILMS VIA GRAFTING LONG MONOALKYL CHAIN PHOSPHATIDYLCHOLINE

    Institute of Scientific and Technical Information of China (English)

    Peng-jun Wan; Dong-sheng Tan; Zheng-sheng Li; Xiao-qing Zhang; Jie-hua Li; Hong Tan

    2012-01-01

    To explore construction of novel mimicking biomembrane on biomaterials surfaces,a new polymerizable phosphatidylcholine containing a long monoalkyl chain ended with acryl group (AASOPC) was designed and synthesized,which was easily derived from the terminal amino group of 9-(2-amino-ethylcarbamoyl)-nonyl-l-phosphatidyl-choline (ASOPC) reacting with acryloyl chloride.The obtained AASOPC was grafted on poly(ethylene terephthalate) (PET) via surface-initiated atom-transfer radical polymerization (SI-ATRP) to form mimicking biomembrane.These modified surface structures of PET were investigated using water contact angle (WAC),X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).The results indicated that the new mimicking phosphatidylcholine biomembrane could be prepared on inert polymer surfaces by using the acryloyl phosphatidylcholine (AASOPC) via surface-initiated atom transfer radical polymerization (SI-ATRP).

  9. Factorial Study of Compressive Mechanical Properties and Primary In Vitro Osteoblast Response of PHBV/PLLA Scaffolds

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available For bone tissue regeneration, composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramics have been regarded as promising biomimetic systems. Polymer blends of poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and poly(L-lactic acid (PLLA can be used as the polymer matrix to control the degradation rate. In order to render the scaffolds osteoconductive, nano-sized hydroxyapatite (nHA particles can be incorporated into the polymer matrix. In the first part of this study, a factorial design approach to investigate the influence of materials on the initial compressive mechanical properties of the scaffolds was studied. In the second part, the protein adsorption behavior and the attachment and morphology of osteoblast-like cells (Saos-2 of the scaffolds in vitro were also studied. It was observed that nHA incorporated PHBV/PLLA composite scaffolds adsorbed more bovine serum albumin (BSA protein than PHBV or PHBV/PLLA scaffolds. In vitro studies also revealed that the attachment of human osteoblastic cells (SaOS-2 was significantly higher in nHA incorporated PHBV/PLLA composite scaffolds. From the SEM micrographs of nHA incorporated PHBV/PLLA composite scaffolds seeded with SaOS-2 cells after a 7-day cell culture period, it was observed that the cells were well expanded and spread in all directions on the scaffolds.

  10. Mechanical and in vitro performance of 13-93 bioactive glass scaffolds prepared by a polymer foam replication technique.

    Science.gov (United States)

    Fu, Qiang; Rahaman, Mohamed N; Bal, B Sonny; Brown, Roger F; Day, Delbert E

    2008-11-01

    A polymer foam replication technique was used to prepare porous scaffolds of 13-93 bioactive glass with a microstructure similar to that of human trabecular bone. The scaffolds, with a porosity of 85+/-2% and pore size of 100-500 microm, had a compressive strength of 11+/-1 MPa, and an elastic modulus of 3.0+/-0.5 GPa, approximately equal to the highest values reported for human trabecular bone. The strength was also considerably higher than the values reported for polymeric, bioactive glass-ceramic and hydroxyapatite constructs prepared by the same technique and with the equivalent level of porosity. The in vitro bioactivity of the scaffolds was observed by the conversion of the glass surface to a nanostructured hydroxyapatite layer within 7 days in simulated body fluid at 37 degrees C. Protein and MTT assays of in vitro cell cultures showed an excellent ability of the scaffolds to support the proliferation of MC3T3-E1 preosteoblastic cells, both on the surface and in the interior of the porous constructs. Scanning electron microscopy showed cells with a closely adhering, well-spread morphology and a continuous increase in cell density on the scaffolds during 6 days of culture. The results indicate that the 13-93 bioactive glass scaffolds could be applied to bone repair and regeneration. PMID:18519173

  11. Interfacial assembly of protein-polymer nano-conjugates into stimulus-responsive biomimetic protocells.

    Science.gov (United States)

    Huang, Xin; Li, Mei; Green, David C; Williams, David S; Patil, Avinash J; Mann, Stephen

    2013-01-01

    The mechanism of spontaneous assembly of microscale compartments is a central question for the origin of life, and has technological repercussions in diverse areas such as materials science, catalysis, biotechnology and biomedicine. Such compartments need to be semi-permeable, structurally robust and capable of housing assemblages of functional components for internalized chemical transformations. In principle, proteins should be ideal building blocks for the construction of membrane-bound compartments but protein vesicles with cell-like properties are extremely rare. Here we present an approach to the interfacial assembly of protein-based micro-compartments (proteinosomes) that are delineated by a semi-permeable, stimulus-responsive, enzymatically active, elastic membrane consisting of a closely packed monolayer of conjugated protein-polymer building blocks. The proteinosomes can be dispersed in oil or water, thermally cycled to temperatures of 70 °C, and partially dried and re-inflated without loss of structural integrity. As a consequence, they exhibit protocellular properties such as guest molecule encapsulation, selective permeability, gene-directed protein synthesis and membrane-gated internalized enzyme catalysis. PMID:23896993

  12. From Biological Cilia to Artificial Flow Sensors: Biomimetic Soft Polymer Nanosensors with High Sensing Performance.

    Science.gov (United States)

    Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Karavitaki, K Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P; Triantafyllou, Michael

    2016-01-01

    We report the development of a new class of miniature all-polymer flow sensors that closely mimic the intricate morphology of the mechanosensory ciliary bundles in biological hair cells. An artificial ciliary bundle is achieved by fabricating bundled polydimethylsiloxane (PDMS) micro-pillars with graded heights and electrospinning polyvinylidenefluoride (PVDF) piezoelectric nanofiber tip links. The piezoelectric nature of a single nanofiber tip link is confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). Rheology and nanoindentation experiments are used to ensure that the viscous properties of the hyaluronic acid (HA)-based hydrogel are close to the biological cupula. A dome-shaped HA hydrogel cupula that encapsulates the artificial hair cell bundle is formed through precision drop-casting and swelling processes. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. Functioning with principles analogous to the hair bundles, the sensors achieve a sensitivity and threshold detection limit of 300 mV/(m/s) and 8 μm/s, respectively. These self-powered, sensitive, flexible, biocompatibale and miniaturized sensors can find extensive applications in navigation and maneuvering of underwater robots, artificial hearing systems, biomedical and microfluidic devices. PMID:27622466

  13. Experimental characterization and modeling of ionic polymer-metal composites as biomimetic actuators, sensors, and artificial muscles

    Science.gov (United States)

    Wu, Yongxian

    Ionic polymer-metal composites (IPMCs) are soft bending actuators and sensors. A typical IPMC consists of a thin perfluorinated ionomer membrane, noble metal electrodes plated on both faces, and is neutralized with the necessary amount of cations. They respond to electric stimulus by generating large bending motions and produce electric signals upon sudden bending deformations. These actuation and sensing responses, which result from the coupled chemo-electro-mechanical interactions at the nano-scale level, depend on the structure of the ionomer, the morphology of the metal electrodes, the nature of the cations, and the degree of the hydration. IPMCs have been considered for potential applications in artificial muscles, robotic systems, medical devices, and other biomimetic applications. A series of systematic experimental characterizations are performed on both Nafion- and Flemion-based IPMCs in various cation forms. Compared with Nafion-based IPMCs, Flemion-based IPMCs with fine dendritic gold electrodes have higher ion-exchange capacity, better surface conductivity, higher hydration capacity, and higher longitudinal stiffness. Flemion-based IPMCs show a greater bending deformation towards the anode without back relaxation under a DC voltage. This displacement towards the anode is linearly related to the charge accumulation at the cathode. In contrast, Nafion-based IPMCs in alkali-metal cations initially have a fast bending towards the anode, followed by a slow relaxation in the opposite direction as charges continue to move towards the cathode boundary layer. Based on the understanding of the factors that affect IPMCs' performance, novel methods to tailor the IPMCs' electro-mechanical responses are developed. By modifying the associated cations, i.e., introducing various single cations (including alkali-metal, alkyl-ammonium, or multivalent metal cations) and cation combinations, diverse actuation behaviors can be obtained and optimized. The actuation motions of

  14. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.

    Science.gov (United States)

    Alge, Daniel L; Chu, Tien-Min Gabriel

    2010-08-01

    This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating a pre-set cement with a reactive polymer and then cross-linking the polymer in situ. This method can be used to reinforce 3D calcium phosphate cement scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as a model reinforcing polymer. The compressive strength of a 3D scaffold comprised of orthogonally intersecting beams was increased from 0.31 +/- 0.06 MPa to 1.65 +/- 0.13 MPa using PEGDA 600. In addition, the mechanical properties of reinforced cement were characterized using three PEGDA molecular weights (200, 400, and 600 Da) and three cement powder to liquid (P/L) ratios (0.8, 1.0, and 1.43). Higher molecular weight increased reinforcement efficacy, and P/L controlled cement porosity and determined the extent of polymer incorporation. Although increasing polymer incorporation resulted in a transition from brittle, cement-like behavior to ductile, polymer-like behavior, maximizing polymer incorporation was not advantageous. Polymerization shrinkage produced microcracks in the cement, which reduced the mechanical properties. The most effective reinforcement was achieved with P/L of 1.43 and PEGDA 600. In this group, flexural strength increased from 0.44 +/- 0.12 MPa to 7.04 +/- 0.51 MPa, maximum displacement from 0.05 +/- 0.01 mm to 1.44 +/- 0.17 mm, and work of fracture from 0.64 +/- 0.10 J/m(2) to 677.96 +/- 70.88 J/m(2) compared to non-reinforced controls. These results demonstrate the effectiveness of our novel reinforcement method, as well as its potential for fabricating reinforced 3D calcium phosphate cement scaffolds useful for bone tissue engineering. PMID:20186776

  15. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  16. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.

    Science.gov (United States)

    Fan, Mei-Rong; Gong, Mei; Da, Lin-Cui; Bai, Lin; Li, Xiu-Qun; Chen, Ke-Fei; Li-Ling, Jesse; Yang, Zhi-Ming; Xie, Hui-Qi

    2014-02-01

    Acellular porcine small intestinal submucosa (SIS) has been successfully used for reconstructing esophagus with half circumferential defects. However, repairing full circumferential esophageal defects with SIS has been restricted due to the latter's poor mechanical properties. In the present study, synthetic polyesters biomaterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(lactide-co-glycolide) (PLGA) have been used to improve the mechanical properties of SIS. Feasibility of SIS/PHBHHx-PLGA composite material scaffold for esophageal tissue engineering has been assessed through a series of testing. The appropriate mixing ratio of PHBHHx and PLGA polymers has been determined as 5:5 by mechanical testing and in vitro degradation experiment. The morphology of constructed membranous and tubular scaffolds was also characterized. As confirmed by enzyme-linked immunosorbent assay, the contents of VEGF and TGF-β have respectively reached 657 ± 18 ng mL(-1) and 130 ± 4 pg mL(-1) within the SIS/PHBHHx-PLGA specimens. Biocompatibility of the SIS/PHBHHx-PLGA specimens with rat bone marrow mesenchymal stem cells (MSCs) was also evaluated by scanning electron microscopy and a live-dead cell viability assay. Actin filaments of MSCs on the composite materials were labeled. Biological safety of the extract from SIS/PHBHHx-PLGA specimens, measured as hemolysis rate, was all lower than 5%. Compared with SIS and SIS/PHBHHx-PLGA specimens, inflammatory reaction provoked by the PHBHHx-PLGA specimens in rats was however more severe. Our results have suggested that SIS/PHBHHx-PLGA composite material can offer a new approach for esophageal tissue engineering. PMID:24457267

  17. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers

    International Nuclear Information System (INIS)

    Acellular porcine small intestinal submucosa (SIS) has been successfully used for reconstructing esophagus with half circumferential defects. However, repairing full circumferential esophageal defects with SIS has been restricted due to the latter's poor mechanical properties. In the present study, synthetic polyesters biomaterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(lactide-co-glycolide) (PLGA) have been used to improve the mechanical properties of SIS. Feasibility of SIS/PHBHHx-PLGA composite material scaffold for esophageal tissue engineering has been assessed through a series of testing. The appropriate mixing ratio of PHBHHx and PLGA polymers has been determined as 5:5 by mechanical testing and in vitro degradation experiment. The morphology of constructed membranous and tubular scaffolds was also characterized. As confirmed by enzyme-linked immunosorbent assay, the contents of VEGF and TGF-β have respectively reached 657 ± 18 ng mL−1 and 130 ± 4 pg mL−1 within the SIS/PHBHHx-PLGA specimens. Biocompatibility of the SIS/PHBHHx-PLGA specimens with rat bone marrow mesenchymal stem cells (MSCs) was also evaluated by scanning electron microscopy and a live–dead cell viability assay. Actin filaments of MSCs on the composite materials were labeled. Biological safety of the extract from SIS/PHBHHx-PLGA specimens, measured as hemolysis rate, was all lower than 5%. Compared with SIS and SIS/PHBHHx-PLGA specimens, inflammatory reaction provoked by the PHBHHx-PLGA specimens in rats was however more severe. Our results have suggested that SIS/PHBHHx-PLGA composite material can offer a new approach for esophageal tissue engineering. (paper)

  18. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    International Nuclear Information System (INIS)

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds

  19. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  20. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Science.gov (United States)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  1. Mechanically Stiff, Zinc Cross-Linked Nanocomposite Scaffolds with Improved Osteostimulation and Antibacterial Properties.

    Science.gov (United States)

    Sehgal, Rekha R; Carvalho, Edmund; Banerjee, Rinti

    2016-06-01

    Nanocomposite scaffolds are studied widely due to their resemblance with the natural extracellular matrix of bone; but their use as a bone tissue engineered scaffold is clinically hampered due to low mechanical stiffness, inadequate osteoconduction, and graft associated infections. The purpose of the current study was the development of a mechanically stiff nanocomposite scaffold using biodegradable gellan and xanthan polymers reinforced with bioglass nanoparticles (nB) (Size: 20-120 nm). These nanocomposite scaffolds were cross-linked with zinc sulfate ions to improve their osteoconduction and antibacterial properties for the regeneration of a functional bone. The compressive strength and modulus of the optimized nanocomposite scaffold (1% w/v polymer reinforced with 4%w/v nB nanoparticles, cross-linked with 1.5 mM zinc sulfate) was 1.91 ± 0.31 MPa and 20.36 ± 1.08 MPa, respectively, which was comparable to the trabecular bone and very high compared to nanocomposite scaffolds reported in earlier studies. Further, in vitro simulated body fluid (SBF) study suggested deposition of biomimetic apatite on the surface of zinc cross-linked nanocomposite scaffolds confirming their bioactivity. MG 63 osteoblast-like cells cultured with the nanocomposite scaffolds responded to matrix stiffness with better adhesion, spreading and cellular interconnections compared to the polymeric gellan and xanthan scaffolds. Incorporation of bioglass nanoparticles and zinc cross-linker in nanocomposite scaffolds demonstrated 62% increment in expression of alkaline phosphatase activity (ALP) and 150% increment in calcium deposition of MG 63 osteoblast-like cells compared to just gellan and xanthan polymeric scaffolds. Furthermore, zinc cross-linked nanocomposite scaffolds significantly inhibited the growth of Gram-positive Bacillus subtilis (70% reduction) and Gram-negative Escherichia coli (81% reduction) bacteria. This study demonstrated a facile approach to tune the mechanical stiffness

  2. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration

    OpenAIRE

    Sirivisoot, Sirinrath; Pareta, Rajesh; Harrison, Benjamin S.

    2014-01-01

    It has been established that nerves and skeletal muscles respond and communicate via electrical signals. In regenerative medicine, there is current emphasis on using conductive nanomaterials to enhance electrical conduction through tissue-engineered scaffolds to increase cell differentiation and tissue regeneration. We investigated the role of chemically synthesized polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) conductive polymer nanofibres for conductive gels. To mimic a na...

  3. Biomimetic Construction and Seed Cells of Small Diameter Vascular Scaffolds%小直径血管支架的仿生构建及其种子细胞

    Institute of Scientific and Technical Information of China (English)

    张超颖; 李敏

    2012-01-01

    静电纺丝仿生天然细胞外基质(ECM)结构,所制备的高度多孔、高比表面积的纳米级(50~500nm)纤维赋予了丰富的分子架构和生化信号,为种子细胞提供理想的生长微环境.不同组分、纤维尺寸及取向和种子细胞类型,可以裁剪获得不同生化和力学性能的电纺支架细胞复合物.总结了血管组织工程仿生ECM的设计与构建,并强调与支架复合的种子细胞在血管组织工程的作用.%Electrospinning can produce a nanoscale fibers with macroporous as well as high surface area to volume ratio. These nanofibers closely resemble the structure and size scale of the native ECM (50 to 500 nm) endowed with both topographical and biochemical signals may provide an optimal microenvironment for the seeded cells. With various compositions , fiber dimensions, fiber orientations and seed cells types, the chemical, biological and mechanical properties of the electrospun scaffolds can be tailored. This covers the design and control of the electrospun biomimetic ECM process, and highlights the role of seed cells on scaffolds in the vascular tissue engineering.

  4. Enzymatically synthesized inorganic polymers as morphogenetically active bone scaffolds: application in regenerative medicine.

    Science.gov (United States)

    Wang, Xiaohong; Schröder, Heinz C; Müller, Werner E G

    2014-01-01

    In recent years a paradigm shift in understanding of human bone formation has occurred that starts to change current concepts in tissue engineering of bone and cartilage. New discoveries revealed that fundamental steps in biomineralization are enzyme driven, not only during hydroxyapatite deposition, but also during initial bioseed formation, involving the transient deposition and subsequent transformation of calcium carbonate to calcium phosphate mineral. The principal enzymes mediating these reactions, carbonic anhydrase and alkaline phosphatase, open novel targets for pharmacological intervention of bone diseases like osteoporosis, by applying compounds acting as potential activators of these enzymes. It is expected that these new findings will give an innovation boost for the development of scaffolds for bone repair and reconstruction, which began with the use of bioinert materials, followed by bioactive materials and now leading to functional regenerative tissue units. These new developments have become possible with the discovery of the morphogenic activity of bioinorganic polymers, biocalcit, bio-polyphosphate and biosilica that are formed by a biogenic, enzymatic mechanism, a driving force along with the development of novel rapid-prototyping three-dimensional (3D) printing methods and bioprinting (3D cell printing) techniques that may allow a fabrication of customized implants for patients suffering in bone diseases in the future. PMID:25376489

  5. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    Science.gov (United States)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  6. Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

    OpenAIRE

    Balazs Farkas; Marina Rodio; Ilaria Romano; Alberto Diaspro; Romuald Intartaglia; Szabolcs Beke

    2015-01-01

    We report on the optical fabrication approach of preparing free-standing composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles were dispersed into the liquid polymer resin prior to the photocuring process using MPExSL. The resin is poly(propylene...

  7. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  8. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    Science.gov (United States)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the

  9. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan; Wolff, Anders; Emnéus, Jenny; Aspegren, Anders; Dufva, Martin

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due to...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  10. Stromal cell derived factor-1α (SDF-1α) directed chemoattraction of transiently CXCR4 overexpressing mesenchymal stem cells into functionalized three-dimensional biomimetic scaffolds

    DEFF Research Database (Denmark)

    Thieme, S; Ryser, Martin; Gentsch, Marcus;

    2009-01-01

    Three-dimensional (3D) bone substitute material should not only serve as scaffold in large bone defects but also attract mesenchymal stem cells, a subset of bone marrow stromal cells (BMSCs) that are able to form new bone tissue. An additional crucial step is to attract BMSCs from the surface int...

  11. Polymer-conjugated albumin and fibrinogen composite hydrogels as cell scaffolds designed for affinity-based drug delivery.

    Science.gov (United States)

    Oss-Ronen, Liat; Seliktar, Dror

    2011-01-01

    Serum albumin was conjugated to poly-(ethylene glycol) (PEG) and cross-linked to form mono-PEGylated albumin hydrogels. These hydrogels were used as a basis for drug carrying tissue engineering scaffold materials, based on the natural affinity of various drugs and compounds for the tethered albumin in the polymer network. The results of the drug release validation experiments showed that the release kinetics of the drugs from the mono-PEGylated albumin hydrogels were controlled by the molecular weight (MW) of PEG conjugated to the albumin protein, the drug MW and its inherent affinity for albumin. Composite hydrogels containing both mono-PEGylated albumin and PEGylated fibrinogen were used specifically for three-dimensional (3D) cell culture scaffolds, with inherent bioactivity, proteolytic biodegradability and controlled drug release properties. The specific characteristics of these complex hydrogels were governed by the ratio between the concentrations of each protein, the addition of free PEG diacrylate (PEG DA) molecules to the hydrogel matrix and the MW of the PEG conjugated to each protein. Comprehensive characterization of the drug release and degradation properties, as well as 3D cell culture experiments using these composite materials, demonstrated the effectiveness of this combined approach in creating a tissue engineering scaffold material with controlled drug release features. PMID:20643230

  12. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    Energy Technology Data Exchange (ETDEWEB)

    Watson, N.J. [School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT (United Kingdom); Johal, R.K. [Division of Immunology, School of Molecular Medical Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Glover, Z. [School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT (United Kingdom); Reinwald, Y.; White, L.J. [School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Ghaemmaghami, A.M. [Division of Immunology, School of Molecular Medical Sciences, Queen' s Medical Centre, University of Nottingham, Nottingham NG7 2UH (United Kingdom); Morgan, S.P. [Electrical Systems and Optics Research Division, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Rose, F.R.A.J. [School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Povey, M.J.W. [School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT (United Kingdom); Parker, N.G., E-mail: nick.parker@ncl.ac.uk [School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT (United Kingdom); School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2013-12-01

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm{sup −2} and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure.

  13. Post-processing of polymer foam tissue scaffolds with high power ultrasound: A route to increased pore interconnectivity, pore size and fluid transport

    International Nuclear Information System (INIS)

    The aim of this work is to demonstrate that the structural and fluidic properties of polymer foam tissue scaffolds, post-fabrication but prior to the introduction of cells, can be engineered via exposure to high power ultrasound. Our analysis is supported by measurements of fluid uptake during insonification and imaging of the scaffold microstructure via X-ray computed tomography, scanning electron microscopy and acoustic microscopy. The ultrasonic treatment is performed with a frequency of 30 kHz, average intensities up to 80,000 Wm−2 and exposure times up to 20 h. The treatment is found to increase the mean pore size by over 10%. More striking is the improvement in fluid uptake: for scaffolds with only 40% water uptake via standard immersion techniques, we can routinely achieve full saturation of the scaffold over approximately one hour of exposure. These desirable modifications occur with negligible loss of scaffold integrity and mass, and are optimized when the ultrasound treatment is coupled to a pre-wetting stage with ethanol. Our findings suggest that high power ultrasound is highly targeted towards flow obstructions in the scaffold architecture, thereby providing an efficient means to promote pore interconnectivity and fluid transport in thick foam tissue scaffolds. - Highlights: • We expose thick PLA foam tissue scaffolds to high power ultrasound. • This treatment both accelerates and enhances the uptake of fluid into the scaffold. • It leads to significant increases in the mean pore size, pore interconnectivity and porosity. • The ultrasonic treatment is most effective when the scaffold is pre-wet with ethanol. • We demonstrate the use of acoustic microscopy to characterize the scaffold microstructure

  14. Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Liu, Penghong; Zhang, Caidan; Qin, Xiaohong; Butcher, Jonathan T

    2016-07-01

    Nanofibrous scaffolds with defined architectures and anisotropic mechanical properties are attractive for many tissue engineering and regenerative medicine applications. Here, a novel electrospinning system is developed and implemented to fabricate continuous processable uniaxially aligned nanofiber yarns (UANY). UANY were processed into fibrous tissue scaffolds with defined anisotropic material properties using various textile-forming technologies, i.e., braiding, weaving, and knitting techniques. UANY braiding dramatically increased overall stiffness and strength compared to the same number of UANY unbraided. Human adipose derived stem cells (HADSC) cultured on UANY or woven and knitted 3D scaffolds aligned along local fiber direction and were >90% viable throughout 21 days. Importantly, UANY supported biochemical induction of HADSC differentiation toward smooth muscle and osteogenic lineages. Moreover, we integrated an anisotropic woven fiber mesh within a bioactive hydrogel to mimic the complex microstructure and mechanical behavior of valve tissues. Human aortic valve interstitial cells (HAVIC) and human aortic root smooth muscle cells (HASMC) were separately encapsulated within hydrogel/woven fabric composite scaffolds for generating scaffolds with anisotropic biomechanics and valve ECM like microenvironment for heart valve tissue engineering. UANY have great potential as building blocks for generating fiber-shaped tissues or tissue microstructures with complex architectures. PMID:27304080

  15. Rapid transfer of hierarchical microstructures onto biomimetic polymer surfaces with gradually tunable water adhesion from slippery to sticky superhydrophobicity

    Science.gov (United States)

    Chen, An-Fu; Huang, Han-Xiong

    2016-02-01

    Biomimetic superhydrophobic surfaces are generally limited to extremely high or quite low water droplet adhesion. The present work proposes flexible template replication methods for bio-inspired polypropylene (PP) surfaces with microtopographies and gradually tunable water droplet adhesion in one step using microinjection compression molding (μ-ICM). A dual-level microstructure appears on PP surfaces prepared using a flexible template. The microstructures obtained under low and high mold temperatures exhibit low-aspect-ratio (AR) micropillars with semi-spherical top and high-AR ones with conical top, resulting in the surfaces with high-adhesive hydrophobicity and low-adhesive superhydrophobicity, respectively. Further, silica nanoparticles (SNPs) coated on templates are transferred to viscous state-dominated melt during its filling in μ-ICM, and firmly adhered to the skin of the replicas, forming hierarchical microstructures on PP surfaces. The hydrophilic and hydrophobic SNPs on high-AR micropillared surfaces help achieve extremely high (petal effect) and extremely low (lotus effect) adhesion on superhydrophobic surfaces, respectively. The hybrid SNPs on low-AR micropillars change the Wenzel state-dominated surface to Cassie-Baxter state-dominated surface and preserves medium adhesion with superhydrophobicity. The proposed methods for fast and mass replication of superhydrophobic surfaces with the dual-level or hierarchical microtopography can be excellent candidates for the development of microfluidics, sensors, and labs on chip.

  16. 胶原多糖基纳米羟基磷灰石仿生骨支架材料的研制%Preparation of mineralized collagen-polyose based biomimetic scaffold material for bone tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    陈学忠; 李志宏; 李瑞欣; 郭勇; 刘璐; 王亮; 张西正

    2011-01-01

    目的 依据仿生原理制备新型的胶原多糖基纳米羟基磷灰石(HA)复合骨支架材料,并与成骨细胞复合培养,检测其细胞相容性.方法 以胶原分子与透明质酸钠的交联产物为模板,调制钙磷盐在液相中沉积其上,得到矿化胶原多糖基复合材料;采用液相分离法与少量聚乳酸复合进一步制备成为三维多孔支架,使用成骨细胞(MC3T3-E1)接种于该支架上培养.用X-ray衍射、扫描电镜、万能材料测试机等对材料进行观察和测试分析;并用倒置相差显微镜、荧光显微镜、扫描电镜、CCK-8细胞计数试剂盒、碱性磷酸酶(ALP)活性测定等观察和分析细胞在支架材料中的生长、分化情况.结果 胶原多糖基纳米HA仿生复合材料的晶粒度较低,晶体极为细小,与天然骨中羟基磷灰石的组装结构类似;该复合支架为多孔状,孔隙率约82%,孔径大小为200~650 μm;抗压性能好,成骨细胞可在其上贴附、生长和繁殖,并表现出较高的成骨活性.结论 所制备的胶原多糖基纳米HA仿生骨支架材料,无论从组分和结构上均与天然松质骨类似,与成骨细胞相容性好,可望成为较理想的骨组织工程支架材料.%Objective To prepare a novel bioactive and degradable scaffold with mineralized collagenpolyose based composite by biomimetic synthesis for bone tissue engineering and explore the compatibility of osteoblast culturing on the scaffold.Methods Using the cross-linking product of collagenⅠ and sodium hyaluronate as the template,the calcium phosphate was deposited on it to produce a mineralized composite.The 3-D porous scaffolds were prepared by liquid phase separation after the mineralized composite combining with polylactic acid (PLA) and NaCl.The materials and scaffolds were investigated by x-ray diffraction (XRD),scanning electronic microscopy (SEM) and universal testing machine.In addition,inverted microscope,fluorescence microscope

  17. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  18. Effects of monomer functionality on performances of scaffolding morphologic transmission gratings recorded in polymer dispersed liquid crystals

    International Nuclear Information System (INIS)

    The effects of monomer functionality on performances of holographic polymer dispersed liquid crystal (HPDLC) transmission gratings are systematically investigated. Acrylate monomers with an average functionality ranging from 2.0 to 5.0 are used to prepare these samples. We find scaffolding morphologic transmission gratings (characterized by a high phase separation degree, a well alignment of LCs and low scattering loss) can be obtained irrespective of the monomer functionality, although the exact optimal curing intensity varies. The temporal evolution of the grating formation is studied and the onset time of the LC phase separation decreases significantly with the increase in average monomer functionality. It is also shown that the gratings prepared from low average functionality monomers require a comparatively low switch-off electric field (∼8 V μm−1) whilst suffering from mechanical fragility and long-term instability. Our results not only provide a complete understanding of scaffolding morphologic gratings in terms of the material composition effect, but also provide insight into the formation mechanisms of non-droplet morphologic HPDLC gratings. (paper)

  19. Imaging Pseudomonas aeruginosa Biofilm Extracellular Polymer Scaffolds with Amphiphilic Carbon Dots.

    Science.gov (United States)

    Ritenberg, Margarita; Nandi, Sukhendu; Kolusheva, Sofiya; Dandela, Rambabu; Meijler, Michael M; Jelinek, Raz

    2016-05-20

    Biofilm formation is a critical facet of pathogenesis and resilience of human, animal, and plant bacteria. Extracellular polymeric substances (EPS) constitute the physical scaffolding for bacterial biofilms and thus play central roles in their development and virulence. We show that newly synthesized amphiphilic fluorescent carbon dots (C-dots) readily bind to the EPS scaffold of Pseudomonas aeruginosa, a major biofilm-forming pathogen, resulting in unprecedented microscopic visualization of the EPS structural features. Fluorescence microscopy analysis utilizing the C-dots reveals that the P. aeruginosa EPS matrix exhibits a remarkable dendritic morphology. The experiments further illuminate the growth kinetics of the EPS and the effect of external factors such as temperature. We also show that the amphiphilic C-dot platform enabled screening of substances disrupting biofilm development, specifically quorum sensing inhibitors. PMID:26882175

  20. Multilayered Scaffolds for Osteochondral Tissue Engineering Based on Bioactive Glass and Biodegradable Polymers

    OpenAIRE

    Nooeaid, Patcharakamon

    2014-01-01

    Injuries of the articular cartilage may penetrate to the underlying subchondral bone, forming osteochondral defects which have a limited capacity of self-regeneration. Accompanied with limited surgical treatments and the fact that the causes are not understood well, an approach based in tissue engineering becomes a promising strategy for osteochondral repair. Such tissue engineering approaches are based on the combination of synthetic scaffolds, suitable cell sources and active molecules or g...

  1. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds

    Directory of Open Access Journals (Sweden)

    Lai GJ

    2015-01-01

    Full Text Available Guo-Jyun Lai,1,* KT Shalumon,1,* Jyh-Ping Chen1,2 1Department of Chemical and Materials Engineering, 2Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan, Republic of China *These authors contributed equally to this work Abstract: Incorporation of nanohydroxyapatite (nHAP within a chitosan (CS/silk fibroin (SF nanofibrous membrane scaffold (NMS may provide a favorable microenvironment that more closely mimics the natural bone tissue physiology and facilitates enhanced osteogensis of the implanted cell population. In this study, we prepared pristine CS/SF NMS, composite CS/SF/nHAP NMS containing intrafibrillar nHAP by in situ blending of 10% or 30% nHAP before the electrospinning step, and composite CS/SF/nHAP NMS containing extrafibrillar nHAP by depositing 30% nHAP through alternative soaking surface mineralization. We investigated the effect of the incorporation of HAP nanoparticles on the physicochemical properties of pristine and composite NMS. We confirmed the presence of ~30 nm nHAP in the composite nanofibrous membranes by thermogravimetry analysis (TGA, X-ray diffraction (XRD, and scanning electron microscopy (SEM, either embedded in or exposed on the nanofiber. Nonetheless, the alternative soaking surface mineralization method drastically influenced the mechanical properties of the NMS with 88% and 94% drop in Young’s modulus and ultimate maximum stress. Using in vitro cell culture experiments, we investigated the effects of nHAP content and location on proliferation and osteogenic differentiation of human bone marrow mesenchymal stem cells (hMSCs. The proliferation of hMSCs showed no significant difference among pristine and composite NMS. However, the extent of osteogenic differentiation of hMSCs was found to be positively correlated with the content of nHAP in the NMS, while its location within the nanofiber played a less significant role. In vivo experiments were carried

  2. “Clickable” polymer nanoparticles: a modular scaffold for surface functionalization

    OpenAIRE

    Krovi, Sai Archana; Smith, DeeDee; Nguyen, SonBinh T.

    2010-01-01

    The versatility of copper-catalyzed alkyne-azide coupling (CuAAC) in functionalizing drug-loaded polymer nanoparticles is demonstrated via the modification of surfaces of acetylene-functionalized PNPs with folate, biotin, and gold nanoparticles.

  3. Colorimetric biomimetic sensor systems based on molecularly imprinted polymer membranes for highly-selective detection of phenol in environmental samples

    Directory of Open Access Journals (Sweden)

    Sergeyeva T. A.

    2014-05-01

    Full Text Available Aim. Development of an easy-to-use colorimetric sensor system for fast and accurate detection of phenol in envi- ronmental samples. Methods. Technique of molecular imprinting, method of in situ polymerization of molecularly imprinted polymer membranes. Results. The proposed sensor is based on free-standing molecularly imprinted polymer (MIP membranes, synthesized by in situ polymerization, and having in their structure artificial binding sites capable of selective phenol recognition. The quantitative detection of phenol, selectively adsorbed by the MIP membranes, is based on its reaction with 4-aminoantipyrine, which gives a pink-colored product. The intensity of staining of the MIP membrane is proportional to phenol concentration in the analyzed sample. Phenol can be detected within the range 50 nM–10 mM with limit of detection 50 nM, which corresponds to the concentrations that have to be detected in natural and waste waters in accordance with environmental protection standards. Stability of the MIP-membrane-based sensors was assessed during 12 months storage at room temperature. Conclusions. The sensor system provides highly-selective and sensitive detection of phenol in both mo- del and real (drinking, natural, and waste water samples. As compared to traditional methods of phenol detection, the proposed system is characterized by simplicity of operation and can be used in non-laboratory conditions.

  4. 3D conductive nanocomposite scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Shahini A

    2013-12-01

    Full Text Available Aref Shahini,1 Mostafa Yazdimamaghani,2 Kenneth J Walker,2 Margaret A Eastman,3 Hamed Hatami-Marbini,4 Brenda J Smith,5 John L Ricci,6 Sundar V Madihally,2 Daryoosh Vashaee,1 Lobat Tayebi2,7 1School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, 2School of Chemical Engineering, 3Department of Chemistry, 4School of Mechanical and Aerospace Engineering, 5Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; 6Department of Biomaterials and Biomimetics, New York University, New York, NY; 7School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK, USA Abstract: Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene poly(4-styrene sulfonate (PEDOT:PSS, in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent

  5. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering. PMID:23507924

  6. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  7. Arg-Gly-Asp (RGD) Modified Biomimetic Polymeric Materials

    Institute of Scientific and Technical Information of China (English)

    Xufeng NIU; Yuanliang WANG; Yanfeng LUO; Juan XIN; Yonggang LI

    2005-01-01

    The new generation of biomaterials focuses on the design of biomimetic polymeric materials that are capable of eliciting specific cellular responses and directing new tissue formation. Since Arg-Gly-Asp (RGD) sequences have been found to promote cell adhesion in 1984, numerous polymers have been functionalized with RGD peptides for tissue engineering applications. This review gave the advance in RGD modified biomimetic polymeric materials,focusing on the mechanism of RGD, the surface and bulk modification of polymer with RGD peptides and the evaluation in vitro and in vivo of the modified biomimetic materials.

  8. Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints.

    Science.gov (United States)

    Levingstone, Tanya J; Ramesh, Ashwanth; Brady, Robert T; Brama, Pieter A J; Kearney, Clodagh; Gleeson, John P; O'Brien, Fergal J

    2016-05-01

    Developing repair strategies for osteochondral tissue presents complex challenges due to its interfacial nature and complex zonal structure, consisting of subchondral bone, intermediate calcified cartilage and the superficial cartilage regions. In this study, the long term ability of a multi-layered biomimetic collagen-based scaffold to repair osteochondral defects is investigated in a large animal model: namely critical sized lateral trochlear ridge (TR) and medial femoral condyle (MC) defects in the caprine stifle joint. The study thus presents the first data in a clinically applicable large animal model. Scaffold fixation and early integration was demonstrated at 2 weeks post implantation. Macroscopic analysis demonstrated improved healing in the multi-layered scaffold group compared to empty defects and a market approved synthetic polymer osteochondral scaffold groups at 6 and 12 months post implantation. Radiological analysis demonstrated superior subchondral bone formation in both defect sites in the multi-layered scaffold group as early as 3 months, with complete regeneration of subchondral bone by 12 months. Histological analysis confirmed the formation of well-structured subchondral trabecular bone and hyaline-like cartilage tissue in the multi-layered scaffold group by 12 months with restoration of the anatomical tidemark. Demonstration of improved healing following treatment with this natural polymer scaffold, through the recruitment of host cells with no requirement for pre-culture, shows the potential of this device for the treatment of patients presenting with osteochondal lesions. PMID:26901430

  9. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  10. On-Demand Guided Bone Regeneration with Microbial Protection of Ornamented SPU Scaffold with Bismuth-Doped Single Crystalline Hydroxyapatite: Augmentation and Cartilage Formation.

    Science.gov (United States)

    Selvakumar, M; Srivastava, Priyanka; Pawar, Harpreet Singh; Francis, Nimmy K; Das, Bodhisatwa; Sathishkumar, G; Subramanian, Bhuvaneshwaran; Jaganathan, Saravana Kumar; George, Gibin; Anandhan, S; Dhara, Santanu; Nando, Golok B; Chattopadhyay, Santanu

    2016-02-17

    Guided bone regeneration (GBR) scaffolds are futile in many clinical applications due to infection problems. In this work, we fabricated GBR with an anti-infective scaffold by ornamenting 2D single crystalline bismuth-doped nanohydroxyapatite (Bi-nHA) rods onto segmented polyurethane (SPU). Bi-nHA with high aspect ratio was prepared without any templates. Subsequently, it was introduced into an unprecedented synthesized SPU matrix based on dual soft segments (PCL-b-PDMS) of poly(ε-caprolactone) (PCL) and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, undoped pristine nHA rods were also ornamented into it. The enzymatic ring-opening polymerization technique was adapted to synthesize soft segments of PCL-b-PDMS copolymers of SPU. Structure elucidation of the synthesized polymers is done by nuclear magnetic resonance spectroscopy. Sparingly, Bi-nHA ornamented scaffolds exhibit tremendous improvement (155%) in the mechanical properties with excellent antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast cells (in vitro), the scaffolds were implanted in rabbits by subcutaneous and intraosseous (tibial) sites. Various histological sections reveal the signatures of early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks of the critical defects filled with ornamented scaffold compared to SPU scaffold. This implies osteogenic potential and ability to provide an adequate biomimetic microenvironment for mineralization for GBR of the scaffolds. Organ toxicity studies further confirm that no tissue architecture abnormalities were observed in hepatic, cardiac, and renal tissue sections. This finding manifests the feasibility of fabricating a mechanically adequate nanofibrous SPU scaffold by a biomimetic strategy and the advantages of Bi

  11. Biomimetic folding particle chains

    International Nuclear Information System (INIS)

    Full text: The sequence of the amino acids in proteins dictates their folded 3-D structure. We have recently by simulations shown that this principle can be applied to flexible strings of isotropically interacting particles with at least one attractive patchy interaction, allowing the design of new materials and structures. Our goal is now to realize this directed self-folding on a colloidal size scale to study the folding in real time in real space. We discuss our use of polymer brushes, depletion interactions and liquid-interface scaffold chemistry to realize the goal. (author)

  12. Enhancing the bioactivity of Poly(lactic-co-glycolic acid scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model

    Directory of Open Access Journals (Sweden)

    Wang DX

    2013-05-01

    Full Text Available De-Xin Wang,1,* Yao He,2,* Long Bi1,* Ze-Hua Qu,2 Ji-Wei Zou,1 Zhen Pan,2 Jun-Jun Fan,1 Liang Chen,2 Xin Dong,1 Xiang-Nan Liu,2 Guo-Xian Pei,1 Jian-Dong Ding,21Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China; 2State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China*These authors contributed equally to this workPurpose: Poly(lactic-co-glycolic acid (PLGA is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds.Methods: PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed.Results: In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in

  13. Feasibility of ceramic-polymer composite cryogels as scaffolds for bone tissue engineering.

    Science.gov (United States)

    Rodriguez-Lorenzo, Luis M; Saldaña, Laura; Benito-Garzón, Lorena; García-Carrodeguas, Raul; de Aza, Salvador; Vilaboa, Nuria; Román, Julio San

    2012-06-01

    The purpose of the current study was to investigate whether the cryopolymerization technique is capable of producing suitable scaffolds for bone tissue engineering. Cryopolymers made of 2-hydroxyethyl methacrylate and acrylic acid with (W1 and W20) and without (W0) wollastonite particles were prepared. The elastic modulus of the specimens rose one order of magnitude from W1 to W20. Total porosity reached 56% for W0, 72% for W1 and 36% for W20, with pore sizes of up to 2 mm, large interconnection sizes of up to 1 mm and small interconnection sizes of 50-80 µm on dry specimens. Cryogels swell up to 224 ± 17% for W0, 315 ± 18% for W1 and 231 ± 27% for W20 specimens, while maintaining the integrity of the bodies. Pore sizes > 5 mm can be observed for swollen specimens. The biocompatibility of the samples was tested using human mesenchymal stem cells isolated from bone marrow and adipose tissues. Both types of cells attached and grew on the three tested substrates, colonized their inner regions and organized an extracellular cell matrix. Fibronectin and osteopontin levels decreased in the media from cells cultured on W20 samples, likely due to increased binding on the ECM deposited by cells. The osteoprotegerin-to-receptor activator of nuclear factor-κB ligand secretion ratios increased with increasing wollastonite content. Altogether, these results indicate that an appropriate balance of surface properties and structure that favours stromal cell colonization in the porous cryogels can be achieved by modulating the amount of wollastonite. PMID:21800433

  14. Composite Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Min Wang

    2006-01-01

    Full Text Available Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid and poly(lactic acid-co-glycolic acid are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the pore surface of polymer scaffolds. This bioceramic phase renders the scaffolds bioactive and also strengthens the scaffolds. There are a number of methods that can be used to produce bioceramic-polymer composite scaffolds. This paper gives an overview of our efforts in developing composite scaffolds for bone tissue engineering.

  15. MODULATION OF OSTEOGENIC PROPERTIES OF BIODEGRADABLE POLYMER/EXTRACELLULAR MATRIX COMPOSITE SCAFFOLDS GENERATED WITH A FLOW PERFUSION BIOREACTOR

    OpenAIRE

    Liao, Jiehong; Guo, Xuan; Nelson, Dan; Kasper, F. Kurtis; Mikos, Antonios G.

    2010-01-01

    In this study, composite scaffolds consisting of both synthetic and natural components with controllable properties were generated by incorporating mineralized extracellular matrix (ECM) and electrospun poly(ε-caprolactone) (PCL) microfiber scaffolds. Mesenchymal stem cells (MSCs) were cultured on PCL scaffolds under flow perfusion conditions with culture medium supplemented with dexamethasone to investigate the effect of culture duration on mineralized extracellular matrix deposition. MSCs d...

  16. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals †

    KAUST Repository

    Wang, Mingfeng

    2009-12-15

    We report the incorporation of various inorganic nanoparticles (NPs) (PbS, LaOF, LaF3, and TiO2, each capped by oleic acid, and CdSe/ZnS core/shell QDs capped by trioctylphosphine oxide) into vesicles (d = 70-150 nm) formed by a sample of poly(styrene-b-acrylic acid) (PS4o4-b-PAA 62, where the subscripts refer to the degree of polymerization) in mixtures of tetrahydrofuran (THF), dioxane, and water. The block copolymer formed mixtures of crew-cut micelles and vesicles with some enhancement of the vesicle population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls of the vesicles (strongly favoring the former). NPs on the exterior surface of the vesicles could be removed completely by treating the samples with a solution of ethylenediaminetetraacetate (EDTA) in water. The triangular nanoplatelets of LaF3 behaved differently. Stacks of these platelets were incorporated into solid colloidal entities, similar in size to the empty vesicles that accompanied them, during the coassembly as water was added to the polymer/LaF3/THF/ dioxane mixture. © 2009 American Chemical Society.

  17. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG Polymer Scaffolds Using Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Rok Zaplotnik

    2016-04-01

    Full Text Available Polyurethane/urea copolymers based on poly(ethylene glycol (PURPEG were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W or H-mode (above 500 W. The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water.

  18. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold

    International Nuclear Information System (INIS)

    The interaction between vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in a complex hemodynamic and mechanical environment plays an important role in the control of blood vessel growth and function. Despite the importance of VSMCs, substitutes are needed for vascular therapies. A potential VSMC substitute is human adult bone marrow derived mesenchymal stem cells (hMSCs). In this study, the effect of poly(lactic-co-glycolic acid) (PLGA) scaffolds containing three natural polymers (demineralized bone particles, silk, and small intestine submucosa) on the phenotype of MSCs and SMCs cultured with or without ECs was investigated. The study objective was to create a media equivalent for a tissue engineered blood vessel using PLGA, natural polymers, and MSCs co-cultured with ECs. The PLGA containing the natural polymers silk and SIS showed increased proliferation and cell adhesion. The presence of silk and DBP promoted a MSC phenotype change into a SMC-like phenotype at the mRNA level; however these differences at the protein level were not seen. Additionally, PLGA containing SIS did not induce SMC gene or protein upregulation. Finally, the effect of ECs in combination with the natural polymers was tested. When co-cultured with ECs, the mRNA of SMC specific markers in MSCs and SMCs were increased when compared to SMCs or MSCs alone. However, MSCs, when co-cultured with ECs on PLGA containing silk, exhibited significantly increased α-SMA and calponin expression when compared to PLGA only scaffolds. These results indicate that the natural polymer silk in combination with the co-culture of endothelial cells was most effective at increasing cell viability and inducing a SMC-like phenotype at the mRNA and protein level in MSCs. (paper)

  19. Composite Scaffolds for Bone Tissue Engineering

    OpenAIRE

    Min Wang

    2006-01-01

    Biomaterial and scaffold development underpins the advancement of tissue engineering. Traditional scaffolds based on biodegradable polymers such as poly(lactic acid) and poly(lactic acid-co-glycolic acid) are weak and non-osteoconductive. For bone tissue engineering, polymer-based composite scaffolds containing bioceramics such as hydroxyapatite can be produced and used. The bioceramics can be either incorporated in the scaffolds as a dispersed secondary phase or form a thin coating on the po...

  20. 45S5 Bioactive Glass-Based Composite Scaffolds with Polymer Coatings for Bone Tissue Engineering Therapeutics

    OpenAIRE

    Li, Wei

    2015-01-01

    Bone tissue engineering is a rapidly developing interdisciplinary field. An effective approach to bone tissue engineering aims to restore the function of damaged bone tissue or to regenerate bone tissue with the aid of scaffolds made from engineered biomaterials. The scaffolds should act as temporary matrices for cell attachment, proliferation, migration, differentiation and extracellular matrix deposition, with consequent bone ingrowth until the new bone tissue is totally restored or regener...

  1. 人工合成高分子支架材料治疗脊髓损伤★%Synthetic polymer scaffolds for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    阚瑞; 盛伟斌

    2013-01-01

    BACKGROUND: Synthetic polymer scaffolds for treatment of spinal cord injury are currently a focus of research. OBJECTIVE: To summarize domestic and foreign researches on synthetic polymer scaffolds for the treatment of spinal cord injury. METHODS: Articles on synthetic polymer scaffolds for treatment of spinal cord injury were searched on WanfangMed, CNKI, PubMed and EBSCO databases from 2000-01 to 2012-01, using “spinal cord injury, tissue engineering, synthetic polymer material” appearing in title/abstract as key words. RESULTS AND CONCLUSION: Many kinds of synthetic polymer materials are developed for the treatment of spinal cord injury, including polylactic acid, polyglycolic acid, poly-β hydroxybutyric acid, synthetic hydrogel, and polyethylene glycol. Each material has its pros and cons, but none has complete tissue compatibility and biodegradability. These materials cannot completely mimic the three-dimensional porous structure of the spinal cord. After implantation, the materials are located freely to the spinal cord, which cannot be anatomized with the gray and white matters of the spinal cord, and fatherly cannot correspond to the main fibers in the white matter. Therefore, these materials have not been implemented in clinical trial. Further study on synthetic polymer scaffolds for the treatment of spinal cord injury is required.%  背景:治疗脊髓损伤的人工合成高分子支架材料是目前的研究热点之一。目的:综述国内外人工合成高分子支架材料在治疗脊髓损伤方面的研究进展。方法:应用计算机检索万方医学、中国知网、PubMed、EBSCO 数据库中2000年1月至2012年1月关于人工合成高分子支架材料治疗脊髓损伤方面的文章,在标题和摘要中以“脊髓损伤,组织工程,人工合成高分子材料”或“spinal cord injury,tissue engineering,synthetic polymer material”为检索词进行检索。结果与结论:治疗脊髓损伤的人工合

  2. 3D bioprinting of BM-MSCs-loaded ECM biomimetic hydrogels for in vitro neocartilage formation.

    Science.gov (United States)

    Costantini, Marco; Idaszek, Joanna; Szöke, Krisztina; Jaroszewicz, Jakub; Dentini, Mariella; Barbetta, Andrea; Brinchmann, Jan E; Święszkowski, Wojciech

    2016-01-01

    In this work we demonstrate how to print 3D biomimetic hydrogel scaffolds for cartilage tissue engineering with high cell density (>10(7) cells ml(-1)), high cell viability (85 ÷ 90%) and high printing resolution (≈100 μm) through a two coaxial-needles system. The scaffolds were composed of modified biopolymers present in the extracellular matrix (ECM) of cartilage, namely gelatin methacrylamide (GelMA), chondroitin sulfate amino ethyl methacrylate (CS-AEMA) and hyaluronic acid methacrylate (HAMA). The polymers were used to prepare three photocurable bioinks with increasing degree of biomimicry: (i) GelMA, (ii) GelMA + CS-AEMA and (iii) GelMA + CS-AEMA + HAMA. Alginate was added to the bioinks as templating agent to form stable fibers during 3D printing. In all cases, bioink solutions were loaded with bone marrow-derived human mesenchymal stem cells (BM-MSCs). After printing, the samples were cultured in expansion (negative control) and chondrogenic media to evaluate the possible differentiating effect exerted by the biomimetic matrix or the synergistic effect of the matrix and chondrogenic supplements. After 7, 14, and 21 days, gene expression of the chondrogenic markers (COL2A1 and aggrecan), marker of osteogenesis (COL1A1) and marker of hypertrophy (COL10A1) were evaluated qualitatively by means of fluorescence immunocytochemistry and quantitatively by means of RT-qPCR. The observed enhanced viability and chondrogenic differentiation of BM-MSCs, as well as high robustness and accuracy of the employed deposition method, make the presented approach a valid candidate for advanced engineering of cartilage tissue. PMID:27431574

  3. Research trends in biomimetic medical materials for tissue engineering: commentary.

    Science.gov (United States)

    Park, Ki Dong; Wang, Xiumei; Lee, Jae Young; Park, Kyung Min; Zhang, ShengMin; Noh, Insup

    2016-01-01

    We introduce our active experts' communications and reviews (Part II) of 2015 Korea-China Joint Symposium on Biomimetic Medical Materials in Republic of Korea, which reflect their perspectives on current research trends of biomimetic medical materials for tissue regeneration in both Korea and China. The communications covered three topics of biomimetics, i.e., 1) hydrogel for therapeutics and extracellular matrix environments, 2) design of electrical polymers for communications between electrical sources and biological systems and 3) design of biomaterials for nerve tissue engineering. The reviews in the Part II will cover biomimetics of 3D bioprinting materials, surface modifications, nano/micro-technology as well as clinical aspects of biomaterials for cartilage. PMID:27026826

  4. Approaches to nanostructure control and functionalizations of polymer@silica hybrid nanograss generated by biomimetic silica mineralization on a self-assembled polyamine layer

    Directory of Open Access Journals (Sweden)

    Jian-Jun Yuan

    2011-11-01

    Full Text Available We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and the aggregation/orientation of the nanoribbons in the film were facile to tune by simple adjustment of the biomimetic silicification conditions and LPEI self-assembly on the substrate. Our LPEI-mediated nanograss process allows the facile and programmable generation of a wide range of nanostructures and surface morphologies without the need for complex molecular design or tedious techniques. This ribbon-based nanograss has characteristics of a LPEI@silica hybrid structure, suggesting that LPEI, as a polymeric secondary amine, is available for subsequent chemical reaction. This feature was exploited to functionalize the nanograss film with three representative species, namely porphyrin, Au nanoparticles and titania. Of particular note, the novel silica@titania composite nanograss surface demonstrated the ability to convert its wetting behavior between the extreme states (superhydrophobic–superhydrophilic by surface hydrophobic treatment and UV irradiation. The anatase titania component in the nanograss film acts as a highly efficient photocatalyst for the decomposition of the low-surface-energy organic components attached to the nanosurface. The ease with which the nanostructure can be controlled and facilely functionalized makes our nanograss potentially important for device-based application in microfluidic, microreactor and biomedical fields.

  5. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration. (paper)

  6. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes

    Science.gov (United States)

    Holmes, Benjamin; Castro, Nathan J.; Li, Jian; Keidar, Michael; Zhang, Lijie Grace

    2013-09-01

    Cartilage tissue is a nanostructured tissue which is notoriously hard to regenerate due to its extremely poor inherent regenerative capacity and complex stratified architecture. Current treatment methods are highly invasive and may have many complications. Thus, the goal of this work is to use nanomaterials and nano/microfabrication methods to create novel biologically inspired tissue engineered cartilage scaffolds to facilitate human bone marrow mesenchymal stem cell (MSC) chondrogenesis. To this end we utilized electrospinning to design and fabricate a series of novel 3D biomimetic nanostructured scaffolds based on hydrogen (H2) treated multi-walled carbon nanotubes (MWCNTs) and biocompatible poly(L-lactic acid) (PLLA) polymers. Specifically, a series of electrospun fibrous PLLA scaffolds with controlled fiber dimension were fabricated in this study. In vitro MSC studies showed that stem cells prefer to attach in the scaffolds with smaller fiber diameter. More importantly, the MWCNT embedded scaffolds showed a drastic increase in mechanical strength and a compressive Young’s modulus matching to natural cartilage. Furthermore, our MSC differentiation results demonstrated that incorporation of the H2 treated carbon nanotubes and poly-L-lysine coating can induce more chondrogenic differentiations of MSCs than controls. After two weeks of culture, PLLA scaffolds with H2 treated MWCNTs and poly-L-lysine can achieve the highest glycosaminoglycan synthesis, making them promising for further exploration for cartilage regeneration.

  7. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration

    OpenAIRE

    Wei Zhu; Castro, Nathan J.; Xiaoqian Cheng; Michael Keidar; Lijie Grace Zhang

    2015-01-01

    Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive ele...

  8. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence.

    Science.gov (United States)

    Xu, Yanhong; Chen, Long; Guo, Zhaoqi; Nagai, Atsushi; Jiang, Donglin

    2011-11-01

    Herein we report a strategy for the design of highly luminescent conjugated polymers by restricting rotation of the polymer building blocks through a microporous network architecture. We demonstrate this concept using tetraphenylethene (TPE) as a building block to construct a light-emitting conjugated microporous polymer. The interlocked network successfully restricted the rotation of the phenyl units, which are the major cause of fluorescence deactivation in TPE, thus providing intrinsic luminescence activity for the polymers. We show positive "CMP effects" that the network promotes π-conjugation, facilitates exciton migration, and improves luminescence activity. Although the monomer and linear polymer analogue in solvents are nonemissive, the network polymers are highly luminescent in various solvents and the solid state. Because emission losses due to rotation are ubiquitous among small chromophores, this strategy can be generalized for the de novo design of light-emitting materials by integrating the chromophores into an interlocked network architecture. PMID:21978272

  9. Methods for biomimetic remineralization of human dentine: A systematic review

    OpenAIRE

    Chris Ying Cao; May Lei Mei; Quan-Li Li; Edward Chin Man Lo; Chun Hung Chu

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved wi...

  10. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta Maria; Rypáček, František

    2016-01-01

    Roč. 11, č. 1 (2016), 015002_1-015002_13. ISSN 1748-6041 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : tissue engineering * porous scaffolds * thermally induced phase separation Subject RIV: CE - Biochemistry Impact factor: 3.697, year: 2014

  11. Highly structured and surface modified poly(epsilon-caprolactone) scaffolds derived from co-continuous polymer blends for bone tissue engineering

    Science.gov (United States)

    Mehr, Nima Ghavidel

    Chitosan, an important member of the polysaccharide family was used to alter the chemistry of PCL scaffolds and bring hydrophilicity to the surface. The deposition of a homogeneous chitosan layer on the surface of the PCL scaffolds was carried out using a Layer-by-Layer (LbL) selfassembly of poly(dialyldemethylammunium chloride) (PDADMAC) as cationic and poly(sodium 4-styrenesulfonate) (PSS) as anionic polyelectrolytes. The final negatively charged PSS layer allows for the addition of the positively charged chitosan as the outermost layer. Gravimetric measurements revealed that the addition of up to 3 layers leads to the formation of interdiffusing polyelectrolyte layers which do not allow for the formation of defined positive or negative charges. By increasing the number of polyelectrolyte layers with alternating charges, more welldefined layers are formed. Detailed analyses of O/C, N/C and S/C ratios by X-ray photoelectron spectroscopy (XPS) show that the PSS molecule dominates the surface as the last deposited polyelectrolyte layer at higher number of depositions (n=8), which can later be the surface for the deposition of chitosan. The LbL deposition of the chitosan layer on the LbL coating was then shown to be locally homogeneous at different depths within the scaffolds which also clarified that the LbL method is superior to the dip coating strategy. SEM analysis showed that there is a rough chitosan surface on the 2D solid PCL constructs whose thickness ranges from 550-700 nanometers. These results demonstrate that the application of LbL self-assembly of polyelectrolytes followed by the addition of chitosan as the outermost layer provides a route towards stable and homogeneous surface modification and has the potential to transform a classic fully interconnected porous synthetic polymer material to one with essentially complete chitosanlike surface characteristics. The osteogenic potential of PCL scaffolds with a chitosan coating using Layer-by-Layer (Lb

  12. Excavating the Role of Aloe Vera Wrapped Mesoporous Hydroxyapatite Frame Ornamentation in Newly Architectured Polyurethane Scaffolds for Osteogenesis and Guided Bone Regeneration with Microbial Protection.

    Science.gov (United States)

    Selvakumar, M; Pawar, Harpreet Singh; Francis, Nimmy K; Das, Bodhisatwa; Dhara, Santanu; Chattopadhyay, Santanu

    2016-03-01

    Guided bone regeneration (GBR) scaffolds are unsuccessful in many clinical applications due to a high incidence of postoperative infection. The objective of this work is to fabricate GBR with an anti-infective electrospun scaffold by ornamenting segmented polyurethane (SPU) with two-dimensional Aloe vera wrapped mesoporous hydroxyapatite (Al-mHA) nanorods. The antimicrobial characteristic of the scaffold has been retrieved from the prepared Al-mHA frame with high aspect ratio (∼14.2) via biosynthesis route using Aloe vera (Aloe barbadensis miller) extract. The Al-mHA frame was introduced into an unprecedented SPU matrix (solution polymerized) based on combinatorial soft segments of poly(ε-caprolactone) (PCL), poly(ethylene carbonate) (PEC), and poly(dimethylsiloxane) (PDMS), by an in situ technique followed by electrospinning to fabricate scaffolds. For comparison, pristine mHA nanorods are also ornamented into it. An enzymatic ring-opening polymerization technique was adapted to synthesize soft segment of (PCL-PEC-b-PDMS). Structure elucidation of the synthesized polymers is established by nuclear magnetic resonance spectroscopy. Sparingly, Al-mHA ornamented scaffolds exhibit tremendous improvement (175%) in the mechanical properties with promising antimicrobial activity against various human pathogens. After confirmation of high osteoconductivity, improved biodegradation, and excellent biocompatibility against osteoblast-like MG63 cells (in vitro), the scaffolds were implanted in rabbits as an animal model by subcutaneous and intraosseous (tibial) sites. Improved in vivo biocompatibilities, biodegradation, osteoconductivity, and the ability to provide an adequate biomimetic environment for biomineralization for GBR of the scaffolds (SPU and ornamented SPUs) have been found from the various histological sections. Early cartilage formation, endochondral ossification, and rapid bone healing at 4 weeks were found in the defects filled with Al-mHA ornamented

  13. Efficient Electron Collection in Hybrid Polymer Solar Cells: In-Situ-Generated ZnO/Poly(3-hexylthiophene) Scaffolded by a TiO2 Nanorod Array.

    Science.gov (United States)

    Liao, Wen-Pin; Wu, Jih-Jen

    2013-06-01

    A nanoarchitectural hybrid polymer solar cell, integrating the ordered and the bulk heterojunction hybrid polymer solar cells, is fabricated by infiltrating the diethylzinc/poly(3-hexylthiophene) (P3HT) solution into the interstices of the TiO2 nanorod (NR) array. An inorganic network composed of tiny ZnO nanocrystals is constructed in the in-situ-generated hybrid within the interstice of the single-crystalline TiO2 NRs. The TiO2 NR array, which possesses a longer electron lifetime and an appropriate electron-transport rate, serves not only as an electron transporter/collector extended from fluorine-doped tin oxide (FTO) electrode to sustain the efficient electron collection but also as a scaffold to hold the sufficient amount of ZnO/P3HT hybrid. The in-situ-generated ZnO/P3HT hybrid layer with superior charge separation efficiency can therefore be thickened in the presence of a TiO2 NR array for increasing the light-harvesting efficiency. A notable efficiency of 2.46% is therefore attained in the TiO2 NR-ZnO/P3HT hybrid solar cell. PMID:26283138

  14. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  15. Electrospun fiber scaffolds of poly (glycerol-dodecanedioate) and its gelatin blended polymers for soft tissue engineering

    International Nuclear Information System (INIS)

    For tissue engineering applications, biodegradable scaffolds play a vital role in supporting and guiding the seeded cells to form functional tissues by mimicking the structure and function of native extracellular matrices. Previously, we have developed a biodegradable elastomer poly (glycerol-dodecanedioate) (PGD) with mechanical properties suitable for soft tissue engineering. In the study, we found that the PGD and PGD blended with gelatin (PGD/gelatin) were able to be electrospun into fibrous scaffolds, and the diameters of the fibers could be adjusted by controlling the PGD concentration. When using our newly designed electrospinning collector, fibers could be easily harvested and the size of the fiber mat could be flexibly adjusted. The data of Raman spectra also confirmed the esterfication reaction in PGD polymerization and showed no significant structure change after electrospinning. Biocompatibility testing of the PGD and PGD/gelatin, by using human foreskin fibroblasts, indicated that gelatin could enhance cell adhesion and proliferation. Overall, electrospun fibers made from PGD and PGD/gelatin exhibited several advantages including easy synthesis from renewable raw materials, flexible fabrication by using less toxic solvents like ethanol, and good biocompatibility. (paper)

  16. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    Science.gov (United States)

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. PMID:26249621

  17. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas;

    2009-01-01

    It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 μm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane...

  18. Novel Poly(3-hydroxybutyrate-g-vinyl alcohol) Polyurethane Scaffold for Tissue Engineering

    Science.gov (United States)

    Reyes, Adriana Pétriz; Martínez Torres, Ataúlfo; Carreón Castro, Ma. Del Pilar; Rodríguez Talavera, José Rogelio; Muñoz, Susana Vargas; Aguilar, Víctor Manuel Velázquez; Torres, Maykel González

    2016-08-01

    The design of new synthetic grafted poly(3-hydroxybutyrate) as composite 3D-scaffolds is a convenient alternative for tissue engineering applications. The chemically modified poly(3-hydroxybutyrate) is receiving increasing attention for use as biomimetic copolymers for cell growth. As of yet, these copolymers cannot be used efficiently because of the lack of good mechanical properties. Here, we address this challenge, preparing a composite-scaffold of grafted poly(3-hydroxybutyrate) polyurethane for the first time. However, it is unclear if the composite structure and morphology can also offer a biological application. We obtained the polyurethane by mixing a polyester hydroxylated resin with polyisocyanate and the modified polyhydroxyalkanoates. The results show that the poly(3-hydroxybutyrate) grafted with poly(vinyl alcohol) can be successfully used as a chain extender to form a chemically-crosslinked thermosetting polymer. Furthermore, we show a proposal for the mechanism of the polyurethane synthesis, the analysis of its morphology and the ability of the scaffolds for growing mammalian cells. We demonstrated that astrocytes isolated from mouse cerebellum, and HEK293 can be cultured in the prepared material, and express efficiently fluorescent proteins by adenoviral transduction. We also tested the metabolism of Ca2+ to obtain evidence of the biological activity.

  19. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  20. Combining Biomimetic Block Copolymer Worms with an Ice-Inhibiting Polymer for the Solvent-Free Cryopreservation of Red Blood Cells.

    Science.gov (United States)

    Mitchell, Daniel E; Lovett, Joseph R; Armes, Steven P; Gibson, Matthew I

    2016-02-18

    The first fully synthetic polymer-based approach for red-blood-cell cryopreservation without the need for any (toxic) organic solvents is reported. Highly hydroxylated block copolymer worms are shown to be a suitable replacement for hydroxyethyl starch as a extracellular matrix for red blood cells. When used alone, the worms are not a particularly effective preservative. However, when combined with poly(vinyl alcohol), a known ice-recrystallization inhibitor, a remarkable additive cryopreservative effect is observed that matches the performance of hydroxyethyl starch. Moreover, these block copolymer worms enable post-thaw gelation by simply warming to 20 °C. This approach offers a new solution for both the storage and transport of red blood cells and also a convenient matrix for subsequent 3D cell cultures. PMID:26822631

  1. A Concise Strategy for Polymer-supported Regio-oriented Introduction of Various Building Blocks onto Glucopyranoside Scaffold

    Institute of Scientific and Technical Information of China (English)

    廖云; 李正名; 黄乃正

    2001-01-01

    A new strategy was devised to stereo-specifically introduce various building blocks, mainly heterocycles such as pyrimidines and triazines onto a multi-hydroxy molecule. A glucopyranoside was chosen as a target scaffold. Two polymerbased protective reagents were jointly integrated in the implementation of the strategy. It was found that in the α-D-giu-copyranoside, which has four free hydroxyl groups within the same molecule, its 4, 6-di-OH could be simultaneously protected by polystyryl boronic acid, which left the 2, 3-di-OH free for substitution. Due to the steric effects within the molecule, the 2-OH is much more liabile to electrophilic stubstitution. Thus the first and the second building blocks could be introduced regioselectively onto the 2-OH and the 3-OHpositions. After a facile deprotection, the4,6-di-OH were left free and by apiication of a second protecting reagentpolystyryltritylchloride onto 6-OH, a third building block was introduced onto the 4-OH position. After further deprotection, the fourth building block was later introduced onto the 6-OH position. The new strategy was successfully applied in the combinatorial synthesis by application of the split-mix technique. The respective eleven small libraries were obtained and confirmed by HPLC-MS and NMR. Some preliminary results on chemical structure/herbicidal activity relationship were discussed.

  2. Crystallization, biomimetics and semiconducting polymers in confined systems. (German Title: Kristallisation, Biomimetik und halbleitende Polymere in räumlich begrenzten Systemen)

    Science.gov (United States)

    Montenegro, Rivelino V. D.

    2003-05-01

    observed, but no structure change. A triclinic structure is formed both in bulk and in miniemulsion droplets. 3. In the next part of the thesis it is shown how miniemulsions could be successfully applied in the development of materials with potential application in pharmaceutical and medical fields. The production of cross-linked gelatin nanoparticles is feasible. Starting from an inverse miniemulsion, the softness of the particles can be controlled by varying the initial concentration, amount of cross-link agent, time of cross-linking, among other parameters. Such particles show a thermo-reversible effect, e.g. the particles swell in water above 37 °C and shrink below this temperature. Above 37 °C the chains loose the physical cross-linking, however the particles do not loose their integrity, because of the chemical cross-linking. Those particles have potential use as drug carriers, since gelatin is a natural polymer derived from collagen. 4. The cross-linked gelatin nanoparticles have been used for the biomineralization of hydroxyapatite (HAP), a biomineral, which is the major constituent of our bones. The biomineralization of HAP crystals within the gelatin nanoparticles results in a hybrid material, which has potential use as a bone repair material. 5. In the last part of this work we have shown that layers of conjugated semiconducting polymers can be deposited from aqueous dispersion prepared by the miniemulsion process. Dispersions of particles of different conjugated semiconducting polymers such as a ladder-type poly(para-phenylene) and several soluble derivatives of polyfluorene could be prepared with well-controlled particle sizes ranging between 70 - 250 nm. Layers of polymer blends were prepared with controlled lateral dimensions of phase separation on sub-micrometer scales, utilizing either a mixture of single component nanoparticles or nanoparticles containing two polymers. From the results of energy transfer it is demonstrated that blending two polymers in

  3. Biomimetic sensor design

    Science.gov (United States)

    Lee, Ju Hun; Jin, Hyo-Eon; Desai, Malav S.; Ren, Shuo; Kim, Soyoun; Lee, Seung-Wuk

    2015-11-01

    Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.

  4. Amelogenin and Enamel Biomimetics

    OpenAIRE

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recen...

  5. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Mark Young; Trevor Douglas

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  6. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  7. Development of a Biomimetic Chondroitin Sulfate-modified Hydrogel to Enhance the Metastasis of Tumor Cells

    Science.gov (United States)

    Liu, Yang; Wang, Shujun; Sun, Dongsheng; Liu, Yongdong; Liu, Yang; Wang, Yang; Liu, Chang; Wu, Hao; Lv, Yan; Ren, Ying; Guo, Xin; Sun, Guangwei; Ma, Xiaojun

    2016-01-01

    Tumor metastasis with resistance to anticancer therapies is the main cause of death in cancer patients. It is necessary to develop reliable tumor metastasis models that can closely recapitulate the pathophysiological features of the native tumor tissue. In this study, chondroitin sulfate (CS)-modified alginate hydrogel beads (ALG-CS) are developed to mimic the in vivo tumor microenvironment with an abnormally increased expression of CS for the promotion of tumor cell metastasis. The modification mechanism of CS on alginate hydrogel is due to the cross-linking between CS and alginate molecules via coordination of calcium ions, which enables ALG-CS to possess significantly different physical characteristics than the traditional alginate beads (ALG). And quantum chemistry calculations show that in addition to the traditional egg-box structure, novel asymmetric egg-box-like structures based on the interaction between these two kinds of polymers are also formed within ALG-CS. Moreover, tumor cell metastasis is significantly enhanced in ALG-CS compared with that in ALG, as confirmed by the increased expression of MMP genes and proteins and greater in vitro invasion ability. Therefore, ALG-CS could be a convenient and effective 3D biomimetic scaffold that would be used to construct standardized tumor metastasis models for tumor research and anticancer drug screening. PMID:27432752

  8. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2014-11-01

    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  9. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  10. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility

    International Nuclear Information System (INIS)

    Background: To date, there are no small internal diameter (< 5 mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. Methods: POSS-PCU was activated by plasma treatment in air/O2 to from hydroperoxides (–OH, –OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5 mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Results: Poly-AA content on each of the plasma treated nanocomposite films

  11. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymer for bypass graft applications: A preliminary assessment of endothelial cell adhesion and haemocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Solouk, Atefeh [Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Cousins, Brian G., E-mail: brian.cousins@ucl.ac.uk [Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London (United Kingdom); Mirahmadi, Fereshteh [Biomedical Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Mirzadeh, Hamid [Polymer Engineering Faculty, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Nadoushan, Mohammad Reza Jalali [Department of Pathology, School of Medicine, Shahed University, Tehran (Iran, Islamic Republic of); Shokrgozar, Mohammad Ali [National Cell Bank of Iran, Pasteur Institute of Iran, Tehran (Iran, Islamic Republic of); Seifalian, Alexander M. [Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London (United Kingdom)

    2015-01-01

    Background: To date, there are no small internal diameter (< 5 mm) vascular grafts that are FDA approved for clinical use due to high failure rates from thrombosis and unwanted cell proliferation. The ideal conditions to enhance bioengineered grafts would be the blood contacting lumen of the bypass graft fully covered by endothelial cells (ECs). As a strategy towards this aim, we hypothesized that by immobilising biomolecules on the surface of the polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) nanocomposite polymers, which contain binding sites and ligands for cell surface receptors similar to extracellular matrix (ECM) will positively influence the attachment and proliferation of ECs. Since, the surface of POSS-PCU is inert and not directly suitable for immobilisation of biomolecules, plasma graft polymerisation is a suitable method to modify the surface properties ready for immobilisation and biofunctionalisation. Methods: POSS-PCU was activated by plasma treatment in air/O{sub 2} to from hydroperoxides (–OH, –OOH), and then carboxylated via plasma polymerisation of a 30% acrylic acid solution (Poly-AA) using a two-step plasma treatment (TSPT) process. Collagen type I, a major component of ECM, was covalently immobilised to mimic the ECM structures to ECs (5 mg/ml) using a two-step chemical reaction using EDC chemistry. Successful immobilisation of poly-AA and collagen on to the nanocomposites was confirmed using Toluidine Blue staining and the Bradford assay. Un-treated POSS-PCU served as a simple control. The impact of collagen grafting on the physical, mechanical and biological properties of POSS-PCU was evaluated via contact angle (θ) measurements, scanning electron microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical thermal analysis (DMTA), ECs adhesion and proliferation followed by platelet adhesion and haemolysis ratio (HR) tests. Results: Poly-AA content on each of the plasma treated nanocomposite films

  12. Multiwalled carbon nanotube reinforced biomimetic bundled gel fibres.

    Science.gov (United States)

    Kim, Young-Jin; Yamamoto, Seiichiro; Takahashi, Haruko; Sasaki, Naruo; Matsunaga, Yukiko T

    2016-08-19

    This work describes the fabrication and characterization of hydroxypropyl cellulose (HPC)-based biomimetic bundled gel fibres. The bundled gel fibres were reinforced with multiwalled carbon nanotubes (MWCNTs). A phase-separated aqueous solution with MWCNT and HPC was transformed into a bundled fibrous structure after being injected into a co-flow microfluidic device and applying the sheath flow. The resulting MWCNT-bundled gel fibres consist of multiple parallel microfibres. The mechanical and electrical properties of MWCNT-bundled gel fibres were improved and their potential for tissue engineering applications as a cell scaffold was demonstrated. PMID:27200527

  13. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  14. Rapid biomimetic mineralization of collagen fibrils and combining with human umbilical cord mesenchymal stem cells for bone defects healing.

    Science.gov (United States)

    Ye, Bihua; Luo, Xueshi; Li, Zhiwen; Zhuang, Caiping; Li, Lihua; Lu, Lu; Ding, Shan; Tian, Jinhuan; Zhou, Changren

    2016-11-01

    Collagen biomineralization is regulated by complicated interactions between the collagen matrix and non-collagenous extracellular proteins. Here, the use of sodium tripolyphosphate to simulate the templating functional motif of the C-terminal fragment of non-collagenous proteins is reported, and a low molecular weight polyacrylic acid served as a sequestration agent to stabilize amorphous calcium phosphate into nanoprecursors. Self-assembled collagen fibrils served as a fixed template for achieving rapid biomimetic mineralization in vitro. Results demonstrated that, during the mineralization process, intrafibrillar and extrafibrillar hydroxyapatite mineral with collagen fibrils formed and did so via bottom-up nanoparticle assembly based on the non-classical crystallization approach in the presence of these dual biomimetic functional analogues. In vitro human umbilical cord mesenchymal stem cell (hUCMSC) culture found that the mineralized scaffolds have a better cytocompatibility in terms of cell viability, adhesion, proliferation, and differentiation into osteoblasts. A rabbit femoral condyle defect model was established to confirm the ability of the n-HA/collagen scaffolds to facilitate bone regeneration and repair. The images of gross anatomy, MRI, CT and histomorphology taken 6 and 12weeks after surgery showed that the biomimetic mineralized collagen scaffolds with hUCMSCs can promote the healing speed of bone defects in vivo, and both of the scaffolds groups performing better than the bone defect control group. As new bone tissue formed, the scaffolds degraded and were gradually absorbed. All these results demonstrated that both of the scaffolds and cells have better histocompatibility. PMID:27523994

  15. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  16. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  17. The Construction and Investigation of PLGA Artificial Bone by Biomimetic Mineralization

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming; ZHENG Qixin; WANG Jinguang; WANG yuntao; HAO Jie

    2005-01-01

    To modify the surface property of poly lactide co-glycolide (PLGA) by biomimetic mineralization to construct a new kind of artificial bone. PLGA films and 3 diamensional (3-D) porous scaffolds hydrolyzed in alkaline solution were minerilized in SBF for 14 days. The morphology and composition of the mineral grown on PLGA were analyzed with SEM, FTIR and XRD. The porosity of the scaffolds was detected by using the liquid displacement method. The compressive strength of the scaffolds was detected by using a Shimadzu universal mechanic tester. An obvious mineral coating was detected on the surface of films and scaffolds. The main component of the mineral was carbonated hydroxyapatite (HA) similar to the major mineral component of bone tissues. The porosity of the un-mineralized and mineralized porous scaffolds was (84.86±8.52) % and (79.70±7.70) % respectively. The compressive strength was 0. 784±0. 156 N/mm2 in un-mineralized 3-D porous PLGA and 0. 858±0. 145 N/mm2 in mineralized 3-D porous PLGA. There were no significant differences between the mineralized and un-mineralized scaffolds (P>0. 05) in porosity and biomechanics. Biomimetic mineralization is a suitable method to construct artificial bone.

  18. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    International Nuclear Information System (INIS)

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications

  19. Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kakkar, Prachi [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India); Verma, Sudhanshu; Manjubala, I. [Biomedical Engineering Division, School of Bio Sciences and Technology, VIT University, Vellore 632014 (India); Madhan, B., E-mail: bmadhan76@yahoo.co.in [Central Leather Research Institute (Council of Scientific and Industrial Research), Adyar, Chennai 600020 (India)

    2014-12-01

    Keratin has gained much attention in the recent past as a biomaterial for wound healing owing to its biocompatibility, biodegradability, intrinsic biological activity and presence of cellular binding motifs. In this paper, a novel biomimetic scaffold containing keratin, chitosan and gelatin was prepared by freeze drying method. The prepared keratin composite scaffold had good structural integrity. Fourier Transform Infrared (FTIR) spectroscopy showed the retention of the native structure of individual biopolymers (keratin, chitosan, and gelatin) used in the scaffold. Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) results revealed a high thermal denaturation temperature of the scaffold (200–250 °C). The keratin composite scaffold exhibited tensile strength (96 kPa), compression strength (8.5 kPa) and water uptake capacity (> 1700%) comparable to that of a collagen scaffold, which was used as control. The morphology of the keratin composite scaffold observed using a Scanning Electron Microscope (SEM) exhibited good porosity and interconnectivity of pores. MTT assay using NIH 3T3 fibroblast cells demonstrated that the cell viability of the keratin composite scaffold was good. These observations suggest that the keratin–chitosan–gelatin composite scaffold is a promising alternative biomaterial for tissue engineering applications. - Highlights: • Fabrication of novel Keratin-Chitosan-Gelatin composite scaffold • Keratin composite scaffold shows excellent water uptake capacity and porosity • Keratin composite scaffold shows good thermal and physical stability • Biocompatibility of the developed scaffold is comparable to collagen scaffolds • Developed scaffold is a promising material for soft tissue engineering applications.

  20. In Vitro Deposition of Ca-P Nanoparticles on Air Jet Spinning Nylon 6 Nanofibers Scaffold For Bone Tissue Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla, E-mail: abda_55@jbnu.ac.kr [Dept. of Computer Science, Faculty of Engineering, Universidad de Cuenca, Cuenca 01.01.168 (Ecuador); Dept. of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dept. of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Oh, Yi Seul [Dept. of Mechanical Design Engineering, Advanced Wind Power System Research Institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Yousef, Ayman; Pant, Hem Raj [Dept. of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Vanegas, Pablo [Dept. of Computer Science, Faculty of Engineering, Universidad de Cuenca, Cuenca 01.01.168 (Ecuador); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Dept. of Mechanical Design Engineering, Advanced Wind Power System Research Institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-01

    Microporous, non-woven nylon 6 (N6) scaffolds were prepared with an air jet spinning (AJS) approach. In this process, polymer fibers with diameters down to the nanometer range (nanofibers) were formed by subjecting a fluid jet to high pressure air. The effects of the solution conditions on the morphological appearance and average diameter of the as-spun N6 fibers and crystal structure were investigated. The morphological properties of the AJS membrane mats could easily be tailored by adjusting the concentration of the polymer solution. Solutions at high concentrations were necessary to form well-defined fibers without beads. The production rate (viz. solvent evaporation rate) had the greatest effect on the chain structure conformation of N6. The predominant structure phase of the N6 fibers fabricated by AJS was a thermodynamically stable α-form while the electrospinning fibers induced the metastable γ-form. AJS significantly enhanced the mechanical properties of the N6 mat. The bone formation ability of AJS fibers was evaluated by incubating the fibers in biomimetic simulated body fluid for 5 and 10 days at 37 °C. Overall, the new AJS approach developed for membrane structures has great potential for the fabrication of hard and soft tissue engineering scaffolds.

  1. In Vitro Deposition of Ca-P Nanoparticles on Air Jet Spinning Nylon 6 Nanofibers Scaffold For Bone Tissue Engineering

    International Nuclear Information System (INIS)

    Microporous, non-woven nylon 6 (N6) scaffolds were prepared with an air jet spinning (AJS) approach. In this process, polymer fibers with diameters down to the nanometer range (nanofibers) were formed by subjecting a fluid jet to high pressure air. The effects of the solution conditions on the morphological appearance and average diameter of the as-spun N6 fibers and crystal structure were investigated. The morphological properties of the AJS membrane mats could easily be tailored by adjusting the concentration of the polymer solution. Solutions at high concentrations were necessary to form well-defined fibers without beads. The production rate (viz. solvent evaporation rate) had the greatest effect on the chain structure conformation of N6. The predominant structure phase of the N6 fibers fabricated by AJS was a thermodynamically stable α-form while the electrospinning fibers induced the metastable γ-form. AJS significantly enhanced the mechanical properties of the N6 mat. The bone formation ability of AJS fibers was evaluated by incubating the fibers in biomimetic simulated body fluid for 5 and 10 days at 37 °C. Overall, the new AJS approach developed for membrane structures has great potential for the fabrication of hard and soft tissue engineering scaffolds.

  2. Preparation of microcellular composites with biomimetic structure via supercritical fluid technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new microcellular composite material with a biomimetic structure has been prepared via the supercritical fluid (SCF) technology. The resultant material has a clear biomimetic structure like bamboo and wood. The skin region is enriched with oriented high-strength thermotropic liquid crystal polymer fibrils, while the core region with polystyrene (PS) micro-cells. The diameter and density of micro- cells can be controlled by the processing parameters such as temperature and pressure. And the skin thickness can be controlled conveniently by varying the composition of polystyrene and liquid crystal polymer.

  3. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

    OpenAIRE

    Xia, Yan; Zhou, Panyu; Cheng, Xiaosong; Xie, Yang; Liang, Chong; Chao LI; Xu, Shuogui

    2013-01-01

    The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA)/poly-ε-caprolactone (PCL) was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM) showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered mac...

  4. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines. PMID:27148455

  5. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds

    DEFF Research Database (Denmark)

    Zou, Lijin; Luo, Yonglun; Chen, Muwan;

    2013-01-01

    polycaprolactone (PCL) scaffolds or PCL scaffolds functionalized with natural polymer hyaluronan and ceramic TCP (PHT) both in vitro and in vivo. Our results showed that these iPS-MSCs are functionally compatible with the two 3D scaffolds tested and formed typically calcified structure in the scaffolds. Overall...

  6. Methods for biomimetic remineralization of human dentine: a systematic review.

    Science.gov (United States)

    Cao, Chris Ying; Mei, May Lei; Li, Quan-Li; Lo, Edward Chin Man; Chu, Chun Hung

    2015-01-01

    This study aimed to review the laboratory methods on biomimetic remineralization of demineralized human dentine. A systematic search of the publications in the PubMed, TRIP, and Web of Science databases was performed. Titles and abstracts of initially identified publications were screened. Clinical trials, reviews, non-English articles, resin-dentine interface studies, hybrid layer studies, hybrid scaffolds studies, and irrelevant studies were excluded. The remaining papers were retrieved with full texts. Manual screening was conducted on the bibliographies of remaining papers to identify relevant articles. A total of 716 studies were found, and 690 were excluded after initial screening. Two articles were identified from the bibliographies of the remaining papers. After retrieving the full text, 23 were included in this systematic review. Sixteen studies used analogues to mimic the functions of non-collagenous proteins in biomineralization of dentine, and four studies used bioactive materials to induce apatite formation on demineralized dentine surface. One study used zinc as a bioactive element, one study used polydopamine, and another study constructed an agarose hydrogel system for biomimetic mineralization of dentine. Many studies reported success in biomimetic mineralization of dentine, including the use of non-collagenous protein analogues, bioactive materials, or elements and agarose hydrogel system. PMID:25739078

  7. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  8. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Biomimetic accommodating lens with implementation in MEMS

    Science.gov (United States)

    Hogan, Alexander L.; Baker, Brian; Fisher, Charles; Naylor, Stephen; Fettig, Doug; Harvey, Ian R.

    2012-03-01

    We describe an accommodating lens patterned after the crystalline lens of the eye. Our biomimetic MEMS design calls to mind the zonules of zinn which pull radially to stretch the crystalline lens of the eye to modify the optical path. We present initial characterization of the prototype macro-scale device constructed through traditional machining techniques and using a PDMS polymer lens. Testing of the macro-scale lens indicated a 22% change in focal length through the range of radial stretching, with degradation of the spherical lens shape but no hysteresis after low-cycle testing. We also demonstrate a MEMS implementation of the lens actuator constructed using the Sandia SUMMiT-V ™ surface micromachining process. The optical path of this system is approximately 300 microns in diameter, providing a platform to potential applications improving mobile camera optics and medical imaging.

  10. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    OpenAIRE

    V. Kulcitki

    2012-01-01

    The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  11. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    Science.gov (United States)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  12. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    OpenAIRE

    Mim Mim Lim; Tao Sun; Naznin Sultana

    2015-01-01

    The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and bl...

  13. Biomimetic Scaffold Design for Functional and Integrative Tendon Repair

    OpenAIRE

    Zhang, Xinzhi; Bogdanowicz, Danielle; Erisken, Cevat; Lee, Nancy M; Lu, Helen H.

    2012-01-01

    Rotator cuff tears represent the most common shoulder injuries in the United States. The debilitating effect of this degenerative condition coupled with the high incidence of failure associated with existing graft choices underscore the clinical need for alternative grafting solutions. The two critical design criteria for the ideal tendon graft would require the graft to not only exhibit physiologically relevant mechanical properties but also be able to facilitate functional graft integration...

  14. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle...

  15. Novel 3D Tissue Engineered Bone Model, Biomimetic Nanomaterials, and Cold Atmospheric Plasma Technique for Biomedical Applications

    Science.gov (United States)

    Wang, Mian

    This thesis research is consist of four chapters, including biomimetic three-dimensional tissue engineered nanostructured bone model for breast cancer bone metastasis study (Chapter one), cold atmospheric plasma for selectively ablating metastatic breast cancer (Chapter two), design of biomimetic and bioactive cold plasma modified nanostructured scaffolds for enhanced osteogenic differentiation of bone marrow derived mesenchymal stem cells (Chapter three), and enhanced osteoblast and mesenchymal stem cell functions on titanium with hydrothermally treated nanocrystalline hydroxyapatite/magnetically treated carbon nanotubes for orthopedic applications (Chapter four). All the thesis research is focused on nanomaterials and the use of cold plasma technique for various biomedical applications.

  16. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg;

    2009-01-01

    peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays......To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......, and furthermore demonstrate that the design can conveniently be scaled up to support planar lipid bilayers in large square-centimeter partition arrays....

  17. [Biomimetic sensors in biomedical research].

    Science.gov (United States)

    Gayet, Landry; Lenormand, Jean-Luc

    2015-01-01

    The recent research on both the synthesis of membrane proteins by cell-free systems and the reconstruction of planar lipid membranes, has led to the development of a cross-technology to produce biosensors or filters. Numerous biomimetic membranes are currently being standardized and used by the industry, such as filters containing aquaporin for water desalination, or used in routine at the laboratory scale, for example the bacteriorhodopsin as a light sensor. In the medical area, several fields of application of these biomimetic membranes are under consideration today, particularly for the screening of therapeutic molecules and for the developing of new tools in diagnosis, patient monitoring and personalized medicine. PMID:26152170

  18. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  19. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  20. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  1. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering.

    Science.gov (United States)

    Zhang, Xing; Xu, Bin; Puperi, Daniel S; Yonezawa, Aline L; Wu, Yan; Tseng, Hubert; Cuchiara, Maude L; West, Jennifer L; Grande-Allen, K Jane

    2015-03-01

    The development of advanced scaffolds that recapitulate the anisotropic mechanical behavior and biological functions of the extracellular matrix in leaflets would be transformative for heart valve tissue engineering. In this study, anisotropic mechanical properties were established in poly(ethylene glycol) (PEG) hydrogels by crosslinking stripes of 3.4 kDa PEG diacrylate (PEGDA) within 20 kDa PEGDA base hydrogels using a photolithographic patterning method. Varying the stripe width and spacing resulted in a tensile elastic modulus parallel to the stripes that was 4.1-6.8 times greater than that in the perpendicular direction, comparable to the degree of anisotropy between the circumferential and radial orientations in native valve leaflets. Biomimetic PEG-peptide hydrogels were prepared by tethering the cell-adhesive peptide RGDS and incorporating the collagenase-degradable peptide PQ (GGGPQG↓IWGQGK) into the polymer network. The specific amounts of RGDS and PEG-PQ within the resulting hydrogels influenced the elongation, de novo extracellular matrix deposition and hydrogel degradation behavior of encapsulated valvular interstitial cells (VICs). In addition, the morphology and activation of VICs grown atop PEG hydrogels could be modulated by controlling the concentration or micro-patterning profile of PEG-RGDS. These results are promising for the fabrication of PEG-based hydrogels using anatomically and biologically inspired scaffold design features for heart valve tissue engineering. PMID:25433168

  2. Biomimetic macroporous hydrogels

    Czech Academy of Sciences Publication Activity Database

    Sedlačík, Tomáš; Proks, Vladimír; Šlouf, Miroslav; Studenovská, Hana; Dušková, Miroslava; Rypáček, František

    Prague : Institute of Macromolecular Chemistry AS CR, 2015. s. 69. ISBN 978-80-85009-82-8. [Functional Polymers at Bio -Material Interfaces - 79th Prague Meeting on Macromolecules. 28.06.2015-02.07.2015, Prague] Institutional support: RVO:61389013 Keywords : click chemistry * hydrogels Subject RIV: CD - Macromolecular Chemistry

  3. Effects of Therapeutic Radiation on Polymeric Scaffolds

    OpenAIRE

    Cooke, Shelley Lynn

    2014-01-01

    High levels of ionizing radiation are known to cause degradation and/or cross-linking in polymers. Lower levels of ionizing radiation, such as x-rays, are commonly used in the treatment of cancers. Material characterization has not been fully explored for polymeric materials exposed to therapeutic radiation levels. This study investigated the effects of therapeutic radiation on three porous scaffolds: polycaprolactone (PCL), polyurethane (PU) and gelatin. Porous scaffolds were fabricate...

  4. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; Ma, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  5. Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering.

    Science.gov (United States)

    Yao, Qingqing; Nooeaid, Patcharakamon; Detsch, Rainer; Roether, Judith A; Dong, Yanming; Goudouri, Ourania-Menti; Schubert, Dirk W; Boccaccini, Aldo R

    2014-12-01

    Polymer-coated 45S5 Bioglass(®) (BG)/chitosan-polycaprolactone (BG/CS-PCL) bilayered composite scaffolds were prepared via foam replication and freeze-drying techniques for application in osteochondral tissue engineering. The CS-PCL coated and uncoated BG scaffolds were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The mechanical properties of the coated scaffolds were significantly improved in comparison to uncoated scaffolds. The bioactivity and biodegradation behavior of scaffolds were studied in simulated body fluid (SBF) for up to 28 days. The interface between the BG scaffold and the polymer coating layer was observed by SEM and a suitable interpenetration of the polymer into the scaffold struts was found. The effects of coated and uncoated BG scaffolds on MG-63 osteoblast-like cells were evaluated by cell viability, adhesion and proliferation. PMID:24677705

  6. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  7. Biomimetic coating of calcium phosphate on biometallic materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Er-lin; YANG Ke

    2005-01-01

    The biomimetic coating process in comparison with other processes is reviewed. This processing shows advantages in the surface bio-modification, such as low cost and flexible processing, wide range of apatite composition and thickness, non-line-of-sight characteristic and possibility to coat polymers and porous implants. The bio-mimetic apatite coating is made up of larger number of globules with size of 1-5μm. Each globule is a group of numerous flakes with a size range of 100-200nm to 30μm in length and 0.1-1μm in thickness. In-vitro and in-vivo studies show that the biomimetic apatite coating can promote an early and strong bonding to bone or promote the bone in-growth into the porous structure, which will be beneficial to the cementless stable fixation of orthopaedic implants. Recently developed co-precipitation of a kind of protein molecules into the HA coating shows much promising.

  8. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  9. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    International Nuclear Information System (INIS)

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering

  10. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells

    Energy Technology Data Exchange (ETDEWEB)

    Gandhimathi, Chinnasamy [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Venugopal, Jayarama Reddy [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Tham, Allister Yingwei [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, Nanoscience and Nanotechnology Initiative, National University of Singapore (Singapore); Kumar, Srinivasan Dinesh, E-mail: dineshkumar@ntu.edu.sg [Cellular and Molecular Epigenetics Lab, Lee Kong Chian School of Medicine, Nanyang Technological University (Singapore)

    2015-04-01

    Mimicking native extracellular matrix with electrospun porous bio-composite nanofibrous scaffolds has huge potential in bone tissue regeneration. The aim of this study is to fabricate porous poly(L-lactic acid)-co-poly-(ε-caprolactone)/silk fibroin/ascorbic acid/tetracycline hydrochloride (PLACL/SF/AA/TC) and nanohydroxyapatite (n-HA) was deposited by calcium-phosphate dipping method for bone tissue engineering (BTE). Fabricated nanofibrous scaffolds were characterized for fiber morphology, hydrophilicity, porosity, mechanical test and chemical properties by FT-IR and EDX analysis. The results showed that the fiber diameter and pore size of scaffolds observed around 228 ± 62–320 ± 22 nm and 1.5–6.9 μm respectively. Resulting nanofibrous scaffolds are highly porous (87–94%) with ultimate tensile strength observed in the range of 1.51–4.86 MPa and also showed better hydrophilic properties after addition of AA, TC and n-HA. Human mesenchymal stem cells (MSCs) cultured on these bio-composite nanofibrous scaffolds and stimulated to osteogenic differentiation in the presence of AA/TC/n-HA for BTE. The cell proliferation and biomaterial interactions were studied using MTS assay, SEM and CMFDA dye exclusion methods. Osteogenic differentiation of MSCs was proven by using alkaline phosphatase activity, mineralization and double immunofluorescence staining of both CD90 and osteocalcin. The observed results suggested that the fabricated PLACL/SF/AA/TC/n-HA biocomposite hybrid nanofibrous scaffolds have good potential for the differentiation of MSCs into osteogenesis for bone tissue engineering. - Highlights: • We fabricated and characterized hybrid porous nanofibrous scaffolds. • PLACL/SF/AA/TC/n-HA scaffolds promote cell differentiation and mineralization. • Porous nanofibrous scaffolds initiate MSC differentiation into osteogenic cells. • Biomimetic nanofibrous scaffolds have good potential for bone tissue engineering.

  11. Conductive polymers for controlled release and treatment of central nervous system injury

    Science.gov (United States)

    Saigal, Rajiv

    As one of the most devastating forms of neurotrauma, spinal cord injury remains a challenging clinical problem. The difficulties in treatment could potentially be resolved by better technologies for therapeutic delivery. In order to develop new approaches to treating central nervous system injury, this dissertation focused on using electrically-conductive polymers, controlled drug release, and stem cell transplantation. We first sought to enhance the therapeutic potential of neural stem cells by electrically increasing their production of neurotrophic factors (NTFs), important molecules for neuronal cell survival, differentiation, synaptic development, plasticity, and growth. We fabricated a new cell culture device for growing neural stem cells on a biocompatible, conductive polymer. Electrical stimulation via the polymer led to upregulation of NTF production by neural stem cells. This approach has the potential to enhance stem cell function while avoiding the pitfalls of genetic manipulation, possibly making stem cells more viable as a clinical therapy. Seeing the therapeutic potential of conductive polymers, we extended our studies to an in vivo model of spinal cord injury (SCI). Using a novel fabrication and extraction technique, a conductive polymer was fabricated to fit to the characteristic pathology that follows contusive SCI. Assessed via quantitative analysis of MR images, the conductive polymer significantly reduced compression of the injured spinal cord. Further characterizing astroglial and neuronal response of injured host tissue, we found significant neuronal sparing as a result of this treatment. The in vivo studies also demonstrated improved locomotor recovery mediated by a conductive polymer scaffold over a non-conductive control. We next sought to take advantage of conductive polymers for local, electronically-controlled release of drugs. Seeking to overcome reported limitations in drug delivery via polypyrrole, we first embedded drugs in poly

  12. Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite

    International Nuclear Information System (INIS)

    To meet the challenges of designing an injectable scaffold and regenerating bone with complex three-dimensional (3D) structures, a biomimetic and injectable hydrogel scaffold based on nano-hydroxyapatite (HA), collagen (Col) and chitosan (Chi) is synthesized. The chitosan/nano-hydroxyapatite/collagen (Chi/HA/Col) solution rapidly forms a stable gel at body temperature. It shows some features of natural bone both in main composition and microstructure. The Chi/HA/Col system can be expected as a candidate for workable systemic minimally invasive scaffolds with surface properties similar to physiological bone based on scanning electron microscopic (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) results.

  13. Partially Nanofibrous Architecture of 3D Tissue Engineering Scaffolds

    OpenAIRE

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We exami...

  14. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    The concept of scaffolding has wide resonance in several scientific fields. Here we attempt to adopt it for the study of development. In this perspective, the embryo is conceived as an integral whole, comprised of several hierarchical modules as in a recurrent circularity of emerging patterns...... molecular signalling to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships...

  15. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2014-01-01

    While organic life is the product of myriads of biochemical processes it usually escapes notice that the chemistry of life cannot be understood exclusively in terms of chemistry. What must be added is an understanding of the particular organized dynamics, which makes the integration of all these ...... brain and back again. One of the main structuring and enabling principles in the semiotic dynamics across levels has been called semiotic scaffolding a concept that relates to psychological catalyses in interesting ways to be furthe explored....

  16. Bio-functionalized PCL nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    Surface properties of scaffolds such as hydrophilicity and the presence of functional groups on the surface of scaffolds play a key role in cell adhesion, proliferation and migration. Different modification methods for hydrophilicity improvement and introduction of functional groups on the surface of scaffolds have been carried out on synthetic biodegradable polymers, for tissue engineering applications. In this study, alkaline hydrolysis of poly (ε-caprolactone) (PCL) nanofibrous scaffolds was carried out for different time periods (1 h, 4 h and 12 h) to increase the hydrophilicity of the scaffolds. The formation of reactive groups resulting from alkaline hydrolysis provides opportunities for further surface functionalization of PCL nanofibrous scaffolds. Matrigel was attached covalently on the surface of an optimized 4 h hydrolyzed PCL nanofibrous scaffolds and additionally the fabrication of blended PCL/matrigel nanofibrous scaffolds was carried out. Chemical and mechanical characterization of nanofibrous scaffolds were evaluated using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, contact angle, scanning electron microscopy (SEM) and tensile measurement. In vitro cell adhesion and proliferation study was carried out after seeding nerve precursor cells (NPCs) on different scaffolds. Results of cell proliferation assay and SEM studies showed that the covalently functionalized PCL/matrigel nanofibrous scaffolds promote the proliferation and neurite outgrowth of NPCs compared to PCL and hydrolyzed PCL nanofibrous scaffolds, providing suitable substrates for nerve tissue engineering.

  17. Biomimetic Dye Aggregate Solar Cells

    OpenAIRE

    Marek, Peter L.

    2012-01-01

    A biomimetic self-assembling dye, which forms aggregates that mimic the natural light-harvesting system of special photosynthetic active bacteria, has been investigated towards its applicability to solar cells. This fully synthetic dye, self-assembles to orderly structured nano- to micrometer sized rod-shaped aggregates, which might improve solar cells based on conventional organic dyes. In order to use the full potential of the dye aggregates, the self-assembly needed to be controlled and a ...

  18. FGF-1 and proteolytically-mediated cleavage site presentation influence 3D fibroblast invasion in biomimetic PEGDA hydrogels

    OpenAIRE

    Sokic, Sonja; Papavasiliou, Georgia

    2012-01-01

    Controlled scaffold degradation is a critical design criterion for the clinical success of tissue engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study the effect of proteolytic cleavage site presentation on hydrogel degradation rate and 3D fibroblast in...

  19. Cytocompatibility of a silk fibroin tubular scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiannan, E-mail: wangjn@suda.edu.cn; Wei, Yali; Yi, Honggen; Liu, Zhiwu; Sun, Dan; Zhao, Huanrong

    2014-01-01

    Regenerated silk fibroin (SF) materials are increasingly used for tissue engineering applications. In order to explore the feasibility of a novel biomimetic silk fibroin tubular scaffold (SFTS) crosslinked by poly(ethylene glycol) diglycidyl ether (PEG-DE), biocompatibility with cells was evaluated. The novel biomimetic design of the SFTS consisted of three distinct layers: a regenerated SF intima, a silk braided media and a regenerated SF adventitia. The SFTS exhibited even silk fibroin penetration throughout the braid, forming a porous layered tube with superior mechanical, permeable and cell adhesion properties that are beneficial to vascular regeneration. Cytotoxicity and cell compatibility were tested on L929 cells and human umbilical vein endothelial cells (EA.hy926). DNA content analysis, scanning electron and confocal microscopies and MTT assay showed no inhibitory effects on DNA replication. Cell morphology, viability and proliferation were good for L929 cells, and satisfactory for EA.hy926 cells. Furthermore, the suture retention strength of the SFTS was about 23 N and the Young's modulus was 0.2–0.3 MPa. Collectively, these data demonstrate that PEG-DE crosslinked SFTS possesses the appropriate cytocompatibility and mechanical properties for use as vascular scaffolds as an alternative to vascular autografts. - Highlights: • A PEG-DE cross-linked small caliber porous silk fibroin tubular scaffold (SFTS) • PEG-DE cross-linked SF film had no inhibitory effect on DNA replication of cells. • Cells cultured on the SFTS showed good morphology, cell viability and proliferative activity. • SFTS would be beneficial to endothelialization. • SFTS had good suture retention strength and flexibility.

  20. Development of Underwater Microrobot with Biomimetic Locomotion

    Directory of Open Access Journals (Sweden)

    W. Zhang

    2006-01-01

    Full Text Available Microrobots have powerful applications in biomedical and naval fields. They should have a compact structure, be easy to manufacture, have efficient locomotion, be driven by low voltage and have a simple control system. To meet these purposes, inspired by the leg of stick insects, we designed a novel type of microrobot with biomimetic locomotion with 1-DOF (degree of freedom legs. The locomotion includes two ionic conducting polymer film (ICPF actuators to realize the 2-DOF motion. We developed several microrobots with this locomotion. Firstly, we review a microrobot, named Walker-1, with 1-DOF motion. And then a new microrobot, named Walker-2, utilizing six ICPF actuators, with 3-DOF motion is introduced. It is 47 mm in diameter and 8 mm in height (in static state. It has 0.61 g of dried weight. We compared the two microrobot prototypes, and the result shows that Walker-2 has some advantages, such as more flexible moving motion, good balance, less water resistance, more load-carrying ability and so on. We also compared it with some insect-inspired microrobots and some microrobots with 1-DOF legs, and the result shows that a microrobot with this novel type of locomotion has some advantages. Its structure has fewer actuators and joints, a simpler control system and is compact. The ICPF actuator decides that it can be driven by low voltage (less than 5 V and move in water. A microrobot with this locomotion has powerful applications in biomedical and naval fields.

  1. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Gang; HU Yan-rong; WAN Hong; XIA Lei; LI Jun-hua; YANG Fei; QU Xue; WANG Shen-guo; WANG Zhong-cheng

    2010-01-01

    Background The most important objective of transplant studies in the injured spinal cord has been to provide a favorable environment for axonal growth. Moreover, the continuing discovery of new grafts is providing new potentially interesting transplant candidates. Our purpose was to observe the morphological and functional repair effects of the co-transplantation of neural stem cell (NSC), Schwann ceils (SCs) and poly lactide-co-glycolide acid (PLGA) on the spinal cord injury of rats.Methods A scaffold of PLGA was fabricated. NSCs and SCs were cultured, with the NSCs labeled with 5-bromodeoxyuridine, and the complex of NSC/PLGA or NSC+SCs/PLGA were constructed. Thirty-six Wistar rats were randomly divided into three groups: group A (transplantation of PLGA), group B (transplantation of NSC/PLGA) and group C (transplantation of NSC+SCs/PLGA). The 3 mm length of the right hemicord was removed under the microscope in all rats. The PLGA or the complex of PLGA-celIs were implanted into the injury site. Basso-Beattie-Bresnahan (BBB)locomotion scores, motor and somatosensory evoked potential of lower limbs were examined to learn the rehabilitation of sensory and motor function at 4 weeks, 8 weeks, 12 weeks and 24 weeks after injury. All the recovered spinal cord injury (SCI) tissues were observed with HE staining, immunohistochemistry, and transelectronmicroscopy to identify the survival, migration and differentiation of the transplanted cells and the regeneration of neural fibres at 4 weeks, 8 weeks,12 weeks and 24 weeks after injury.Results (1) From 4 weeks to 24 weeks after injury, the BBB locomotion scores of cell-transplanted groups were better than those of the non-cell-transplanted group, especially group C (P <0.05). The amplitudes of the somatosensory evoked potential (SEP) and motor-evoked potential (MEP) were improved after injury in groups B and C, but the amplitude of SEP and MEP at 4 weeks was lower than that at 12 weeks and 24 weeks after injury. Compared

  2. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  3. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2010-01-01

    The paper illustrates how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. Using biomimetics involves a search for relevant cases, a proper analysis of the...... of biomimetic studies of sense organs in animals....

  4. Synergistic effect of surface modification and scaffold design of bioplotted 3-D poly-ε-caprolactone scaffolds in osteogenic tissue engineering.

    Science.gov (United States)

    Declercq, Heidi A; Desmet, Tim; Berneel, Elke E M; Dubruel, Peter; Cornelissen, Maria J

    2013-08-01

    The hydrophobic nature and the regular scaffold architecture of bioplotted poly(ε-caprolactone) (PCL) scaffolds present some hurdles for homogeneous tissue formation and differentiation. The current hypothesis is that a synergistic effect of applied surface modification and scaffold design enhances colonization and osteogenic differentiation. First, PCL scaffolds with a 0/90° lay-down pattern (0/90) were plotted and subjected to an oxygen plasma (O2) or multistep surface modification, including post-argon 2-amino-ethylmethacrylate grafting (AEMA), followed by immobilization of gelatin type B (gelB) and physisorption of fibronectin (gelB Fn). Secondly, scaffolds of different designs were plotted (0/90° shift (0/90 S), 0/45° and 0/90° with narrow pores (0/90 NP)) and subjected to the double protein coating. Preosteoblasts were cultured on the scaffolds and the seeding efficiency, colonization and differentiation were studied. The data revealed that a biomimetic surface modification improved colonization (gelB Fn>gelB>AEMA>O2). Compact scaffold architectures (0/90 NP, 0/45, 0/90 S>0/90) positively influenced the seeding efficiency and differentiation. Interestingly, the applied surface modification had a greater impact on colonization than the scaffold design. In conclusion, the combination of a double protein coating with a compact design enhances tissue formation in the plotted PCL scaffolds. PMID:23669624

  5. Nanostructured Tendon-Derived Scaffolds for Enhanced Bone Regeneration by Human Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ko, Eunkyung; Alberti, Kyle; Lee, Jong Seung; Yang, Kisuk; Jin, Yoonhee; Shin, Jisoo; Yang, Hee Seok; Xu, Qiaobing; Cho, Seung-Woo

    2016-09-01

    Decellularized matrix-based scaffolds can induce enhanced tissue regeneration due to their biochemical, biophysical, and mechanical similarity to native tissues. In this study, we report a nanostructured decellularized tendon scaffold with aligned, nanofibrous structures to enhance osteogenic differentiation and in vivo bone formation of human adipose-derived stem cells (hADSCs). Using a bioskiving method, we prepared decellularized tendon scaffolds from tissue slices of bovine Achilles and neck tendons with or without fixation, and investigated the effects on physical and mechanical properties of decellularized tendon scaffolds, based on the types and concentrations of cross-linking agents. In general, we found that decellularized tendon scaffolds without fixative treatments were more effective in inducing osteogenic differentiation and mineralization of hADSCs in vitro. When non-cross-linked decellularized tendon scaffolds were applied together with hydroxyapatite for hADSC transplantation in critical-sized bone defects, they promoted bone-specific collagen deposition and mineralized bone formation 4 and 8 weeks after hADSC transplantation, compared to conventional collagen type I scaffolds. Interestingly, stacking of decellularized tendon scaffolds cultured with osteogenically committed hADSCs and those containing human cord blood-derived endothelial progenitor cells (hEPCs) induced vascularized bone regeneration in the defects 8 weeks after transplantation. Our study suggests that biomimetic nanostructured scaffolds made of decellularized tissue matrices can serve as functional tissue-engineering scaffolds for enhanced osteogenesis of stem cells. PMID:27502160

  6. Electric Field-Mediated Processing of Biomaterials: Toward Nanostructured Biomimetic Systems. Appendix 3

    Science.gov (United States)

    Bowlin, Gary L.; Simpson, David G.; Lam, Philippe; Wnek, Gary E.

    2001-01-01

    Significant opportunities exist for the processing of synthetic and biological polymers using electric fields ('electroprocessing'). We review casting of multi-component films and the spinning of fibers in electric fields, and indicate opportunities for the creation of smart polymer systems using these approaches. Applications include 2-D substrates for cell growth and diagnostics, scaffolds for tissue engineering and repair, and electromechanically active biosystems.

  7. Conducting IPN actuator/sensor for biomimetic vibrissa system

    Science.gov (United States)

    Festin, N.; Plesse, C.; Pirim, P.; Chevrot, C.; Vidal, F.

    2014-03-01

    Electroactive polymers, or EAPs, are polymers that exhibit a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. One promising technology is the elaboration of electronic conducting polymers based actuators with Interpenetrating Polymer Networks (IPNs) architecture. Their many advantageous properties as low working voltage, light weight and high lifetime make them very attractive for various applications including robotics. Conducting IPNs were fabricated by oxidative polymerization of 3,4-ethylenedioxythiophene within a flexible Solid Polymer Electrolytes (SPE) combining poly(ethylene oxide) and Nitrile Butadiene Rubber. SPE mechanical properties and ionic conductivities in the presence of 1-ethyl-3- methylimidazolium bis-(trifluoromethylsulfonyl)-imide (EMITFSI) have been characterized. The presence of the elastomer within the SPE greatly improves the actuator performances. The free strain as well as the blocking force was characterized as a function of the actuator length. The sensing properties of those conducting IPNs allow their integration into a biomimetic perception prototype: a system mimicking the tactile perception of rat vibrissae.

  8. A Synthetic Polymer Scaffold Reveals the Self-Maintenance Strategies of Rat Glioma Stem Cells by Organization of the Advantageous Niche.

    Science.gov (United States)

    Tabu, Kouichi; Muramatsu, Nozomi; Mangani, Christian; Wu, Mei; Zhang, Rong; Kimura, Taichi; Terashima, Kazuo; Bizen, Norihisa; Kimura, Ryosuke; Wang, Wenqian; Murota, Yoshitaka; Kokubu, Yasuhiro; Nobuhisa, Ikuo; Kagawa, Tetsushi; Kitabayashi, Issay; Bradley, Mark; Taga, Tetsuya

    2016-05-01

    Cancer stem cells (CSCs) are believed to be maintained within a microenvironmental niche. Here we used polymer microarrays for the rapid and efficient identification of glioma CSC (GSC) niche mimicries and identified a urethane-based synthetic polymer, upon which two groups of niche components, namely extracellular matrices (ECMs) and iron are revealed. In cultures, side population (SP) cells, defined as GSCs in the rat C6 glioma cell line, are more efficiently sustained in the presence of their differentiated progenies expressing higher levels of ECMs and transferrin, while in xenografts, ECMs are supplied by the vascular endothelial cells (VECs), including SP cell-derived ones with distinctively greater ability to retain xenobiotics than host VECs. Iron is stored in tumor infiltrating host macrophages (Mφs), whose protumoral activity is potently enhanced by SP cell-secreted soluble factor(s). Finally, coexpression of ECM-, iron-, and Mφ-related genes is found to be predictive of glioma patients' outcome. Our polymer-based approach reveals the intrinsic capacities of GSCs, to adapt the environment to organize a self-advantageous microenvironment niche, for their maintenance and expansion, which redefines the current concept of anti-CSC niche therapy and has the potential to accelerate cancer therapy development. Stem Cells 2016;34:1151-1162. PMID:26822103

  9. Low elastic modulus titanium–nickel scaffolds for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming, E-mail: jianming@csu.edu.cn

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property.

  10. Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

    Science.gov (United States)

    Bieligmeyer, Matthias; Artukovic, Franjo; Hirth, Thomas; Schiestel, Thomas

    2016-01-01

    Summary Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4-isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows for the reconstitution of transmembrane proteins under preservation of protein function, independent of the membrane thickness. PMID:27547605

  11. Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration.

    Directory of Open Access Journals (Sweden)

    Wei Zhu

    Full Text Available Articular cartilage is prone to degeneration and possesses extremely poor self-healing capacity due to inherent low cell density and the absence of a vasculature network. Tissue engineered cartilage scaffolds show promise for cartilage repair. However, there still remains a lack of ideal biomimetic tissue scaffolds which effectively stimulate cartilage regeneration with appropriate functional properties. Therefore, the objective of this study is to develop a novel biomimetic and bioactive electrospun cartilage substitute by integrating cold atmospheric plasma (CAP treatment with sustained growth factor delivery microspheres. Specifically, CAP was applied to a poly(ε-caprolactone electrospun scaffold with homogeneously distributed bioactive factors (transforming growth factor-β1 and bovine serum albumin loaded poly(lactic-co-glycolic acid microspheres. We have shown that CAP treatment renders electrospun scaffolds more hydrophilic thus facilitating vitronectin adsorption. More importantly, our results demonstrate, for the first time, CAP and microspheres can synergistically enhance stem cell growth as well as improve chondrogenic differentiation of human marrow-derived mesenchymal stem cells (such as increased glycosaminoglycan, type II collagen, and total collagen production. Furthermore, CAP can substantially enhance 3D cell infiltration (over two-fold increase in infiltration depth after 1 day of culture in the scaffolds. By integrating CAP, sustained bioactive factor loaded microspheres, and electrospinning, we have fabricated a promising bioactive scaffold for cartilage regeneration.

  12. Amniotic membrane immobilized poly(vinyl alcohol) hybrid polymer as an artificial cornea scaffold that supports a stratified and differentiated corneal epithelium.

    Science.gov (United States)

    Uchino, Yuichi; Shimmura, Shigeto; Miyashita, Hideyuki; Taguchi, Tetsushi; Kobayashi, Hisatoshi; Shimazaki, Jun; Tanaka, Junzo; Tsubota, Kazuo

    2007-04-01

    Poly(vinyl alcohol) (PVA) is a biocompatible, transparent hydrogel with physical strength that makes it promising as a material for an artificial cornea. In our previous study, type I collagen was immobilized onto PVA (PVA-COL) as a possible artificial cornea scaffold that can sustain a functional corneal epithelium. The cellular adhesiveness of PVA in vitro was improved by collagen immobilization; however, stable epithelialization was not achieved in vivo. To improve epithelialization in vivo, we created an amniotic membrane (AM)-immobilized polyvinyl alcohol hydrogel (PVA-AM) for use as an artificial cornea material. AM was attached to PVA-COL using a tissue adhesive consisting of collagen and citric acid derivative (CAD) as a crosslinker. Rabbit corneal epithelial cells were air-lift cultured with 3T3 feeder fibroblasts to form a stratified epithelial layer on PVA-AM. The rabbit corneal epithelial cells formed 3-5 layers of keratin-3-positive epithelium on PVA-AM. Occludin-positive cells were observed lining the superficial epithelium, the gap-junctional protein connexin43-positive cells was localized to the cell membrane of the basal epithelium, while both collagen IV were observed in the basement membrane. Epithelialization over implanted PVA-AM was complete within 2 weeks, with little inflammation or opacification of the hydrogel. Corneal epithelialization on PVA-AM in rabbit corneas improved over PVA-COL, suggesting the possibility of using PVA-AM as a biocompatible hybrid material for keratoprosthesis. PMID:16924609

  13. Scaffolder - software for manual genome scaffolding

    Directory of Open Access Journals (Sweden)

    Barton Michael D

    2012-05-01

    Full Text Available Abstract Background The assembly of next-generation short-read sequencing data can result in a fragmented non-contiguous set of genomic sequences. Therefore a common step in a genome project is to join neighbouring sequence regions together and fill gaps. This scaffolding step is non-trivial and requires manually editing large blocks of nucleotide sequence. Joining these sequences together also hides the source of each region in the final genome sequence. Taken together these considerations may make reproducing or editing an existing genome scaffold difficult. Methods The software outlined here, “Scaffolder,” is implemented in the Ruby programming language and can be installed via the RubyGems software management system. Genome scaffolds are defined using YAML - a data format which is both human and machine-readable. Command line binaries and extensive documentation are available. Results This software allows a genome build to be defined in terms of the constituent sequences using a relatively simple syntax. This syntax further allows unknown regions to be specified and additional sequence to be used to fill known gaps in the scaffold. Defining the genome construction in a file makes the scaffolding process reproducible and easier to edit compared with large FASTA nucleotide sequences. Conclusions Scaffolder is easy-to-use genome scaffolding software which promotes reproducibility and continuous development in a genome project. Scaffolder can be found at http://next.gs.

  14. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-08-01

    Biodegradable scaffolds play a critical role in therapeutic tissue engineering, in which the matrix degradation and tissue ingrowth are of particular importance for determining the ongoing performance of tissue-scaffold system during regenerative process. This paper aims to explore the mechanobiological process within biodegradable scaffolds, where the representative volume element (RVE) is extracted from periodic scaffold micro-architectures as a base-cell design model. The degradation of scaffold matrix is modeled in terms of a stochastic hydrolysis process enhanced by diffusion-controlled autocatalysis; and the tissue ingrowth is modeled through the mechano-regulatory theory. By using the finite element based homogenization technique and topology optimization approach, the effective properties of various periodic scaffold structures are obtained. To explore the effect of scaffold design on the mechanobiological evolutions of tissue-scaffold systems, different scaffold architectures are considered for polymer degradation and tissue regeneration. It is found that the different tissues can grow into the degraded voids inside the polymer matrix. It is demonstrated that the design of scaffold architecture has a considerable impact on the tissue regeneration outcome, which exhibits the importance of implementing different criteria in scaffold micro-structural design, before being fabricated via rapid prototyping technique, e.g. solid free-form fabrication (SFF). This study models such an interactive process of scaffold degradation and tissue growth, thereby providing some new insights into design of biodegradable scaffold micro-architecture for tissue engineering. PMID:21529933

  15. Researches and developments of biomimetics in tribology

    Institute of Scientific and Technical Information of China (English)

    DAI Zhendong; TONG Jin; REN Luquan

    2006-01-01

    Animals and plants have developed optimal geometric structures, smart topological materials and multi-functional surface textures with excellent tribological characteristics through the evolution of thousand millions of years and become models for tribological design. This paper puts forward the definition and fundament of biomimetic tribology, investigates the status of self-cleaning of liquid-solid interface, adhesion between animals' feet and solid surface, wear characteristics of biological surfaces and biomimetic design, as well as the friction and bionic design on liquid-solid interface. The further developments of the tribological biomimetics are discussed.

  16. Biomimetic, Catalytic Oxidation in Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shun-lchi Murahashi

    2005-01-01

    @@ 1Introduction Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the current need to develop forward-looking technology that is environmentally acceptable with respect many aspects. The most attractive approaches are biomimetic oxidation reactions that are closely related to the metabolism of living things. The metabolisms are governed by a variety of enzymes such as cytochrome P-450 and flavoenzyme.Simulation of the function of these enzymes with simple transition metal complex catalyst or organic catalysts led to the discovery of biomimetic, catalytic oxidations with peroxides[1]. We extended such biomimetic methods to the oxidation with molecular oxygen under mild conditions.

  17. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-01-01

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes. PMID:26556379

  18. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  19. A novel soft biomimetic microrobot with two motion attitudes.

    Science.gov (United States)

    Shi, Liwei; Guo, Shuxiang; Li, Maoxun; Mao, Shilian; Xiao, Nan; Gao, Baofeng; Song, Zhibin; Asaka, Kinji

    2012-01-01

     A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC) actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA) actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7.14 mm/s. Obstacle

  20. A Novel Soft Biomimetic Microrobot with Two Motion Attitudes

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2012-12-01

    Full Text Available  A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7

  1. Polymer-Derived Silicoboron Carbonitride Foams for CO2 Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal-Organic Frameworks.

    Science.gov (United States)

    Sandra, Fabien; Depardieu, Martin; Mouline, Zineb; Vignoles, Gérard L; Iwamoto, Yuji; Miele, Philippe; Backov, Rénal; Bernard, Samuel

    2016-06-01

    A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2)  g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %. PMID:27170549

  2. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    Science.gov (United States)

    Prabhakaran, Molamma P.; Venugopal, J.; Chan, Casey K.; Ramakrishna, S.

    2008-11-01

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ɛ-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  3. Surface modified electrospun nanofibrous scaffolds for nerve tissue engineering

    International Nuclear Information System (INIS)

    The development of biodegradable polymeric scaffolds with surface properties that dominate interactions between the material and biological environment is of great interest in biomedical applications. In this regard, poly-ε-caprolactone (PCL) nanofibrous scaffolds were fabricated by an electrospinning process and surface modified by a simple plasma treatment process for enhancing the Schwann cell adhesion, proliferation and interactions with nanofibers necessary for nerve tissue formation. The hydrophilicity of surface modified PCL nanofibrous scaffolds (p-PCL) was evaluated by contact angle and x-ray photoelectron spectroscopy studies. Naturally derived polymers such as collagen are frequently used for the fabrication of biocomposite PCL/collagen scaffolds, though the feasibility of procuring large amounts of natural materials for clinical applications remains a concern, along with their cost and mechanical stability. The proliferation of Schwann cells on p-PCL nanofibrous scaffolds showed a 17% increase in cell proliferation compared to those on PCL/collagen nanofibrous scaffolds after 8 days of cell culture. Schwann cells were found to attach and proliferate on surface modified PCL nanofibrous scaffolds expressing bipolar elongations, retaining their normal morphology. The results of our study showed that plasma treated PCL nanofibrous scaffolds are a cost-effective material compared to PCL/collagen scaffolds, and can potentially serve as an ideal tissue engineered scaffold, especially for peripheral nerve regeneration.

  4. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

    Science.gov (United States)

    Olubamiji, Adeola D; Izadifar, Zohreh; Si, Jennifer L; Cooper, David M L; Eames, B Frank; Chen, Daniel X B

    2016-06-01

    Three-dimensional (3D)-printed poly(ε)-caprolactone (PCL)-based scaffolds are increasingly being explored for cartilage tissue engineering (CTE) applications. However, ensuring that the mechanical properties of these PCL-based constructs are comparable to that of articular cartilage that they are meant to regenerate is an area that has been under-explored. This paper presents the effects of PCL's molecular weight (MW) and scaffold's pore geometric configurations; strand size (SZ), strand spacing (SS), and strand orientation (SO), on mechanical properties of 3D-printed PCL scaffolds. The results illustrate that MW has significant effect on compressive moduli and yield strength of 3D-printed PCL scaffolds. Specifically, PCL with MW of 45 K was a more feasible choice for fabrication of visco-elastic, flexible and load-bearing PCL scaffolds. Furthermore, pore geometric configurations; SZ, SS, and SO, all significantly affect on tensile moduli of scaffolds. However, only SZ and SS have statistically significant effects on compressive moduli and porosity of these scaffolds. That said, inverse linear relationship was observed between porosity and mechanical properties of 3D-printed PCL scaffolds in Pearson's correlation test. Altogether, this study illustrates that modulating MW of PCL and pore geometrical configurations of the scaffolds enabled design and fabrication of PCL scaffolds with mechanical and biomimetic properties that better mimic mechanical behaviour of human articular cartilage. Thus, the modulated PCL scaffold proposed in this study is a framework that offers great potentials for CTE applications. PMID:27328736

  5. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Sabbatier, Gad, E-mail: gad.sabbatier.1@ulaval.ca [Laboratoire de Physique et Mécanique Textile, École Nationale Supérieure d' Ingénieurs du Sud Alsace, Université de Haute Alsace, 11 rue Alfred Werner, 68093 Mulhouse Cedex, Mulhouse (France); Laboratoire d' Ingénierie de Surface, Centre de Recherche sur les Matériaux Avancés, Département de génie des mines, de la métallurgie et des matériaux, Université Laval 1045 avenue de la Médecine, Bureau 1033, Québec, G1V 0A6 Québec (Canada); Centre de recherche du CHU de Québec, Hôpital St François d' Assise, 10 rue de l' Espinay, local E0-165, Québec (QC), G1L 3L5 Québec (Canada); and others

    2014-02-01

    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology. - Highlights: • An air spinning device for nanofibre scaffold production was optimised. • Relationships between fibre diameter and spinning parameters were established. • Polymer solution concentration was the most significant parameter. • Interactions between experimental parameters also influence the spinning process. • Nanofibres were formed due to polymer chain entanglements.

  6. Biomimetic/Optical Sensors for Detecting Bacterial Species

    Science.gov (United States)

    Homer, Margie; Ksendzov, Alexander; Yen, Shiao-Pin; Ryan, Margaret; Lazazzera, Beth

    2006-01-01

    Biomimetic/optical sensors have been proposed as means of real-time detection of bacteria in liquid samples through real-time detection of compounds secreted by the bacteria. Bacterial species of interest would be identified through detection of signaling compounds unique to those species. The best-characterized examples of quorum-signaling compounds are acyl-homoserine lactones and peptides. Each compound, secreted by each bacterium of an affected species, serves as a signal to other bacteria of the same species to engage in a collective behavior when the population density of that species reaches a threshold level analogous to a quorum. A sensor according to the proposal would include a specially formulated biomimetic film, made of a molecularly imprinted polymer (MIP), that would respond optically to the signaling compound of interest. The MIP film would be integrated directly onto an opticalwaveguide- based ring resonator for optical readout. Optically, the sensor would resemble the one described in Chemical Sensors Based on Optical Ring Resonators (NPO-40601), NASA Tech Briefs, Vol. 29, No. 10 (October 2005), page 32. MIPs have been used before as molecular- recognition compounds, though not in the manner of the present proposal. Molecular imprinting is an approach to making molecularly selective cavities in a polymer matrix. These cavities function much as enzyme receptor sites: the chemical functionality and shape of a cavity in the polymer matrix cause the cavity to bind to specific molecules. An MIP matrix is made by polymerizing monomers in the presence of the compound of interest (template molecule). The polymer forms around the template. After the polymer solidifies, the template molecules are removed from the polymer matrix by decomplexing them from their binding sites and then dissolving them, leaving cavities that are matched to the template molecules in size, shape, and chemical functionality. The cavities thus become molecular-recognition sites

  7. In vitro evaluation of human endometrial stem cell-derived osteoblast-like cells' behavior on gelatin/collagen/bioglass nanofibers' scaffolds.

    Science.gov (United States)

    Sharifi, Esmaeel; Ebrahimi-Barough, Somayeh; Panahi, Maryam; Azami, Mahmoud; Ai, Arman; Barabadi, Zahra; Kajbafzadeh, Abdol-Mohammad; Ai, Jafar

    2016-09-01

    New biomimetic nanocomposite scaffold was prepared by the combination of nanofibrilar bioglass containing copper ion as the inorganic phase and gelatin/collagen as the organic phase of bone tissue. In this study for fabrication of the scaffold, freeze drying and electrospinning methods were used, and genipin was used as the cross-linking agent for increasing the mechanical properties of the scaffold. The growth and viability of human endometrial stem cell-derived osteoblast-like cells were investigated on this biomimetic scaffold. Cellular biocompatibility assays illustrated that this scaffold has more viabilities and osteoblast growths in comparison with two-dimensional culture. Copper ion increased growth of the osteoblasts on nanocomposite scaffold containing nanofibrous bioglass. Thus, the results obtained from this study indicate that the prepared scaffold is suitable for osteoblast growth and attachment; thus, potentially, this nanocomposite scaffold is an appropriate scaffold for bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2210-2219, 2016. PMID:27087544

  8. Biomimetic surface modification of polyurethane with phospholipids grafted carbon nanotubes.

    Science.gov (United States)

    Tan, Dongsheng; Liu, Liuxu; Li, Zhen; Fu, Qiang

    2015-08-01

    To improve blood compatibility of polyurethane (PU), phospholipids grafted carbon nanotubes (CNTs) were prepared through zwitterion-mediated cycloaddition reaction and amide condensation, and then were added to the PU as fillers via solution mixing to form biomimetic surface. The properties of phospholipids grafted CNTs (CNT-PC) were investigated by thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and proton nuclear magnetic resonance ((1) H NMR). The results indicated that the phospholipids were grafted onto CNTs in high efficiency, and the hydrophilicity and dispersibility of the modified CNTs were improved effectively. The structures and properties of composites containing CNT-PC were investigated by optical microscope, XPS, and water contact angles. The results indicated that phospholipids were enriched on the surface with addition of 0.1 wt % of CNT-PC, which significantly reduced protein adsorption and platelet adhesion. The method of carrying phospholipids on the nanofiller to modify polymers has provided a promising way of constructing biomimetic phospholipid membrane on the surface to improve blood compatibility. PMID:25630300

  9. Biomimetic catalysis: Taking on the turnover challenge

    Science.gov (United States)

    Hooley, Richard J.

    2016-03-01

    Emulating the efficiency with which enzymes catalyse reactions has often been used as inspiration to develop self-assembled cages. Now two studies present approaches to achieving catalyst turnover -- one of the biggest challenges in achieving truly biomimetic catalysis.

  10. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  11. Preparation and properties of polyurethane/silicone materials for biomimetic gecko setae

    Science.gov (United States)

    Yu, Min; Dai, Zhendong; Yang, Shengrong

    2014-03-01

    In the biomimetic design of gecko setae, it is necessary to select materials with appropriate adhesive properties and to understand the effects of materials on normal and tangential adhesive forces. To meet the adhesion performance requirements of the biomimetic gecko robot foot, in this study, performance-improved polyurethane/silicone polymer materials were designed and synthesized, and the normal adhesion and tangential adhesion were measured using an adhesive friction comprehensive tester. The results show that normal adhesion increased with an increase in load when the normal load is small; when the normal load exceeds a critical value, the increase in normal adhesion slows and adhesion saturates. Under the condition of an adhesive state, the tangential adhesive force was larger for a smaller negative normal force, and a relatively large tangential adhesive force could be generated with a very small negative normal force. The elastic modulus of the synthetic polyurethane/silicone material varied with varying ratios of components, and it increased with increasing urethane content. Polyurethane/silicone material with about 30% polyurethane provided greater adhesion than other materials with different contents of polyurethane. The results provide a basis for the choice of biomimetic materials of the biomimetic gecko robot foot.

  12. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2014-12-01

    Full Text Available A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene and cross-linker (phloroglucinol levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  13. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian;

    2011-01-01

    Lipid bilayers are intrinsically fragile and require mechanical support in technical applications based on biomimetic membranes. Tethering the lipid bilayer membranes to solid substrates, either directly through covalent or ionic substrate−lipid links or indirectly on substrate-supported cushions......, provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE...

  14. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  15. Electroactive polymer actuators as artificial muscles: are they ready for bioinspired applications?

    DEFF Research Database (Denmark)

    Carpi, Federico; Kornbluh, Roy; Sommer-Larsen, Peter;

    2011-01-01

    Electroactive polymer (EAP) actuators are electrically responsive materials that have several characteristics in common with natural muscles. Thus, they are being studied as 'artificial muscles' for a variety of biomimetic motion applications. EAP materials are commonly classified into two major...

  16. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold

    International Nuclear Information System (INIS)

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  17. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    Science.gov (United States)

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  18. Biomimetic Active Touch with Fingertips and Whiskers.

    Science.gov (United States)

    Lepora, Nathan F

    2016-01-01

    This study provides a synthetic viewpoint that compares, contrasts, and draws commonalities for biomimetic perception over a range of tactile sensors and tactile stimuli. Biomimetic active perception is formulated from three principles: (i) evidence accumulation based on leading models of perceptual decision making; (ii) action selection with an evidence-based policy, here based on overt focal attention; and (iii) sensory encoding of evidence based on neural coding. Two experiments with each of three biomimetic tactile sensors are considered: the iCub (capacitive) fingertip, the TacTip (optical) tactile sensor, and BIOTACT whiskers. For each sensor, one experiment considers a similar task (perception of shape and location) and the other a different tactile perception task. In all experiments, active perception with a biomimetic action selection policy based on focal attention outperforms passive perception with static or random action selection. The active perception also consistently reaches superresolved accuracy (hyperacuity) finer than the spacing between tactile elements. Biomimetic active touch thus offers a common approach for biomimetic tactile sensors to accurately and robustly characterize and explore non-trivial, uncertain environments analogous to how animals perceive the natural world. PMID:27168603

  19. Contact kinematics of biomimetic scales

    International Nuclear Information System (INIS)

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate

  20. Biomimetic use of genetic algorithms

    CERN Document Server

    Dessalles, Jean-Louis

    2011-01-01

    Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.

  1. Biomimetic mechanism for micro aircraft

    Science.gov (United States)

    Pines, Darryll J. (Inventor); Bohorquez, Felipe A. (Inventor); Sirohi, Jayant (Inventor)

    2005-01-01

    A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.

  2. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær;

    2015-01-01

    The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One...... barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...... organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these...

  3. PLGA纳米可降解尿道支架的制备及力学性能%Preparation and mechanical properties of co-polymer poly (lactic-co-glycolic acid) degradable tubular urethral scaffold

    Institute of Scientific and Technical Information of China (English)

    王晓庆; 王春喜; 侯宇川; 陈岐辉; 张海峰; 姜凤鸣

    2012-01-01

    Objective To discuss the feasibility of the fabrication of co-polymer poly (lactic-co-glycolic acid) (PLGA) 80 : 20 tubular urethral scaffold by electrospinning and evaluate its mechanical properties. Methods PLGA (80 : 20) was dissolved in chloroform to form solutions with concentrations varying from 3% to 6%. The electrospinning technique was used to fabricate the tubular urethral scaffolds. The morphology was investigated by scanning electron microscope. Fiber diameters, aperture, porosity and mechanical properties were compared between various concentrations of PLGA. Results PLGA urethral stents with concentrations of 3% , A% and 5% were successfully fabricated, and the concentration of 6% failed for high concentration. The scaffold was 4 cm long and with an inner diameter of 3. 0 mm and an outside diameter of 4. 0 mm. The fiber diameter was thicken with the increasing of the concentrations, the difference was significant between various groups (P 0.05). Conclusion The properties of 5% PLGA (80 : 20) urethral scaffold which fabricated by electrospinriing technique can fully satisfied the demand for structure and mechanical properties of a degradable urethral scaffold.%目的:探讨电纺丝法制备聚乳酸-羟基乙酸共聚物(PLGA)(摩尔比80:20)可降解尿道支架的可行性,并评价支架管的力学性能.方法:PLGA (80:20)用三氯甲烷溶解并配成3%、4%、5%和6%的溶液,采用电纺丝技术制备纳米尿道支架,采用扫描电镜观察各种浓度PLGA制备的纳米尿道支架的微观结构,比较各种浓度PLGA支架的纤维直径、孔径、孔隙率及力学性能的差异.结果:浓度为3%、4%和5%的PLGA尿道支架制备成功,浓度为6%的PLGA因浓度过高制管失败.支架呈白色,长度4 cm,内径约3.0 mm,外径约4.0 mm.电镜扫描见3种浓度的PLGA支架纤维平均直径随浓度的增高而增粗,组间比较差异有统计学意义(P<0.05).3种浓度PLGA支架的平均孔径分别为(7±4

  4. [Research Progress of Collagen-based Three-dimensional Porous Scaffolds Used in Skin Tissue Engineering].

    Science.gov (United States)

    Zhang, Jing; Tang, Qiwei; Zhou, Aimei; Yang, Shulin

    2015-08-01

    Collagen is a kind of natural biomedical material and collagen based three-dimensional porous scaffolds have been widely used in skin tissue engineering. However, these scaffolds do not meet the requirements for artificial skin substitutes in terms of their poor mechanical properties, short supply, and rejection in the bodies. All of these factors limit their further application in skin tissue engineering. A variety of methods have been chosen to meliorate the situation, such as cross linking and blending other substance for improving mechanical properties. The highly biomimetic scaffolds either in structure or in function can be prepared through culturing cells and loading growth factors. To avoid the drawbacks of unsafety attributing to animals, investigators have fixed their eyes on the recombinant collagen. This paper reviews the the progress of research and application of collagen-based 3-dimensional porous scaffolds in skin tissue engineering. PMID:26710471

  5. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    In this study, biomorphic poly(DL-lactic-co-glycolic acid)/nano-hydroxyapatite (PLGA/nHA) composite scaffolds were successfully prepared using cane as a template. The porous morphology, phase, compression characteristics and in vitro biocompatibility of the PLGA/nHA composite scaffolds and biomorphic PLGA scaffolds as control were investigated. The results showed that the biomorphic scaffolds preserved the original honeycomb-like architecture of cane and exhibited a bimodal porous structure. The average channel diameter and micropore size of the PLGA/nHA composite scaffolds were 164 ± 52 μm and 13 ± 8 μm, respectively, with a porosity of 89.3 ± 1.4%. The incorporation of nHA into PLGA decreased the degree of crystallinity of PLGA, and significantly improved the compressive modulus of biomorphic scaffolds. The in vitro biocompatibility evaluation with MC3T3-E1 cells demonstrated that the biomorphic PLGA/nHA composite scaffolds could better support cell attachment, proliferation and differentiation than the biomorphic PLGA scaffolds. The localization depth of MC3T3-E1 cells within the channels of the biomorphic PLGA/nHA composite scaffolds could reach approximately 400 μm. The results suggested that the biomorphic PLGA/nHA composite scaffolds were promising candidates for bone tissue engineering. - Highlights: • Novel biomimetic PLGA/nHA composite scaffolds were successfully prepared. • nHA addition improved elastic modulus of PLGA scaffold and decreased its crystallinity. • PLGA/nHA composite scaffolds had better biocompatibility than PLGA scaffolds. • Biomorphic PLGA/nHA composite scaffold had great potential in bone tissue engineering

  6. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  7. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    Directory of Open Access Journals (Sweden)

    Joachim Habel

    2015-07-01

    Full Text Available In recent years, aquaporin biomimetic membranes (ABMs for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs, block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.

  8. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

    Directory of Open Access Journals (Sweden)

    Xia Y

    2013-11-01

    Full Text Available Yan Xia,1,* Panyu Zhou,1,* Xiaosong Cheng,1,* Yang Xie,1,* Chong Liang,2 Chao Li,1 Shuogui Xu1,2 1Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; 2Department of Neurosurgery, The 81 Hospital of People's Liberation Army of China, Nanjing, People's Republic of China *These authors contributed equally to this work Abstract: The regeneration of functional tissue in osseous defects is a formidable challenge in orthopedic surgery. In the present study, a novel biomimetic composite scaffold, here called nano-hydroxyapatite (HA/poly-ε-caprolactone (PCL was fabricated using a selective laser sintering technique. The macrostructure, morphology, and mechanical strength of the scaffolds were characterized. Scanning electronic microscopy (SEM showed that the nano-HA/PCL scaffolds exhibited predesigned, well-ordered macropores and interconnected micropores. The scaffolds have a range of porosity from 78.54% to 70.31%, and a corresponding compressive strength of 1.38 MPa to 3.17 MPa. Human bone marrow stromal cells were seeded onto the nano-HA/PCL or PCL scaffolds and cultured for 28 days in vitro. As indicated by the level of cell attachment and proliferation, the nano-HA/PCL showed excellent biocompatibility, comparable to that of PCL scaffolds. The hydrophilicity, mineralization, alkaline phosphatase activity, and Alizarin Red S staining indicated that the nano-HA/PCL scaffolds are more bioactive than the PCL scaffolds in vitro. Measurements of recombinant human bone morphogenetic protein-2 (rhBMP-2 release kinetics showed that after nano-HA was added, the material increased the rate of rhBMP-2 release. To investigate the in vivo biocompatibility and osteogenesis of the composite scaffolds, both nano-HA/PCL scaffolds and PCL scaffolds were implanted in rabbit femur defects for 3, 6, and 9 weeks. The wounds were studied radiographically and histologically. The in vivo results showed

  9. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    International Nuclear Information System (INIS)

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive® Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 ± 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: ► Human-like collagen was first used to prepare cartilage tissue engineering scaffold. ► Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. ► We chose market product as a control.

  10. Human-like collagen/nano-hydroxyapatite scaffolds for the culture of chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Liping; Duan, Zhiguang [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Fan, Daidi, E-mail: fandaidi@nwu.edu.cn [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Mi, Yu; Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Shaanxi R and D Center of Biomaterials and Fermentation Engineering, Northwest University, 229 Taibai North Road, Xi' an, Shaanxi 710069 (China); Chang, Le [School of Chemical Engineering, Northwest University, Xi' an, Shaanxi 710069 (China)

    2013-03-01

    Three dimensional (3D) biodegradable porous scaffolds play a key role in cartilage tissue repair. Freeze-drying and cross-linking techniques were used to fabricate a 3D composite scaffold that combined the excellent biological characteristics of human-like collagen (HLC) and the outstanding mechanical properties of nano-hydroxyapatite (nHA). The scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and compression tests, using Relive Registered-Sign Artificial Bone (RAB) scaffolds as a control. HLC/nHA scaffolds displayed homogeneous interconnected macroporous structure and could withstand a compression stress of 2.67 {+-} 0.37 MPa, which was higher than that of the control group. Rabbit chondrocytes were seeded on the composite porous scaffolds and cultured for 21 days. Cell/scaffold constructs were examined using SEM, histological procedures, and biochemical assays for cell proliferation and the production of glycosaminoglycans (GAGs). The results indicated that HLC/nHA porous scaffolds were capable of encouraging cell adhesion, homogeneous distribution and abundant GAG synthesis, and maintaining natural chondrocyte morphology compared to RAB scaffolds. In conclusion, the presented data warrants the further exploration of HLC/nHA scaffolds as a potential biomimetic platform for chondrocytes in cartilage tissue engineering. - Highlights: Black-Right-Pointing-Pointer Human-like collagen was first used to prepare cartilage tissue engineering scaffold. Black-Right-Pointing-Pointer Genipin, a natural biological cross-linking agent, was introduced to treat scaffold. Black-Right-Pointing-Pointer We chose market product as a control.

  11. Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering

    Science.gov (United States)

    Jaiswal, Amit K.; Kadam, Sachin S.; Soni, Vivek P.; Bellare, Jayesh R.

    2013-03-01

    Biomimetic biomaterials are widely being explored as scaffold for bone regeneration. In this study, we prepared poly-L-lactic acid/hydroxyapatite (PLLA/HA) and poly-L-lactic acid/gelatin/hydroxyapatite (PLLA/Gel/HA) scaffold by electrospinning of poly-L-lactic acid (PLLA) and a blend of poly-L-lactic acid/gelatin (PLLA/Gel) followed by hydroxyapatite (HA) mineralization via alternate soaking in calcium and phosphate (Ca-P) solutions. HA growth on scaffold after each soaking cycle was confirmed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The functional groups (COOsbnd and sbnd NH2) of gelatin in the PLLA/Gel scaffold facilitated the surface nucleation of HA as compared to the PLLA scaffold. Leaching study showed HA in PLLA/Gel/HA scaffold acts as binder of gelatin and eliminates use of toxic crosslinking agents. In vitro cell attachment on these scaffolds was assessed by using human osteosarcoma cells (MG-63). Cell proliferation on scaffolds was examined by MTT assay. MTT results clearly indicated that mineralized scaffolds did not inhibit the eventual cell proliferation. Alkaline phosphatase (ALP) activity of MG-63 cells was found to be the highest on PLLA/Gel/HA at day 7 compared to all other scaffolds. Complement activation study revealed minimum terminal complement complex (TCC) concentration for PLLA/Gel and PLLA/Gel/HA (617.33 and 654.13 ng/mL respectively). These results demonstrate the proficiency of PLLA/Gel/HA scaffold in better osteostimulation with lesser immune response, which attributed to synergistic role of gelatin and HA. Thus, by mimicking the natural microenvironment PLLA/Gel/HA scaffolds can become the choice of material in bone tissue engineering.

  12. Interactions between structural and chemical biomimetism in synthetic stem cell niches

    International Nuclear Information System (INIS)

    Advancements in understanding stem cell functions and differentiation are of key importance for the clinical success of stem-cell-based therapies. 3D structural niches fabricated by two-photon polymerization are a powerful platform for controlling stem cell growth and differentiation. In this paper, we investigate the possibility of further controlling stem cell fate by tuning the mechanical properties of such niches through coating with thin layers of biomimetic hyaluronan-based and gelatin-based hydrogels. We first assess the biocompatibility of chemical coatings and then study the interactions between structural and chemical biomimetism on the response of MSCs in terms of proliferation and differentiation. We observed a clear effect of the hydrogel coating on otherwise identical 3D scaffolds. In particular, in gelatin-coated niches we observed a stronger metabolic activity and commitment toward the osteo-chondral lineage with respect to hyaluronan-coated niches. Conversely, a reduction in the homing effect was observed in all the coated niches, especially in gelatin-coated niches. This study demonstrates the feasibility of controlling independently different mechanical cues, in bioengineered stem cell niches, i.e. the 3D scaffold geometry and the surface stiffness. This will allow, on the one hand, understanding their specific role in stem cell proliferation and differentiation and, on the other hand, finely tuning their synergistic effect. (paper)

  13. Multicompartmentalized polymeric systems: towards biomimetic cellular structure and function.

    Science.gov (United States)

    Marguet, Maïté; Bonduelle, Colin; Lecommandoux, Sébastien

    2013-01-21

    The cell is certainly one of the most complex and exciting systems in Nature that scientists are still trying to fully understand. Such a challenge pushes material scientists to seek to reproduce its perfection by building biomimetic materials with high-added value and previously unmatched properties. Thanks to their versatility, their robustness and the current state of polymer chemistry science, we believe polymer-based materials to constitute or represent ideal candidates when addressing the challenge of biomimicry, which defines the focus of this review. The first step consists in mimicking the structure of the cell: its inner compartments, the organelles, with a multicompartmentalized structure, and the rest, i.e. the cytoplasm minus the organelles (mainly cytoskeleton/cytosol) with gels or particular solutions (highly concentrated for example) in one compartment, and finally the combination of both. Achieving this first structural step enables us to considerably widen the gap of possibilities in drug delivery systems. Another powerful property of the cell lies in its metabolic function. The second step is therefore to achieve enzymatic reactions in a compartment, as occurs in the organelles, in a highly controlled, selective and efficient manner. We classify the most exciting polymersome nanoreactors reported in our opinion into two different subsections, depending on their very final concept or purpose of design. We also highlight in a thorough table the experimental sections crucial to such work. Finally, after achieving control over these prerequisites, scientists are able to combine them and push the frontiers of biomimicry further: from cell structure mimics towards a controlled biofunctionality. Such a biomimetic approach in material design and the future research it will stimulate, are believed to bring considerable enrichments to the fields of drug delivery, (bio)sensors, (bio)catalysis and (bio)technology. PMID:23073077

  14. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  15. Preparation, characterization and cytocompatibility of bioactive coatings on porous calcium-silicate-hydrate scaffolds

    International Nuclear Information System (INIS)

    The major goal of this research was to investigate and characterize the deposition of a biomimetic apatite-like coating onto the surface of 3D porous calcium-silicate-hydrate scaffolds with suitable bioactivity for potential application in bone tissue engineering. Basically, Portland cement, water, sand and lime were mixed for preparing the slurry which was poured into molds, and fine aluminum powder was added as foaming agent resulting on the formation of porous 3D structures. After aging for 28 days, these porous inorganic scaffolds were immersed in calcium chloride supersaturated solution in PBS for 7 days at 37 deg. C for the biomimetic layer deposition. Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier Transformed Infrared Spectroscopy (FTIR) techniques were used in order to characterize the porous scaffolds and the apatite-like biomimetic coating. The results have showed that 3D constructs were successfully produced with interconnected porosity, compressive strength and cytocompatibility appropriate for potential use as an alternative in trabecular bone repair.

  16. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  17. Biomimetic mineral coatings in dental and orthopaedic implantology

    OpenAIRE

    Liu, Y.; Groot; Hunziker, E.B.

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers generated by biomimetic methods resemble bone mineral, and can be degraded within a biological milieu. The biomimetic coating technique involves the nucleation and growth of bone-like crystals upo...

  18. Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation

    OpenAIRE

    Rashid Mad Jin; Naznin Sultana; Sayang Baba; Salehhuddin Hamdan; Ahmad Fauzi Ismail

    2015-01-01

    Two semicrystalline polymers were blended to fabricate porous scaffolds for tissue engineering applications. Scaffolds containing polycaprolactone (PCL)/chitosan and nanohydroxyapatite (nHA) incorporated nHA/PCL/chitosan were produced using the freeze-drying technique. A model drug, tetracycline hydrochloride (tetracycline HCL), was incorporated into the scaffolds. The scaffolds were characterized using a scanning electron microscope (SEM), EDX, and water contact angle. The antibacterial prop...

  19. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  20. JSR photolithography based microvessel scaffold fabrication and cell seeding.

    Science.gov (United States)

    Wang, Gou-Jen; Hsu, Yi-Feng; Hsu, Shan-Hui; Horng, Ray Hua

    2006-03-01

    A simple and inexpensive lithograph approach, in which the PMMA polymer was selected to be the substrate, the negative photoresist JSR was employed to form the microchannel structure, was adopted to fabricate the microvessel scaffold. In addition, a soft PDMS based microvessel scaffold was built by using a mold that was made up of the negative photoresist JSR. With O(2) plasma treatment, the PDMS based microvessel scaffold became more hydrophilic such that the cell culture could be easier to conduct. During cell culture, it was found that the fabricated scaffold enabled the bovine endothelial cells (BEC) to statically grow. However, the overall exchange of nutrient and oxygen was inefficient. Dynamic seeding by a novel apparatus was further conducted to have better circulation of culture medium. The bovine endothelial cells could successfully be cultivated in the microvessel scaffold by dynamic seeding. PMID:16491327

  1. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard;

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena that...

  2. Bioprinted Scaffolds for Cartilage Tissue Engineering.

    Science.gov (United States)

    Kang, Hyun-Wook; Yoo, James J; Atala, Anthony

    2015-01-01

    Researchers are focusing on bioprinting technology as a viable option to overcome current difficulties in cartilage tissue engineering. Bioprinting enables a three-dimensional (3-D), free-form, computer-designed structure using biomaterials, biomolecules, and/or cells. The inner and outer shape of a scaffold can be controlled by this technology with great precision. Here, we introduce a hybrid bioprinting technology that is a co-printing process of multiple materials including high-strength synthetic polymer and cell-laden hydrogel. The synthetic polymer provides mechanical support for shape maintenance and load bearing, while the hydrogel provides the biological environment for artificial cartilage regeneration. This chapter introduces the procedures for printing of a 3-D scaffold using our hybrid bioprinting technology and includes the source materials for preparation of 3-D printing. PMID:26445837

  3. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  4. Porous PCL/Chitosan and nHA/PCL/Chitosan Scaffolds for Tissue Engineering Applications: Fabrication and Evaluation

    Directory of Open Access Journals (Sweden)

    Rashid Mad Jin

    2015-01-01

    Full Text Available Two semicrystalline polymers were blended to fabricate porous scaffolds for tissue engineering applications. Scaffolds containing polycaprolactone (PCL/chitosan and nanohydroxyapatite (nHA incorporated nHA/PCL/chitosan were produced using the freeze-drying technique. A model drug, tetracycline hydrochloride (tetracycline HCL, was incorporated into the scaffolds. The scaffolds were characterized using a scanning electron microscope (SEM, EDX, and water contact angle. The antibacterial properties of the nHA/PCL/chitosan/tetracycline HCL scaffold were tested and the scaffolds showed positive results on gram-positive and gram-negative bacteria. The cell biocompatibility using human skin fibroblast cells (HSF 1184 was examined. The scaffold materials were found to be nontoxic to human skin fibroblast cells (HSF 1184 and showed positive proliferation activities. The nHA/PCL/chitosan/tetracycline HCL scaffold has potential for controlling implant-associated bacterial infections during operative procedures and can potentially be used as a scaffold for tissue engineering applications.

  5. Metagenomic scaffolds enable combinatorial lignin transformation

    OpenAIRE

    Strachan, Cameron R.; Singh, Rahul; VanInsberghe, David; Ievdokymenko, Kateryna; Budwill, Karen; Mohn, William W.; Eltis, Lindsay D.; Steven J Hallam

    2014-01-01

    Plant biomass conversion into biofuels and chemicals can reduce human reliance on petroleum and promote sustainable biorefining processes. The structural polymer lignin can comprise up to 40% of plant biomass, but resists decomposition into valuable monoaromatic compounds. In this study, we devised a previously unidentified biosensor responsive to lignin transformation products. We used this biosensor in a functional screen to recover metagenomic scaffolds sourced from coal bed bacterial comm...

  6. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    Science.gov (United States)

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6μm, a specific surface area of 40m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. PMID:27040244

  7. Biomimetics, color, and the arts

    Science.gov (United States)

    Schenk, Franziska

    2015-03-01

    Color as dramatic, dynamic and dazzling as the iridescent hues on the wings of certain butterflies has never been encountered in the art world. Unlike and unmatched by the chemical pigments of the artists' palette, this changeable color is created by transparent, colorless nanostructures that, as with prisms, diffract and reflect light to render spectral color visible. Until now, iridescent colors, by their very nature, have defied artists' best efforts to fully capture these rainbow hues. Now, for the first time, the artist and researcher Franziska Schenk employs latest nature-inspired color-shift technology to actually simulate the iridescence of butterflies and beetles on canvas. Crucially, studying the ingenious ways in which a range of such displays are created by insects has provided the artist with vital clues on how to adapt and adopt these challenging optical nano-materials for painting. And indeed, after years of meticulous and painstaking research both in the lab and studio, the desired effect is achieved. The resulting paintings, like an iridescent insect, do in fact fluctuate in perceived color - depending on the light and viewing angle. In tracing the artist's respective biomimetic approach, the paper not only provides an insight into the new color technology's evolution and innovative artistic possibilities, but also suggests what artists can learn from nature.

  8. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects

    Directory of Open Access Journals (Sweden)

    Ralph M. Jeuken

    2016-06-01

    Full Text Available Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.

  9. Biomimetic Culture Reactor for Whole-Lung Engineering.

    Science.gov (United States)

    Raredon, Micha Sam Brickman; Rocco, Kevin A; Gheorghe, Ciprian P; Sivarapatna, Amogh; Ghaedi, Mahboobe; Balestrini, Jenna L; Raredon, Thomas L; Calle, Elizabeth A; Niklason, Laura E

    2016-01-01

    Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions. PMID:27088061

  10. Biomimetic Culture Reactor for Whole-Lung Engineering

    Science.gov (United States)

    Raredon, Micha Sam Brickman; Rocco, Kevin A.; Gheorghe, Ciprian P.; Sivarapatna, Amogh; Ghaedi, Mahboobe; Balestrini, Jenna L.; Raredon, Thomas L.; Calle, Elizabeth A.; Niklason, Laura E.

    2016-01-01

    Abstract Decellularized organs are now established as promising scaffolds for whole-organ regeneration. For this work to reach therapeutic practice, techniques and apparatus are necessary for doing human-scale clinically applicable organ cultures. We have designed and constructed a bioreactor system capable of accommodating whole human or porcine lungs, and we describe in this study relevant technical details, means of assembly and operation, and validation. The reactor has an artificial diaphragm that mimics the conditions found in the chest cavity in vivo, driving hydraulically regulated negative pressure ventilation and custom-built pulsatile perfusion apparatus capable of driving pressure-regulated or volume-regulated vascular flow. Both forms of mechanical actuation can be tuned to match specific physiologic profiles. The organ is sealed in an elastic artificial pleura that mounts to a support architecture. This pleura reduces the fluid volume required for organ culture, maintains the organ's position during mechanical conditioning, and creates a sterile barrier allowing disassembly and maintenance outside of a biosafety cabinet. The combination of fluid suspension, negative-pressure ventilation, and physiologic perfusion allows the described system to provide a biomimetic mechanical environment not found in existing technologies and especially suited to whole-organ regeneration. In this study, we explain the design and operation of this apparatus and present data validating intended functions. PMID:27088061

  11. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  12. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...... membrane-based sensor and/or separation devices? In the development of biomimetic sensor/separation technology, both channels (ion and water channels) and carriers (transporters) are important. Generally, each class of transport proteins conducts specific molecular species in and out of the cell while...... generally have a lower turnover but are capable of transport against gradients. For both classes of proteins, their unique flux-properties make them interesting as candidates in biomimetic sensor/separation devices. An ideal sensor/separation device requires the supporting biomimetic matrix to be virtually...

  13. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.;

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......% rejection for urea and a water permeability around 10 L/(m2h) with 2M NaCl as draw solution. Our results demonstrate the feasibility of using aquaporin proteins in biomimetic membranes for technological applications....

  14. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.

    Science.gov (United States)

    Sharma, Chhavi; Dinda, Amit Kumar; Potdar, Pravin D; Chou, Chia-Fu; Mishra, Narayan Chandra

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers-chitosan, gelatin, alginate and a bioceramic-nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112±19.0μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell-scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan-gelatin-alginate-nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. PMID:27127072

  15. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds

    OpenAIRE

    Dean, David; Wallace, Jonathan; Siblani, Ali; Wang, Martha O.; Kim, Kyobum; Mikos, Antonios G.; Fisher, John P.

    2012-01-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP® (Texas Instrumen...

  16. Morphology And Degradation Properties Of Pcl/Hyaff11? Composite Scaffolds With Multiscale Degradation Rate

    OpenAIRE

    Guarino, V.; Lewandowska, M.; Bil, M.; Polak, B.; Ambrosio, L

    2010-01-01

    Abstract The analysis of scaffold degradation is a promising strategy for understanding the dynamic changes in texture and pore morphology which accompany polymer resorption, and for collecting same fundamental indicators regarding the potential fate of the scaffold in the biological environment. In this study, we investigate the morphology and degradation properties of three composite scaffolds based on poly(?-caprolactone) (PCL) embedded with benzyl ester of hyaluronic acid (HYAF...

  17. Air plasma treated chitosan fibers-stacked scaffolds

    International Nuclear Information System (INIS)

    Chitosan is a nontoxic, biodegradable and biocompatible polymer. Rapid prototyped chitosan scaffolds were manufactured by liquid-frozen deposition of chitosan fibers in this study. To investigate if the air plasma (AP) treatment could be used to improve the surface properties of these scaffolds for cell attachment, chitosan films were first prepared and treated with AP under different conditions. Under the optimized condition, the water contact angle of chitosan films was significantly reduced from 90 ± 1° to 19 ± 1° after AP treatment. On the other hand, the surface charge and nanometric roughness of chitosan films increased after AP treatment. X-ray photoelectron spectroscopy measurement on AP-treated three-dimensional chitosan scaffolds showed that nitrogen and oxygen increased at each location inside the scaffolds as compared to the untreated ones, which indicated that AP could permeate through the fibrous stacks of the scaffolds and effectively modify the interior (visible) surface of the scaffolds. Moreover, AP treatment enabled the migration of MC3T3-E1 cells into the scaffolds, facilitated their proliferation and promoted the bone mineral deposition. These results suggested that fibers-stacked chitosan scaffolds may be produced by liquid-frozen deposition and treated with AP for bone tissue engineering applications. (paper)

  18. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Derek H. Rosenzweig

    2015-07-01

    Full Text Available Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS and polylactic acid (PLA scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  19. Biomimetic synthesis and biocompatibility of nano-hydroxyapatite/chitosan scaffold for bone tissue engineering%仿生组装纳米羟基磷灰石/壳聚糖骨修复材料的制备及其生物相容性研究

    Institute of Scientific and Technical Information of China (English)

    吴涛; 南开辉; 金丹; 江汕; 赵培冉; 裴国献

    2009-01-01

    目的 探讨以一种简单、廉价的方法制备纳米羟基磷灰石/壳聚糖(n-HA/CS)复合材料,并评价其理化特征和生物相容性. 方法采用原位沉析和冷冻干燥法制备n-HA/CS支架,通过扫描电镜、组织切片染色、X线衍射和傅立叶红外光谱分析其微观形貌和组成;采用万能材料试验机分析材料的力学性能.采用材料浸提液和表面接种考察n-HA/CS复合材料对第3代人骨髓基质干细胞(hBMSCs)黏附、增殖的影响,评估其细胞相容性.将n-HA/CS复合材料植入新西兰大白兔背部肌袋,经组织学染色后评价其组织相容性. 结果 n-HA/CS复合材料具有多孔结构,孔隙率为(88.65±2.34)%,孔径为(112.63±20.47) μm,HA晶体颗粒长度为200~700 nm,且分散均匀;X线衍射和红外光谱分析表明合成的HA是含CO32-弱结晶纳米晶体.材料的断裂强度为(1.47±0.15)MPa,弹性模量为(37.52±3.43)kPa,可满足非负重部位骨修复要求.n-HA/CS材料浸提液未明显抑制hBMSCs的增殖,直接接种在n-HA/CS复合材料表面的细胞黏附、增殖功能正常;组织相容性实验也表明,植入4周后组织炎性反应明显减轻,12周后材料基本降解并由新生组织爬行替代. 结论采用原位沉析和冷冻干燥法制备的n-HA/CS复合材料具有良好的理化性质和生物相容性,有望应用于组织工程骨的构建.%Objective To evaluate the physicochemical properties and biocompatibility of nano-hydroxyapatite/chitosan (n-HA/CS) scaffolds. Methods n-HA/CS scaffolds were generated by in situ hybridization and freeze-drying technology. The microscopic morphology and components of the composite were analyzed by scanning electron microscopy (SEM), morphology, X-ray diffraction (XRD) examination and Fourier transformed infrared spectroscopy (FTIR) . The effects of u-HA/CS scaffolds on adherence and proliferation of human bone marrow stromal cells (hBMSCs) were evaluated by leaching liquor and scaffolds surface

  20. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mim Mim Lim

    2015-01-01

    Full Text Available The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL, and blends of PCL with a natural polymer, gelatine (Ge, in three different compositions: 85 : 15, 70 : 30, and 50 : 50 were fabricated via an electrospinning technique. The nanofibrous scaffold prepared from 14% w/v PCL/Ge (70 : 30 exhibited more balanced properties of homogeneous nanofibres with an average fibre diameter of 155.60 ± 41.13 nm, 83% porosity, and surface roughness of 176.27 ± 2.53 nm. In vitro cell culture study using human skin fibroblasts (HSF demonstrated improved cell attachment with a flattened morphology on the PCL/Ge (70 : 30 nanofibrous scaffold and accelerated proliferation on day 3 compared to the PCL nanofibrous scaffold. These results show that the PCL/Ge (70 : 30 nanofibrous scaffold was more favourable and has the potential to be a promising scaffold for skin tissue engineering applications.

  1. Parameters optimization for the fabrication of phosphate glass/hydroxyapatite nanocomposite scaffold

    Science.gov (United States)

    Govindan, R.; Girija, E. K.

    2015-06-01

    Three-dimensional, highly porous, bioactive and biodegradable phosphate glass and nanohydroxyapatite (n-HA) composite scaffolds was fabricated by the polymer foam replication technique. Polyurethane foam (PU) and polyvinyl alcohol (PVA) were used as template and binder, respectively. Optimization of composition and sintering temperature is carried out for tissue engineering scaffold fabrication.

  2. Hydroxyapatite scaffolds infiltrated with thermally crosslinked polycaprolactone fumarate and polycaprolactone itaconate

    NARCIS (Netherlands)

    Sharifi, Shahriar; Shafieyan, Yousef; Mirzadeh, Hamid; Bagheri-Khoulenjani, Shadab; Rabiee, Sayed Mahmood; Imani, Mohammad; Atai, Mohammad; Shokrgozar, Mohammad Ali; Hatampoor, Ali

    2011-01-01

    In this work, two unsaturated derivatives of polycaprolactone (PCL), polycaprolactone fumarate (PCLF), and polycaprolactone itaconate (PCLI), have been synthesized and used as an infiltrating polymer to improve the mechanical properties of brittle hydroxyapatite (HA) scaffolds. PCLF and PCLI were fi

  3. Biomimetic Route to Calcium Phosphate Coated Polymeric Nanoparticles: Influence of Different Functional Groups and pH

    OpenAIRE

    Schoeller, Katrin; Ethirajan, Anitha; Zeller, Anke; Landfester, Katharina

    2011-01-01

    The controlled synthesis of organic-inorganic hybrid particles with selective morphology using polymeric nanoparticles as templates offers an effective biomimetic route to design composite materials with interesting properties for various potential applications. In this study, the formation of hybrid particles via the bio-inspired mineralization of calcium phosphate (CaP) on the surface of different surface-functionalized polymeric nanoparticles is reported. The versatile miniemulsion polymer...

  4. MIPs and Aptamers for Recognition of Proteins in Biomimetic Sensing.

    Science.gov (United States)

    Menger, Marcus; Yarman, Aysu; Erdőssy, Júlia; Yildiz, Huseyin Bekir; Gyurcsányi, Róbert E; Scheller, Frieder W

    2016-01-01

    Biomimetic binders and catalysts have been generated in order to substitute the biological pendants in separation techniques and bioanalysis. The two major approaches use either "evolution in the test tube" of nucleotides for the preparation of aptamers or total chemical synthesis for molecularly imprinted polymers (MIPs). The reproducible production of aptamers is a clear advantage, whilst the preparation of MIPs typically leads to a population of polymers with different binding sites. The realization of binding sites in the total bulk of the MIPs results in a higher binding capacity, however, on the expense of the accessibility and exchange rate. Furthermore, the readout of the bound analyte is easier for aptamers since the integration of signal generating labels is well established. On the other hand, the overall negative charge of the nucleotides makes aptamers prone to non-specific adsorption of positively charged constituents of the sample and the "biological" degradation of non-modified aptamers and ionic strength-dependent changes of conformation may be challenging in some application. PMID:27438862

  5. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pankajakshan, Divya; Krishnan, Lissy K [Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India); Krishnan V, Kalliyana, E-mail: lissykk@sctimst.ac.i [Division of Polymer Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India)

    2010-12-15

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly({epsilon}-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  6. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    International Nuclear Information System (INIS)

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly(ε-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  7. Intervertebral Disc Tissue Engineering with Natural Extracellular Matrix-Derived Biphasic Composite Scaffolds.

    Directory of Open Access Journals (Sweden)

    Baoshan Xu

    Full Text Available Tissue engineering has provided an alternative therapeutic possibility for degenerative disc diseases. However, we lack an ideal scaffold for IVD tissue engineering. The goal of this study is to fabricate a novel biomimetic biphasic scaffold for IVD tissue engineering and evaluate the feasibility of developing tissue-engineered IVD in vitro and in vivo. In present study we developed a novel integrated biphasic IVD scaffold using a simple freeze-drying and cross-linking technique of pig bone matrix gelatin (BMG for the outer annulus fibrosus (AF phase and pig acellular cartilage ECM (ACECM for the inner nucleus pulposus (NP phase. Histology and SEM results indicated no residual cells remaining in the scaffold that featured an interconnected porous microstructure (pore size of AF and NP phase 401.4 ± 13.1 μm and 231.6 ± 57.2 μm, respectively. PKH26-labeled AF and NP cells were seeded into the scaffold and cultured in vitro. SEM confirmed that seeded cells could anchor onto the scaffold. Live/dead staining showed that live cells (green fluorescence were distributed in the scaffold, with no dead cells (red fluorescence being found. The cell-scaffold constructs were implanted subcutaneously into nude mice and cultured for 6 weeks in vivo. IVD-like tissue formed in nude mice as confirmed by histology. Cells in hybrid constructs originated from PKH26-labeled cells, as confirmed by in vivo fluorescence imaging system. In conclusion, the study demonstrates the feasibility of developing a tissue-engineered IVD in vivo with a BMG- and ACECM-derived integrated AF-NP biphasic scaffold. As well, PKH26 fluorescent labeling with in vivo fluorescent imaging can be used to track cells and analyse cell--scaffold constructs in vivo.

  8. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation

    International Nuclear Information System (INIS)

    This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 μm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.

  9. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    Science.gov (United States)

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-07-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-based moulding to form albumin tissue scaffolds. Scanning electron microscopy and material testing analyses revealed that the albumin tissue scaffold possesses an extremely porous structure, moderate mechanical strength, and resilience. Using a culture of human mesenchymal stem cells (MSCs) as a model, we showed that MSCs can be seeded and grown in the albumin tissue scaffold. Furthermore, the albumin tissue scaffold can support the long-term osteogenic differentiation of MSCs. These results show that the albumin tissue scaffold exhibits favourable material properties and good compatibility with cells. We propose that this novel tissue scaffold can satisfy essential needs in tissue engineering as a general-purpose substrate. The use of this scaffold could lead to the development of new methods of artificial fabrication of autogenic tissue substitutes.

  10. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications. PMID:26512734

  11. Major intrinsic proteins in biomimetic membranes.

    Science.gov (United States)

    Nielsen, Claus Hélix

    2010-01-01

    Biological membranes define the structural and functional boundaries in living cells and their organelles. The integrity of the cell depends on its ability to separate inside from outside and yet at the same time allow massive transport of matter in and out the cell. Nature has elegantly met this challenge by developing membranes in the form of lipid bilayers in which specialized transport proteins are incorporated. This raises the question: is it possible to mimic biological membranes and create a membrane based sensor and/or separation device? In the development of a biomimetic sensor/separation technology, a unique class of membrane transport proteins is especially interesting-the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 10(9) molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other permeants such as carbon dioxide, nitric oxide, ammonia, hydrogen peroxide and the metalloids antimonite, arsenite, silicic and boric acid depending on the effective restriction mechanism of the protein. The flux properties of MIPs thus lead to the question ifMIPs can be used in separation devices or as sensor devices based on, e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix will generally have finite permeabilities to both electrolytes and non-electrolytes. The feasibility of a biomimetic MIP device thus depends on the relative transport

  12. Man-tailored biomimetic sensor of molecularly imprinted materials for the potentiometric measurement of oxytetracycline.

    Science.gov (United States)

    Moreira, Felismina T C; Kamel, Ayman H; Guerreiro, Joana R L; Sales, M Goreti F

    2010-10-15

    A novel biomimetic sensor for the potentiometric transduction of oxytetracycline is presented. The artificial host was imprinted in methacrylic acid and/or acrylamide based polymers. Different amounts of molecularly imprinted and non-imprinted polymers were dispersed in different plasticizing solvents and entrapped in a poly(vinyl chloride) matrix. Only molecularly imprinted based sensors allowed a potentiometric transduction, suggesting the existence of host-guest interactions. These sensors exhibited a near-Nernstian response in steady state evaluations; slopes and detection limits ranged 42-63 mV/decade and 2.5-31.3 μg/mL, respectively. Sensors were independent from the pH of test solutions within 2-5. Good selectivity was observed towards glycine, ciprofloxacin, creatinine, acid nalidixic, sulfadiazine, cysteine, hydroxylamine and lactose. In flowing media, the biomimetic sensors presented good reproducibility (RSD of ±0.7%), fast response, good sensitivity (65 mV/decade), wide linear range (5.0×10(-5) to 1.0×10(-2) mol/L), low detection limit (19.8 μg/mL), and a stable baseline for a 5×10(-3) M citrate buffer (pH 2.5) carrier. The sensors were successfully applied to the analysis of drugs and urine. This work confirms the possibility of using molecularly imprinted polymers as ionophores for organic ion recognition in potentiometric transduction. PMID:20688507

  13. Use of electrospinning and dynamic air focusing to create three-dimensional cell culture scaffolds in microfluidic devices.

    Science.gov (United States)

    Chen, Chengpeng; Mehl, Benjamin T; Sell, Scott A; Martin, R Scott

    2016-09-21

    Organs-on-a-chip has emerged as a powerful tool for pharmacological and physiological studies. A key part in the construction of such a model is the ability to pattern or culture cells in a biomimetic fashion. Most of the reported cells-on-a-chip models integrate cells on a flat surface, which does not accurately represent the extracellular matrix that they experience in vivo. Electrospinning, a technique used to generate sub-micron diameter polymer fibers, has been used as an in vitro cell culture substrate and for tissue engineering applications. Electrospinning of fibers directly into a fully sealed fluidic channel using a conventional setup has not been possible due to issues of confining the fibers into a discrete network. In this work, a dynamic focusing method was developed, with this approach enabling direct deposition of electrospun fibers into a fully sealed fluidic channel, to act as a matrix for cell culture and subsequent studies under continuous flowing conditions. Scanning electron microscopy of electrospun polycaprolactone fibers shows that this method enables the formation of fibrous layers on the inner wall of a 3D-printed fluidic device (mean fiber size = 1.6 ± 0.6 μm and average pore size = 113 ± 19 μm(2)). Cells were able to be cultured in this 3D scaffold without the addition of adhesion proteins. Media was pumped through the channel at high flow rates (up to 400 μL min(-1)) during a dynamic cell culture process and both the fibers and the cells were found to be strongly adherent. A PDMS fluidic device was also prepared (from a 3D printed mold) and coated with polycaprolactone fibers. The PDMS device enables optical detection and confocal imaging of cultured cells on the fibers. Finally, macrophages were cultured in the devices to study how the fibrous scaffold can affect cell behavior. It was found that under lipopolysaccharide stimulation, macrophages cultured on PCL fibers inside of a channel secreted significantly more cytokines than

  14. Development of polyamide-6,6/chitosan electrospun hybrid nanofibrous scaffolds for tissue engineering application.

    Science.gov (United States)

    Shrestha, Bishnu Kumar; Mousa, Hamouda M; Tiwari, Arjun Prasad; Ko, Sung Won; Park, Chan Hee; Kim, Cheol Sang

    2016-09-01

    The development of biofunctional and bioactive hybrid polymeric scaffolds seek to mitigate the current challenges in the emerging field of tissue engineering. In this paper, we report the fabrication of a biomimetic and biocompatible nanofibrous scaffolds of polyamide-6,6 (PA-6,6) blended with biopolymer chitosan via one step co-electrospinning technique. Different weight percentage of chitosan 10wt%, 15wt%, and 20wt% were blended with PA-6,6, respectively. The nanocomposite electrospun scaffolds mats enabled to provide the osteophilic environment for cells growth and biomineralization. The morphological and physiochemical properties of the resulted scaffolds were studied using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Fourier transform-infrared (FT-IR) spectroscopy. The improvement in hydrophilicity and mechanical strength of the bio-nanocomposite mesh with 20wt% chitosan embedded, was the desired avenue for adhesion, proliferation and maturation of osteoblast cells as compared to other sample groups and pure PA-6,6 fibrous mat. The biomineralization of the nanocomposite electrospun mats also showed higher ability to nucleate bioactive calcium phosphate (Ca/P) nanoparticles comparing to pristine PA-6,6. Furthermore, the biomimetic nature of scaffolds exhibited the cells viability and regeneration of pre-osteoblast (MC3T3-E1) cells which were assessed via in vitro cell culture test. Collectively, the results suggested that the optimized 20wt% of chitosan supplemented hybrid electrospun fibrous scaffold has significant effect in biomedical field to create osteogenic capabilities for tissue engineering. PMID:27185121

  15. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  16. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S., E-mail: smsilva@ineb.up.pt [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal); Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S. [Instituto de Ceramica y Vidrio, CSIC, 28049-Cantoblanco, Madrid (Spain); Ferraz, M.P. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Ciencias da Saude da Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto (Portugal); Monteiro, F.J. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal)

    2009-06-01

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  17. Advances in skin regeneration: application of electrospun scaffolds.

    Science.gov (United States)

    Norouzi, Mohammad; Boroujeni, Samaneh Moghadasi; Omidvarkordshouli, Noushin; Soleimani, Masoud

    2015-06-01

    The paucity of cellular and molecular signals essential for normal wound healing makes severe dermatological ulcers stubborn to heal. The novel strategies of skin regenerative treatments are focused on the development of biologically responsive scaffolds accompanied by cells and multiple biomolecules resembling structural and biochemical cues of the natural extracellular matrix (ECM). Electrospun nanofibrous scaffolds provide similar architecture to the ECM leading to enhancement of cell adhesion, proliferation, migration and neo tissue formation. This Review surveys the application of biocompatible natural, synthetic and composite polymers to fabricate electrospun scaffolds as skin substitutes and wound dressings. Furthermore, the application of biomolecules and therapeutic agents in the nanofibrous scaffolds viz growth factors, genes, antibiotics, silver nanoparticles, and natural medicines with the aim of ameliorating cellular behavior, wound healing, and skin regeneration are discussed. PMID:25721694

  18. Microwell scaffolds for the extrahepatic transplantation of islets of Langerhans.

    Directory of Open Access Journals (Sweden)

    Mijke Buitinga

    Full Text Available Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate-poly(butylene terephthalate (PEOT/PBT block copolymer (composition: 4000PEOT30PBT70 and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet's native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation.

  19. "Click & seed" approach to the biomimetic modification of polymers

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Jaroš, J.; Pop-Georgievski, Ognen; Popelka, Štěpán; Kučka, Jan; Hampl, A.; Dvořák, P.; Rypáček, František

    Tampere : Tampere University of Technology, 2010. s. 3718. [European Conference on Biomaterials /23./. 11.09.2010-15.09.2010, Tampere] R&D Projects: GA AV ČR KJB400500904 Institutional research plan: CEZ:AV0Z40500505 Keywords : polydopamine * click chemistry Subject RIV: CD - Macromolecular Chemistry

  20. Click and seed approach to the biomimetic modification of polymers

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Jaroš, J.; Pop-Georgievski, Ognen; Popelka, Štěpán; Hampl, A.; Dvořák, P.; Rypáček, František

    Galway : TERMIS, 2010. s. 493. ISBN 978-0-9564492-0-7. [TERMIS-EU Conference. 13.06.2010-17.06.2010, Galway] R&D Projects: GA AV ČR KJB400500801 Institutional research plan: CEZ:AV0Z40500505 Keywords : polydopamine * click chemistry * polyethyleneoxide Subject RIV: CD - Macromolecular Chemistry

  1. Relevance of fiber integrated gelatin-nanohydroxyapatite composite scaffold for bone tissue regeneration

    Science.gov (United States)

    Halima Shamaz, Bibi; Anitha, A.; Vijayamohan, Manju; Kuttappan, Shruthy; Nair, Shantikumar; Nair, Manitha B.

    2015-10-01

    Porous nanohydroxyapatite (nanoHA) is a promising bone substitute, but it is brittle, which limits its utility for load bearing applications. To address this issue, herein, biodegradable electrospun microfibrous sheets of poly(L-lactic acid)-(PLLA)-polyvinyl alcohol (PVA) were incorporated into a gelatin-nanoHA matrix which was investigated for its mechanical properties, the physical integration of the fibers with the matrix, cell infiltration, osteogenic differentiation and bone regeneration. The inclusion of sacrificial fibers like PVA along with PLLA and leaching resulted in improved cellular infiltration towards the center of the scaffold. Furthermore, the treatment of PLLA fibers with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide enhanced their hydrophilicity, ensuring firm anchorage between the fibers and the gelatin-HA matrix. The incorporation of PLLA microfibers within the gelatin-nanoHA matrix reduced the brittleness of the scaffolds, the effect being proportional to the number of layers of fibrous sheets in the matrix. The proliferation and osteogenic differentiation of human adipose-derived mesenchymal stem cells was augmented on the fibrous scaffolds in comparison to those scaffolds devoid of fibers. Finally, the scaffold could promote cell infiltration, together with bone regeneration, upon implantation in a rabbit femoral cortical defect within 4 weeks. The bone regeneration potential was significantly higher when compared to commercially available HA (Surgiwear™). Thus, this biomimetic, porous, 3D composite scaffold could be offered as a promising candidate for bone regeneration in orthopedics.

  2. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation.

    Science.gov (United States)

    Rowlands, A S; Lim, S A; Martin, D; Cooper-White, J J

    2007-04-01

    In this study, we present a novel composite scaffold fabricated using a thermally induced phase separation (TIPS) process from poly(lactic-co-glycolic) (PLGA) and biomedical polyurethane (PU). This processing method has been tuned to allow intimate (molecular) mixing of these two very different polymers, giving rise to a unique morphology that can be manipulated by controlling the phase separation behaviour of an initially homogenous polymer solution. Pure PLGA scaffolds possessed a smooth, directional fibrous sheet-like structure with pore sizes of 0.1-200mum, a porous Young's modulus of 93.5kPa and were relatively brittle to touch. Pure PU scaffolds had an isotropic emulsion-like structure, a porous Young's modulus of 15.7kPa and were much more elastic than the PLGA scaffolds. The composite PLGA/PU scaffold exhibits advantageous morphological, mechanical and cell adhesion and growth supporting properties, when compared with scaffolds fabricated from PLGA or PU alone. This novel method provides a mechanism for the formation of tailored bioactive scaffolds from nominally incompatible polymers, representing a significant step forward in scaffold processing for tissue-engineering applications. PMID:17258315

  3. Hierarchical Scaffolding With Bambus

    OpenAIRE

    Pop, Mihai; Kosack, Daniel S.; Salzberg, Steven L

    2004-01-01

    The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaf...

  4. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    International Nuclear Information System (INIS)

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects

  5. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Science.gov (United States)

    Gotman, Irena; Zaretzky, Asaph; Psakhie, Sergey G.; Gutmanas, Elazar Y.

    2015-10-01

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength "trabecular Nitinol" scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1-1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  6. Effect of a novel load-bearing trabecular Nitinol scaffold on rabbit radius bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Gotman, Irena, E-mail: gotman@technion.ac.il; Gutmanas, Elazar Y., E-mail: gutmanas@technion.ac.il [Department of Materials Science and Engineering, Techion-Israel Institute of Technology, Haifa, 32000 Israel (Israel); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Zaretzky, Asaph [The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31096 Israel (Israel); Psakhie, Sergey G. [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    The research aim was to evaluate the bone regeneration capability of novel load-bearing NiTi alloy (Nitinol) scaffolds in a critical-size defect (CSD) model. High strength “trabecular Nitinol” scaffolds were prepared by PIRAC (Powder Immersion Reaction Assisted Coating) annealing of the highly porous Ni foam in Ti powder at 900°C. This was followed by PIRAC nitriding to mitigate the release of potentially toxic Ni ions. Scaffolds phase composition and microstructure were characterized by X-ray diffraction and scanning electron microscopy (SEM/EDS), and their mechanical properties were tested in compression. New Zealand white rabbits received bone defect in right radius and were divided in four groups randomly. In the control group, nothing was placed in the defect. In other groups, NiTi scaffolds were implanted in the defect: (i) as produced, (ii) loaded with bone marrow aspirate (BMA), and (iii) biomimetically CaP-coated. The animals were sacrificed after 12 weeks. The forelimbs with scaffolds were resected, fixed, sectioned and examined in SEM. New bone formation inside the scaffold was studied by EDS analysis and by the processing of backscattered electron images. Bone ingrowth into the scaffold was observed in all implant groups, mostly next to the ulna. New bone formation was strongly enhanced by BMA loading and biomimeatic CaP coating, the bone penetrating as much as 1–1.5 mm into the scaffold. The results of this preliminary study demonstrate that the newly developed high strength trabecular Nitinol scaffolds can be successfully used for bone regeneration in critical size defects.

  7. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  8. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  9. Endowing Single-Chain Polymer Nanoparticles with Enzyme-Mimetic Activity

    OpenAIRE

    Perez-Baena, Irma; Barroso-Bujans, Fabienne; Gasser, Urs; Arbe, Arantxa; Moreno Segurado, Ángel J.; Colmenero de León, Juan; Pomposo, José A.

    2013-01-01

    The development of simple, efficient, and robust strategies affording the facile construction of biomimetic organocatalytic nano-objects is currently a subject of great interest. Herein, a new pathway to artificial organocatalysts based on partially collapsed individual soft nano-objects displaying useful and diverse biomimetic catalytic functions is reported. Single-chain polymer nanoparticles endowed with enzyme-mimetic activity synthesized following this new route display (i) a relatively ...

  10. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  11. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix...

  12. Improved resolution of 3D printed scaffolds by shrinking.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. PMID:25404276

  13. Action of Chicory Fructooligosaccharides on Biomimetic Membranes

    OpenAIRE

    Barbosa, A. F.; Henrique, R. S.; A. S. Lucho; V. Paffaro; J.M. Schneedorf

    2014-01-01

    Fructooligosaccharides from chicory (FOSC) are functional prebiotic foods recognized to exert several well-being effects in human health and animal production, as decreasing blood lipids, modulating the gut immune system, enhancing mineral bioavailability, and inhibiting microbial growth, among others. Mechanisms of actions directly on cell metabolism and structure are however little known. In this sense this work was targeted to investigate the interaction of FOSC with biomimetic membranes (...

  14. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    Science.gov (United States)

    Wang, Zhenlong; Hang, Guanrong; Wang, Yangwei; Li, Jian; Du, Wei

    2008-04-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s-1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s-1 and 22° s-1, respectively.

  15. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    International Nuclear Information System (INIS)

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s−1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s−1 and 22° s−1, respectively

  16. Novel mechanically competent polysaccharide scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    The success of the scaffold-based bone regeneration approach critically depends on the biomaterial's mechanical and biological properties. Cellulose and its derivatives are inherently associated with exceptional strength and biocompatibility due to their β-glycosidic linkage and extensive hydrogen bonding. This polymer class has a long medical history as a dialysis membrane, wound care system and pharmaceutical excipient. Recently cellulose-based scaffolds have been developed and evaluated for a variety of tissue engineering applications. In general porous polysaccharide scaffolds in spite of many merits lack the necessary mechanical competence needed for load-bearing applications. The present study reports the fabrication and characterization of three-dimensional (3D) porous sintered microsphere scaffolds based on cellulose derivatives using a solvent/non-solvent sintering approach for load-bearing applications. These 3D scaffolds exhibited a compressive modulus and strength in the mid-range of human trabecular bone and underwent degradation resulting in a weight loss of 10–15% after 24 weeks. A typical stress–strain curve for these scaffolds showed an initial elastic region and a less-stiff post-yield region similar to that of native bone. Human osteoblasts cultured on these scaffolds showed progressive growth with time and maintained expression of osteoblast phenotype markers. Further, the elevated expression of alkaline phosphatase and mineralization at early time points as compared to heat-sintered poly(lactic acid–glycolic acid) control scaffolds with identical pore properties affirmed the advantages of polysaccharides and their potential for scaffold-based bone regeneration.

  17. Biomimetic Composite Structural T-joints

    Institute of Scientific and Technical Information of China (English)

    Vimal Kumar Thummalapalli; Steven L.Donaldson

    2012-01-01

    Biological structural fixed joints exhibit unique attributes,including highly optimized fiber paths which minimize stress concentrations.In addition,since the joints consist of continuous,uncut fiber architectures,the joints enable the organism to transport information and chemicals from one part of the body to the other.To the contrary,sections of man-made composite material structures are often joined using bolted or bonded joints,which involve low strength and high stress concentrations.These methods are also expensive to achieve.Additional functions such as fluid transport,electrical signal delivery,and thermal conductivity across the joints typically require parasitic tubes,wires,and attachment clips.By using the biomimetic methods,we seek to overcome the limitations which are present in the conventional methods. In the present work,biomimetic co-cured composite sandwich T-joints were constructed using unidirectional glass fiber,epoxy resin,and structural foam.The joints were fabricated using the wet lay-up vacuum bag resin infusion method.Foam sandwich T-joints with multiple continuous fiber architectures and sandwich foam thickness were prepared.The designs were tested in quasi-static bending using a mechanical load frame.The significantweight savings using the biomimetic approaches is discussed,as well as a comparison of failure modes versus architecture is described.

  18. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  19. Biomimetics of human movement: functional or aesthetic?

    International Nuclear Information System (INIS)

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  20. Development of mechano-responsive polymeric scaffolds using functionalized silica nano-fillers for the control of cellular functions

    OpenAIRE

    Griffin, M.; Nayyer, L.; Butler, P. E.; R.G. Palgrave; Seifalian, A. M.; Kalaskar, D. M.

    2016-01-01

    We demonstrate an efficient method to produce mechano-responsive polymeric scaffolds which can alter cellular functions using two different functionalized (OH and NH2) silica nano-fillers. Fumed silica-hydroxyl and fumed silica-amine nano-fillers were mixed with a biocompatible polymer (POSS-PCU) at various wt% to produce scaffolds. XPS and mechanical testing demonstrate that bulk mechanical properties are modified without changing the scaffold's surface chemistry. Mechanical testing showed s...

  1. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    OpenAIRE

    Fatemeh Roozbahani; Naznin Sultana; Ahmad Fauzi Ismail; Hamed Nouparvar

    2013-01-01

    Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electro...

  2. Biomimetic solution against dewetting in a highly hydrophobic nanopore.

    Science.gov (United States)

    Picaud, Fabien; Paris, Guillaume; Gharbi, Tijani; Balme, Sébastien; Lepoitevin, Mathilde; Tangaraj, Vidhyadevi; Bechelany, Mikhael; Janot, Jean Marc; Balanzat, Emmanuel; Henn, François

    2016-06-14

    A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications. PMID:27157717

  3. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO3 nanofibers, SrCO3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO2. - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  4. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    Science.gov (United States)

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  5. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  6. Constructing Biopolymer-Inorganic Nanocomposite through a Biomimetic Mineralization Process for Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-09-01

    Full Text Available Inspired by biosilicification, biomimetic polymer-silica nanocomposite has aroused a lot of interest from the viewpoints of both scientific research and technological applications. In this study, a novel dual functional polymer, NH2-Alginate, is synthesized through an oxidation-amination-reduction process. The “catalysis function” ensures the as-prepared NH2-Alginate inducing biomimetic mineralization of silica from low concentration precursor (Na2SiO3, and the “template function” cause microscopic phase separation in aqueous solution. The diameter of resultant NH2-Alginate micelles in aqueous solution distributed from 100 nm to 1.5 μm, and is influenced by the synthetic process of NH2-Alginate. The size and morphology of obtained NH2-Alginate/silica nanocomposite are correlated with the micelles. NH2-Alginate/silica nanocomposite was subsequently utilized to immobilize β-Glucuronidase (GUS. The harsh condition tolerance and long-term storage stability of the immobilized GUS are notably improved due to the buffering effect of NH2-Alginate and cage effect of silica matrix.

  7. Polymers in regenerative medicine biomedical applications from nano- to macro-structures

    CERN Document Server

    Monleon Pradas, Manuel

    2015-01-01

    Biomedical applications of Polymers from Scaffolds toNanostructures The ability of polymers to span wide ranges of mechanicalproperties and morph into desired shapes makes them useful for avariety of applications, including scaffolds, self-assemblingmaterials, and nanomedicines. With an interdisciplinary list ofsubjects and contributors, this book overviews the biomedicalapplications of polymers and focuses on the aspect of regenerativemedicine. Chapters also cover fundamentals, theories, and tools forscientists to apply polymers in the following ways: Matrix protein interactions with synthe

  8. Towards the LIVING envelope: Biomimetics for building envelope adaptation

    NARCIS (Netherlands)

    Badarnah Kadri, L.

    2012-01-01

    Several biomimetic design strategies are available for various applications, though the research on biomimetics as a design tool in architecture is still challenging. This is due to a lack of systematic design tools required for identifying relevant organisms, or natural systems, and abstracting the

  9. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius;

    2011-01-01

    Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... biomimetic membrane arrays....

  10. Synthesis and characterization of biomimetic citrate-based biodegradable composites.

    Science.gov (United States)

    Tran, Richard T; Wang, Liang; Zhang, Chang; Huang, Minjun; Tang, Wanjin; Zhang, Chi; Zhang, Zhongmin; Jin, Dadi; Banik, Brittany; Brown, Justin L; Xie, Zhiwei; Bai, Xiaochun; Yang, Jian

    2014-08-01

    Natural bone apatite crystals, which mediate the development and regulate the load-bearing function of bone, have recently been associated with strongly bound citrate molecules. However, such understanding has not been translated into bone biomaterial design and osteoblast cell culture. In this work, we have developed a new class of biodegradable, mechanically strong, and biocompatible citrate-based polymer blends (CBPBs), which offer enhanced hydroxyapatite binding to produce more biomimetic composites (CBPBHAs) for orthopedic applications. CBPBHAs consist of the newly developed osteoconductive citrate-presenting biodegradable polymers, crosslinked urethane-doped polyester and poly (octanediol citrate), which can be composited with up to 65 wt % hydroxyapatite. CBPBHA networks produced materials with a compressive strength of 116.23 ± 5.37 MPa comparable to human cortical bone (100-230 MPa), and increased C2C12 osterix gene and alkaline phosphatase gene expression in vitro. The promising results above prompted an investigation on the role of citrate supplementation in culture medium for osteoblast culture, which showed that exogenous citrate supplemented into media accelerated the in vitro phenotype progression of MG-63 osteoblasts. After 6 weeks of implantation in a rabbit lateral femoral condyle defect model, CBPBHA composites elicited minimal fibrous tissue encapsulation and were well integrated with the surrounding bone tissues. The development of citrate-presenting CBPBHA biomaterials and preliminary studies revealing the effects of free exogenous citrate on osteoblast culture shows the potential of citrate biomaterials to bridge the gap in orthopedic biomaterial design and osteoblast cell culture in that the role of citrate molecules has previously been overlooked. PMID:23996976

  11. Biomimetic control over size, shape and aggregation in magnetic nanoparticles

    Science.gov (United States)

    Sommerdijk, Nico

    2013-03-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in both geological and biomineralizing systems, which also has many technological applications, e.g. in ferrofluids, inks, magnetic data storage materials and as contrast agents in magnetic resonance imaging. As its magnetic properties depend largely on the size and shape of the crystals, control over crystal morphology is an important aspect in the application of magnetite nanoparticles, both in biology and synthetic systems. Indeed, in nature organisms such as magnetotactic bacteria demonstrate a precise control over the magnetite crystal morphology, resulting in uniform and monodisperse nanoparticles. The magnetite formation in these bacteria is believed to occur through the co-precipitation of Fe(II) and Fe(III) ions, which is also the most widely applied synthetic route in industry. Synthetic strategies to magnetite with controlled size and shape exist, but involve high temperatures and rather harsh chemical conditions. However, synthesis via co-precipitation generally yields poor control over the morphology and therefore over the magnetic properties of the obtained crystals. Here we demonstrate that by tuning the reaction kinetics we can achieve biomimetic control over the size and shape of magnetite crystals but also over their organization in solution as well as their magnetic properties. We employ amino acids-based polymers to direct the formation of magnetite in aqueous media at room temperature via both the co-precipitation and the partial oxidation method. By using 2D and 3D (cryo)TEM it is shown that acidic amino acid monomers are most effective in affecting the magnetite particle morphology. By changing the composition of the polymers we can tune the morphology, the dispersibility as well as the magnetic properties of these nanoparticles.

  12. Electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/hydroxyapatite scaffold with unrestricted somatic stem cells for bone regeneration.

    Science.gov (United States)

    Biazar, Esmaeil; Heidari Keshel, Saeed

    2015-01-01

    The combination of scaffolds and cells can be useful in tissue reconstruction. In this study, nanofibrous poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/nanohydroxyapatite (nano-HAp) scaffolds, filled with unrestricted somatic stem cells (USSCs), were used for healing calvarial bone in rat model. The healing effects of these scaffolds, with and without stem cells, in bone regeneration were investigated by computed tomography (CT) analysis and pathology assays after 28 days of grafting. The results of CT analysis showed that bone regeneration on the scaffolds, and the amounts of regenerated new bone for polymer/nano-HAp scaffold with USSC, was significantly greater than the scaffold without cell and untreated control samples. Therefore, the combination of scaffold especially with USSC could be considered as a useful method for bone regeneration. PMID:25710767

  13. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    Science.gov (United States)

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851

  14. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2008-01-01

    Purpose – The purpose of this paper is to illustrate how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. The paper reviews a number of biomimetic studies of...... sense organs in animals and illustrates how a formal search method developed at University of Toronto can be applied to sensor design. Design/methodology/approach – Using biomimetics involves a search for relevant cases, a proper analysis of the biological solutions, identification of design principles...... ideas or the search gives too many results. This is handled by a more advanced search strategy where the search is either widened or it is focused further mainly using biological synonyms. Findings – A major problem in biomimetic design is finding the relevant analogies to actual design tasks in nature...

  15. Boron nitride nanotubes enhance properties of chitosan-based scaffolds.

    Science.gov (United States)

    Emanet, Melis; Kazanç, Emine; Çobandede, Zehra; Çulha, Mustafa

    2016-10-20

    With their low toxicity, high mechanical strength and chemical stability, boron nitride nanotubes (BNNTs) are good candidates to enhance the properties of polymers, composites and scaffolds. Chitosan-based scaffolds are exhaustively investigated in tissue engineering because of their biocompatibility and antimicrobial activity. However, their spontaneous degradation prevents their use in a range of tissue engineering applications. In this study, hydroxylated BNNTs (BNNT-OH) were included into a chitosan scaffold and tested for their mechanical strength, swelling behavior and biodegradability. The results show that inclusion of BNNTs-OH into the chitosan scaffold increases the mechanical strength and pore size at values optimal for high cellular proliferation and adhesion. The chitosan/BNNT-OH scaffold was also found to be non-toxic to Human Dermal Fibroblast (HDF) cells due to its slow degradation rate. HDF cell proliferation and adhesion were increased as compared to the chitosan-only scaffold as observed by scanning electron microscopy (SEM) and fluorescent microscopy images. PMID:27474572

  16. The influence of different nanostructured scaffolds on fibroblast growth

    Directory of Open Access Journals (Sweden)

    I-Cheng Chung, Ching-Wen Li and Gou-Jen Wang

    2013-01-01

    Full Text Available Skin serves as a protective barrier, modulating body temperature and waste discharge. It is therefore desirable to be able to repair any damage that occurs to the skin as soon as possible. In this study, we demonstrate a relatively easy and cost-effective method for the fabrication of nanostructured scaffolds, to shorten the time taken for a wound to heal. Various scaffolds consisting of nanohemisphere arrays of poly(lactic-co-glycolic acid (PLGA, polylactide and chitosan were fabricated by casting using a nickel (Ni replica mold. The Ni replica mold is electroformed using the highly ordered nanohemisphere array of the barrier-layer surface of an anodic aluminum oxide membrane as the template. Mouse fibroblast cells (L929s were cultured on the nanostructured polymer scaffolds to investigate the effect of these different nanohemisphere arrays on cell proliferation. The concentration of collagen type I on each scaffold was then measured through enzyme-linked immunosorbent assay to find the most effective scaffold for shortening the wound-healing process. The experimental data indicate that the proliferation of L929 is superior when a nanostructured PLGA scaffold with a feature size of 118 nm is utilized.

  17. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.

    Science.gov (United States)

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette; Dolatshahi-Pirouz, Alireza; Trifol, Jon; Thomsen, Peter; Dufva, Martin; Wolff, Anders; Emnéus, Jenny

    2016-04-11

    Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network. PMID:26902925

  18. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

    Directory of Open Access Journals (Sweden)

    Marcello Pilia

    2013-01-01

    Full Text Available The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.

  19. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Gabriela, E-mail: gciobanu03@yahoo.co.uk; Ilisei, Simona; Luca, Constantin

    2014-02-01

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO{sub 3} solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property.

  20. Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold

    International Nuclear Information System (INIS)

    The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. - Highlights: • The hydroxyapatite and silver nanoparticles were grown on the polyurethane scaffold • The hydroxyapatite/polyurethane acts as reducing agent, stabilizer and matrix for Ag • The samples were well characterized by SEM-EDX, XRD, XPS, UV-visible spectroscopy • The hydroxyapatite/silver polyurethane scaffold shows antibacterial property

  1. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    Science.gov (United States)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  2. Tissue engineering bone-ligament complexes using fiber-guiding scaffolds

    Science.gov (United States)

    Park, Chan Ho; Rios, Hector F.; Jin, Qiming; Sugai, James V.; Padial-Molina, Miguel; Taut, Andrei D.; Flanagan, Colleen L.; Hollister, Scott J.; Giannobile, William V.

    2011-01-01

    Regeneration of bone-ligament complexes destroyed due to disease or injury is a clinical challenge due to complex topologies and tissue integration required for functional restoration. Attempts to reconstruct soft-hard tissue interfaces have met with limited clinical success. In this investigation, we manufactured biomimetic fiber-guiding scaffolds using solid free-form fabrication methods that custom fit complex anatomical defects to guide functionally-oriented ligamentous fibers in vivo. Compared to traditional, amorphous or random-porous polymeric scaffolds, the use of perpendicularly oriented microchannels provides better guidance for cellular processes anchoring ligaments between two distinct mineralized structures. These structures withstood biomechanical loading to restore large osseous defects. Cell transplantation using hybrid scaffolding constructs with guidance channels resulted in predictable oriented fiber architecture, greater control of tissue infiltration, and better organization of ligament interface than random scaffold architectures. These findings demonstrate that fiber-guiding scaffolds drive neogenesis of triphasic bone-ligament integration for a variety of clinical scenarios. PMID:21993234

  3. Surface modification of beta-tricalcium phosphate scaffolds with topological nanoapatite coatings

    International Nuclear Information System (INIS)

    A biomimetic process was developed to create a modulable surface topography of nanocrystalline apatite on pure beta-tricalcium phosphate (β-TCP) scaffolds. The scaffolds were immersed in a newly revised simulated body fluid (Rn-SBF) to produce nanocrystalline apatite. The obtained surfaces were investigated using scanning electric microscopy, energy dispersion spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electric microscopy. Nanoparticulates apatite were produced on the surface of the scaffolds for 1 day's soaking; increasing soaking to 3 days led to the formation of a surface covered by needle-like apatite nanocrystals; and a surface coating of needle-like apatite clusters was created after two weeks' soaking in the Rn-SBF without bicarbonate ion concentrations. The increase of bicarbonate ion concentrations progressively in the Rn-SBF provided a surface entirely coated with a nanostructured thick layer of apatite. These apatite nanostructures were low-crystalline bone-like apatite. The mechanisms for the apatite formation and transition of surface topographies were also discussed. Therefore, a variety of surface topography of nanoapatite coatings on the β-TCP scaffolds can be obtained using this method, which may enhance cell adhesion to the scaffolds for bone tissue engineering applications

  4. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    International Nuclear Information System (INIS)

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10−3 to 3.1 × 10−3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials

  5. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  6. Preparation of aminated chitosan/alginate scaffold containing halloysite nanotubes with improved cell attachment.

    Science.gov (United States)

    Amir Afshar, Hamideh; Ghaee, Azadeh

    2016-10-20

    The chemical nature of biomaterials play important role in cell attachment, proliferation and migration in tissue engineering. Chitosan and alginate are biodegradable and biocompatible polymers used as scaffolds for various medical and clinical applications. Amine groups of chitosan scaffolds play an important role in cell attachment and water adsorption but also associate with alginate carboxyl groups via electrostatic interactions and hydrogen bonding, consequently the activity of amine groups in the scaffold decreases. In this study, chitosan/alginate/halloysite nanotube (HNTs) composite scaffolds were prepared using a freeze-drying method. Amine treatment on the scaffold occurred through chemical methods, which in turn caused the hydroxyl groups to be replaced with carboxyl groups in chitosan and alginate, after which a reaction between ethylenediamine, 1-ethyl-3,(3-dimethylaminopropyl) carbodiimide (EDC) and scaffold triggered the amine groups to connect to the carboxyl groups of chitosan and alginate. The chemical structure, morphology and mechanical properties of the composite scaffolds were investigated by FTIR, CHNS, SEM/EDS and compression tests. The electrostatic attraction and hydrogen bonding between chitosan, alginate and halloysite was confirmed by FTIR spectroscopy. Chitosan/alginate/halloysite scaffolds exhibit significant enhancement in compressive strength compared with chitosan/alginate scaffolds. CHNS and EDS perfectly illustrate that amine groups were effectively introduced in the aminated scaffold. The growth and cell attachment of L929 cells as well as the cytotoxicity of the scaffolds were investigated by SEM and Alamar Blue (AB). The results indicated that the aminated chitosan/alginate/halloysite scaffold has better cell growth and cell adherence in comparison to that of chitosan/alginate/halloysite samples. Aminated chitosan/alginate/halloysite composite scaffolds exhibit great potential for applications in tissue engineering, ideally in

  7. PLDLA/PCL-T Scaffold for Meniscus Tissue Engineering.

    Science.gov (United States)

    Esposito, Andrea Rodrigues; Moda, Marlon; Cattani, Silvia Mara de Melo; de Santana, Gracy Mara; Barbieri, Juliana Abreu; Munhoz, Monique Moron; Cardoso, Túlio Pereira; Barbo, Maria Lourdes Peris; Russo, Teresa; D'Amora, Ugo; Gloria, Antonio; Ambrosio, Luigi; Duek, Eliana Aparecida de Rezende

    2013-04-01

    The inability of the avascular region of the meniscus to regenerate has led to the use of tissue engineering to treat meniscal injuries. The aim of this study was to evaluate the ability of fibrochondrocytes preseeded on PLDLA/PCL-T [poly(L-co-D,L-lactic acid)/poly(caprolactone-triol)] scaffolds to stimulate regeneration of the whole meniscus. Porous PLDLA/PCL-T (90/10) scaffolds were obtained by solvent casting and particulate leaching. Compressive modulus of 9.5±1.0 MPa and maximum stress of 4.7±0.9 MPa were evaluated. Fibrochondrocytes from rabbit menisci were isolated, seeded directly on the scaffolds, and cultured for 21 days. New Zealand rabbits underwent total meniscectomy, after which implants consisting of cell-free scaffolds or cell-seeded scaffolds were introduced into the medial knee meniscus; the negative control group consisted of rabbits that received no implant. Macroscopic and histological evaluations of the neomeniscus were performed 12 and 24 weeks after implantation. The polymer scaffold implants adapted well to surrounding tissues, without apparent rejection, infection, or chronic inflammatory response. Fibrocartilaginous tissue with mature collagen fibers was observed predominantly in implants with seeded scaffolds compared to cell-free implants after 24 weeks. Similar results were not observed in the control group. Articular cartilage was preserved in the polymeric implants and showed higher chondrocyte cell number than the control group. These findings show that the PLDLA/PCL-T 90/10 scaffold has potential for orthopedic applications since this material allowed the formation of fibrocartilaginous tissue, a structure of crucial importance for repairing injuries to joints, including replacement of the meniscus and the protection of articular cartilage from degeneration. PMID:23593566

  8. Semiotic Scaffolding in Mathematics

    DEFF Research Database (Denmark)

    Johansen, Mikkel Willum; Misfeldt, Morten

    2015-01-01

    representational forms influenced the development of the theory of exponentiation. For the third case, we analyze the connection between the development of commutative diagrams and the development of both algebraic topology and category theory. Our main conclusions are that semiotic scaffolding indeed plays a role...

  9. Three-dimensional chitin-based scaffolds from Verongida sponges (Demospongiae: Porifera). Part I. Isolation and identification of chitin.

    Science.gov (United States)

    Ehrlich, H; Ilan, M; Maldonado, M; Muricy, G; Bavestrello, G; Kljajic, Z; Carballo, J L; Schiaparelli, S; Ereskovsky, A; Schupp, P; Born, R; Worch, H; Bazhenov, V V; Kurek, D; Varlamov, V; Vyalikh, D; Kummer, K; Sivkov, V V; Molodtsov, S L; Meissner, H; Richter, G; Steck, E; Richter, W; Hunoldt, S; Kammer, M; Paasch, S; Krasokhin, V; Patzke, G; Brunner, E

    2010-08-01

    Marine invertebrate organisms including sponges (Porifera) not only provide an abundant source of biologically active secondary metabolites but also inspire investigations to develop biomimetic composites, scaffolds and templates for practical use in materials science, biomedicine and tissue engineering. Here, we presented a detailed study of the structural and physico-chemical properties of three-dimensional skeletal scaffolds of the marine sponges Aiolochroia crassa, Aplysina aerophoba, A. cauliformis, A. cavernicola, and A. fulva (Verongida: Demospongiae). We show that these fibrous scaffolds have a multilayered design and are made of chitin. (13)C solid-state NMR spectroscopy, NEXAFS, and IR spectroscopy as well as chitinase digestion and test were applied in order to unequivocally prove the existence of alpha-chitin in all investigated species. PMID:20471418

  10. Biomimetic synthesis for precursor of muscone

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Muscone is a precious fragrant compound scarce in nature. Many attempts have been made to synthesize this unique natural product. In this work, the one- carbon unit transfer reaction of tetrahydrofolate coenzyme was initiated. Benzimidazolium salt was used as the tetrahydrofolate coenzyme model at formic acid oxidation level and di-Grignard reagent as the nucleophile to which one-carbon unit was transferred; the biomimetic synthesis of 2,15- hexade-canedione, a precursor of muscone, was successfully accomplished by using the addition-hydrolysis reaction of benzimidazolium salt with Grignard reagent. And an impor-tant useful method for the synthesis of muscone is provided.

  11. Challenges in biomimetic design and innovation

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael; Shu, Li

    is a key issue in design and innovation work where problem identification and systematic search for suitable solution principle are major activities. One way to deal with this challenge is to use a biology search method. The use of such a method is illustrated with a case story describing the design...... including the terminology and knowledge organisation. It is often easy to recognise the splendour of a biological solution, but it can be much more difficult to understand the underlying mechanisms. Another challenge in biomimetic design is the search and identification of relevant solutions in nature. This...

  12. Tailored antireflective biomimetic nanostructures for UV applications

    Energy Technology Data Exchange (ETDEWEB)

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  13. Effect of urea on biomimetic aggregates

    Directory of Open Access Journals (Sweden)

    F.H. Florenzano

    1997-02-01

    Full Text Available The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic, monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied, which leads to an increase in the area per headgroup and also in the loss of counterion affinities

  14. Effect of urea on biomimetic aggregates.

    Science.gov (United States)

    Florenzano, F H; Politi, M J

    1997-02-01

    The effect of urea on biomimetic aggregates (aqueous and reversed micelles, vesicles and monolayers) was investigated to obtain insights into the effect of the denaturant on structured macromolecules. Direct evidence obtained from light scattering (static and dynamic), monolayer maximum isothermal compression and ionic conductivity measurements, together with indirect evidence from fluorescence photodissociation, fluorescence suppression, and thermal reactions, strongly indicates the direct interaction mechanism of urea with the aggregates. Preferential solvation of the surfactant headgroups by urea results in an increase in the monomer dissociation degree (when applied), which leads to an increase in the area per headgroup and also in the loss of counterion affinities. PMID:9239302

  15. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  16. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  17. Biomimetic PEG hydrogels crosslinked with minimal plasmin-sensitive tri-amino acid peptides

    OpenAIRE

    Jo, Suk Jo; Rizzi, Simone C.; Ehrbar, Martin; Weber, Franz E.; Hubbell, Jeffrey A.; Lutolf, Matthias P.

    2010-01-01

    Semi-synthetic, proteolytically degradable polymer hydrogels have proven effective as scaffolds to augment bone and skin regeneration in animals. However, high costs due to expensive peptide building blocks pose a significant hurdle towards broad clinical usage of these materials. Here we demonstrate that tri-amino acid peptides bearing lysine (or arginine), flanked by two cysteine residues for crosslinking, are adequate as minimal plasmin-sensitive peptides in poly(ethylene glycol)-based hyd...

  18. Electrospun Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione Nanofibrous Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Yakai Feng

    2016-01-01

    Full Text Available Biomimetic scaffolds have been investigated in vascular tissue engineering for many years. Excellent biodegradable materials are desired as temporary scaffolds to support cell growth and disappear gradually with the progress of guided tissue regeneration. In the present paper, a series of biodegradable copolymers were synthesized and used to prepared micro/nanofibrous scaffolds for vascular tissue engineering. Poly(lactide-co-glycolide-co-3(S-methyl-morpholine-2,5-dione [P(LA-co-GA-co-MMD] copolymers with different l-lactide (LA, glycolide (GA, and 3(S-methyl-2,5-morpholinedione (MMD contents were synthesized using stannous octoate as a catalyst. Moreover, the P(LA-co-GA-co-MMD nanofibrous scaffolds were prepared by electrospinning technology. The morphology of scaffolds was analyzed by scanning electron microscopy (SEM, and the results showed that the fibers are smooth, regular, and randomly oriented with diameters of 700 ± 100 nm. The weight loss of scaffolds increased significantly with the increasing content of MMD, indicating good biodegradable property of the scaffolds. In addition, the cytocompatibility of electrospun nanofibrous scaffolds was tested by human umbilical vein endothelial cells. It is demonstrated that the cells could attach and proliferate well on P(LA-co-GA-co-MMD scaffolds and, consequently, form a cell monolayer fully covering on the scaffold surface. Furthermore, the P(LA-co-GA-co-MMD scaffolds benefit to excellent cell infiltration after subcutaneous implantation. These results indicated that the P(LA-co-GA-co-MMD nanofibrous scaffolds could be potential candidates for vascular tissue engineering.

  19. The design and features of apatite-coated chitosan microspheres as injectable scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    In this paper we developed two types of chitosan-based microspheres with and without biomimetic apatite coatings and compared their potential as injectable scaffolds for bone regeneration. The microspheres were obtained by emulsion cross-linking (E0) and coacervate precipitation (C0), respectively. They were then biomimetically coated with apatite to become E1 and C1 microspheres. The physicochemical properties and biocompatibility of the microspheres were characterized. Both E0 and C0 microspheres presented favorable ranges of diameter, density and Rockwell hardness. However, there were differences in the degree of cross-linking, shape, morphology, degradation rate, swelling rate, pH value after PBS immersion and the biocompatibility between E0 and C0. The apatite coating was successfully prepared for both C0 and E0, which enhanced the attachment, proliferation and differentiation of MC3T3-E1 cells. In conclusion, our results suggest the feasibility of using chitosan microspheres as a potential injectable scaffold. Both the preparation method and the biomimetic apatite coating contribute to their biological properties. (paper)

  20. Deposition of functional PLA-b-PEO block copolymers on polylactide surfaces: development and characterization of biomimetic-peptide surface pattern

    Czech Academy of Sciences Publication Activity Database

    Třesohlavá, Eliška; Knotek, P.; Pop-Georgievski, Ognen; Machová, Luďka; Yang, Y.; Rypáček, František

    Praha: Ústav makromolekulární chemie AV ČR, 2010. L_23. ISBN 978-80-85009-62-0. [Workshop "Career in Polymers" /2./. 23.07.2010-24.07.2010, Praha] R&D Projects: GA MŠk 1M0538 EU Projects: European Commission(XE) 500283 - EXPERTISSUES Institutional research pla n: CEZ:AV0Z40500505 Keywords : polylactide * biomimetic * PLA -b-PEO copolymers Subject RIV: FH - Neurology

  1. Integration of porosity and bio-functionalization to form a 3D scaffold: cell culture studies and in vitro degradation

    International Nuclear Information System (INIS)

    In this study, porous poly(lactide-co-glycolide) (PLGA) (50/50) microspheres have been fabricated by the gas-foaming technique using ammonium bicarbonate as a gas-foaming agent. Microspheres of different porosities have been formulated by varying the concentration of the gas-foaming agent (0%, 5%, 10% and 15% w/v). These microspheres were characterized for particle size, porosity and average pore size, morphology, water uptake ratio and surface area and it was found that the porosity, pore size and surface area increased on increasing the concentration of the gas-foaming agent. Further, the effect of porosity on degradation behavior was evaluated over a 12 week period by measuring changes in mass, pH, molecular weight and morphology. Porosity was found to have an inverse relationship with degradation rate. To render the surface of the microspheres biomimetic, peptide P-15 was coupled to the surface of these microspheres. In vitro cell viability, proliferation and morphological evaluation were carried out on these microsphere scaffolds using MG-63 cell line to study the effect of the porosity and pore size of scaffolds and to evaluate the effect of P-15 on cell growth on porous scaffolds. MTT assay, actin, alizarin staining and SEM revealed the potential of biomimetic porous PLGA (50/50) microspheres as scaffolds for tissue engineering. As shown in graphical representation, an attempt has been made to correlate the cell behavior on the scaffolds (growth, proliferation and cell death) with the concurrent degradation of the porous microsphere scaffold as a function of time.

  2. Dedifferentiated Human Articular Chondrocytes Redifferentiate to a Cartilage-Like Tissue Phenotype in a Poly(ε-Caprolactone/Self-Assembling Peptide Composite Scaffold

    Directory of Open Access Journals (Sweden)

    Lourdes Recha-Sancho

    2016-06-01

    Full Text Available Adult articular cartilage has a limited capacity for growth and regeneration and, with injury, new cellular or biomaterial-based therapeutic platforms are required to promote repair. Tissue engineering aims to produce cartilage-like tissues that recreate the complex mechanical and biological properties found in vivo. In this study, a unique composite scaffold was developed by infiltrating a three-dimensional (3D woven microfiber poly (ε-caprolactone (PCL scaffold with the RAD16-I self-assembling nanofibers to obtain multi-scale functional and biomimetic tissue-engineered constructs. The scaffold was seeded with expanded dedifferentiated human articular chondrocytes and cultured for four weeks in control and chondrogenic growth conditions. The composite constructs were compared to control constructs obtained by culturing cells with 3D woven PCL scaffolds or RAD16-I independently. High viability and homogeneous cell distribution were observed in all three scaffolds used during the term of the culture. Moreover, gene and protein expression profiles revealed that chondrogenic markers were favored in the presence of RAD16-I peptide (PCL/RAD composite or alone under chondrogenic induction conditions. Further, constructs displayed positive staining for toluidine blue, indicating the presence of synthesized proteoglycans. Finally, mechanical testing showed that constructs containing the PCL scaffold maintained the initial shape and viscoelastic behavior throughout the culture period, while constructs with RAD16-I scaffold alone contracted during culture time into a stiffer and compacted structure. Altogether, these results suggest that this new composite scaffold provides important mechanical requirements for a cartilage replacement, while providing a biomimetic microenvironment to re-establish the chondrogenic phenotype of human expanded articular chondrocytes.

  3. Biodegradable Polylactic Acid (PLA) Microstructures for Scaffold Applications

    CERN Document Server

    Wang, G -J; Hsueh, C -C

    2008-01-01

    In this research, we present a simple and cost effective soft lithographic process to fabricate PLA scaffolds for tissue engineering. In which, the negative photoresist JSR THB-120N was spun on a glass subtract followed by conventional UV lithographic processes to fabricate the master to cast the PDMS elastomeric mold. A thin poly(vinyl alcohol) (PVA) layer was used as a mode release such that the PLA scaffold can be easily peeled off. The PLA precursor solution was then cast onto the PDMS mold to form the PLA microstructures. After evaporating the solvent, the PLA microstructures can be easily peeled off from the PDMS mold. Experimental results show that the desired microvessels scaffold can be successfully transferred to the biodegradable polymer PLA.

  4. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. From drug eluting stents to bioresorbable scaffolds; to new horizons in PCI.

    Science.gov (United States)

    Tenekecioglu, Erhan; Bourantas, Christos; Abdelghani, Mohammad; Zeng, Yaping; Silva, Rafael Cavalcante; Tateishi, Hiroki; Sotomi, Yohei; Onuma, Yoshinobu; Yılmaz, Mustafa; Serruys, Patrick W

    2016-03-01

    Drug eluting stents and particularly the fully bioresorbable drug-eluting scaffolds herald a new era in percutaneous treatment of coronary artery disease. There has been tremendous progress in drug eluting stents with fully biodegradable coating polymers and polymer-free devices with reservoir technology planting the anti-proliferative drug. Despite significant decreases in in-stent restenosis rates with drug eluting stents, limitations still remain before we are able to develop fully bioresorbable scaffolds. Enhanced mechanical flexibility that provides superior conformability to the vessel wall, resumption of the vasoreactivity in the follow-up period and improving visualization on non-invasive imaging modalities are some of the supremacies of the fully bioresorbable scaffolds. In this review, we aim to give a general view on the latest developments in metallic drug eluting stents and fully bioresorbable scaffolds. PMID:26782080

  6. [Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering].

    Science.gov (United States)

    Li, R; Wang, H; Leng, C Y; Wang, K; Xie, Y

    2016-05-20

    Natural polymeric materials and their derivatives are organic macromolecular compounds which exist in plants, animals, and micro-organisms. They have been widely used in the preparation of scaffolds for skin tissue engineering recently because of their good histocompatibility and degradability, and low immunogenicity. With the improvement of the preparation technics, composite materials are more commonly used to make scaffolds for dermal tissue engineering. This article summarizes the classification and research status of the commonly used natural polymer materials, their derivatives, and composite scaffold materials, as well as makes a prospect of the research trends of dermal scaffold in the future. PMID:27188491

  7. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight the...... possibilities and challenges. Biomimetics for engineering design is explored through an experiment involving 12 design engineering students. For 7 selected problem areas they searched biology literature available at a university library and identified a number of biological solutions. Central solution...

  8. Biomimetic multifunctional surfaces inspired from animals.

    Science.gov (United States)

    Han, Zhiwu; Mu, Zhengzhi; Yin, Wei; Li, Wen; Niu, Shichao; Zhang, Junqiu; Ren, Luquan

    2016-08-01

    Over millions of years, animals have evolved to a higher intelligent level for their environment. A large number of diverse surface structures on their bodies have been formed to adapt to the extremely harsh environment. Just like the structural diversity existed in plants, the same also applies true in animals. Firstly, this article provides an overview and discussion of the most common functional surface structures inspired from animals, such as drag reduction, noise reduction, anti-adhesion, anti-wear, anti-erosion, anti-fog, water capture, and optical surfaces. Then, some typical characteristics of morphologies, structures, and materials of the animal multifunctional surfaces were discussed. The adaptation of these surfaces to environmental conditions was also analyzed. It mainly focuses on the relationship between their surface functions and their surface structural characteristics. Afterwards, the multifunctional mechanisms or principles of these surfaces were discussed. Models of these structures were provided for the development of structure materials and machinery surfaces. At last, fabrication techniques and existing or potential technical applications inspired from biomimetic multifunctional surfaces in animals were also discussed. The application prospects of the biomimetic functional surfaces are very broad, such as civil field of self-cleaning textile fabrics and non-stick pots, ocean field of oil-water separation, sports field of swimming suits, space development field of lens arrays. PMID:27085632

  9. Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy.

    Science.gov (United States)

    Siefert, Alyssa L; Caplan, Michael J; Fahmy, Tarek M

    2016-08-01

    Antigen-presenting cells (APCs) sense microorganisms via pathogen-associated molecular patterns (PAMPs) by both extra- and intracellular Toll-like Receptors (TLRs), initiating immune responses against invading pathogens. Bacterial PAMPs include extracellular lipopolysaccharides and intracellular unmethylated CpG-rich oligodeoxynucleotides (CpG). We hypothesized that a biomimetic approach involving antigen-loaded nanoparticles (NP) displaying Monophosphoryl Lipid A (MPLA) and encapsulating CpG may function as an effective "artificial bacterial" biomimetic vaccine platform. This hypothesis was tested in vitro and in vivo using NP assembled from biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer, surface-modified with MPLA, and loaded with CpG and model antigen Ovalbumin (OVA). First, CpG potency, characterized by cytokine profiles, titers, and antigen-specific T cell responses, was enhanced when CpG was encapsulated in NP compared to equivalent concentrations of surface-presented CpG, highlighting the importance of biomimetic presentation of PAMPs. Second, NP synergized surface-bound MPLA with encapsulated CpG in vitro and in vivo, inducing greater pro-inflammatory, antigen-specific T helper 1 (Th1)-skewed cellular and antibody-mediated responses compared to single PAMPs or soluble PAMP combinations. Importantly, NP co-presentation of CpG and MPLA was critical for CD8(+) T cell responses, as vaccination with a mixture of NP presenting either CpG or MPLA failed to induce cellular immunity. This work demonstrates a rational methodology for combining TLR ligands in a context-dependent manner for synergistic nanoparticulate vaccines. PMID:27162077

  10. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    International Nuclear Information System (INIS)

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  11. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gautam, Sneh [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India); Chou, Chia-Fu [Institute of Physics, Academia Sinica, Taipei, Taiwan (China); Dinda, Amit K. [Department of Pathology, All India Institute of Medical Science, New Delhi (India); Potdar, Pravin D. [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai (India); Mishra, Narayan C., E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee (India)

    2014-01-01

    In the present study, a tri-polymer polycaprolactone (PCL)/gelatin/collagen type I composite nanofibrous scaffold has been fabricated by electrospinning for skin tissue engineering and wound healing applications. Firstly, PCL/gelatin nanofibrous scaffold was fabricated by electrospinning using a low cost solvent mixture [chloroform/methanol for PCL and acetic acid (80% v/v) for gelatin], and then the nanofibrous PCL/gelatin scaffold was modified by collagen type I (0.2–1.5 wt.%) grafting. Morphology of the collagen type I-modified PCL/gelatin composite scaffold that was analyzed by field emission scanning electron microscopy (FE-SEM), showed that the fiber diameter was increased and pore size was decreased by increasing the concentration of collagen type I. Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric (TG) analysis indicated the surface modification of PCL/gelatin scaffold by collagen type I immobilization on the surface of the scaffold. MTT assay demonstrated the viability and high proliferation rate of L929 mouse fibroblast cells on the collagen type I-modified composite scaffold. FE-SEM analysis of cell-scaffold construct illustrated the cell adhesion of L929 mouse fibroblasts on the surface of scaffold. Characteristic cell morphology of L929 was also observed on the nanofiber mesh of the collagen type I-modified scaffold. Above results suggest that the collagen type I-modified PCL/gelatin scaffold was successful in maintaining characteristic shape of fibroblasts, besides good cell proliferation. Therefore, the fibroblast seeded PCL/gelatin/collagen type I composite nanofibrous scaffold might be a potential candidate for wound healing and skin tissue engineering applications. - Highlights: • PCL/gelatin/collagen type I scaffold was fabricated for skin tissue engineering. • PCL/gelatin/collagen type I scaffold showed higher fibroblast growth than PCL/gelatin one. • PCL/gelatin/collagen type I might be one of the ideal scaffold for

  12. FGL-functionalized self-assembling nanofiber hydrogel as a scaffold for spinal cord-derived neural stem cells

    International Nuclear Information System (INIS)

    A class of designed self-assembling peptide nanofiber scaffolds has been shown to be a good biomimetic material in tissue engineering. Here, we specifically made a new peptide hydrogel scaffold FGLmx by mixing the pure RADA16 and designer functional peptide RADA16-FGL solution, and we analyzed the physiochemical properties of each peptide with atomic force microscopy (AFM) and circular dichroism (CD). In addition, we examined the biocompatibility and bioactivity of FGLmx as well as RADA16 scaffold on spinal cord-derived neural stem cells (SC-NSCs) isolated from neonatal rats. Our results showed that RADA16-FGL displayed a weaker β-sheet structure and FGLmx could self-assemble into nanofibrous morphology. Moreover, we found that FGLmx was not only noncytotoxic to SC-NSCs but also promoted SC-NSC proliferation and migration into the three-dimensional (3-D) scaffold, meanwhile, the adhesion and lineage differentiation of SC-NSCs on FGLmx were similar to that on RADA16. Our results indicated that the FGL-functionalized peptide scaffold might be very beneficial for tissue engineering and suggested its further application for spinal cord injury (SCI) repair. - Highlights: • RADA16 and RADA16-FGL peptides were synthesized and characterized. • Rat spinal cord neural stem cells were successfully isolated and characterized. • We provided an induction method for mixed differentiation of neural stem cells. • FGL scaffold had good biocompatibility and bioactivity with neural stem cells

  13. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    2014-02-01

    Full Text Available The two marine inorganic polymers, biosilica (BS, enzymatically synthesized from ortho-silicate, and polyphosphate (polyP, a likewise enzymatically synthesized polymer consisting of 10 to >100 phosphate residues linked by high-energy phosphoanhydride bonds, have previously been shown to display a morphogenetic effect on osteoblasts. In the present study, the effect of these polymers on the differential differentiation of human multipotent stromal cells (hMSC, mesenchymal stem cells, that had been encapsulated into beads of the biocompatible plant polymer alginate, was studied. The differentiation of the hMSCs in the alginate beads was directed either to the osteogenic cell lineage by exposure to an osteogenic medium (mineralization activation cocktail; differentiation into osteoblasts or to the chondrogenic cell lineage by incubating in chondrocyte differentiation medium (triggering chondrocyte maturation. Both biosilica and polyP, applied as Ca2+ salts, were found to induce an increased mineralization in osteogenic cells; these inorganic polymers display also morphogenetic potential. The effects were substantiated by gene expression studies, which revealed that biosilica and polyP strongly and significantly increase the expression of bone morphogenetic protein 2 (BMP-2 and alkaline phosphatase (ALP in osteogenic cells, which was significantly more pronounced in osteogenic versus chondrogenic cells. A differential effect of the two polymers was seen on the expression of the two collagen types, I and II. While collagen Type I is highly expressed in osteogenic cells, but not in chondrogenic cells after exposure to biosilica or polyP, the upregulation of the steady-state level of collagen Type II transcripts in chondrogenic cells is comparably stronger than in osteogenic cells. It is concluded that the two polymers, biosilica and polyP, are morphogenetically active additives for the otherwise biologically inert alginate polymer. It is proposed that

  14. Ceramic Identity Contributes to Mechanical Properties and Osteoblast Behavior on Macroporous Composite Scaffolds

    Directory of Open Access Journals (Sweden)

    J. Kent Leach

    2012-05-01

    Full Text Available Implants formed of metals, bioceramics, or polymers may provide an alternative to autografts for treating large bone defects. However, limitations to each material motivate the examination of composites to capitalize on the beneficial aspects of individual components and to address the need for conferring bioactive behavior to the polymer matrix. We hypothesized that the inclusion of different bioceramics in a ceramic-polymer composite would alter the physical properties of the implant and the cellular osteogenic response. To test this, composite scaffolds formed from poly(lactide-co-glycolide (PLG and either hydroxyapatite (HA, β-tricalcium phosphate (TCP, or bioactive glass (Bioglass 45S®, BG were fabricated, and the physical properties of each scaffold were examined. We quantified cell proliferation by DNA content, osteogenic response of human osteoblasts (NHOsts to composite scaffolds by alkaline phosphatase (ALP activity, and changes in gene expression by qPCR. Compared to BG-PLG scaffolds, HA-PLG and TCP-PLG composite scaffolds possessed greater compressive moduli. NHOsts on BG-PLG substrates exhibited higher ALP activity than those on control, HA-, or TCP-PLG scaffolds after 21 days, and cells on composites exhibited a 3-fold increase in ALP activity between 7 and 21 days versus a minimal increase on control scaffolds. Compared to cells on PLG controls, RUNX2 expression in NHOsts on composite scaffolds was lower at both 7 and 21 days, while expression of genes encoding for bone matrix proteins (COL1A1 and SPARC was higher on BG-PLG scaffolds at both time points. These data demonstrate the importance of selecting a ceramic when fabricating composites applied for bone healing.

  15. In-vitro liver model using microfabricated scaffolds in a modular bioreactor

    OpenAIRE

    Vinci, Bruna; Cavallone, Daniela; Vozzi, Giovanni; Domenici, Claudio; Brunetto, Maurizia; Ahluwalia, Arti

    2009-01-01

    Abstract Hepatocyte function on three-dimensional microfabricated polymer scaffolds realised with the Pressure Activated Microsyringe (PAM) was tested in static and dynamic conditions. The dynamic cell culture was obtained using the MCmB (MultiCompartment modular Bioreactor) system. Hepatocyte cell density, glucose consumption, and albumin secretion rate were measured daily over a week. Cells seeded on scaffolds showed an increase in cell density compared with monolayer controls. M...

  16. Fibers and 3D mesh scaffolds from biodegradable starch-based blends : production and characterization

    OpenAIRE

    Pavlov, Miroslav P.; Mano, J. F.; Neves, N. M.; Reis, R. L.

    2004-01-01

    The aim of this work is the production of fibers from biodegradable polymers to obtain 3D scaffolds for tissue engineering of hard tissues. The scaffolds required for this highly demanding application need to have, as well as the biological and mechanical characteristics, a high degree of porosity with suitable dimensions for cell seeding and proliferation. Furthermore, the open cell porosity should have adequate interconnectivity for a continuous flow of nutrients and...

  17. Scaffold- and Cell System-Based Bone Grafts in Tissue Engineering (Review)

    OpenAIRE

    Kuznetsova D.S.; Timashev P.S.; Bagratashvili V.N.; Zagaynova Е.V.

    2014-01-01

    The review considers the current trends in tissue engineering including maxillofacial surgery based on the use of scaffolds, autologous stem cells and bioactive substances. The authors have shown the advantages and disadvantages of basic materials used for scaffold synthesis — three-dimensional porous or fiber matrices serving as a mechanical frame for cells; among such materials there are natural polymers (collagen, cellulose, fibronectin, chitosan, alginate and agarose, fibroin), synthetic ...

  18. Electrospun Scaffolds for Corneal Tissue Engineering: A Review

    Directory of Open Access Journals (Sweden)

    Bin Kong

    2016-07-01

    Full Text Available Corneal diseases constitute the second leading cause of vision loss and affect more than 10 million people globally. As there is a severe shortage of fresh donated corneas and an unknown risk of immune rejection with traditional heterografts, it is very important and urgent to construct a corneal equivalent to replace pathologic corneal tissue. Corneal tissue engineering has emerged as a practical strategy to develop corneal tissue substitutes, and the design of a scaffold with mechanical properties and transparency similar to that of natural cornea is paramount for the regeneration of corneal tissues. Nanofibrous scaffolds produced by electrospinning have high surface area–to-volume ratios and porosity that simulate the structure of protein fibers in native extra cellular matrix (ECM. The versatilities of electrospinning of polymer components, fiber structures, and functionalization have made the fabrication of nanofibrous scaffolds with suitable mechanical strength, transparency and biological properties for corneal tissue engineering feasible. In this paper, we review the recent developments of electrospun scaffolds for engineering corneal tissues, mainly including electrospun materials (single and blended polymers, fiber structures (isotropic or anisotropic, functionalization (improved mechanical properties and transparency, applications (corneal cell survival, maintenance of phenotype and formation of corneal tissue and future development perspectives.

  19. Bioresorbable Scaffolds for Atheroregression: Understanding of Transient Scaffolding.

    Science.gov (United States)

    Kharlamov, Alexander N

    2016-01-01

    This review focuses on the clinical and biological features of the bioresorbable scaffolds in interventional cardiology highlighting scientific achievements and challenges of the transient scaffolding with Absorb BVS. Special attention is granted to the vascular biology pathways which, involved in the resorption of scaffold, artery remodeling and mechanisms of Glagovian atheroregression setting the stage for subsequent clinical applications. Twenty five years ago Glagov described the phenomenon of limited external elastic membrane enlargement in response to an increase in plaque burden. We believe this threshold becomes the target for development of strategies that reverse atherosclerosis, and particularly transient scaffolding has a potential to be a tool to ultimately conquer atherosclerosis. PMID:26818488

  20. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    Energy Technology Data Exchange (ETDEWEB)

    Kolan, Krishna C R; Leu, Ming C [Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Hilmas, Gregory E [Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO (United States); Brown, Roger F [Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO (United States); Velez, Mariano, E-mail: kkd7b@mail.mst.edu, E-mail: mleu@mst.edu [Mo-Sci Corporation, Rolla, MO (United States)

    2011-06-15

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 {mu}m with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  1. Fabrication of 13-93 bioactive glass scaffolds for bone tissue engineering using indirect selective laser sintering

    International Nuclear Information System (INIS)

    Bioactive glasses are promising materials for bone scaffolds due to their ability to assist in tissue regeneration. When implanted in vivo, bioactive glasses can convert into hydroxyapatite, the main mineral constituent of human bone, and form a strong bond with the surrounding tissues, thus providing an advantage over polymer scaffold materials. Bone scaffold fabrication using additive manufacturing techniques can provide control over pore interconnectivity during fabrication of the scaffold, which helps in mimicking human trabecular bone. 13-93 glass, a third-generation bioactive material designed to accelerate the body's natural ability to heal itself, was used in the research described herein to fabricate bone scaffolds using the selective laser sintering (SLS) process. 13-93 glass mixed with stearic acid (as the polymer binder) by ball milling was used as the powder feedstock for the SLS machine. The fabricated green scaffolds underwent binder burnout to remove the stearic acid binder and were then sintered at temperatures between 675 deg. C and 695 deg. C. The sintered scaffolds had pore sizes ranging from 300 to 800 μm with 50% apparent porosity and an average compressive strength of 20.4 MPa, which is excellent for non-load bearing applications and among the highest reported for an interconnected porous scaffold fabricated with bioactive glasses using the SLS process. The MTT labeling experiment and measurements of MTT formazan formation are evidence that the rough surface of SLS scaffolds provides a cell-friendly surface capable of supporting robust cell growth.

  2. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    Energy Technology Data Exchange (ETDEWEB)

    Llorens, Elena; Calderón, Silvia [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Valle, Luis J. del, E-mail: luis.javier.del.valle@upc.edu [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Puiggalí, Jordi [Departament d' Enginyeria Química, Universitat Politècnica de Catalunya, Av. Diagonal 647, Barcelona E-08028 (Spain); Center for Research in Nano-Engineering (CrNE), Universitat Politècnica de Catalunya, Edifici C, C/Pasqual i Vila s/n, Barcelona E-08028 (Spain)

    2015-05-01

    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells.

  3. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties

    International Nuclear Information System (INIS)

    Polyhexamethylenebiguanide hydrochloride (PHMB), a low molecular weight polymer related to chlorohexidine (CHX), is a well-known antibacterial agent. In this study, polylactide (PLA) nanofibers loaded with PHMB were produced by electrospinning to obtain 3D biodegradable scaffolds with antibacterial properties. PLA fibers loaded with CHX were used as control. The electrospun fibers were studied and analyzed by SEM, FTIR, DSC and contact angle measurements. PHMB and CHX release from loaded scaffolds was evaluated, as well as their antibacterial activity and biocompatibility. The results showed that the nanofibers became smoother and their diameter smaller with increasing the amount of loaded PHMB. This feature led to an increase of both surface roughness and hydrophobicity of the scaffold. PHMB release was highly dependent on the hydrophilicity of the medium and differed from that determined for CHX. Lastly, PHMB-loaded PLA scaffolds showed antibacterial properties since they inhibited adhesion and bacterial growth, and exhibited biocompatible characteristics for the adhesion and proliferation of both fibroblast and epithelial cell lines. - Highlights: • Nanofibers of PLA-PHMB (antibacterial polymer) were prepared by electrospinning. • PHMB has hydrophilic character but the PLA-PHMB scaffolds were highly hydrophobic. • The high-hydrophobicity of the new scaffolds conditioned the release of PHMB. • The controlled release of PHMB inhibited the growth and bacterial adhesion. • PLA-PHMB scaffolds have biocompatibility with fibroblast and epithelial cells

  4. Fabrication and modelling of fractal, biomimetic, micro and nano-topographical surfaces.

    Science.gov (United States)

    Kyle, Daniel J T; Oikonomou, Antonios; Hill, Ernie; Vijayaraghavan, Aravind; Bayat, Ardeshir

    2016-01-01

    Natural surface topographies are often self-similar with hierarchical features at the micro and nanoscale, which may be mimicked to overcome modern tissue engineering and biomaterial design limitations. Specifically, a cell's microenvironment within the human body contains highly optimised, fractal topographical cues, which directs precise cell behaviour. However, recreating biomimetic, fractal topographies in vitro is not a trivial process and a number of fabrication methods have been proposed but often fail to precisely control the spatial resolution of features at different lengths scales and hence, to provide true biomimetic properties. Here, we propose a method of accurately reproducing the self-similar, micro and nanoscale topography of a human biological tissue into a synthetic polymer through an innovative fabrication process. The biological tissue surface was characterised using atomic force microscopy (AFM) to obtain spatial data in X, Y and Z, which was converted into a grayscale 'digital photomask'. As a result of maskless grayscale optical lithography followed by modified deep reactive ion etching and replica molding, we were able to accurately reproduce the fractal topography of acellular dermal matrix (ADM) into polydimethylsiloxane (PDMS). Characterisation using AFM at three different length scales revealed that the nano and micro-topographical features, in addition to the fractal dimension, of native ADM were reproduced in PDMS. In conclusion, it has been shown that the fractal topography of biological surfaces can be mimicked in synthetic materials using the novel fabrication process outlined, which may be applied to significantly enhance medical device biocompatibility and performance. PMID:27454401

  5. Biomimetic synthesized bimodal nanoporous silica: Bimodal mesostructure formation and application for ibuprofen delivery.

    Science.gov (United States)

    Li, Jing; Xu, Lu; Zheng, Nan; Wang, Hongyu; Lu, Fangzheng; Li, Sanming

    2016-01-01

    The present paper innovatively reports bimodal nanoporous silica synthesized using biomimetic method (B-BNS) with synthesized polymer (C16-L-serine) as template. Formation mechanism of B-BNS was deeply studied and exploration of its application as carrier of poorly water-soluble drug ibuprofen (IBU) was conducted. The bimodal nanopores and curved mesoscopic channels of B-BNS were achieved due to the dynamic self-assembly of C16-L-serine induced by silane coupling agent (3-aminopropyltriethoxysilane, APTES) and silica source (tetraethoxysilane, TEOS). Characterization results confirmed the successful synthesis of B-BNS, and particularly, nitrogen adsorption/desorption measurement demonstrated that B-BNS was meso-meso porous silica material. In application, B-BNS loaded IBU with high drug loading content due to its enlarged nanopores. After being loaded, IBU presented amorphous phase because nanoporous space and curved mesoscopic channels of B-BNS prevented the crystallization of IBU. In vitro release result revealed that B-BNS controlled IBU release with two release phases based on bimodal nanopores and improved dissolution in simulated gastric fluid due to crystalline conversion of IBU. It is convincible that biomimetic method provides novel theory and insight for synthesizing bimodal nanoporous silica, and unique functionalities of B-BNS as drug carrier can undoubtedly promote the application of bimodal nanoporous silica and development of pharmaceutical science. PMID:26478410

  6. Development of Biomimetic Needle-like Apatite Nanocrystals by a Simple New Method

    Institute of Scientific and Technical Information of China (English)

    Jie WEI; Yubao LI; Yi ZUO; Xueling PENG; Li ZHANG

    2004-01-01

    A new method of calcium nitrate and sodium phosphate as reactants was employed to prepare biomimetic apatite nanocrystals by a simple heating treatment in water. The structure and properties of the apatite crystals were investigated by TEM, XRD, IR, ICP and TG. It is found that the apatite nanocrystals contain OH-, CO32-, Na+ and HPO~- ions in their crystal structure. The crystal water is removed during heating from 200℃ to 400℃. CO32-and HPO~- are decomposed at 600℃ to 800℃, also there is lattice water lost at this temperature stage. The morphology of the apatite nanocrystals is needle-like with a length less than 80 nm. The size and crystallinity of the apatite nanocrystals increase with water treatment temperature and time. Compared to the apatite crystals sintered at 800℃, water treated apatite nanocrystals are poorly crystallized apatite. The results indicate that the apatite nanocrystals have similarity in composition, structure, morphology and crystallinity to that of bone apatite crystals. It can be used to make apatite crystals/polymer biomimetic bone repair materials or for other biomedical applications.

  7. Solvent/Non-Solvent Sintering To Make Microsphere Scaffolds

    Science.gov (United States)

    Laurencin, Cato T.; Brown, Justin L.; Nair, Lakshmi

    2011-01-01

    A solvent/non-solvent sintering technique has been devised for joining polymeric microspheres to make porous matrices for use as drug-delivery devices or scaffolds that could be seeded with cells for growing tissues. Unlike traditional sintering at elevated temperature and pressure, this technique is practiced at room temperature and pressure and, therefore, does not cause thermal degradation of any drug, protein, or other biochemical with which the microspheres might be loaded to impart properties desired in a specific application. Also, properties of scaffolds made by this technique are more reproducible than are properties of comparable scaffolds made by traditional sintering. The technique involves the use of two miscible organic liquids: one that is and one that is not a solvent for the affected polymer. The polymeric microspheres are placed in a mold having the size and shape of the desired scaffold, then the solvent/non-solvent mixture is poured into the mold to fill the void volume between the microspheres, then the liquid mixture is allowed to evaporate. Some of the properties of the resulting scaffold can be tailored through choice of the proportions of the liquids and the diameter of the microspheres.