WorldWideScience

Sample records for biomimetic nanoparticles preparation

  1. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  2. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Mark Young; Trevor Douglas

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  3. Biomimetic magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael T. Klem

    2005-09-01

    Full Text Available Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches to materials chemistry have provided a new avenue for the synthesis and assembly of magnetic nanomaterials that has great potential for overcoming these obstacles.

  4. Single-Nanoparticle Resolved Biomimetic Long-Range Electron Transfer and Electrocatalysis of Mixed-Valence Nanoparticles

    DEFF Research Database (Denmark)

    Zhu, Nan; Hao, Xian; Ulstrup, Jens;

    2016-01-01

    stability in vitro. Development of robust biomimetic nanostructures is therefore highly desirable. Here, with Prussian blue nanoparticles (PBNPs) as an example we have demonstrated the preparation of highly stable and water-soluble mixed-valence nanoparticles under mild conditions. We have mapped their...... enzyme-mimicking catalytic properties and controlled LRET to single-nanoparticle resolution. PBNPs show high substrate binding affinity and tunable electrocatalytic efficiency toward hydrogen peroxide reduction, resembling the patterns for similar size redox metalloenzymes. We have further disclosed a...

  5. Plasmonic nanoparticles tuned thermal sensitive photonic polymer for biomimetic chameleon

    Science.gov (United States)

    Yan, Yang; Liu, Lin; Cai, Zihe; Xu, Jiwen; Xu, Zhou; Zhang, Di; Hu, Xiaobin

    2016-08-01

    Among many thermo-photochromic materials, the color-changing behavior caused by temperature and light is usually lack of a full color response. And the study on visible light-stimuli chromic response is rarely reported. Here, we proposed a strategy to design a thermo-photochromic chameleon biomimetic material consisting of photonic poly(N-isopropylacrylamide-co-methacrylic acid) copolymer and plasmonic nanoparticles which has a vivid color change triggered by temperature and light like chameleons. We make use of the plasmonic nanoparticles like gold nanoparticles and silver nanoparticles to increase the sensitivity of the responsive behavior and control the lower critical solution temperature of the thermosensitive films by tuning the polymer chain conformation transition. Finally, it is possible that this film would have colorimetric responses to the entire VIS spectrum by the addition of different plasmonic nanoparticles to tune the plasmonic excitation wavelength. As a result, this method provides a potential use in new biosensors, military and many other aspects.

  6. Clearance of pathological antibodies using biomimetic nanoparticles

    OpenAIRE

    Copp, Jonathan A.; Fang, Ronnie H.; Luk, Brian T.; Hu, Che-Ming J.; Gao, Weiwei; Zhang, Kang; Zhang, Liangfang

    2014-01-01

    The selective depletion of disease-causing antibodies using nanoparticles offers a new model in the management of type II immune hypersensitivity reactions. The demonstration of pathophysiologically inspired nanoengineering serves as a valuable prototype for additional therapeutic improvements with the goal of minimizing therapy-related adverse effects. Through the use of cell membrane-cloaked nanoparticles, nanoscale decoys with strong affinity to pathological antibodies can be administered ...

  7. A facile biomimetic preparation of highly stabilized silver nanoparticles derived from seed extract of Vigna radiata and evaluation of their antibacterial activity

    Science.gov (United States)

    Choudhary, Manoj Kumar; Kataria, Jyoti; Cameotra, Swaranjit Singh; Singh, Jagdish

    2016-01-01

    The significant antibacterial activity of silver nanoparticles draws the major attention toward the present nanobiotechnology. Also, the use of plant material for the synthesis of metal nanoparticles is considered as a green technology. In this context, a non-toxic, eco-friendly, and cost-effective method has been developed for the synthesis of silver nanoparticles using seed extract of mung beans ( Vigna radiata). The synthesized nanoparticles have been characterized by UV-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), atomic absorption spectroscopy (AAS), and X-ray diffraction (XRD). The UV-visible spectrum showed an absorption peak at around 440 nm. The different types of phytochemicals present in the seed extract synergistically reduce the Ag metal ions, as each phytochemical is unique in terms of its structure and antioxidant function. The colloidal silver nanoparticles were observed to be highly stable, even after 5 months. XRD analysis showed that the silver nanoparticles are crystalline in nature with face-centered cubic geometry and the TEM micrographs showed spherical particles with an average size of 18 nm. Further, the antibacterial activity of silver nanoparticles was evaluated by well-diffusion method and it was observed that the biogenic silver nanoparticles have an effective antibacterial activity against Escherichia coli and Staphylococcus aureus. The outcome of this study could be useful for nanotechnology-based biomedical applications.

  8. Nanoparticle-based biomimetic functional materials (Presentation Recording)

    Science.gov (United States)

    Ijiro, Kuniharu

    2015-09-01

    Self-assembly originated from molecules, is ubiquitous from nature to unnature systems. The formation of double-stranded structure of DNA, virus, molecular crystals, liposomes etc. are all instances of molecular self-assembly. In the biological system, for example, virus is an impressive feat of molecular engineering by assembly of hundreds of proteins through the weak hydrophobic effect. We propose a robust strategy for the size-controllable fabrication of gold nanoparticle vesicles(AuNVs) which are biomimetic nanostructures of virus consisted of gold nanoparticles instead of proteins by using carbohydrate terminated fluorinated surface ligand self-assembly with 5~40nm AuNPs, indicating that carbohydrate can act as stronger molecular glue than oligo(ethylene glycol). Carbohydrate was introduced to tune the hydrophilic effect of the ligand by varying the number of glucose (namely, glucose, maltose, and maltotriose). AuNVs size could be efficiently controlled by varying surface ligands, water content in dioxane, and AuNPs size. We find some similarities between VLPs and AuNVs composed of 30nm gold nanoparticles. Photonic properties of not only AuNVs but also other self-assemblies of nanoparticles were measured. Strong surface-enhanced Raman scattering (SERS) of molecules were detected from the AuNVs and self-assembled gold nanoparticles.

  9. Preparation of biomimetic photoresponsive polymer springs.

    Science.gov (United States)

    Iamsaard, Supitchaya; Villemin, Elise; Lancia, Federico; Aβhoff, Sarah-Jane; Fletcher, Stephen P; Katsonis, Nathalie

    2016-10-01

    Polymer springs that twist under irradiation with light, in a manner that mimics how plant tendrils twist and turn under the effect of differential expansion in different sections of the plant, show potential for soft robotics and the development of artificial muscles. The soft springs prepared using this protocol are typically 1 mm wide, 50 μm thick and up to 10 cm long. They are made from liquid crystal polymer networks in which an azobenzene derivative is introduced covalently as a molecular photo-switch. The polymer network is prepared by irradiation of a twist cell filled with a mixture of shape-persistent liquid crystals, liquid crystals having reactive end groups, molecular photo-switches, some chiral dopant and a small amount of photoinitiator. After postcuring, the soft polymer film is removed and cut into springs, the geometry of which is determined by the angle of cut. The material composing the springs is characterized by optical microscopy, scanning electron microscopy and tensile strength measurements. The springs operate at ambient temperature, by mimicking the orthogonal contraction mechanism that is at the origin of plant coiling. They shape-shift under irradiation with UV light and can be pre-programmed to either wind or unwind, as encoded in their geometry. Once illumination is stopped, the springs return to their initial shape. Irradiation with visible light accelerates the shape reversion. PMID:27583641

  10. Biomimetic synthesis of highly biocompatible gold nanoparticles with amino acid-dithiocarbamate as a precursor for SERS imaging

    Science.gov (United States)

    Li, Li; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; He, Dinggeng; Guo, Xi; Wan, Lan; He, Xiaoxiao; Wang, Kemin

    2016-03-01

    Amino acid-dithiocarbamate (amino acid-DTC) was developed as both the reductant and ligand stabilizer for biomimetic synthesis of gold nanoparticles (AuNPs), which served as an excellent surface-enhanced Raman scattering (SERS) contrast nanoprobe for cell imaging. Glycine (Gly), glutamic acid (Glu), and histidine (His) with different isoelectric points were chosen as representative amino acid candidates to synthesize corresponding amino acid-DTC compounds through mixing with carbon disulfide (CS2), respectively. The pyrogenic decomposition of amino acid-DTC initiated the reduction synthesis of AuNPs, and the strong coordinating dithiocarbamate group of amino acid-DTC served as a stabilizer that grafted onto the surface of the AuNPs, which rendered the as-prepared nanoparticles a negative surface charge and high colloidal stability. MTT cell viability assay demonstrated that the biomimetic AuNPs possessed neglectful toxicity to the human hepatoma cell, which guaranteed them good biocompatibility for biomedical application. Meanwhile, the biomimetic AuNPs showed a strong SERS effect with an enhancement factor of 9.8 × 105 for the sensing of Rhodamine 6G, and two distinct Raman peaks located at 1363 and 1509 cm-1 could be clearly observed in the cell-imaging experiments. Therefore, biomimetic AuNPs can be explored as an excellent SERS contrast nanoprobe for biomedical imaging, and the amino acid-DTC mediated synthesis of the AuNPs has a great potential in bio-engineering and biomedical imaging applications.

  11. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    OpenAIRE

    Xia Pu; Guangji Li; Hanlu Huang

    2016-01-01

    ABSTRACT Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark s...

  12. Biomimetics

    Indian Academy of Sciences (India)

    P Ramachandra Rao

    2003-06-01

    The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a few natural materials and systems and explore how ideas from nature are being interpreted and modified to suit efforts aimed at designing better machines and synthesising newer materials.

  13. Biomimetic control over size, shape and aggregation in magnetic nanoparticles

    Science.gov (United States)

    Sommerdijk, Nico

    2013-03-01

    Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in both geological and biomineralizing systems, which also has many technological applications, e.g. in ferrofluids, inks, magnetic data storage materials and as contrast agents in magnetic resonance imaging. As its magnetic properties depend largely on the size and shape of the crystals, control over crystal morphology is an important aspect in the application of magnetite nanoparticles, both in biology and synthetic systems. Indeed, in nature organisms such as magnetotactic bacteria demonstrate a precise control over the magnetite crystal morphology, resulting in uniform and monodisperse nanoparticles. The magnetite formation in these bacteria is believed to occur through the co-precipitation of Fe(II) and Fe(III) ions, which is also the most widely applied synthetic route in industry. Synthetic strategies to magnetite with controlled size and shape exist, but involve high temperatures and rather harsh chemical conditions. However, synthesis via co-precipitation generally yields poor control over the morphology and therefore over the magnetic properties of the obtained crystals. Here we demonstrate that by tuning the reaction kinetics we can achieve biomimetic control over the size and shape of magnetite crystals but also over their organization in solution as well as their magnetic properties. We employ amino acids-based polymers to direct the formation of magnetite in aqueous media at room temperature via both the co-precipitation and the partial oxidation method. By using 2D and 3D (cryo)TEM it is shown that acidic amino acid monomers are most effective in affecting the magnetite particle morphology. By changing the composition of the polymers we can tune the morphology, the dispersibility as well as the magnetic properties of these nanoparticles.

  14. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  15. Biomimetic metal oxides for the extraction of nanoparticles from water

    Science.gov (United States)

    Mallampati, Ramakrishna; Valiyaveettil, Suresh

    2013-03-01

    Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial effluent treatments and water purifications.Contamination of nanomaterials in the environment will pose significant health risks in the future. A viable purification method is necessary to address this problem. Here we report the synthesis and application of a series of metal oxides prepared using a biological template for the removal of nanoparticles from the aqueous environment. A simple synthesis of metal oxides such as ZnO, NiO, CuO, Co3O4 and CeO2 employing eggshell membrane (ESM) as a biotemplate is reported. The morphology of the metal oxide powders was characterized using electron microscopes and the lattice structure was established using X-ray diffraction methods. Extraction of nanoparticles from water was carried out to compare the efficiency of metal oxides. NiO showed good extraction efficiency in removing gold and silver nanoparticles from spiked water samples within an hour. Easy access and enhanced stability of metal oxides makes them interesting candidates for applications in industrial

  16. Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe3O4 Nanoparticles

    NARCIS (Netherlands)

    Goldmann, Anja S.; Schoedel, Christine; Walther, Andreas; Yuan, Jiayin; Loos, Katja; Mueller, Axel H. E.; Müller, Axel H.E.

    2010-01-01

    The functionalization of magnetite (Fe3O4) nanoparticles with dopamine-derived clickable biomimetic anchors is reported. Herein, an alkyne-modified catechol-derivative is employed as the anchor, as i) the catechol-functional anchor groups possess irreversible covalent binding affinity to Fe3O4 nanop

  17. A one-pot strategy for biomimetic synthesis and self-assembly of gold nanoparticles

    International Nuclear Information System (INIS)

    A simple, one-pot and controllable strategy is reported in this contribution for biomimetic synthesis and self-assembly of gold nanoparticles (Au-NPs). It involves our synthesized polyaldehyde dextran (PAD), which has been proved to be a biomacromolecule with excellent biocompatibility and biodegradability, acting as both a reducing agent and a stabilizer. The morphology of the as-prepared Au-NP assemblies can be controlled by adjusting the reaction conditions, such as the concentration of aldehyde in PAD, the reaction time and the temperature. Investigations of the mechanism suggest that stabilizers may distribute on different crystal facets of NPs non-uniformly owing to the different binding forces, and dipole-dipole interaction of NPs could be the main driving force for the assembly of Au-NPs. In addition, intermolecular hydrogen bonding interaction of stabilizers could also act as a possible driving force. The excellent biocompatibility of the Au-NP assemblies makes them promising candidates for fabricating future optical nanodevices and application in biological systems.

  18. Preparation of microcellular composites with biomimetic structure via supercritical fluid technology

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new microcellular composite material with a biomimetic structure has been prepared via the supercritical fluid (SCF) technology. The resultant material has a clear biomimetic structure like bamboo and wood. The skin region is enriched with oriented high-strength thermotropic liquid crystal polymer fibrils, while the core region with polystyrene (PS) micro-cells. The diameter and density of micro- cells can be controlled by the processing parameters such as temperature and pressure. And the skin thickness can be controlled conveniently by varying the composition of polystyrene and liquid crystal polymer.

  19. Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH

    Directory of Open Access Journals (Sweden)

    Soumia Belouafa

    2008-03-01

    Full Text Available Antiseptic apatite-based calcium phosphates were prepared as the single-phase powders. Phosphocalcic oxygenated apatites were synthesized from calcium salts and orthophosphate dissolved in oxygenated water solution at 30%, under the biomimetic conditions of 37 °C and pH 7.4. The characterization and chemical analysis of the synthesized biomimetic apatite powders were performed by scanning electron microscopy (SEM, powder X ray diffraction (XRD, Fourier-transformed infrared spectroscopy (FT-IR and chemical analysis. The obtained materials are a calcium deficient apatites with different morphologies.

  20. Preparation of biomimetic hydrophobic coatings on AZ91D magnesium alloy surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The hydrophobic coating has been a promising technology for improving surface performance. The surface performance of magnesium alloy has been limited in application. Furthermore, the hydrophobic of magnesium alloy is rarely investigated because magnesium alloy is an active metal alloy. In this paper, inspired by microstructure character of typical plant leaf surface such as lotus, the biomimetic hydrophobic coatings on AZ91D magnesium alloy surface were prepared by means of wet-chemical combining electroless. The samples were immersed into AgNO3 solution in wet-chemical method firstly. Then, biomimetic hydrophobic coatings were prepared by electroless after wet-method pretreatment. The microstructure was observed by SEM and the contact angles were measured by contact angle tester. The results indicated that the biomimetic hydrophobic coatings with uniform crystalline and dense structure could be obtained on AZ91D magnesium alloy surface. The results of contact angle revealed that the biomimetic nano-composite coatings were hydrophobic. The wet-chemical method treatment on the AZ91D magnesium alloy substrate provided a rough microstructure, thus improving adhesion of the coating and the substrate.

  1. A Biomimetic Copper Corrole ? Preparation, Characterization, and Reconstitution with Horse Heart Apomyoglobin

    OpenAIRE

    Bröring, Martin; Brégier, Frédérique; Olaf, Burghaus; Kleeberg, Christian

    2010-01-01

    Abstract A copper corrole with biomimetic propionate side chains was prepared as a novel heme analog by metalation of the respective ligand as the dimethylester with copper(II) acetate hydrate and subsequent saponification with LiOH. The metalated dimethylester was characterized by spectroscopic and crystallographic means and shown by comparison to contain a divalent copper ion, antiferromagnetically coupled to the radical-dianionic organic ligand. The molecular structure of this c...

  2. Biomimetic patterning of polymer hydrogels with hydroxyapatite nanoparticles

    International Nuclear Information System (INIS)

    We report here an in situ process to produce nano-composite polymer hydrogels having surfaces patterned with hydroxyapatite (HA) nanoparticles (100 nm). Poly (vinyl alcohol) (PVA) has been used as a hydrogel forming medium. A three step process, comprising precipitation of HA nanoparticles in presence of PVA molecules and freeze thawing of obtained PVA-HA emulsion, followed by critical point drying, has been devised to produce three dimensional nanocomposite hydrogels. Interaction of Ca2+ with oxygen atoms of PVA and the hydrogen bonding characteristic of the polymer have been exploited to have controlled size distribution of HA in a continuous and macroporous network of PVA. A systematic variation in the polymer concentration could be correlated with microstructural features of the hydrogel.

  3. Biomimetic High Density Lipoprotein Nanoparticles For Nucleic Acid Delivery

    OpenAIRE

    McMahon, Kaylin M.; Mutharasan, R. Kannan; Tripathy, Sushant; Veliceasa, Dorina; Bobeica, Mariana; Shumaker, Dale K.; Luthi, Andrea J.; Helfand, Brian T.; Ardehali, Hossein; Mirkin, Chad A.; Volpert, Olga; Thaxton, C. Shad

    2011-01-01

    We report a gold nanoparticle-templated high density lipoprotein (HDL AuNP) platform for gene therapy which combines lipid-based nucleic acid transfection strategies with HDL biomimicry. For proof-of-concept, HDL AuNPs are shown to adsorb antisense cholesterylated DNA. The conjugates are internalized by human cells, can be tracked within cells using transmission electron microscopy (TEM), and regulate target gene expression. Overall, the ability to directly image the AuNP core within cells, t...

  4. Biomimetic Hierarchical Assembly of Helical Supraparticles from Chiral Nanoparticles.

    Science.gov (United States)

    Zhou, Yunlong; Marson, Ryan L; van Anders, Greg; Zhu, Jian; Ma, Guanxiang; Ercius, Peter; Sun, Kai; Yeom, Bongjun; Glotzer, Sharon C; Kotov, Nicholas A

    2016-03-22

    Chiroptical materials found in butterflies, beetles, stomatopod crustaceans, and other creatures are attributed to biocomposites with helical motifs and multiscale hierarchical organization. These structurally sophisticated materials self-assemble from primitive nanoscale building blocks, a process that is simpler and more energy efficient than many top-down methods currently used to produce similarly sized three-dimensional materials. Here, we report that molecular-scale chirality of a CdTe nanoparticle surface can be translated to nanoscale helical assemblies, leading to chiroptical activity in the visible electromagnetic range. Chiral CdTe nanoparticles coated with cysteine self-organize around Te cores to produce helical supraparticles. d-/l-Form of the amino acid determines the dominant left/right helicity of the supraparticles. Coarse-grained molecular dynamics simulations with a helical pair-potential confirm the assembly mechanism and the origin of its enantioselectivity, providing a framework for engineering three-dimensional chiral materials by self-assembly. The helical supraparticles further self-organize into lamellar crystals with liquid crystalline order, demonstrating the possibility of hierarchical organization and with multiple structural motifs and length scales determined by molecular-scale asymmetry of nanoparticle interactions. PMID:26900920

  5. Preparation methods of alginate nanoparticles

    NARCIS (Netherlands)

    Paques, J.P.; Linden, van der E.; Rijn, van C.J.M.; Sagis, L.M.C.

    2014-01-01

    This article reviews available methods for the formation of alginate nano-aggregates, nanocapsules and nanospheres. Primarily, alginate nanoparticles are being prepared by two methods. In the “complexation method”, complex formation on the interface of an oil droplet is used to form alginate nanocap

  6. Tuning mechanical properties of polymer-grafted nanoparticle networks by using biomimetic catch bonds

    Science.gov (United States)

    Mbanga, Badel L.; Iyer, Balaji V. S.; Yashin, Victor V.; Balazs, Anna C.

    Cross-linked networks of polymer-grafted nanoparticles (PGNs) constitute a class of composites with tunable mechanical properties that exhibit a self-healing behavior. A PGN network consists of nanoparticles that are decorated with end-grafted polymer chains. Reactive groups on the free ends of these grafted chains can form bonds with the chain ends on the nearby particles. We study these materials using a 3D computational model that encompasses the particle-particle interactions, the kinetics of bond formation and rupture, and the external forces applied to the network. In our model, a fraction of cross-links is formed through biomimetic ``catch'' bonds. In contrast to conventional ``slip'' bonds, catch bonds can effectively become stronger under a deformation. We show that by varying the fraction of these catch bonds in the network, the toughness, ductility, and tensile strength of the material could be tuned to desired levels.

  7. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  8. Biomimetic Route to Calcium Phosphate Coated Polymeric Nanoparticles: Influence of Different Functional Groups and pH

    OpenAIRE

    Schoeller, Katrin; Ethirajan, Anitha; Zeller, Anke; Landfester, Katharina

    2011-01-01

    The controlled synthesis of organic-inorganic hybrid particles with selective morphology using polymeric nanoparticles as templates offers an effective biomimetic route to design composite materials with interesting properties for various potential applications. In this study, the formation of hybrid particles via the bio-inspired mineralization of calcium phosphate (CaP) on the surface of different surface-functionalized polymeric nanoparticles is reported. The versatile miniemulsion polymer...

  9. Perylene Nanoparticles Prepared by Reprecipitation Method

    Institute of Scientific and Technical Information of China (English)

    JI,Xue-Hai(纪学海); FU,Hong-Bing(付红兵); XIE,Rui-Min(谢锐敏); XIAO,De-Bao(肖德宝); YAO,Jian-Nian(姚建年)

    2002-01-01

    Perylene nanoparticles with different sizes were prepared by reprecipitation method. It is found that the nanoparticles show size-dependent optical property. Electron diffraction patterns indicate that all the nanoparticles of different sizes are in crystalline state. The rapid growth of the nanoparticles during the agingg process could be slowed down effectively by the addition of cationic or anionic surfactants.

  10. Artificial bacterial biomimetic nanoparticles synergize pathogen-associated molecular patterns for vaccine efficacy.

    Science.gov (United States)

    Siefert, Alyssa L; Caplan, Michael J; Fahmy, Tarek M

    2016-08-01

    Antigen-presenting cells (APCs) sense microorganisms via pathogen-associated molecular patterns (PAMPs) by both extra- and intracellular Toll-like Receptors (TLRs), initiating immune responses against invading pathogens. Bacterial PAMPs include extracellular lipopolysaccharides and intracellular unmethylated CpG-rich oligodeoxynucleotides (CpG). We hypothesized that a biomimetic approach involving antigen-loaded nanoparticles (NP) displaying Monophosphoryl Lipid A (MPLA) and encapsulating CpG may function as an effective "artificial bacterial" biomimetic vaccine platform. This hypothesis was tested in vitro and in vivo using NP assembled from biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer, surface-modified with MPLA, and loaded with CpG and model antigen Ovalbumin (OVA). First, CpG potency, characterized by cytokine profiles, titers, and antigen-specific T cell responses, was enhanced when CpG was encapsulated in NP compared to equivalent concentrations of surface-presented CpG, highlighting the importance of biomimetic presentation of PAMPs. Second, NP synergized surface-bound MPLA with encapsulated CpG in vitro and in vivo, inducing greater pro-inflammatory, antigen-specific T helper 1 (Th1)-skewed cellular and antibody-mediated responses compared to single PAMPs or soluble PAMP combinations. Importantly, NP co-presentation of CpG and MPLA was critical for CD8(+) T cell responses, as vaccination with a mixture of NP presenting either CpG or MPLA failed to induce cellular immunity. This work demonstrates a rational methodology for combining TLR ligands in a context-dependent manner for synergistic nanoparticulate vaccines. PMID:27162077

  11. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    Science.gov (United States)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-02-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe3O4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications.

  12. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    International Nuclear Information System (INIS)

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10−3 to 3.1 × 10−3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials

  13. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  14. A new evaporation-based method for the preparation of biomimetic calcium phosphate coatings on metals

    International Nuclear Information System (INIS)

    This study reports a new method to prepare biomimetic calcium phosphate coatings on titanium, stainless steel, CoCrMo, and tantalum. The method does not require surface etching, high supersaturation, or tight control of solution conditions. Metallic samples were dipped into a supersaturated calcium phosphate solution, withdrawn, and left to dry at room temperature. Calcium phosphate crystallites formed on and completely covered the surfaces by repeating the dip-and-dry treatment. The crystallite-covered surfaces readily grew to calcium phosphate coatings when immersed in the supersaturated solution. The mechanism of the treatment was suggested to be an evaporation-induced surface crystallization process.

  15. Shape-Dependent Biomimetic Inhibition of Enzyme by Nanoparticles and Their Antibacterial Activity.

    Science.gov (United States)

    Cha, Sang-Ho; Hong, Jin; McGuffie, Matt; Yeom, Bongjun; VanEpps, J Scott; Kotov, Nicholas A

    2015-09-22

    Enzyme inhibitors are ubiquitous in all living systems, and their biological inhibitory activity is strongly dependent on their molecular shape. Here, we show that small zinc oxide nanoparticles (ZnO NPs)-pyramids, plates, and spheres-possess the ability to inhibit activity of a typical enzyme β-galactosidase (GAL) in a biomimetic fashion. Enzyme inhibition by ZnO NPs is reversible and follows classical Michaelis-Menten kinetics with parameters strongly dependent on their geometry. Diverse spectroscopic, biochemical, and computational experimental data indicate that association of GAL with specific ZnO NP geometries interferes with conformational reorganization of the enzyme necessary for its catalytic activity. The strongest inhibition was observed for ZnO nanopyramids and compares favorably to that of the best natural GAL inhibitors while being resistant to proteases. Besides the fundamental significance of this biomimetic function of anisotropic NPs, their capacity to serve as degradation-resistant enzyme inhibitors is technologically attractive and is substantiated by strong shape-specific antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), endemic for most hospitals in the world. PMID:26325486

  16. PREPARATION OF POLYALKYLCYANOACRYLATE NANOPARTICLES WITH VARIOUS MORPHOLOGIES

    Institute of Scientific and Technical Information of China (English)

    Qing-lin Xu; He-xian Li; Guo-chang Wang

    2011-01-01

    The effects of various reaction conditions on the preparation of polyalkylcyanoacrylate (PACA) nanoparticles are studied. The PACA nanoparticles with different crosslinking degrees and morphology are prepared. Addition of crosslinkers can not only adjust the particle size, but also change the morphology of PACA nanoparticles. Moreover, the loose network structure of the PACA nanoparticles with “core/shell-like” morphology is investigated by AFM and TEM in detail.

  17. Nanomedicine: Interaction of biomimetic apatite colloidal nanoparticles with human blood components.

    Science.gov (United States)

    Choimet, Maëla; Hyoung-Mi, Kim; Jae-Min, Oh; Tourrette, Audrey; Drouet, Christophe

    2016-09-01

    This contribution investigates the interaction of two types of biomimetic-apatite colloidal nanoparticles (negatively-charged 47nm, and positively-charged 190nm NPs) with blood components, namely red blood cells (RBC) and plasma proteins, with the view to inspect their hemocompatibility. The NPs, preliminarily characterized by XRD, FTIR and DLS, showed low hemolysis ratio (typically lower than 5%) illustrating the high compatibility of such NPs with respect to RBC, even at high concentration (up to 10mg/ml). The presence of glucose as water-soluble matrix for freeze-dried and re-dispersed colloids led to slightly increased hemolysis as compared to glucose-free formulations. NPs/plasma protein interaction was then followed, via non-specific protein fluorescence quenching assays, by contact with whole human blood plasma. The amount of plasma proteins in interaction with the NPs was evaluated experimentally, and the data were fitted with the Hill plot and Stern-Volmer models. In all cases, binding constants of the order of 10(1)-10(2) were found. These values, significantly lower than those reported for other types of nanoparticles or molecular interactions, illustrate the fairly inert character of these colloidal NPs with respect to plasma proteins, which is desirable for circulating injectable suspensions. Results were discussed in relation with particle surface charge and mean particle hydrodynamic diameter (HD). On the basis of these hemocompatibility data, this study significantly complements previous results relative to the development and nontoxicity of biomimetic-apatite-based colloids stabilized by non-drug biocompatible organic molecules, intended for use in nanomedicine. PMID:27137807

  18. Chitosan-mediated formation of biomimetic silica nanoparticles: an effective method for manganese peroxidase immobilization and stabilization.

    Science.gov (United States)

    Luan, Pan-Pan; Jiang, Yan-Jun; Zhang, Song-Ping; Gao, Jing; Su, Zhi-Guo; Ma, Guang-Hui; Zhang, Yu-Fei

    2014-11-01

    Our work here, for the first time, reported the use of chitosan-mediated biomimetic silica nanoparticles in enzyme immobilization. In order to make clear the relationship among silicification process, silica nanoparticle structure and immobilized enzyme activity, a mechanism of chitosan-mediated silicification using sodium silicate as the silica source was primarily evaluated. Chitosan was demonstrated effectively to promote the silicification not only in accelerating the aggregation rate of sodium silicate, but also in templating the formation of silica nanoparticles. Although the whole biomimetic silicification process contained polycondensation-aggregation-precipitation three stages, the elemental unit in precipitated silica was confirmed to be nanoparticles with 100 nm diameter regardless of the chitosan and silicate concentration used. Furthermore, the effect of enzyme on silicification process was also investigated. The introducing of manganese peroxidase (MnP) to silica precursor solution had no obvious effect on the silicification rate and nanoparticle morphology. The residual activity and embedding rate of immobilized MnP were 64.2% and 36.4% respectively under the optimum conditions. In addition, compared to native MnP, the MnP embedded in chitosan/silica nanoparticles exhibited improved stability against organic solvent and ultrasonic wave. After ultrasonic treatment for 20 min, 77% of the initial activity was remained due to the protective effect of chitosan/silica nanoparticles, while native MnP lost almost all of its original activity. PMID:24913823

  19. Preparation of PET/Ag hybrid fibers via a biomimetic surface functionalization method

    International Nuclear Information System (INIS)

    Highlights: ► PET/Ag fibers were prepared via a biomimetic surface functionalization method. ► The method is fast, simple, efficient, nontoxic, as well as controllable. ► The silver layer coated on PET-PDA fibers was continuous, uniform, and compact. ► The as-prepared PET-Ag fibers possess good electrical conductivity. ► The binding force between the silver layer and PET-PDA fiber was strong. - Abstract: A biomimetic method for the preparation of highly conductive silver-plated polyethylene terephthalate (PET) fiber was demonstrated. First, the PET fibers were functionalized with a bio-inspired polydopamine (PDA) coating, simply by being dispersed in a dopamine solution under mild stirring at room temperature. Electroless plating of silver was then carried out on the surface of the PET-PDA fiber. An aqueous solution of silver nitrate and glucose was used as silver precursor and reducing reagent, respectively. The overall procedure is fast, simple, efficient, nontoxic, as well as controllable. The PDA layer on the PET surface was characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, and contact angle measurement. The crystalline structure of the modified PET fiber was studied by X-ray diffraction (XRD). The morphology of the PET-PDA and the PET-Ag fiber was observed by scanning electron microscopy (SEM). SEM results showed that the silver layer coated on PET-PDA was continuous, uniform, and compact. The as-prepared PET-Ag fibers have good electrical conductivity, with surface resistivity as low as 0.4 mΩ cm. The binding force between the silver layer and PET-PDA fiber was strong enough that the silver layer remained compact and continuous after the PET-PDA/Ag fiber was rinsed under ultrasound for 4 h.

  20. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions

    International Nuclear Information System (INIS)

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite–collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures. (paper)

  1. Biomimetic Mineralized Hierarchical Graphene Oxide/Chitosan Scaffolds with Adsorbability for Immobilization of Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Xie, Chaoming; Lu, Xiong; Han, Lu; Xu, Jielong; Wang, Zhenming; Jiang, Lili; Wang, Kefeng; Zhang, Hongping; Ren, Fuzeng; Tang, Youhong

    2016-01-27

    Biomimetic calcium phosphate mineralized graphene oxide/chitosan (GO/CS) scaffolds with hierarchical structures were developed. First, GO/CS scaffolds with large micropores (∼300 μm) showed high mechanical strength due to the electrostatic interaction between the oxygen-containing functional groups of GO and the amine groups of CS. Second, octacalcuim phosphate (OCP) with porous structures (∼1 μm) was biomimetically mineralized on the surfaces of the GO/CS scaffolds (OCP-GO/CS). The hierarchical microporous structures of OCP-GO/CS scaffolds provide a suitable environment for cell adhesion and growth. The scaffolds have exceptional adsorbability of nanoparticles. Bone morphogenetic protein-2 (BMP-2)-encapsulated bovine serum albumin (BSA) nanoparticles and Ag nanoparticles (Ag-NPs) were adsorbed in the scaffolds for enhancement of osteoinductivity and antibacterial properties, respectively. Antibacterial tests showed that the scaffolds exhibited high antibacterial properties against both Escherichia coli and Staphylococcus epidermidis. In vitro and in vivo experiments revealed that the scaffolds have good biocompatibility, enhanced bone marrow stromal cells proliferation and differentiation, and induced bone tissue regeneration. Thus, the biomimetic OCP-GO/CS scaffolds with immobilized growth factors and antibacterial agents might be excellent candidates for bone tissue engineering. PMID:26710937

  2. WO3/Pt nanoparticles are NADPH oxidase biomimetics that mimic effector cells in vitro and in vivo

    Science.gov (United States)

    Clark, Andrea J.; Coury, Emma L.; Meilhac, Alexandra M.; Petty, Howard R.

    2016-02-01

    To provide a means of delivering an artificial immune effector cell-like attack on tumor cells, we report the tumoricidal ability of inorganic WO3/Pt nanoparticles that mimic a leukocyte’s functional abilities. These nanoparticles route electrons from organic structures and electron carriers to form hydroxyl radicals within tumor cells. During visible light exposure, WO3/Pt nanoparticles manufacture hydroxyl radicals, degrade organic compounds, use NADPH, trigger lipid peroxidation, promote lysosomal membrane disruption, promote the loss of reduced glutathione, and activate apoptosis. In a model of advanced breast cancer metastasis to the eye’s anterior chamber, we show that WO3/Pt nanoparticles prolong the survival of 4T1 tumor-bearing Balb/c mice. This new generation of inorganic photosensitizers do not photobleach, and therefore should provide an important therapeutic advance in photodynamic therapy. As biomimetic nanoparticles destroy targeted cells, they may be useful in treating ocular and other forms of cancer.

  3. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration

    Science.gov (United States)

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R.; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  4. Ultra-Porous Nanoparticle Networks: A Biomimetic Coating Morphology for Enhanced Cellular Response and Infiltration.

    Science.gov (United States)

    Nasiri, Noushin; Ceramidas, Anthony; Mukherjee, Shayanti; Panneerselvan, Anitha; Nisbet, David R; Tricoli, Antonio

    2016-01-01

    Orthopedic treatments are amongst the most common cause of surgery and are responsible for a large share of global healthcare expenditures. Engineering materials that can hasten bone integration will improve the quality of life of millions of patients per year and reduce associated medical costs. Here, we present a novel hierarchical biomimetic coating that mimics the inorganic constituent of mammalian bones with the aim of improving osseointegration of metallic implants. We exploit the thermally-driven self-organization of metastable core-shell nanoparticles during their aerosol self-assembly to rapidly fabricate robust, ultra-porous nanoparticle networks (UNN) of crystalline hydroxyapatite (HAp). Comparative analysis of the response of osteoblast cells to the ultra-porous nanostructured HAp surfaces and to the spin coated HAp surfaces revealed superior osseointegrative properties of the UNN coatings with significant cell and filopodia infiltration. This flexible synthesis approach for the engineering of UNN HAp coatings on titanium implants provides a platform technology to study the bone-implant interface for improved osseointegration and osteoconduction. PMID:27076035

  5. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions.

    Science.gov (United States)

    Bazhenov, Vasilii V; Wysokowski, Marcin; Petrenko, Iaroslav; Stawski, Dawid; Sapozhnikov, Philipp; Born, René; Stelling, Allison L; Kaiser, Sabine; Jesionowski, Teofil

    2015-05-01

    Chitin is a widespread renewable biopolymer that is extensively distributed in the natural world. The high thermal stability of chitin provides an opportunity to develop novel inorganic-organic composites under hydrothermal synthesis conditions in vitro. For the first time, in this work we prepared monolithic silica-chitin composite under extreme biomimetic conditions (80°C and pH 1.5) using three dimensional chitinous matrices isolated from the marine sponge Aplysina cauliformis. The resulting material was studied using light and fluorescence microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy. A mechanism for the silica-chitin interaction after exposure to these hydrothermal conditions is proposed and discussed. PMID:25701776

  6. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation.

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  7. Self-assembled Biodegradable Nanoparticles and Polysaccharides as Biomimetic ECM Nanostructures for the Synergistic effect of RGD and BMP-2 on Bone Formation

    Science.gov (United States)

    Wang, Zhenming; Dong, Li; Han, Lu; Wang, Kefeng; Lu, Xiong; Fang, Liming; Qu, Shuxin; Chan, Chun Wai

    2016-01-01

    Producing biomimetic extracellular matrix (ECM) is an effective approach to improve biocompatibility of medical devices. In this study, biomimetic ECM nanostructures are constructed through layer-by-layer self-assembling positively charged chitosan (Chi), negatively charged oxidized sodium alginate (OAlg), and positively charged bovine serum albumin (BSA)-based nanoparticles. The BSA-based nanoparticles in the self-assembled films not only result in porous nanostructures similar to natural ECM, but also preserve the activity and realize the sustained release of Bone morphogenetic protein-2 (BMP-2). The results of bone marrow stem cells (BMSCs) culture demonstrate that the penta-peptide glycine-arginine-glycine-aspartate-serine (GRGDS) grafted Chi/OAlg films favor cell adhesion and proliferation. GRGDS and BMP-2 in biomimetic ECM nanostructures synergistically promote BMSC functions and new bone formation. The RGD and BMP incorporated biomimetic ECM coatings could be applied on a variety of biomedical devices to improve the bioactivity and biocompatibility. PMID:27121121

  8. Studies on the biomimetic membrane interaction between liposome and realgar nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The liposome of small unilamellar vesicles (SUV) made from phosphatidylcholine-cholesterol mixtures was used as a simple model for biomimetic membranes. The studies on the interaction between the liposome and realgar nanoparticles (NPs) demonstrate that the phospholipid is one of the key targeted molecules of realgar NPs, used by surface plasmon resonance (SPR) technology, fluorescence polarization, Raman spectroscopy, nuclear magnetic resonance (NMR) and atom force microscope (AFM). It was observed that the relative viscosity (ηr) of the membrane increased and the membrane fluidity decreased as realgar NPs bound to SUV. Calculations of Raman intensity ratios detected the increase of longitudinal order parameters (Strans) and lateral order parameters (Slat) of the lipid bilayer, indicating a rise in the proportion of trans conformations of alkyl chains, and the decrease of membrane’s fluidity attributed to the interaction of realgar NPs. Results of Raman spectra and 31P NMR suggest that the polar headgroup of phospholipid is the interacted target site of realgar NPs. Moreover, time-lapse AFM images show that realgar NPs compromise the phospholipid membrane integrity to result in the formation of "pore" or "hole".

  9. Studies on the biomimetic membrane interaction between liposome and realsar nanoparticles

    Institute of Scientific and Technical Information of China (English)

    SHEN XingCan; JIN Tao; XIE Jun; LIANG Hong; YAN Yu

    2009-01-01

    Chemical Engineering,Guangxi Normal University,Guilin 541004,ChinaThe liposome of small unilamellar vesicles (SUV) made from phosphatidylcholine-cholesterol mixtures was used as a simple model for biomimetic membranes.The studies on the interaction between the liposome and realgar nanoparticles (NPs) demonstrate that the phospholipid is one of the key targeted molecules of realgar NPs,used by surface plasmon resonance (SPR) technology,fluorescence polarization,Raman spectroscopy,nuclear magnetic resonance (NMR) and atom force microscope (AFM).It was observed that the relative viscosity (ηr) of the membrane increased and the membrane fluidity decreased as realgar NPs bound to SUV.Calculations of Raman intensity ratios detected the increase of longitudinal order parameters (Strans) and lateral order parameters (Stat) of the lipid bilayer,indicating a rise in the proportion of trans conformations of alkyl chains,and the decrease of membrane's fluidity attributed to the interaction of realgar NPs.Results of Raman spectra and 31p NMR suggest that the polar headgroup of phospholipid is the interacted target site of realgar NPs.Moreover,time-lapse AFM images show that realgar NPs compromise the phospholipid membrane integrity to result in the formation of "pore" or "hole".

  10. Biomimetic approach to the formation of gold nanoparticle/silica core/shell structures and subsequent bioconjugation

    International Nuclear Information System (INIS)

    The encapsulation of individual nanoparticles has gained great attention as a method for both stabilizing nanoparticles and tailoring their surface properties. In particular, the encapsulation of nanoparticles with silica shells is advantageous for bioconjugation and applications to (nano)biotechnology. Herein we report a method for constructing gold nanoparticle (AuNP)/silica core/shell hybrid structures by biomimetic silicification of silicic acids. The procedure consists of surface-initiated, atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate (DMAEMA) from AuNPs and biomimetic polycondensation of silicic acids by using poly(DMAEMA) as a synthetic counterpart for silaffins that are found in diatoms. The resulting AuNP/silica hybrids were characterized by Fourier transform infrared spectroscopy, energy dispersive x-ray spectroscopy, UV-vis spectroscopy and transmission electron microscopy. In addition, the immobilization of biological ligands onto the hybrids was investigated for potential applications to biotechnology. As a model ligand, biotin was attached onto the AuNP/silica hybrids through substitution reaction and Michael addition reaction, and the attachment was confirmed by fluorescence microscopy after complexation with fluorescein-conjugated streptavidin

  11. Preparation of DPPE-Stabilized Gold Nanoparticles

    Science.gov (United States)

    Dungey, Keenan E.; Muller, David P.; Gunter, Tammy

    2005-01-01

    An experiment is presented that introduces students to nanotechnology through the preparation of nanoparticles and their visualization using transmission electron microscopy (TEM). The experiment familiarizes the students with nonaqueous solvents, biphasic reactions, phase-transfer agents, ligands to stabilize growing nanoparticles, and bidentate…

  12. New methods for lipid nanoparticles preparation.

    Science.gov (United States)

    Corrias, Francesco; Lai, Francesco

    2011-09-01

    Lipid nanoparticles have attracted many researchers during recent years due to the excellent tolerability and advantages compared to liposomes and polymeric nanoparticles. High pressure homogenization is the main technique used to prepare solid lipid nanoparticles (SLN) encapsulating different type of drugs, however this method involves some critical process parameters. For this reason and in order to overcome patented methods, different production techniques for lipid nanoparticles have been widely investigated in recent years (last decade). The paper reviews new methods for lipid nanoparticles preparation, and their recent applications in pharmaceutical field, especially focusing on coacervation, microemulsions templates, supercritical fluid technology, phase-inversion temperature (PIT) techniques. References of the most relevant literature and patents published by various research groups on these fields are provided. PMID:21834772

  13. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis

    International Nuclear Information System (INIS)

    Based on the principles of biomineralization, flakelike hydroxyapatite/chondroitin sulfate composites were synthesized through biomimetic method using Ca(NO3)2.4H2O and (NH4)3PO4.3H2O as reagents and chondroitin sulfate as template. The crystalline phase, microstructure, chemical composition, morphology and thermal behavior of the composites obtained in the experiment were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscope (TEM), Thermogravimetry-Differential thermal analyzer (TG-DTA) and Elemental analyzer, respectively. The interaction between the functional groups of ChS and HA was investigated by electrical conductivity and UV-vis spectrum. The results demonstrate that the as-prepared powders with small amount of carbonate have the component similar to human bone. It can be concluded that the nucleation and growth of HA crystals occurred through the chemical interactions between the HA crystals and preorganized functional groups of the ChS template. Furthermore, the concentration of ChS significantly affects the morphology of the composites. Short fiberlike crystals could be obtained at a low concentration of ChS, but flakelike crystals could be synthesized using a high concentration (≥0.5 wt%) of ChS as template

  14. A biomimetic colorimetric logic gate system based on multi-functional peptide-mediated gold nanoparticle assembly

    Science.gov (United States)

    Li, Yong; Li, Wang; He, Kai-Yu; Li, Pei; Huang, Yan; Nie, Zhou; Yao, Shou-Zhuo

    2016-04-01

    In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular activities. Building biomimetic peptide-based bio-logic systems is highly intriguing but remains relatively unexplored due to limited logic recognition elements and complex signal outputs. In this proof-of-principle work, we attempted to address these problems by utilizing multi-functional peptide probes and the peptide-mediated nanoparticle assembly system. Here, the rationally designed peptide probes function as the dual-target responsive element specifically responsive to metal ions and enzymes as well as the mediator regulating the assembly of gold nanoparticles (AuNPs). Taking advantage of Zn2+ ions and chymotrypsin as the model inputs of metal ions and enzymes, respectively, we constructed the peptide logic system computed by the multi-functional peptide probes and outputted by the readable colour change of AuNPs. In this way, the representative binary basic logic gates (AND, OR, INHIBIT, NAND, IMPLICATION) have been achieved by delicately coding the peptide sequence, demonstrating the versatility of our logic system. Additionally, we demonstrated that the three-input combinational logic gate (INHIBIT-OR) could also be successfully integrated and applied as a multi-tasking biosensor for colorimetric detection of dual targets. This nanoparticle-based peptide logic system presents a valid strategy to illustrate peptide information processing and provides a practical platform for executing peptide computing or peptide-related multiplexing sensing, implying that the controllable nanomaterial assembly is a promising and potent methodology for the advancement of biomimetic bio-logic computation.In natural biological systems, proteins exploit various functional peptide motifs to exert target response and activity switch, providing a functional and logic basis for complex cellular

  15. Selenium Nanoparticles Prepared from Reverse Microemulsion Process

    Institute of Scientific and Technical Information of China (English)

    Ming Zhu LIU; Sheng Yi ZHANG; Yu Hua SHEN; Ming Liang ZHANG

    2004-01-01

    Selenium nanoparticles were prepared by a reverse microemulsion system. Sodium selenosulfate was used as selenium source. The results showed that hydrochloric acid concentration and reaction temperature had great influence on the morphology of products. The crystalline selenium nanowires and amorphous selenium nanorods were obtained in given condition.

  16. Preparation and properties of polyurethane/silicone materials for biomimetic gecko setae

    Science.gov (United States)

    Yu, Min; Dai, Zhendong; Yang, Shengrong

    2014-03-01

    In the biomimetic design of gecko setae, it is necessary to select materials with appropriate adhesive properties and to understand the effects of materials on normal and tangential adhesive forces. To meet the adhesion performance requirements of the biomimetic gecko robot foot, in this study, performance-improved polyurethane/silicone polymer materials were designed and synthesized, and the normal adhesion and tangential adhesion were measured using an adhesive friction comprehensive tester. The results show that normal adhesion increased with an increase in load when the normal load is small; when the normal load exceeds a critical value, the increase in normal adhesion slows and adhesion saturates. Under the condition of an adhesive state, the tangential adhesive force was larger for a smaller negative normal force, and a relatively large tangential adhesive force could be generated with a very small negative normal force. The elastic modulus of the synthetic polyurethane/silicone material varied with varying ratios of components, and it increased with increasing urethane content. Polyurethane/silicone material with about 30% polyurethane provided greater adhesion than other materials with different contents of polyurethane. The results provide a basis for the choice of biomimetic materials of the biomimetic gecko robot foot.

  17. DNA-Templated Preparation of Gold Nanoparticles

    OpenAIRE

    Byung Wook Jo; Jeong Sun Sohn; Jung Il Jin; Young Wan Kwon

    2011-01-01

    DNA-mediated gold nanoparticles were prepared by chemical reduction of DNA-Au(III) complex. The DNA-Au(III) was first formed by reacting DNA with HAuCl4 at a pH of 5.6. The complex in solution was reacted with hydrazine reducing Au(III) to Au. The reduced Au formed nanodimensional aggregates. The particle distributions were obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). This method resulted in a rather uniform dispersion of Au nanoparticles of near-...

  18. Chitin nanofibrils biomimetic products: nanoparticles and nanocomposite chitosan films in health care

    Czech Academy of Sciences Publication Activity Database

    Morganti, P.; Tishchenko, Galina; Palombo, M.; Kelnar, Ivan; Brožová, Libuše; Špírková, Milena; Pavlova, Ewa; Kobera, Libor; Carezzi, F.

    Boca Raton : CRC Press Taylor & Francis Group, 2013 - (Kim, S.), s. 681-716 ISBN 978-1-4665-0564-3 R&D Projects: GA ČR GA310/09/1407 Institutional support: RVO:61389013 Keywords : chitin nanofibrils * nanocomposite chitosan films * biomimetic products Subject RIV: EE - Microbiology, Virology http://www.crcnetbase.com/doi/abs/10.1201/b14723-39

  19. Chitosan-based biomimetic scaffolds and methods for preparing the same

    OpenAIRE

    Filée, Patrick; Freichels, Astrid; Jérôme, Christine; Aqil, Abdelhafid; Colige, Alain; Tchemtchoua Tateu, Victor

    2010-01-01

    The invention concerns chitosan-based biomimetic scaffolds and methods for modulating their intrinsic properties such as rigidity, elasticity, resistance to mechanical stress, porosity, biodegradation and absorbance of exudates. Therefore, the present invention relates to a layered chitosan-based scaffold wherein said layered scaffold comprises at least two fused layers, wherein at least one layer consists of a chitosan nanofiber scaffold membrane and at least one of the other layers of a por...

  20. Janus nanoparticles: preparation, characterization, and applications.

    Science.gov (United States)

    Song, Yang; Chen, Shaowei

    2014-02-01

    In chemical functionalization of colloidal particles, the functional moieties are generally distributed rather homogeneously on the particle surface. Recently, a variety of synthetic protocols have been developed in which particle functionalization may be carried out in a spatially controlled fashion, leading to the production of structurally asymmetrical particles. Janus particles represent the first example in which the two hemispheres exhibit distinctly different chemical and physical properties, which is analogous to the dual-faced Roman god, Janus. Whereas a variety of methods have been reported for the preparation of (sub)micron-sized polymeric Janus particles, it has remained challenging for the synthesis and (unambiguous) structural characterization of much smaller nanometer-sized Janus particles. Herein, several leading methods for the preparation of nanometer-sized Janus particles are discussed and the important properties and applications of these Janus nanoparticles in electrochemistry, sensing, and catalysis are highlighted. Some perspectives on research into functional patchy nanoparticles are also given. PMID:24376180

  1. Preparation and in vitro evaluation of a biomimetic nanoscale calcium phosphate coating on a polyethylene terephthalate artificial ligament

    Science.gov (United States)

    CHEN, CHEN; LI, HONG; GUO, CHANGAN; CHEN, SHIYI

    2016-01-01

    In the present study, a polyethylene terephthalate (PET) artificial ligament was coated with an organic layer-by-layer (LBL) self-assembled template of chitosan and hyaluronic acid, and then incubated in a calcium phosphate (CaP) solution to prepare a biomimetic CaP coating. The surface characterization of the ligament was examined using scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The effects of CaP coatings on the osteogenic activity of MC3T3 E1 mouse osteoblastic cells were investigated by evaluating their attachment, proliferation and the relative expression levels of alkaline phosphatase. The results revealed that the organic LBL template on the PET artificial ligament was effective for CaP apatite formation. Following incubation for 72 h, numerous nanoscale CaP apatites were deposited on the PET ligament fibers. In addition, the results of the in vitro culture of MC3T3-E1 mouse osteoblastic cells demonstrated that the CaP coating had a good biocompatibility for cell proliferation and adhesion, and the CaP-coated group had a significantly higher alkaline phosphatase activity compared with the uncoated control group after seven days of cell culture. Collectively, these results demonstrated that the biomimetic nanoscale CaP-coated PET artificial ligaments have potential in bone-tissue engineering. PMID:27347053

  2. Preparation and properties of buckypaper-gold nanoparticle composites

    OpenAIRE

    GOUNKO, IOURI; BYRNE, MICHELE THERESE; HANLEY, CORMAC

    2010-01-01

    PUBLISHED Highly conductive buckypaper-gold nanoparticles composites have been prepared by the in situ electroless deposition of gold nanoparticles during the filtration that resulted in increases in conductivities of up to 684% at very low gold content.

  3. Preparation of Hydroxyapatite Coating on the Surface of Hollow Glass Microspheres Using a Biomimetic Process

    Science.gov (United States)

    Jiao, Yan; Yang, Hai-Ying; Zhang, Ying-Long; Duan, Rong-Shuai; Lu, Yu-Peng

    2014-07-01

    Microcarrier culture technology has attached more attention, especially for scale-up cell culture in the filed of tissue engineering. The present work introduces a microcarrier with hydroxyapatite (HA) on hollow glass microsphere. Hollow glass microspheres with a main composition of SiO2 (55-65 wt.%), Al2O3 (26-35 wt.%), were pretreated by NaOH, on which hydroxyapatite coating was deposited by biomimetic process. The phase composition and morphology were characterized by X-ray diffractometer (XRD), Fourier transform infrared (FTIR) spectroscope, field emission scanning electron microscope (FE-SEM) and high resolution transmission electron microscope (HRTEM), respectively. The results showed that after immersion for 15 days in 1.5 SBF, the uniform and dense HA coating was formed and it has porous surface and low crystallinity.

  4. POROUS STRUCTURE OF CARBON NANOPARTICLES PREPARED BY CHLORINATION OF NANOPARTICLES OF SILICON CARBID

    OpenAIRE

    Sokolov, V. V.; PETROV N.A.; TOMKOVICH M.V.; GUSAROV V. V.

    2014-01-01

    Specific features of the structure of nanoporous carbon, prepared by chlorinating silicon carbide nanoparticles followed by treatment thereof by hydrogenation have been studied. A considerable number of microscopic pores in carbon nanoparticles have been shown.

  5. Preparation and application of various nanoparticles in biology and medicine

    Directory of Open Access Journals (Sweden)

    Vardan Gasparyan

    2013-02-01

    Full Text Available The present paper considers prospects for application of various nanoparticles in biology and medicine. Here are presented data on preparation of gold and silver nanoparticles, and effects of shape of these nanoparticles on their optical properties. Application of these nanoparticles in diagnostics, for drug delivery and therapy, and preparation of magnetic nanoparticles from iron and cobalt salts are also discussed. Application of these nanoparticles as magnetic resonance imaging (MRI contrast agents and as vehicles for drug delivery, and preparation of quantum dots and their application as prospective nanoparticles for multiplex analysis and for visualization of cellular processes will be tackled. Finally, prospects for new types of nanocomposites (metallic nano-shells will be not overlooked.

  6. Preparation of Copper Nanoparticles in Liquid by Matrix Sputtering Process

    International Nuclear Information System (INIS)

    As a new method for nanoparticles preparation, magnetron sputtering of metal atoms and clusters into organic liquids has been intensively used recently. In this study, metallic copper nanoparticles dispersed in pentaerythritol ethoxylate were prepared by this process. Their size control was achieved by controlling the sputtering current. Specific absorption at ca. 580 nm was detected by UV-Vis measurement which is attributed to the specific plasmon absorption of metallic copper. TEM observation also revealed the formation of metallic nanoparticles.

  7. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization

    DEFF Research Database (Denmark)

    Zhao, Yang; Qiu, Changquan; Li, Xuesong;

    2012-01-01

    Aquaporins are water channel proteins with excellent water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... or with inactive (mutant) aquaporins, were also similarly prepared. The separation performance of these membranes was evaluated by cross-flow reverse osmosis (RO) tests. Compared to the controls, the active ABM achieved significantly higher water permeability (∼4L/m2hbar) with comparable NaCl rejection (∼97......%) at an applied pressure of 5bar. Its permeability was ∼40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR), which clearly demonstrates the great potential of the TFC ABM for desalination applications....

  8. Preparation of nickel nanoparticles in emulsion

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-xian; FU Wen-jie; AN Xue-qin

    2008-01-01

    The nickel nanoparticles with different sizes and spherical shape were prepared by the reduction of nickel sulfate with sodium borohydride in the water-in-oil emulsions of water/SDBS(sodium dodecylbenzene sulfonate)/n-pentanol/n-heptane. The effects of aging time, molar ratio of water to SDBS(R) and the concentration of nickel sulfate on the size of particles were studied. The samples were characterized by transmission electron microscopy(TEM) and inductively coupled plasma spectrometry(ICP). The results show that the average particle size changes from 20 to 40 nm by adjusting aging time (15-30 min) and R (9-11.5). The concentration of nickel sulfate of 1.0 mol/L is the favorite condition.

  9. Incorporation of proteins and enzymes at different stages of the preparation of calcium phosphate coatings on a degradable substrate by a biomimetic methodology

    OpenAIRE

    Azevedo, Helena S.; Leonor, I. B.; C.M. Alves; Reis, R.L.

    2005-01-01

    In this work, the possibility of incorporating proteins into calcium phosphate (Ca-P) coatings, prepared on the surface of starch polymeric biomaterials by means of a biomimetic route, was investigated. The morphology, chemical composition and crystallinity of Ca-P coatings was assessed and related to the incorporation of the studied biomolecules. For that, bovine serum albumin (BSA) and aamylase were added in concentrations of 1 mg/ml to simulated body fluid (SBF) solutions, being both ad...

  10. Biomimetic hydroxyapatite nanocrystals in composites with C60 and Au-DNA nanoparticles: IR-spectral study

    International Nuclear Information System (INIS)

    Due to growing interest towards development so-called 'smart biomaterials'-mainly composites with targeted biological action consisting of inorganic nanoparticles and organic compounds-the primary tasks in this field include synthesis of proper nanoparticles and studying chemical interaction between them and organic constituents. Exactly such kind of research is the object of this study - synthesis of composites in the system HAP:DNA:Au:C60:H2O including components of this system-composites HAP:DNA:Au:H2O, DNA:Au:H2O, HAP:C60:H2O, HAP:BSF, C60:H2O and studying chemical interaction in this system by comparison of IR spectra. All materials in this system are typical ingredients of smart biomaterials. The HAP nanocrystals were synthesized by chemical synthesis in a biomimetic route, all other materials were acquired on the market. We chose the simplest method of the composite synthesis-by mixing at room temperature. Comparative study of IR spectra of these composites revealed the considerable distortion, shifting or full disappearance of some absorption bands of the components of the composites. The largest alterations were found in the range of deformation vibrations and they are different for different modes of vibrations. In the range of valence vibrations the components' absorption bands are mostly preserved. These features are the ample evidence of chemical interaction between these components. Identification of the absorption bands that were changed most of all indicates the chemical bonds which directly participate in the chemical interaction. For example loss of the DNA absorption band at wave number 1704 cm-1 can serve as indication of new chemical bond with this part of the DNA molecule, namely C=O bond in thymine. The spectra alteration and their dependence vs. components concentration in the system HAP-DNA reveal that the HAP nanoparticles supposably are localized due to interaction with DNA molecules and that results in significant alteration of the

  11. Biosensors based on inorganic nanoparticles with biomimetic properties: Biomedical applications and in vivo cytotoxicity measurements

    Science.gov (United States)

    Ispas, Cristina R.

    The rapid progress of nanotechnology and advanced nanomaterials production offer significant opportunities for designing powerful biosensing devices with enhanced performances. This thesis introduces ceria (CeO 2) nanoparticles and its congeners as a new class of materials with huge potential in bioanalytical and biosensing applications. Unique redox, catalytic and oxygen storage/release properties of ceria nanoparticles, originating from their dual oxidation state are used to design biomedical sensors with high sensitivity and low oxygen dependency. This thesis describes a new approach for fabrication of implantable microbiosensors designed for monitoring neurological activity in physiological conditions. Understanding the mechanisms involved in neurological signaling and functioning is of great physiological importance. In this respect, the development of effective methods that allow accurate detection and quantification of biological analytes (i.e. L-glutamate and glucose) associated with neurological processes is of paramount importance. The performance of most analytical techniques currently used to monitor L-glutamate and glucose is suboptimal and only a limited number of approaches address the problem of operation in oxygen-restricted conditions, such as ischemic brain injury. Over the past couple of years, enzyme based biosensors have been used to investigate processes related to L-glutamate release/uptake and the glucose cycle within the brain. However, most of these sensors, based on oxidoreductase enzymes, do not work in conditions of limited oxygen availability. This thesis presents the development of a novel sensing technology for the detection of L-glutamate and glucose in conditions of oxygen deprivation. This technology provides real-time assessment of the concentrations of these analytes with high sensitivity, wide linear range, and low oxygen dependence. The fabrication, characterization and optimization of enzyme microbiosensors are discussed

  12. Preparations, Characterizations and Applications of Chitosan-based Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this paper we have reviewed the methods of preparation of chitosan-based nanoparticles and their pharmaceutical applications. There are five methods of their preparations: emulsion cross-linking, emulsion-droplet coalescence, ionic gelation, reverse micellar method and chemically modified chitosan method. Chitosan nanoparticles are used as carriers for low molecular weight drug, vaccines and DNA. Releasing characteristics, biodistribution and applications are also summarized.

  13. Preparation of drug nanoparticles by emulsion evaporation method

    Science.gov (United States)

    Hoa, Le Thi Mai; Chi, Nguyen Tai; Triet, Nguyen Minh; Thanh Nhan, Le Ngoc; Mau Chien, Dang

    2009-09-01

    Polymeric drug nanoparticles were prepared by emulsion solvent evaporation method. In this study, prepared the polymeric drug nanoparticles consist of ketoprofen and Eudragit E 100. The morphology structure was investigated by scanning electron microscopy (SEM). The interactions between the drug and polymer were investigated by Fourier transform infrared spectroscopy (FTIR). The size distribution was measured by means of Dynamic Light Scattering. The nanoparticles have an average size of about 150 nm. The incorporation ability of drugs in the polymeric nanoparticles depended on the integration between polymer and drug as well as the glass transition temperature of the polymer.

  14. Preparation of drug nanoparticles by emulsion evaporation method

    International Nuclear Information System (INIS)

    Polymeric drug nanoparticles were prepared by emulsion solvent evaporation method. In this study, prepared the polymeric drug nanoparticles consist of ketoprofen and Eudragit E 100. The morphology structure was investigated by scanning electron microscopy (SEM). The interactions between the drug and polymer were investigated by Fourier transform infrared spectroscopy (FTIR). The size distribution was measured by means of Dynamic Light Scattering. The nanoparticles have an average size of about 150 nm. The incorporation ability of drugs in the polymeric nanoparticles depended on the integration between polymer and drug as well as the glass transition temperature of the polymer.

  15. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa

    Science.gov (United States)

    Anjum, Sumaira; Abbasi, Bilal Haider

    2016-01-01

    In vitro-derived cultures of plants offer a great potential for rapid biosynthesis of chemical-free antimicrobial silver nanoparticles (AgNPs) by enhancing their phytochemical reducing potential. Here, we developed an efficient protocol for in vitro micropropagation of a high-value endangered medicinal plant species, Phlomis bracteosa, in order to explore its biogenic potential in biomimetic synthesis of antimicrobial AgNPs. Murashige and Skoog medium supplemented with 2.0 mg/L thidiazuron was found to be more efficient in inducing optimum in vitro shoot regeneration (78%±4.09%), and 2.0 mg/L indole-3-butyric acid was used for maximum root induction (86%±4.457%). Antimicrobial AgNPs were successfully synthesized by using aqueous extract (rich in total phenolics and flavonoids content) of in vitro derived plantlets of P. bracteosa. Ultraviolet–visible spectroscopy of synthesized AgNPs showed characteristic surface plasmon band in the range of 420–429 nm. The crystallinity, size, and shape of the AgNPs were characterized by X-ray diffraction and scanning electron microscopy. Face-centered cubic AgNPs of almost uniform spherical size (22.41 nm) were synthesized within a short time (1 hour) at room temperature. Fourier-transform infrared spectroscopy revealed that the polyphenols were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further endorsed the presence of elemental silver in synthesized AgNPs. These biosynthesized AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens. The present work highlighted the potent role of in vitro-derived plantlets of P. bracteosa for feasible biosynthesis of antimicrobial AgNPs, which can be used as nanomedicines in many biomedical applications.

  16. Preparation of Gold Nanoparticles Protected with Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    Xu Ping SUN; Zhe Ling ZHANG; Bai Lin ZHANG; Xian Dui DONG; Shao Jun DONG; Er Kang WANG

    2003-01-01

    Gold nanoparticles were synthesized through the reduction of tetrachlorauric acid (HAuCl4) by NaBH4, with polyethyleneimine(PEI) as stabilizer. The nanoparticles were characterized by UV-vis spectroscopy and atomic force microscopy(AFM).

  17. Photochemical preparation and application research of Au nanoparticles

    Institute of Scientific and Technical Information of China (English)

    DONG; Shou-an; SUN; Jia-lin

    2005-01-01

    Gold nanoparticles protected by organic small molecular compounds or macromolecule have attracted considerable attention and their preparation is one of hotspots in the nano-chemical material field due to their ongoing and potential applications in optics, electronics, catalysts and biosensors. In recent years there are many liquid phase chemistry methods to prepare monodispersed gold particles. Among them, the photochemical method is quite attractive because of its some important advantages for size-controlled synthesis of gold nanoparticles. Therefore, in this paper the recert progress of the photochemical preparing Au nanoparticle materials was briefly introduced and mainly emphasized authors' own works of this area.

  18. Magnetic Properties of FePd Nanoparticles Prepared by Sonoelectrodeposition

    Science.gov (United States)

    Luong, Nguyen Hoang; Trung, Truong Thanh; Loan, Tran Phuong; Kien, Luu Manh; Hong, Tran Thi; Nam, Nguyen Hoang

    2016-08-01

    Fe60Pd40 nanoparticles were prepared by sonoelectrodeposition. After annealing at various temperatures from 450°C to 700°C, the nanoparticles were found to have an ordered L10 structure and to show hard magnetic properties. Among the samples investigated, the nanoparticles annealed at 600°C exhibited the highest coercivity which amounts to 2.31 kOe at 2 K and 1.83 kOe at 300 K.

  19. Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial

    Science.gov (United States)

    Ebrahiminezhad, Alireza; Bagheri, Mahboobeh; Taghizadeh, Seyedeh-Masoumeh; Berenjian, Aydin; Ghasemi, Younes

    2016-03-01

    Secreted carbohydrates by Chlorella vulgaris cells were used for reducing and capping Silver nanoparticles (AgNPs). Oxygen-bearing functional groups on the carbohydrates found to be the main biochemical groups responsible for anchoring the metal nanoparticles. Transmission electron microscopy (TEM) micrographs showed that isotropic small particles with mean particles size of 7 nm were synthesized. Comparing the TEM results with DLS analysis revealed that the thickness of carbohydrate capping was about 2 nm. A zeta potential of +26 mV made the particles colloidally stable and desirable for anticancer and antimicrobial applications. The MIC against gram positive (Staphylococcus aureus) and gram negative bacteria (Escherichia coli) were determined to be 37.5 μg ml-1 and 9.4 μg ml-1, respectively. Treatment of Hep-G2 cells with 4.7 μg ml-1 AgNPs for 24 h reduced the cell viability to 61%. This concentration was also reduced the cell viability to 37% after 48 h of exposure.

  20. Preparation and crystallization control of nanoparticle hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    Lianfeng Guo; Wenguang Zhang; Chengtao Wang

    2004-01-01

    Nanoparticle hydroxyapatite was prepared by a wet chemical precipitation method. The effects of different synthesis conditions, I.e. Contents of reagents (0.2, 0.5 and 0.8 mol/L), reaction temperatures (20, 37, 55 and 75℃) and reaction time (0-24 h),were studied based on crystallization process analysis and the effects of washing methods (with water or alcohol) were also studied.Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), electron diffraction (ED) and inductively coupled plasma spectroscopy (ICP) were used to characterize the powders. Chemical analysis shows that the purity of the precipitated hydroxyapatite largely depends on reaction time. X-ray diffraction and TEM micrographs results show that reaction temperature is a key factor affecting crystallinity, morphology and particle size. Degree of supersaturation and stirring also affects the crystallization. Particles are in a shape of short rod and have a size of 20-40 nm in length at 20℃ and 37℃,but acicular morphology and a size of 150-170 nm in length at 75C. Particles are monocrystalline at 20℃ and 37℃, and are polycrystalline at 55℃ and 75℃. The results show that stoichiometry hydroxyapatite with controlled particle size, morphology and crystallinity can be obtained by carefully controlling the reaction conditions.

  1. Preparation of nanoparticles by using a vibrating nozzle device

    OpenAIRE

    Zvonar, Alenka; Jurkovič, Polona; Kerč, Janez; Ahlin Grabnar, Pegi; Kristl, Julijana

    2015-01-01

    A method for preparing nanoparticles is provided, which comprises the steps ofdissolving a polymer and, optionally, at least one additional ingredient, inan organic solvent, passing the solution through a vibrating nozzle and dropping the solution through the electrical field into an aqueous solution, which is stirred, such that nanoparticles are formed by the rapid diffusion ofthe solvent.

  2. Radiation chemical route for preparation of metal nanoparticles

    International Nuclear Information System (INIS)

    Nanoparticles show properties that are neither seen in the bulk or at atomic level. The unusual properties are governed by quantum size effect. Due to this various methodologies have been endeavored to control the size of the particles. In the present work we show the use of two complimentary techniques (radiation and photo) to synthesize and control the size of the metal particles. In-situ synthesis of fine silver, thallium and cadmium particles has been carried out by gamma-irradiation and electron pulse irradiation at room temperature in the pre-organized gel of polyacrylamide or cyclodextrin cavity. The role of generation of nuclei in high concentrations in stabilization of metal nanoparticles in hydrophobic cavity is shown. Similarly the importance of entrapment of metal ions in the polymer matrix during its formation is highlighted. The work is further extended to exploit the microemulsion droplets for stabilization of Cd nanoparticles. Utility of pulse radiolysis in probing the mechanism of the formation of metal nanoparticles is also shown. Ultrafast laser pulses were employed to control the morphology of the pre-prepared Pt nanoparticles. The changes in reduction of shape and size are considered to occur through melting and vaporization of the nanoparticles. Pt nanoparticles were coated on the inner walls of the tubular pyrex reactor and tested for their catalytic activity for oxidation of CO. It was observed that Pt nanoparticles prepared in the presence of a stabilizer (gelatin) showed a higher tendency to adhere to the inner walls of the pyrex reactor as compared to that prepared in the presence of silica nanoparticles. The catalyst was found to be active at ≥150 degree C giving CO2. Chemically reduced Pt nanoparticles stabilized on silica nanoparticles gave ∼7% CO conversion per hr. However, radiolytically prepared Pt nanoaprticles stabilized by gelatin gave ∼10% conversion per hr. The data indicates that catalytic oxidation of CO takes place by

  3. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  4. Preparation and Storage of Silver Nanoparticles in Aqueons Polymers

    Institute of Scientific and Technical Information of China (English)

    SONG,Weihong; ZHANG,Xiaoxiao; YIN,Hongzong; SA,Panpan; LIU,Xiaoyan

    2009-01-01

    Silver nanoparticles were obtained by a chemical reduction method using aqueous polymers as dispersant and characterized by UV-Vis spectroscopy,transmission electron microscopy (TEM) and light-scattering spectroscopy.Solid polymer films containing the silver nanoparticles were also prepared after evaporating the solvent,and then dried with existing polymer.The stability of the silver nanoparticles was compared between primary fresh silver nanoparticle solution and redissolved solid polymer films by UV-Vis spectroscopy.The particle size ranged from 5 to l0 rim,and no obvious differences were found.Therefore,preparing solid nano-Ag/polymer was a novel and useful method in storage of silver nanoparticles.

  5. Preparation and Nonlinearity properties of Pd Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pd nanoparticles less than 8 nm were photoinduced by a near-IR femtosecond laser. The sign of the refraction nonlinearity is negative for the Pd nanoparticles with TiO2, while it is positive for those without TiO2.

  6. Zero-valent iron nanoparticles preparation

    International Nuclear Information System (INIS)

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH3)3)2]2] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  7. Zero-valent iron nanoparticles preparation

    Energy Technology Data Exchange (ETDEWEB)

    Oropeza, S. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Corea, M., E-mail: mcoreat@yahoo.com.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Gómez-Yáñez, C. [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico); Cruz-Rivera, J.J. [Universidad Autónoma de San Luis Potosí, Instituto de Metalurgia, Sierra Leona 550, San Luis Potosí, C.P. 78210 (Mexico); Navarro-Clemente, M.E., E-mail: mnavarroc@ipn.mx [Instituto Politécnico Nacional, ESIQIE, UPALM, Edificio Z-6, Primer Piso, C.P. 07738, Col. San Pedro Zacatenco, México D.F. (Mexico)

    2012-06-15

    Graphical abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. The synthesized nanoparticles were spherical and had diameters less than 5 nm. Highlights: ► Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}]. ► The conditions of reaction were at room temperature and a pressure of 3 atm. ► The synthesized nanoparticles were spherical and had diameters less than 5 nm. -- Abstract: Zero-valent iron nanoparticles were synthesized by hydrogenating [Fe[N(Si(CH{sub 3}){sub 3}){sub 2}]{sub 2}] at room temperature and a pressure of 3 atm. To monitor the reaction, a stainless steel pressure reactor lined with PTFE and mechanically stirred was designed. This design allowed the extraction of samples at different times, minimizing the perturbation in the system. In this way, the shape and the diameter of the nanoparticles produced during the reaction were also monitored. The results showed the production of zero-valent iron nanoparticles that were approximately 5 nm in diameter arranged in agglomerates. The agglomerates grew to 900 nm when the reaction time increased up to 12 h; however, the diameter of the individual nanoparticles remained almost the same. During the reaction, some byproducts constituted by amino species acted as surfactants; therefore, no other surfactants were necessary.

  8. Preparation of nanoparticles in reverse microemulsions

    Science.gov (United States)

    Tovstun, Sergey A.; Razumov, Vladimir F.

    2011-10-01

    Experimental data and results of theoretical studies dealing with the synthesis of nanoparticles by the condensation of products of chemical reactions in reverse microemulsions are generalized. Attention is focused on the analysis of mechanisms of nanoparticle nucleation and growth. The bibliography includes 252 references.

  9. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  10. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m2/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m2/g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl2 and NaBH4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl2, however, NaBH4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m2/g for 7 nm and 269 m2/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H+ efflux of the Candida species than 15 nm sized gold nanoparticles.

  11. Antimicrobial activity and cytocompatibility of silver nanoparticles coated catheters via a biomimetic surface functionalization strategy

    Directory of Open Access Journals (Sweden)

    Wu K

    2015-12-01

    Full Text Available Ke Wu,1 Yun Yang,2,3 Yanmei Zhang,2,3 Jiexi Deng,1 Changjian Lin2,31Department of Cardiology, The Affiliated Dongnan Hospital of Xiamen University, Zhangzhou, 2Department of Medical Materials, Beijing Medical Implant Engineering Research Center, Beijing Naton Technology Group, Beijing, 3State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, People’s Republic of ChinaAbstract: Catheter-related bloodstream infections are a significant problem in the clinic and may result in a serious infection. Here, we developed a facile and green procedure for buildup of silver nanoparticles (AgNPs on the central venous catheters (CVCs surface. Inspired by mussel adhesive proteins, dopamine was used to form a thin polydopamine layer and induce AgNPs formation without additional reductants or stabilizers. The chemical and physicochemical properties of AgNPs coated CVCs were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, and water contact angle. The Staphylococcus aureus culture experiment was used to study the antibacterial properties. The cytocompatibility was assessed by water soluble tetrazolium salts (WST-1 assay, fluorescence staining, and scanning electron microscopy analysis. The results indicated that the CVCs surface was successfully coated with compact AgNPs. AgNPs were significantly well separated and spherical with a size of 30–50 nm. The density of AgNPs could be modulated by the concentration of silver nitrate solution. The antibacterial activity was dependent on the AgNPs dose. The high dose of AgNPs showed excellent antibacterial activity while associated with increased cytotoxicity. The appropriate density of AgNPs coated CVCs could exhibit improved biocompatibility and maintained evident sterilization effect. It is promising to design mussel-inspired silver releasing CVCs with both

  12. Nacre biomimetic design—A possible approach to prepare low infrared emissivity composite coatings

    International Nuclear Information System (INIS)

    Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic–inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Highlights: ► Nacre-like composite coatings with low infrared emissivity were prepared. ► Infrared emissivity of PU/flaky bronze composite coatings can be as low as 0.206. ► One-dimensional photonic structure is the cause for low emissivity of the coatings.

  13. Nacre biomimetic design-A possible approach to prepare low infrared emissivity composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weigang, E-mail: abczwg15@163.com; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang

    2013-01-01

    Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic-inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Highlights: Black-Right-Pointing-Pointer Nacre-like composite coatings with low infrared emissivity were prepared. Black-Right-Pointing-Pointer Infrared emissivity of PU/flaky bronze composite coatings can be as low as 0.206. Black-Right-Pointing-Pointer One-dimensional photonic structure is the cause for low emissivity of the coatings.

  14. BIOMIMETIC SURFACE PREPARATION OF INERT POLYMER FILMS VIA GRAFTING LONG MONOALKYL CHAIN PHOSPHATIDYLCHOLINE

    Institute of Scientific and Technical Information of China (English)

    Peng-jun Wan; Dong-sheng Tan; Zheng-sheng Li; Xiao-qing Zhang; Jie-hua Li; Hong Tan

    2012-01-01

    To explore construction of novel mimicking biomembrane on biomaterials surfaces,a new polymerizable phosphatidylcholine containing a long monoalkyl chain ended with acryl group (AASOPC) was designed and synthesized,which was easily derived from the terminal amino group of 9-(2-amino-ethylcarbamoyl)-nonyl-l-phosphatidyl-choline (ASOPC) reacting with acryloyl chloride.The obtained AASOPC was grafted on poly(ethylene terephthalate) (PET) via surface-initiated atom-transfer radical polymerization (SI-ATRP) to form mimicking biomembrane.These modified surface structures of PET were investigated using water contact angle (WAC),X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).The results indicated that the new mimicking phosphatidylcholine biomembrane could be prepared on inert polymer surfaces by using the acryloyl phosphatidylcholine (AASOPC) via surface-initiated atom transfer radical polymerization (SI-ATRP).

  15. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 μg/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  16. Preparation and bactericide activity of gallic acid stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Alvarez, S. A. [UASLP, Doctorado Institucional en Ingenieria y Ciencia de Materiales (Mexico); Martinez-Castanon, G. A., E-mail: mtzcastanon@fciencias.uaslp.m [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Nino-Martinez, N. [UASLP, Facultad de Ciencias (Mexico); Reyes-Macias, J. F.; Patino-Marin, N.; Loyola-Rodriguez, J. P. [UASLP, Maestria en Ciencias Odontologicas, Facultad de Estomatologia (Mexico); Ruiz, Facundo [UASLP, Facultad de Ciencias (Mexico)

    2010-10-15

    In this work, gold nanoparticles with three different sizes (13.7, 39.4, and 76.7 nm) were prepared using a simple aqueous method with gallic acid as the reducing and stabilizing agent, the different sizes were obtained varying some experimental parameters as the pH of the reaction and the amount of the gallic acid. The prepared nanoparticles were characterized using X-ray diffraction, transmission electron microscopy, dynamic light scattering, and UV-Vis spectroscopy. Samples were identified as elemental gold and present spherical morphology, a narrow size distribution and good stabilization according to TEM and DLS results. The antibacterial activity of this gallic acid stabilized gold nanoparticles against S. mutans (the etiologic agent of dental caries) was assessed using a microdilution method obtaining a minimum inhibitory concentration of 12.31, 12.31, and 49.25 {mu}g/mL for 13.7, 39.4, and 76.7 nm gold nanoparticles, respectively. The antibacterial assay showed that gold nanoparticles prepared in this work present a bactericide activity by a synergistic action with gallic acid. The MIC found for this nanoparticles are much lower than those reported for mixtures of gold nanoparticles and antibiotics.

  17. Characterization and Preparation of Bimetallic Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Bing; Joe; Hwang; Ching; Hsiang; Chen; Loka; Subramanyam; Sarma; Din-gao; Liu; Jyh; Fu; Lee

    2007-01-01

    1 Results Bimetallic particles in the nanometer size range are of substantial interest due to their vast applications in catalysis[1].The synthesis of bimetallic nanoparticles with definite size with a well-control over their nanostructure remains a challenging problem.Thus there exists a great demand for both synthesis and atomic level characterization of nanostructure of bimetallic nanoparticles (NPs).With the recent advent of high-intensity tunable sources of X-rays,now available at synchrotron radia...

  18. Nacre biomimetic design--a possible approach to prepare low infrared emissivity composite coatings.

    Science.gov (United States)

    Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang

    2013-01-01

    Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic-inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. PMID:25428049

  19. Preparation of nanoparticles with an environment-friendly approach

    Institute of Scientific and Technical Information of China (English)

    YAO Kefu; PENG Zhen; FAN Xiaolin

    2009-01-01

    Developing various approaches for preparing high performance materials has long been topics and tasks both for scientists and for engineers.Despite that many methods have been developed for preparing nanomaterials,developing simple and environment-friendly ways for preparing nanomaterials is very attractive.A simple approach of synthesizing Fe3O4 nanoparticles by arc-discharge submerging in water was reported.The results showed that by this method Fe3O4 nanoparticles can be synthesized in large scale.The as-prepared Fe3O4 nanoparticles exhibit uniform spherical shape and their diameters varied with arc-discharging parameters.The experimental results showed that the size of the synthesized Fe3O4 nanoparticles can be controlled through adjusting the processing parameters.Since no vacuum system has been used,the synthesizing process is greatly simplified.In addition,only cheap deionized water and industrial iron bar are used and no pollution or harmful by-products are found in the synthesis process.It indicated that the present approach is a simple,low-cost and environment-friendly for preparing nanoparticles.

  20. Preparation and characterization of biopolymeric nanoparticles used in drug delivery.

    Science.gov (United States)

    Ramachandran, Radhika; Shanmughavel, Piramanayagam

    2010-02-01

    Nanotechnology plays an important role in advanced biology and medicine research particularly in the development of potential site-specific delivery systems with lower drug toxicity and greater efficiency. These include microcapsules, liposomes, polymeric microspheres, microemulsions, polymer micelles, hydrogels, solid nanoparticles etc. In the present study, preparation and characterization of biopolymeric gelatin nanoparticles for encapsulating the antimicrobial drug sulfadiazine and its in vivo drug release in phosphate buffer saline (PBS) have been investigated. The nanoparticles prepared by second desolvation process varied in a size range 200 nm and 600 nm with a drug entrapment efficiency of 50% characterized by atomic force microscopy and dynamic light scattering. The drug release from the nanoparticles occurred up to 30% in a controlled manner. PMID:21086757

  1. Preparation and Characterization of Biomimetic Hydroxyapatite-Resorbable Polymer Composites for Hard Tissue Repair

    Science.gov (United States)

    Hiebner, Kristopher Robert

    Autografts are the orthopedic "gold standard" for repairing bone voids. Autografts are osteoconductive and do not elicit an immune response, but they are in short supply and require a second surgery to harvest the bone graft. Allografts are currently the most common materials used for the repair of segmental defects in hard tissue. Unlike autografts, allografts can cause an undesirable immune response and the possibility of disease transmission is a major concern. As an alternative to the above approaches, recent research efforts have focused on the use of composite materials made from hydroxyapatite (HA) and bioresorbable polymers, such as poly-L-lactide (PLLA). Recent results have shown that the surface hydroxides on HA can initiate the ring opening polymerization (ROP) of L-lactide and other lactones creating a composite with superior interfacial strength. This thesis demonstrates that the surface of porous biologically derived HA substrates, such as coralline HA and trabecular bone, can be used to initiate the ROP of L-lactide and other lactones from the vapor phase. This process increases the strength of the porous scaffold through the deposition of a thin, uniform polymer coating, while maintaining the porous structure. The kinetics of the chemical vapor deposition polymerization (CVDP) are described using a quartz crystal microbalance (QCM). The reaction temperature and monomer vapor pressure are found to affect the rate of the polymerization. Also described in this thesis is the preparation of a porous polymer scaffold that mimics the structure of demineralized bone matrix (DBM). This demineralized bone matrix simulant (DBMS) is created using anorganic bovine bone as a template to initiate the polymerization of various lactones, followed by the removal of the HA scaffold. This material retained its shape and exhibits mechanical properties superior to DBM. Finally it is shown that HA can be used to initiate the ROP of a-caprolactam and the biocompatibility

  2. Preparation and characterization of positively charged ruthenium nanoparticles.

    Science.gov (United States)

    Yang, Jun; Lee, Jim Yang; Deivaraj, T C; Too, Heng-Phon

    2004-03-15

    Positively charged ruthenium nanoparticles were prepared by NaBH(4) reduction at room temperature and at pH values lower than 4.9. The ruthenium nanoparticles were characterized by zeta potential measurement, TEM, XPS, and XRD. Particles with a mean diameter of 1.8 nm and a standard deviation of 0.40 nm could be obtained under the experimental conditions. The surface charge on the particles is believed to originate from hydrated proton adsorption. The positively charged ruthenium nanoparticles could be used as the starting material for further functionalization by PVP, ethylenediamine, and dodecylamine. PMID:14972606

  3. Preparation of amine coated silver nanoparticles using triethylenetetramine

    Indian Academy of Sciences (India)

    L Ramajo; R Parra; M Reboredo; M Castro

    2009-01-01

    This article presents a simple method towards the preparation of functionalized silver nanoparticles in a continuous medium. Silver nanoparticles were obtained through AgNO3 chemical reduction in ethanol and triethylenetetramine was used to stabilize and functionalize the metal. The product was characterized with X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), UVvisible spectroscopy, thermal gravimetric analysis (TGA) and transmission electron microscopy (TEM). Monocrystalline silver particles with cubic structure and an average size of 20 nm were obtained. The results reveal that it is possible to synthesize Ag nanoparticles functionalized with amine groups and that particle size is influenced by the processing route.

  4. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  5. Preparation and Properties of Various Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Jaromir Hubalek

    2009-03-01

    Full Text Available The fabrications of iron oxides nanoparticles using co-precipitation and gadolinium nanoparticles using water in oil microemulsion method are reported in this paper. Results of detailed phase analysis by XRD and Mössbauer spectroscopy are discussed. XRD analysis revealed that the crystallite size (mean coherence length of iron oxides (mainly γ-Fe2O3 in the Fe2O3 sample was 30 nm, while in Fe2O3/SiO2 where the ε-Fe2O3 phase dominated it was only 14 nm. Gd/SiO2 nanoparticles were found to be completely amorphous, according to XRD. The samples showed various shapes of hysteresis loops and different coercivities. Differences in the saturation magnetization (MS correspond to the chemical and phase composition of the sample materials. However, we observed that MS was not reached in the case of Fe2O3/SiO2, while for Gd/SiO2 sample the MS value was extremely low. Therefore we conclude that only unmodified Fe2O3 nanoparticles are suitable for intended biosensing application in vitro (e.g. detection of viral nucleic acids and the phase purification of this sample for this purpose is not necessary.

  6. Preparation and characterization of free-standing pure porphyrin nanoparticles

    Indian Academy of Sciences (India)

    Arun Kumar Perepogu; Prakriti Ranjan Bangal

    2008-09-01

    Preparation and characterization of absolutely pure and stable nanoparticles of 5,10,15,20-meso-tetrakis phenyl porphyrin (TPP) and catalytically repute 5,10,15,20-meso-tetrakis pentaflurophenyl porphyrin (H2F20TPP) by improved ‘reprecipitation method’ is described. The innovation of this modified `reprecipitation method’ lies on the judicial selection of organic solvent and amount of porphyrin solution to be injected in the aqueous media. Exactly similar process produces relatively small nanoparticles for TPP than that of H2F20TPP while the stability of the H2F20TPP nanoparticles is bit higher than nanoparticles of TPP. Absorption and emission spectra reveal that the formation of nanoparticles for both the cases is induced by J- and H-type aggregation. DFT calculations predict the optimized geometries and frontier molecular orbital, which favours the strength of face-to-face interaction with neighbour molecules to be more facile for TPP than that of H2F20TPP helping the latter to form bigger and relatively more stable and free-standing nanoparticles. The use of no other compounds except dichloromethane, a highly volatile organic solvent and respective porphyrins give absolutely pure nanoparticles. This improved method will lead to produce organic nanoparticles of -conjugated systems easily and efficiently.

  7. Preparation and optical properties of ZnO-PPEGMA nanoparticles

    International Nuclear Information System (INIS)

    The poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) grafted zinc oxide (ZnO) nanoparticles were successfully prepared via the surface-initiated atom transfer radical polymerizations (ATRP) from the surfaces functionalized ZnO nanoparticles. The 2-bromoisobutyrate (BIB) was immobilized onto the surface of the ZnO nanoparticles through the reaction between 2-bromoisobutyryl bromide (BIBB) and the hydroxyl groups on nanoparticles, serving as the initiator to induce the ATRP of poly(ethylene glycol) monomethacrylate (PEGMA). Well-defined polymer chains were grown from the surfaces to yield hybrid nanoparticles comprised of ZnO cores and PPEGMA polymer shells having multifunctional end groups. The structure and morphology of the nanoparticles were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The optical properties of the nanoparticles were investigated by UV-vis absorption spectroscopy and photoluminescence spectroscopy (PL). The results showed that the dispersion and near-band edge (NBE) emission of ZnO nanoparticles could be improved by the grafted PPEGMA polymer segments.

  8. Tensile property of a hot work tool steel prepared by biomimetic coupled laser remelting process with different laser input energies

    Science.gov (United States)

    Wang, Chuanwei; Zhou, Hong; Zhang, Zhihui; Zhao, Yu; Zhang, Peng; Cong, Dalong; Meng, Chao; Tan, Fuxing

    2012-09-01

    Coupled with the biomimetic principle, a hot work tool steel (4Cr5MoSiV1) was manufactured using a laser with different input energies. Results of tensile tests confirmed that the biomimetic coupled laser remelting (BCLR) process had an advance effect on improving the strength and ductility of 4Cr5MoSiV1 steel simultaneously. Microstructure examinations demonstrated that a fine microstructure along with nano scale carbide was acquired in the BCLR units, which produced an accumulative contribution of grain refinement, precipitation strengthening and a mixed microstructure. Based on the well distribution of the BCLR units, the beneficial effect of stress transfer from the matrix to the units on tensile property was also analyzed.

  9. Loading technique for preparing radionuclide containing nanoparticles

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012213698A The present invention relates to a novel composition and method for loading delivery systems such as liposome compositions with radionuclides useful in targeted diagnostic and/or therapy of target site, such as cancerous tissue and, in general, pathological conditions associ...... of positron emission tomography (PET) imaging technique. One specific aspect of the invention is directed to a method of producing nanoparticles with desired targeting properties for diagnostic and/or radio-therapeutic applications....

  10. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Directory of Open Access Journals (Sweden)

    Josef Jampilek

    2012-11-01

    Full Text Available The solubility, absorption and distribution of a drug are involved in the basic aspects of oral bioavailability Solubility is an essential characteristic and influences the efficiency of the drug. Over the last ten years, the number of poorly soluble drugs has steadily increased. One of the progressive ways for increasing oral bioavaibility is the technique of nanoparticle preparation, which allows many drugs to thus reach the intended site of action. Candesartan cilexetil and atorvastatin, belonging to class II of the biopharmaceutical classification system, were chosen as model active pharmaceutical ingredients in this study. Forty samples were prepared either by antisolvent precipitation/solvent evaporation method or by the emulsion/solvent evaporation technique with various commonly used surface-active excipients as nanoparticle stabilizers. All samples were analyzed by means of dynamic light scattering. The particle size of the determined 36 nanoparticle samples was to 574 nm, whereas 32 samples contained nanoparticles of less than 200 nm. Relationships between solvents and excipients used and their amount are discussed. Based on the results the investigated solvent evaporation methods can be used as an effective and an affordable technique for the preparation of nanoparticles.

  11. Preparation, characterization and optimization of glipizide controlled release nanoparticles.

    Science.gov (United States)

    Emami, J; Boushehri, M S Shetab; Varshosaz, J

    2014-01-01

    The purpose of the present study was to develop glipizide controlled release nanoparticles using alginate and chitosan thorough ionotropic controlled gelation method. Glipizide is a frequently prescribed second generation sulfonylurea which lowers the blood glucose in type-two diabetics. Quick absorption of the drug from the gastrointestinal tract along with short half- life of elimination makes it a good candidate for controlled release formulations. Alginate-chitosan nanoparticles (ACNP) are convenient controlled delivery systems for glipizide, due to both the release limiting properties of the system, and the bioadhesive nature of the polymers. In the present study, glipizide loaded alginate-chitosan nanoparticles (GlACNP) were prepared, and the particle characteristics including particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), loading percent (LP), and mean release time (MRT), as well as the morphology of the nanoparticles, the drug-excipient compatibility, and the release kinetics along with the drug diffusion mechanism were evaluated. The results suggested that ionotropic controlled gelation method offers the possibility of preparing the nanoparticles in mild conditions in an aqueous environment, and can lead to the preparation of particles with favorable size, controlled release characteristics, and high entrapment efficiency, serving as a convenient delivery system for glipizide. The particle and release characteristics can be efficiently optimized using the Box-Behnken design. Based on the findings of the present study, it is expected that this novel formulation be a superior therapeutic alternative to the currently available glipizide delivery systems. PMID:25657802

  12. Platinum adlayered ruthenium nanoparticles, method for preparing, and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tong, YuYe; Du, Bingchen

    2015-08-11

    A superior, industrially scalable one-pot ethylene glycol-based wet chemistry method to prepare platinum-adlayered ruthenium nanoparticles has been developed that offers an exquisite control of the platinum packing density of the adlayers and effectively prevents sintering of the nanoparticles during the deposition process. The wet chemistry based method for the controlled deposition of submonolayer platinum is advantageous in terms of processing and maximizing the use of platinum and can, in principle, be scaled up straightforwardly to an industrial level. The reactivity of the Pt(31)-Ru sample was about 150% higher than that of the industrial benchmark PtRu (1:1) alloy sample but with 3.5 times less platinum loading. Using the Pt(31)-Ru nanoparticles would lower the electrode material cost compared to using the industrial benchmark alloy nanoparticles for direct methanol fuel cell applications.

  13. Facile Preparation of Silver Halide Nanoparticles as Visible Light Photocatalysts

    Directory of Open Access Journals (Sweden)

    Linfan Cui

    2015-07-01

    Full Text Available In this study, highly efficient silver halide (AgX-based photocatalysts were successfully fabricated using a facile and template-free direct-precipitation method. AgX nanoparticles, which included silver chloride (AgCl, silver bromide (AgBr and silver iodide (AgI, were synthesized using different potassium halides and silver acetate as reactive sources. The size distribution of the AgX nanopar‐ ticles was determined by the reaction time and ratio of the reagents, which were monitored by UV-vis spectra. The as- prepared AgX nanoparticles exhibited different photoca‐ talytic properties. This shows the differences for the photodegradation of methyl orange and Congo red dyes. In addition, the AgCl nanoparticle-based photocatalyst exhibited the best photocatalytic property among all three types of AgX nanoparticles that are discussed in this study. Therefore, it is a good candidate for removing organic pollutants.

  14. The preparation and fluorescence properties of europium nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new structured metallic nanomaterial of europium nanoparticle was prepared using tannic acid as the reductive agent, and nanoeuropium protein conjugates were synthesized by the method of lipoic acid modification on the surface of nanoparticle, which opens a new field of application of lanthanides in nanotechniques. Their properties were also characterized by UV-vis absorption spectroscopy, transmission electron microscopy (TEM), and fluorescence spectroscopy. The europium nanoparticle and its protein conjugates solution were stable and water-soluble. The fluorescence intensity of the composite europium nanoparticles was significantly increased in the presence of trace protein, and was linear proportional to the concentration of proteins under optimum conditions. According to this, a fluorimetric method for the determination of protein was developed in this paper.

  15. PREPARATION AND EVALUATION OF POLYMERIC NANOPARTICLES OF GLIBENCLAMIDE

    OpenAIRE

    Anup Naha; Kiran Sai,; Ikya Rai; Bhavisha Vora; Apoorva D Reddy; P Kartika

    2014-01-01

    Simple, reliable and reproducible method was used for the preparation of polymeric nanoparticles of Glibenclamide. The formulation was prepared by solvent evaporation method using magnetic stirrer with overnight stirring and the same was then evaluated for its particle size, drug content and in vitro dissolution studies. The above mentioned method showed similar particle size and exhibited an improvement in the drug entrapment efficiency. The ultraviolet spectrophotometric method was used to ...

  16. Duloxetine HCl Lipid Nanoparticles: Preparation, Characterization, and Dosage Form Design

    OpenAIRE

    Patel, Ketan; Padhye, Sameer; Nagarsenker, Mangal

    2011-01-01

    Solid lipid nanoparticles (SLNs) of duloxetine hydrochloride (DLX) were prepared to circumvent the problems of DLX, which include acid labile nature, high first-pass metabolism, and high-dosing frequency. The DLX-SLNs were prepared by using two different techniques, viz. solvent diffusion method and ultrasound dispersion method, and evaluated for particle size, zeta potential, entrapment efficiency, physical characteristics, and chemical stability. Best results were obtained when SLNs were pr...

  17. The Intelligent Properties of Micro-reactors for Preparating Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Gang WEI; Hai Yan HUANG; Rong Chun XIONG

    2003-01-01

    TiO2 nanoparticles were synthesized by using micro-reactors. The shape and size of the nanoparticles produced from the original micro-reactors and the five times recycled micro-reactors mother liquor were investigated on transmission electron microscopy (TEM) by using the original sample, freeze prepared sample, and dyeing treated sample, respectively. UV-VIS spectrometry was used to study the growth process of TiO2 nanoparticles in main reactors. The results showed that micro-reactors with nanometer magnitude had spherical or oval structures, and could restore to their original structure after they were destroyed. The products prepared in the original micro-reactors were similar to that in the micro-reactors recycled for many times, suggesting that the micro-reactors had memory function.

  18. Preparation of metallic nanoparticles by irradiation in starch aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Nemţanu, Monica R., E-mail: monica.nemtanu@inflpr.ro; Braşoveanu, Mirela, E-mail: monica.nemtanu@inflpr.ro; Iacob, Nicuşor, E-mail: monica.nemtanu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Electron Accelerators Laboratory, 409 Atomiştilor St., PO Box MG-36, 077125, Bucharest-Măgurele (Romania)

    2014-11-24

    Colloidal silver nanoparticles (AgNPs) were synthesized in a single step by electron beam irradiation reduction of silver ions in aqueous solution containing starch. The nanoparticles were characterized by spectrophotocolorimetry and compared with those obtained by chemical (thermal) reduction method. The results showed that the smaller sizes of AgNPs were prepared with higher yields as the irradiation dose increased. The broadening of particle size distribution occurred by increasing of irradiation dose and dose rate. Chromatic parameters such as b* (yellow-blue coordinate), C* (chroma) and ΔE{sub ab} (total color difference) could characterize the nanoparticles with respect of their concentration. Hue angle h{sup o} was correlated to the particle size distribution. Experimental data of the irradiated samples were also subjected to factor analysis using principal component extraction and varimax rotation in order to reveal the relation between dependent variables and independent variables and to reduce their number. The radiation-based method provided silver nanoparticles with higher concentration and narrower size distribution than those produced by chemical reduction method. Therefore, the electron beam irradiation is effective for preparation of silver nanoparticles using starch aqueous solution as dispersion medium.

  19. Biomimetic polymers in analytical chemistry. Part 1: preparation and applications of MIP (Molecularly Imprinted Polymers) in extraction and separation techniques

    International Nuclear Information System (INIS)

    MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented. (author)

  20. The optical nonlinearity of gold nanoparticles prepared by bioreduction method

    Science.gov (United States)

    Balbuena Ortega, A.; Arroyo Carrasco, M. L.; Gayou, V. L.; Orduña Díaz, A.; Delgado Macuil, R.; Rojas López, Marlon

    2013-11-01

    Nonlinear optical and electronic properties of nanosized metal particles have drawn considerable attention because of their strong and size-dependent plasmon resonance absorption. In a metal nanoparticle system such as gold dispersed in a transparent matrix, an absorption peak due to surface plasmon resonance is usually observed in the visible spectral region. Metal nanoparticles are of special interest as nonlinear materials for optical switching and computing because of their relatively large third-order nonlinearity (χ3) and ultrafast response time. The purpose of this study was to analyze the nonlinear optical properties of biosynthesized gold nanoparticles. The samples were prepared by biosynthesis method using yeast extract as reducing agent and the nonlinear optical properties of the nanoparticles were investigated using a single beam Z-scan technique with a beam power of 20 mW and operated at wavelength of 514 nm. The reaction between metal ions and yeast extracts were monitored by UV-visible spectra of Au nanoparticles in aqueous solution with different pH (3-6). The surface plasmon peak position was shifted from 528 nm to 573 nm, according to of pH variation 4 to 6. The average particle size was calculated by the absorption peak position using the Fernig method, from 42 to 103 nm. The z-scan curves showed a negative nonlocal nonlinear refractive index with a magnitude dependent on the nanoparticle size.

  1. Preparation of novel core-shell nanoparticles by electrochemical synthesis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nanostructural gold/polyaniline core/shell composite particles on conducting electrode ITO were successfully prepared via electrochemical polymerization of aniline based on 4-aminothiophenol (4-ATP) capped Au nanoparticles. The new approach to the fabrication included three steps: preparation of gold nanoparticles as core by pulse electrodeposition; formation of ATP monolayer on the gold particle surface, which served as a binder and an initiator; polymerization of aniline monomer initiated by ATP molecules under controlled voltage lower than the voltammetric threshold of aniline polymerization, which assured the formation of polyaniline shell film occurred on gold particles selectively. Topographic images were also studied by AFM, which indicated the diameter of gold nanoparticles were around 250 nm. Coulometry characterization confirmed the shell thickness of polyaniline film was about 30 nm.A possible formation mechanism of the Au/polyaniline core-shell nanocomposites was also proposed. The novel as-prepared core-shell nanoparticles have potential application in constructing biosensor when bioactive enzymes are absorbed or embedded in polyaniline shell film.

  2. Preparation, Characterization and Antibacterial Property of Cerium Substituted Hydroxyapatite Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Lin Yingguang; Yang Zhuoru; Cheng Jiang

    2007-01-01

    Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[Ca+Ce] (xCe) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with xCe below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g·ml-1, however, the CeHAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when xCe was above 0.08, and the antibacterial ability gets better with the increase of xCe, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.

  3. Biomimetic composites by surface-initiated polymerization of cyclic lactones at anorganic bone: preparation and in vitro evaluation of osteoblast and osteoclast competence.

    Science.gov (United States)

    Wiegand, Troy; Hiebner, Kris; Gauza, Lukasz; Schwartz, Chris; Song, Zheng; Miller, Steve; Zacharias, Nora; Wooley, Paul H; Redepenning, Jody

    2014-06-01

    Biomimetic composites were constructed using anorganic bone to initiate the polymerization of cyclic lactones. The resulting anorganic bone/polylactone composites preserve the inorganic structure and the mechanical properties of the original bone. Thermal conditions used to prepare the anorganic bone were shown to control the surface functionalities, surface area, and crystallinity, all of which influence the rates of subsequent polymerizations. Thermal pretreatment of anorganic bone was examined as a function of time and temperature, ranging from 400°C to 800°C. Polymerization rates of different monomers were also compared. Additionally, in vitro evaluations of anorganic bone/poly-L-lactide and anorganic bone/polyglycolide composites for osteoblast and osteoclast competence suggest that these composites are good candidates for potential in vivo use, since both composites promoted osteoblast differentiation. The anorganic bone/poly-L-lactide composite also promoted osteoclast differentiation. PMID:23776188

  4. Research Progress of Biomimetic Material Prepared by Bacterial Cellulose%细菌纤维素制备生物医用材料的研究进展

    Institute of Scientific and Technical Information of China (English)

    蔡锐波; 陈海宏; 陈向标

    2012-01-01

    Bacterial cellulose(BC) is a potential versatile biomaterial. Research progress of medical dressing, vascular prosthesis and artificial skeleton prepared by bacterial cellulose were introduced at home and abroad. In addition, the hot spots and the main development direction of bacterial cellulose composite biomimetic materials were discussed.%细菌纤维素是一种很有潜力的新型生物纤维材料.重点介绍了国内外关于细菌纤维素在制备医用敷料、人造血管及人造骨骼等医用材料方面的研究进展,并指出今后的研究热点及主要发展方向.

  5. Preparation and Characterization of Chitosan Nanoparticles for Zidovudine Nasal Delivery.

    Science.gov (United States)

    Barbi, Mariana Da Silva; Carvalho, Flávia Chiva; Kiill, Charlene Priscila; Barud, Hernane Da Silva; Santagneli, Sílvia Helena; Ribeiro, Sidney José Lima; Gremião, Maria Palmira Daflon

    2015-01-01

    Zidovudine (AZT) is the antiretroviral drug most frequently used for the treatment of Acquired Immunodeficiency Syndrome. Its low oral bioavailability demands the development of innovative strategies to overcome the first pass metabolism. The nasal route is an option for enhanced therapeutic efficacy and to reduce the extent of the first-pass effect. In this article, AZT loaded chitosan nanoparticles were prepared by a modified ionotropic gelation method with sodium tripolyphosphate. The increase proportion of CS (NP1 10:01 (w/w)) promoted the formation of smaller nanoparticles (260 nm), while raising the proportion of TPP (NP2 5:1 w/w) increased the nanoparticles size (330 nm). The incorporation of AZT increased the nanoparticles size for both AZT-loaded nanoparticles AZT-loaded NP1 (406 nm) and AZT-loaded NP2 (425 nm). The incorporation of AZT into NP1 did not change the electrophoretic mobility, however, in AZT-loaded NP2 there was a significant increase. The positive surface of the nanoparticles is very important for the mucoadhesive properties due interaction with the sialic groups of the mucin. Nuclear resonance magnetic data showed that the higher concentration of chitosan in the nanoparticles favored the interaction of few phosphate units (pyrophosphate) by ionic interaction Scanning electron microscopy, revealed that the nanoparticles are nearly spherical shape with porous surface. The entrapment efficiency of AZT, was 17.58% ± 1.48 and 11.02% ± 2.05 for NP1 and NP2, respectively. The measurement of the mucoadhesion force using mucin discs and nasal tissue obtained values of NP1 = 2.12 and NP2 = 4.62. In vitro permeation study showed that the nanoparticles promoted an increase in the flux of the drug through the nasal mucosa. In view of these results, chitosan nanoparticles were found to be a promising approach for the incorporation of hydrophilic drugs and these results suggest that the CS-containing nanoparticles have great potential for nasal AZT

  6. Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

    Directory of Open Access Journals (Sweden)

    Ulf Wiedwald

    2010-11-01

    Full Text Available Monatomic (Fe, Co and bimetallic (FePt and CoPt nanoparticles were prepared by exploiting the self-organization of precursor loaded reverse micelles. Achievements and limitations of the preparation approach are critically discussed. We show that self-assembled metallic nanoparticles can be prepared with diameters d = 2–12 nm and interparticle distances D = 20–140 nm on various substrates. Structural, electronic and magnetic properties of the particle arrays were characterized by several techniques to give a comprehensive view of the high quality of the method. For Co nanoparticles, it is demonstrated that magnetostatic interactions can be neglected for distances which are at least 6 times larger than the particle diameter. Focus is placed on FePt alloy nanoparticles which show a huge magnetic anisotropy in the L10 phase, however, this is still less by a factor of 3–4 when compared to the anisotropy of the bulk counterpart. A similar observation was also found for CoPt nanoparticles (NPs. These results are related to imperfect crystal structures as revealed by HRTEM as well as to compositional distributions of the prepared particles. Interestingly, the results demonstrate that the averaged effective magnetic anisotropy of FePt nanoparticles does not strongly depend on size. Consequently, magnetization stability should scale linearly with the volume of the NPs and give rise to a critical value for stability at ambient temperature. Indeed, for diameters above 6 nm such stability is observed for the current FePt and CoPt NPs. Finally, the long-term conservation of nanoparticles by Au photoseeding is presented.

  7. Preparation and characterization of magnetic nanoparticles with controlled magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Herea, Dumitru-Daniel, E-mail: dherea@phys-iasi.ro; Chiriac, Horia; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics (Romania)

    2011-09-15

    The effect of molar ratio of two hydrated iron salts used as precursors into a (co)precipitation-based synthesis method, on the composition, size and specific saturation magnetization of mixed iron oxides and oxyhydroxides magnetic nanoparticles as reaction products, was studied. The preparation procedure is based on a salt-assisted solid-state chemical reaction. The obtained products are magnetic multiphase components with the mean size ranging from 3 to 10 nm and specific saturation magnetization between 25 and 95.5 emu/g. The specific saturation magnetization modifies in a non-linear manner as the molar ratio of the iron salts varies. Excepting one sample, for which Fe{sup 2+}/Fe{sup 3+} molar ratio was zero, all magnetic nanoparticles show a ferrofluid-like behaviour in the colloidal form. The small size, ferrofluid-like behaviour, and controlled specific saturation magnetization allow the use of new synthesized nanoparticles in specific biomedical or industrial applications.

  8. Template preparation of twisted nanoparticles of mesoporous silica

    Institute of Scientific and Technical Information of China (English)

    Kui Niu; Zhongbin Ni; Chengwu Fu; Tatsuo Kaneko; Mingqing Chen

    2011-01-01

    Optical isomers of N-lauroyl-L-(or-D-) alanine sodium salt {C12-L-(or-D-)AlaS} surfactants were used for the preparation of mesoporous silica nanoparticles with a twisted hexagonal rod-like morphology. Thermogravimetric analysis (TGA) was used to determine the temperature for template removal. Circular dichroism (CD) spectra of the surfactant solution with various compositions illustrated the formation and supramolecular assembly of protein-like molecular architecture leading to formation of twisted nanoparticles. Scanning electron microscopy (SEM),high-resolution transmission electron microscopy (HRTEM)and X-ray powder diffraction (XRD) patterns of these as-synthesized mesoporous silica confirmed that the twisted morphology of these nanoparticles was closely related to the supramolecular-assembled complex of amino acid surfactants.

  9. Biomimetic mineralization of nano-sized, needle-like hydroxyapatite with ultrahigh capacity for lysozyme adsorption.

    Science.gov (United States)

    Ma, Yi; Zhang, Juan; Guo, Shanshan; Shi, Jie; Du, Wenying; Wang, Zheng; Ye, Ling; Gu, Wei

    2016-11-01

    Because of its superior biocompatibility, hydroxyapatite (HA) has been widely exploited as a promising vehicle to deliver a broad range of therapeutics in a variety of biological systems. Herein, we report a biomimetic process to prepare nano-sized, colloidal stable HA with needle-like morphology by using carboxymethyl cellulose (CMC) as the template. It was revealed that the needle-like HA was transformed from the spherical amorphous calcium phosphate (ACP) nanoparticles after a 14-day period of aging under ambient conditions. The needle-like HA/CMC exhibited an ultra-high lysozyme adsorption capacity up to 930-940mg/g. Moreover, a sustained and pH-sensitive release of adsorbed lysozyme from HA/CMC was evidenced. Therefore, our biomimetic needle-like HA/CMC nanoparticles hold great potential in serving as an efficient carrier for the delivery and controlled release of lysozyme. PMID:27524053

  10. Preparation of Y2O3 Nanoparticles Organosol by Microemulsion Method

    Institute of Scientific and Technical Information of China (English)

    王进贤; 董相廷; 闫景辉; 樊秀珍; 冯秀丽; 洪广言

    2004-01-01

    Y2O3 nanoparticles organosol coated with DBS was prepared by microemulsion method. The optimum preparative conditions of Y2O3 nanoparticles organosol were obtained. TEM analysis indicates that the prepared Y2O3 nanoparticles are spherical in shape. The size is about 5 nm. The size distribution is in the narrow range and no agglomerates are observed. Y2O3 nanoparticles coated with DBS are easy to dissolve in weak polar solvents.

  11. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  12. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  13. Preparation of platinum nanoparticles in liquids by laser ablation method

    International Nuclear Information System (INIS)

    Platinum (Pt) nanoparticles were prepared in solutions of ethanol and TSC (trisodium citrate—Na3C6H5O7.nH2O) in water by laser ablation method using Nd:YAG laser. The role of laser fluence, laser wavelength and concentration of surfactant liquids in laser ablation process were investigated. The morphology, size distribution and optical properties of the Pt nanoparticles (NPs) were observed by transmission electron microscopy (TEM), UV-vis spectrometer and x-ray diffraction measurements. The average diameter of Pt NPs prepared in ethanol and TSC solutions ranges around 7–9 nm and 10–12 nm, respectively. The results showed advantages of the laser ablation method. (paper)

  14. Chemistry and technology of nanoparticles : preparation, processing and application

    OpenAIRE

    Schmidt, Helmut K.

    1997-01-01

    A fabrication and a processing process of nanoparticles by chemical synthesis routes have been developed for ceramic and nanocomposite materials. The investigation shows that microemulsion and controlled growth processes followed by solvo-thermal treatment can be used for the preparation of agglomerate-free powders to be either incorporated into polymer matrices for nanocomposites or to be processed to ceramics. For obtaining green densities up to 60% by volume, appropriate surface modificati...

  15. Preparation and In Vitro Evaluation of Hydrophilic Fenretinide Nanoparticles

    OpenAIRE

    Ledet, Grace A.; Graves, Richard A.; Glotser, Elena Y.; Mandal, Tarun K.; Bostanian, Levon A.

    2014-01-01

    Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration – attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study wasto prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three d...

  16. Preparation of a New Polyoxometalate-based Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Xiao Hong WANG; Feng LI; Jing Fu LIU; M. T. POPE

    2004-01-01

    Polyoxometalates (POMs) (-K8 H6 [Si2W18Ti6O77] (Si2W18Ti6) loaded starch nanop-articles have been prepared and structurally characterized by elemental analyses, IR spectra and 29Si spectroscopy. The particle size of Si2W18Ti6 /starch was estimated by a Transmission electron microscope (TEM) and a 1000HSA MALVIRN Zetasizer instrument. The result shows that the polyoxometalate retained the parent structure after encapsulated by starch microspheres.

  17. Preparation of paclitaxel-loaded microspheres with magnetic nanoparticles

    Institute of Scientific and Technical Information of China (English)

    CUI Sheng; SHEN Xiaodong; SHI Ruihua; LIN Benlan; CHEN Ping

    2007-01-01

    The objective of this paper was to prepare paclitaxel-loaded microspheres,a kind of target-orientation anticancer drug.The paclitaxel-loaded microspheres were prepared with magnetic Fe3O4 nanoparticles and taxo1.The morphology was characterized by scanning electron microscopy(SEM),and the average size and the size distribution were determined by a laser-size distributing instrument.High performance liquid chromatography(HPLC)was used to measure the paclitaxel content.Experimental results indicated that the effective drug loading and the entrapment ratio of paclitaxel-loaded microspheres were 1.83% and 92,62%,respectively.

  18. A New Method for the Preparation of Co304 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Yang Yuying; Hu Zhongai; Shang Xiuli; Lv Renjiang; Kong Chao; Zhao Hongxiao

    2006-01-01

    In this study,a novel method was used to prepare well-separated and spherical tricobalt tetraoxide(Co3O4)nanosized particles.The overall process involves three steps:preparation of insoluble carboxyl-containing grafted starch copolymer(ISC),formation of precursor(ISC-Co),decomposition of ISC-Co,and phase transition of Co304 nanoparticles.The Infrared spectra used for ISC and ISCCo are discussed.The decomposition of the precursor was studied by thermogravimetric-differential thermal analysis,the crystalline phase was characterized by x-ray diffraction,and the size distribution and shape of particles were observed by transmission electron microscopy.

  19. Preparation of size-controlled nanoparticles of magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Angela L., E-mail: angelaleao@iceb.ufop.br [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro P-3810193 (Portugal); Department of Chemistry, Federal University of Ouro Preto, 35400-000 Ouro Preto, Minas Gerais (Brazil); Valente, Manuel A. [Department of Physics, I3N, University of Aveiro, Aveiro P-3810193 (Portugal); Ferreira, Jose M.F. [Department of Ceramics and Glass Engineering, CICECO, University of Aveiro, Aveiro P-3810193 (Portugal); Fabris, Jose D. [Federal University of Jequitinhonha and Mucuri Valleys (UFVJM), 39100-000 Diamantina, Minas Gerais (Brazil)

    2012-05-15

    Samples of ferrofluids containing chemically stabilized nanoparticles of magnetite (Fe{sub 3}O{sub 4}) with tetramethylammonium hydroxide (TMAOH) were prepared by a direct reduction-precipitation method. The influences of aging time and temperature on the size and monodispersion characteristics of the produced nanoparticles were investigated. Transmission electron microscopy, powder X-ray diffraction, Fourier-transform infrared, and magnetization measurements with applied magnetic field up to 2 T were used to characterize the synthesized iron oxides. Raising the temperature of the synthesized material in autoclave affects positively the monodispersion of the nanoparticles, but it was not found to significantly influence the size itself of individual particles. - Highlights: Black-Right-Pointing-Pointer From report protocols, chemical synthesis of magnetite with FeCl{sub 3} (stable in air) instead of FeCl{sub 2} or Fe(NO{sub 3}){sub 3}, precursor. Black-Right-Pointing-Pointer Chemical reduction with Na{sub 2}SO{sub 3} provides an additional advantage. Black-Right-Pointing-Pointer As any eventual reformation of Fe{sup 3+} from reoxidization of produced Fe{sup 2+} may be sequestered by remaining SO{sub 3}{sup 2-} in the medium. Black-Right-Pointing-Pointer Nanoparticles are stably individualized with tetramethylammonium hydroxide that acts as a surface-active agent. Black-Right-Pointing-Pointer Thermal treatment reduces further the mean sizes of particles, as required for many medical uses.

  20. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    Science.gov (United States)

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  1. Nanoparticle preparation of Mefenamic acid by electrospray drying

    International Nuclear Information System (INIS)

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm−1) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I

  2. Nanoparticle preparation of Mefenamic acid by electrospray drying

    Energy Technology Data Exchange (ETDEWEB)

    Zolkepali, Nurul Karimah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Anuar, Nornizar [Faculty Of Chemical Engineering, Universiti Teknologi Mara (UiTM), 40450 Shah Alam, Selangor (Malaysia); Naim, M. Nazli [Food and Process Department, Faculty of Engineering, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor (Malaysia); Bakar, Mohd Rushdi Abu [Kulliyyah of Pharmacy, International Islamic University Malaysia, P.O Box 141, 25710, Kuantan, Pahang (Malaysia)

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h. By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.

  3. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    OpenAIRE

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera lea...

  4. Preparation and characterization of hexagonal close-packed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hexagonal close-packed Ni nanoparticles were synthesized using a heat-treating technique with the precursors prepared by the sol-gel method.The synthesis condition,structure,and morphology of the samples were characterized and analysed by thermogravimetric analysis (TG),differential thermal analysis (DTA),X-ray diffraction (XRD) and transmission electron microscopy (TEM).Results indicate that the hexagonal close packed Ni nanoparticles were synthesized at a heat-treating temperature of 300℃.The cell constants are calculated at a=0.2652 nm and c=0.4334 nm.The average grain size of the hexagonal close-packed Ni particles evaluated by Scherrer equation is about 12 nm.The phase transformation from a hexagonal close-packed Ni to a face-centered cubic Ni structure occurred when the heat-treating temperature was increased.

  5. Properties of Ferrofluid Nanoparticles Prepared by Coprecipitation and Acid Treatment

    International Nuclear Information System (INIS)

    A new stable acid water-based CoFe2O4 ferrofluid is prepared by coprecipitation and acid treatment. The properties of the nanoparticles forming the ferrofluid are examined by means of X-ray diffraction, vibrating sample magnetometer, scanning tunneling microscopy, transmission electron microscopy and annihilation technique. The results show that the particles are cubic CoFe2O4 nanoparticles, which have an average diameter of 12.2 nm and are coated with a low density porous amorphous layer. The CoFe2O4 particles in an acid aqueous medium exist in two kinds of forms, one is a single spherical particle and another is an aggregation of several spherical particles

  6. Properties of Ferrofluid Nanoparticles Prepared by Coprecipitation and Acid Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Li Jian [Southwest China Normal University, Physics Department (China); Dai Dalin [Southwest China Normal University, Life-Science Department (China); Zhao Baogang; Lin Yueqiang; Liu Cenye [Southwest China Normal University, Physics Department (China)

    2002-06-15

    A new stable acid water-based CoFe{sub 2}O{sub 4} ferrofluid is prepared by coprecipitation and acid treatment. The properties of the nanoparticles forming the ferrofluid are examined by means of X-ray diffraction, vibrating sample magnetometer, scanning tunneling microscopy, transmission electron microscopy and annihilation technique. The results show that the particles are cubic CoFe{sub 2}O{sub 4} nanoparticles, which have an average diameter of 12.2 nm and are coated with a low density porous amorphous layer. The CoFe{sub 2}O{sub 4} particles in an acid aqueous medium exist in two kinds of forms, one is a single spherical particle and another is an aggregation of several spherical particles.

  7. Preparation of size-controlled tungsten oxide nanoparticles and evaluation of their adsorption performance

    International Nuclear Information System (INIS)

    The present study investigated the effects of particle size on the adsorption performance of tungsten oxide nanoparticles. Nanoparticles 18-73 nm in diameter were prepared by evaporation of bulk tungsten oxide particles using a flame spray process. Annealing plasma-made tungsten oxide nanoparticles produced particles with diameters of 7-19 nm. The mechanism of nanoparticle formation for each synthetic route was examined. The low-cost, solid-fed flame process readily produced highly crystalline tungsten oxide nanoparticles with controllable size and a remarkably high adsorption capability. These nanoparticles are comparable to those prepared using the more expensive plasma process.

  8. Preparation and Characterization of Astaxanthin Nanoparticles by Solvent-Diffusion Technique

    International Nuclear Information System (INIS)

    In this work, astaxanthin nanoparticles were prepared in aqueous media using solvent-diffusion technique. Sodium caseinate, gelatin, Polysorbate 20 and gum Arabic were selected as different food grade surface active molecules for the stabilization of the produced nanoparticles. Results showed that among produced astaxanthin nanoparticles, the Polysorbate 20-stabilized nanoparticles showed the smallest particle size; gum Arabic-stabilized nanoparticles had the smallest polydispersity index and highest physical stability in simulated gastric fluid (SGF); and those stabilized using gelatin had the highest zeta potential. Sodium caseinate stabilized nanoparticles had the highest astaxanthin content in fresh samples as compared to other prepared nano dispersions. (author)

  9. Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid

    International Nuclear Information System (INIS)

    Uniform silver nanoparticles and silver/polystyrene core-shell nanoparticles were successfully synthesized in a room temperature ionic liquid, 1-n-butyl-3-methylimidazolium tetrafluoroborate ([BMIM].BF4). [BMIM].BF4 plays a protective role to prevent the nanoparticles from aggregation during the preparation process. Transmission electron micrographs confirm that both silver nanoparticles and core-shell nanoparticles are regular spheres with the sizes in the range of 5-15 nm and 15-25 nm, respectively. The X-ray diffraction analysis reveals the face-centered cubic geometry of silver nanoparticles. The as-prepared nanoparticles were also characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, UV-vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. In addition, antimicrobial activities against E. coli and S. aureus were studied and the results show that both silver nanoparticles and core-shell nanoparticles possess excellent antimicrobial activities. The antimicrobial mechanism of the as-prepared nanoparticles was discussed.

  10. Preparation and characterization of Biochanin A loaded solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Chunlei Tao

    2012-01-01

    Full Text Available Biochanin A, the predominant isoflavones found in plants, had proved its human health benefits. The purpose of this research was to study whether Biochanin A (BCA loaded solid lipid nanoparticles (SLN could improve solution and prolong the half-life of BCA. BCA-SLN was prepared by emulsion evaporation and low temperature solidification technique, and freeze-dried powders were developed to improve stability. The mean particle sizes, zeta potential, entrapment efficiency (EE, and drug loading capacity (DL of BCA was 176.0 nm, −18.7 ± 0.26, 97.15 ± 0.28%, and 6.38 ± 0.04%, respectively. The results of differential scanning calorimetry (DSC and X-ray diffraction analysis (XRD indicated that the BCA was wrapped and absorbed in the nanoparticles. The solution of preparation is much higher than the untreated BCA. Results of stability of SLN showed a relatively short-term stability after storage at 4°C and 25°C for 15 days. Drug release of untreated BCA and BCA-SLN was fit into the Biexponential equations and Weibull equations, respectively, and SLN showed sustained release properties. But after freeze-dried, stability was improved, and the EE and DL had a slightly decrease. The mean particle size was slightly increased, but the structure was not changed. In conclusion, SLN systems can represent an effective strategy to change the poor aqueous solubility and prolong the half-time of BCA.

  11. Preparation of metal nanoparticles for surface enhanced Raman scattering by laser ablation method

    International Nuclear Information System (INIS)

    Gold, silver and copper nanoparticles were prepared in clean and biologically-friendly liquids by laser ablation. The average size of nanoparticles ranges from 3 to 30 nm. These nanoparticles were used to fabricate nanostructured substrates for surface enhanced Raman scattering (SERS) measurement. Raman spectra were measured by a Micro-Raman spectrophotometer. The results show that gold, silver and copper nanoparticle substrates fabricated by our method are effective for SERS studies. SERS was also obtained when using gold, silver and copper nanoparticle colloid prepared by laser ablation

  12. Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi.

    Science.gov (United States)

    Sathiyabama, M; Parthasarathy, R

    2016-10-20

    The aim of the present study was to prepare Chitosan nanoparticles through biological method with high antifungal activities. Chitosan nanoparticles were prepared by the addition of anionic proteins isolated from Penicillium oxalicum culture to chitosan solutions. The formation of chitosan nanoparticles was preliminary confirmed by UV-vis spectrophotometric analysis. The physico-chemical properties of the chitosan nanoparticles were determined by size and zeta potential analysis, FTIR analysis, HRTEM and XRD pattern. The chitosan nanoparticles were evaluated for its potential to inhibit the growth of phytopathogens viz., Pyricularia grisea, Alternaria solani, Fusarium oxysporum. It is evident from our results that chitosan nanoparticles inhibit the growth of phytopathogens tested. Chitosan nanoparticle treated chickpea seeds showed positive morphological effects such as enhanced germination%, seed vigor index and vegetative biomass of seedlings. All these results indicate that chitosan nanoparticle can be used further under field condition to protect various crops from the devastating fungal pathogens as well as growth promoters. PMID:27474573

  13. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method

    OpenAIRE

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-01-01

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type...

  14. Effects of PVP on the preparation and growth mechanism of monodispersed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Monodispersed Ni nanoparticles were successfully prepared by chemical reduction with hydrazine hydrate in ethylene glycol.The effect of the amount of polyvinylpyrrolidone (PVP-K30) on the preparation of Ni nanoparticles was investigated.X-ray diffraction (XRD),transmission electron microscopy (TEM),and high resolution transmission electron microscopy (HRTEM) were employed to characterize the nickel particles are spherical in shape and are not agglomerated.A possible extensive mechanism of nickel nanoparticle formation has been suggested.

  15. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    OpenAIRE

    Ali Kamiar; Reza Ghotaslou; Hadi Valizadeh

    2013-01-01

    Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs) in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical char...

  16. Preparation of Nanoparticles of Barium Ferrite from Precipitation in Microemulsions

    International Nuclear Information System (INIS)

    Magnetic nanoparticles of barium ferrite (BaFe12O19) have been synthesized using a microemulsion mediated process. The aqueous cores of water-in-oil microemulsions were used as constrained microreactors for the precipitation of precursor carbonate and hydroxide particles. These precursors were then calcined at 925 deg. C for 12 h, during which time they were transformed to the hexagonal ferrite. The pH of reaction was varied between 5 and 12, and it was found that the fraction of non-magnetic hematite (α-Fe2O3) in the particles varied with the pH of reaction, thus affecting the magnetic properties of the particles. The same precursor particles were also prepared by bulk co-precipitation reaction for comparison. It was found that the microemulsion derived nanoparticles of barium ferrite had both higher intrinsic coercivity (Hc) and saturation magnetization (σs) than the particles derived from bulk co-precipitation. Particles were analyzed by electron microscopy, X-ray diffraction, differential thermal analysis (DTA), thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM). The best barium ferrite particles produced by the microemulsion synthesis method yielded an intrinsic coercivity of 4310 Oe and a saturation magnetization of 60.48 emu/g

  17. Preparation and adsorption of refined polyelectrolyte complex nanoparticles.

    Science.gov (United States)

    Reihs, T; Müller, M; Lunkwitz, K

    2004-03-01

    We report on bulk and surface properties of centrifuged nonstoichiometric polyelectrolyte complex (PEC) dispersions. PECs were prepared by mixing poly(diallyldimethylammonium chloride) (PDADMAC) and sodium poly(maleic acid-co-alpha-methylstyrene) (PMA-MS) at the monomolar mixing ratio of 0.6 and polymer concentration >/=1 mmol/l. Centrifugation of initial PEC dispersions revealed three phases: supernatant (SUP), coacervate (COAC), and an insoluble precipitate. Mass, turbidity, particle hydrodynamic radii (R(h)), and the titratable charge amount were determined for those phases. The turbid COAC phase consisted of 200-nm nanoparticles and carried 60% of the polymer mass and 20% of the titratable charge amount of the initial PEC dispersion. The SUP phase showed no turbidity and no such nanoparticles, but carried 80% of the initial titratable charge amount, presumably caused by excess polycations. Furthermore, linear dependences of turbidity and R(h) on COAC concentration was observed. COAC adsorption was studied at polyelectrolyte multilayer (PEM) modified silicon surfaces in dependence on both adsorption time and concentration using attenuated total-reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. The adsorption data were fitted by the simple Langmuir model. Comparison of COAC particles and polystyrene latices revealed similar adsorption features. SEM and AFM measurements resulted in hemispherically shaped adsorbed COAC particles with coverages >/=25%, whose calculated volumes correlated well with those in dispersion obtained by PCS. PMID:14757079

  18. A novel method for preparing monodispersed polystyrene nanoparticles

    Institute of Scientific and Technical Information of China (English)

    LIU Kaiyi; WANG Zhaoqun

    2007-01-01

    A preparation manner for monodispersed polystyrene(PS)nanoparticles polymerized by using a novel addition procedure of a monomer is suggested.In systems containing a smaller amount of surfactant compared with conventional microemulsion polymerization,the polymerization processes consists of three stages:adding dropwise the first part of the monomer for a few minutes at 80℃ and polymerizing for 1 h;adding collectively the residual part of the monomer and polymerizing at the same temperature for another 1 h;and then polymerizing at 85℃ for another 1 h.Based on discussions on the nucleation mechanism of particles in the polymerization system,the influences of monomer weight added dropwise,and amounts of initiator and emulsifier on the size and distribution of PS particles were investigated.PS nanoparticles with smaller diameter such as a number-average diameter of 18.7 nm and better monodispersity were obtained since the dropped styrene amount was suitable under 20wt-% emulsifier amount and 3wt-% initiator amount based on the monomer.

  19. Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.

    Science.gov (United States)

    Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian

    2012-05-01

    The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo. PMID:22852346

  20. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    Science.gov (United States)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  1. In situ preparation of biomimetic thin films and their surface-shielding effect for organisms in high vacuum.

    Directory of Open Access Journals (Sweden)

    Hiroshi Suzuki

    Full Text Available Self-standing biocompatible films have yet to be prepared by physical or chemical vapor deposition assisted by plasma polymerization because gaseous monomers have thus far been used to create only polymer membranes. Using a nongaseous monomer, we previously found a simple fabrication method for a free-standing thin film prepared from solution by plasma polymerization, and a nano-suit made by polyoxyethylene (20 sorbitan monolaurate can render multicellular organisms highly tolerant to high vacuum. Here we report thin films prepared by plasma polymerization from various monomer solutions. The films had a flat surface at the irradiated site and were similar to films produced by vapor deposition of gaseous monomers. However, they also exhibited unique characteristics, such as a pinhole-free surface, transparency, solvent stability, flexibility, and a unique out-of-plane molecular density gradient from the irradiated to the unirradiated surface of the film. Additionally, covering mosquito larvae with the films protected the shape of the organism and kept them alive under the high vacuum conditions in a field emission-scanning electron microscope. Our method will be useful for numerous applications, particularly in the biological sciences.

  2. Preparation and characterization of PEG-albumin-curcumin nanoparticles intended to treat breast cancer

    Directory of Open Access Journals (Sweden)

    R Thadakapally

    2016-01-01

    Full Text Available The aim of present research was to prepare novel serum stable long circulating polymeric nanoparticles for curcumin with a modification to the well known and novel nanoparticle albumin bound technology. polyethylene glycol-albumin-curcumin nanoparticles were prepared using serum albumin and poly ethylene glycol using desolvation technique. Nanoparticles were characterized for encapsulation efficiency, particle size and surface morphology. Drug excipient compatibility was determined using fourier transform infrared spectroscopy. Physical state of the drug in the formulations was known by differential scanning colorimetry. In vitrorelease and solubility of the drug from nanoparticles were determined. In vivo Drug release, tissue uptake and kupffer cell uptake was determined with optimized nanoformulation in rats after intravenous administration. Cell viability assay was determined using breast cancer cell line MD-MB-231. Entrapment efficiency for prepared nanoparticle was above 95%. The polyethylene glycol-albumin-curcumin nanoparticles exhibited an interesting release profile with small initial burst followed by slower and controlled release. Solubility of the drug from the formulation was increased. A sustained release of drug from nanoparticles was observed for 35 days in both in vitro and in vivo studies with the optimized formulation. Polyethylene glycol-albumin-curcumin nanoparticles showed lesser liver and kupffer cell uptake as compared to that of curcumin-albumin nanoparticles suggesting the bestowment of stealthness to nanoparticles with pegylation. Also, the antiproliferative activity of polyethylene glycol-albumin-curcumin nanoparticle formulation was more as compared to native curcumin. Polyethylene glycol-albumin-curcumin nanoparticles thus developed can be conveniently used in breast cancer with improved efficacy compared to conventional therapies and as an alternate to nanoparticle albumin bound technology which is used in

  3. Preparation of Chitosan nanoparticles and its effect on detached rice leaves infected with Pyricularia grisea.

    Science.gov (United States)

    Manikandan, Appu; Sathiyabama, Muthukrishnan

    2016-03-01

    The aim of the present study was to prepare chitosan nanoparticles to evaluate their effect on protection of rice plants from blast fungus. Nanoparticles were prepared using the ionic gelation method by the interaction of Chitosan and sodium tripolyphosphate. The particle size, polydispersity index, zetapotential and structure was confirmed by DLS, FTIR, TEM and XRD. The Chitosan nanoparticle was evaluated for suppression of rice blast fungus (Pyricularia grisea) under the detached leaf condition. It is evident from our results that chitosan nanoparticle have potential in suppressing blast disease of rice which can be used further under field condition to protect rice plants from the devastating fungus. PMID:26656594

  4. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    International Nuclear Information System (INIS)

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution. - Highlights: ► NixSny alloys nanoparticles have been prepared by polyol method. ► NiSn nanoparticles exhibit superparamagnetic behavior. ► The PVP addition favours the particles isolation.

  5. Preparation and UV-light Absorption Property of Oleic Acid Surface Modified ZnO Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    KANG Jong-hun; GUO Yu-peng; CHEN Yue; WANG Zi-chen

    2011-01-01

    Syntheses of zince oxide(ZnO) nanoparticles by direct precipitation and surface modification with oleic acid were reported. ZnO nanoparticles were characterized via X-ray diffractometry(XRD), transmission electron microscopy(TEM), infrared spectroscopy(IR) and UV-Vis spectroscopy. The prepared ZnO nanoparticles were nearly spherical and highly crystalline with an average size of 29 nm. In addition, high UV-light absorption properties of oleic acid surface modified ZnO nanoparticles were successfully obtained for a dispersion of ZnO nanoparticles in ethanol.

  6. The preparation, physicochemical properties, and the cohesive energy of liquid sodium containing titanium nanoparticles

    International Nuclear Information System (INIS)

    Liquid sodium containing titanium nanoparticles (LSnanop) of 10-nm diameter was prepared by dispersing titanium nanoparticles (2 at.% Ti) into liquid sodium with the addition of stirring and ultrasonic sound wave. The titanium nanoparticles themselves were prepared by the vapor deposition method. This new liquid metal, LSnanop, shows a remarkable stability due to the Brownian motion of nanoparticles in liquid sodium medium. In addition, the difference of measured heat of reaction to water between this LSnanop and liquid sodium indicates the existence of cohesive energy between the liquid sodium medium and dispersed titanium nanoparticles. The origin of the cohesive energy, which serves to stabilize this new liquid metal, was explained by the model of screened nanoparticles in liquid sodium. In this model, negatively charged nanoparticles with transferred electrons from liquid sodium are surrounded by the positively charged screening shell, which may inhibit the gathering of nanoparticles by the “Coulombic repulsion coating.” The atomic volume of LSnanop shows the shrinkage from the linear law, which also suggests the existence of cohesive energy. The viscosity of LSnanop is almost the same as that of liquid sodium. This behavior was explained by the Einstein equation. The surface tension of LSnanop is 17 % larger than that of liquid sodium. The cohesive energy and the negative adsorption may be responsible to this increase. Titanium nanoparticles in liquid sodium seem to be free from the Coulomb fission. This new liquid metal containing nanoparticles suggests the possibility to prepare various stable suspensions with new properties.

  7. Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: Preparation and characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Ying Xiaoying [College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058 (China); Du Yongzhong, E-mail: duyongzhong@zju.edu.c [College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058 (China); Hong Linghong; Yuan Hong; Hu Fuqiang [College of Pharmaceutical Sciences, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058 (China)

    2011-04-15

    Tumor intracellular delivery is an effective route for targeting chemotherapy to enhance the curative effect and minimize the side effect of a drug. In this study, the magnetic lipid nanoparticles with an uptake ability by tumor cells were prepared dispersing ferroso-ferric oxide nanoparticles in aqueous phase using oleic acid (OA) as a dispersant, and following the solvent dispersion of lipid organic solution. The obtained nanoparticles with 200 nm volume average diameter and -30 mV surface zeta potential could be completely removed by external magnetic field from aqueous solution. Using doxorubicin (DOX) as a model drug, the drug-loaded magnetic lipid nanoparticles were investigated in detail, such as the effects of OA, drug and lipid content on volume average diameter, zeta potential, drug encapsulation efficiency, drug loading, and in vitro drug release. The drug loading capacity and encapsulation efficiency were enhanced with increasing drug or lipid content, reduced with increasing OA content. The in vitro drug release could be controlled by changing drug or lipid content. Cellular uptake by MCF-7 cells experiment presented the excellent internalization ability of the prepared magnetic lipid nanoparticles. These results evidenced that the present magnetic lipid nanoparticles have potential for targeting therapy of antitumor drugs. - Research highlights: > A simple solvent diffusion method was developed to prepare magnetic lipid nanoparticles. > The doxorubicin-loaded magnetic lipid nanoparticles could be controlled by preparation recipe. > Magnetic lipid nanoparticles had internalization ability into tumor cells.

  8. Preparation and in vitro evaluation of hydrophilic fenretinide nanoparticles.

    Science.gov (United States)

    Ledet, Grace A; Graves, Richard A; Glotser, Elena Y; Mandal, Tarun K; Bostanian, Levon A

    2015-02-20

    Fenretinide is an effective anti-cancer drug with high in vitro cytotoxicity and low in vivo systemic toxicity. In clinical trials, fenretinide has shown poor therapeutic efficacy following oral administration - attributed to its low bioavailability and solubility. The long term goal of this project is to develop a formulation for the oral delivery of fenretinide. The purpose of this part of the study was to prepare and characterize hydrophilic nanoparticle formulations of fenretinide. Three different ratios of polyvinyl pyrrolidone (PVP) to fenretinide were used, namely, 3:1, 4:1, and 5:1. Both drug and polymer were dissolved in a mixture of methanol and dichloromethane (2:23 v/v). Rotary evaporation was used to remove the solvents, and, following reconstitution with water, a high pressure homogenizer was used to form nanoparticles. The particle size and polydispersity index were measured before and after lyophilization. The formulations were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray powder diffraction (XRPD). The effectiveness of the formulations was assessed by release studies and Caco-2 cell permeability assays. As the PVP content increased, the recovered particle size following lyophilization became more consistent with the pre-lyophilization particle size, especially for those formulations with less lactose. The DSC scans of the formulations did not show any fenretinide melting endotherms, indicating that the drug was either present in an amorphous form in the formulation or that a solid solution of the drug in PVP had formed. For the release studies, the highest drug release among the formulations was 249.2±35.5ng/mL for the formulation with 4:1 polymer-to-drug. When the permeability of the formulations was evaluated in a Caco-2 cell model, the mean normalized flux for each treatment group was significantly higher (plactose-to-formulation ratio emerged as the optimal choice for further evaluation as a

  9. Preparation and passive target of 5-fluorouracil solid lipid nanoparticles.

    Science.gov (United States)

    Du, Bin; Yan, Ying; Li, Ying; Wang, Shuyu; Zhang, ZhenZhong

    2010-01-01

    This work studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with 5-fluorouracil (5-FU). The goal was to design longer drug residence in vivo and passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects. Based on the optimized results of uniform design experiment, 5-FU-SLNs were prepared by multiple emulsion-ultrasonication (w/o/w). The SLNs were found to be relatively uniform in size (182.1 +/- 25.8 nm) with a negative zeta potential (-27.89 +/- 5.1 mV). The average drug entrapment efficiency and loading were 74% and 10%, respectively. Compared with the 5-FU solution (t(1/2beta), 0.593h; MRT, 0.358h) after intravenous injection to rats, the pharmacokinetic parameters of 5-FU-SLNs exhibited a longer retention time. (t(1/2beta), 4.0628h; MRT, 3.5321h). The area under curve of plasma concentration-time (AUC) of 5-FU-SLNs was 1.48 times greater than that of free drugs. The overall targeting efficiency (TE(C)) of the 5-FU-SLNs was enhanced from 13.25-20.45% in the lung and from 11.48-23.16% in kidney while the spleen distribution of 5-FU was significantly reduced as compared with that of the 5-FU solution. These results indicated that 5-FU-SLNs were promising passive targeting therapeutic agents for curing primary lung carcinoma. PMID:19769532

  10. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    OpenAIRE

    DeVol, Timothy A.; Basak Yazgan-Kukouz; Baris Kokuoz; DiMaio, Jeffrey R.; Kevin B. Sprinkle; James, Tiffany L.; Kucera, Courtney J.; Jacobsohn, Luiz G.; John Ballato

    2010-01-01

    This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE) doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP) that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminesc...

  11. Preparation of CdS nanoparticles by hydrothermal method in microemulsion

    Institute of Scientific and Technical Information of China (English)

    ZANG Jinxin; ZHAO Gaoling; HAN Gaorong

    2007-01-01

    CdS nanoparticles with good crystallinity were prepared by hydrothermal method in microemulsion composed of polyoxyethylene laurylether/water/cyclohexane/butanol.The structure and the size of the CdS nanoparticles were analyzed by TEM and XRD.The UV-Vis optical absorption of the samples was also investigated.The results show that hydrothermal treatment is an effective method to prepare CdS nanoparticles of hexagonal structure at lower temperature.The particles were in dimensional uniformity.The diameter of the CdS nanoparticles decreased with the increase of the molar ratio of water to surfactant.The minimum diameter of the CdS nanoparticles prepared in this work was about 10 nm.Obvious blue shift appeared in the UV-Vis absorption spectra.

  12. Characterization of the magnetic Fe3O4 nanoparticles prepared by gamma irradiation

    International Nuclear Information System (INIS)

    In this study, gamma irradiation treatment has been applied for preparation of the magnetic nanoparticles from iron(III) chloride (FeCl3). Structure of the resulting black powders were characterized with X-ray diffraction (XRD). The results revealed that the products prepared by gamma irradiation were mainly magnetite (Fe3O4) instead of maghemite (Fe2O3). The basic characteristics of the magnetite nanoparticles such as their particle size and magnetic properties were investigated using scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). The nanoparticles showed superparamagnetism with the saturated magnetization of about 48.6 emu/g. Influences of radiation conditions on radiation preparation of magnetite nanoparticles and their properties were also discussed. Reaction yield increased, while average diameter of the obtained nanoparticles reduced from 46 to 17 nm depended on the absorbed dose. (author)

  13. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    OpenAIRE

    Sining Li; Yaping Zhao; Daode Hu; Wenjuan Chen; Liang Liu

    2012-01-01

    In this study, solution enhanced dispersion by supercritical fluids (SEDS) technique was applied for the preparation of 5-aminosalicylic acid (5-ASA) loaded Eudragit S100 (EU S100) nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spheri...

  14. A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme.

    Science.gov (United States)

    Choi, Okkyoung; Kim, Byung-Chun; An, Ji-Hye; Min, Kyoungseon; Kim, Yong Hwan; Um, Youngsoon; Oh, Min-Kyu; Sang, Byoung-In

    2011-10-10

    We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm(-1) by adding 1mM glucose at an applied potential of -0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67mM (S/N=3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor. PMID:22112615

  15. A novel preparation method for γ-Fe2O3 nanoparticles and their characterization

    International Nuclear Information System (INIS)

    Research highlights: → A new transition process induced chemically for preparing oxide nanoparticles is revealed by energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron (XPS), X-ray diffraction (XRD) and electron microscopy (EM). The analysis results shown that nanoparticles about 10 nm size were prepared by treating the amorphous hydroxide precursor by boiling in FeCl2 solution. The nanoparticles are highly crystalling and the specific saturation magnetization σs reaches 69.20 emu g-1, which is 90 percent of the value for bulk γ-Fe2O3 and is higher than the value for γ-Fe2O3 nanoparticles of the same size prepared by other method. - Abstract: In this paper, γ-Fe2O3 nanoparticles have been prepared by treating the hydroxide precursor in FeCl2 solution. A new transition process induced chemically for preparing oxide nanoparticles is revealed by energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction and electron microscopy. The precursor, consisting of a mixture of FeOOH and Mg(OH)2, was synthesized using a common co-precipitation method. After treatment by boiling in FeCl2 solution, γ-Fe2O3 nanoparticles, about 10 nm diameter, were formed. The nanoparticles are highly crystalline and the specific saturation magnetization σs reaches 69.20 emu g-1, which is 90 percent of the value for bulk γ-Fe2O3 and is higher than the value for γ-Fe2O3 nanoparticles of the same size prepared by other methods. The nanoparticles have an inert FeCl2 surface, giving them relatively good chemical stability and dispersivity.

  16. PREPARATION AND CHARACTERIZATION OF IRON OXIDE NANOPARTICLES ON DISACCHARIDE TEMPLATES

    Directory of Open Access Journals (Sweden)

    B ANILREDDY

    2013-09-01

    Full Text Available We report here the preparation of nanoparticles of iron oxide in the presence of polysaccharidetemplates. Interaction between iron sulfate and template has been carried out in aqueous phase,followed by the selective and controlled removal of the template to achieve narrow distribution ofparticle size. Particles of iron oxide obtained have been characterized for their stability in solventmedia, size, size distribution and crystallinity and it was found that when the negative value of thezeta potential increases, particle size decreases. A narrow particle size distribution with D100 = 275nm was obtained with chitosan and starch templates. SEM measurements further confirm the particlesize measurement. Diffuse reflectance UV–VIS spectra values show that the template is completelyremoved from the final iron oxide particles and powder XRD measurements show that the peaks ofthe diffractogram are in agreement with the theoretical data of hematite. The salient observations ofour study shows that there occurs a direct correlation between zeta potential, polydispersity index,band gap energy and particle size. The crystallite size of the particles was found to be 30–35 nm. Alarge negative zeta potential was found to be advantageous for achieving lower particle sizes, as theparticles remained discrete without agglomeration.

  17. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali- zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex- pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  18. In situ preparation of Nanoparticles/polymer composites

    Institute of Scientific and Technical Information of China (English)

    SUN HaiZhu; YANG Bai

    2008-01-01

    Nanoparticle (NP) is the matter between molecule and bulk material. It has attracted much attention in catalysis, optoelectronics and biology due to its unique physical and chemical properties. Incorporation of these NPs into the polymer matrix is one of the best methods to display their special functions, which not only stabilize the NPs but also realize the functional assembly of NPs and polymers. However, reali-zation of this idea depends largely on the compatibility of NPs and polymers as well as the interaction between them. Therefore, many methods have been developed to prepare the composites of NPs and polymers in order to obtain the function ex-pected. In this review, we mainly focus on the combination of in situ method with other methods to synthesize different functional one-dimension, two-dimension as well as bulk composites, which has been recently developed by our group. The most striking character of our method is the excellent compatibility between NPs and polymers which ensures a homogeneous distribution of NPs in the polymer matrix. The existence of the polymer network makes the NPs more stable, and is significant for displaying their functions.

  19. Fluorescence of silicon nanoparticles prepared by nanosecond pulsed laser

    Directory of Open Access Journals (Sweden)

    Chunyang Liu

    2014-03-01

    Full Text Available A pulsed laser fabrication method is used to prepare fluorescent microstructures on silicon substrates in this paper. A 355 nm nanosecond pulsed laser micromachining system was designed, and the performance was verified and optimized. Fluorescence microscopy was used to analyze the photoluminescence of the microstructures which were formed using the pulsed laser processing technique. Photoluminescence spectra of the microstructure reveal a peak emission around 500 nm, from 370 nm laser irradiation. The light intensity also shows an exponential decay with irradiation time, which is similar to attenuation processes seen in porous silicon. The surface morphology and chemical composition of the microstructure in the fabricated region was also analyzed with multifunction scanning electron microscopy. Spherical particles are produced with diameters around 100 nm. The structure is compared with porous silicon. It is likely that these nanoparticles act as luminescence recombination centers on the silicon surface. The small diameter of the particles modifies the band gap of silicon by quantum confinement effects. Electron-hole pairs recombine and the fluorescence emission shifts into the visible range. The chemical elements of the processed region are also changed during the interaction between laser and silicon. Oxidation and carbonization play an important role in the enhancement of fluorescence emission.

  20. Metal nanoparticle deposited inorganic nanostructure hybrids, uses thereof and processes for their preparation

    Science.gov (United States)

    Tenne, Reshef; Tsverin, Yulia; Burghaus, Uwe; Komarneni, Mallikharjuna Rao

    2016-01-26

    This invention relates to a hybrid component comprising at least one nanoparticle of inorganic layered compound (in the form of fullerene-like structure or nanotube), and at least one metal nanoparticle, uses thereof as a catalyst, (e.g. photocatalysis) and processes for its preparation.

  1. Preparation and Characterization of Rare Earth Doped Fluoride Nanoparticles

    Directory of Open Access Journals (Sweden)

    Timothy A. DeVol

    2010-03-01

    Full Text Available This paper reviews the synthesis, structure and applications of metal fluoride nanoparticles, with particular focus on rare earth (RE doped fluoride nanoparticles obtained by our research group. Nanoparticles were produced by precipitation methods using the ligand ammonium di-n-octadecyldithiophosphate (ADDP that allows the growth of shells around a core particle while simultaneously avoiding particle aggregation. Nanoparticles were characterized on their structure, morphology, and luminescent properties. We discuss the synthesis, properties, and application of heavy metal fluorides; specifically LaF3:RE and PbF2, and group IIA fluorides. Particular attention is given to the synthesis of core/shell nanoparticles, including selectively RE-doped LaF3/LaF3, and CaF2/CaF2 core/(multi-shell nanoparticles, and the CaF2-LaF3 system.

  2. Preparation and Characterization of Monodisperse Nickel Nanoparticles by Polyol Process

    Institute of Scientific and Technical Information of China (English)

    LI Peng; GUAN Jianguo; ZHANG Qingjie; ZHAO Wenyu

    2005-01-01

    Polymer-protected monodisperse nickel nanoparticles were synthesized by a modified polyol reduction method in the presence of poly ( N-vinyl- 2-pyrrolidone ). These nanoparticles were characterized by transmission electron microscopy (TEM), X- ray diffraction ( XRD ), selected area electron diffraction ( SAED ), as well as vibrating sample magnetometer (VSM). The experimental results show that the addition of PVP and the concentration of NaOH have strong influences on the size, agglomeration and uniformity of nanoparticles. In the presence of PVP and NaOH with low concentrations, monodisperse nickel nanoparticles with average diameters about 42 nm were obtained and characterized to be pure nickel crystalline with fcc structure. Secondary structures such as clusters, loops, and strings resulted from magnetic interactions between particles were observed. The chemical interaction between the PVP and nickel nanoparticles was found by FTIR. The saturation magnetization ( Ms ), remanent magnetization (Mr) and coercivity ( Hc ) of these nickel nanoparticles are lower than those of bulk nickel.

  3. Studies on the Preparation Properties and Drug Loading of theStarch Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    WangJin; HouXinpu

    2001-01-01

    On the basis of studies of starch microspheres, we carried out the research program of starch nanoparticles(SNP)which included preparation, physical and chemical properties and drug loading. The SNP was prepared using reversedphase-microemulsion polymerization method, with soluble starch as raw material. The particle size, quantity ofphosphorous, degradability, scanning electron microgragh, IR spectra and stability of SNP were investigated. Thepharmacodynamics and concentration-time curve of insulin starch nanoparticles were determined.

  4. Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug

    OpenAIRE

    Liang Zhao; Bingya Zhu; Yunhong Jia; Wenjiu Hou; Chang Su

    2013-01-01

    Objective. To prepare biocompatible ciprofloxacin-loaded carboxymethyl chitosan nanoparticles (CCC NPs) and evaluate their cell specificity as well as antibacterial activity against Escherichia coli in vitro. Methods. CCC NPs were prepared by ionic cross-linking method and optimized by using Box-Behnken response surface method (BBRSM). Zeta potential, drug encapsulation, and release of the obtained nanoparticles in vitro were thoroughly investigated. Minimum inhibitory concentration (MIC) and...

  5. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications

    OpenAIRE

    Wei, Haoran; Rodriguez, Katia; Renneckar, Scott; Leng, Weinan; Vikesland, Peter J.

    2015-01-01

    Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated ...

  6. Preparation of EuSe nanoparticles from Eu(III) complex containing selenides

    International Nuclear Information System (INIS)

    The EuSe nanoparticles were prepared by the thermal reduction of Europium nitrate with new organic selenium compound, tetraphenylphosphonium diphenylphosphinediselenide (PPh4)(Se2P(C6H5)2), for the first time. EuSe nanoparticles were identified by the X-ray diffraction (XRD), the transmission electron microscope (TEM) and the energy dispersive X-ray spectroscopy (EDX) measurements. The average size of the EuSe nanoparticles was found to be 19 nm. The energy gap in EuSe nanoparticles of 19 nm was estimated by edge of absorption band, giving the energy gap of 1.86 eV

  7. Preparation and Characterization of Palladium Colloidal Nanoparticles by Thermal Decomposition of Palladium Acetate with Microwave Irradiation

    Institute of Scientific and Technical Information of China (English)

    Yixian CHEN; Baolin HE; Hanfan LIU

    2005-01-01

    A series of solvent-stabilized palladium colloidal nanoparticles were prepared via thermal decomposition of palladium acetate methylisobutylketone (MIBK) solution in the presence of alkali and alcohol with microwave irradiation. The colloidal nanoparticles were characterized with TEM, XPS and XRD. The average diameters of nanoparticles increase from 30 to 40 nm with the increase in concentration of palladium acetate. TEM and XRD observation demonstrated that the palladium colloidal nanoparticles were clusters agglomerated from hundreds of smaller palladium crystallines with size of 3~4 nm. The influence of the concentrations of alkali and alcohol to the particle size was also discussed.

  8. Preparation and characterization of aligned carbon nanotubes coated with titania nanoparticles

    Institute of Scientific and Technical Information of China (English)

    YU Hongtao; ZHAO Huimin; QUAN Xie; CHEN Shuo

    2006-01-01

    Well-aligned carbon nanotubes coated with titania (TiO2) were prepared by atmospheric pressure chemical vapor deposition (APCVD), and the sequential experiments including carbon nanotubes preparation, air-oxidation purification and titania nanoparticles coating were performed at different temperatures in the same reactor. Scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction patterns (XRD), and energy- dispersive X-ray spectra (EDX) demonstrated the well-aligned nanotubes and TiO2 nanoparticles in close proximity and the average diameter of TiO2 nanoparticles was 11.5 nm.

  9. Preparation of gold nanoparticles by γ-ray irradiation method using polyvinyl pyrrolidone (PVP) as stabilizer

    International Nuclear Information System (INIS)

    Gold nanoparticles were prepared from (Au3+) aqueous solution by the method of γ-ray irradiation using polyvinylpyrrolidone (PVP) as stabilizer. The saturated conversion dose (Au3+ --> Auo) determined by UV-Vis spectroscopy was found to be about 5 kGy. The UV-Vis spectrum showed that an absorption peak at λmax=524 nm due to surface plasmon resonance. The image of transmission electron microscopy (TEM) showed that the gold nanoparticles are mostly spherical in shape and have an average diameter of ≅20 nm. The prepared colloidal gold nanoparticles solution is good stability for 6 months of storage. (author)

  10. Preparation and properties of bio-compatible magnetic Fe3O4 nanoparticles

    International Nuclear Information System (INIS)

    In this work, we study the preparation and properties of bio-compatible magnetic nanoparticles for immunoassay and DNA detection. The magnetite (Fe3O4) nanoparticles were prepared by a chemical co-precipitation method and dextran was selected as the surfactant to suspend the nanoparticles. Suspended particles associated with avidin followed by biotin were qualitatively analyzed by enzyme-linked immunosorbent assay (ELISA) method. We found further the ethylenediamine blocked activated residual groups efficiently, hence enhancing the attachment of biotin for probing the avidin

  11. Preparing and Characterizing Chitosan Nanoparticles Containing Hemiscorpius lepturus Scorpion Venom as an Antigen Delivery System

    Directory of Open Access Journals (Sweden)

    Mohammadpour Dounighi, N.

    2012-11-01

    Full Text Available In recent years, chitosan nanoparticles have been studied widely for protein delivery. In this study, Hemiscorpius lepturus (HL venom was encapsulated in chitosan nanoparticles. The aim of the present work was to carry out a systematic study for preparing biocompatible and biodegradable nanoparticles for loading HL scorpion venom and to evaluate their potential as an antigen delivery system. In this study, HL venom loaded chitosan nanoparticles fabricated by ionic gelation of chitosan and tripolyphosphate and the factors which may be influenced in the preparation of nanoparticles were analyzed. Also, their physicochemical properties and in vitro release behavior were studied. The optimum encapsulation efficiency and capacity were observed when the chitosan concentration and HL venom were 2mg/ml and 500µg/ml, respectively. The HL venom loaded nanoparticles were in the size range of 130-160nm (polydispersity index values of 0.423 and exhibited the positive zeta potential. Transmission electron microscope imaging showed spherical and smooth surface of nanoparticles. The profiles of the release exhibited a burst releases about 50% in the first 4 hr and then slowed down at a constant rate. The obtained results suggested that the chitosan nanoparticles prepared in this work had the potential for antigen delivery.

  12. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    Directory of Open Access Journals (Sweden)

    Jes Ærøe Hyllested

    2015-01-01

    Full Text Available Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the nanoparticles are different depending on the fruit used for preparation. The green preparation process can result in individual nanoparticles with a very poor tendency to form aggregates with narrow gaps even when aggregation is forced by the addition of NaCl. This explains only modest enhancement factors for near-infrared-excited surface enhanced Raman scattering. In addition to the surface plasmon band, UV–visible absorption spectra show features in the UV range which indicates also the presence of small silver clusters, such as Ag42+. The increase of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm excitation.

  13. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.;

    2013-01-01

    Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......% rejection for urea and a water permeability around 10 L/(m2h) with 2M NaCl as draw solution. Our results demonstrate the feasibility of using aquaporin proteins in biomimetic membranes for technological applications....

  14. Polymeric nanoparticles containing diazepam: preparation, optimization, characterization, in-vitro drug release and release kinetic study

    Science.gov (United States)

    Bohrey, Sarvesh; Chourasiya, Vibha; Pandey, Archna

    2016-03-01

    Nanoparticles formulated from biodegradable polymers like poly(lactic-co-glycolic acid) (PLGA) are being extensively investigated as drug delivery systems due to their two important properties such as biocompatibility and controlled drug release characteristics. The aim of this work to formulated diazepam loaded PLGA nanoparticles by using emulsion solvent evaporation technique. Polyvinyl alcohol (PVA) is used as stabilizing agent. Diazepam is a benzodiazepine derivative drug, and widely used as an anticonvulsant in the treatment of various types of epilepsy, insomnia and anxiety. This work investigates the effects of some preparation variables on the size and shape of nanoparticles prepared by emulsion solvent evaporation method. These nanoparticles were characterized by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM). Zeta potential study was also performed to understand the surface charge of nanoparticles. The drug release from drug loaded nanoparticles was studied by dialysis bag method and the in vitro drug release data was also studied by various kinetic models. The results show that sonication time, polymer content, surfactant concentration, ratio of organic to aqueous phase volume, and the amount of drug have an important effect on the size of nanoparticles. Hopefully we produced spherical shape Diazepam loaded PLGA nanoparticles with a size range under 250 nm with zeta potential -23.3 mV. The in vitro drug release analysis shows sustained release of drug from nanoparticles and follow Korsmeyer-Peppas model.

  15. Water driven stabilization of ZnS nanoparticles prepared by exploding wire technique

    International Nuclear Information System (INIS)

    ZnS nanoparticles, prepared employing exploding wire technique (EWT), demonstrate water-induced stabilization with time. The structural evolution of ZnS nanoparticles and their interaction with the surrounding aqueous media is systematically studied at the three distinct stages of time. The structural properties of nanoparticles were examined by an assortment of characterization techniques. However, in this article we focus on x-ray diffraction (XRD) and x-ray photoelectron spectroscopic (XPS) investigation of nanoparticles. The XRD results indicate transformation of hexagonal phase of prepared ZnS nanocrystals. The lattice constants and strain in ZnS nanoparticles are estimated at each stage of transition. Alteration in crystal structure of ZnS nanoparticles, transforming in presence of water, is an outcome of gradual variation in lattice constants and strain. Variation in stoichiometry of ZnS nanoparticles, at respective stages of transformation, is found through XPS analysis. Furthermore, in order to determine the alterations in the oxidation state and energies of the nanoparticle constituents, line shape analysis of Zn 2p3/2 peaks at three stages, is also performed. Thus, XPS analysis, accompanied with the XRD interpretations, vividly deciphers the structural evolution of ZnS nanoparticles in aqueous environment. (papers)

  16. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  17. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  18. Novel self-assembled pH-responsive biomimetic nanocarriers for drug delivery.

    Science.gov (United States)

    Wu, Minming; Cao, Zhaoyu; Zhao, Yunfei; Zeng, Rong; Tu, Mei; Zhao, Jianhao

    2016-07-01

    Novel pH-responsive biodegradable biomimetic nanocarriers were prepared by the self-assembly of N-acetyl-l-histidine-phosphorylcholine-chitosan conjugate (NAcHis-PCCs), which was synthesized via Atherton-Todd reaction to couple biomembrane-like phosphorylcholine (PC) groups, and N,N'-carbonyldiimidazole (CDI) coupling reaction to link pH-responsive N-acetyl-l-histidine (NAcHis) moieties to chitosan. In vitro biological assay revealed that NAcHis-PCCs nanoparticles had excellent biocompatibility to avoid adverse biological response mainly owing to their biomimetic PC shell, and DLS results confirmed their pH-responsive behavior in acidic aqueous solution (pH≤6.0). Quercetin (QUE), an anti-inflammatory, antioxidant and potential anti-tumor hydrophobic drug, was effectively loaded in NAcHis-PCCs nanocarriers and showed a pH-triggered release behavior with the enhanced QUE release at acidic pH5.5 compared to neutral pH7.4. The results indicated that pH-responsive biomimetic NAcHis-PCCs nanocarriers might have great potential for site-specific delivery to pathological acidic microenvironment avoiding unfavorable biological response. PMID:27127063

  19. Colloidal CZTS nanoparticles and films: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Min; Gong, Yanmei; Xu, Jian, E-mail: xujian@nbu.edu.cn; Fang, Gang; Xu, Qingbo; Dong, Jianfeng

    2013-10-15

    Highlights: •CZTS nanoparticles (NPs) with size ∼8–16 nm were synthesized by wet-chemical process. •Crystal phase of CZTS NPs was affected by the reaction temperature in synthesis. •Densified films were prepared from colloids, with drying and sintering in vacuum. •CZTS films (∼5 μm in thickness) have the band-gap of ∼1.5–2.0 eV. •CZTS conductivity change due to illumination was measured by AC impedance method. -- Abstract: Cu{sub 2}ZnSnS{sub 4} (CZTS) compound semiconductor has the advantage of good matching with solar radiation in optical band-gap, large absorption coefficient, non-toxic and especially large abundance ratios of elements, so that CZTS has been considered as a good absorber layer used for the thin-film solar cells with most industrialization promising and environment friendly. In the present work, colloidal CZTS nanocrystals (average size ∼8–16 nm) with the band gap of ∼1.5 eV were synthesized via wet-chemical processing, using oleylamine (OLA) as solvent and capping molecules. The colloids were characterized by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–Vis–NIR spectroscopy. The structure and morphology of nanocrystals were influenced with the reaction temperature. The resulting nanocrystals were kesterite-phase CZTS when the reaction temperature was lower, but were wurtzite-phase CZTS when the reaction temperature above 275 °C. The CZTS films on glass substrates were prepared by drop-casting, from the colloidal 10 wt% CZTS–toluene solution where the CZTS colloids were synthesized at 260 °C with three different recipes. The resulting films with different heat-treatments were investigated by XRD, SEM and energy dispersive spectroscopy (EDS). Densified CZTS films (∼5 μm in thickness) could be obtained by drying and sintering in vacuum. The CZTS films have the band-gap around 1.6–2.0 eV, due to Zn rich and S poor in the films

  20. Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

    DEFF Research Database (Denmark)

    Hyllested, Jes Ærøe; Espina Palanco, Marta; Hagen, Nicolai;

    2015-01-01

    Chemicals typically available in plants have the capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges...... as reducing agents. The evolvement of a characteristic surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles...... of the plasmon absorption correlates with the decrease of absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multi...

  1. Core/shell structured ZnO/SiO2 nanoparticles: Preparation, characterization and photocatalytic property

    International Nuclear Information System (INIS)

    ZnO nanoparticles were prepared by a simple chemical synthesis route. Subsequently, SiO2 layers were successfully coated onto the surface of ZnO nanoparticles to modify the photocatalytic activity in acidic or alkaline solutions. The obtained particles were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive spectrometry (EDS) and zeta potential. It was found that ultrafine core/shell structured ZnO/SiO2 nanoparticles were successfully obtained. The photocatalytic performance of ZnO/SiO2 core/shell structured nanoparticles in Rhodamine B aqueous solution at varied pH value were also investigated. Compared with uncoated ZnO nanoparticles, core/shell structured ZnO/SiO2 nanoparticles with thinner SiO2 shell possess improved stability and relatively better photocatalytic activity in acidic or alkaline solutions, which would broaden its potential application in pollutant treatment.

  2. Preparation, characterization, and manipulation of iron platinum, barium titanate, and vanadium oxide nanoparticles

    Science.gov (United States)

    Morris, William Homer, III

    2008-12-01

    New synthesis strategies for preparation of FePt, BaTiO 3, VO2, V2O3, V2O5 , and V6O13 nanoparticles are presented in this thesis. Electron microscopy, diffraction, elemental analysis, and physical property measurement studies confirm the composition and structure of the synthesized material. Also reported is size-selection of ferromagnetic nanoparticles by binding PEG (2000 MW) ligand to particle surfaces and fractionally precipitating more narrowed size cuts. Large (30--100 nm) ferromagnetic nanoparticles are prepared by employing vesicle templates. Barium titanate nanoparticles with an average diameter of 3.8 nm have been synthesized within inverse micelles. A variety of vanadium oxide compositions within the nanometer size regime have been prepared using sol-gel chemistry.

  3. Preparation and Characterization of ZrO2 Nanoparticles Capped by Trioctylphosphine Oxide(TOPO)

    Institute of Scientific and Technical Information of China (English)

    MA Jianqi

    2011-01-01

    Monodisperse ZrO2 nanoparticles capped by trioctylphosphine oxide(TOPO)were prepared in non-aqueous solvent using in-situ synthesis method.Transmission electron microscopy(TEM),X-ray diffraction(XRD),X-ray photoelectron spectrometer(XPS),Fourier transformation infrared spectroscopy (FTIR),and thermogravimetric analysis(TGA)were adopted to characterize and investigate the size,structure,composition,and the binding manners between organic capping agent TOPO and inorganic ZrO2 nanocores of the as-prepared nanoparticles.In addition,the nanoparticles were also studied to determine their solubility and relative stability.The experimental results show that the prepared nanoparticles contain about 25% organic capping shell TOPO,75% inorganic ZrO2 nanocores,and can be easily dissolved and be stably disersed in nonpolar organic solvents.

  4. Preparation of Mg-based hydrogen storage materials from metal nanoparticles

    International Nuclear Information System (INIS)

    By hydrogen plasma metal reaction method, we obtained Mg, Ni, Co, Cu and Fe nanoparticles. Mg nanoparticles show larger average particle size than Ni, Co, Cu and Fe ones. From these metal nanoparticles, Mg-based hydrogen storage alloys (Mg2Ni, Mg2Co and Mg2Cu) and hydrides (Mg2NiH4, Mg2CoH5 and Mg2FeH6) were prepared by solid-solid and gas-solid reactions. Powder X-ray diffraction (XRD) was used to define the structure and composition information. The preparation results in different atmosphere were compared and discussed. Hydrogen and nanostructure play important roles in the preparation of Mg-based hydrogen storage alloys/hydrides in convenient conditions from metal nanoparticles

  5. Preparation of highly dispersed core/shell-type titania nanocapsules containing a single Ag nanoparticle.

    Science.gov (United States)

    Sakai, Hideki; Kanda, Takashi; Shibata, Hirobumi; Ohkubo, Takahiro; Abe, Masahiko

    2006-04-19

    Core/shell-type titania nanocapsules containing a single Ag nanoparticle were prepared. Ag nanoparticles were prepared using the reduction of silver nitrate with hydrazine in the presence of cetyltrimethylammonium bromide (CTAB) as protective agent. The sol-gel reaction of titanium tetraisopropoxide (TTIP) was used to prepare core/shell-type titania nanocapsules with CTAB-coated Ag nanoparticles as the core. TEM observations revealed that the size of the core (Ag particle) and the thickness of the shell (titania) of the core/shell particles obtained are about 10 nm and 5-10 nm, respectively. In addition, the nanocapsules were found to be dispersed in the medium as individual particles without aggregation. Moreover, titania coating caused the surface plasmon absorption of Ag nanoparticles to shift toward the longer wavelength side. PMID:16608315

  6. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid

    International Nuclear Information System (INIS)

    A novel and simple method has been proposed to prepare magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system. - Highlights: • A novel and simple method for preparation of nanocomposites for biomedicine. • All the materials are non-toxic and biocompatibility. • This paper gives systematic study of the nanocomposites in biomedicine

  7. Characterization of metal nanoparticles/ conducting polymer prepared by radiation technique

    International Nuclear Information System (INIS)

    Full text: Composites of conducting polymer-metal nanoparticles are of great interest in modern physical and chemical researchers due to their unique physical and chemical properties, which are distinct from those of the bulk metal and molecules .Conducting polymer-metal nanoparticles can be used in diverse fields such as electronics, electrocatalysts and optoelectronics. Conducting polymer and metal nanoparticles blended in polyvinyl alcohol (PVA) was synthesized by irradiating as films containing monomer and metal salt at different concentrations with gamma radiation technique. In the same time the conducting polymer and metal nanoparticles were formed due to oxidation of monomer and reduction of metal ion respectively by radiation. The structure analysis of conducting polymer-metal nanoparticles films were studied by X-Ray diffraction system which appears different diffraction peak angles respectively .The optical properties were investigated using UV -Vis spectrophotometer that show optical absorbance peak at λ = (780 , 430) nm of conducting polymer and metal nanoparticles respectively .From the UV-spectrum the band gap energy (Eg) was deduced and found to be decreases from (1.4, 2.8) eV at 10 kGy to (1.2,2.52) eV at 50 kGy for conducting polymer and metal nanoparticles respectively. (author)

  8. Primary Investigation of the Preparation of Nanoparticles by Precipitation

    Czech Academy of Sciences Publication Activity Database

    Vaculíková, E.; Grünwaldová, Veronika; Král, V.; Dohnal, J.; Jampílek, J.

    2012-01-01

    Roč. 17, č. 9 (2012), s. 11067-11078. ISSN 1420-3049 Institutional support: RVO:61388980 Keywords : steroids * nanoparticles * precipitation * excipients * dynamic light scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 2.428, year: 2012

  9. Popping of graphite oxide: application in preparing metal nanoparticle catalysts.

    Science.gov (United States)

    Gao, Yongjun; Chen, Xi; Zhang, Jiaguang; Asakura, Hiroyuki; Tanaka, Tsunehiro; Teramura, Kentaro; Ma, Ding; Yan, Ning

    2015-08-26

    A popcorn-like transformation of graphite oxide (GO) is reported and used to synthesize metal nanoparticle catalysts. The popping step is unique and essential, not only generating a high-surface-area support but also partially decomposing the metal precursors to form well-separated metal oxide nuclei, which would further evolve into highly dispersed and uniform-sized nanoparticles in the subsequent reduction. PMID:26179983

  10. MgO nanoparticles as antibacterial agent: preparation and activity

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhen-Xing, E-mail: tangzhenxing@126.com [Department of Food Science, Anqing, Vocational and Technical College, Anqing, Anhui (China); Lv, Bin-Feng [Date Palm Research Center, King Faisal University, (Saudi Arabia)

    2014-07-15

    Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed. (author)

  11. Preparation, characterization and optimization of glipizide controlled release nanoparticles

    OpenAIRE

    Emami, J; Boushehri, M.S. Shetab; J. Varshosaz

    2014-01-01

    The purpose of the present study was to develop glipizide controlled release nanoparticles using alginate and chitosan thorough ionotropic controlled gelation method. Glipizide is a frequently prescribed second generation sulfonylurea which lowers the blood glucose in type-two diabetics. Quick absorption of the drug from the gastrointestinal tract along with short half- life of elimination makes it a good candidate for controlled release formulations. Alginate-chitosan nanoparticles (ACNP) ar...

  12. MgO nanoparticles as antibacterial agent: preparation and activity

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Tang

    2014-09-01

    Full Text Available Bacterial pollution is a great risk for human health. Nanotechnology offers a way to develop new inorganic antibacterial agents. Nano-inorganic metal oxide has a potential to reduce bacterial contamination. MgO is an important inorganic oxide and has been widely used in many fields. Many studies have shown that MgO nanoparticles have good antibacterial activity. Therefore, in this paper, the main synthesis methods, antibacterial activity and antibacterial mechanisms of MgO nanoparticles are reviewed.

  13. Particle size control of silver nanoparticles prepared by pulsed wire discharge in liquid media

    International Nuclear Information System (INIS)

    Silver nanoparticles were prepared by pulsed wire discharge (PWD) using silver wire in deionized water at various relative energy (K) from 10 to 98, which is ratio of the charged energy of the capacitor in the electrical circuit to the vaporization energy of the wire. From energy deposition calculated by the measured voltage and current waveforms, deposited energy of the wire was increased with increasing K. From X-ray diffraction (XRD) analysis, prepared nanoparticles were phase identified as silver. From transmission electron microscopy observations, the shape of prepared silver nanoparticles were spherical and the median particle diameter (D50) and the geometric standard deviation (σg) were calculated from the particle distribution. D50 was decreased from 34 to 19 nm with increasing K. The particle size in prepared by PWD in liquid media can be controlled by K.

  14. Preparation of gold nanoparticle dimers via streptavidin-induced interlinking

    Energy Technology Data Exchange (ETDEWEB)

    Zon, Vera B.; Sachsenhauser, Matthias; Rant, Ulrich, E-mail: rant@wsi.tum.de [Technische Universitaet Muenchen, Walter Schottky Institut (Germany)

    2013-10-15

    There is great interest in establishing efficient means of organizing nanoparticles into complex structures, especially in fields like nano-optical devices. One of the demonstrated routes uses biomolecular scaffolds, like the streptavidin-biotin system, to deterministically separate and structure particle complexes. However, controlled formation of streptavidin-linked nanoparticle dimers or trimers is challenging, and large aggregates are often formed under conditions that are difficult to regulate. Here, we studied the aggregates and interlinking kinetics of biotin-functionalized 20 nm gold nanoparticles in the presence of the interlinking protein, streptavidin. We found two different protein-linker concentration regions where small stable particle aggregates are formed: when the protein and nanoparticle concentrations are similar and when the protein to nanoparticle concentration ratio exceeds intermediate concentrations (10:1-100:1) that promote precipitation of large aggregates. We attribute this behavior to the limited availability of free-linker molecules and the limited availability of free ligand (biotin) on the particle surface for low and high protein concentrations, respectively. Furthermore, we show that the product can be additionally enriched up to 25 % through either centrifugation in sucrose or size-exclusion chromatography. These results provide additional understanding into the assembly of ligand-functionalized nanoparticles with water-soluble linkers and provide a facile way to produce well-defined small aggregates for potential use in, for instance, surface-enhanced spectroscopy.

  15. Preparation and characterization of magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid

    Science.gov (United States)

    Qin, H.; Wang, C. M.; Dong, Q. Q.; Zhang, L.; Zhang, X.; Ma, Z. Y.; Han, Q. R.

    2015-05-01

    A novel and simple method has been proposed to prepare magnetic Fe3O4-chitosan nanoparticles loaded with isoniazid (Fe3O4/CS/INH nanocomposites). Efforts have been made to develop isoniazid (INH) loaded chitosan (CS) nanoparticles by ionic gelation of chitosan with tripolyphosphate (TPP). The factors that influence the preparation of chitosan nanoparticles, including the TPP concentration, the chitosan/TPP weight ratio and the chitosan concentration on loading capacity and encapsulation efficiency of chitosan nanoparticles were studied. The magnetic Fe3O4 nanoparticles were prepared by co-precipitation method of Fe2+ and Fe3+. Then the magnetic Fe3O4/CS/INH nanocomposites were prepared by ionic gelation method. The magnetic Fe3O4 nanoparticles and magnetic Fe3O4/CS/INH nanocomposites were characterized by XRD, TEM, FTIR and SQUID magnetometry. The in vitro release of Fe3O4/CS/INH nanocomposites showed an initial burst release in the first 10 h, followed by a more gradual and sustained release for 48 h. It is suggested that the magnetic Fe3O4/CS/INH nanocomposites may be exploited as potential drug carriers for controlled-release applications in magnetic targeted drugs delivery system.

  16. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching.

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-08-14

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface. PMID:27417026

  17. Study on fluorouracil–chitosan nanoparticle preparation and its antitumor effect

    OpenAIRE

    Chen, Gaimin; Gong, Rudong

    2016-01-01

    To successfully prepare fluorouracil–chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil–chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU–CS–mPEG prodrugs, and infrared, 1H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prep...

  18. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    Science.gov (United States)

    Anh, Nguyen Tuan; Chi, Nguyen T.; Khai Tran, T.; Tuyen Dao, T. P.; Nhan Le, N. T.; Mau Chien, Dang; Hoai, Nguyen To

    2012-12-01

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid.

  19. Preparation of lisinopril-capped gold nanoparticles for molecular imaging of angiotensin-converting enzyme

    Science.gov (United States)

    Li, Yuan; Baeta, Cesar; Aras, Omer; Daniel, Marie-Christine

    2009-05-01

    Overexpression of angiotensin-converting enzyme (ACE) has been associated with the pathophysiology of cardiac and pulmonary fibrosis. Moreover, the prescription of ACE inhibitors, such as lisinopril, has shown a favorable effect on patient outcome for patients with heart failure or systemic hypertension. Thus targeted imaging of the ACE would be of crucial importance for monitoring tissue ACE activity as well as the treatment efficacy in heart failure. In this respect, lisinopril-coated gold nanoparticles were prepared to provide a new type of probe for targeted molecular imaging of ACE by tuned K-edge computed tomography (CT) imaging. The preparation involved non-modified lisinopril, using its primary amine group as the anchoring function on the gold nanoparticles surface. The stable lisinopril-coated gold nanoparticles obtained were characterized by UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM). Their zeta potential was also measured in order to assess the charge density on the modified gold nanoparticles (GNPs).

  20. A Novel Preparation Method for 5-Aminosalicylic Acid Loaded Eudragit S100 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Sining Li

    2012-05-01

    Full Text Available In this study, solution enhanced dispersion by supercritical fluids (SEDS technique was applied for the preparation of 5-aminosalicylic acid (5-ASA loaded Eudragit S100 (EU S100 nanoparticles. The effects of various process variables including pressure, temperature, 5-ASA concentration and solution flow rate on morphology, particle size, 5-ASA loading and entrapment efficiency of nanoparticles were investigated. Under the appropriate conditions, drug-loaded nanoparticles exhibited a spherical shape and small particle size with narrow particle size distribution. In addition, the nanoparticles prepared were characterized by X-ray diffraction, Differential scanning calorimetry and Fourier transform infrared spectroscopy analyses. The results showed that 5-ASA was imbedded into EU S100 in an amorphous state after SEDS processing and the SEDS process did not induce degradation of 5-ASA.

  1. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    International Nuclear Information System (INIS)

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility

  2. Sample preparation and EFTEM of Meat Samples for Nanoparticle Analysis in Food

    Science.gov (United States)

    Lari, L.; Dudkiewicz, A.

    2014-06-01

    Nanoparticles are used in industry for personal care products and the preparation of food. In the latter application, their functions include the prevention of microbes' growth, increase of the foods nutritional value and sensory quality. EU regulations require a risk assessment of the nanoparticles used in foods and food contact materials before the products can reach the market. However, availability of validated analytical methodologies for detection and characterisation of the nanoparticles in food hampers appropriate risk assessment. As part of a research on the evaluation of the methods for screening and quantification of Ag nanoparticles in meat we have tested a new TEM sample preparation alternative to resin embedding and cryo-sectioning. Energy filtered TEM analysis was applied to evaluate thickness and the uniformity of thin meat layers acquired at increasing input of the sample demonstrating that the protocols used ensured good stability under the electron beam, reliable sample concentration and reproducibility.

  3. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Bobadilla, L.F., E-mail: lbobadilla@iciq.es [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain); Garcia, C. [Physics Department, Bogazici University, North Campus KB 331-O, Bebek/Istambul (Turkey); Delgado, J.J. [Departamento de Ciencia de los Materiales e Ingenieria Metalurgica y Quimica Inorganica, Facultad de Ciencias, Universidad de Cadiz, Campus Rio San Pedro, E-11510 Puerto Real, Cadiz (Spain); Sanz, O. [Grupo de Ingenieria Quimica, Departamento de Quimica Aplicada, Facultad de Ciencias Quimicas, UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 San Sebastian (Spain); Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. [Departamento de Quimica Inorganica e Instituto de Ciencia de Materiales, Centro mixto Universidad de Sevilla-CSIC, Av. Americo Vespucio, 41092 Sevilla (Spain)

    2012-11-15

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution. - Highlights: Black-Right-Pointing-Pointer Ni{sub x}Sn{sub y} alloys nanoparticles have been prepared by polyol method. Black-Right-Pointing-Pointer NiSn nanoparticles exhibit superparamagnetic behavior. Black-Right-Pointing-Pointer The PVP addition favours the particles isolation.

  4. Preparation and characterization of ketoprofen loaded eudragit RS polymeric nanoparticles for controlled release

    International Nuclear Information System (INIS)

    Nanospheres containing ketoprofen (Keto) and polymer eudragit RS were prepared using an emulsion solvent evaporation method. The ultrasonic probe (VCX500, vibracell) was used as a tool to disperse oil phase into aqueous phase leading to water/oil emulsion. Nanoparticles were successfully prepared and their morphologies and diameters were confirmed by transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. The result showed that particles were spherical with submicron size. The particle size was dependent on the RS concentration, emulsification tools and the types of organic solvents. For the encapsulation ability, Keto-loaded RS nanoparticle showed 9.8% of Keto in nanoparticle, which was evaluated by high-performance liquid chromatography (HPLC). Moreover, the drug release behavior of Keto-loaded eudragit RS nanoparticle was also investigated in vitro at pH 7.4 and compared to referential profenid. (paper)

  5. Preparation of cobalt nanoparticles from polymorphic bacterial templates: A novel platform for biocatalysis.

    Science.gov (United States)

    Jang, Eunjin; Shim, Hyun-Woo; Ryu, Bum Han; An, Deu Rae; Yoo, Wan Ki; Kim, Kyeong Kyu; Kim, Dong-Wan; Kim, T Doohun

    2015-11-01

    Nanoparticles have gathered significant research attention as materials for enzyme immobilization due to their advantageous properties such as low diffusion rates, ease of manipulation, and large surface areas. Here, polymorphic cobalt nanoparticles of varied sizes and shapes were prepared using Micrococcus lylae, Bacillus subtilis, Escherichia coli, Paracoccus sp., and Haloarcula vallismortis as bacterial templates. Furthermore, nine lipases/carboxylesterases were successfully immobilized on these cobalt nanoparticles. Especially, immobilized forms of Est-Y29, LmH, and Sm23 were characterized in more detail for potential industrial applications. Immobilization of enzymes onto cobalt oxide nanoparticles prepared from polymorphic bacterial templates may have potential for efficient hydrolysis on an industrial-scale, with several advantages such as high retention of enzymatic activity, increased stability, and strong reusability. PMID:26358553

  6. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Eduardo J; Garcia-Barrasa, Jorge; Lopez-de-Luzuriaga, Jose M; Monge, Miguel [Departamento de Quimica Grupo de SIntesis Quimica de La Rioja, UA-CSIC, Universidad de La Rioja, Complejo CientIfico-Tecnologico, E-26004 Logrono (Spain); Laguna, Antonio [Departamento de Quimica Inorganica, Instituto de Ciencia de Materiales de Aragon, Universidad de Zaragoza-CSIC, E-50009 Zaragoza (Spain); Torres, Carmen [Departamento de Agricultura y Alimentacion, Universidad de La Rioja, Complejo Cientifico-Tecnologico, E-26004 Logrono (Spain)], E-mail: eduardo.fernandez@unirioja.es

    2008-05-07

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu{sub 4}[Ag(C{sub 6}F{sub 5}){sub 2}] has been treated with AgClO{sub 4} in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C{sub 6}F{sub 5})] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 {mu}g ml{sup -1} of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness.

  7. The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach

    International Nuclear Information System (INIS)

    Silver nanoparticles of small size with a high surface to volume ratio have been prepared using an organometallic approach. For this, the complex NBu4[Ag(C6F5)2] has been treated with AgClO4 in a 1:1 molar ratio, giving rise to the nanoparticle precursor [Ag(C6F5)] in solution. Addition of one equivalent of hexadecylamine (HDA) and 5 h of reflux in toluene leads to a deep yellow solution containing monodisperse silver nanoparticles (Ag NPs) of ca. 10 nm. This approach leads to nanoparticles with almost uncontaminated surfaces which make them very reactive. Antimicrobial studies show that these nanoparticles are very active as antimicrobial agents. Very low concentrations between 12 and 25 μg ml-1 of Ag NPs are enough to produce bacteriostatic and bactericidal effectiveness

  8. Quasi-Hexagonal Ordered Arrays of FePt Nanoparticles Prepared by a Micellar Method

    Institute of Scientific and Technical Information of China (English)

    Qu sheng; ZHANG Xing-Wang; YIN Zhi-Gang; YOU Jiug-Bi; CHEN Nuo-Fu

    2007-01-01

    Hexagonally ordered arrays of magnetic FePt nanoparticles on Si substrates are prepared by a self assembly of diblock copolymer PS-b-P2VP in toluene.a dip coating process and finally plasma treatment.The as-treated FePt nanoparticles are covered by an oxide layer that can be removed by a 40s Ar+sputtering.The effects of the sequence of adding salts on the composition distribution are revealed by x-ray photoelectron spectroscopy measurements.No particle agglomeration.is observed after 600℃ annealing for the present ordered array of FePt nanoparticles,which exhibits advantages in patterning FePt nanoparticles by a micellar method.Moreover,magnetic properties of the annealed RePt nanoparticles at room temperature are investigated by a vibrating sample magnetometer.

  9. Preparation and formation mechanism of Al2O3 nanoparticles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    HUANG Ke-long; YIN Liang-guo; LIU Su-qin; LI Chao-jian

    2007-01-01

    Al2O3 nanoparticles were prepared by polyethylene glycol octylphenyl ether(Triton X-100)/n-butyl alcohol/cyclohexane/ water W/O reverse microemulsion. The proper calcination temperature was determined at 1 150 ℃ by thermal analysis of the precursor products. The structures and morphologies of Al2O3 nanoparticles were characterized by X-ray diffraction, transmission electron microscopy and UV-Vis spectra. The influences of mole ratio of water to surfactant on the morphologies and the sizes of the Al2O3 nanoparticles were studied. With the increase of surfactant content, the particles size becomes larger. The agglomeration of nanoparticles was solved successfully. And the formation mechanisms of Al2O3 nanoparticles in the reverse microemulsion were also discussed.

  10. Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique

    International Nuclear Information System (INIS)

    We have synthesized the maghemite (γ-Fe2O3) nanoparticles by a chemical coprecipitation technique of ferric and ferrous ions in alkali solution through the pipette drop method (pipette diameter: 2000 μm) and the piezoelectric nozzle method (nozzle size: 50 μm). The microstructures of nanoparticles were characterized by X-ray diffractometry (XRD) and transmission electron microscopy (TEM). The size distribution of the maghemite nanoparticles prepared by typical pipette drop method is from 5 to 8 nm. However, the nanoparticles made by piezoelectric nozzle method shows a small size and a very narrow size distribution from 3 to 5 nm. Zero-field-cooling (ZFC) and field-cooling (FC) magnetization measurements were performed using a superconducting quantum interference device magnetometer from 2 to 300 K to investigate the magnetic properties of nanoparticles. The FC/ZFC magnetization measurements showed a typical superparamagnetic behavior with very narrow size distribution

  11. Preparation of nanoparticles from acrylated palm oil microemulsion using radiation technique

    International Nuclear Information System (INIS)

    The use of microemulsion in the development of nanoparticle based on acrylated palm oil product is demonstrated. Acrylated palm oil microemulsions were prepared using ionic surfactant. Combination methods of emulsion polymerization and radiation crosslinking were applied to the microemulsion system for synthesizing nanoparticle. The ionizing radiation technique was introduced to generate a crosslinking reaction in the development of nanoparticle. The nanoparticle was evaluated in terms of particle diameter, surface charge, pH and conductance. Their image was captured using Transmission electron microscopy (TEM). Results show that the size, charge and shape of the particles are influenced by concentration of surfactants, monomer concentration, radiation dose and time of storage. The study showed a promising method to produced nanoparticle. This nano-sized product has the potential to be utilized as controlled-drug-release-carrier. (Author)

  12. Phase Transition of Iron-Platinum Nanoparticles Prepared in Water-In-Oil Microemulsions

    Science.gov (United States)

    Hyie, Koay Mei; Yaacob, Iskandar Idris

    2009-06-01

    FePt nanoparticles were successfully prepared in water-in-oil microemulsions. Two different atmospheric conditions were used during annealing—argon and forming gas (95% argon+5% hydrogen). X-ray diffraction (XRD) result showed that fcc FePt nanoparticles annealed in forming gas atmosphere transformed into Pt3Fe phase. However, the as-synthesized fcc FePt could not be transformed to other phase in argon gas atmosphere. Variation of water/surfactant (w) ratio of 0.3, 0.5 and 0.65 were also investigated in order to produce fct FePt nanoparticles. After annealing at 700° C in forming gas atmosphere, FePt nanoparticles produced using w of 0.5 transformed into the ordered face centered tetragonal (fct) FePt structure while the nanoparticles formed using w of 0.3 and 0.65 turned into Pt3Fe phase.

  13. Exploring the Preparation of Albendazole-Loaded Chitosan-Tripolyphosphate Nanoparticles

    OpenAIRE

    Bong-Seok Kang; Sang-Eun Lee; Choon Lian Ng; Jin-Ki Kim; Jeong-Sook Park

    2015-01-01

    The objective of this study was to improve the solubility of albendazole and optimize the preparation of an oral nanoparticle formulation, using β-cyclodextrin (βCD) and chitosan-tripolyphosphate (TPP) nanoparticles. The solubility of albendazole in buffers, surfactants, and various concentrations of acetic acid solution was investigated. To determine drug loading, the cytotoxic effects of the albendazole concentration in human hepatocellular carcinoma cells (HepG2) were investigated. The for...

  14. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy

    OpenAIRE

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-01-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment...

  15. The preparation and characterisation of poly(butyl-2-cyanoacrylate) nanoparticles

    OpenAIRE

    Douglas, Stephen John

    1985-01-01

    Poly (butyl 2-cyanoacrylate) nanoparticles have been prepared with a range of particle sizes by varying the nature and concentration of stabiliser added to the polymerisation medium. Particle size analysis was performed by photon correlation spectroscopy. The range of diameters produced using dextran stabilisers was found to be approximately 100 to 800nm. This could be extended to 3ym using j3 -cyclodextrin and to 20nm using polysorbate 20. The results infer that the nanoparticles are sterica...

  16. Structure and Morphology of Organic Semiconductor–Nanoparticle Hybrids Prepared by Soft Deposition

    OpenAIRE

    Banerjee, R.; Novák, J.; Drnec, J.; Yu, S.; Schreiber, F.; C. Frank; Girleanu, M.; Ersen, O.; Brinkmann, M.; Anger, F.; Lorch, C.; Dieterle, J; Gerlach, A.

    2015-01-01

    We present an extensive structural analysis of hybrid architectures prepared by the “soft” incorporation of gold nanoparticles (AuNPs) within an organic semiconductor matrix of diindenoperylene (DIP). Such “soft” or noninvasive deposition of nanoparticles within organic semiconducting host matrices not only minimizes the influence of the deposition process on the order and properties of the organic host molecules, but also offers additional control in the process of incorporation. The hybrid ...

  17. Electrophoretically prepared hybrid materials for biopolymer hydrogel and layered ceramic nanoparticles

    OpenAIRE

    Gwak, Gyeong-Hyeon; Choi, Ae-Jin; Bae, Yeoung-Seuk; Choi, Hyun-Jin; Oh, Jae-Min

    2016-01-01

    Background In order to obtain biomaterials with controllable physicochemical properties, hybrid biomaterials composed of biocompatible biopolymers and ceramic nanoparticles have attracted interests. In this study, we prepared biopolymer/ceramic hybrids consisting of various natural biopolymers and layered double hydroxide (LDH) ceramic nanoparticles via an electrophoretic method. We studied the structures and controlled-release properties of these materials. Results and discussion X-ray diffr...

  18. Preparation and Characterization of CuO Nanoparticles by Novel Sol-Gel Technique

    OpenAIRE

    Y. Aparna; K. Venkateswara Rao; P. Srinivasa Subbarao

    2012-01-01

    Recent developments of nanosize materials of metal and metal oxide particles are intensively pursued because of their prominence in different fields of applications. Among all the transition metal oxides, CuO is a potential candidate for the application of magnetic storage devices, solar energy transfer, sensors, and super capacitors etc. Moreover CuO nanoparticles act as a good catalyst in some of the chemical reactions. CuO nanoparticles were prepared by novel sol-gel method. In this techni...

  19. Effects of Microemulsion Preparation Conditions on Drug Encapsulation Efficiency of PLGA Nanoparticles

    Science.gov (United States)

    Ng, Set Hui; Ooi, Ing Hong

    2011-12-01

    Emulsion solvent evaporation technique is widely used to prepare nanoparticles of many organic polymer drug carriers. The mechanism of nanoparticle generation by this technique involves oil-in-water (O/W) microemulsion formation followed by solvent evaporation. Various microemulsion preparation conditions can affect the encapsulation efficiency of drug in the nanoparticulate carrier. In this study, emulsifying speed, emulsifying temperature, and organic-to-aqueous phase ratio were varied and the resulting encapsulation efficiency of a model drug in Poly(Lactide-co-Glycolide) (PLGA) nanoparticles was determined. The organic phase containing PLGA and a model drug dissolved in chloroform was first dispersed in an aqueous solution containing 0.5 %(w/v) Poly(vinyl alcohol) (PVA), which was then homogenized at high speeds. The resulting O/W microemulsion was subsequently subjected to stirring at room temperature for four hours during which the solvent diffused and evaporated gradually. The fine white suspension was centrifuged and freeze-dried. The model drug loading in the PLGA nanoparticles was determined using UV spectrophotometry. Results showed that the encapsulation efficiency of a model drug, salicylic acid, ranged from 8.5% to 17% depending on the microemulsion preparation conditions. Under the same temperature (15 °C) and homogenization speed (19000 rpm) conditions studied, a relatively high organic-to-aqueous phase ratio (1:5) provided salicylic acid loaded PLGA nanoparticles with significantly higher drug encapsulation efficiency. In addition, under all microemulsion preparation conditions, PLGA nanoparticles obtained after solvent evaporation and freeze drying were spherical and aggregation between the nanoparticles was not observed under a high power microscope. This indicates that PLGA nanoparticles with desirable amount of drug and with anticipated size and shape can be realized by controlling emulsification process conditions.

  20. A review paper on biomimetic calcium phosphate coatings

    OpenAIRE

    Lin, X.; De Groot,, P.A.J.; Wang, D.; Hu, Q; Wismeijer, D.; Liu, Y

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the crystalline lattice work in physiological situations. The biomimetic calcium phosphate coating enables a controlled, slow and local release of BMP-2 when it undergoes cell mediated coating degradation ...

  1. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Science.gov (United States)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Fazry, Shazrul; Lazim, Azwan Mat

    2015-09-01

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  2. Preparation and characterization of polymeric nanoparticles from Gadong starch

    International Nuclear Information System (INIS)

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm

  3. Preparation and characterization of polymeric nanoparticles from Gadong starch

    Energy Technology Data Exchange (ETDEWEB)

    Sisika, Regina; Ahmad, Wan Yaacob Wan; Lazim, Azwan Mat [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia); Fazry, Shazrul [School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor (Malaysia)

    2015-09-25

    Dioscorea hispida (Gadong tuber) was seldom used and forgotten as a food source due to their toxicity. In contrast to that, the Gadong tuber can be a source of polysaccharides which can be manipulated as an alternative source for industrial applications. This research reported on how to synthesize starch nanoparticles from Gadong tuber by using a simple acid hydrolysis process. The yield of starch nanoparticles obtained from seven days of acid hydrolysis was reduced to 13%. The X-ray diffraction measurements showed that the native Gadong starch particle is of the C-crystalline type, and that the synthesized nanoparticles showed an increase in crystallinity compared to the native particles. Transmission electron microscopy results demonstrated that the starch particle morphologies were either round or irregular shape, with diameters ranging from 96-110 nm.

  4. Preparation and Self-assembly of Zirconia Nanoparticles via Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    LI Guang-Hui; HONG Zhang-Lian; YANG Hui

    2008-01-01

    Zirconia nanoparticles were synthesized via hydrothermal method without any additives. This work focuses on the effect of preparation conditions such as the precursor preparation condition and crystallization time of nanocrystallite in autoclave on the properties of as-prepared products. The results indicated that the amount of tetragonal zirconia varied with the preparation conditions. It increased with the increase of the concentration of KOH solution in precursor producing process and reduced with the prolongation of crystallization time. At the same time, the particle size and morphology were also affected by the preparation conditions. In addition,the self-assembled spindle- like aggregates were observed in present works.

  5. Magnetic properties of isolated Co nanoparticles in SiO 2 capsule prepared with reversed micelle

    Science.gov (United States)

    Haeiwa, Tetsuji; Segawa, Kazuhiro; Konishi, Kenji

    Magnetic properties and thermal stability of cobalt nanoparticles encapsulated in SiO 2 prepared with the reversed micelle technique with various w were investigated. The average diameters of the Co nanoparticles and SiO 2 capsules were about 2.9 and about 5.2 nm. The magnetization curves of Co nanoparticles exhibit superparamagnetic nature. After annealing up to 673 K in vacuum, the magnetization increases by a factor of 2.4 and the average diameter of the Co particles increases by a factor of 1.3, although shape and size of the SiO 2 capsules were kept.

  6. Magnetic properties of isolated Co nanoparticles in SiO2 capsule prepared with reversed micelle

    International Nuclear Information System (INIS)

    Magnetic properties and thermal stability of cobalt nanoparticles encapsulated in SiO2 prepared with the reversed micelle technique with various w were investigated. The average diameters of the Co nanoparticles and SiO2 capsules were about 2.9 and about 5.2 nm. The magnetization curves of Co nanoparticles exhibit superparamagnetic nature. After annealing up to 673 K in vacuum, the magnetization increases by a factor of 2.4 and the average diameter of the Co particles increases by a factor of 1.3, although shape and size of the SiO2 capsules were kept

  7. Preparation of nanoparticles by continuous-flow microfluidics

    International Nuclear Information System (INIS)

    We review a variety of micro- and nanoparticle formulations produced with microfluidic methods. A diverse variety of approaches to generate microscale and nanoscale particles has been reported. Here we emphasize the use of microfluidics, specifically microfluidic systems that operate in a continuous flow mode, thereby allowing continuous generation of desired particle formulations. The generation of semiconductor quantum dots, metal colloids, emulsions, and liposomes is considered. To emphasize the potential benefits of the continuous-flow microfluidic methodology for nanoparticle generation, preliminary data on the size distribution of liposomes formed using the microfluidic approach is compared to the traditional bulk alcohol injection method.

  8. Preparation and Characterization of Natural Zeolite Modified with Iron Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alvaro Ruíz-Baltazar

    2015-01-01

    Full Text Available This study is aimed at investigating the structural and morphological characterization of natural and modified zeolite obtained from the state of Oaxaca (Mexico. Iron nanoparticles were used for the zeolite modification. The iron nanoparticles were loaded on the zeolite surface by homogeneous nucleation. Adsorption kinetic models of pseudo first and second order were surveyed. The characterization of pristine and modified zeolite was performed by Fourier transform infrared (FTIR, transmission electron microscopy (TEM, and X-ray diffraction (XRD. From the results, three main phases were identified: clinoptilolite, mordenite, and feldspar. We could also determine the adsorption capacity of the zeolites by means of adsorption kinetic models.

  9. Preparation, Physicochemical Characterization and Performance Evaluation of Gold Nanoparticles in Radiotherapy

    Directory of Open Access Journals (Sweden)

    Ali Kamiar

    2013-08-01

    Full Text Available Purpose: The aim of the present study was preparation, physicochemical characterization and performance evaluation of gold nanoparticles (GNPs in radiotherapy. Another objective was the investigation of anti-bacterial efficacy of gold nanoparticle against E. coli clinical strains. Methods: Gold nanoparticles prepared by controlled reduction of an aqueous HAuCl4 solution using Tri sodium citrate. Particle size analysis and Transmission electron microscopy were used for physicochemical characterization. Polymer gel dosimetry was used for evaluation of the enhancement of absorbed dose. Diffusion method in agar media was used for investigation of anti-bacterial effect. Results: Gold nanoparticles synthesized in size range from 57 nm to 346 nm by planning different formulation. Gold nanoparticle in 57 nm size increased radiation dose effectiveness with the magnitude of about 21 %. At the concentration of 400 ppm, Nano gold exhibited significant anti-bacterial effect against E. coli clinical strains. Conclusion: It is concluded that gold nanoparticles can be applied as dose enhancer in radiotherapy. The Investigation of anti-bacterial efficacy showed that gold nanoparticle had significant effect against E. coli clinical strains.

  10. Properties of Eu doped TiO2 nanoparticles prepared by using organic additives

    International Nuclear Information System (INIS)

    Highlights: •Luminescent TiO2:Eu nanoparticles were prepared by using a sol–gel method. •Effects of organic additives onto structure and morphology of nanocrystals were investigated. •The thermal decomposition of precursors was evidenced by using the evolved gases analysis. •The properties of TiO2:Eu nanocrystals depend on both Eu concentration and organic additives. -- Abstract: Europium doped TiO2 nanoparticles were prepared by sol–gel from a medium containing metal alkoxide precursors, solvents and dopants. In order to study the influence of experimental conditions on the properties of Eu doped TiO2 nanoparticles some organic additives such as polyethylene glycol 600 (PEG 600), methacrylic acid (MA), cetyltrimethylammonium bromide (CTAB) were added into the precursor sol. Finally, the resulted precursors were annealed in air, at 550 °C to obtain TiO2 nanoparticles. Thermal analysis, FT-IR spectroscopy and evolved gas analysis (EGA) were used to characterize the TiO2:Eu precursor powders. TiO2 nanoparticles were characterized X-ray diffraction (XRD), porosity and surface area measurements (BET), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and photoluminescence spectroscopy (PL). It was found that morpho-structural, compositional and photoluminescence properties are strongly influenced by the preparative conditions of europium doped TiO2 nanoparticles

  11. Study on fluorouracil–chitosan nanoparticle preparation and its antitumor effect

    Directory of Open Access Journals (Sweden)

    Gaimin Chen

    2016-05-01

    Full Text Available To successfully prepare fluorouracil–chitosan nanoparticles, and further analyze its anti-tumor activity mechanism, this paper makes a comprehensive study of existing preparation prescription and makes a detailed analysis of fluorouracil–chitosan in vitro release and pharmacodynamic behavior of animals. Two-step synthesis method is adopted to prepare 5-FU–CS–mPEG prodrugs, and infrared, 1H NMR and differential thermal analysis are adopted to analyze characterization synthetic products of prepared drugs. To ensure clinical efficacy of prepared drugs, UV spectrophotometry is adopted for determination of drug loading capacity of prepared drugs, transmission electron microscopy is adopted to observe the appearance, dynamic dialysis method is used to observe in vitro drug release of prepared drugs and fitting of various release models is done. Anti-tumor effect is studied via level of animal pharmacodynamics. After the end of the experiment, tumor inhibition rate, spleen index and thymus index of drugs are calculated. Experimental results show that the prepared drugs are qualified in terms of regular shape, dispersion, drug content, etc. Animal pharmacodynamics experiments have shown that concentration level of drug loading capacity of prepared drugs has a direct impact on anti-tumor rate. The higher the concentration, the higher the anti-tumor rate. Results of pathological tissue sections of mice show that the prepared drugs cause varying degrees of damage to receptor cells, resulting in cell necrosis or apoptosis problem. It can thus be concluded that ion gel method is an effective method to prepare drug-loading nanoparticles, with prepared nanoparticles evenly distributed in regular shape which demonstrate good slow-release characteristics in receptor vitro and vivo. At the same time, after completion of drug preparation, relatively strong anti-tumor activity can be generated for the receptor, so this mode of preparation enjoys broad

  12. Effect of Preparation Methods of Bi2O3 Nanoparticles on their Photocatalytic Activity

    Institute of Scientific and Technical Information of China (English)

    DING Peng; DU Yao-guo; XU Zi-li

    2004-01-01

    Bi2O3 nanoparticles were prepared by means of ammonia precipitation, polyol mediated methods and microemulsion chemical method. The structure and properties of the as-prepared nanoparticles, having been submitted to a heat-treatment test at 750 ℃, were characterized by means of XRD, BET, XPS and UV-Vis absorption techniques. The photocatalytic oxidation reactions of benzene, toluene and xylene were used as the model reaction to measure the photocatalytic activity of Bi2O3 nanoparticles, respectively. The results show that the crystallite size of Bi2O3 prepared with different methods and calcined at 750 ℃ were 50.6, 38.5 and 31.5 nm, respectively. The photocatalytic activity of Bi2O3 nanoparticles prepared with the microemulsion chemical method was higher than that of the particles prepared with the polyol mediated method; and that of the particles prepared with the micromulsion chemical method was the highest among the three. The degradation rates of the three pollutants xylene, toluene and benzene decreased in sequence.

  13. An Insight into the Interactions between a-Tocopherol and Chitosan in Ultrasound-Prepared Nanoparticles

    International Nuclear Information System (INIS)

    The aim of this study was to investigate the interactions between a-tocopherol and chitosan molecules prepared subsequent to preparation of a-tocopherol-loaded chitosan nanoparticles using ultrasonication. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses showed semi spherical particles with an average size of approximately 350 nm. Also from reconstitution test, a-tocopherol was suggested as stabilizing agent during lyophilization/reconstitution process. The zeta potentials of chitosan and a-tocopherol nanoparticles were larger than ±30 mV, representing suitable stability. Data obtained from FTIR showed possibility of chemical interaction between chitosan and a-tocopherol. Furthermore, the results from FTIR, NMR, and XRD spectroscopy confirmed electrostatic interactions between the two molecules. Overall, this procedure could be considered as a facile method to prepare a-tocopherol-loaded nanoparticles.

  14. An Insight into the Interactions between α-Tocopherol and Chitosan in Ultrasound-Prepared Nanoparticles

    Directory of Open Access Journals (Sweden)

    Majid Naghibzadeh

    2010-01-01

    Full Text Available The aim of this study was to investigate the interactions between α-tocopherol and chitosan molecules prepared subsequent to preparation of α-tocopherol-loaded chitosan nanoparticles using ultrasonication. Dynamic light scattering (DLS and scanning electron microscopy (SEM analyses showed semispherical particles with an average size of approximately 350 nm. Also from reconstitution test, α-tocopherol was suggested as stabilizing agent during lyophilization/reconstitution process. The zeta potentials of chitosan and α-tocopherol nanoparticles were larger than ±30 mV, representing suitable stability. Data obtained from FTIR showed possibility of chemical interaction between chitosan and α-tocopherol. Furthermore, the results from FTIR, NMR, and XRD spectroscopy confirmed electrostatic interactions between the two molecules. Overall, this procedure could be considered as a facile method to prepare α-tocopherol-loaded nanoparticles.

  15. 两性离子自组装仿生表面的制备、表征及抗黏附性能%Preparation, Characterization and Antibacterial Adhesion Performance of the Biomimetic Surfaces via Zwitterionic Self-assembly

    Institute of Scientific and Technical Information of China (English)

    吴雅露; 李光吉; 刘云鸿; 陈达杨

    2014-01-01

    设计与合成了磺酸甜菜碱型的两性离子化合物: N,N-二甲基氨甲酸乙酯基丙基三乙氧基硅烷磺酸内盐(SiNNS),利用红外光谱(FTIR)和氢核磁共振波谱(1 H NMR)对其分子组成与结构进行了表征.通过自组装技术将 SiNNS 分子构筑在玻璃基材表面,形成了模拟细胞外层膜的仿生表面.利用原子力显微镜(AFM)、X 光电子能谱(XPS)和接触角测量仪对表面的形貌特征、化学组成和润湿性进行了表征.以空白玻璃为对照样品,研究了这一表面的防雾性能和抗细菌黏附性能.结果表明,所制备的两性离子自组装仿生表面具有超亲水性和水下超疏油特性,其水滴接触角为9.2°,水下油滴接触角接近180°;与对照样品相比,两性离子自组装表面具有优异的防雾性与抗细菌黏附性.%A sulfobetaine zwitterionic compound, N,N-dimethylamino ethyl carbamate propyl triethoxysilane sulfonate ( SiNNS ), was designed and synthesized and its composition and molecular structure were characterized by means of FTIR and 1 H NMR spectroscopy. Furthermore, the biomimetic surface imitating the chemical features of cellular outer membrane were constructed via the self-assembly of SiNNS molecules on the hydroxylated glass surface. The morphology structure, chemical composition and wettability of the prepared bi-omimetic surface were characterized by atomic force microscopy ( AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement. The antifogging and antibacterial adhesion performances of the biomi-metic surface were investigated using an untreated glass surface as a control sample. The results indicate that the zwitterionic self-assembled biomimetic surface can possess superhydrophilicity with a water contact angle of 9. 2° and underwater superoleophobicity with an oil contact angle of 175. 6°. Compared to the corresponding control sample, the zwitterionic self-assembled biomimetic surface can exhibit an

  16. Preparation of Gold Nanoparticles Using Tea: A Green Chemistry Experiment

    Science.gov (United States)

    Sharma, R. K.; Gulati, Shikha; Mehta, Shilpa

    2012-01-01

    Assimilating green chemistry principles in nanotechnology is a developing area of nanoscience research nowadays. Thus, there is a growing demand to develop environmentally friendly and sustainable methods for the synthesis of nanoparticles that utilize nontoxic chemicals, environmentally benign solvents, and renewable materials to avoid their…

  17. Preparation of Candesartan and Atorvastatin Nanoparticles by Solvent Evaporation

    Czech Academy of Sciences Publication Activity Database

    Vaculíková, E.; Grünwaldová, Veronika; Král, V.; Dohnal, J.; Jampílek, J.

    2012-01-01

    Roč. 17, č. 11 (2012), s. 13221-13234. ISSN 1420-3049 Institutional support: RVO:61388980 Keywords : candesartan cilexetil * atorvastatin * nanoparticles * solvent evaporation * excipients * dynamic light scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 2.428, year: 2012

  18. Iron nanoparticles prepared from natural ferrihydrite precursors: kinetics and properties

    Czech Academy of Sciences Publication Activity Database

    Schneeweiss, Oldřich; Filip, J.; David, Bohumil; Zbořil, R.; Mašláň, M.

    2011-01-01

    Roč. 13, č. 11 (2011), s. 5677-5684. ISSN 1388-0764. [ International Conference on Nanostructured Materials (NANO 2010) /10./. Rome, 13.09.2010-17.09.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Iron nanoparticles * Ferrihydrite * Reduction * Hydrogen * Magnetic moment * Activation enthalpy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.287, year: 2011

  19. Preparation of manganese perovskite magnetic nanoparticles and their mechanical treatment

    Czech Academy of Sciences Publication Activity Database

    Dědourková, T.; Veverka, Miroslav; Veverka, Pavel; Zelenka, J.; Svoboda, L.

    Dresden: Technische Universität, 2014. s. 69-69. [International Conference on the Scientific and Clinical Applications of Magnetic Carriers /10./. 10.06.2014-14.06.2014, Dresden] R&D Projects: GA MPO FR-TI3/521 Institutional support: RVO:68378271 Keywords : manganese perovskite * magnetic nanoparticles * mechanical treatment Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    International Nuclear Information System (INIS)

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment

  1. Photodynamic therapy using upconversion nanoparticles prepared by laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Ikehata, Tomohiro; Onodera, Yuji; Nunokawa, Takashi [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Hirano, Tomohisa; Ogura, Shun-ichiro; Kamachi, Toshiaki [Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Odawara, Osamu [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan); Wada, Hiroyuki, E-mail: wada.h.ac@m.titech.ac.jp [Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502 (Japan)

    2015-09-01

    Highlights: • Highly crystalline upconversion nanoparticles were prepared by laser ablation in liquid. • Highly transparent near-IR irradiation generated singlet oxygen. • Viability of cancer cells was significantly decreased by near-IR irradiation. - Abstract: Upconversion nanoparticles were prepared by laser ablation in liquid, and the potential use of the nanoparticles for cancer treatment was investigated. A Nd:YAG/SHG laser (532 nm, 13 ns, 10 Hz) was used for ablation, and the cancer treatment studied was photodynamic therapy (PDT). Morphology and crystallinity of prepared nanoparticles were examined by transmission electron microscopy and X-ray diffraction. Red and green emissions resulting from near-infrared excitation were observed by a fluorescence spectrophotometer. Generation of singlet oxygen was confirmed by a photochemical method using 1,3-diphenylisobenzofuran (DPBF). In vitro experiments using cultivated cancer cells were conducted to investigate PDT effects. Uptake of the photosensitizer by cancer cells and cytotoxicities of cancer cells were also examined. We conclude that the combination of PDT and highly crystalline nanoparticles, which were prepared by laser ablation in liquid, is an effective cancer treatment.

  2. Preparation of SnO2 Nanoparticles by Two Different Wet Chemistry Methods

    International Nuclear Information System (INIS)

    The objective of this project is to prepare SnO2 nanoparticles by two different wet chemistry methods namely sol gel and direct growth methods. The XRD results indicated that both samples are single phase SnO2. The FE-SEM micrographs displayed that SnO2 nanoparticles prepared in first method exhibited a round shape with particle size around 15 nm while the second method produced SnO2 nano rod with length and width of 570 nm and 55 nm respectively. Energy gap values for SnO2 nanospheres and nano rods were 4.38 and 4.34 eV respectively. (author)

  3. Preparation of niobium nanoparticles by sodiothermic reduction of Nb_2O_5 in molten salts

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Niobium nanoparticles with high purity were prepared by a sodiothermic reduction process using Nb2O5 as the raw material, LiCl, NaCl, KCl and CaCl2 as the diluents and sodium as the reducing reagent. The effects of the different molten salt systems, CaCl2 content, reaction time, excessive sodium and reaction temperature on the characteristics of the obtained niobium powder were discussed. The as-prepared niobium nanoparticles under the optimum experimental conditions were obtained by sodiothermic reduction ...

  4. Preparation and characterization of curcumin-piperine dual drug loaded nanoparticles

    Institute of Scientific and Technical Information of China (English)

    C Moorthi; Kiran Krishnan; R Manavalan; K Kathiresan

    2012-01-01

    Objective: To prepare curcumin-piperine (Cu-Pi) nanoparticles by various methods and to study the effect of various manufacturing parameters on Cu-Pi nanoparticles and to identify a suitable method for the preparation of Cu-Pi nanoparticles to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer. Methods: Cu-Pi nanoparticles were prepared by thin film hydration method, solid dispersion method, emulsion polymerization method and Fessi method. Optimization was carried out to study the effect of various manufacturing parameter on the Cu-Pi nanoparticles. Results: Out of four methods, Fessi method produced a minimum average particle size of 85.43 nm with a polydispersity index of 0.183 and zeta potential of 29.7 mV. Change of organic solvent (acetone or ethanol) did not have any significant effect on Cu-Pi nanoparticles. However, increase in sonication time, stirring speed, viscosity, use of 1:10:10 ratio of drug/polymer/surfactant, and use of anionic surfactant or combination of anionic surfactant with cationic polymer or combination of non-ionic surfactant with cationic polymer had a significant effect on Cu-Pi nanoparticles. Conclusions: Cu-Pi nanoparticles coated with PEG containing copolymer produced by Fessi method had a minimum average particle size, excellent polydispersity index and optimal zeta potential which fall within the acceptable limits of the study. This dual nanoparticulate drug delivery system appears to be promising to overcome oral bioavailability and cancer cell targeting limitations in the treatment of cancer.

  5. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process

    Directory of Open Access Journals (Sweden)

    Kim MS

    2011-11-01

    Full Text Available Min-Soo Kim1, Jeong-Soo Kim1, Hee Jun Park1, Won Kyung Cho1,3, Kwang-Ho Cha1,3, Sung-Joo Hwang2,31College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea, 2College of Pharmacy, 3Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of KoreaBackground: The aim of this study was to improve the physicochemical properties and bioavailability of poorly water-soluble sirolimus via preparation of a solid dispersion of nanoparticles using a supercritical antisolvent (SAS process.Methods: First, excipients for enhancing the stability and solubility of sirolimus were screened. Second, using the SAS process, solid dispersions of sirolimus-polyvinylpyrrolidone (PVP K30 nanoparticles were prepared with or without surfactants such as sodium lauryl sulfate (SLS, tocopheryl propylene glycol succinate, Sucroester 15, Gelucire 50/13, and Myrj 52. A mean particle size of approximately 250 nm was obtained for PVP K30-sirolimus nanoparticles. Solid state characterization, kinetic solubility, powder dissolution, stability, and pharmacokinetics were analyzed in rats.Results: X-ray diffraction, differential scanning calorimetry, and high-pressure liquid chromatography indicated that sirolimus existed in an anhydrous amorphous form within a solid dispersion of nanoparticles and that no degradation occurred after SAS processing. The improved supersaturation and dissolution of sirolimus as a solid dispersion of nanoparticles appeared to be well correlated with enhanced bioavailability of oral sirolimus in rats. With oral administration of a solid dispersion of PVP K30-SLS-sirolimus nanoparticles, the peak concentration and AUC0→12h of sirolimus were increased by approximately 18.3-fold and 15.2-fold, respectively.Conclusion: The results of this study suggest that preparation of PVP K30-sirolimus-surfactant nanoparticles using the SAS process may be a promising approach for improving the bioavailability of sirolimus

  6. Photoelectrochemical method for preparation of CdSe nanoparticles

    International Nuclear Information System (INIS)

    Colloidal CdSe nanoparticles with average particle size from 40 to 80 nm were synthesized by the photoelectrochemical technique using Se electrode precursor. Colloidal particles were formed as the result of Cd2+ ions interaction with H2Se generated photoelectrochemically. The formation of metal selenides was observed both at the Se-cathode surface and in the electrolyte. At metal concentration below 0.01 mol-1 metal selenide colloidal particles were negatively charged because of HSe∼ anion adsorption and this favoured the evacuation from the electrode surface into the solution. At Cd2+ concentration above 0.01 mol-1, selenide particles were positively charged because of Cd2+ adsorption and this resulted in attraction of the particles to the negatively charged electrode preventing colloidal solution formation. Thus, varying the metal ion concentration provided the means of controlling the photoelectrochemical reaction. The similar approach was successfully applied for In2Se3 and ZnSe colloidal nanoparticles. (authors)

  7. NANOPARTICLE: AN OVERVIEW OF PREPARATION, CHARACTERIZATION AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Konwar Ranjit

    2013-04-01

    Full Text Available In the last 30 years, particle size reduction technologies turned from an exploratory approach into a mature commercial drug delivery platform. Nanonization technologies have gained a special importance due to a steadily increasing number of development compounds showing poor aqueous solubility. Many drug delivery companies and academic research groups have contributed to the currently existing large variety of different technologies to produce drug nanoparticles. These particles consist of pure active pharmaceutical ingredient (API and are often stabilized with surfactants and/or polymeric stabilizers adsorbed onto their surface. The mean particle size ranges normally from 1 nm up to 1000 nm.Here we review formulation aspects, characteristics and application of nanoparticle as drug delivery system.

  8. Chitosan-based nanoparticles prepared by template polymerization

    OpenAIRE

    Pereira, Paula; Gama, F. M.

    2010-01-01

    INTRODUCTION: Chitosan (CS) /poly(acrylic acid) (PAA) nanoparticles (NPs) have recently been obtained by template polymerization1. In this technique, the NPs are produced upon polymerization of an acrylic monomer next to the chitosan backbone. Due to the electrostatic interaction, the negatively charged acrylic monomers align along the chitosan molecules. These physic interactions leads to self-assembled particles. The molecular weight and deacetylation degree of chitosan affect the solubili...

  9. SERS spectral probing of laser ablated nanoparticles prepared in alcohols

    Czech Academy of Sciences Publication Activity Database

    Smejkal, P.; Hochmann, L.; Pfleger, Jiří; Šloufová, I.

    Düsseldorf: Heinrich-Heine-Universität Düsseldorf, 2014 - (Schmitt, M.). s. 75 ISBN 978-3-00-046327-3. [European Congress on Molecular Spectroscopy /32./ - EUCMOS 2014. 24.08.2014-29.08.2014, Düsseldorf] R&D Projects: GA ČR GAP208/10/0941 Institutional support: RVO:61389013 Keywords : SERS * surface-enhanced Raman scattering * gold nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry

  10. Preparation of silver nanoparticle via active template under ultrasonic

    Institute of Scientific and Technical Information of China (English)

    ZHENG Min; WANG Zuo-shan; ZHU Ya-wei

    2006-01-01

    A novel method was described for the production of silver nanoparticle by using nano-carbon as active template. Special ultrasonic condition was used to assure the active effect of the template and achieve an even and stable micro-reactor system,therefore yield uniform silver nanoparticle without obvious agglomeration. By laser granularity instrument measurement, the silver nanoparticles show a mean diameter of 20.4 nm and narrow distribution between 18.7 nm and 23.0 nm according to the optimum technology. Regular spherical morphology can be observed by transmission electron microscopy(TEM). X-ray diffraction analysis indicates that Ag+ is deoxidized to form metal Ag during producing precursor, subsequent calcinations promote phase transformation from nonholonomic crystal to complete cubic crystal, which is consistent with the standard JCPDS card of silver. The results reveal that the nano-carbon in active template system not only exerts micro-reactor and steric stabilization effect, but also acts as reducing agent during the reaction.

  11. Preparation and Evaluation of Contact Lenses Embedded with Polycaprolactone-Based Nanoparticles for Ocular Drug Delivery.

    Science.gov (United States)

    Nasr, Farzaneh Hashemi; Khoee, Sepideh; Dehghan, Mohammad Mehdi; Chaleshtori, Sirous Sadeghian; Shafiee, Abbas

    2016-02-01

    To improve the efficiency of topical ocular drug administration, we focused on development of a nanoparticles loaded contact lens to deliver the hydrophobic drug over a prolonged period of time. The cross-linked nanoparticles based on PCL (poly ε-caprolactone), 2-hydroxy ethyl methacrylate (HEMA), and poly ethylene glycol diacrylate (PEG-DA) were prepared by surfactant-free miniemulsion polymerization. The lens material was prepared through photopolymerization of HEMA and N-vinylpyrrolidone (NVP) using PEG-DA as the cross-linker. Effects of nanoparticles loading on critical contact lens properties such as transparency, water content, modulus and ion and oxygen permeabilities were studied. Nanoparticles and hydrogel showed high viability, indicating the absence of cytotoxicity and stimulatory effect. Drug release studies revealed that the hydrogel embedded with nanoparticles released the drug for a period of 12 days. The results of this study provide evidence that nanoparticles loaded hydrogels could be used for extended delivery of loteprednol etabonate and perhaps other drugs. PMID:26652301

  12. Physical and Chemical Transformation of Hydroxyapatite Nanoparticles in Aqueous Sol after Preparation and in vitro

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The co-precipitation method followed by ultrasound and heat treatment is a common way to prepare below 100 nm sized hydroxyapatite nanoparticles for biomedical studies and applications. The size and pH value of the obtained calcium phosphate nanoparticles in aqueous sol have a strong impact on the interactions with cells and tissue. The physical and chemical properties of material samples for in vitro and in vivo studies are often assumed to remain constant from the time after fabrication to the actual use. Only little attention is paid to eventual changes of the material over time or due to the different in vitro conditions. In this study, the physical and chemical transformation of calcium phosphate nanoparticles after preparation and in vitro was investigated. As the result showed, dispersed nano sized amorphous calcium phosphate precipitation as well as crystallized hydroxyapatite nanoparticles continue to crystallize even when kept at 4 ℃ leading to declining pH values and particle sizes.Due to the pH buffer in the medium the pH value of the cell culture remained stable after adding 20% nanoparticle sol in vitro. However, hydroxyapatite nanoparticles immediately became unstable in the presents of cell culture medium. The resulting loose agglomerations showed a size of above 500 nm.

  13. Preparation of PLA and PLGA nanoparticles by binary organic solvent diffusion method

    Institute of Scientific and Technical Information of China (English)

    蒋新宇; 周春山; 唐课文

    2003-01-01

    The nanoparticles of polylactide (PLA) and poly(lactide-co-glycolide) (PLGA) were prepared by the bi-nary organic solvent diffusion method. The yield, particle size and size distribution of these nanoparticles wereevaluated. The yield of nanoparticles prepared by this method is over 90%, and the average size of the nanoparticlesis between 130-180 nm. In order to clarify the effect of the organic solvent used in the system on nanoparticle yieldand size, the cloud points of PLA and PLGA were examined by cloud point titration. The results indicate that theyields of nanoparticles increase with the increase of ethanol in the acetone solution and attain the maximum at thecloud point of ethanol, while the size of nanoparticles decreases with the increase of ethanol in the acetone solutionand attains the minimum at the cloud point of ethanol. The optimal composition ratio of binary organic solvents coin-cides to that near the cloud point and the optimal condition of binary organic solvents can be predicted.

  14. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Science.gov (United States)

    Zou, Weiwei; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2009-09-01

    The purpose of the present work was to formulate and evaluate cationic poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency) and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells) of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95%) could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  15. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA

    Directory of Open Access Journals (Sweden)

    Zou Weiwei

    2009-01-01

    Full Text Available Abstract The purpose of the present work was to formulate and evaluate cationic poly(lactic acid-poly(ethylene glycol (PLA-PEG nanoparticles as novel non-viral gene delivery nano-device. Cationic PLA-PEG nanoparticles were prepared by nanoprecipitation method. The gene loaded nanoparticles were obtained by incubating the report gene pEGFP with cationic PLA-PEG nanoparticles. The physicochemical properties (e.g., morphology, particle size, surface charge, DNA binding efficiency and biological properties (e.g., integrity of the released DNA, protection from nuclease degradation, plasma stability, in vitro cytotoxicity, and in vitro transfection ability in Hela cells of the gene loaded PLA-PEG nanoparticles were evaluated, respectively. The obtained cationic PLA-PEG nanoparticles and gene loaded nanoparticles were both spherical in shape with average particle size of 89.7 and 128.9 nm, polydispersity index of 0.185 and 0.161, zeta potentials of +28.9 and +16.8 mV, respectively. The obtained cationic PLA-PEG nanoparticles with high binding efficiency (>95% could protect the loaded DNA from the degradation by nuclease and plasma. The nanoparticles displayed sustained-release properties in vitro and the released DNA maintained its structural and functional integrity. It also showed lower cytotoxicity than Lipofectamine 2000 and could successfully transfect gene into Hela cells even in presence of serum. It could be concluded that the established gene loaded cationic PLA-PEG nanoparticles with excellent properties were promising non-viral nano-device, which had potential to make cancer gene therapy achievable.

  16. Preparation and characterization of Ce-doped HfO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gálvez-Barboza, S. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); González, L.A. [Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Industria Metalúrgica # 1062 Parque Industrial, C.P. 25900 Ramos Arizpe, Coahuila (Mexico); Puente-Urbina, B.A.; Saucedo-Salazar, E.M. [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico); García-Cerda, L.A., E-mail: luis.garcia@ciqa.edu.mx [Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Blvd. Enrique Reyna Hermosillo #140, C.P. 25294 Saltillo, Coahuila (Mexico)

    2015-09-15

    Highlights: • Ce-doped HfO{sub 2} nanoparticles were prepared by a modified solgel method. • Ce-doped HfO{sub 2} nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO{sub 2} nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO{sub 2} undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm.

  17. Copper Oxide Nanoparticles Prepared by Solid State Thermal Decomposition: Synthesis and Characterization

    Directory of Open Access Journals (Sweden)

    Ensieh Shahsavani

    2016-06-01

    Full Text Available In this paper, we have focused on the preparation and characterization of copper oxide nanoparticles by solid state thermal decomposition of copper(I iodide in the presence of thiosemicarbazone ligands without the need for a catalyst, employing toxic solvent, template or surfactant and complicated equipment, which makes it efficient, one-step, simple and environment-friendly. CuO nanoparticles were achieved at 600 ˚C for 3 h as black products and characterized by Fourier transform infrared spectroscopy (FT-IR, X-ray powder diffraction (XRD and transmission electron microscopy (TEM. The FT-IR spectra of black powders prepared show absorption maxima at ≈ 525 cm-1 which are due to Cu-O stretching mode. Also, all the X-ray diffraction peaks could be readily assigned to those of crystalline CuO. The absence of any residual ligand traces or other phases in the FT-IR spectra and XRD patterns confirmed the preparation of high purity and single phase copper oxide nanoparticles. The TEM images show that the synthesized copper oxide nanoparticles are of plate like shape with average diameters of 10 – 20 nm. On the basis of the above results, the use of thiosemicarbazone ligands at the presence of suitable transition metal ions is potentially capable of forming other transition metal oxide nanoparticles by solid state thermal decomposition.

  18. Preparation and characterization of Ce-doped HfO2 nanoparticles

    International Nuclear Information System (INIS)

    Highlights: • Ce-doped HfO2 nanoparticles were prepared by a modified solgel method. • Ce-doped HfO2 nanoparticles have a semispherical shape with sizes between 6 and 11.5 nm. • The samples doped with 10% in weight of Ce directly crystallized in a cubic structure. • A quick, straightforward and effective route for the preparation of Ce-doped nanoparticles. - Abstract: A modified solgel method to synthesize Ce-doped HfO2 nanoparticles was carried out using a precursor material prepared with cerium nitrate, hafnium chloride, citric acid and ethylene glycol. The obtained precursor material was calcined at 500 and 700 °C for 2 h in air. The influence of the concentration of Ce and the calcination temperature was studied to observe the structural and morphological changes of the obtained materials. For the characterization, X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman scattering (RS) were employed. The XRD patterns shown that the Ce-doped HfO2 undergoes a structural transformation from monoclinic to cubic phase, which is significantly dependent on the Ce content and calcination temperature. TEM images have also confirmed the existence of semispherical nanoparticles with sizes between 6 and 11.5 nm

  19. Preparation of PbSe nanoparticles by electron beam irradiation method

    Indian Academy of Sciences (India)

    Zhen Li; Chao Wu; Yanyan Liu; Tiebing Liu; Zheng Jiao; Minghong Wu

    2008-11-01

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and morphology of prepared PbSe nanoparticles were analysed by X-ray diffraction, transmission electron microscope and atomic force microscope. The results indicated that the obtained materials were cubic nanocrystalline PbSe with an average grain size of 30 nm. The optical properties of prepared PbSe nanocrystalline were characterized by using photoluminescence spectroscopy. The possible mechanism of the PbSe grain growth by electron beam irradiation method is proposed.

  20. pH-responsive lyotropic liquid crystals for the preparation of pure cubic zirconia nanoparticles

    Science.gov (United States)

    He, Wei Yan; Liu, Jin Rong; He, Zhang; Cao, Zhen Zhu; Li, Cai Hong; Gao, Yan Fang

    2016-07-01

    We present a lyotropic liquid crystal system consisting of SDS/Triton X-100/water at 25 °C. This system is respond to pH variations with a phase switch. When pH is altered from alkaline (pH 13) to acidic (pH 2) conditions, phase change occurs from a bicontinuous hexagonal phase to a partially hexagonal phase until it disappears. The hexagonal phase under alkaline conditions is stable. Thus, this system is an ideal candidate for the preparation of pure cubic ZrO2 nanoparticles. XRD results confirm that the as-synthesized powder is composed of pure cubic ZrO2. These nanoparticles also exhibit a thermal stability of up to 800 °C. The size and morphological characteristics of the nanoparticles are greatly affected by ZrOCl2 concentration. The mechanism of zirconia nanoparticle synthesis in a lyotropic hexagonal phase was proposed.

  1. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M Cristina [School of Chemistry and Chemical Engineering/QUILL, Queen' s University, Belfast BT9 5AG (United Kingdom)], E-mail: erodil@usc.es, E-mail: c.lagunas@qub.ac.uk

    2008-03-12

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  2. Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids

    Science.gov (United States)

    Rodil, Eva; Aldous, Leigh; Hardacre, Christopher; Lagunas, M. Cristina

    2008-03-01

    Nanoparticles of silver halides have been prepared by mixing silver halide powder with a single liquid phase consisting of an ionic liquid, isooctane, n-decanol and water. Much higher nanoparticle concentrations may be formed with ionic liquids using this new simple method than are found with conventionally applied surfactants. This method also emphasizes the applicability of ionic liquids as versatile components in microemulsions and as solvents for the synthesis of nanomaterials. The effect on the nanoparticles of changing the composition of the liquid mixtures and the nature of the ionic liquid is analysed. High nanoparticle concentrations were only found with chloride based ionic liquids, indicating the importance of the ionic liquid anion in the mechanism of the reaction.

  3. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  4. Preparation of Rhodamine B Fluorescent Poly(methacrylic acid Coated Gelatin Nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhenhai Gan

    2011-01-01

    Full Text Available Poly(methacrylic acid (PMAA-coated gelatin nanoparticles encapsulated with fluorescent dye rhodamine B were prepared by the coacervation method with the aim to retard the release of rhodamine B from the gelatin matrix. With sodium sulfate as coacervation reagent for gelatin, a kind of biopolymer with excellent biocompatibility, the formed gelatin nanoparticles were cross-linked by formaldehyde followed by the polymerization of methacrylic acid coating. The fluorescent poly(methacrylic acid coated gelatin (FPMAAG nanoparticles had a uniform spherical shape and a size distribution of 60±5 nm. Infrared spectral analysis confirmed the formation of PMAA coating on the gelatin nanoparticles. Based on UV-Vis spectra, the loading efficiency of rhodamine B for the FPMAAG nanoparticles was 0.26 μg per mg nanoparticles. The encapsulated rhodamine B could sustain for two weeks. Favorable fluorescence property and fluorescence imaging of cells confirmed that the FPMAAG nanoparticles have promising biochemical, bioanalytical, and biomedical applications.

  5. Preparation of Monodisperse Nanoparticle of Layered Double Hydroxides and Polyoxyethylene Sulfate

    Institute of Scientific and Technical Information of China (English)

    XU Huizhong; QIN Lianjie; ZHANG Hong; YANG Qinzheng; YANG Jing

    2005-01-01

    In order to obtain the bio-molecule/ LDHs nanocomposites having regular crystal structure,three nanocomposites of layered double hydroxides and polyoxyethylene sulfates were prepared by ion-exchange method. TEM analysis reveals that the monodisperse rigid .sphere of approximately 200 nm in diameter could be gotten when the intergallery anion was PEGS-400. Such monodisperse nanoparticle could be used as a promising precursor for preparing bio-molecule/LDHs nanocomposites.

  6. An Insight into the Interactions between α-Tocopherol and Chitosan in Ultrasound-Prepared Nanoparticles

    OpenAIRE

    Majid Naghibzadeh; Amir Amani; Mohsen Amini; Elina Esmaeilzadeh; Negar Mottaghi-Dastjerdi; Mohammad Ali Faramarzi

    2010-01-01

    The aim of this study was to investigate the interactions between α-tocopherol and chitosan molecules prepared subsequent to preparation of α-tocopherol-loaded chitosan nanoparticles using ultrasonication. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses showed semispherical particles with an average size of approximately 350 nm. Also from reconstitution test, α-tocopherol was suggested as stabilizing agent during lyophilization/reconstitution process. The zeta p...

  7. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil

    OpenAIRE

    Shi F; Zhao JH; Liu Y.; Wang Z; Zhang YT; Feng NP

    2012-01-01

    Feng Shi, Ji-Hui Zhao, Ying Liu, Zhi Wang, Yong-Tai Zhang, Nian-Ping FengSchool of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of ChinaAbstract: The aim of the present study was to prepare solid lipid nanoparticles (SLNs) for the oral delivery of frankincense and myrrh essential oils (FMO). Aqueous dispersions of SLNs were successfully prepared by a high-pressure homogenization method using Compritol 888 ATO as the solid lipid and soybean...

  8. A Novel Method for the Preparation of Retinoic Acid-Loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Federica Chiellini

    2009-05-01

    Full Text Available The goal of present work was to investigate the use of bioerodible polymeric nanoparticles as carriers of retinoic acid (RA, which is known to induce differentiation of several cell lines into neurons. A novel method, named “Colloidal-Coating”, has been developed for the preparation of nanoparticles based on a copolymer of maleic anhydride and butyl vinyl ether (VAM41 loaded with RA. Nanoparticles with an average diameter size of 70 nm and good morphology were prepared. The activity of the encapsulated RA was evaluated on SK-N-SH human neuroblastoma cells, which are known to undergo inhibition of proliferation and neuronal differentiation upon treatment with RA. The activity of RA was not affected by the encapsulation and purification processes.

  9. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase

    International Nuclear Information System (INIS)

    Superparamagnetic sodium alginate nanoparticles with diameter around 25–30 nm were prepared with a water-in-oil emulsion method. The resulted magnetic SA nanoparticle was activated with glutaraldehyde and epichlorohydrin to form nanoscale support. Candida rugosa lipase (CRL), hereby chosen as a model enzyme, was covalently immobilized on the resulted magnetic support. The structure and magnetic behavior of the magnetic nanoparticles were confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. Based on the structural character of enzyme (containing functional residues that are ideal reaction sites for the immobilization of enzyme repeatedly), the regeneration of support was investigated by reactivating the deactivated immobilized lipase with glutaraldehyde. And the results indicated that these regenerated supports remained to be efficient for lipase immobilization. Finally, all of the immobilized CRL prepared by different generations of supports displayed excellent reusability and applicability.

  10. Preparation of superparamagnetic sodium alginate nanoparticles for covalent immobilization of Candida rugosa lipase

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiao; Chen Xia; Li Yanfeng, E-mail: liyf@lzu.edu.cn; Cui Yanjun; Zhu Hao; Zhu Weiwei [Lanzhou University, State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology (China)

    2012-03-15

    Superparamagnetic sodium alginate nanoparticles with diameter around 25-30 nm were prepared with a water-in-oil emulsion method. The resulted magnetic SA nanoparticle was activated with glutaraldehyde and epichlorohydrin to form nanoscale support. Candida rugosa lipase (CRL), hereby chosen as a model enzyme, was covalently immobilized on the resulted magnetic support. The structure and magnetic behavior of the magnetic nanoparticles were confirmed by transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometer. Based on the structural character of enzyme (containing functional residues that are ideal reaction sites for the immobilization of enzyme repeatedly), the regeneration of support was investigated by reactivating the deactivated immobilized lipase with glutaraldehyde. And the results indicated that these regenerated supports remained to be efficient for lipase immobilization. Finally, all of the immobilized CRL prepared by different generations of supports displayed excellent reusability and applicability.

  11. Preparation of iron oxide nanoparticles from FeCl3 solid powder using microemulsions

    Science.gov (United States)

    Nassar, Nashaat; Husein, Maen

    2006-05-01

    Nanoparticles of iron oxide were prepared by subjecting iron chloride powder to (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfosuccinate (AOT), isooctane and water. FeCl3 was first dissolved in the water pools of the microemulsion, and then reacted with NaOH added as an aqueous solution to form iron oxide. The amount of NaOH solution was limited so that single microemulsion phase is obtained. This technique serves as an in-situ nanoparticle preparation technique aimed at minimizing particle aggregation associated with particle transportation to required sites. In this study, the effects of AOT concentration and water to AOT mole ratio on the nanoparticle size were investigated. UV/Vis spectrophotometry and transmission electron microscopy (TEM) were used to measure the particle size distribution.

  12. The preparation of MnZn-ferrite nanoparticles in water CTAB hexanol microemulsions

    Science.gov (United States)

    Makovec, D.; Kosak, A.; Drofenik, M.

    2004-04-01

    Magnetic MnZn-ferrite nanoparticles with a narrow size distribution were prepared in water-CTAB-hexanol microemulsions. The region of microemulsion stability in the system was determined, using the titration method, as a function of the temperature and of the type and concentration of solutes in the aqueous phase. The nanoparticles were prepared in a two-step process: the precipitation of the corresponding hydroxides, followed by oxidation of the Fe2+. The particle size was controlled by the composition of the microemulsion and the concentration of the reactants (the corresponding sulfates and a precipitation agent, tetramethyl ammonium hydroxide) in the aqueous solution of the microemulsion. The specific magnetization of the nanoparticles (measured at 13 kOe) was found to depend mainly on particle size: ranging from 1.3 emu g-1 for particles of approximately 2 nm in size to 7.3 emu g-1 for particles of approximately 5 nm in size.

  13. Preparation and Characterization of Low Dispersity Anionic Multiresponsive Core-Shell Polymer Nanoparticles

    NARCIS (Netherlands)

    Pinheiro, J.P.; Moura, L.; Fokkink, R.G.; Farinha, J.P.S.

    2012-01-01

    We prepared anionic multistimuli responsive core-shell polymer nanoparticles with very low size dispersity. By using either acrylic acid (AA) or methacrylic acid (MA) as a comonomer in the poly(N-isopropyl acrylamide) (PNIPAM) shell, we are able to change the distribution of negative charges in the

  14. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    International Nuclear Information System (INIS)

    Ba-ferrite (BaFe12O19) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures

  15. Characteristics of Barium Hexaferrite Nanoparticles Prepared by Temperature-Controlled Chemical Coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jun Young; Lee, Choong Sub; Kim, Don; Kim, Yeong Il [Pukyong National Univ., Busan (Korea, Republic of)

    2012-10-15

    Ba-ferrite (BaFe{sub 12}O{sub 19}) nanoparticles were synthesized by chemical coprecipitation method in an aqueous solution. The particle size and the crystallization temperature of the Ba-ferrite nanoparticles were controlled varying the precipitation temperature. The precipitate that was prepared at 0 .deg. C showed the crystal structure of Ba-ferrite in X-ray diffraction when it was calcined at the temperature above 580 .deg. C, whereas what was prepared at 50 .deg. C showed the crystallinity when it was calcined at the temperature higher than about 700 .deg. C. The particle sizes of the synthesized Ba-ferrite were in a range of about 20-30 nm when it was prepared by being precipitated at 0 .deg. C and calcined at 650 .deg. C. When the precipitation temperature increased, the particle size also increased even at the same calcination temperature. The magnetic properties of the Ba-ferrite nanoparticles were also controlled by the synthetic condition of precipitation and calcination temperature. The coercive force could be appreciably lowered without a loss of saturation magnetization when the Ba-ferrite nanoparticles were prepared by precipitation and calcination both at low temperatures.

  16. Preparation of starch-stabilized silver nanoparticles from amylose-sodium palmitate inclusion complexes

    Science.gov (United States)

    Starch-stabilized silver nanoparticles were prepared from amylose-sodium palmitate complexes by first converting sodium palmitate to silver palmitate by reaction with silver nitrate and then reducing the silver ion to metallic silver. This process produced water solutions that could be dried and the...

  17. Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Carmen Bautista, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Bomati-Miguel, Oscar [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Puerto Morales, Maria del [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Serna, Carlos J. [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Veintemillas-Verdaguer, Sabino [Instituto de Ciencia de Materiales de Madrid, CSIC, C Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain)]. E-mail: sabino@icmm.csic.es

    2005-05-15

    The favoured mechanism of adsorption of dextran on the surface of maghemite nanoparticles (5 nm) prepared by laser pyrolysis seems to be the collective hydrogen bonding between dextran hydroxyl groups and iron oxide particle surface. After heating, the formation of a surface complex between the polysaccharide oxygen atoms and the surface iron atoms gave rise to a stronger bonding.

  18. Preparation of magnetic polymer particles with nanoparticles of Fe(0).

    Science.gov (United States)

    Buendía, S; Cabañas, G; Alvarez-Lucio, G; Montiel-Sánchez, H; Navarro-Clemente, M E; Corea, M

    2011-02-01

    Iron nanoparticles (Fe(0)), were encapsulated into polymethyl methacrylate (PMMA), by means of emulsion polymerization techniques in a semicontinuous process. The final average diameter of the composite particle was calculated until three times of average particle of iron particles and were stabilized with a non-ionic surfactant. They were then characterized by scanning electron microscopy and dynamic light scattering. Their magnetic properties were determined by parallel field vibrating-sample magnetometry method. The results indicated that the magnetic properties are a function of polymer concentration in the nanocomposite particle. PMID:21051044

  19. Tailored antireflective biomimetic nanostructures for UV applications

    Energy Technology Data Exchange (ETDEWEB)

    Morhard, Christoph; Pacholski, Claudia; Spatz, Joachim P [Department of New Materials and Biosystems, Max Planck Institute for Metals Research, Heisenbergstrasse 3, D-70569 Stuttgart (Germany); Lehr, Dennis; Brunner, Robert; Helgert, Michael [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Promenade 10, D-07745 Jena (Germany); Sundermann, Michael, E-mail: Pacholski@mf.mpg.de [Carl Zeiss Jena GmbH, Technology Center, Carl-Zeiss-Strasse 56, D-73447 Oberkochen (Germany)

    2010-10-22

    Antireflective surfaces composed of biomimetic sub-wavelength structures that employ the 'moth eye principle' for reflectance reduction are highly desirable in many optical applications such as solar cells, photodetectors and laser optics. We report an efficient approach for the fabrication of antireflective surfaces based on a two-step process consisting of gold nanoparticle mask generation by micellar block copolymer nanolithography and a multi-step reactive ion etching process. Depending on the RIE process parameters nanostructured surfaces with tailored antireflective properties can easily be fabricated that show optimum performance for specific applications.

  20. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    Energy Technology Data Exchange (ETDEWEB)

    Basavegowda, Nagaraj; Idhayadhulla, Akber; Lee, Yong Rok, E-mail: yrlee@yu.ac.kr

    2014-10-01

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities.

  1. Preparation of Au and Ag nanoparticles using Artemisia annua and their in vitro antibacterial and tyrosinase inhibitory activities

    International Nuclear Information System (INIS)

    This work describes a plant-mediated approach to the preparation of metal nanoparticles using leaf extract of Artemisia annua (A. annua), an ethno-medicinal plant widely found in Asia, which was used as reducing and stabilizing agent. A. annua is used in traditional Chinese medicine to alleviate fever. Au and Ag nanoparticles were prepared using a one-step aqueous method at room temperature without any toxic chemicals. The formation of Au and Ag nanoparticles was monitored by UV–vis spectroscopy. Synthesized nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), Fourier transform infrared (FT-IR) spectroscopy, and thermogravimetric analysis (TGA). TEM analysis of Au nanoparticles showed that they had triangular and spherical shapes with sizes ranging from 15 to 40 nm. The silver nanoparticles were predominantly spherical and uniformly sized (30–50 nm). The Au and Ag nanoparticles produced showed significant tyrosinase inhibitory and antibacterial effects. These results suggest that the synthesized nanoparticles provide good alternatives in varied medical and industrial applications. - Highlights: • Au and Ag nanoparticles were synthesized using Artemisia annua leaf aqueous extract. • Nanoparticles were characterized by UV–vis spectroscopy, FT-IR, TEM, EDX, XRD, and TGA. • Au and Ag nanoparticles were of size 25 and 30 nm respectively, in spherical forms. • Nanoparticles showed significant tyrosinase inhibitory and antibacterial activities

  2. Exploring the Preparation of Albendazole-Loaded Chitosan-Tripolyphosphate Nanoparticles

    Directory of Open Access Journals (Sweden)

    Bong-Seok Kang

    2015-02-01

    Full Text Available The objective of this study was to improve the solubility of albendazole and optimize the preparation of an oral nanoparticle formulation, using β-cyclodextrin (βCD and chitosan-tripolyphosphate (TPP nanoparticles. The solubility of albendazole in buffers, surfactants, and various concentrations of acetic acid solution was investigated. To determine drug loading, the cytotoxic effects of the albendazole concentration in human hepatocellular carcinoma cells (HepG2 were investigated. The formulations were prepared by mixing the drug solution in Tween 20 with the chitosan solution. TPP solution was added dropwise with sonication to produce a nanoparticle through ionic crosslinking. Then the particle size, polydispersity index, and zeta potential of the nanoparticles were investigated to obtain an optimal composition. The solubility of albendazole was greater in pH 2 buffer, Tween 20, and βCD depending on the concentration of acetic acid. Drug loading was determined as 100 µg/mL based on the results of cell viability. The optimized ratio of Tween 20, chitosan/hydroxypropyl βCD, and TPP was 2:5:1, which resulted in smaller particle size and proper zeta positive values of the zeta potential. The chitosan-TPP nanoparticles increased the drug solubility and had a small particle size with homogeneity in formulating albendazole as a potential anticancer agent.

  3. Preparation and characterization of polymer nanocomposites coated magnetic nanoparticles for drug delivery applications

    Science.gov (United States)

    Prabha, G.; Raj, V.

    2016-06-01

    In the present research work, the anticancer drug 'curcumin' is loaded with Chitosan (CS)-polyethylene glycol (PEG)-polyvinylpyrrolidone (PVP) (CS-PEG-PVP) polymer nanocomposites coated with superparamagnetic iron oxide (Fe3O4) nanoparticles. The system can be used for targeted and controlled drug delivery of anticancer drugs with reduced side effects and greater efficiency. The prepared nanoparticles were characterized by Fourier transmission infrared spectroscopy (FTIR), vibrating sample magnetometry (VSM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles exhibited the mean particle size in the range of 183-390 nm with a zeta potential value of 26-41 mV as measured using Malvern Zetasizer. The encapsulation efficiency, loading capacity and in-vitro drug release behavior of curcumin drug loaded Fe3O4-CS, Fe3O4-CS-PEG and Fe3O4-CS-PEG-PVP nanoparticles were studied using UV spectrophotometer. Besides, the cytotoxicity of the prepared nanoparticles using MTT assay was also studied. The curcumin drug release was examined at different pH medium and it was proved that the drug release depends upon the pH medium in addition to the nature of matrix.

  4. Preparation of starch nanoparticles in water in oil microemulsion system and their drug delivery properties.

    Science.gov (United States)

    Wang, Xinge; Chen, Haiming; Luo, Zhigang; Fu, Xiong

    2016-03-15

    In this research, 1-hexadecyl-3-methylimidazolium bromide C16mimBr/butan-1-ol/cyclohexane/water ionic liquid microemulsion was prepared. The effects of n-alkyl alcohols, alkanes, water content and temperature on the properties of microemulsion were studied by dilution experiment. The microregion of microemulsion was identified by pseudo-ternary phase diagram and conductivity measurement. Then starch nanoparticles were prepared by water in oil (W/O) microemulsion-cross-linking methods with C16mimBr as surfactant. Starch nanoparticles with a mean diameter of 94.3nm and narrow size distribution (SD=3.3) were confirmed by dynamic light scattering (DLS). Scanning electron microscope (SEM) data revealed that starch nanoparticles were spherical granules with the size about 60nm. Moreover the results of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) demonstrated the formation of cross-linking bonds in starch molecules. Finally, the drug loading and releasing properties of starch nanoparticles were investigated with methylene blue (MB) as drug model. This work may provide an efficient pathway to synthesis starch nanoparticles. PMID:26794752

  5. Preparation of Biocompatible Carboxymethyl Chitosan Nanoparticles for Delivery of Antibiotic Drug

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    2013-01-01

    Full Text Available Objective. To prepare biocompatible ciprofloxacin-loaded carboxymethyl chitosan nanoparticles (CCC NPs and evaluate their cell specificity as well as antibacterial activity against Escherichia coli in vitro. Methods. CCC NPs were prepared by ionic cross-linking method and optimized by using Box-Behnken response surface method (BBRSM. Zeta potential, drug encapsulation, and release of the obtained nanoparticles in vitro were thoroughly investigated. Minimum inhibitory concentration (MIC and killing profiles of free or ciprofloxacin-loaded nanoparticles against Escherichia coli were documented. The cytotoicity of blank nanoparticles and cellular uptake of CCC NPs were also investigated. Results. The obtained particles were monodisperse nanospheres with an average hydrated diameter of 151 ± 5.67 nm and surface of charge −22.9 ± 2.21 mV. The MICs of free ciprofloxacin and CCC NPs were 0.16 and 0.08 μg/mL, respectively. Blank nanoparticles showed no obvious cell inhibition within 24 h, and noticeable phagocytosis effect was observed in the presence of CCC NPs. Conclusion. This study shows that CCC NPs have stronger antibacterial activity against Escherichia coli than the free ciprofloxacin because they can easily be uptaken by cells. The obtained CCC NPs have promising prospect in drug delivery field.

  6. A facile and general approach for preparation of glycoprotein-imprinted magnetic nanoparticles with synergistic selectivity.

    Science.gov (United States)

    Hao, Yi; Gao, Ruixia; Liu, Dechun; He, Gaiyan; Tang, Yuhai; Guo, Zengjun

    2016-06-01

    In light of the significance of glycoprotein biomarkers for early clinical diagnostics and treatments of diseases, it is essential to develop efficient and selective enrichment platforms for glycoproteins. In this study, we present a facile and general strategy to prepare the boronate affinity-based magnetic imprinted nanoparticles. Boronic acid ligands were first grafted on the directly aldehyde-functionalized magnetic nanoparticles through amidation reaction. Then, template glycoproteins were immobilized on the boronic acid-modified magnetic nanoparticles via boronate affinity binding. Subsequently, a thin layer of dopamine was formed to coat the surface of magnetic nanoparticles through self-polymerization. After the template glycoproteins were removed, the cavities that can specific bind the template glycoproteins were fabricated. Adopting horseradish peroxidase as model template, the effects of imprinting conditions as well as the properties and performance of the obtained products were investigated. The resultant imprinted materials exhibit highly favorable features, including uniform surface morphology with thin imprinted shell of about 8nm, super-paramagnetic property, fast kinetics of 40min, high adsorption capacity of 60.3mgg(-1), and satisfactory reusability for at least five cycles of adsorption-desorption without obvious deterioration. Meanwhile, the obtained magnetic imprinted nanoparticles could capture target glycoprotein from nonglycoproteins, but also from other glycoproteins because the synergistic selectivity of boronate affinity and imprinting effect. In addition, the facile preparation method shows feasibility in the imprinting of different glycoproteins. PMID:27130111

  7. Preparation of chitosan-EDTA nanoparticles and the chelating effect of radioactive strontium in vivo

    International Nuclear Information System (INIS)

    Objective: To obtain the CTS-EDTA nanoparticles and investigate their effects of chelating 89Sr2+ in vivo. Method: The CTS-EDTA nanoparticles were prepared by cross-linking CTS-EDTA with polyanion sodium tripolyphosphate ( TPP). And the zwitterionic chelate of the CTS-EDTA nanoparticles was used for promoting the radionuclides excreted in vivo. Results: The CTS-EDTA nanoparticles showed that particle size was uniformity of the spherical nano-particles by TEM, and the average particle size of 10.18 nm by Laser Particle Sizer. we found that CEC-Nano and the CEC had a good chelating effect of radioactive strontium in vivo, after 30 min and 2 h in the medication and the chelating efficiency of radioactive strontium excretion in the femur was significantly higher than the EDTA-Na2. At multiple doses,the chelating efficiency of CEC-Nano and the CEC through the urinary excretion and feces were better than traditional medicines EDTA-Na2. Conclusion: By this experimental method, we can be prepare nanodrugs of chelating radionuclide, it provides a basis for studying the broad-spectrum of radionuclide contamination chelating agents. (authors)

  8. PREPARATION, CHARACTERIZATION AND ADHESIVE PROPERTIES OF DI-AND TRI-HYDROXY BENZOYL CHITOSAN NANOPARTICLES

    Institute of Scientific and Technical Information of China (English)

    Mohamad Taghi Taghizadeh; Ali Bahadori

    2013-01-01

    Modified chitosans with 3,4-di-hydroxy benzoyl groups (CS-DHBA) and 3,4,5-tri-hydroxy benzoyl groups (CSTHBA) were synthesized and their nanoparticles were prepared via ionic crosslinking by tripolyphosphate (TPP).The chemical structure and degree of substitution (DS) of di-and tri-hydroxy benzoyl chitosans are determined by FTIR and 1HNMR spectroscopy.The morphology of particles,size distribution and zeta potential of nanoparticles were studied using transmission electron microscopy (TEM) and dynamic light scattering (DLS),respectively.The mean diameters of particles of CS-DHBA and CS-THBA nanoparticles were 144 nm and 112 nm,respectively.It was found that the particles size decreased slightly with decreasing the degree of substitution and increasing degree of deacetylation (DD),due to increasing of ionic crosslinking of ammonium ions and polyanions of tripolyphosphate.The TEM photographs of CS-DHBA show that these particles are spherical in shape,but the particles of CS-THBA show some aggregation.In addition,the solubility and the mechanical properties of the prepared modified chitosans and their nanoparticles were evaluated for bio-adhesive and biomedical application.The results of solubility tests indicated that,the CS-DHBA and CS-THBA have higher solubility at pH > 7 comparing to CS.Also the CS-DHBA,CS-THBA and their nanoparticles showed a significant adhesive capacity and enhanced tensile strength and tensile modulus.

  9. A convenient method to prepare emulsified polyacrylate nanoparticles from powders [corrected] for drug delivery applications.

    Science.gov (United States)

    Garay-Jimenez, Julio C; Turos, Edward

    2011-08-01

    We describe a method to obtain purified, polyacrylate nanoparticles in a homogeneous powdered form that can be readily reconstituted in aqueous media for in vivo applications. Polyacrylate-based nanoparticles can be easily prepared by emulsion polymerization using a 7:3 mixture of butyl acrylate and styrene in water containing sodium dodecyl sulfate as a surfactant and potassium persulfate as a water-soluble radical initiator. The resulting emulsions contain nanoparticles measuring 40-50 nm in diameter with uniform morphology, and can be purified by centrifugation and dialysis to remove larger coagulants as well as residual surfactant and monomers associated with toxicity. These purified emulsions can be lyophilized in the presence of maltose (a non-toxic cryoprotectant) to provide a homogeneous dried powder, which can be reconstituted as an emulsion by addition of an aqueous diluent. Dynamic light scattering and microbiological experiments were carried out on the reconstituted nanoparticles. This procedure allows for ready preparation of nanoparticle emulsions for drug delivery applications. PMID:21704525

  10. Silica nanoparticles as inorganic scaffolds for the preparation of hybrid materials for the optical detection of anions

    OpenAIRE

    CALERO RODRIGUEZ, MARÍA PILAR

    2016-01-01

    [EN] The PhD Thesis entitled "Silica nanoparticles as inorganic scaffolds for the preparation of hybrid materials for the optical detection of anions" deals with the combination of supramolecular and material chemistry concepts to prepare hybrid sensing materials with the ability to detect selected ions through color and emission changes. The first hybrid material prepared is based in the use of silica nanoparticles as inorganic scaffold functionalized with spirobenzopyrans (signaling uni...

  11. Studies of poly-L-lysine-starch nanoparticle preparation and its application as gene carrier

    Institute of Scientific and Technical Information of China (English)

    XIAO Suyao; LIU Xuanming; TONG Chunyi; LIU Jun; TANG Dongying; ZHAO Lijian

    2005-01-01

    Anion starch nanoparticle (StNP) with a diameter of 50 nm was prepared in water-in-oil microemulsion, with soluble starch as raw materials and POCl3 as crosslinking agent. PLL-StNP was prepared by linking poly-L-lysine (PLL) on the surface of StNP. At the same time, the size of PLL-StNP and its stability in aqueous solution were checked by AFM. The analysis of plasmid DNA binding, DNase I enzymatic degradation, toxicity and transfection were done. We discovered that PLL-StNP may be used as non-virus nanoparticle gene carrier. And we developed the method of preparing PLL-StNP gene carrier and used it in cell transfection. As non-virus gene carrier, PLL-StNP has some advantages, such as large load of DNA, high transfection efficiency, low cell toxicity and biodegradability.

  12. Solvothermal synthesis of CZTS nanoparticles in ethanol: Preparation and characterization

    Science.gov (United States)

    Yan, Xinlong; Hu, Xiaoyan; Komarneni, Sridhar

    2015-05-01

    In this work, a low-cost, non-toxic and convenient one-pot solvothermal route to synthesize Cu2ZnSnS4 (CZTS) nanoparticles is reported. The effects of solvothermal temperature and reaction time on the structure, morphology and optical properties of the as-synthesized product were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX) measurements and X-ray photoelectron spectroscopy (XPS). The results showed that the crystallinity of the CZTS powders was influenced by the solvothermal temperature and reaction time. The band gap of selected CZTS samples was near the optimum value for photovoltaic solar conversion in a single-band-gap device.

  13. Poly(vinylpyrrolidone)/silver nanoparticles: preparation and characterization; Nanoparticulas de prata/poli(vinilpirrolidona): obtencao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, P.F.; Goncalves, M.C. [Instituto de Quimica - UNICAMP, Campinas, SP (Brazil)], e-mail: patandrade@iqm.unicamp.br

    2010-07-01

    In this work silver nanoparticles were prepared by chemical reduction method using PVP as dispersant agent. The formation of silver nanoparticles was investigated by UV-vis optical spectroscopy and X-ray diffraction. FT-IR spectroscopy confirmed the formation of Ag/PVP complex. The transmission electron microscopy images indicated that the concentration of Ag{sup +} precursor influenced the nanoparticles dispersion and size distribution significantly. The results indicated that dispersed nanoparticles with uniform size distribution can be prepared by this methodology to obtain polymeric nano composites. (author)

  14. Cationic Albumin Nanoparticles for Enhanced Drug Delivery to Treat Breast Cancer: Preparation and In Vitro Assessment

    Directory of Open Access Journals (Sweden)

    Sana Abbasi

    2012-01-01

    Full Text Available Most anticancer drugs are greatly limited by the serious side effects that they cause. Doxorubicin (DOX is an antineoplastic agent, commonly used against breast cancer. However, it may lead to irreversible cardiotoxicity, which could even result in congestive heart failure. In order to avoid these harmful side effects to the patients and to improve the therapeutic efficacy of doxorubicin, we developed DOX-loaded polyethylenimine- (PEI- enhanced human serum albumin (HSA nanoparticles. The formed nanoparticles were ~137 nm in size with a surface zeta potential of ~+15 mV, prepared using 20 μg of PEI added per mg of HSA. Cytotoxicity was not observed with empty PEI-enhanced HSA nanoparticles, formed with low-molecular weight (25 kDa PEI, indicating biocompatibility and safety of the nanoparticle formulation. Under optimized transfection conditions, approximately 80% of cells were transfected with HSA nanoparticles containing tetramethylrhodamine-conjugated bovine serum albumin. Conclusively, PEI-enhanced HSA nanoparticles show potential for developing into an effective carrier for anticancer drugs.

  15. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method

    International Nuclear Information System (INIS)

    Copper nanoparticles, due to their interesting properties, low cost preparation and many potential applications in catalysis, cooling fluid or conductive inks, have attracted a lot of interest in recent years. In this study, copper nanoparticles were synthesized through the chemical reduction of copper sulfate with sodium borohydride in water without inert gas protection. In our synthesis route, ascorbic acid (natural vitamin C) was employed as a protective agent to prevent the nascent Cu nanoparticles from oxidation during the synthesis process and in storage. Polyethylene glycol (PEG) was added and worked both as a size controller and as a capping agent. Cu nanoparticles were characterized by Fourier transform infrared (FT-IR) spectroscopy to investigate the coordination between Cu nanoparticles and PEG. Transmission electron microscopy (TEM) and UV–vis spectrometry contributed to the analysis of size and optical properties of the nanoparticles, respectively. The average crystal sizes of the particles at room temperature were less than 10 nm. It was observed that the surface plasmon resonance phenomenon can be controlled during synthesis by varying the reaction time, pH, and relative ratio of copper sulfate to the surfactant. The surface plasmon resonance peak shifts from 561 to 572 nm, while the apparent color changes from red to black, which is partly related to the change in particle size. Upon oxidation, the color of the solution changes from red to violet and ultimately a blue solution appears

  16. Homogeneous nanoparticle dispersion prepared with impurity-free dispersant by the ball mill technique

    Institute of Scientific and Technical Information of China (English)

    Lingyun Zhou; Hui Zhang; Hui Zhang; Zhong Zhang

    2013-01-01

    The homogeneous dispersion of nanoparticles in solvents or polymer matrices is essential tor prac tical application of nanocomposites.In this study,the planetary ball milling technique was used to de-agglomerate silica nanoparticles in butyl acetate.The size of the nanosilica aggregates was evaluated by TEM and SEM.With the addition of polyacrylate polymer to the organic solvent,the nanoparticle agglomerates were effectively broken up by planetary ball milling at the proper milling time; however,re-agglomeration occurred after a longer milling time.The results of TGA and FTIR indicated that the polyacrylate molecules could be adsorbed in situ onto the nanoparticles.Behaving similar to a dispersant,the adsorbed polyacrylate reduced the blend viscosity significantly and prevented re-agglomeration of the nanoparticles.Utilizing the polyacrylate polymer both as the dispersant and the polymer matrix,the polyacrylate-based nanocoatings were further prepared.The optical transmittance and haze value of the nanocoatings were found to be sensitive to the dispersion level of the nanoparticles,and the elastic modulus and hardness of the nanocoatings were improved in comparison with those of the neat polymer coating.

  17. Radiation preparation and properties of Fe3O4-chitosan magnetic nanoparticles

    International Nuclear Information System (INIS)

    Fe3O4 nanoparticles were dispersed in paraffin and mixed with chitosan by various ratios into homogenous solutions, then gamma irradiated at dose of 40 kGy for preparation of Fe3O4-chitosan nanoparticles. The resulting Fe3O4-chitosan materials were characterized by transmission electron microscopy (TEM), vibrating sample magnetization (VMS) and X-ray diffraction (XRD). Average diameter of obtained nanoparticles increased, whereas its saturated magnetization reduced with chitosan ratio in the solution. The Fe3O4-chitosan nanoparticles obtained from the 5:1 Fe3O4/chitosan admixture were used as absorbents for removal of lead ions (Pb(II)) in aqueous solutions. The results revealed that adsorption capacity depended on the initial amount of Fe3O4-chitosan nanoparticles, and their maximum adsorption capacity for Pb(CH3COO)2.3H2O was 41.4 mg/g at ambient conditions. These results suggested that Fe3O4-chitosan nanoparticles can be applied as a promising adsorbent for removal of heavy metals from contaminated solutions in practice. (author)

  18. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2012-11-01

    Full Text Available Dena Dorniani,1 Mohd Zobir Bin Hussein,1,2 Aminu Umar Kura,3 Sharida Fakurazi,3 Abdul Halim Shaari,4 Zalinah Ahmad51Chemistry Department, Faculty of Science, 2Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, 3Vaccines and Immunotherapeutics Laboratory, 4Physics Department, Faculty of Science, 5Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, MalaysiaBackground and methods: Magnetic iron oxide nanoparticles were prepared using a sonochemical method under atmospheric conditions at a Fe2+ to Fe3+ molar ratio of 1:2. The iron oxide nanoparticles were subsequently coated with chitosan and gallic acid to produce a core-shell structure.Results: X-ray diffraction demonstrated that the magnetic nanoparticles were pure Fe3O4 with a cubic inverse spinel structure. Transmission electron microscopy showed that the Fe3O4 nanoparticles were of spherical shape with a mean diameter of 11 nm, compared with 13 nm for the iron oxide-chitosan-gallic acid (FCG nanocarriers.Conclusion: The magnetic nanocarrier enhanced the thermal stability of the drug, gallic acid. Release of the active drug from the FCG nanocarrier was found to occur in a controlled manner. The gallic acid and FCG nanoparticles were not toxic in a normal human fibroblast (3T3 line, and anticancer activity was higher in HT29 than MCF7 cell lines.Keywords: magnetic nanoparticles, chitosan, superparamagnetic, controlled-release, gallic acid, drug delivery

  19. Application of a new coordination compound for the preparation of AgI nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect

  20. Application of a new coordination compound for the preparation of AgI nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohandes, Fatemeh [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167, Islamic Republic of Iran (Iran, Islamic Republic of)

    2013-10-15

    Graphical abstract: Silver iodide nanoparticles have been sonochemically synthesized by using silver salicylate complex, [Ag(HSal)], as silver precursor. A series of control experiments were carried out to investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures. - Highlights: • Silver salicylate as a new precursor was applied to fabricate γ-AgI nanoparticles. • To further decrease the particle size of AgI, SDS was used as surfactant. • The effect of preparation parameters on the particle size of AgI was investigated. - Abstract: AgI nanoparticles have been sonochemically synthesized by using silver salicylate, [Ag(HSal)], as silver precursor. To investigate the effects of solvent, surfactant concentration, sonication time and temperature on the morphology of AgI nanostructures, several experiments were carried out. The products were characterized by SEM, TEM, XRD, TGA/DTA, UV–vis, and FT-IR. Based on the experimental findings in this research, it was found that the size of AgI nanoparticles was dramatically dependent on the silver precursor, sonochemical irradiation, and surfactant concentration. Sodium dodecyl sulfate (SDS) was applied as surfactant. When the concentration of SDS was 0.055 mM, very uniform sphere-like AgI nanoparticles with grain size of about 25–30 nm were obtained. These results indicated that the high concentration of SDS could prevent the aggregation between colloidal nanoparticles due to its steric hindrance effect.

  1. Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor.

    Science.gov (United States)

    Neiva, Eduardo G C; Oliveira, Marcela M; Marcolino, Luiz H; Zarbin, Aldo J G

    2016-04-15

    Hexagonal close packed (hcp) nickel nanoparticles stabilized by polyvinylpyrrolidone (PVP) were synthesized through the thermal treatment of face centered cubic (fcc) nickel nanoparticles. Controlling both the temperature of the heat treatment and the amount of PVP was possible the control of the hcp/fcc rate in the samples, where the higher Ni/PVP ratio produces only the hcp-nickel phase (average size of 8.9nm) highly stable in air. The crystalline structure, the presence of PVP, the size of the nanoparticles and the stability of the hcp-nickel were confirmed using X-ray diffractometry, Fourier transform infrared spectroscopy, transmission electron microscopy, Raman spectroscopy, scanning electron microscopy and thermogravimetric analysis. Thin films of hcp and fcc nickel nanoparticles were prepared through a biphasic system and deposited over indium-doped tin oxide (ITO) substrates, which were electrochemically characterized and applied as glycerol amperometric sensors in NaOH medium. Parameters as the number of cycles applied and the scan rate were evaluated and indicate that hcp nickel nanoparticles are more reactive to form Ni(OH)2 and lead to more electroactive Ni(OH)2 structure. The hcp nickel nanoparticles-modified electrode showed the best sensitivity (0.258μALμmol(-1)) and detection limit (2.4μmolL(-1)) toward glycerol. PMID:26821149

  2. Preparation and Comparison of Chitosan Nanoparticles with Different Degrees of Glutathione Thiolation

    Directory of Open Access Journals (Sweden)

    R Dinarvand

    2011-12-01

    Full Text Available Background: Chitosan has gained considerable attentions as a biocompatible carrier to improve delivery of active agents. Application of this vehicle in the form of nanoparticle could profit advantages of nanotechnology to increase efficacy of active agents. The purpose of this study was to provide detailed information about chitosan-glutathione (Cht-GSHnanoparticles which are gaining popularity because of their high mucoadhesive and extended drug release properties. Methods: Depolymerization of chitosan was carried out using sodium nitrite method.Glutathione was covalently attached to chitosan and the solubility of the resulting conjugates was evaluated. Nanoparticles were prepared by ionic gelation method and then the effect of glutathione immobilization on properties of nanoparticles was investigated. Results: Thiolation efficiency was higher in lower molecular weight chitosan polymers compared to unmodified chitosan nanoparticles. Cht-GSH conjugates of the same molecular weight but with different degrees of thiolation had the same hydrodynamic diameter (995± nm and surface charge (102± mV as unmodified chitosan, but comprised of a denser network structure and lower concentration. Cht-GSH nanoparticles also exhibited greater mucoadhesive strength which was less affected by ionic strength and pH of the environment. Conclusion:Thiolation improves the solubility of chitosan without any significant changes in size and charge of nanoparticles, but affects the nanogel structure.

  3. Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application

    Science.gov (United States)

    Peedikakkandy, Lekha; Kalita, Laksheswar; Kavle, Pravin; Kadam, Ankur; Gujar, Vikas; Arcot, Mahesh; Bhargava, Parag

    2015-12-01

    This paper describes synthesis of spherical and highly mono-dispersed ceria coated silica nanoparticles of size ∼70-80 nm for application as abrasive particles in Chemical Mechanical Planarization (CMP) process. Core silica nanoparticles were initially synthesized using micro-emulsion method. Ceria coating on these ultrafine and spherical silica nanoparticles was achieved using controlled chemical precipitation method. Study of various parameters influencing the formation of ceria coated silica nanoparticles of size less than 100 nm has been undertaken and reported. Ceria coating over silica nanoparticles was varied by controlling the reaction temperature, pH and precursor concentrations. Characterization studies using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Energy Dispersive X-ray analysis show formation of crystalline CeO2 coating of ∼10 nm thickness over silica with spherical morphology and particle size silica abrasive was prepared and employed for polishing of oxide and nitride films on silicon substrates. Polished films were studied using ellipsometry and an improvement in SiO2:SiN selective removal rates up to 12 was observed using 1 wt% ceria coated silica nanoparticles slurry.

  4. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles

    KAUST Repository

    Lv, Yongqin

    2012-10-01

    A new approach to the preparation of porous polymer monoliths with enhanced coverage of pore surface with gold nanoparticles has been developed. First, a generic poly(glycidyl methacrylate-co-ethylene dimethacrylate) monolith was reacted with cystamine followed by the cleavage of its disulfide bonds with tris(2-carboxylethyl)phosphine, which liberated the desired thiol groups. Dispersions of gold nanoparticles with sizes varying from 5 to 40. nm were then pumped through the functionalized monoliths. The materials were then analyzed using both energy dispersive X-ray spectroscopy and thermogravimetric analysis. We found that the quantity of attached gold was dependent on the size of nanoparticles, with the maximum attachment of more than 60. wt% being achieved with 40. nm nanoparticles. Scanning electron micrographs of the cross sections of all the monoliths revealed the formation of a non-aggregated, homogenous monolayer of nanoparticles. The surface of the bound gold was functionalized with 1-octanethiol and 1-octadecanethiol, and these monolithic columns were used successfully for the separations of proteins in reversed phase mode. The best separations were obtained using monoliths modified with 15, 20, and 30. nm nanoparticles since these sizes produced the most dense coverage of pore surface with gold. © 2012 Elsevier B.V.

  5. Preparation, stability and two-dimensional ordered arrangement of gold nanoparticles capped by surfactants with different chain lengths

    Institute of Scientific and Technical Information of China (English)

    周学华; 江龙; 李津如; 刘春艳

    2002-01-01

    Gold nanoparticles modified with C10NH2, C12NH2, C16NH2 and C18NH2 respectively have been prepared by the reverse micelle method. Nanoparticles stability and their two-dimensional (2D) ordered arrangement were studied by UV-Vis absorption spectra and LB technique. The factors, such as the chain length and the size distribution of particles, which affect the 2D ordered arrangement formation, are discussed. Experimental results show that the longer the chain length of surfactants capping the gold nanoparticles, the more stable the nanoparticles, and the more ordered 2D arrangement of gold nanoparticles.

  6. Preparation and characterization of resistant starch type IV nanoparticles through ultrasonication and miniemulsion cross-linking.

    Science.gov (United States)

    Ding, Yongbo; Zheng, Jiong; Xia, Xuejuan; Ren, Tingyuan; Kan, Jianquan

    2016-05-01

    This study aimed to assess the properties of resistant starch type IV (chemically modified starch, RS4) prepared from a new and convenient synthesis route by using ultrasonication combined with water-in-oil miniemulsion cross-linking technique. A three-factor Box-Behnken design and optimization was used to minimize particle size through the developed RS4 nanoparticles. The predicted minimized Z-Avel (576.1nm) under the optimum conditions of the process variables (ultrasonic power, 214.57W; sonication time, 114.73min; and oil/water ratio, 10.54:1) was very close to the experimental value (651.0nm) determined in a batch experiment. After preparing the RS4 nanoparticles, morphological, physical, chemical, and functional properties were assessed. Results revealed that RS4 nanoparticle size reached about 600nm. Scanning electron microscopy images showed that ultrasonication induced notches and grooves on the surface. Under polarized light, the polarized cross was impaired. X-ray diffraction results revealed that the crystalline structure was disrupted. Smaller or no endotherms were exhibited in DSC analysis. In the FTIR graph, new peaks at 1532.91 and 1451.50cm(-1) were observed, and pasting properties were reduced. Amylose content, solubility, and SP increased, but RS content decreased. Anti-digestibility remained after ultrasonication. The prepared RS4 nanoparticles could be extensively used in biomedical applications and in the development of new medical materials. PMID:26877007

  7. Preparation of aminodextran-CdS nanoparticle complexes and biologically active antibody-aminodextran-CdS nanoparticle conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Sondi, I.; Siiman, O.; Koester, S.; Matijevic, E.

    2000-04-04

    Stable aqueous dispersions consisting of CdS nanoparticles having modal diameters, ranging between 2 and 8 nm, were prepared with amino-derivatized polysaccharides (aminodextrans, hence abbreviated as Amdex) as the stabilizing agents. The size, stability, and luminescence intensity of such dispersions were shown to be dependent on the types of the cadmium salts and aminodextrans used, as well as on the reactant concentrations. Specifically, it was demonstrated that the degree of substitution of amino groups in the aminodextran molecules greatly affected the properties of the dispersions; i.e., with higher degree of substitution, smaller CdS particles and higher luminescence intensity were achieved. It was also shown that the Amdex-CdS nanoparticle complexes could be activated and conjugated with antibody by conventional means. Molecular weight ranges of the Amdex and their complexes with CdS nanoparticles and the purity of antibody-Amdex-CdS nanoparticle conjugates were determined by polyacrylamide gel electrophoresis combined with Coomassie blue staining of resultant gel bands. The purified conjugate of the aminodextran-CdS nanoparticle complex with anti-CD4 monoclonal antibody was mixed with a whole blood control, followed by indirect sheep antimouse antibody-phycoerythrin (SAM-PE) labeling of washed cells incubated with T4-5X-Amdex-CdS. Red blood cells were then lysed and quenched, and the resulting mixture, which was run on a flow cytometer with 488.0 nm argon ion laser excitation, suggested that the T4 antibody from the conjugate was present specifically on lymphocytes.

  8. Practical preparation procedures for docetaxel-loaded nanoparticles using polylactic acid-co-glycolic acid

    Directory of Open Access Journals (Sweden)

    Keum CG

    2011-10-01

    Full Text Available Chang-Gu Keum1*, Young-Wook Noh1*, Jong-Suep Baek1, Ji-Ho Lim1, Chan-Ju Hwang1, Young-Guk Na1, Sang-Chul Shin2, Cheong-Weon Cho11College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Gungdong, Yuseonggu, Daejeon, South Korea; 2College of Pharmacy, Chonnam National University, Yongbongdong, Buggu, Gwangju, South Korea *These authors contributed equally to this work Background: Nanoparticles fabricated from the biodegradable and biocompatible polymer, polylactic-co-glycolic acid (PLGA, are the most intensively investigated polymers for drug delivery systems. The objective of this study was to explore fully the development of a PLGA nanoparticle drug delivery system for alternative preparation of a commercial formulation. In our nanoparticle fabrication, our purpose was to compare various preparation parameters. Methods: Docetaxel-loaded PLGA nanoparticles were prepared by a single emulsion technique and solvent evaporation. The nanoparticles were characterized by various techniques, including scanning electron microscopy for surface morphology, dynamic light scattering for size and zeta potential, x-ray photoelectron spectroscopy for surface chemistry, and high-performance liquid chromatography for in vitro drug release kinetics. To obtain a smaller particle, 0.2% polyvinyl alcohol, 0.03% D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS, 2% Poloxamer 188, a five-minute sonication time, 130 W sonication power, evaporation with magnetic stirring, and centrifugation at 8000 rpm were selected. To increase encapsulation efficiency in the nanoparticles, certain factors were varied, ie, 2–5 minutes of sonication time, 70–130 W sonication power, and 5–25 mg drug loading. Results: A five-minute sonication time, 130 W sonication power, and a 10 mg drug loading amount were selected. Under these conditions, the nanoparticles reached over 90% encapsulation efficiency. Release kinetics showed that 20

  9. Preparation Of Polystyrene Nanoparticles Using Both GAMMA Radiation And Chemical Induced Emulsion Polymerization

    International Nuclear Information System (INIS)

    Polystyrene nanoparticles were synthesized by radiation-induced polymerization and chemical emulsion polymerization. Compared with the chemical emulsion polymerization, the radiation process easily prepared the polystyrene (PS) nanoparticles at room temperature and without the pollutant of chemical initiator. The effects of various polymerization parameters in both systems such as total dose for radiation polymerization, monomer concentration, sodium dodecyl sulfate (SDS) stabilizer content on the particle size and size distribution were systematically investigated. The diameter of a polymer particle and its distribution were measured on a Marvern Zetasizer. Monomer conversion was studied gravimetric ally and the structure of PS was analyzed by Differential Scanning Calorimeter (DSC) and Fourier Transform Infrared (FT-IR) Spectrophotometer

  10. Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization

    International Nuclear Information System (INIS)

    Functionalized superparamagnetic particles were prepared by graft polymerization of glycidyl methacrylate and methacryloxyethyl trimethyl ammonium chloride onto the surface of modified-Fe3O4 nanoparticles. The resultant particles were characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. The results indicate that the polymer chains had been effectively grafted onto the surface of Fe3O4 nanoparticles. The functionalized particles remained dispersive and superparamagnetic. Lipase was immobilized on the magnetic particles under mild conditions by electrostatic adsorption and covalent binding with the activity recovery up to 70.4%. The immobilized lipase had better thermal stability compared to free lipase

  11. Biomimetic mineral coatings in dental and orthopaedic implantology

    Institute of Scientific and Technical Information of China (English)

    Yue-lian LIU; Klaas de GROOT; Ernst B.HUNZIKER

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers genelated by biomi-metic methods resemble bone mineral, and can be degraded within a biological milieu.The biomimetic coating technique involves the nuclea-tion and growth of bone-like crystals upon a pretreated substrate by immersing this in a supersaturated solution of calcium phosphate under physiological conditions of temperature (37~C) and pH (7.4). The method, originally developed by Kokubo in 1990, has since undergone improvement and refinement by several groups of investigators.Biomimetic coatings are valuable in that they can serve as a vehicle for the slow and sustained release of osteogenic agents at the site of implantation. This attribute is rendered possible by the near-physiological conditions under which these coatings are prepared, which permits an incorporation of binactive agents into the inorganic crystal latticework rather than their nlere superficial adsorption onto preformed layers. In addition, the biomimetic coating technique can be applied to implants of an organic as well as of an inorganic nature and to those with irregular surface geometries, which is not possible using conventional methodologies.

  12. PREPARATION,COMPLEX MECHANISM AND STRUCTURE MODEL OF METALLOPHTHALOC- YANINE-Fe3O4 NANOPARTICLES COMPOSITE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    MPc-Fe3O4-nanoparticles composite(M=Co, Cu, Ni, Mn) have been prepared and the factors that influence their mean size have been studied. The mean size of the nanoparticles composite increase with the increase of complex temperature. The interaction of MPc with Fe3O4 nanoparticles has been studied. There are M-O covalent bonding and ionic bonding between MPc and Fe3O4 nanoparticles. The intensities of M-O bonding and ionic bonding are in vestigated .The complex mechanism of MPc with Fe3O4 nanoparticles have been studied. First, there are complex between MPc and all Fe3O4 nanoparticles. Then, Fe3O4 nanoparticles accumulate together to form the accumulators, MPc have the function of cohering Fe3O4 nanoparticles. A considerable number of MPc combine with Fe3O4 nanoparticles on the surface of the accumulators to form MPc-Fe3O4 nanoparticles composite. All the above proesses take place spontaneously. The structure model of MPc-Fe3O4 nanoparticles composite has also been investigated. Inside the MPc-Fe3O4 nanoparticles composite, Fe3O4 nanoparticles accumulate together without order, on the surface of the composite, MPc form molecular dispersion layer. The threshold of molecular dispersion layer are also investigated.

  13. Preparation of streptavidin-coated magnetic nanoparticles for DNA detection

    International Nuclear Information System (INIS)

    With the properties of magnetic response and surface functionality, core-shell magnetic polymer microspheres have been investigated extensively due to their potential applications in biomedicine and bioengineering. Because of the extremely strong affinity and high specificity of interactions between streptavidin and biotin, the streptavidin-biotin system has been utilized in biological areas of gene detection, biosensors and enzyme-linked immunosorbent assay (ELISA). Therefore, coupling streptavidin to magnetic nanoparticles (MNPs) will greatly expand applications of MNPs. In this paper, amino-modified magnetic nanogels (AmMNGs) were synthesized in one step by photoinitiation and in-situ photopolymerization of allyamine in Fe3O4 aqueous suspension under UV irradiation, a method free of initiators and additives. Then streptavidin-coated magnetic nanoparticles (SAMNPs) were fabricated by covalently coupling SA to the surface of magnetic nanogels, which had been activated by glutaraldehyde. The binding capacity of SAMNPs was calculated from the mole number of biotin p-nitrophenyl ester (BNPE) bound by a certain quantity of SAMNPs via colorimetric measurement. An optimized parameter of the covalent SA coupling was presented by investigating effects of pH value of the reaction system, SA concentration and reaction time on the binding capacities. Moreover, methoxy-substituted poly (ethylene glycol) amine (MPEG-NH2) with low molecule weight was used as a blocking reagent to terminate the residual activated groups, as it had been reported that poly(ethylene glycol) could significantly suppress nonspecific binding in the separation of biomolecules. Subsequently, the obtained SAMNPs were successfully applied to detect a targeted DNA with a concentration of 10 nM according to a 'sandwich-type' DNA detection strategy. And the control experiment indicated that the non-specific binding during the detection process was undetectable. Because fluorescein emission is much more

  14. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  15. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    OpenAIRE

    Atassi, Yomen; Darwich, Iyad Seyd; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conv...

  16. Preparation of polylysine-modified superparamagnetic iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao; Zhang, Baolin, E-mail: baolinzhang@ymail.com; Wang, Jun; Xie, Songbo; Li, Xuan

    2015-01-15

    Polylysine (PLL) coated iron oxide nanoparticles (SPIONs) have potential in biomedical application. In the present work PEG coated SPIONs (PEG-SPIONs) with the particle size of 9.4±1.4 nm were synthesized by thermal decomposition of Fe(acac){sub 3} in PEG, and then coated with PLL (PLL/PEG-SPIONs). The PEG-SPIONs and PLL/PEG-SPIONs were superparamagnetic with the saturation magnetization of 53 and 44 emu/g, respectively. The hydrodynamic diameter of PEG-SPIONs in deionized water was 18.8 nm, which increased to 21.3−28.2 nm after mixing with different amount of PLL. The zeta potentials of PLL/PEG-SPIONs were −8.9 − −3.4 mV which were changing with time. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that PLL was attached to the PEG-SPIONs. - Highlights: ●Hydrophilic PEG-SPIONs were synthesized by a thermal decomposition approach. ●The PEG-SPIONs were successfully coated with PLL. ●PEG-SPIONs and PLL/PEG-SPIONs have small hydrodynamic sizes. ●Both PEG-SPIONs and PLL/PEG-SPIONs showed superparamagnetic behavior at 300 K.

  17. Preparation of fluorescent polyaniline nanoparticles in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Kleber G. B. [Universidade Federal de Pernambuco, Departamento de Engenharia Mecanica (Brazil); Melo, Etelino F. de [Universidade Federal de Pernambuco, Departamento de Quimica Fundamental (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Departamento de Fisica (Brazil)

    2013-01-15

    We report the synthesis of stable polyaniline nanoparticles (PANI{sub N}Ps) based on the chemical oxidative polymerization of aniline in aqueous solutions of surfactants. Surfactants of three different types-cationic (dodecyltrimethylammonium bromide-DTAB), anionic (sodium dodecyl sulfate-SDS), and non-ionic (Triton X-405-TX-405)-were used. The resulting PANI{sub N}Ps{sub s}urfactant samples were characterized through UV-Vis, fluorescence and Fourier transform infrared spectroscopies, and scanning electronic microscopy (SEM). We have verified that the color of the PANI{sub N}Ps{sub s}urfactant dispersions is affected by a change in the pH of the solution. The PANI-NPs{sub s}urfactant colloidal suspensions in aqueous solution present a surprising high fluorescence quantum yield value (ranging from 1.9 Multiplication-Sign 10{sup -3} to 6.9 Multiplication-Sign 10{sup -3}) that can be controlled as a function of the pH, a fact that we associate to the corresponding protonation degree of the PANI polymeric chains. We suggest that these fluorescent nanocomposites can find important technological applications in different areas such as organic light emitting devices, biosensors, and pigments for coatings.

  18. Preparation and performance of CeO2 hollow spheres and nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wenwen; CHEN Donghui

    2016-01-01

    CeO2 hollow spheres were synthesized by polystryrene sphere (PS) templates and CeO2 nanoparticles were prepared by a facile method. The as-obtained products were characterized by scanning electron microscopy (SEM), N2 adsorption-desorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV-vis diffuse reflectance spectra. The results showed that the structure of the obtained CeO2 hollow spheres was hollow microsphere with a diameter of 380 nm and the average particle size of CeO2 nanoparticles was about 1700 nm. The two samples' Brunauer-Emmett-Teller (BET) surface area was 67.1 and 37.2 m2/g. The CeO2 hollow spheres had a better performance than nanoparticles at UV-shielding because of higher surface area and the structure of hollow sphere.

  19. Surface-modified antibacterial TiO2/Ag+ nanoparticles: Preparation and properties

    International Nuclear Information System (INIS)

    Studies were performed on surface modification of antibacterial TiO2/Ag+ nanoparticles by grafting γ-aminopropyltriethoxysilane (APS). The interfacial structure of the modified particles was characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric analysis. The thickness of the surface layer was determined by using Auger electron spectroscopy (AES). The results show that APS is chemically bonded to the surface of antibacterial TiO2/Ag+ nanoparticles. Furthermore, the modified particles were mixed in PVC to prepare composites whose antibacterial property was investigated. The results suggest that surface modification has no negative effect on antibacterial activity of TiO2/Ag+ nanoparticles and PVC-TiO2/Ag+ composites exhibits good antibacterial property

  20. Preparation of gold nanoparticles using Salicornia brachiata plant extract and evaluation of catalytic and antibacterial activity

    Science.gov (United States)

    Ayaz Ahmed, Khan Behlol; Subramanian, Swetha; Sivasubramanian, Aravind; Veerappan, Ganapathy; Veerappan, Anbazhagan

    2014-09-01

    The current study deals with the synthesis of gold nanoparticles (AuNPs) using Salicornia brachiata (Sb) and evaluation of their antibacterial and catalytic activity. The SbAuNPs showed purple color with a characteristic surface plasmon resonance peak at 532 nm. Scanning electron microscopy and transmission electron microscopy revealed polydispersed AuNPs with the size range from 22 to 35 nm. Energy dispersive X-ray and thin layer X-ray diffraction analysis clearly shows that SbAuNPs was pure and crystalline in nature. As prepared gold nanoparticles was used as a catalyst for the sodium borohydride reduction of 4-nitro phenol to 4-amino phenol and methylene blue to leucomethylene blue. The green synthesized nanoparticles exhibited potent antibacterial activity against the pathogenic bacteria, as evidenced by their zone of inhibition. In addition, we showed that the SbAuNPs in combination with the regular antibiotic, ofloxacin, exhibit superior antibacterial activity than the individual.

  1. The preparation of well-dispersed Ni-B amorphous alloy nanoparticles at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wen Ming [Department of Chemistry, Tongji University, Shanghai 200092 (China)], E-mail: m_wen@mail.tongji.edu.cn; Li Lujiang; Liu Qiuyan; Qi Haiquan [Department of Chemistry, Tongji University, Shanghai 200092 (China); Zhang Tao [Department of Materials Science and Engineering, Beijing University of Aeronaut and Astronaut, Beijing 100083 (China)

    2008-05-08

    The air-stable well-dispersed Ni-B amorphous alloy nanoparticles in the similar size of 5 nm with narrow deviation were prepared by a chemical solution alloying process at room temperature in a positive microemulsion system. The proposed interface reaction mechanism, element analysis and thermal stability as well as the magnetic behavior of Ni-B amorphous alloy nanoparticles were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), infrared spectroscopy (IR), differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM). All the results showed that as synthesized Ni-B amorphous alloy nanoparticles are air-stable in room temperature and coated by macromolecular compound oleic acid. The magnetic property of the as synthesized Ni-B amorphous alloy was discussed based on the obtained results.

  2. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity.

    Science.gov (United States)

    do Nascimento, Ticiano Gomes; da Silva, Priscilla Fonseca; Azevedo, Lais Farias; da Rocha, Louisianny Guerra; de Moraes Porto, Isabel Cristina Celerino; Lima E Moura, Túlio Flávio Accioly; Basílio-Júnior, Irinaldo Diniz; Grillo, Luciano Aparecido Meireles; Dornelas, Camila Braga; Fonseca, Eduardo Jorge da Silva; de Jesus Oliveira, Eduardo; Zhang, Alex Tong; Watson, David G

    2016-12-01

    The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of "multiple-constituent extract in co-delivery system" for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ε-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200-280 nm) in nanometric scale and zeta analysis (-20 to -26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38

  3. Polymeric Nanoparticles of Brazilian Red Propolis Extract: Preparation, Characterization, Antioxidant and Leishmanicidal Activity

    Science.gov (United States)

    do Nascimento, Ticiano Gomes; da Silva, Priscilla Fonseca; Azevedo, Lais Farias; da Rocha, Louisianny Guerra; de Moraes Porto, Isabel Cristina Celerino; Lima e Moura, Túlio Flávio Accioly; Basílio-Júnior, Irinaldo Diniz; Grillo, Luciano Aparecido Meireles; Dornelas, Camila Braga; Fonseca, Eduardo Jorge da Silva; de Jesus Oliveira, Eduardo; Zhang, Alex Tong; Watson, David G.

    2016-06-01

    The ever-increasing demand for natural products and biotechnology derived from bees and ultra-modernization of various analytical devices has facilitated the rational and planned development of biotechnology products with a focus on human health to treat chronic and neglected diseases. The aim of the present study was to prepare and characterize polymeric nanoparticles loaded with Brazilian red propolis extract and evaluate the cytotoxic activity of "multiple-constituent extract in co-delivery system" for antileishmanial therapies. The polymeric nanoparticles loaded with red propolis extract were prepared with a combination of poly-ɛ-caprolactone and pluronic using nanoprecipitation method and characterized by different analytical techniques, antioxidant and leishmanicidal assay. The red propolis nanoparticles in aqueous medium presented particle size (200-280 nm) in nanometric scale and zeta analysis (-20 to -26 mV) revealed stability of the nanoparticles without aggregation phenomenon during 1 month. After freeze-drying method using cryoprotectant (sodium starch glycolate), it was possible to observe particles with smooth and spherical shape and apparent size of 200 to 400 nm. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and thermal analysis revealed the encapsulation of the flavonoids from the red propolis extract into the polymeric matrix. Ultra performance liquid chromatography coupled with diode array detector (UPLC-DAD) identified the flavonoids liquiritigenin, pinobanksin, isoliquiritigenin, formononetin and biochanin A in ethanolic extract of propolis (EEP) and nanoparticles of red propolis extract (NRPE). The efficiency of encapsulation was determinate, and median values (75.0 %) were calculated using UPLC-DAD. 2,2-Diphenyl-1-picryhydrazyl method showed antioxidant activity to EEP and red propolis nanoparticles. Compared to negative control, EEP and NRPE exhibited leishmanicidal activity with an IC50 value of ≅38.0

  4. Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water

    International Nuclear Information System (INIS)

    Graphical abstract: The negatively charged cubic magnetite nanoparticles, prepared by the coprecipitation method in N2 atmosphere, can adsorb up to 99% of the positively charged toxic heavy metal ions at a proper pH value. -- Highlights: • Mixed magnetite–hematite nanoparticles were synthesized via different routes. • Prepared samples were characterized by XRD, HRTEM, BET and magnetic hysteresis. • The material was employed as a sorbent for removal of some heavy metal ions from water. • The effects of pH and the contact time on the adsorption process were studied and optimized. -- Abstract: Mixed magnetite–hematite nanoparticles were synthesized via different routes such as, coprecipitation in air and N2 atmosphere, citrate–nitrate, glycine–nitrate and microwave-assisted citrate methods. The prepared samples were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), BET measurements and magnetic hysteresis. XRD data showed the formation of magnetite–hematite mixture with different compositions according to the synthesis method. The particle size was in the range of 4–52 nm for all the prepared samples. From HRTEM micrographs, it was found that, the synthesis method affects the moropholgy of the prepared samples in terms of crystallinity and porosity. The magnetite–hematite mixture was employed as a sorbent material for removal of some heavy metal ions from water such as lead(II), cadmium(II) and chromium(III). The effects of pH value and the contact time on the adsorption process were studied and optimized in order to obtain the highest possible adsorption efficiency of the magnetite–hematite mixture. The effect of the synthesis method of the magnetite–hematite mixture on the adsorption process was also investigated. It was found that samples prepared by the coprecipitation method had better adsorption efficiency than those prepared by other combustion methods

  5. Preparation and characterization of 6-mercaptopurine-coated magnetite nanoparticles as a drug delivery system

    Directory of Open Access Journals (Sweden)

    Dorniani D

    2013-09-01

    Full Text Available Dena Dorniani,1 Mohd Zobir bin Hussein,1 Aminu Umar Kura,2 Sharida Fakurazi,2 Abdul Halim Shaari,3 Zalinah Ahmad4 1Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, 2Vaccines and Immunotherapeutics Laboratory, 3Physics Department, Faculty of Science, 4Chemical Pathology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia Background: Iron oxide nanoparticles are of considerable interest because of their use in magnetic recording tape, ferrofluid, magnetic resonance imaging, drug delivery, and treatment of cancer. The specific morphology of nanoparticles confers an ability to load, carry, and release different types of drugs. Methods and results: We synthesized superparamagnetic nanoparticles containing pure iron oxide with a cubic inverse spinal structure. Fourier transform infrared spectra confirmed that these Fe3O4 nanoparticles could be successfully coated with active drug, and thermogravimetric and differential thermogravimetric analyses showed that the thermal stability of iron oxide nanoparticles coated with chitosan and 6-mercaptopurine (FCMP was markedly enhanced. The synthesized Fe3O4 nanoparticles and the FCMP nanocomposite were generally spherical, with an average diameter of 9 nm and 19 nm, respectively. The release of 6-mercaptopurine from the FCMP nanocomposite was found to be sustained and governed by pseudo-second order kinetics. In order to improve drug loading and release behavior, we prepared a novel nanocomposite (FCMP-D, ie, Fe3O4 nanoparticles containing the same amounts of chitosan and 6-mercaptopurine but using a different solvent for the drug. The results for FCMP-D did not demonstrate “burst release” and the maximum percentage release of 6-mercaptopurine from the FCMP-D nanocomposite reached about 97.7% and 55.4% within approximately 2,500 and 6,300 minutes when exposed to pH 4.8 and pH 7.4 solutions, respectively

  6. Biomimetic sensor design

    Science.gov (United States)

    Lee, Ju Hun; Jin, Hyo-Eon; Desai, Malav S.; Ren, Shuo; Kim, Soyoun; Lee, Seung-Wuk

    2015-11-01

    Detection of desired target chemicals in a sensitive and selective manner is critically important to protect human health, environment and national security. Nature has been a great source of inspiration for the design of sensitive and selective sensors. In this mini-review, we overview the recent developments in bio-inspired sensor development. There are four major components of sensor design: design of receptors for specific targets; coating materials to integrate receptors to transducing machinery; sensitive transducing of signals; and decision making based on the sensing results. We discuss the biomimetic methods to discover specific receptors followed by a discussion about bio-inspired nanocoating material design. We then review the recent developments in phage-based bioinspired transducing systems followed by a discussion of biomimetic pattern recognition-based decision making systems. Our review will be helpful to understand recent approaches to reverse-engineer natural systems to design specific and sensitive sensors.

  7. Amelogenin and Enamel Biomimetics

    OpenAIRE

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recen...

  8. Synthesis of HgS nanocrystals in the Lysozyme aqueous solution through biomimetic method

    Science.gov (United States)

    Zhang, Li; Yang, Guangrui; He, Guoxu; Wang, Li; Liu, Qiaoru; Zhang, Qiuxia; Qin, Dezhi

    2012-08-01

    In the present work, it is reported for Lysozyme-conjugated HgS nanocrystals with tunable sizes prepared at Lysozyme (Lyso) aqueous solutions by using biomimetic method. The obtained HgS nanoparticles with good dispersibility have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission microscopy (HRTEM) and energy-dispersive X-ray spectrum (EDS). The Lysozyme molecules can control nucleation and growth of HgS crystals by binding on the surface of nanocrystals to stabilize protein-capped nanoparticles. Quantum confinement effect of Lyso-conjugated HgS nanocrystals has been confirmed by UV-vis spectra. The nanoparticles exhibit a well-defined emission feature at about 470 nm. Fourier transform infrared (FT-IR) data are used to envisage the binding of nanoparticles with functional groups of Lysozyme. The results of circular dichroism (CD) spectra indicated that the formation of HgS nanocrystals can lead to conformational change of Lysozyme.

  9. TiO2 nanoparticles prepared without harmful organics: A biosafe and economical approach

    KAUST Repository

    Shah, M.A.

    2011-06-01

    Growth of titanium oxide (TiO2) nanoparticles of varying size, ranging from 20-60 nms through a versatile and an economic route, is being reported. The approach is based on a simple reaction of titanium powder and De-Ionized (DI) water at ∼180 °C, without use of any harmful additives. Field Emission Scanning Electron Microscopy (FESEM) reveals the well defined morphology of nanoparticles, whereas X-ray Diffraction (XRD) studies reveal that the, as prepared, nanoparticles are in a mixed phase, with a dominance of a stable rutile phase. Since only water, which is regarded as a benign solvent, is used during the preparation of nanoparticles, we believe that the products so produced are biocompatible and bio-safe and can be readily used for medical applications. The biocompatibility tests are yet to be carried out and shall be reported in forthcoming publications. © 2011 Sharif University of Technology. Production and hosting by Elsevier B.V. All rights reserved.

  10. Production and characterization of magnetic nanoparticles prepared by sol-gel processing

    International Nuclear Information System (INIS)

    Full text: There is a great technological interest in the synthesis of iron oxide nanocomposites due to their magnetic and catalytic properties. Magnetic nanocomposites have gained acceptance in several fields of application of nanomaterials, like in magnetic recording systems, magnetic refrigeration, magneto-optical solid devices, magnetic resonance imaging, bioprocessing and in flow systems. The preparation of pure nano phase iron oxide nanocomposite material has, presently, some difficulties arising from different oxidation states of iron which can lead to the presence of various oxides. The stabilization of iron oxide nanoparticles is usually achieved by dispersing them in a polymeric, glassy or ceramic matrix. Matrix support, which in principle, modifies the properties of nanomaterials, thus opening new possibilities to the control of their performance. In this study, we report the preparation of an Fe2O3-SiO2 nanocomposite and Fe3O4 nanoparticles through a sol-gel method. A multitechnique approach, by XRD, SEM/EDS and VSM (Vibrating Sample Magnetometer), was used to characterize the structure and the magnetic properties of the nanoparticles. VSM measurements were conducted at different temperatures. XRD spectra showed that the Surface Area/Volume ratio adopted in the process of gelation influences the characteristics of the material obtained. For magnetite, the typical size of resulting Fe3O4 magnetic nanoparticles was approximately 14 nm

  11. Structural, morphological, optical and magnetic properties of Co3O4 nanoparticles prepared by conventional method

    Science.gov (United States)

    Gopinath, S.; Sivakumar, K.; Karthikeyen, B.; Ragupathi, C.; Sundaram, R.

    2016-07-01

    Cobalt oxide (Co3O4) is one of the favorable nanoparticles (NPs) that possesses many remarkable properties so that it can be used in medicine, chemistry, environment, energy, information, industry, and so on. In this study, the crystalline Co3O4 nanoparticles (NPs) were successfully prepared by an efficient conventional method technique from an using different fuels. In the present paper, pure phase and well-dispersed Co3O4 were synthesized via the starch and aqueous ammonia solution in the stoichiometric fuel compositions. The structure and morphology of by way of organized Co3O4 nanoparticles were characterized by the structural analysis, electron microscopy studies, and optical properties studies. Magnetic properties exposed that the Co3O4 nanoparticles had ferromagnetic performance at room temperature with saturation magnetization of 71.09 emu/g. The results revealed that the changing the precursor led to great effects on the crystal size, emission peaks, and the reaction time of preparing the Co3O4 NPs. The significant feature of this manuscript is that the effects of different precursors on the structural magnetic and optical properties of Co3O4 NPs were investigated for the first time. The average particle size of samples (A and B) 23.6 and 22.2 nm, respectively.

  12. Preparation and characterization of natural polymers as stabilizer for magnetic nanoparticles by gamma irradiation

    International Nuclear Information System (INIS)

    A Highly stable and uniformly distributed magnetic nanoparticles have been obtained onto hydroxyethyl methacrylate (HEMA)-Agar- Fe3O4 (HAF), and HEMA-Gelatin- Fe3O4 (HGF) networks via gamma irradiation and loading technique. The swelling property of the prepared hydrogels in bidistilled water and different ph's was studied and the results showed that, the swelling percent of the plain hydrogel was found to be higher for all different compositions. The morphology and structure of the prepared hydrogels and dispersion of the magnetite nanoparticles in the hydrogel network were examined by Scanning electron microscopy (SEM) and Infrared spectroscopy (FT-IR). The particle size of the formed magnetite nanoparticles has been confirmed by Dynamic light scattering (DLS) and Transmission electron microscope (TEM), and it was found to be smaller in loading technique than irradiation technique. The HEMA-Gelatin-Fe3O4 has higher particle size than HEMA-Agar-Fe3O4 (HAF). Finally, the drug loading capacities of the magnetite nanoparticles and their releasing dependence on different ph were investigated with doxorubicin hydrochloride (DOX) as an anticancer drug model.

  13. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition

  14. Preparation and characterization of chondroitin‐sulfate‐A‐coated magnetite nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Tóth, Ildikó Y., E-mail: Ildiko.Toth@chem.u-szeged.hu; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka, E-mail: tombacz@chem.u-szeged.hu

    2015-04-15

    Polysaccharides are promising candidates for manufacturing biocompatible core–shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core–shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl. - Highlights: • Novel CSA-coated core–shell magnetite nanoparticles were prepared successfully. • The aggregation range of MNPs was shifted gradually to the lower pHs by CSA-loading. • CSA stabilizes electrosterically the MNPs over wide pH-range relevant to biosystems. • The salt tolerance of CSA@MNP enables them to use under physiological condition.

  15. Direct, rapid, facile photochemical method for preparing copper nanoparticles and copper patterns.

    Science.gov (United States)

    Zhu, Xiaoqun; Wang, Bowen; Shi, Feng; Nie, Jun

    2012-10-01

    We develop a facile method for preparing copper nanoparticles and patterned surfaces with copper stripes by ultraviolet (UV) irradiation of a mixture solution containing a photoinitiator and a copper-amine coordination compound. The copper-amine compound is formed by adding diethanol amine to an ethanol solution of copper chloride. Under UV irradiation, free radicals are generated by photoinitiator decomposition. Meanwhile, the copper-amine coordination compound is rapidly reduced to copper particles because the formation of the copper-amine coordination compound prevents the production of insoluble cuprous chloride. Poly(vinylpyrrolidone) is used as a capping agent to prevent the aggregation of the as-prepared copper nanoparticles. The capping agent increases the dispersion of copper nanoparticles in the ethanol solution and affects their size and morphology. Increasing the concentration of the copper-amine coordination compound to 0.1 M directly forms a patterned surface with copper stripes on the transparent substrate. This patterned surface is formed through the combination of the heterogeneous nucleation of copper nanoparticles and photolithography. We also investigate the mechanism of photoreduction by UV-vis spectroscopy and gas chromatography-mass spectrometry. PMID:22974517

  16. Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal.

    Science.gov (United States)

    Nata, Iryanti Fatyasari; Salim, Giyanto Wijaya; Lee, Cheng-Kang

    2010-11-15

    Magnetic carbonaceous nanoparticles were prepared by a facile two-step solution phase thermal synthesis. Magnetic nanoparticles (MNPs) with size less than 100 nm were first generated from FeCl(3) in a solvothermal reaction. The size could be significantly reduced to approximately 30 nm when 1,6-hexanediamine was employed in the reaction solution to functionalize the surface of MNPs with amine. Both the plain and amine-functionalized MNPs (MH) were effectively encapsulated in the carbonaceous shell by hydrothermal treatment in 0.5 M glucose solution. The saturation magnetization of MH decreased significantly from 70 to 25 emu/g after carbonaceous shell was formed. The as-prepared magnetic carbonaceous nanoparticles (MH@C) carries a negative surface charge (-30 mV) at neutral pH and has a point of zero charge (PZC) at pH 2. The carbonaceous shell not only can protect the magnetic nanoparticles (MNP) from the corrosive environment but also possesses a high adsorption capacity towards Pb(II). The adsorption isotherm at room temperature can be well-fitted by Langmuir model with a maximum adsorption capacity of 123 mg/g. PMID:20800347

  17. Preparation of porous chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles via mineralization

    Institute of Scientific and Technical Information of China (English)

    CHEN ChangJing; DENG Yu; YAN ErYun; HU Yong; JIANG XiQun

    2009-01-01

    In this work,the preparation of chitosan-poly(acrylic acid)-calcium phosphate hybrid nanoparticles (CS-PAA-CaP NP) based on the mineralization of calcium phosphate (CAP) on the surface of chitosan-poly (acrylic acid) nanoparticles (CS-PAA NPs) was reported. CS-PAA-CaP NPs were achieved by directly adding ammonia to the aqueous solution of CS-PAA nanoparticles or by thermal decomposition of urea in the aqueous solution of CS-PAA nanoparticles,resulting in the mineralization of CaP on the surface of CS-PAA NPs. Through these two routes,especially using urea as a pH-regulator,the precipitation of CS-PAA NPs,a common occurrence in basic environment,was avoided. The size,morphology and ingredient of CS-PAA-CaP hybrid nanoparticles were characterized by dynamic light scattering (DLS),transmission electron microscope (TEM),scanning electron microscope (SEM),thermogravimetry analysis (TGA) and X-ray diffractometer (XRD). When urea was used as the pH regulator to facilitate the mineralization during the thermal urea decomposition procedure,regular CS-PAA-CaP hybrid nanoparticles with a porosity-structural CaP shells and 400-600 nm size were obtained. TGA result revealed that the hybrid NPs contained approximately 23% inorganic component,which was consistent with the ratio of starting materials. The XRD spectra of hybrid nanoparticles indicated that dicalcium phosphate (DCP:CaHPO4) crystal was a dominant component of mineralization.The porous structure of the CS-PAA-CaP hybrid NPs might be greatly useful in pharmaceutical and other medical applications.

  18. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    Energy Technology Data Exchange (ETDEWEB)

    Oudhia, A. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Choudhary, A., E-mail: aarti.bhilai@gmail.com [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Sharma, S.; Aggrawal, S. [Department of Physics, Government V.Y.T. PG. Autonomous College, Durg, 491001 C.G. (India); Dhoble, S.J. [RTM University Nagpur, Maharashtra (India)

    2014-10-15

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission.

  19. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Macková, Hana [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Horák, Daniel, E-mail: horak@imc.cas.cz [Institute of Macromolecular Chemistry, AS CR, Heyrovsky Sq. 2, 162 06 Prague 6 (Czech Republic); Donchenko, Georgiy Viktorovich; Andriyaka, Vadim Ivanovich; Palyvoda, Olga Mikhailovna; Chernishov, Vladimir Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine); Chekhun, Vasyl Fedorovich; Todor, Igor Nikolaevich [R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology, NASU, 45 Vasylkivska St., 03022 Kiev (Ukraine); Kuzmenko, Oleksandr Ivanovich [Palladin Institute of Biochemistry, NASU, 9 Leontovich St., 01601 Kiev (Ukraine)

    2015-04-15

    Maghemite (γ-Fe{sub 2}O{sub 3}) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe{sub 2}O{sub 3} nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe{sub 2}O{sub 3} nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe{sub 2}O{sub 4} particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed.

  20. Preparation of magnetic fluorochromate hybrid nanomaterials with triphenylphosphine surface modified iron oxide nanoparticles and their characterization

    International Nuclear Information System (INIS)

    In this study, a new magnetic hybrid nanomaterial Fe3O4@SiO2@PPh3@[CrO3F]− is instituted. Firstly, magnetic Fe3O4 nanoparticles have been synthesized by hydrothermal method. Next, the produced magnetic nanoparticles were covered with a silica shell via modified Stöber method. Then, the core–shell magnetic nanoparticles system Fe3O4@SiO2 functionalization was combined by utilizing (3-chloropropyl)trimethoxysilane and triphenylphosphine, to give the cationic part for immobilization of the anionic part of the Cr(VI) catalysts including [CrO3F]−. The structure of the catalyst after immobilization was investigated by using elemental analysis, X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and solid state UV–vis. The particle size and morphology were identified by scanning electron microscope (SEM) and XRD. Magnetization properties of nanoparticles were confirmed by vibrating sample magnetometer (VSM). - Highlights: • Fe3O4 magnetic nanoparticles were synthesized with hydrothermal method. • Fe3O4@SiO2 were prepared through a modified Stober method. • Fe3O4@SiO2 was functionalized with triphenylphosphonium reagent. • Target hybrid nanomaterial was synthesized by immobilization of fluorochromate anion

  1. Colloidally stable surface-modified iron oxide nanoparticles: Preparation, characterization and anti-tumor activity

    International Nuclear Information System (INIS)

    Maghemite (γ-Fe2O3) nanoparticles were obtained by co-precipitation of Fe(II) and Fe(III) chlorides and subsequent oxidation with sodium hypochlorite and coated with poly(N,N-dimethylacrylamide-co-acrylic acid) [P(DMAAm-AA)]. They were characterized by a range of methods including transmission electron microscopy (TEM), elemental analysis, dynamic light scattering (DLS) and zeta potential measurements. The effect of superparamagnetic P(DMAAm-AA)-γ-Fe2O3 nanoparticles on oxidation of blood lipids, glutathione and proteins in blood serum was detected using 2-thiobarbituric acid and the ThioGlo fluorophore. Finally, mice received magnetic nanoparticles administered per os and the antitumor activity of the particles was tested on Lewis lung carcinoma (LLC) in male mice line C57BL/6 as an experimental in vivo metastatic tumor model; the tumor size was measured and the number of metastases in lungs was determined. Surface-modified γ-Fe2O3 nanoparticles showed higher antitumor and antimetastatic activities than commercial CuFe2O4 particles and the conventional antitumor agent cisplatin. - Highlights: • Maghemite nanoparticles were prepared and characterized. • Poly(N,N-dimethylacrylamide-co-acrylic acid) coating was synthetized. • Blood lipid, glutathione and protein peroxidation/oxidation was determined. • Antitumor effect of coated particles on Lewis lung carcinoma in mice was observed

  2. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    Science.gov (United States)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  3. Preparation of silver nanoparticles in virgin coconut oil using laser ablation

    Directory of Open Access Journals (Sweden)

    Reza Zamiri,B Z Azmi. Amir Reza Sadrolhosseini

    2011-01-01

    Full Text Available Reza Zamiri1, B Z Azmi1,2, Amir Reza Sadrolhosseini1, Hossein Abbastabar Ahangar3, A W Zaidan1, M A Mahdi41Department of Physics, 2Advanced Materials and Nanotechnology Laboratory, 3Department of Chemistry, 4Wireless and Photonics Networks Research Center, Universiti Putra Malaysia, Serdang, Selangor, MalaysiaAbstract: Laser ablation of a silver plate immersed in virgin coconut oil was carried out for fabrication of silver nanoparticles. A Nd:YAG laser at wavelengths of 1064 nm was used for ablation of the plate at different times. The virgin coconut oil allowed formation of nanoparticles with well-dispersed, uniform particle diameters that were stable for a reasonable length of time. The particle sizes and volume fraction of nanoparticles inside the solutions obtained at 15, 30, 45 min ablation times were 4.84, 5.18, 6.33 nm and 1.0 × 10-8, 1.6 × 10-8, 2.4 × 10-8, respectively. The presented method for preparation of silver nanoparticles in virgin coconut oil is environmentally friendly and may be considered a green method.Keywords: silver nanoparticles, laser ablation, virgin coconut oil

  4. Formation and Cytotoxicity of Nanoparticles and Nanocubes Prepared from Gold and Silver Salts

    Science.gov (United States)

    Banker, Daniel; Dorrell, Skyler; Ivey, Prescott; Scurti, Joseph; Dobbins, Tabbetha

    Photothermal therapy is the use of electromagnetic radiation as the treatment for medical conditions such as cancer. Noble metal nanoparticles and nanocubes are brought to an excited state with laser light and as a result they release vibrational energy in the form of heat, which can be used to kill targeted cancer cells. Wet chemistry gives the basics for the preparation of nanoparticles and nanocubes. Using HAuCl4, AgNO3, tri-sodium citrate and other chemicals, we were able to successfully create gold and silver nanoparticles and nanocubes. The goal is to make sure that 3T3 cells can survive in a nanoparticle or nanocube doped medium so that we can then observe their reaction to photothermal effects. Cell culture techniques were done to 3T3 cells to keep them alive before the testing of cytotoxicity. Photothermal effect refers to the way that our nanoparticles or nanocubes can be photoexcited to release enough heat to kill the cells. We used a UV-Vis spectrophotometer to ensure that the correct wavelength laser. Assuming that the cells will survive living in the doped medium, a medium that has had nanomaterials introduced into it, we will use a high powered laser to observe what the excitation does to the cells since the photothermal effect should result in dead cells.

  5. Study of defect generated visible photoluminescence in zinc oxide nano-particles prepared using PVA templates

    International Nuclear Information System (INIS)

    Intrinsic defect generated photoluminescence (PL) in zinc oxide nanoparticles (NPs) obtained by a PVA template based wet-chemical process has been studied. A good controllability was achieved on the surface defects, structure and the morphology of ZnO NPs through the variation of solvents used in synthesis. The PL emission strongly depended on the defect structure and morphology. SEM, XRD, annealing and PL excitation studies were used to analyze the types of defects involved in the visible emission as well as the defect concentration. The mechanism for the blue, green and yellow emissions was proposed. The spectral content of the visible emission was controlled through generation/removal of defects through the shape transformation or annealing by focusing on defect origins and broad controls. - Highlights: • ZnO nanoparticles were synthesized using poly-vinyl alcohol template in various solvents. • The structure and morphology of ZnO nanoparticles were depended on dielectric constant and boiling point of solvents. • Photoluminescence properties of ZnO nanoparticles were studied. • Maximum optical absorbance and Photoluminescence intensity were found in ethanolic preparation. • ZnO nanoparticles were annealed at different temperatures for detection of defect emission

  6. Silk sericin loaded alginate nanoparticles: Preparation and anti-inflammatory efficacy.

    Science.gov (United States)

    Khampieng, Thitikan; Aramwit, Pornanong; Supaphol, Pitt

    2015-09-01

    In this study, silk sericin loaded alginate nanoparticles were prepared by the emulsification method followed by internal crosslinking. The effects of various silk sericin loading concentration on particle size, shape, thermal properties, and release characteristics were investigated. The initial silk sericin loadings of 20, 40, and 80% w/w to polymer were incorporated into these alginate nanoparticles. SEM images showed a spherical shape and small particles of about 71.30-89.50 nm. TGA analysis showed that thermal stability slightly increased with increasing silk sericin loadings. FTIR analysis suggested interactions between alginate and silk sericin in the nanoparticles. The release study was performed in acetate buffer at normal skin conditions (pH 5.5; 32 °C). The release profiles of silk sericin exhibited initial rapid release, consequently with sustained release. These silk sericin loaded alginate nanoparticles were further incorporated into topical hydrogel and their anti-inflammatory properties were studied using carrageenan-induced paw edema assay. The current study confirms the hypothesis that the application of silk sericin loaded alginate nanoparticle gel can inhibit inflammation induced by carrageenan. PMID:26188300

  7. Preparation of amino acid nanoparticles at varying saturation conditions in an aerosol flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raula, Janne, E-mail: janne.raula@aalto.fi [Aalto University School of Science, Department of Applied Physics (Finland); Lehtimaeki, Matti; Karppinen, Maarit [Aalto University School of Chemical Technology, Department of Chemistry (Finland); Antopolsky, Maxim [University of Helsinki, Drug Discovery and Development Technology Center (Finland); Jiang Hua; Rahikkala, Antti; Kauppinen, Esko I. [Aalto University School of Science, Department of Applied Physics (Finland)

    2012-07-15

    Nanoparticle formation of five amino acids, glycine, l-proline, l-valine, l-phenylalanine, and l-leucine was studied. The aim was to explore factors determining nanoparticle formation and crystallinity. The amino acid nanoparticles have been prepared at different saturation conditions in the aerosol reactor. In a condensed state, the particles were formed by droplet drying. The raise in temperature induced the sublimation of amino acids from the aerosol particles. The amino acid vapor was condensed by physical vapor deposition in a rapid cooling process. The diffusion coefficients and nucleation rates of amino acids have been calculated to understand particle formation. Upon the vapor deposition, amino acids formed crystalline nanoparticles except in the case l-phenylalanine according to X-ray diffraction. The crystal polymorph of glycine in the nanoparticles depended on the applied reactor temperature. The preference of crystallographic orientation varied in both the particle formations from condensed and vapor phase. l-Valine, l-phenylalanine, and l-leucine formed leafy-looking particles. These results could be utilized in the fabrication of nano-sized asperities on drug particle surfaces to reduce forces between particles and accordingly increase particle dispersion in dry powder inhalers.

  8. Characteristics of zirconia nanoparticles prepared by molten salts and microwave synthesis

    International Nuclear Information System (INIS)

    Zirconia and yttria stabilized zirconia (3YSZ) nanoparticles were prepared from zirconia and yttria salts using molten salts (MS) and microwave (MW) synthesis. The crystalline ZrO2 and 3YSZ nanoparticles with crystallite size in the range of 3–27 nm were obtained by MS synthesis in NaCl–NaNO3 salts. The zirconia and 3YSZ powders with close characteristics were obtained by combining MW synthesis with calcination of products at 400-800 °C. The crystallite size depends upon synthesis or calcination temperature, and the precursors used. The powders prepared by MS and MW synthesis ensured manufacturing of bulk materials with relative density of 98.6% and 97.2% respectively by using spark plasma sintering at 1300 °C

  9. Preparation of ultrafine poly(methyl methacrylate-co-methacrylic acid) biodegradable nanoparticles loaded with ibuprofen.

    Science.gov (United States)

    Saade, Hened; Diaz de León-Gómez, Ramón; Enríquez-Medrano, Francisco Javier; López, Raúl Guillermo

    2016-08-01

    Ibuprofen-loaded polymeric particles with around 9.2 nm in mean diameter, as determined by electron microscopy, dispersed in an aqueous media containing up to 12.8% solids were prepared by semicontinuous heterophase polymerization. The polymeric material is a (2/1 mol/mol) methyl methacrylate-co-methacrylic acid copolymer similar to Eudragit S100, deemed safe for human consumption and used in the manufacturing of drug-loaded pills as well as micro- and nanoparticles. The loading efficiency was 100%, attaining around 10-12% in drug content. Release studies showed that the drug is released from the nanoparticles at a slower rate than that in the case of free IB. Given their size as well as the pH values required for their dissolution, it is believed that this type of particles could be used as a basis for preparing nanosystems loaded with a variety of drugs. PMID:27126476

  10. Preparation of silver nanoparticles by a non-aqueous sol-gel process.

    Science.gov (United States)

    Petit, Christophe T G; Alsulaiman, Muath S A; Lan, Rong; Mann, Gregory; Tao, Shanwen

    2013-08-01

    Using a non-aqueous sol-gel process with a direct calcination step in air after prior drying, silver nanoparticles with average size distribution ranging from 20 to 100 nm were synthesised. Studies in reduced atmosphere were also performed with mixed results, both in phase and particle size, as the samples were found to be mixed with an amorphous phase. In oxidising atmosphere, the temperature and dwelling time were found to be critical factors with the former playing a larger role than the latter. Optimally nanoparticles of silver are best prepared by direct calcination in air of the precursor gel at 250 degrees C for 1 hour. Compared to silver particles prepared by microemulsions, the particle size is larger due to the thermal treatment, which causes a growth of the silver particles. PMID:23882777

  11. Magnetite nanoparticles as-prepared and dispersed in Copaiba oil: study using magnetic measurements and Moessbauer spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oshtrakh, Michael I., E-mail: oshtrakh@gmail.com; Ushakov, Mikhail V. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Semenova, Anna S.; Kellerman, Dina G. [Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences (Russian Federation); Sepelak, Vladimir [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany); Rodriguez, Alfonso F. R. [Universidade Federal do Acre (Brazil); Semionkin, Vladimir A. [Ural Federal University, Department of Physical Techniques and Devices for Quality Control, Institute of Physics and Technology (Russian Federation); Morais, Paulo C. [Universidade de Brasilia, Instituto de Fisica, Nucleo de Fisica Aplicada (Brazil)

    2013-04-15

    Study of magnetite nanoparticles, as-prepared and dispersed in Copaiba oil as magnetic fluid, by means of magnetic measurement and Moessbauer spectroscopy at various temperatures demonstrated differences in the saturation magnetization and Moessbauer hyperfine parameters which were related to the interactions of Copaiba oil polar molecules with iron cations on magnetite nanoparticle's surface.

  12. Magnetite nanoparticles as-prepared and dispersed in Copaiba oil: study using magnetic measurements and Mössbauer spectroscopy

    Science.gov (United States)

    Oshtrakh, Michael I.; Ushakov, Mikhail V.; Semenova, Anna S.; Kellerman, Dina G.; Šepelák, Vladimir; Rodriguez, Alfonso F. R.; Semionkin, Vladimir A.; Morais, Paulo C.

    2013-04-01

    Study of magnetite nanoparticles, as-prepared and dispersed in Copaiba oil as magnetic fluid, by means of magnetic measurement and Mössbauer spectroscopy at various temperatures demonstrated differences in the saturation magnetization and Mössbauer hyperfine parameters which were related to the interactions of Copaiba oil polar molecules with iron cations on magnetite nanoparticle's surface.

  13. The novel albumin–chitosan core–shell nanoparticles for gene delivery: preparation, optimization and cell uptake investigation

    International Nuclear Information System (INIS)

    Natural polymers and proteins such as chitosan (CS) and albumin (Alb) have recently attracted much attention both in drug delivery and gene delivery. The underlying rationale is their unique properties such as biodegradability, biocompatibility and controlled release. This study aimed to prepare novel albumin–chitosan–DNA (Alb-CS-DNA) core–shell nanoparticles as a plasmid delivery system and find the best conditions for their preparation. Phase separation method and ionic interaction were used for preparation of Alb nanoparticles and Alb-CS-DNA core–shell nanoparticles, respectively. The effects of three important independent variables (1) CS/Alb mass ratio, (2) the ratios of moles of the amine groups of cationic polymers to those of the phosphate groups of DNA (N/P ratio), and (3) Alb concentration, on the nanoparticle size and loading efficiency of the plasmid were investigated and optimized through Box–Behnken design of response surface methodology (RSM). The optimum conditions were found to be CS/Alb mass ratio = 3, N/P ratio = 8.24 and Alb concentration = 0.1 mg/mL. The most critical factors for the size of nanoparticles and loading efficiency were Alb concentration and N/P ratio. The optimized nanoparticles had an average size of 176 ± 3.4 nm and loading efficiency of 80 ± 3.9 %. Cytotoxicity experiments demonstrated that the prepared nanoparticles were not toxic. The high cellular uptake of nanoparticles (∼85 %) was shown by flow cytometry and fluorescent microscopy.

  14. Preparation and Characterization of Nano-particle Substituted Barium Hexaferrite

    CERN Document Server

    Atassi, Yomen; Tally, Mohammad

    2014-01-01

    High density magnetic recording requires high coercivity magnetic media and small particle size. Barium hexaferrite has been considered as a leading candidate material because of its chemical stability, fairly large crystal anisotropy and suitable magnetic characteristics. In this work, we present the preparation of the hexagonal ferrite BaFe12O19 and one of its derivative; the Zn-Sn substituted hexaferrite by the chemical co-precipitation method. The main advantage of this method on the conventional glass-ceramic one, resides in providing a small enough particle size for magnetic recording. We demonstrate using the X-ray diffraction patterns that the particle size decreases when substituting the hexaferrite by the Zn-Sn combination. This may improve the magnetic properties of the hexaferrite as a medium for HD magnetic recording

  15. Preparation of Fe oxide nanoparticles for environmental applications: arsenic removal.

    Science.gov (United States)

    Beker, Ulker; Cumbal, Luis; Duranoglu, Dilek; Kucuk, Ilknur; Sengupta, Arup K

    2010-08-01

    The objective of this study is to examine the adsorption-desorption behavior of a magnetically active hybrid sorbent (MAHS) material, prepared by dispersing colloid-like hydrated iron oxide particles in the outer periphery of a macroporous ion-exchange resin (Amberlite XAD-2). The experimental results show that the new sorbent material can simultaneously remove arsenic (V) and a chlorinated organic compound (2,6-dichlorophenol [2,6-DCP]) from aqueous solutions at around neutral pH. The recovery of arsenic and 2,6-DCP from MAHS was conducted using a regenerant containing 50% (v/v) CH3OH + 3% (w/v) NaOH. In less than 10 bed volumes of regenerant, more than 90% of As(V) and 2,6-DCP were recovered. PMID:20387093

  16. Preparation and Characterization of CeO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The preparation and characterization of cerium oxide nano-powder has attracted much attention over the past few years due to their great potential in many fields. It is commonly used in glass, ceramics, fluorescence powder and catalyst etc.1. Cerium oxide was produced by oxalic acid decomposition in industry. Take this way, the products are pure but the size of powder is large ( >3 μ m )2. Up to now,various methods have been reported to synthesize ultra fine cerium oxide powders, such as homogeneous deposition method, hydrothermal method, sol-gel method and spray deposition method etc. 3-6. However, these methods are not convenient for synthesis of large amounts of powders because of the difficulty of technique and expensive equipment involved. Although sol-gel method is well suited to synthesize ultrafine powders, this reaction is always in high temperature.

  17. Preparation and Characterization of CeO2 Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    GUAN; Fei

    2001-01-01

    The preparation and characterization of cerium oxide nano-powder has attracted much attention over the past few years due to their great potential in many fields. It is commonly used in glass, ceramics, fluorescence powder and catalyst etc.1. Cerium oxide was produced by oxalic acid decomposition in industry. Take this way, the products are pure but the size of powder is large ( >3 μ m )2. Up to now,various methods have been reported to synthesize ultra fine cerium oxide powders, such as homogeneous deposition method, hydrothermal method, sol-gel method and spray deposition method etc. 3-6. However, these methods are not convenient for synthesis of large amounts of powders because of the difficulty of technique and expensive equipment involved. Although sol-gel method is well suited to synthesize ultrafine powders, this reaction is always in high temperature.  ……

  18. Preparation of Cerium Modified Titanium Dioxide Nanoparticles and Investigation of Their Visible Light Photocatalytic Performance

    OpenAIRE

    Jinfeng Liu; Haiyan Li; Qiuye Li; Xiaodong Wang; Min Zhang; Jianjun Yang

    2014-01-01

    Mesoporous CeOx/TiO2 nanoparticles have been successfully synthesized using titanate nanotubes as precursor through the hydrothermal-calcination method. The as-prepared materials were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), UV-vis diffuse reflectance spectra and nitrogen adsorption-desorption isotherm analysis. All the obtained CeOx/TiO2 materials exhibit anatase phase. Ce element existed in two valance...

  19. Physicochemical characterization of protein-loaded pectin-chitosan nanoparticles prepared by polyelectrolyte complexation

    OpenAIRE

    Ahlin Grabnar, Pegi; Kristl, Julijana

    2015-01-01

    Recent advances in nanotechnology applied to proteins are directed towards safer and simpler methods of preparation, using naturally occurring polymers such as alginate, pectin and chitosan. In this study, pectin-chitosan nanoparticles (NPs) were designed by the mild process of polyelectrolyte complexation, which occurs at room temperature without using sonication or organic solvents. NPs with a mean diameter between 300 and 400 nm and 45 to 86% protein association efficiency were obtained by...

  20. Preparation and Characterization of Octenyl Succinic Anhydride Modified Taro Starch Nanoparticles

    OpenAIRE

    Jiang, Suisui; Dai, Lei; Qin, Yang; Xiong, Liu; Sun, Qingjie

    2016-01-01

    The polar surface and hydrophilicity of starch nanoparticles (SNPs) result in their poor dispersibility in nonpolar solvent and poor compatibility with hydrophobic polymers, which limited the application in hydrophobic system. To improve their hydrophobicity, SNPs prepared through self-assembly of short chain amylose debranched from cooked taro starch, were modified by octenyl succinic anhydride (OSA). Size via dynamic light scattering of OSA-SNPs increased compared with SNPs. Fourier transfo...

  1. Dendrimer-Capped Nanoparticles Prepared by Picosecond Laser Ablation in Liquid Environment

    OpenAIRE

    Paolo Marsili; Simona Laza; Francesco Giammanco; Anna Giusti; Emilia Giorgetti

    2009-01-01

    Fifth generation ethylendiamine-core poly(amidoamine) (PAMAM G5) is presented as an efficient capping agent for the preparation of metal and semiconductor nanoparticles by ps laser ablation in water. In particular, we describe results obtained with the fundamental, second and third harmonic of a ps Nd:YAG laser and the influence of laser wavelength and pulse energy on gold particle production and subsequent photofragmentation. In this framework, the role of the dendrimer and, in particular, i...

  2. Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer

    OpenAIRE

    Yunliang Shao; Shuping Xu; Xianliang Zheng; Ye Wang; Weiqing Xu

    2010-01-01

    This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR) biosensor. A gold nanoparticle (NP) assembled film as the sensing layer was built on the polyelectrolyte (PE) multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and o...

  3. Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method

    Science.gov (United States)

    Anjana, R.; Subha, P. P.; Markose, Kurias K.; Jayaraj, M. K.

    2016-05-01

    Upconversion luminescence is an interesting area while considering its applications in a vast variety of fields. Rare earth ions like erbium is the most studied and efficient candidate for achieving upconversion. Erbium and ytterbium co-doped ZnO nanoparticles were prepared through co-precipitation method. A strong red emission has been obtained while exciting with 980 nm laser. Dependence of luminescence emission colour on ytterbium concentration has been studied.

  4. Drug/polymer nanoparticles prepared using unique spray nozzles and recent progress of inhaled formulation

    OpenAIRE

    Tetsuya Ozeki; Tatsuaki Tagami

    2014-01-01

    Inhaled formulations are promising for pulmonary and systemic non-pulmonary diseases. Functional engineered particles including drugs and drug-loaded nanocarriers have been anticipated because they can improve drug delivery efficacy against target sites in the lungs or blood. In this review, unique spray nozzles (e.g., four-fluid spray nozzle and two-solution mixing type nozzle) for the preparation of nanocomposite particles which mean microparticles containing drug nanoparticles are describe...

  5. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    Science.gov (United States)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah

    2015-05-01

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO3)2.4H2O and phosphorous pentoxide, P2O5. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  6. Preparation of nanoscale Bacillus thuringiensis chitinases using silica nanoparticles for nematicide delivery.

    Science.gov (United States)

    Qin, Xu; Xiang, Xuemei; Sun, Xiaowen; Ni, Hong; Li, Lin

    2016-01-01

    A series of amino, carboxylic, and aldehydic surface-grafted silica nanoparticles (SNPs) was prepared based on SiO2 NYSi40 nanoparticles to develop an efficient, biocompatible, and cost-effective biopesticide delivery system. Bacillus thuringiensis chitinase (Chi9602) was immobilized onto SNP surface to prepare nanoscale chitinases (SNPCs) through electrostatic adsorption and covalent binding. The specimens were characterized by Fourier transform infrared, scanning electron microscopy, and zeta-potential analyses. The delivery capacity of the SNPs in Caenorhabditis elegans N2 was observed by immunofluorescence. Results demonstrated that amino-grafted SiO2 nanoparticles with Chi9602 electrostatically adsorbed onto their surface (SNPC2) exhibited a relatively high enzyme immobilization rate (80.2%) and the highest (94.1%) residual enzyme activity among all SNPCs. SNPC2 also showed wider pH tolerance and relatively higher thermostability and ultraviolet radiation resistance capacity than Chi9602. Bioassays further showed that SNPC2 synergistically enhanced the nematicidal effect of B. thuringiensis YBT-020 preparation against C. elegans, with a reduced LC50 of 8.35mg/mL and a shortened LT50 of 12.04h. Immunofluorescence assays showed that SNPC2 had considerable delivery capacity to carry a large protein into C. elegans. Therefore, SNP2 can serve as an efficient nanocarrier for the delivery of macromolecular proteic biopesticides or drugs, indicating potential agricultural or biotechnological applications. PMID:26476241

  7. Ferrocenyl branched poly (ethylene imine) micelles as reductive templates for the preparation of silver nanoparticles

    International Nuclear Information System (INIS)

    Polymeric micelles with a branched poly (ethylene imine) shell and a reductive ferrocene core were prepared via self-assembly of ferrocene modified branched poly (ethylene imine) (BPEI-Fc). The well-controlled polymeric micelles with a reductive core were used as templates to prepare core-shell-structured silver nanoparticles (AgNPs) in aqueous solution. The as-prepared nanoparticles were characterized by UV-Vis spectrophotometer, transmission electron microscope (TEM), selected-area electron diffraction (SAED), thermogravimetry analyzer (TGA), and dynamic light scattering (DLS). The AgNPs of 39 ± 9 nm with a 39-nm BPEI layer were obtained. It is demonstrated that ferrocene, which is a neutral, chemically stable, and nontoxic molecule, plays a dual role as the hydrophobe and as the electron donating group. Moreover, the formation of these particles was monitored in situ by UV-Vis spectrophotometer. It is found that the growth of AgNPs through reductive templates is much slower than that reduced by NaBH4. Meanwhile, the size distribution of AgNPs becomes narrower during the reaction. BPEI-covered AgNPs (Ag-BPEI) are stable up to 3 months and carry amino groups, which can further be bioconjugated. These core-shell-structured nanoparticles may enable them to be used for wide applications in aqueous solution.

  8. Application of Box-Behnken design to prepare gentamicin-loaded calcium carbonate nanoparticles.

    Science.gov (United States)

    Maleki Dizaj, Solmaz; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad-Hossein; Adibkia, Khosro

    2016-09-01

    The aim of this research was to prepare and optimize calcium carbonate (CaCO3) nanoparticles as carriers for gentamicin sulfate. A chemical precipitation method was used to prepare the gentamicin sulfate-loaded CaCO3 nanoparticles. A 3-factor, 3-level Box-Behnken design was used for the optimization procedure, with the molar ratio of CaCl2: Na2CO3 (X1), the concentration of drug (X2), and the speed of homogenization (X3) as the independent variables. The particle size and entrapment efficiency were considered as response variables. Mathematical equations and response surface plots were used, along with the counter plots, to relate the dependent and independent variables. The results indicated that the speed of homogenization was the main variable contributing to particle size and entrapment efficiency. The combined effect of all three independent variables was also evaluated. Using the response optimization design, the optimized Xl-X3 levels were predicted. An optimized formulation was then prepared according to these levels, resulting in a particle size of 80.23 nm and an entrapment efficiency of 30.80%. It was concluded that the chemical precipitation technique, together with the Box-Behnken experimental design methodology, could be successfully used to optimize the formulation of drug-incorporated calcium carbonate nanoparticles. PMID:25950955

  9. Preparation of hydroxyapatite nanoparticles by sol-gel method with optimum processing parameters

    Energy Technology Data Exchange (ETDEWEB)

    Yusoff, Yusriha Mohd; Salimi, Midhat Nabil Ahmad; Anuar, Adilah [Universiti Malaysia Perlis, Kompleks Pusat Pengajian Jejawi 3, 02600 Arau, Perlis (Malaysia)

    2015-05-15

    Many studies have been carried out in order to prepare hydroxyapatite (HAp) by various methods. In this study, we focused on the preparation of HAp nanoparticles by using sol-gel technique in which few parameters are optimized which were stirring rate, aging time and sintering temperature. HAp nanoparticles were prepared by using precursors of calcium nitrate tetrahydrate, Ca(NO{sub 3}){sub 2}.4H{sub 2}O and phosphorous pentoxide, P{sub 2}O{sub 5}. Both precursors are mixed in ethanol respectively before they were mixed together in which it formed a stable sol. Fourier transform infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM) were used for its characterization in terms of functional group, phase composition, crystallite size and morphology of the nanoparticles produced. FTIR spectra showed that the functional groups that present in all five samples were corresponding to the formation of HAp. Besides, XRD shows that only one phase was formed which was hydroxyapatite. Meanwhile, SEM shows that the small particles combine together to form agglomeration.

  10. Synthesis of chromium-nickel nanoparticles prepared by a microemulsion method and mechanical milling.

    Science.gov (United States)

    Ban, Irena; Stergar, Janja; Drofenik, Miha; Ferk, Gregor; Makovec, Darko

    2013-01-01

    A chemical and a physical method have been applied for the preparation of chromium-nickel alloy nanoparticles. These particles were designed to be used for controlled magnetic hyperthermia applications. Microemulsions with Ni2+ and Cr3+ and/or NaBH4 as precursors were prepared using the isooctane/CTAB, n-butanol/H2O system. The samples of CrxNi1-x nanoparticles with the desired composition were obtained after the reduction of their salts with NaBH4 and afterwards heat treated in a TGA in a N2 atmosphere at various temperatures. The CrxNi1-x materials were also prepared by mechanical milling. Utilizing a ball-to-powder mass ratio of 20 : 1 and selecting the proper alloy compositions we were able to obtain nanocrystalline CrxNi1-x particles. Thermal demagnetization in the vicinity of the Curie temperature of the nanoparticles was studied using a modified TGA-SDTA method. The alloy's phase composition, size and morphology were determined with XRD measurements and TEM analyses. PMID:24362977

  11. Magnetic properties of Co/Ag core/shell nanoparticles prepared by successive reactions in microemulsions

    Science.gov (United States)

    Rivas, J.; Garcia-Bastida, A. J.; Lopez-Quintela, M. A.; Ramos, C.

    2006-05-01

    Co nanoparticles with an Ag covering layer have been prepared by successive reactions in microemulsions. Their magnetic behavior was studied as a function of heat treatment. It was confirmed that, under the experimental conditions of this study, the size of the Co nuclei is limited by the reactant concentration, whereas the Ag covering is fixed by microemulsion droplet size. The as-prepared particles contain mainly Co 3O 4 nuclei, and present high effective moments that agree with the spin state of Co 3+. The observed magnetic behaviors were explained taking into account the intra- and inter-particle structural evolution of the particle assemblies annealed under different experimental conditions.

  12. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy

    Directory of Open Access Journals (Sweden)

    Maji R

    2014-06-01

    Full Text Available Ruma Maji, Niladri Shekhar Dey, Bhabani Sankar Satapathy, Biswajit Mukherjee, Subhasish MondalDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta, IndiaBackground: Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA based nanoparticles (TNPs were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7 breast cancer cells was also investigated.Methods: Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR, surface morphology by field emission scanning electron micro­scopy (FESEM, zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (% was studied.Results: No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w, 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug.Conclusion: TNPs (NP4 showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the

  13. Preparation and characterization of the nanoparticle and nanocomposite by gamma irradiation

    International Nuclear Information System (INIS)

    Complete text of publication follows. Nanometer metal particle-organic polymer composites have attracted considerable interests in recent years. These composites not only combine the advantageous properties of metals and polymers but also exhibit many new characters that single-phase materials do not have. They have a wide range of applications including electromagnetic inferences shielding, heat conduction, discharge static electricity, conversion of mechanical to electrical signals, and like. In order to obtain nanocomposite, silver nanoparticle was prepared by γ-irradiation. The obtained Ag nanoparticle was characterized by UV, FT-IR, XRD, SEM, TEM, and etc. The ethylacetate-Ag nanocomposite was prepared by emulsion polymerization. The obtained nanocomposites were characterized by SEM, XRD, and thermal (TGA/DSC) analysis. Furthermore, the CdS nanocomposite was prepared using CdSO4 and Na2SO4 by γ-irradiation method. The ethylacetate-CdS nanocomposite was also prepared by emulsion polymerization, and characterized by SEM, XRD, and thermal (TGA/DSC) analysis. The application of such prepared metal particle-organic polymer composites in the field of anti-bacterial film, semiconductor film, and fluorescence film may be of interest

  14. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Directory of Open Access Journals (Sweden)

    Tejabhiram Yadavalli

    2016-05-01

    Full Text Available A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  15. Magnetic hyperthermia heating of cobalt ferrite nanoparticles prepared by low temperature ferrous sulfate based method

    Science.gov (United States)

    Yadavalli, Tejabhiram; Jain, Hardik; Chandrasekharan, Gopalakrishnan; Chennakesavulu, Ramasamy

    2016-05-01

    A facile low temperature co-precipitation method for the synthesis of crystalline cobalt ferrite nanostructures using ferrous sulfate salt as the precursor has been discussed. The prepared samples were compared with nanoparticles prepared by conventional co-precipitation and hydrothermal methods using ferric nitrate as the precursor. X-ray diffraction studies confirmed the formation of cubic spinel cobalt ferrites when dried at 110 °C as opposed to conventional methods which required higher temperatures/pressure for the formation of the same. Field emission scanning electron microscope studies of these powders revealed the formation of nearly spherical nanostructures in the size range of 20-30 nm which were comparable to those prepared by conventional methods. Magnetic measurements confirmed the ferromagnetic nature of the cobalt ferrites with low magnetic remanance. Further magnetic hyperthermia studies of nanostructures prepared by low temperature method showed a rise in temperature to 50 °C in 600 s.

  16. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    International Nuclear Information System (INIS)

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss

  17. Biomimetic Composite Structural T-joints

    Institute of Scientific and Technical Information of China (English)

    Vimal Kumar Thummalapalli; Steven L.Donaldson

    2012-01-01

    Biological structural fixed joints exhibit unique attributes,including highly optimized fiber paths which minimize stress concentrations.In addition,since the joints consist of continuous,uncut fiber architectures,the joints enable the organism to transport information and chemicals from one part of the body to the other.To the contrary,sections of man-made composite material structures are often joined using bolted or bonded joints,which involve low strength and high stress concentrations.These methods are also expensive to achieve.Additional functions such as fluid transport,electrical signal delivery,and thermal conductivity across the joints typically require parasitic tubes,wires,and attachment clips.By using the biomimetic methods,we seek to overcome the limitations which are present in the conventional methods. In the present work,biomimetic co-cured composite sandwich T-joints were constructed using unidirectional glass fiber,epoxy resin,and structural foam.The joints were fabricated using the wet lay-up vacuum bag resin infusion method.Foam sandwich T-joints with multiple continuous fiber architectures and sandwich foam thickness were prepared.The designs were tested in quasi-static bending using a mechanical load frame.The significantweight savings using the biomimetic approaches is discussed,as well as a comparison of failure modes versus architecture is described.

  18. Synthesis of nanogranular Fe3O4/biomimetic hydroxyapatite for potential applications in nanomedicine: structural and magnetic characterization

    Science.gov (United States)

    Del Bianco, L.; Lesci, I. G.; Fracasso, G.; Barucca, G.; Spizzo, F.; Tamisari, M.; Scotti, R.; Ciocca, L.

    2015-06-01

    We realized the synthesis of a novel nanogranular system consisting of magnetite nanoparticles embedded in biomimetic carbonate hydroxyapatite (HA), for prospective uses in bone tissue engineering. An original two-step method was implemented: in the first step, magnetite nanoparticles are prepared by refluxing an aqueous solution of Fe(SO4) and Fe2(SO4)3 in an excess of tetrabutilammonium hydroxide acting as surfactant; then, the magnetite nanoparticles are coated with a Ca(OH)2 layer, to induce the growth of HA directly on their surface, by reaction of Ca(OH)2 with HPO42-. Two nanogranular samples were collected with magnetite content ˜0.8 and ˜4 wt%. The magnetite nanoparticles and the composite material were investigated by x-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. These analyses provided information on the structure of the nanoparticles (mean size ˜6 nm) and revealed the presence of surface hydroxyl groups, which promoted the subsequent growth of the HA phase, featuring a nanocrystalline lamellar structure. The magnetic study, by a superconducting quantum interference device magnetometer, has shown that both the as-prepared and the HA-coated magnetite nanoparticles are superparamagnetic at T = 300 K, but the magnetization relaxation process is dominated by dipolar magnetic interactions of comparable strength. In the three samples, a collective frozen magnetic regime is established below T ˜ 20 K. These results indicate that the magnetite nanoparticles tend to form agglomerates in the as-prepared state, which are not substantially altered by the HA growth, coherently with the creation of electrostatic hydrogen bonds among the surface hydroxyl groups.

  19. The Optical Nonlinearity of Au and Ag Nanoparticle Prepared by the Γ-Radiation Method

    Directory of Open Access Journals (Sweden)

    Esmaeil Shahriari

    2010-01-01

    Full Text Available Problem statement: The third order nonlinear optical properties of metal nanoparticles have been of interest in physical chemistry, medical diagnostics and optical devices. Gold colloidal nanoparticles are responsible for the brilliant reds seen in stained glass windows and silver particles are typically yellow. The purpose of the study was to determine the nonlinear refraction and absorption coefficient of the Au and Ag nanoparticles in PVP solution. Approach: The samples were prepared by Γ-radiation method and the nonlinear optical properties of the composites were investigated using a single beam Z-scan technique with a beam power of 40 mW and operated at wavelength of 532 nm. The measurements were carried out for both Open and closed aperture Z-scan arrangements. Results: For both Au/PVP and Ag/PVP samples the results exhibited reverse saturable absorption. The closed aperture Z-scan of the nano-fluid samples revealed self-defocusing effect while the open aperture Z-scan of the samples show a reversible saturable absorption. Conclusion: The Z-scan measurement showed that silver and gold nano-fluid prepared by gamma radiation exhibited large thermal nonlinear refractive index n2 as -8.78×10-7 and -2.478×10-6 cm2/W, respectively. We have also investigated nonlinear absorption of these samples and we found a large value of nonlinear absorption for Ag nanoparticle and a weak absorption for Au nanoparticle. In conclusion, the experimental result shows a good nonlinear refractive index at low laser power in which encouraging for possible applications in nonlinear optical devices.

  20. Preparation and magnetotransport properties of MgO-barrier-based magnetic double tunnel junctions including nonmagnetic nanoparticles

    International Nuclear Information System (INIS)

    MgO-barrier-based magnetic double tunnel junctions including Au or Cr nanoparticles were prepared by molecular beam epitaxy, and their magnetotransport properties were investigated. A double junction sample including Au nanoparticles showed the Coulomb blockade effect and clear magnetoresistive hysteresis loops. The observed bias voltage dependence of the resistance and magnetoresistance (MR) suggested that the MR effects of 1-2% at high bias voltages were caused by spin accumulation in the Au nanoparticles. In the case of Cr nanoparticles, a double junction with relatively low sample resistance was obtained, showing a clear Coulomb threshold

  1. Preparation of luminescent CdTe quantum dots doped core-shell nanoparticles and their application in cell recognition

    Institute of Scientific and Technical Information of China (English)

    LI Zhaohui; WANG Kemin; TAN Weihong; LI Jun; FU Zhiying; WANG Yilin; LIU Jianbo; YANG Xiaohai

    2005-01-01

    Based on the reverse microemulsion technique, luminescent quantum dots doped core-shell nanoparticles have been prepared by employing silica as the shell and CdTe quantum dots as the core of the nanoparticles, which have an excellent solubility and dispersibility, especially amine and phosphonate groups have been modified on their surface synchronously. In comparison with CdTe quantum dots, these nanoparticles show superiority in chemical and photochemical stability. The quantum dots doped core-shell nanoparticles were successfully linked with lactobionic acid by amine group on it, which was used to recognize living liver cells.

  2. Effect of Process Parameters on Formation and Aggregation of Nanoparticles Prepared with a Shirasu Porous Glass Membrane.

    Science.gov (United States)

    Seo, Jeong-Woong; Kim, Kyung-Jin; Kim, Su-Hyeon; Hwang, Kyu-Mok; Seok, Su Hyun; Park, Eun-Seok

    2015-01-01

    The objectives of this study were to prepare itraconazole (ITZ) nanoparticles using a Shirasu porous glass (SPG) membrane and to characterize the effects of diverse preparation parameters on the physical stability of nanoparticles. SPG membrane technology was used for the antisolvent precipitation method. The preparation of nanoparticles was carried out over a wide range of continuous-phase factors (type of surfactant, surfactant concentration), dispersed-phase factors (solvent type, solvent volume used to dissolve ITZ), and technical factors (pressure, membrane pore size, stirring speed in the continuous phase, temperature). Improved physical stability of nanoparticles was observed when surfactant with a lower molecular weight and higher hydrophilic segment ratio was used. The water miscibility of the solvent also had an effect on the physical stability. N,N-Dimethylacetamide contributed to creating a well-rounded shape and narrow size distribution due to high miscibility. Concentration of the surfactant and solvent volume used for dissolving ITZ were related to instability of nanoparticles, resulting from depletion attraction and Ostwald ripening. In addition to these factors, technical factors changed the environment surrounding ITZ nanoparticles, such as the physicochemical equilibrium between surfactant and ITZ nanoparticles. Therefore, the appropriate continuous-phase factors, dispersed-phase factors, and technical factors should be maintained for stabilizing ITZ nanoparticles. PMID:26423035

  3. Facile preparation of TiO2–polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Hybrid TiO2/PVA core/shell nanoparticles were prepared through a two step procedure. • TiO2–PVA samples were prepared based on different TiO2–PVA weight ratios. • All samples were characterized using XRD, TEM, FT-IR and BET analysis. • The photocatalytic performance was evaluated. - Abstract: Hybrid inorganic/organic core/shell nanoparticles were prepared through a two step synthesis procedure. In the first step, pure anatase TiO2 nanoparticles were synthesized though a rapid microwave assisted non-aqueous route. Then, the obtained titania nanoparticles were coated with polyvinyl alcohol (PVA) using a simple solution method followed by relatively low temperature treatment. The PVA-coated titania nanoparticles samples were prepared at different TiO2–PVA weight ratio and they were characterized using X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and Brunauer–Emmett–Teller (BET) analysis. Photocatalytic performance was also evaluated for all samples and the results indicated that TiO2:PVA weight ratio was a key factor to obtain an improvement of the photocatalytic activity with respect to bare TiO2 nanoparticles, since PVA concentration influenced the surface area and the aggregation of nanoparticles and the thickness of the coating layer. This inexpensive system provides a simple, quick and effective approach which allows to obtain core/shell hybrid nanostructures

  4. Facile preparation of TiO{sub 2}–polyvinyl alcohol hybrid nanoparticles with improved visible light photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Filippo, Emanuela [Department of Innovation Engineering, University of Salento, Monteroni Street, 73100, Lecce (Italy); Carlucci, Claudia; Capodilupo, Agostina Lina [National Nanotechnology Laboratory (NNL), Nanoscience Institure – CNR, Arnesano Street, 73100 Lecce (Italy); Perulli, Patrizia [Department of Innovation Engineering, University of Salento, Monteroni Street, 73100, Lecce (Italy); Conciauro, Francesca [National Nanotechnology Laboratory (NNL), Nanoscience Institure – CNR, Arnesano Street, 73100 Lecce (Italy); Corrente, Giuseppina Anna [University of Calabria, Pietro Bucci Street, 87036 Arcavacata di Rende, Cosenza (Italy); Gigli, Giuseppe [National Nanotechnology Laboratory (NNL), Nanoscience Institure – CNR, Arnesano Street, 73100 Lecce (Italy); Center for Biomolecular Nanotechnologies (CBN) of Italian Institute of Technology (IIT), Barsanti Street 1, 73010 Arnesano (Italy); Department of Physics, University of Salento, Monteroni Street, 73100, Lecce (Italy); Ciccarella, Giuseppe, E-mail: giuseppe.ciccarella@unisalento.it [Department of Innovation Engineering, University of Salento, Monteroni Street, 73100, Lecce (Italy); National Nanotechnology Laboratory (NNL), Nanoscience Institure – CNR, Arnesano Street, 73100 Lecce (Italy)

    2015-03-15

    Graphical abstract: - Highlights: • Hybrid TiO{sub 2}/PVA core/shell nanoparticles were prepared through a two step procedure. • TiO{sub 2}–PVA samples were prepared based on different TiO{sub 2}–PVA weight ratios. • All samples were characterized using XRD, TEM, FT-IR and BET analysis. • The photocatalytic performance was evaluated. - Abstract: Hybrid inorganic/organic core/shell nanoparticles were prepared through a two step synthesis procedure. In the first step, pure anatase TiO{sub 2} nanoparticles were synthesized though a rapid microwave assisted non-aqueous route. Then, the obtained titania nanoparticles were coated with polyvinyl alcohol (PVA) using a simple solution method followed by relatively low temperature treatment. The PVA-coated titania nanoparticles samples were prepared at different TiO{sub 2}–PVA weight ratio and they were characterized using X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and Brunauer–Emmett–Teller (BET) analysis. Photocatalytic performance was also evaluated for all samples and the results indicated that TiO{sub 2}:PVA weight ratio was a key factor to obtain an improvement of the photocatalytic activity with respect to bare TiO{sub 2} nanoparticles, since PVA concentration influenced the surface area and the aggregation of nanoparticles and the thickness of the coating layer. This inexpensive system provides a simple, quick and effective approach which allows to obtain core/shell hybrid nanostructures.

  5. Biomimetic synthesis of silver nanoparticles using the fish scales of Labeo rohita and their application as catalysts for the reduction of aromatic nitro compounds

    Science.gov (United States)

    Sinha, Tanur; Ahmaruzzaman, M.; Sil, A. K.; Bhattacharjee, Archita

    2014-10-01

    In this article, a cleaner, greener, cheaper and environment friendly method for the generation of self assembled silver nanoparticles (Ag NPs) applying a simple irradiation technique using the aqueous extract of the fish scales (which is considered as a waste material) of Labeo rohita is described. Gelatin is considered as the major ingredient responsible for the reduction as well as stabilisation of the self assembled Ag NPs. The size and morphology of the individual Ag NPs can be tuned by controlling the various reaction parameters, such as temperature, concentration, and pH. Studies showed that on increasing concentration and pH Ag NPs size decreases, while on increasing temperature, Ag NPs size increases. The present process does not need any external reducing agent, like sodium borohydride or hydrazine or others and gelatin itself can play a dual role: a ‘reducing agent' and ‘stabilisation agent' for the formation of gelatin-Ag NPs colloidal dispersion. The synthesized Ag NPs were characterised by Ultraviolet-Visible spectroscopy (UV-Vis), Transmission electron microscopy (TEM) and Selected area electron diffraction (SAED) analyses. The synthesized Ag NPs was used to study the catalytic reduction of various aromatic nitro compounds in aqueous and three different micellar media. The hydrophobic and electrostatic interaction between the micelle and the substrate is responsible for the catalytic activity of the nanoparticles in micelle.

  6. Mn-Zn ferrite nanoparticles for ferrofluid preparation: Study on thermal-magnetic properties

    International Nuclear Information System (INIS)

    Mn1-xZnxFe2O4 (with x varying from 0.1 to 0.5) ferrite nanoparticles used for ferrofluid preparation have been prepared by chemical co-precipitation method and characterized. Characterization techniques like elemental analysis by atomic absorption spectroscopy and spectrophotometry, thermal analysis using simultaneous TG-DTA, XRD, TEM, VSM and Moessbauer spectroscopy have been utilized. The final cation contents estimated agree with the initial degree of substitution. The Curie temperature (Tc) and particle size decrease with the increase in zinc substitution. In the case of particles with higher zinc concentration, both ferrimagnetic nanoparticles and particles exhibiting superparamagnetic behavior at room temperature are present. In addition, some of the results obtained by slightly altering the preparation condition are also discussed. The precipitated particles were used for ferrofluid preparation. The fine particles were suitably dispersed in heptane using oleic acid as the surfactant. The volatile nature of the carrier chosen helps in altering the number concentration of the magnetic particles in a ferrofluid. Magnetic properties of the fine particles and ferrofluids are discussed. Ferrofluids having Mn0.5Zn0.5Fe2O4 particles can be used for the energy conversion application utilizing the magnetically induced convection for thermal dissipation

  7. Attachment of noble metal nanoparticles to conducting polymers containing sulphur - preparation conditions for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    Taking advantage of the spontaneous deposition of noble metals on polymers containing sulphur, the inclusion of gold and platinum in poly(3-methylthiophene) and poly(3,4-ehylenedioxythiophene) (PEDOTh) layers, achieved by immersion of the polymer into the metal nanoparticles suspension, is reported in the present work. Platinum and gold nanoparticles (NPs), with diameters between 3 and 17 nm, have been prepared from colloidal methods (citrate or borohydride reduction in the presence of citrate capping agent) and characterized by transmission electron microscopy, ultraviolet-visible spectrophotometry and X-ray diffraction (XRD). The electropolymerization was carried out under potentiostatic and potentiodynamic conditions, imparting distinct morphologies, as revealed by atomic force microscopy. After polymer films immersion in the colloidal solutions, evidence of the NPs confinement and distribution was provided by XRD analysis and scanning electron microscopy. For thin layers, the quantity of attached metal NPs could be estimated from quartz crystal microbalance data collected throughout the films immersion.The influence of the polymer type and morphology, NPs nature, size and incorporated amount on the electrocatalytic activity of the so-prepared modified electrodes towards the hydrazine oxidation, in phosphate buffer solution, has been investigated by cyclic voltammetry. The results clearly show the superior properties of potentiodynamically prepared PEDOTh films attaching very small (3 nm) freshly prepared Pt-NPs.

  8. Ammonia-free preparation of Ag@SiO{sub 2} core/shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhipeng; Jia, Lifeng [Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210 (China); Li, Yueming [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province 066004 (China); He, Tao, E-mail: het@sari.ac.cn [Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210 (China); School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210 (China); Li, Xue-Mei, E-mail: lixm@sari.ac.cn [Shanghai Advanced Research Institute, Chinese Academy of Sciences, 99 Haike Road, Shanghai 201210 (China)

    2015-08-01

    Highlights: • Ammonia catalyzed silica coating of Ag nanoparticles suffered from Ag etching. • An ammonia-free approach was developed for Ag@SiO{sub 2} nanocomposites preparation. • NaOH was used as the base to catalyze the TOES polycondensation. • Control the pH during silica formation was critical to ensure Ag@SiO{sub 2} synthesis. - Abstract: An ammonia-free approach for the preparation of silver@silica core/shell nanocomposites is reported in order to avoid the silver core etching during the preparation in a typical Stöber approach. Silver nanoparticles were used as the core and tetraethoxy orthosilicate (TEOS) was used the silica source. The silica layer formation process was investigated under alkaline conditions. Several bases were selected as the alkaline source and it was found that careful control of the solution pH below 10 during the silica layer formation is critical to ensure stable and aggregation free core–shell nanocomposites preparation as confirmed by UV–Vis spectroscopy and transmission electron microscopy.

  9. Microwave-assisted and liquid oxidation combination techniques for the preparation of nickel oxide nanoparticles

    International Nuclear Information System (INIS)

    A nickel hydroxide, Ni(OH)2, was prepared by microwave-assisted heating technique from nickel nitrate aqueous solution and sodium hydroxide (assigned as PM). Then, the as-prepared PM was oxidized by liquid oxidation with sodium hypochlorite (assigned as PMO). Further, pure nanocrystalline nickel oxide (NiO) particles were obtained from the as-prepared PMO by calcination at 300, 400, 500, 600, 650 and 700 deg. C (labeled as C300, C400, C500, C600, C650 and C700, respectively). The as-prepared powders (PM and PMO) and the NiO nanoparticles were characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), temperature-programmed reduction (TPR) and scanning electron microscope (SEM). The results indicated that the particle size of nickel oxide was controlled by the calcined temperature. The average crystal size of the NiO nanoparticles ranges from about 5 to 35 nm at 300-700 deg. C. Mechanism of nickel oxide nanocrystallite growth during thermal treatment was investigated

  10. Sol-gel preparation and spectroscopic study of the pyrophanite MnTiO3 nanoparticles

    Institute of Scientific and Technical Information of China (English)

    ZHOU Guowei; KANG Youngsoo; LI Tianduo; XU Guiying

    2005-01-01

    The nanosized xerogel of titanium dioxide (TiO2) and manganese oxides (MnO2, Mn2O3, Mn3O4) was prepared by the sol-gel method using manganese chloride (MnCl2·4H2O) and titanium isopropoxide (Ti(O-iPr)4) as precursors in cetyltrimethylammonium bromide (CTAB)/ ethanol/H2O/HCl micelle solutions, following the calcinations of the produced powders at difference temperatures. The nanostructure and phase composition of these nanoparticles were characterized with X-ray powder diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). The spectroscopic characterizations of these nanoparticles were also done with UV-Vis spectroscopy and laser Raman spectroscopy (LRS). XRD patterns show that the pyrophanite MnTiO3 phase was formed at the calcinations temperature of 900℃. The TEM images show that the nanoparticles are almost spherical or slight ellipose and the sizes are 50 nm on average. The UV-Vis spectra show that the nanosized MnTiO3 have significant absorption bands in the visible region. There are new absorption peaks of MnTiO3 nanoparticles in LRS compared with the pure TiO2 powder.

  11. Preparation and characterization of nanoparticles of carboxymethyl cellulose acetate butyrate containing acyclovir

    Science.gov (United States)

    Vedula, Venkata Bharadwaz; Chopra, Maulick; Joseph, Emil; Mazumder, Sonal

    2016-02-01

    Nanoparticles of carboxymethyl cellulose acetate butyrate complexed with the poorly soluble antiviral drug acyclovir (ACV) were produced by precipitation process and the formulation process and properties of nanoparticles were investigated. Two different particle synthesis methods were explored—a conventional precipitation method and a rapid precipitation in a multi-inlet vortex mixer. The particles were processed by rotavap followed by freeze-drying. Particle diameters as measured by dynamic light scattering were dependent on the synthesis method used. The conventional precipitation method did not show desired particle size distribution, whereas particles prepared by the mixer showed well-defined particle size ~125-450 nm before and after freeze-drying, respectively, with narrow polydispersity indices. Fourier transform infrared spectroscopy showed chemical stability and intactness of entrapped drug in the nanoparticles. Differential scanning calorimetry showed that the drug was in amorphous state in the polymer matrix. ACV drug loading was around 10 wt%. The release studies showed increase in solution concentration of drug from the nanoparticles compared to the as-received crystalline drug.

  12. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    International Nuclear Information System (INIS)

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix–polyether glycol was studied. AgNps of 4–6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia–polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20–80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO3 concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia–polyether glycol hybrid film. Highlights: ► Antibacterial activity of films (zirconia–polyether glycol) modified with silver nanoparticles. ► Biofilm formation is prevented. ► High sensibility against gram positive bacteria.

  13. Preparation of WO3 Nanoparticles Using Cetyl Trimethyl Ammonium Bromide Supermolecular Template

    Directory of Open Access Journals (Sweden)

    Nilofar Asim

    2009-01-01

    Full Text Available Problem statement: WO3 is one of the most interested metal oxides because of its application as catalysts, sensors, electrochromic devices, ceramic, solar cell, pigments and so on. More investigation is needed to find the good and low cost method for preparation of WO3 nanoparticles with uniform morphology and narrow distribution using a surfactant mediated method. Approach: In this study, the synthesis of WO3 nanoparticles was accomplished using a cationic surfactant (cetyl trimethyl ammonium bromide as the organic supermolecular template and WCl6 and NH4OH as the inorganic precursor and counter ion source, respectively. The effects of reaction temperature and surfactant concentration in particle size of resultant WO3 nanoparticles were investigated. Results: The different ranges of particle size and size distribution were obtained using different surfactant concentration and reaction temperature. The WO3 particles in the nanometer range (3-15 nm with uniform morphology and narrow distribution were obtained by optimization of reaction condition. X-ray diffraction, transmission electron microscopy, variable pressure scanning electron microscope, X-ray photoelectron spectroscopy and UV-Vis spectroscopy were used to characterize the final products. The nanomaterials WO3 showed different pattern in UV-Vis spectroscopy compare to the bulk WO3. Conclusion: A relatively simple and effective procedure for synthesis of WO3 nanoparticles with mean size below 10 nm, narrow size distribution and high monodispersity using CTAB supramolecular template had been developed and optimized.

  14. Preparation of Amyloid Immuno-Nanoparticles as Potential MRI Contrast Agents for Alzheimer's Disease Diagnosis.

    Science.gov (United States)

    Yin, Zhenyu; Yul, Tingting; Xu, Yun

    2015-09-01

    Alzheimer's disease (AD) is the most common form of dementia which is caused by accumulation in the brain of plaques made up of amyloid beta-peptide (Abeta). Research on nanosized systems indicated that nanoparticles (NPs) could pass across the blood-brain barrier (BBB) and improve the visibility of internal body structures in magnetic resonance imaging (MRI), which made it possible to aid the early diagnosis of AD. In this research study we synthesized magnetite nanoparticles by high-temperature solution-phase reaction, transferred into water based on a ligand exchange process and coated with meso-2,3-dimercaptosuccinic (DMSA). Subsequently, the anti-amyloid Abeta immunomagnetic nanoparticles (IMNPs) were prepared by grafting anti-amyloid antibodies on the surface of the DMSA-coated magnetic nanoparticles (MNPs). The enzyme linked immunosorbent assay (ELISA) method was introduced to evaluate the IMNPs activity and conjugation amount of antibodies. The biocompatibility of the IMNPs was tested by colony-forming assay. The results showed that the anti-amyloid Abeta IMNPs were biocompatible and biologically active, as well as effective in enhancing MRI solution, indicating that the IMNPs could be used as potential MRI contrast agents and targeted carriers for AD early diagnosis and therapy. PMID:26716196

  15. Small size TiO{sub 2} nanoparticles prepared by laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, F., E-mail: process@anmresearch.it [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166, Messina (Italy); Acacia, N. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166, Messina (Italy); Barletta, E.; Spadaro, D.; Curro, G. [Advanced and Nano Materials Research s.r.l., Salita Sperone 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Salita Sperone 31, I-98166, Messina (Italy)

    2010-08-15

    Titanium dioxide nanoparticles in distilled H{sub 2}O solvent were prepared by laser ablation. The experiments were performed irradiating a Ti target with a second harmonic (532 nm) output of a Nd:YAG laser varying the operative fluence between 1 and 10 J cm{sup -2} and for an ablation time ranging from 10 to 30 min. Electron microscopy measurements have evidenced the predominant presence of nanoparticles with diameter smaller than 10 nm together with agglomerations of 100-200 nm whose content increases with the laser fluence. At low laser fluence the particles' size distribution shows that more than 85% of the nanoparticles have a size smaller than 5 nm while at mid and high fluences the presence of 5-7 nm nanoparticles is predominant. XPS analysis has revealed the presence of different titanium suboxide phases with the prevalence of Ti-O bonds from TiO{sub 2} species. The optical bandgap values, determined by UV-vis absorption measurements, are compatible with the anatase phase.

  16. Preparation and Characterization of CuO Nanoparticles by Novel Sol-Gel Technique

    Directory of Open Access Journals (Sweden)

    Y. Aparna

    2012-10-01

    Full Text Available Recent developments of nanosize materials of metal and metal oxide particles are intensively pursued because of their prominence in different fields of applications. Among all the transition metal oxides, CuO is a potential candidate for the application of magnetic storage devices, solar energy transfer, sensors, and super capacitors etc. Moreover CuO nanoparticles act as a good catalyst in some of the chemical reactions. CuO nanoparticles were prepared by novel sol-gel method. In this technique CuCl2.6H2O is added with acetic acid and heated to 100 °C with continuous stirring. To control the ph of the above solution, NaOH is added to the solution till ph reached desired value. The color of the solution changed from blue to black with precipitation. The black precipitation was washed 3 – 4 times with distilled water. Finally the solution was centrifuged and dried in air for one day. The CuO nanoparticles were characterized by studying their structure with X-ray diffraction and composition by energy dispersive X-ray analysis. The size of the nanoparticles is estimated by particle size analyzer and transmission electron microscopy. The optical studies were carried out with Uv-Vis spectrophotometer.

  17. Preparation of poly(ɛ-caprolactone)-based polyurethane nanofibers containing silver nanoparticles

    Science.gov (United States)

    Jeon, Hyun Jeong; Kim, Jin Sook; Kim, Tae Gon; Kim, Jung Hyun; Yu, Woong-Ryeol; Youk, Ji Ho

    2008-07-01

    In this study, poly(ɛ-caprolactone)-based polyurethane (PCL-PU) nanofibers containing Ag nanoparticles for use in antimicrobial nanofilter applications were prepared by electrospinning 8 wt% PCL-PU solutions containing different amounts of AgNO 3 in a mixed solvent consisting of DMF/THF (7/3 w/w). The average diameter of the pure PCL-PU nanofibers was 560 nm and decreased with increasing concentration of AgNO 3. The PCL-PU nanofiber mats electrospun with AgNO 3 exhibited higher tensile strength, tensile modulus, and lower elongation than the pure PCL-PU nanofiber mats. Small Ag nanoparticles were produced by the reduction of Ag + ions in the PCL-PU solutions. The average size and number of the Ag nanoparticles in the PCL-PU nanofibers were considerably increased after being annealed at 100 °C for 24 h. They were all sphere-shaped and evenly distributed in the PCL-PU nanofibers, indicating that the PCL-PU chains stabilized the Ag nanoparticles well.

  18. Preparation and antibacterial properties of hybrid-zirconia films with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Ignacio, E-mail: manuel.azocar@usach.cl [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Vargas, Esteban [Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Duran, Nicole [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Arrieta, Abel [Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Gonzalez, Evelyn [Departamento de Quimica de los Materiales, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH, Avenida Bernardo O' Higgins 3363, Casilla 40, Correo 33, Santiago (Chile); Facultad de Ingenieria, Departamento de Metalurgia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Biologia, Facultad de Quimica y Biologia, Universidad de Santiago de Chile, USACH (Chile); Departamento de Quimica Farmacologica y Toxicologica, Facultad de Ciencias Quimicas, Universidad de Chile, Sergio Livingstone Polhammer 1007, Santiago (Chile); and others

    2012-11-15

    The antimicrobial effect of incorporating silver nanoparticles (AgNps) into zirconia matrix-polyether glycol was studied. AgNps of 4-6 nm in size were synthesized using the inverse micelles method, and different doses of metallic nanoparticles were incorporated into zirconia-polyether glycol mixtures during the ageing procedure. Atomic force microscopy (AFM) of the modified hybrid film showed a homogenous distribution of 20-80 nm diameter AgNps, indicating agglomeration of these structures during film modification; such agglomerations were greater when increasing the dosage of the colloidal system. The AgNps-hybrid films showed higher antimicrobial activity against Gram-positive bacteria than for Gram-negative bacteria. Hybrid films prepared with dioctyl sodium sulfosuccinate (AOT) stabilized AgNps presented enhanced antibacterial activity compared to that obtained through the addition of a high AgNO{sub 3} concentration (0.3 wt%). -- Graphical abstract: Atomic Force Micrographs, top and cross section view, showing silver nanoparticles embedded in a zirconia-polyether glycol hybrid film. Highlights: Black-Right-Pointing-Pointer Antibacterial activity of films (zirconia-polyether glycol) modified with silver nanoparticles. Black-Right-Pointing-Pointer Biofilm formation is prevented. Black-Right-Pointing-Pointer High sensibility against gram positive bacteria.

  19. Preparation, characterization and FE-simulation of the reinforcement of polycaprolactone with PEGylated silica nanoparticles

    International Nuclear Information System (INIS)

    We recently published the preparation and characterization of polycaprolactone (PCL) nanocomposites with a 45% increased modulus reinforced with only 4 wt% PEGylated silica (polyethylene-glycol/SiO2) nanoparticles obtained by melt-extrusion [1]. The achieved reinforcement is related to an excellent dispersion of the nanoparticles due to the polyethylene-glycol graft of the nanoparticles which was obtained by a simple one-pot synthesis. X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (FTIR) analyses identified the location of the PEG at the PCL/silica interface. However, the extension of the interface could not be resolved. In an attempt to describe the effect of the interface on the reinforcement we applied several analytical micromechanical models. Models considering core-shell systems fitted the experimental data well and gave estimations of the modulus and extension of the interphase. However, different sets of parameters gave equally good representations. In an alternative approach, 3D representative volume elements (RVE) of the composite with spherical nanoparticles including the shell were built-up from the morphological data to carry out computational micromechanics based on finite elements (FE). The interphase was modeled in the RVE. Both approaches demonstrated the need of an interphase extension of roughly twice the radius of the particle. The FEM approach estimates the interface-modulus much higher than the analytical models.

  20. Biomimetic Receptors and Sensors

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2014-11-01

    Full Text Available In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs or molecular imprinting. The strategies are used for solid phase extraction (SPE, but preferably in developing recognition layers of chemical sensors.

  1. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery.

    Science.gov (United States)

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  2. Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism

    International Nuclear Information System (INIS)

    Dielectric barrier discharge (DBD) cold plasma at atmospheric pressure was used for preparation of copper nanoparticles by reduction of copper oxide (CuO). Power X-ray diffraction (XRD) was used to characterize the structure of the copper oxide samples treated by DBD plasma. Influences of H2 content and the treating time on the reduction of copper oxide by DBD plasma were investigated. The results show that the reduction ratio of copper oxide was increased initially and then decreased with increasing H2 content, and the highest reduction ratio was achieved at 20% H2 content. Moreover, the copper oxide samples were gradually reduced by DBD plasma into copper nanoparticles with the increase in treating time. However, the average reduction rate was decreased as a result of the diffusion of the active hydrogen species. Optical emission spectra (OES) were observed during the reduction of the copper oxide samples by DBD plasma, and the reduction mechanism was explored accordingly. Instead of high-energy electrons, atomic hydrogen (H) radicals, and the heating effect, excited-state hydrogen molecules are suspected to be one kind of important reducing agents. Atmospheric-pressure DBD cold plasma is proved to be an efficient method for preparing copper nanoparticles. (plasma technology)

  3. Tungsten trioxide (WO{sub 3-x}) nanoparticles prepared by pulsed laser ablation in water

    Energy Technology Data Exchange (ETDEWEB)

    Barreca, F., E-mail: process@anmresearch.it [Advanced, Nano Materials Research s.r.l, Viale F. Stagno d' Alcontres 31, I-98166, Messina (Italy); Acacia, N. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Viale F. Stagno d' Alcontres 31, I-98166, Messina (Italy); Spadaro, S.; Curro, G. [Advanced, Nano Materials Research s.r.l, Viale F. Stagno d' Alcontres 31, I-98166, Messina (Italy); Neri, F. [Dipartimento di Fisica della Materia e Ingegneria Elettronica, Universita di Messina, Viale F. Stagno d' Alcontres 31, I-98166, Messina (Italy)

    2011-05-16

    Research highlights: {yields} First time prepared, by laser ablation in water, WO{sub x} nanoparticles (NPs). {yields} Nearly 60% of almost stoichiometric (x = 2.9), small size (2-6 nm) NPs plus 80-100 nm aggregates. {yields} A plasma shielding effect occurs at high laser fluence. {yields} Modulation of optical gap with the NPs size. {yields} Potential scalability of the production technique. - Abstract: Tungsten trioxide (WO{sub 2.9}) nanoparticles were prepared, to our knowledge for the first time, by pulsed laser ablation in distilled water. The experiments were performed irradiating a tungsten target with a second harmonic (532 nm) Nd:YAG laser beam varying the operative fluence between 1 and 7 J cm{sup -2} and the ablation time up to 120 min. As evidenced by means of transmission electron microscopy (TEM), at all investigated fluences, small nanostructures of 2-6 nm were accompanied by larger particles with a diameter of about 10-20 nm and aggregates of about 80-100 nm. A plasma shielding effect was evidenced upon increasing the laser fluence, while if the ablation time is increased the amount of particles increases as well, supporting the scalability of the production technique. The deposited nanoparticles stoichiometry has been verified by X-ray photoelectron spectroscopy (XPS), while the optical bandgap values were determined by UV-vis optical absorption measurements.

  4. Preparation of antimony sulfide semiconductor nanoparticles by pulsed laser ablation in liquid

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ren-De, E-mail: son003@sekisui.com [Research & Development Institute, High Performance Plastics Company, Sekisui Chemical Co., Ltd. 2-1 Hyakuyama, Shimamoto-Cho, Mishima-Gun, Osaka, 618-0021 (Japan); Tsuji, Takeshi [Interdisciplinary Graduate School of Science and Engineering, Shimane University, 1060 Nishikawatsu-Cho, Matsue, 690-8504 (Japan)

    2015-09-01

    Highlights: • Pulsed laser ablation in liquid (LAL) was applied to prepare antimony sulfide nanoparticles (Sb{sub 2}S{sub 3} NPs). • Sb{sub 2}S{sub 3} NPs with a stoichiometric composition were successfully prepared by LAL in water without using any surfactants or capping agents. • Thus-prepared Sb{sub 2}S{sub 3} NPs showed low-temperature crystallization and melting at a temperature low as 200 °C. • The NPs-coated Sb{sub 2}S{sub 3} thin film showed comparable semiconductor properties (carrier mobility and carrier density) to the vacuum deposited one. • Byproducts such as CS{sub 2}, CH{sub 4} and CO were detected by GC-MS analysis when LAL was performed in organic solvent. • The LAL-induced decomposition mechanism of Sb{sub 2}S{sub 3} and organic solvents was discussed based on the GC-MS results. - Abstract: In this paper, we report on the synthesis of antimony sulfide (Sb{sub 2}S{sub 3}) semiconductor nanoparticles by pulsed laser ablation in liquid without using any surfactants or capping agents. Different results were obtained in water and organic solvents. In the case of water, Sb{sub 2}S{sub 3} nanoparticles with chemical compositions of stoichiometry were successfully prepared when laser irradiation was performed under the condition with the dissolved oxygen removed by argon gas bubbling. It was shown that thus-obtained Sb{sub 2}S{sub 3} nanoparticles exhibit features of not only low-temperature crystallization but also low-temperature melting at a temperature as low as 200 °C. Nanoparticle-coated Sb{sub 2}S{sub 3} thin films were found to show good visible light absorption and satisfying semiconductor properties (i.e., carrier mobility and density), which are essential for photovoltaic application. On the other hand, in the case of organic solvents (e.g., acetone, ethanol), such unexpected byproducts as CS{sub 2}, CO and CH{sub 4} were detected from the reaction system by GC-MS analysis, which suggests that both Sb{sub 2}S{sub 3} and organic

  5. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.;

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination...

  6. Preparation of Metallic and Polymer Nanoparticles, Responsive Nanogels and Nanofibers by Radiation Initiated Reactions

    International Nuclear Information System (INIS)

    Synthesis of nanomaterials have become the focus of intensive research due to their numerous applications in diverse fields such as electronics, optics, ceramics, metallurgy, pulp and paper, environmental, pharmaceutics, biotechnology and biomedical fields. Due to expanding demand for the nanomaterials with defined properties, extensive research activities have been focused on the synthesis and characterization of “functional nanomaterials”. Our research group launched into research activities on the preparation of varieties of functional materials using radiation as the source for inducing functionalities ino these new nanomaterials. Importantly, we kept final goals for specific applications. Thus, we have prepared few interesting functional nanomaterials such as metal nanoparticles decorated multi wall carbon nanotubes, pore filled functional electrospun nanofibers and nanocables based on conducting polymer and carbon nanotubes and demonstrated their applications toward electrocatalysts, polymer electrolyte in energy devices and biosensors. In the forthcoming sections, a brief outline on the use of radiation for the preparation of those functional nanomaterials are presented. (author)

  7. Preparation and characterization of silver nanoparticles in natural polymers using laser ablation

    Indian Academy of Sciences (India)

    Reza Zamiri; B Z Azmi; Hossein Abbastabar Ahangar; Golnoosh Zamiri; M Shahril Husin; Z A Wahab

    2012-10-01

    In this paper we have done a comparative study on efficiency of natural polymers for stabilizing silver nanoparticles (Ag-NPs) prepared by laser ablation technique. The selected polymers are starch (St), gelatin (Gt) and chitosan (Ct). The fabrication process was carried out through ablation of a pure Ag plate by nanosecond Q-switched Nd–Yg pulsed laser ( = 532 nm, 360 mJ/pulse). The stability of the samples was studied by measuring UV-visible absorption spectra of the samples one month after preparation. The result showed that the formation efficiency of NPs in St were highest and also the prepared NPs in St solution were more stable than other polymers during one month storage.

  8. Mixed-phase TiO{sub 2} nanoparticles preparation using sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Mahshid, S.; Askari, M. [Department of Material Science and Eng., Sharif University of Technology, 11365-9466 Tehran (Iran, Islamic Republic of); Sasani Ghamsari, M. [Solid State Lasers Research Group, Laser and Optics Research School, NSTRI, North Karegar, 11365-8486 Tehran (Iran, Islamic Republic of)], E-mail: msghamsari@yahoo.com; Afshar, N.; Lahuti, S. [Materials Characterization Lab., Materials Research School, NSTRI, Karaj (Iran, Islamic Republic of)

    2009-06-10

    Biphase TiO{sub 2} nanoparticles have been prepared by sol-gel method. Water/titanium molar ratio (r) has been used to control the hydrolysis and condensation of titanium isopropoxide in solution producing titanium oxide with two different polymorphs. The influence of crystallite size and morphology of prepared TiO{sub 2} on the phase transformation of the resultant materials has been investigated. Synthesized powders were characterized by X-ray diffraction, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Different trends can be observed in the phase transformation and particle growth of the prepared titanium oxide nanomaterial. It was concluded that, the rate of particle growth and the final particle size as well as phase transformation were a function of molar ratios (r). The percentage of rutile in the final material was 23%.

  9. Preparation of poly (alkylcyanoacrylate) nanoparticles by polymerization of water-free microemulsions

    DEFF Research Database (Denmark)

    Krauel, Karen; Graf, Anja; Hook, Sarah M;

    2006-01-01

    designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types...... considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate......Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein...

  10. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Matthew A. Hood

    2014-05-01

    Full Text Available This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii in situ precipitation of the inorganic components on or in polymer structures; and (iv strategies in which both polymer and inorganic component are simultaneously formed in situ.

  11. Study on the preparation and formation mechanism of barium sulphate nanoparticles modified by different organic acids

    Indian Academy of Sciences (India)

    Yuhua Shen; Chuanhao Li; Xuemei Zhu; Anjian Xie; Lingguang Qiu; Jinmiao Zhu

    2007-07-01

    This paper reports a simple method to prepare barium sulphate nanoparticles by use of tetradecanoic acid, hexadecanoic acid and stearic acid as modifier. The barium sulphate nanoparticles obtained are characterized by using Fourier transform infra-red spectroscopy (FT-IR), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic laser light scatter (DLLS) and thermogravimetric analysis (TGA), respectively. The results show that the BaSO4 particles are all spherical and in the nano-scale. Our method has a better dispersion and controllable diameter dependent on the length of the chain of organic acid and the pH value of the system. A possible mechanism is also discussed.

  12. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    Science.gov (United States)

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers. PMID:26829250

  13. Influence of preparation method on structural and magnetic properties of nickel ferrite nanoparticles

    Indian Academy of Sciences (India)

    Binu P Jacob; Ashok Kumar; R P Pant; Sukhvir Singh; E M Mohammed

    2011-12-01

    Nickel ferrite nanoparticles of very small size were prepared by sol–gel combustion and co-precipitation techniques. At the same annealing temperature sol–gel derived particles had bigger crystallite size. In both methods, crystallite size of the particles increased with annealing temperature. Sol–gel derived nickel ferrite particles were found to be of almost spherical shape and moderate particle size with a narrow size distribution; while co-precipitation derived particles had irregular shape and very small particle size with a wide size distribution. Nickel ferrite particles produced by sol–gel method exhibited more purity. Sol–gel synthesized nanoparticles were found to be of high saturation magnetization and hysteresis. Co-precipitation derived nickel ferrite particles, annealed at 400°C exhibited superparamagnetic nature with small saturation magnetization. Saturation magnetization increased with annealing temperature in both the methods. At the annealing temperature of 600°C, co-precipitation derived particles also became ferrimagnetic.

  14. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  15. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    International Nuclear Information System (INIS)

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices

  16. Mn3O4 nanoparticles embedded into graphene nanosheets: Preparation, characterization, and electrochemical properties for supercapacitors

    International Nuclear Information System (INIS)

    Mn3O4/graphene nanocomposites were synthesized by mixing graphene suspension in ethylene glycol with MnO2 organosol, followed by subsequent ultrasonication processing and heat treatment. The as-prepared product consists of nanosized Mn3O4 particles homogeneously distributed on graphene nanosheets, which has been confirmed by field emission scanning electron microscopy and transmission electron microscopy analysis. Atomic force microscope analysis further identified the distribution of dense Mn3O4 nanoparticles on graphene nanosheets. When used as electrode materials in supercapacitors, Mn3O4/graphene nanocomposites exhibited a high specific capacitance of 175 F g-1 in 1 M Na2SO4 electrolyte and 256 F g-1 in 6 M KOH electrolyte, respectively. The enhanced supercapacitance of Mn3O4/graphene nanocomposites could be ascribed to both electrochemical contributions of Mn3O4 nanoparticles, functional groups attached to graphene nanosheets, and significantly increased specific surface area.

  17. New Method to Prepare Mitomycin C Loaded PLA-Nanoparticles with High Drug Entrapment Efficiency

    Science.gov (United States)

    Hou, Zhenqing; Wei, Heng; Wang, Qian; Sun, Qian; Zhou, Chunxiao; Zhan, Chuanming; Tang, Xiaolong; Zhang, Qiqing

    2009-07-01

    The classical utilized double emulsion solvent diffusion technique for encapsulating water soluble Mitomycin C (MMC) in PLA nanoparticles suffers from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. In this paper, MMC loaded PLA nanoparticles were prepared by a new single emulsion solvent evaporation method, in which soybean phosphatidylcholine (SPC) was employed to improve the liposolubility of MMC by formation of MMC-SPC complex. Four main influential factors based on the results of a single-factor test, namely, PLA molecular weight, ratio of PLA to SPC (wt/wt) and MMC to SPC (wt/wt), volume ratio of oil phase to water phase, were evaluated using an orthogonal design with respect to drug entrapment efficiency. The drug release study was performed in pH 7.2 PBS at 37 °C with drug analysis using UV/vis spectrometer at 365 nm. MMC-PLA particles prepared by classical method were used as comparison. The formulated MMC-SPC-PLA nanoparticles under optimized condition are found to be relatively uniform in size (594 nm) with up to 94.8% of drug entrapment efficiency compared to 6.44 μm of PLA-MMC microparticles with 34.5% of drug entrapment efficiency. The release of MMC shows biphasic with an initial burst effect, followed by a cumulated drug release over 30 days is 50.17% for PLA-MMC-SPC nanoparticles, and 74.1% for PLA-MMC particles. The IR analysis of MMC-SPC complex shows that their high liposolubility may be attributed to some weak physical interaction between MMC and SPC during the formation of the complex. It is concluded that the new method is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and longer sustained drug release in comparison to classical method.

  18. Preparation, in vitro release, and pharmacokinetics in rabbits of lyophilized injection of sorafenib solid lipid nanoparticles

    Directory of Open Access Journals (Sweden)

    Zhang H

    2012-06-01

    Full Text Available Hong Zhang, Fu-Ming Zhang, Shi-Jun YanDepartment of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, People’s Republic of ChinaAbstract: Sorafenib solid lipid nanoparticles (S-SLN were prepared by emulsion evaporation–solidification at low temperature. Morphology was examined by transmission electron microscope. Particle size and zeta potential were determined by laser granularity equipment. Encapsulation efficiency (EE was detected by Sephadex gel chromatography and high-performance liquid chromatography (HPLC. The in vitro release profile of S-SLN was studied with dialysis technology. The lyophilized injection of S-SLN was prepared by freeze drying and analyzed by differential scanning calorimetry. The plasma concentration of sorafenib in blood was determined by HPLC. The solid lipid nanoparticles assumed a spherical shape with an even distribution of diameter and particle size 108.23 ± 7.01 nm (n = 3. The polydispersity index, zeta potential, and EE were determined to be 0.25 ± 0.02, -16.37 ± 0.65 mV, and 93.49% ± 1.87%, respectively (n = 3. The in vitro release accorded with the Weibull distribution model. An equal volume of 15% (w/v mannitol performed better as the protective agent for a lyophilized injection of S-SLN with a new material phase formation. The pharmacokinetic processes of sorafenib solution and lyophilized injection of S-SLN in vivo were in accordance with the two-compartment and one-compartment models, respectively. S-SLN nanoparticles are thus considered a promising drug-delivery system.Keywords: sorafenib, solid lipid nanoparticles, material phase analysis, HPLC, release profile, pharmacokinetics

  19. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  20. The effect of liquid environment on size and aggregation of gold nanoparticles prepared by pulsed laser ablation

    International Nuclear Information System (INIS)

    The effects of liquid environment on nucleation, growth and aggregation of gold nanoparticles were studied. Gold nanoparticles were prepared by pulsed laser ablation in deionised water with various concentrations of ethanol and also in pure ethanol. UV/visible extinction and TEM observations were employed for characterization of optical properties and particle sizes respectively. Preparation in water results in smaller size, shorter wavelength of maximum extinction and stable solution with an average size of 6 nm. Nanoparticles in solution with low concentration ethanol up to 20 vol% are very similar to those prepared in water. In the mixture of deionised water and 40 up to 80 vol% ethanol, wavelength of maximum extinction shows a red shift and mean size of nanoparticles was increased to 8.2 nm. Meanwhile, in this case, nanoparticles cross-linked each other and formed string type structures. In ethanol, TEM experiments show a mean size of 18 nm and strong aggregation of nanoparticles. The data were discussed qualitatively by considering effects of polarity of surrounding molecules on growth mechanism and aggregation. This study provided a technique to control size, cross-linking and aggregation of gold nanoparticles via changing the nature of liquid carrier medium

  1. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications

    Directory of Open Access Journals (Sweden)

    Venkatesan K

    2015-10-01

    Full Text Available Kaliyamoorthy Venkatesan,1 Dhanakotti Rajan Babu,1 Mane Prabhu Kavya Bai,2 Ravi Supriya,2 Radhakrishnan Vidya,2 Saminathan Madeswaran,1 Pandurangan Anandan,3 Mukannan Arivanandhan,3 Yasuhiro Hayakawa3 1School of Advanced Sciences, 2School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India; 3Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan Abstract: Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4 magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311 of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. Keywords: cytotoxicity, HR-TEM, magnetic nanoparticles, VSM 

  2. Biomimetic Cilia Based on MEMS Technology

    Institute of Scientific and Technical Information of China (English)

    Zhi-guo Zhou; Zhi-wen Liu

    2008-01-01

    A review on the research of Micro Electromechanical Systems (MEMS) technology based biomimetic cilia is presented. Biomimetic cilia, enabled by the advancement of MEMS technology, have been under dynamic development for the past decade. After a brief description of the background of cilia and MEMS technology, different biomimetic cilia applications are reviewed. Biomimetic cilia micro-actuators, including micromachined polyimide bimorph biomimetic cilia micro-actuator, electro-statically actuated polymer biomimetic cilia micro-actuator, and magnetically actuated nanorod array biomimetic cilia micro-actuator, are presented. Subsequently micromachined underwater flow biomimetic cilia micro-sensor is studied, followed by acoustic flow micro-sensor. The fabrication of these MEMS-based biomimetic cilia devices, characterization of their physical properties, and the results of their application experiments are discussed.

  3. Facile Preparation of a Platinum Silicide Nanoparticle-Modified Tip Apex for Scanning Kelvin Probe Microscopy.

    Science.gov (United States)

    Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan

    2015-12-01

    In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy. PMID:26471480

  4. NOVEL PREPARATION AND MAGNETO CHEMICAL CHARACTERIZATION OF NANO-PARTICLE MIXED ALCOHOL CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Seetala V. Naidu; Upali Siriwardane

    2005-01-14

    We have developed effective nanoparticle incorporated heterogeneous F-T catalysts starting with the synthesis of Fe, Co, Cu nanoparticles using Fe(acac){sub 3}, Co(acac){sub 2}, and Cu(acac){sub 2} precursors and incorporating the nanoparticles into alumina sol-gel to yield higher alkanes production. SEM/EDX, XRD, BET, VSM and SQUID experimental techniques were used to characterize the catalysts, and GC/MS were used for catalytic product analysis. The nanoparticle oxide method gave the highest metal loading. In case of mixed metals it seems that Co or Cu interferes and reduces Fe metal loading. The XRD pattern for nanoparticle mixed metal oxides show alloy formation between cobalt and iron, and between copper and iron in sol-gel prepared alumina granules. The alloy formation is also supported by DTA and VMS data. The magnetization studies were used to estimate the catalyst activity in pre- and post-catalysts. A lower limit of {approx}40% for the reduction efficiency was obtained due to hydrogenation at 450 C for 4 hrs. About 85% of the catalyst has become inactive after 25 hrs of catalytic reaction, probably by forming carbides of Fe and Co. The low temperature (300 K to 4.2 K) SQUID magnetometer results indicate a superparamagnetic character of metal nanoparticles with a wide size distribution of < 20 nm nanoparticles. We have developed an efficient and economical procedure for analyzing the F-T products using low cost GC-TCD system with hydrogen as a carrier gas. Two GC columns DC 200/500 and Supelco Carboxen-1000 column were tested for the separation of higher alkanes and the non-condensable gases. The Co/Fe on alumina sol-gel catalyst showed the highest yield for methane among Fe, Co, Cu, Co/Fe, Cu/Co, Fe/Cu. The optimization of CO/H{sub 2} ratio indicated that 1:1 ratio gave more alkanes distribution in F-T process with Co/Fe (6% each) impregnated on alumina mesoporous catalyst.

  5. Optical properties of highly crystalline Y2O3:Er,Yb nanoparticles prepared by laser ablation in water

    International Nuclear Information System (INIS)

    Y2O3:Er,Yb nanoparticles were prepared by laser ablation in water. We investigated crystallinity, distribution of dopant, and optical properties of the prepared nanoparticles. The full-width half-maximum (FWHD) of the crystalline peak of nanoparticles measured by an x-ray diffractometer (XRD) barely changed. Further, using scanning transmission electron microscopy–energy dispersive x-ray spectroscopy (STEM–EDX), we confirmed the peaks of Y, Er, Yb, and O. Moreover, on the basis of the optical properties of the nanoparticles, the emission of red (2F9/2 → 4I15/2) and green (2H11/2, 4S3/2 → 4I15/2) was confirmed. We also investigated the emission intensity as a function of the excitation power of 980 nm LD in the prepared nanoparticles. The photon avalanche effect was observed at the excitation power of 100 mW. These results confirmed that uniformly Er-Yb-doped Y2O3 nanoparticles were successfully prepared by laser ablation in water. (paper)

  6. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  7. Azobenzene mesogen-passivated gold nanoparticles: Controlled preparation, self-organized superstructures, thermal behavior and photoisomerization

    International Nuclear Information System (INIS)

    Liquid crystal nanoscience has aroused intensive interests mainly due to their unique and collective properties and a variety of potential applications. In this paper, gold nanoparticles (GNPs) coated with alkoxy azobenzene mesogenic thiol ligands of different length polymethylene spacer and linear alkyl thiol co-ligands have been prepared. The thermal properties, phase behavior of thus obtained hybrid GNPs and photophysical properties of their solid-state films have been investigated by differential scanning calorimetry (DSC), variable-temperature small and wide angle X-ray scattering (SAXS/WAXS) and UV–vis spectroscopy. The hybrid GNPs exclusively passivated with azobenzene mesogenic ligands showed lamellar structure while those with mixed ligands exhibited hexagonal columnar superstructure, and the latter complex hybrid GNPs exhibited noticeably improved thermolysis resistance. Moreover, it is very interesting that the solid-state films of the hybrid GNPs displayed reversible photoresponse owing to the trans–cis transformation of azobenzene mesogenic ligands, and compared with the hybrid GNPs coated with mesogenic ligands only, those with mixed ligands exhibited faster photoisomerization rate upon alternate UV and visible light irradiation, which may have some promising applications. - Graphical abstract: Gold nanoparticles (GNPs) coated with azobenzene mesogenic thiol ligands and linear alkyl thiol co-ligands have been prepared showing lamellar or hexagonal columnar superstructures. The complex hybrid GNPs with co-ligands exhibit much improved thermolysis resistance and the solid-state films of the hybrid GNPs display interesting reversible photoisomerization. - Highlights: • Gold nanoparticles (GNPs) coated with azobenzene thiol ligands have been prepared. • The hybrid GNPs with alkyl thiol co-ligands show enhanced thermolysis resistance. • The hybrid GNPs exhibit lamellar or hexagonal columnar superstructures. • The solid-state films of the hybrid

  8. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    International Nuclear Information System (INIS)

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  9. Preparation of Ibuprofen-loaded Eudragit S100 nanoparticles by Solvent evaporation technique.

    Directory of Open Access Journals (Sweden)

    VINEELA CH

    2014-07-01

    Full Text Available Aim The aim of the present study is to prepare Ibuprofen loaded Eudragit-S100 nanoparticles by means of Solvent evaporation method. Span 80 is used as surfactant. The model drug, Ibuprofen is a non-steroidal antiinflammatory drug (NSAID commonly used for the relief of symptoms of arthritis, primary dysmenorrheal, alleviating fever and reducing inflammation. It also has an analgesic effect, anti-platelet effect and vasodilation effect. Ibuprofen is available in the form of extended release tablets, chewable tablets, sustained release capsules, liquid filled capsules, syrup and suspension. Methodology Solvent evaporation technique was adapted for the preparation of Ibuprofen loaded Eudragit S100 nanoparticles. Preformed polymeric and drug solution was used as internal phase and mineral oil with 1% span 80 is used as external phase and allowed for stirring resulting in the formation of nanoparticles. Parameters like stirring rate, polymer to drug concentration and organic solvent quantity were optimized. Results and Conclusion In order to optimize the concentration of drug, polymer and organic solvent, three formulations were prepared by varying the concentration of polymer and solvents. The results obtained were compared. On comparision formulation 3(1:2 was showing particles in nanorange (345nm, higher stability (-26.9mV and better entrapment efficiency (96.47. Invitro drug release studies were performed for a period of 10hrs and 46.02% of the drug has been released from the formulation. Conclusion It was observed that as the polymer ratio increases the release rate is sustained and encapsulation efficiency also increased.

  10. Modified Nanoprecipitation Method for Preparation of Cytarabine-Loaded PLGA Nanoparticles

    OpenAIRE

    Yadav, Khushwant S.; Krutika K. Sawant

    2010-01-01

    The present investigation was aimed at developing cytarabine-loaded poly(lactide-coglycolide) (PLGA)-based biodegradable nanoparticles by a modified nanoprecipitation which would have sustained release of the drug. Nine batches were prepared as per 32 factorial design to optimize volume of the co-solvent (0.22–0.37 ml) and volume of non-solvent (1.7–3.0 ml). A second 32 factorial design was used for optimization of drug: polymer ratio (1:5) and stirring time (30 min) based on the two response...

  11. Strings of interconnected hollow carbon nanoparticles with porous shells prepared using simple solid-phase synthesis

    International Nuclear Information System (INIS)

    Strings of interconnected hollow carbon nanoparticles with porous shells were prepared by simple heat-treatments of a mixture of resorcinol-formaldehyde gel and transition-metal salts. The sample was characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction and nitrogen adsorption. Results show that the sample consisted of relatively uniform hollow particles with sizes ranging from 70 to 80 nm forming a strings-of-pearls-like nanostructure. The material with porous shells possessed well-developed graphitic structure with an interlayer (d002) spacing of 0.3369 nm and the stack height of the graphite crystallites of 9 nm

  12. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation

    International Nuclear Information System (INIS)

    Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration

  13. Influences of surfactants on the preparation of copper nanoparticles by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Ruimin [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China)], E-mail: zhourm47@staff.shu.edu.cn; Wu Xinfeng; Hao Xufeng; Zhou Fei [Shanghai Applied Radiation Institute, Shanghai University, Shanghai 201800 (China); Li Hongbin [Department of Chemical Engineering and Technology, Shanghai University, Shanghai 201800 (China); Rao Weihong [Shenzhen Tianding Fine Chemical Engineering Manufacturing Co., Ltd., Shenzhen, Guangdong 518057 (China)

    2008-02-15

    Electron beam radiation was applied to prepare nano-size copper in water system using polyvinyl alcohol, sodium dodecyl benzene sulfonate, gluten and polyethylene glycol as the surfactants, respectively. The irradiated products were characterized by XRD, TEM and LSPSDA. The XRD and TEM showed that relative pure copper products with an average size of 20 nm, 40 nm and 20 nm can be obtained by using gluten, PEG and SDBS as surfactant, respectively. An admixture of copper and cuprous oxide was obtained in PVA system. The LSPSDA showed that the size of the Cu nanoparticles decreased with increasing the glutin concentration.

  14. Preparation of CuS nanoparticles embedded in poly(vinyl alcohol) nanofibre via electrospinning

    Indian Academy of Sciences (India)

    Jia Xu; Xuejun Cui; Jinhui Zhang; Hongwei Liang; Hongyan Wang; Junfeng Li

    2008-04-01

    Poly(vinyl alcohol) (PVA)/CuS composite nanofibres were successfully prepared by electrospinning technique and gas–solid reaction. Scanning electron microscopic (SEM) images showed that the average diameter of PVA/CuS fibres was about 150–200 nm. Transmission electron microscopy (TEM) proved that a majority of CuS nanoparticles with an average diameter of about 15–25 nm are incorporated in the PVA fibres. Xray diffraction (XRD) analyses and electron diffraction pattern also revealed the forming of CuS crystal structure in the PVA fibres.

  15. Optical Fiber LSPR Biosensor Prepared by Gold Nanoparticle Assembly on Polyelectrolyte Multilayer

    Directory of Open Access Journals (Sweden)

    Yunliang Shao

    2010-04-01

    Full Text Available This article provides a novel method of constructing an optical fiber localized surface plasmon resonance (LSPR biosensor. A gold nanoparticle (NP assembled film as the sensing layer was built on the polyelectrolyte (PE multilayer modified sidewall of an unclad optical fiber. By using a trilayer PE structure, we obtained a monodisperse gold NP assembled film. The preparation procedure for this LSPR sensor is simple and time saving. The optical fiber LSPR sensor has higher sensitivity and outstanding reproducibility. The higher anti-interference ability for response to an antibody makes it a promising method in application as a portable immuno-sensor.

  16. Dendrimer-Capped Nanoparticles Prepared by Picosecond Laser Ablation in Liquid Environment

    Directory of Open Access Journals (Sweden)

    Paolo Marsili

    2009-09-01

    Full Text Available Fifth generation ethylendiamine-core poly(amidoamine (PAMAM G5 is presented as an efficient capping agent for the preparation of metal and semiconductor nanoparticles by ps laser ablation in water. In particular, we describe results obtained with the fundamental, second and third harmonic of a ps Nd:YAG laser and the influence of laser wavelength and pulse energy on gold particle production and subsequent photofragmentation. In this framework, the role of the dendrimer and, in particular, its interactions with gold clusters and cations are accounted.

  17. Aqueous Solution Preparation of Ruthenium Nanoparticles Using Ammonium Formate as the Reducing Agent

    Institute of Scientific and Technical Information of China (English)

    LIU Shaohong; CHEN Jialin; GUAN Weiming; BI Jun; CHEN Nanguang; CHEN Dengquan; LIU Manmen; SUN Xudong

    2012-01-01

    Ruthenium,one of the platinum group metals,has drawn much attention due to its catalytic behavior,hardness,electrical conductivity and density.Ruthenium particles are usually prepared on a small scale by the polyol process,however,the size of the obtained ruthenium nanoparticles is most below 10 nm.In this work,ruthenium particles about 200 nm in diameter were obtained in aqueous solution by using ammonium formate as the reducing agent.Tohave a better control of particle's size and shape,the effects of PVP,mixing mode,reaction temperature,solution pH and calcination temperature were investigated.

  18. Preparation of Multifunctional Fe@Au Core-Shell Nanoparticles with Surface Grafting as a Potential Treatment for Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Ren-Jei Chung

    2014-01-01

    Full Text Available Iron core gold shell nanoparticles grafted with Methotrexate (MTX and indocyanine green (ICG were synthesized for the first time in this study, and preliminarily evaluated for their potential in magnetic hyperthermia treatment. The core-shell Fe@Au nanoparticles were prepared via the microemulsion process and then grafted with MTX and ICG using hydrolyzed poly(styrene-alt-maleic acid (PSMA to obtain core-shell Fe@Au-PSMA-ICG/MTX nanoparticles. MTX is an anti-cancer therapeutic, and ICG is a fluorescent dye. XRD, TEM, FTIR and UV-Vis spectrometry were performed to characterize the nanoparticles. The data indicated that the average size of the nanoparticles was 6.4 ± 09 nm and that the Au coating protected the Fe core from oxidation. MTX and ICG were successfully grafted onto the surface of the nanoparticles. Under exposure to high frequency induction waves, the superparamagnetic nanoparticles elevated the temperature of a solution in a few minutes, which suggested the potential for an application in magnetic hyperthermia treatment. The in vitro studies verified that the nanoparticles were biocompatible; nonetheless, the Fe@Au-PSMA-ICG/MTX nanoparticles killed cancer cells (Hep-G2 via the magnetic hyperthermia mechanism and the release of MTX.

  19. PEGylated PLGA Nanoparticles as Tumor Ecrosis Factor-α Receptor Blocking Peptide Carriers: Preparation,Characterization and Release in vitro

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; YANG Anshu; LI Zhuoya; XU Huibi; YANG Xiangliang

    2007-01-01

    To assess the merits of PEGylated poly (lactic-co-glycolic acid) (PEG-PLGA) nanoparticles as drug carriers for tumor necrosis factor-α receptor blocking peptide (TNFR-BP), PEG-PLGA copolymer,which could be used to prepare the stealth nanoparticles, was synthesized with methoxypolyethyleneglycol,DL-lactide and glycolide. The structure of PEG-PLGA was confirmed with 1H-NMR and FT-IR spectroscopy,and the molecular weight (MW) was determined by gel permeation chromatography. Fluorescent FITC-TNFR-BP was chosen as model protein and encapsulated within PEG-PLGA nanoparticles using the double emulsion method. Atomic force microscopy and photon correlation spectroscopy were employed to characterize the stealth nanoparticles fabricated for morphology, size with polydispersity index and zeta potential. Encapsulation efficiency (EE) and the release of FITC-TNFR-BP in nanoparticles in vitro were measured by the fluorescence measurement. The stealth nanoparticles were found to have the mean diameter less than 270 nm and zeta potential less than-20 mV. In all nanoparticle formulations, more than 45% of EE were obtained. FITC-TNFR-BP release from the PEG-PLGA nanoparticles exhibited a biphasic pattern, initial burst release and consequently sustained release. The experimental results show that PEG-PLGA nanoparticles possess the potential to develop as drug carriers for controlled release applications of TNFR-BP.

  20. Preparation of mixed matrix PES-based nanofiltration membrane filled with PANI-co-MWCNT composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bagheripour, Ehsan; Moghadassi, Abdolreza; Hosseini, Sayed Mohsen [Faculty of Engineering, Arak University, Arak (Iran, Islamic Republic of)

    2016-04-15

    Mixed matrix polyethersulfone/PANI-co-MWCNTs composite nanoparticle nanofiltration membrane was prepared by casting solution technique. Polyvinylpyrrolidone was also used as membrane pore former in membrane fabrication. The effect of polyaniline-co-multi walled carbon nanotubes composite nanoparticle concentration in the casting solution on membrane structure and performance was investigated. Scanning optical microscopy and scanning electron microscopy, FTIR analysis, porosity, mean pore size, contact angle, water content, NaCl/Na2SO4 rejection, water flux, tensile strength measurements and 3D surface image were also carried out in membrane characterization. SOM images showed nanoparticle agglomeration at high additive loading ratio. SEM images showed the membrane sub-layer porosity and thickness were changed by use of nanoparticles in membrane matrix. The membrane water content, porosity and pore size were increased by increase of nanoparticle concentration, except for 1%wt. Use of PANI-co- MWCNT nanoparticles in the membrane matrix caused a decrease of membrane contact angle from 63.43 to 46.76o. Salt rejection and water flux were improved initially by increase of nanoparticle concentration up to 0.1%wt and then decreased by more additive concentration. In addition, the membranes tensile strength was reduced by increase of PANI-co-MWCNTs composite nanoparticle concentration. 3D surface images showed a smoother surface for mixed matrix membrane filled with 0.1wt% PANI-co-MWCNTs. Modified membrane containing 0.1wt% composite nanoparticles showed better performance compared to others.

  1. Chemical studies on the preparation of magnetic nanoparticles coated with glycine and its application for removal of heavy metals

    Directory of Open Access Journals (Sweden)

    Jawaher Alzaidi

    2016-06-01

    Full Text Available The aim of this study is the preparation of magnetic nanoparticles and coating with glycine to remove heavy metals such as Cu+2. The magnetic nanoparticles were prepared by co-precipitation method using using ferrous sulphate and potassium nitrate in presence of potassium hydroxide. Different instrumental analysis such as XRD, TEM, SEM and EDAX were used to study the magnetic nanoparticles which produced and comparing it after coated with glycine. The optimum conditions which reflect the high efficiency of removal are pH 10, concentration of the heavy metal 200 ppm, dosage 0.05 g and for 24 h duration time. Therefore we recommend using magnetic nanoparticles coated with glycine for removal of heavy metals.

  2. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties.

    Science.gov (United States)

    Zhou, Gang; Luo, Zhigang; Fu, Xiong

    2014-08-13

    An ionic liquid microemulsion consisting of 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF₆), surfactant TX-100, 1-butanol, and water was prepared. The water-in-[Bmim]PF₆ (W/IL), bicontinuous, and [Bmim]PF₆-in-water (IL/W) microregions of the microemulsion were identified by conductivity measurements. Starch nanoparticles with a mean diameter of 91.4 nm were synthesized with epichlorohydrin as cross-linker through W/IL microemulsion cross-linking reaction at 50 °C for 4 h. Fourier transform infrared spectroscopy (FTIR) data demonstrated the formation of cross-linking bonds in starch molecules. Scanning electron microscopy (SEM) revealed that starch nanoparticles were spherical and that some particles showed aggregation formation. Furthermore, drug loading and releasing properties of starch nanoparticles were investigated with mitoxantrone hydrochloride as a drug model. This work provides an efficient and environmentally friendly approach for the preparation of starch nanoparticles, which is beneficial to their further application. PMID:25069988

  3. Preparation and near-infrared photothermal conversion property of cesium tungsten oxide nanoparticles

    Science.gov (United States)

    Chen, Cheng-Jia; Chen, Dong-Hwang

    2013-02-01

    Cs0.33WO3 nanoparticles have been prepared successfully by a stirred bead milling process. By grinding micro-sized coarse powder with grinding beads of 50 μm in diameter, the mean hydrodynamic diameter of Cs0.33WO3 powder could be reduced to about 50 nm in 3 h, and a stable aqueous dispersion could be obtained at pH 8 via electrostatic repulsion mechanism. After grinding, the resulting Cs0.33WO3 nanoparticles retained the hexagonal structure and had no significant contaminants from grinding beads. Furthermore, they exhibited a strong characteristic absorption and an excellent photothermal conversion property in the near-infrared (NIR) region, owing to the free electrons or polarons. Also, the NIR absorption and photothermal conversion property became more significant with decreasing particle size or increasing particle concentration. When the concentration of Cs0.33WO3 nanoparticles was 0.08 wt.%, the solution temperature had a significant increase of above 30°C in 10 min under NIR irradiation (808 nm, 2.47 W/cm2). In addition, they had a photothermal conversion efficiency of about 73% and possessed excellent photothermal stability. Such an effective NIR absorption and photothermal conversion nanomaterial not only was useful in the NIR shielding, but also might find great potential in biomedical application.

  4. Preparation of manganese-based perovskite nanoparticles using a reverse microemulsion method: biomedical applications

    Indian Academy of Sciences (India)

    MEYSAM SOLEYMANI; MOHAMMAD EDRISSI

    2016-04-01

    In this study, La$_{0.7}Sr$_{0.3}Mn$_{0.98}$Ti$_{0.02}$O$_{3}$ (LSMTO) nanoparticles with a perovskite structure and an average particle size of 23.5 nm were synthesized using a reverse microemulsion method. In this method, cetyltrimethylammonium bromide (CTAB) was used as a surfactant, 1-butanol as a co-surfactant, $n$-hexane as a continuous oil phase, and an aqueous solution containing metal cations or precipitating agent as a dispersed aqueousphase. The aqueous nanodroplets of microemulsions were used for the formation of perovskite precursor. The obtained precursor was then calcined at 700$^{\\circ}$C for 4 h to convert the precursor to the perovskite phase. In addition, the heating ability of the LSMTO nanoparticles was evaluated under a safe alternating magnetic field used in magnetic hyperthermia therapy. The results showed the fast magneto-temperature response of the prepared samplewith sufficient heat loss at the therapeutic temperature range, indicating the LSMTO nanoparticles can be used as a self-regulated heating agent in the magnetic hyperthermia therapy.

  5. Highly conductive ribbons prepared by stick-slip assembly of organosoluble gold nanoparticles.

    Science.gov (United States)

    Lawrence, Jimmy; Pham, Jonathan T; Lee, Dong Yun; Liu, Yujie; Crosby, Alfred J; Emrick, Todd

    2014-02-25

    Precisely positioning and assembling nanoparticles (NPs) into hierarchical nanostructures is opening opportunities in a wide variety of applications. Many techniques employed to produce hierarchical micrometer and nanoscale structures are limited by complex fabrication of templates and difficulties with scalability. Here we describe the fabrication and characterization of conductive nanoparticle ribbons prepared from surfactant-free organosoluble gold nanoparticles (Au NPs). We used a flow-coating technique in a controlled, stick-slip assembly to regulate the deposition of Au NPs into densely packed, multilayered structures. This affords centimeter-scale long, high-resolution Au NP ribbons with precise periodic spacing in a rapid manner, up to 2 orders-of-magnitude finer and faster than previously reported methods. These Au NP ribbons exhibit linear ohmic response, with conductivity that varies by changing the binding headgroup of the ligands. Controlling NP percolation during sintering (e.g., by adding polymer to retard rapid NP coalescence) enables the formation of highly conductive ribbons, similar to thermally sintered conductive adhesives. Hierarchical, conductive Au NP ribbons represent a promising platform to enable opportunities in sensing, optoelectronics, and electromechanical devices. PMID:24417627

  6. Antibacterial, Structural and Optical Characterization of Mechano-Chemically Prepared ZnO Nanoparticles

    Science.gov (United States)

    Bokhari, Habib; Ahmad, Iftikhar

    2016-01-01

    Structural investigations, optical properties and antibacterial performance of the pure Zinc Oxide (ZnO) nanoparticles (NPs) synthesized by mechano-chemical method are presented. The morphology, dimensions and crystallinity of the ZnO NPs were controlled by tweaking the mechanical agitation of the mixture and subsequent thermal treatment. ZnO nanoparticles in small (< 20 nm) dimensions with spherical morphology and narrow size distribution were successfully obtained after treating the mechano-chemically prepared samples at 250°C. However, higher temperature treatments produced larger particles. TEM, XRD and UV-Vis spectroscopy results suggested crystalline and phase pure ZnO. The NPs demonstrated promising antibacterial activity against Gram negative foodborne and waterborne bacterial pathogens i.e. Enteropathogenic E. coli (EPEC), Campylobacter jejuni and Vibrio cholerae as well as Gram positive methicillin resistant Staphylococcus aureus (MRSA), thus potential for medical applications. Scanning electron microscopy and survival assay indicated that most probably ZnO nanoparticles cause changes in cellular morphology which eventually causes bacterial cell death. PMID:27183165

  7. Preparation of hydroxyapatite nanoparticles facilitated by the presence of β-cyclodextrin

    International Nuclear Information System (INIS)

    Highlights: ► It was found that β-cyclodextrin can control the particle size in the production of nanohydroxyapatite. ► Particle size in the range of 30–50 nm was obtained. ► A new simple methodology for the preparation of hydroxyapatite nanoparticles with a well controlled size and narrow particles size distribution was developed. - Abstract: Hydroxyapatite nanoparticles with uniform morphology have been successfully synthesized by a chemical coprecipitation method and facilitated by the presence of the β-cyclodextrin. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM); and Fourier Transformed Infrared Spectroscopy (FT-IR) were used in order to characterize the hydroxyapatite samples. The experimental results indicate that the obtained HA is in the range of 20–50 nm. Also it was found that the content of β-CD has an impact on the purity of the HA as well in the particle size of the hydroxyapatite nanoparticles.

  8. Preparation of hydroxyapatite nanoparticles facilitated by the presence of {beta}-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Perez, Carlos A., E-mail: camartin@uacj.mx [Institute of Engineering and Technology, Autonomous University of Juarez, UACJ, Ave. del Charro 610 norte, C.P. 32320, Cd. Juarez, Chihuahua (Mexico); Garcia-Montelongo, Jorge; Garcia Casillas, Perla E.; Farias-Mancilla, Jose R. [Institute of Engineering and Technology, Autonomous University of Juarez, UACJ, Ave. del Charro 610 norte, C.P. 32320, Cd. Juarez, Chihuahua (Mexico); Monreal Romero, Humberto [School of Odontology, Autonomous University of Chihuahua, UACH, Ave. Universidad s/n Campus Universitario I, C.P. 31170, Chihuahua (Mexico)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer It was found that {beta}-cyclodextrin can control the particle size in the production of nanohydroxyapatite. Black-Right-Pointing-Pointer Particle size in the range of 30-50 nm was obtained. Black-Right-Pointing-Pointer A new simple methodology for the preparation of hydroxyapatite nanoparticles with a well controlled size and narrow particles size distribution was developed. - Abstract: Hydroxyapatite nanoparticles with uniform morphology have been successfully synthesized by a chemical coprecipitation method and facilitated by the presence of the {beta}-cyclodextrin. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM); and Fourier Transformed Infrared Spectroscopy (FT-IR) were used in order to characterize the hydroxyapatite samples. The experimental results indicate that the obtained HA is in the range of 20-50 nm. Also it was found that the content of {beta}-CD has an impact on the purity of the HA as well in the particle size of the hydroxyapatite nanoparticles.

  9. Preparation of carbon-coated copper nanoparticles by detonation decomposition of copper ion doped sol–gel explosive precursors

    International Nuclear Information System (INIS)

    Carbon-coated copper (Cu-C) nanoparticles with a core–shell structure were prepared by detonation decomposition of energetic Cu ion doped sol–gel explosive precursors. The composite nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), high resolution TEM, energy dispersive X-ray spectroscopy, and Raman spectroscopy, respectively. The results indicate that the as-obtained core–shell structure Cu-C nanoparticles are with diameter about 10–40 nm. The composite nanoparticles are composed of face-centered cubic-Cu and the amorphous/graphitic carbon coating shells. The thermal stability of the obtained samples was studied by a difference scanning calorimetry–thermogravimetric analyzer. By varying the composition of initial mixtures that contain Cu ion explosive precursors, the different size and chemical composition of composite nanoparticles are shown in this study. The growth mechanism of Cu-C was also briefly discussed.

  10. A facile green approach to prepare core-shell hybrid PLGA nanoparticles for resveratrol delivery.

    Science.gov (United States)

    Kumar, Sandeep; Lather, Viney; Pandita, Deepti

    2016-03-01

    Green approach has revolutionized the area of nanoparticles (NPs) synthesis by virtue of eco and health friendly protocols. Advancing this further, the study proposes a captivating solvent free method for the preparation of green PLGA-oil nanohybrids (G-PONHs) using acrysol oil and encapsulation of resveratrol therein. G-PONHs were structurally similar to the standard PONHs, but had larger particle size of 375 nm. Avoidance of organic solvents resulted in the formation of smooth NPs which showed a considerable improvement in drug release profile and antioxidant properties. G-PONHs exhibited superior biocompatibility with normal Vero cells, while the cytotoxicity on breast cancer cells was moderate in comparison to standard NPs owing to their large size. The size of NPs was found to be a critical factor governing the amplitude of cytotoxicity. The comparative high stability of G-PONHs further favors the tremendous potential of this novel preparation method and delivery platform. PMID:26708438

  11. Transmetalation Process as a Route for Preparation of Zinc-Oxide-Supported Copper Nanoparticles.

    Science.gov (United States)

    Kung, Hsuan; Duan, Yichen; Williams, Mackenzie G; Teplyakov, Andrew V

    2016-07-19

    Supported nanoparticulate materials have a variety of uses, from energy storage to catalysis. In preparing such materials, precision control can often be achieved by applying chemical deposition methods. However, ligand removal following the initial deposition presents a substantial challenge because of potential surface contamination. Traditional approaches normally include multistep processing and require a substantial thermal budget. Using transmetalation chemistry, it is possible to circumvent both disadvantages and prepare chemically reactive copper nanoparticles supported on a commercially available ZnO powder material by metalorganic vapor copper deposition followed by very mild annealing to 350 K. The self-limiting copper deposition reaction is used to demonstrate the utility of this approach for hexafluoroacetylacetonate-copper-vinyltrimethylsilane, Cu(hfac)VTMS, reacting with ZnO. The low-temperature transmetalation is confirmed by a combination of spectroscopic studies. Model density functional theory calculations are consistent with a thermodynamic driving force for the process. PMID:27351220

  12. Gold coated magnetic nanoparticles: from preparation to surface modification for analytical and biomedical applications.

    Science.gov (United States)

    Moraes Silva, Saimon; Tavallaie, Roya; Sandiford, Lydia; Tilley, Richard D; Gooding, J Justin

    2016-06-18

    Gold coated magnetic nanoparticles (Au@MNPs) have become increasingly interesting to nanomaterial scientists due to their multifunctional properties and their potential in both analytical chemistry and nanomedicine. The past decade has seen significant progress in the synthesis and surface modification of Au@MNPs. This progress is based on advances in the preparation and characterization of iron/iron oxide nanocrystals with the required surface functional groups. In this critical review, we summarize recent developments in the methods of preparing Au@MNPs, surface functionalization and their application in analytical sensing and biomedicine. We highlight some of the remaining major challenges, as well as the lessons learnt when working with Au@MNPs. PMID:27182032

  13. Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy

    International Nuclear Information System (INIS)

    Nanoparticles (NPs) have been proven to be an effective delivery system with few side effects for anticancer drugs. In this study, curcumin-loaded NPs have been prepared by an ionic gelation method using chitosan (Chi) and pluronic®F-127 (PF) as carriers to deliver curcumin to the target cancer cells. Prepared NPs were characterized using Zetasizer, fluorescence microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our results showed that the encapsulation efficiency of curcumin was approximately 50%. The average size of curcumin-loaded PF/Chi NPs was 150.9 nm, while the zeta potential was 5.09 mV. Cellular uptake of curcumin-loaded NPs into HEK293 cells was confirmed by fluorescence microscopy. (paper)

  14. Study on the effect of electrostatic interaction on core-shell nanoparticles preparation with microemulsion technique

    Institute of Scientific and Technical Information of China (English)

    HE Xiaoxiao; WANG Kemin; TAN Weihong; CHEN Jiyun; DUAN Jinghua; YUAN Yin; LIN Xia

    2005-01-01

    The routine method for preparation of silica core-shell nanoparticles (NPs) is to carry out nucleation and shell coating through the hydrolysis of silane in water in oil (W/O) microemulsion to form three-dimensional netted silica shell. We found that electrostatic interaction of the core materials with shell materials would determine whether the stable core-shell silica NPs formed or not. The traditional important factors such as molecular weight of core materials or the thickness of the shell have no obvious relationship with it. And the stability of the core-shell silica NPs can be improved after changing the electric charge polarity by regulating the experiment condition of relevant materials if some core materials cannot be doped inside to form the stable core-shell silica NPs based on the traditional method, which provided experimental and theoretic foundation for preparation and application of the core-shell silica NPs.

  15. Preparation and Evaluation of Poly (ε-caprolactone) Nanoparticles-in-Microparticles by W/O/W Emulsion Method

    OpenAIRE

    Mitra Jelvehgari; Jaleh Barar; Hadi Valizadeh; Nasrin Heidari

    2010-01-01

    Objective(s)Theophylline, a xanthenes derivative, is still widely used as an effective bronchodilator in the management of asthmatic patients. It is used both as a prophylactic drug and to prevent acute exacerbations of asthma. The aim of study was to formulate and evaluate effect of the microencapsulation of theophylline loaded nanoparticles on the reduction of burst release.Materials and MethodsMicroparticles (simple and composite) and nanoparticles were prepared by using water-in-oil-in-wa...

  16. Magnetite nanoparticles as-prepared and dispersed in Copaiba oil: Study using magnetic measurements and Mössbauer spectroscopy

    OpenAIRE

    Oshtrakh, M. I.; Ushakov, M. V.; Semenova, A. S.; Kellerman, D. G.; Šepelák, V.; Rodriguez, A. F. R.; Semionkin, V. A.; Morais, P C

    2013-01-01

    Study of magnetite nanoparticles, as-prepared and dispersed in Copaiba oil as magnetic fluid, by means of magnetic measurement and Mössbauer spectroscopy at various temperatures demonstrated differences in the saturation magnetization and Mössbauer hyperfine parameters which were related to the interactions of Copaiba oil polar molecules with iron cations on magnetite nanoparticle's surface. © 2012 Springer Science+Business Media Dordrecht.

  17. Preparation of fine, uniform nitrogen- and sulfur-modified TiO2 nanoparticles from titania nanotubes

    OpenAIRE

    Mathieu Grandcolas and Jinhua Ye

    2010-01-01

    TiO2 nanoparticles modified with nitrogen and sulfur were prepared from titania nanotubes by a facile wet chemistry method. The samples synthesized with different thiourea/TiO2 ratios showed a uniform nanoparticle size distribution centred at approximately 10 nm with a developed specific surface area of 246 m2 g-1. These modified nanosized photocatalysts exhibited higher photocatalytic activity for the degradation of gaseous isopropanol than unmodified titania nanotubes under visible illumina...

  18. Preparation and Application of Crosslinked Poly(sodium acrylate)-Coated Magnetite Nanoparticles as Corrosion Inhibitors for Carbon Steel Alloy

    OpenAIRE

    Ayman M. Atta; Gamal A. El-Mahdy; Hamad A. Al-Lohedan; Ashraf M. El-Saeed

    2015-01-01

    This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical ...

  19. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  20. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  1. Biomimetic Preparation of Magnetite/Chitosan Nanocomposite via In Situ Composite Method——Potential Use in Magnetic Tissue Repair Domain

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This study focused on the preparation of magnetic chitosan nanocomposite that has a potential application to bone repair and regeneration using an in situ composite method where chitosan membrane was used as the template and NaOH was used as the precipitant. X-ray diffraction analysis results show the formation of magnetite in the chitosan matrix. From the magnetic measurement, it could be concluded that the magnetic chitosan rods were superparamagnetic,and that this is the unique property of nanomagnetite. Macroscopical layer structure of the magnetic chitosan rods was observed from the photographs after mechanical test, and the microlayer structure of the rods was observed from the images of scanning electron microscopy. The mechanism for preparing the rods was discussed in detail. Transmission electron microscope was used to investigate the magnetite particles in the chitosan matrix and from the images it was concluded that the magnetite particles dispersed well in chitosan matrix with particle size of about 10 nm. The mechanical properties of the magnetic chitosan rods were measured and the blending strength was found to be 98.8 MPa. The mechanical properties did not decline when compared with those of the pure chitosan materials.

  2. Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature

    Science.gov (United States)

    Huang, Gui-Jun; Wang, Jin-Bin; Zhong, Xiang-Li; Zhou, Gong-Cheng; Yan, Hai-Long

    2006-11-01

    Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted solgel process. Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 nm. From the analysis of X-ray diffraction, the Mn-doped ZnO nanoparticles are identified to be a wurtzite structure without any impurity phases. The magnetic properties are measured by using superconducting quantum interference device. For the ZnO with 2% Mn doping concentration, a good hysteresis loop indicates fine ferromagnetism with a Curie temperature higher than 350 K.

  3. Ferromagnetism of Mn-doped ZnO nanoparticles prepared by sol-gel process at room temperature

    Institute of Scientific and Technical Information of China (English)

    HUANG Gui-jun; WANG Jin-bin; ZHONG Xiang-li; ZHOU Gong-cheng; YAN Hai-long

    2006-01-01

    Mn-doped ZnO diluted magnetic semiconductor nanoparticles are prepared by an ultrasonic assisted sol gel process. Transmission electron microscopy shows pseudo-hexagonal nanoparticles with an average size of about 24 nm. From the analysis of X-ray diffraction,the Mn-doped ZnO nanoparticles are identified to be a wurtzite structure without any impurity phases. The magnetic properties are measured by using su perconducting quantum interference device. For the ZnO with 2 % Mn doping concentration, a good hyster esis loop indicates fine ferromagnetism with a Curie temperature higher than 350 K.

  4. La-doped ZnO nanoparticles: Simple solution-combusting preparation and applications in the wastewater treatment

    International Nuclear Information System (INIS)

    Graphical abstract: La-doped ZnO nanoparticles have been successfully prepared by a simple solution combustion route and exhibit good adsorption for Cu and Pb ion from water systems. - Highlights: • La-doped ZnO nanoparticles were successfully prepared via a simple solution-combustion route. • The integration of La3+ ions into ZnO decreased the band-gap of ZnO nanoparticles. • La-doped ZnO nanoparticles could remove more Pb and Cu ions from water resources than undoped ZnO. - Abstract: La-doped ZnO nanoparticles have been successfully synthesized by a simple solution combustion method via employing a mixture of ethanol and ethyleneglycol (v/v = 60/40) as the solvent. Zinc acetate and oxygen gas in the atmosphere were used as zinc and oxygen sources, and La(NO3)3 as the doping reagent. The as-obtained product was characterized by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Experiments showed that La-doped ZnO nanoparticles exhibited the higher capacities for the removal of Pb2+ and Cu2+ ions in water resource than undoped ZnO nanoparticles

  5. La-doped ZnO nanoparticles: Simple solution-combusting preparation and applications in the wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tingting [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China); Ni, Yonghong, E-mail: niyh@mail.ahnu.edu.cn [College of Chemistry and Materials Science, Anhui Key Laboratory of Functional Molecular Solids, Anhui Normal University, Wuhu 241000 (China); Ma, Xiang, E-mail: max@nju.edu.cn [Centers of Modern Analysis, Nanjing University, Nanjing 210093 (China); Hong, Jianming [Centers of Modern Analysis, Nanjing University, Nanjing 210093 (China)

    2013-11-15

    Graphical abstract: La-doped ZnO nanoparticles have been successfully prepared by a simple solution combustion route and exhibit good adsorption for Cu and Pb ion from water systems. - Highlights: • La-doped ZnO nanoparticles were successfully prepared via a simple solution-combustion route. • The integration of La{sup 3+} ions into ZnO decreased the band-gap of ZnO nanoparticles. • La-doped ZnO nanoparticles could remove more Pb and Cu ions from water resources than undoped ZnO. - Abstract: La-doped ZnO nanoparticles have been successfully synthesized by a simple solution combustion method via employing a mixture of ethanol and ethyleneglycol (v/v = 60/40) as the solvent. Zinc acetate and oxygen gas in the atmosphere were used as zinc and oxygen sources, and La(NO{sub 3}){sub 3} as the doping reagent. The as-obtained product was characterized by means of powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectrometry and X-ray photoelectron spectroscopy. Experiments showed that La-doped ZnO nanoparticles exhibited the higher capacities for the removal of Pb{sup 2+} and Cu{sup 2+} ions in water resource than undoped ZnO nanoparticles.

  6. Structural and magnetic properties of cobalt-doped iron oxide nanoparticles prepared by solution combustion method for biomedical applications.

    Science.gov (United States)

    Venkatesan, Kaliyamoorthy; Rajan Babu, Dhanakotti; Kavya Bai, Mane Prabhu; Supriya, Ravi; Vidya, Radhakrishnan; Madeswaran, Saminathan; Anandan, Pandurangan; Arivanandhan, Mukannan; Hayakawa, Yasuhiro

    2015-01-01

    Cobalt-doped iron oxide nanoparticles were prepared by solution combustion technique. The structural and magnetic properties of the prepared samples were also investigated. The average crystallite size of cobalt ferrite (CoFe2O4) magnetic nanoparticle was calculated using Scherrer equation, and it was found to be 16±5 nm. The particle size was measured by transmission electron microscope. This value was found to match with the crystallite size calculated by Scherrer equation corresponding to the prominent intensity peak (311) of X-ray diffraction. The high-resolution transmission electron microscope image shows clear lattice fringes and high crystallinity of cobalt ferrite magnetic nanoparticles. The synthesized magnetic nanoparticles exhibited the saturation magnetization value of 47 emu/g and coercivity of 947 Oe. The anti-microbial activity of cobalt ferrite nanoparticles showed better results as an anti-bacterial agent. The affinity constant was determined for the nanoparticles, and the cytotoxicity studies were conducted for the cobalt ferrite nanoparticles at different concentrations and the results are discussed. PMID:26491320

  7. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium

    Directory of Open Access Journals (Sweden)

    Sayed M. Badawy

    2015-07-01

    Full Text Available Copper/Copper oxide (Cu/Cu2O nanoparticles were synthesized by modified chemical reduction method in an aqueous medium using hydrazine as reducing agent and copper sulfate pentahydrate as precursor. The Cu/Cu2O nanoparticles were characterized by X-ray Diffraction (XRD, Energy Dispersive X-ray Fluorescence (EDXRF, Scanning Electron Microscope (SEM, and Transmission Electron Microscope (TEM. The analysis revealed the pattern of face-centered cubic (fcc crystal structure of copper Cu metal and cubic cuprites structure for Cu2O. The SEM result showed monodispersed and agglomerated particles with two micron sizes of about 180 nm and 800 nm, respectively. The TEM result showed few single crystal particles of face-centered cubic structures with average particle size about 11-14 nm. The catalytic activity of Cu/Cu2O nanoparticles for the decomposition of hydrogen peroxide was investigated and compared with manganese oxide MnO2. The results showed that the second-order equation provides the best correlation for the catalytic decomposition of H2O2 on Cu/Cu2O. The catalytic activity of hydrogen peroxide by Cu/Cu2O is less than the catalytic activity of MnO2 due to the presence of copper metal Cu with cuprous oxide Cu2O. © 2015 BCREC UNDIP. All rights reservedReceived: 6th January 2015; Revised: 14th March 2015; Accepted: 15th March 2015How to Cite: Badawy, S.M., El-Khashab, R.A., Nayl, A.A. (2015. Synthesis, Characterization and Catalytic Activity of Cu/Cu2O Nanoparticles Prepared in Aqueous Medium. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 169-174. (doi:10.9767/bcrec.10.2.7984.169-174 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7984.169-174  

  8. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    Science.gov (United States)

    Abbasi, Maryam; Saeed, Fatima; Rafique, Uzaira

    2014-06-01

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs).

  9. Preparation and photoelectric property of TiO2 nanoparticles with controllable phase junctions

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A series of bicrystalline TiO2 nanoparticles with different ratio of controllable phase junctions between anatase and rutile were synthesized successfully using ionic liquid-assisted method by hydrolysis of TiCl4. • The spatial separation capacity of photogenerated charge carriers and photocatalytic activities of the samples with different ratio of controllable phase junctions were evaluated systemically. • The best photocatalytic activity for MO degradation can reach above 99% at the sample with 27.4% rutile which also has the best photoelectric property compared with other samples. - Abstract: To explore the effect of phase composition on the photoelectric property of anatase–rutile mixed crystal nanoparticles, a series of TiO2 nanoparticles with phase junctions controlling were synthetized by hydrolysis of TiCl4 in hydrochloric acid, an ionic liquid-assisted method was used during this process. Crystalline size and the ratio of anatase to rutile of as-prepared samples were calculated by the XRD. The surface area was measured by nitrogen sorption measurements using the BET method. The micro-structure of phase junctions was characterized by TEM. Optical transmittance properties of TiO2 with controllable phase junctions were examined via ultraviolet–visible diffuse reflection spectroscopy (UV–vis DRS). The particles were manufactured into films using the doctor-blade technique on FTO glasses. To test photocurrent density, and spatial separation capacity of electron–holes pairs, photo-electro method was employed. The photocatalytic activities of the resulting samples were examined in the degradation of methyl orange (MO) under artificial solar light irradiation. Mechanisms of separation and transfer of photogenerated charge and the effect of phase composition on photoelectric property of anatase–rutile nanoparticles were discussed

  10. Preparation of Silver Nanoparticles from Synthetic and Natural Sources: Remediation Model for PAHs

    International Nuclear Information System (INIS)

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85% in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs)

  11. Preparation of silver nanoparticles from synthetic and natural sources: remediation model for PAHs

    International Nuclear Information System (INIS)

    The emergence of nanoscience and technology is gaining popularity with an increasing demand for metal nanoparticles applicability in various areas such as electronics, catalysis, chemistry, energy and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this work, an attempt is made to compare the efficiency of two different synthesis methods and application of each for the remediation of poly aromatic hydrocarbons (PAHs). In this regard, silver nanoparticles are prepared by green and wet chemical method using plant extract of garlic (Allium sativum). The extract is known to reduce the metal during synthesis and acts as stabilizing ligand. These synthesized silver nanoparticles (Agp) and (AgW) were applied as adsorbents in synthetic batch mode experiments at varying parameters of pH and temperature. A concentration of 0.01mg/L of Phenanthrene, Anthracene, and Pyrene were induced at fixed dosage of 1mg/Kg of adsorbent. Residual concentration of each PAH was analyzed on UV-Visible spectrophotometer. The results indicated that both adsorbents follow the sequence of Phenanthrene>Pyrene>Anthracene with optimal removal of higher than 85 percentage in each case. A distinguishing privilege is attained by Agp adsorbent showing 3, 3 and 11 orders of magnitude higher efficiency than Agw. It may be attributed to more functional groups in the plant extract participating in binding of PAH to the surface. Each synthesized adsorbents was characterized by FTIR, SEM and EDX. The average particle size was determined to be of the order of 13-26 nm. The study concludes the use of alternate economical and green adsorbents for control of poly aromatic hydrocarbons (PAHs). (author)

  12. Preparation of CuO nanoparticles by metal salt-base reaction in aqueous solution and their metallic bonding property

    International Nuclear Information System (INIS)

    This article describes a method for preparing CuO nanoparticles in aqueous solution, and a demonstration of feasibility of metallic bonding with the use of the CuO particles. Colloid solution of CuO nanoparticles was prepared from Cu(NO3)2 aqueous solution (0.01 M) and NaOH aqueous solution (0.019 M) at 5–80 °C. Leaf-like aggregates with an average size of 567 nm composed of CuO nanoparticles were produced at 20 °C. The size of leaf-like aggregates decreased with increasing reaction temperature. Metallic copper discs could be bonded using the CuO nanoparticles under annealing at 400 °C and pressurizing at 1.2 MPa for 5 min in H2 gas. A shear strength required for separating the bonded discs was 25.4 MPa for the CuO nanoparticles prepared at 20 °C, whose aggregates were the largest among the CuO particles examined. These results indicated that the formation of leaf-like aggregates of CuO nanoparticles led to efficient metallic bonding.

  13. Optimized Preparation of Levofloxacin-loaded Chitosan Nanoparticles by Ionotropic Gelation

    Science.gov (United States)

    Guan, J.; Cheng, P.; Huang, S. J.; Wu, J. M.; Li, Z. H.; You, X. D.; Hao, L. M.; Guo, Y.; Li, R. X.; Zhang, H.

    The present work investigates the feasibility of fabricating chitosan (CS)-levofloxacin (LOF) nanoparticles by ionotropic gelation technology. An orthogonal experiment was designed to optimize its preparing parameters and multi-index comprehensive weighed score analysis method was used to study the effects of various factors including concentration of CS, concentration of tripolyphosphate (TPP), mass ratio of CS to TPP, and mass ratio of CS to LOF on the properties of nanoparticles. The particles prepared under optimal condition of 2 mg/ml CS concentration, 2 mg/ml TPP concentration, 0.5:1 mass ratio of oil to water and 4:1 mass ratio of CS to TPP had 140 nm diameter, 0.95 span, 6.13% loading capacity (LC) and 24.91% encapsulation efficiency (EE). In vitro release profile showed that LOF released fast initially and then slowly with T90 occurring at 76.5 h. Future studies should focus on antibacterial and biocompatible properties in order to evaluate its potential as sustainable delivery system.

  14. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    International Nuclear Information System (INIS)

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl2 and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  15. Biotemplated preparation of CdS nanoparticles/bacterial cellulose hybrid nanofibers for photocatalysis application

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jiazhi; Yu, Junwei [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Fan, Jun [School of Environment, Nanjing University, Nanjing 210093 (China); Sun, Dongping, E-mail: dongpingsun@163.com [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Tang, Weihua, E-mail: whtang@mail.njust.edu.cn [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Xuejie [Key Laboratory of Soft Chemistry and Functional Materials (Ministry of Education), Nanjing University of Science and Technology, Nanjing 210094 (China)

    2011-05-15

    In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl{sub 2} and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.

  16. Preparation and evaluation of nanocellulose-gold nanoparticle nanocomposites for SERS applications.

    Science.gov (United States)

    Wei, Haoran; Rodriguez, Katia; Renneckar, Scott; Leng, Weinan; Vikesland, Peter J

    2015-08-21

    Nanocellulose is of research interest due to its extraordinary optical, thermal, and mechanical properties. The incorporation of guest nanoparticles into nanocellulose substrates enables production of novel nanocomposites with a broad range of applications. In this study, gold nanoparticle/bacterial cellulose (AuNP/BC) nanocomposites were prepared and evaluated for their applicability as surface-enhanced Raman scattering (SERS) substrates. The nanocomposites were prepared by citrate mediated in situ reduction of Au(3+) in the presence of a BC hydrogel at 303 K. Both the size and morphology of the AuNPs were functions of the HAuCl4 and citrate concentrations. At high HAuCl4 concentrations, Au nanoplates form within the nanocomposites and are responsible for high SERS enhancements. At lower HAuCl4 concentrations, uniform nanospheres form and the SERS enhancement is dependent on the nanosphere size. The time-resolved increase in the SERS signal was probed as a function of drying time with SERS 'hot-spots' primarily forming in the final minutes of nanocomposite drying. The application of the AuNP/BC nanocomposites for detection of the SERS active dyes MGITC and R6G as well as the environmental contaminant atrazine is illustrated as is its use under low and high pH conditions. The results indicate the broad applicability of this nanocomposite for analyte detection. PMID:26133311

  17. Antibacterial continuous nanofibrous hybrid yarn through in situ synthesis of silver nanoparticles: Preparation and characterization

    International Nuclear Information System (INIS)

    Nanofibrous hybrid yarns of polyvinyl alcohol (PVA) and poly-L-lactide acid (PLLA) with the antibacterial activity were prepared that contains 0, 5, 10, 20, and 30 wt.% of silver nanoparticles according to the PVA polymer content. This was performed by electrospinning using distilled water and 2, 2, 2-trifluoroethanol as a solvent for PVA and PLLA respectively, and sodium borohydride was used as a reducing agent. The scanning electron microscope observation confirmed the formation of AgNPs into the PVA nanofiber structure, and they were uniform, bead free, cylindrical and smooth. The diameter of hybrid yarns and their nanofiber component was decreased as the silver nitrate concentration in electrospinning solutions was increased. The differential scanning calorimetry results indicated that the silver nanoparticles can form interactions with polymer chains and decrease the melting enthalpy. The mechanical analysis showed a lower stress and strain at break of the AgNP-loaded nanofibrous hybrid yarns than the unloaded hybrid yarn. However, there wasn't a statistically significant difference between the strain at break of electrospun nanofibrous hybrid yarns. Moreover, the bactericidal efficiency of all loaded samples was over 99.99%. - Highlights: • Nanofibrous hybrid yarns of PVA/PLLA with antibacterial activity were prepared. • The diameter of nanofibers was decreased as the AgNP concentration was increased. • AgNPs make interactions with amorphous phase of polymer and increase the Tg. • All loaded samples presented a good bactericidal and bacteriostatic efficiency

  18. Active targeted nanoparticles: Preparation, physicochemical characterization and in vitro cytotoxicity effect

    Science.gov (United States)

    Heidarian, Sh.; Derakhshandeh, K.; Adibi, H.; Hosseinzadeh, L.

    2015-01-01

    In this study, the folate decorated biodegradable poly (lactide-co-glycolide) (PLGA) nanoparticles were developed for tumor targeting of anticancer agents. Due to the overexpression of the folate receptor on tumor surface, the folate has been efficiently employed as a targeting moiety for various anticancer agents to avoid their non-specific attacks on normal tissues and also to increase their cellular uptake within target cells. Folate conjugate PLGA was synthesized successfully and its chemical structure was evaluated by FTIR, DSC and 1HNMR spectroscopy. PLGA-folate nanoparticles (PLGA-Fol NPs) were prepared by nanoprecipitation method, adopting PLGA as a drug carrier, folic acid as a targeting ligand and 9-nitrocampthotecin as a model anticancer drug. The average size and encapsulation efficiency of the prepared PLGA-Fol NPs were found to be around 115 ± 12 nm and 57%, respectively. In vitro release profile indicated that nearly 85% of the drug was released in 50 h. The in vitro intracellular uptakes of PLGA-Fol NPs showed greater cytotoxicity on cancer cell lines compared to non-folate mediated carriers. PMID:26600851

  19. Using glucosamine as a reductant to prepare reduced graphene oxide and its nanocomposites with metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Chuanbao; Wang Xingrui; Liu Yu [Tianjin University, School of Science (China); Wang Wei [Tianjin University, School of Chemical Engineering and Technology (China); Wynn, Jeanne; Gao Jianping, E-mail: tju018@hotmail.com [Tianjin University, School of Science (China)

    2012-06-15

    A green and facile approach of producing reduced graphene oxide (RGO) by the reduction of graphene oxide (GO) with a monosaccharide medicine glucosamine (GL) was developed. The effect of several factors on the GO reduction, including pH, the weight ratio of GL/GO, and the reaction temperature was studied. The deoxygenation process was monitored with UV-Vis absorption spectroscopy, and the reducing degree of GO was determined with X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Au nanoparticles (about 3.3-4.2 nm) (AuNPs)/RGO and Ag nanoparticles (about 6 nm) (AgNPs)/RGO materials were prepared in two different ways using the above reduction method. They were then used to catalyze the Suzuki-Miyaura coupling reaction of phenyl halide and phenylboronic acid to produce biphenyl, and the highest yield of biphenyl for AuNPs/RGO was 99 %. In addition, the AgNPs/RGO materials exhibited a surface-enhanced Raman scattering effect, and some RGO peaks were enhanced. This approach opens up a new, practical, and green reducing method to prepare RGO for large-scale practical application.

  20. Using glucosamine as a reductant to prepare reduced graphene oxide and its nanocomposites with metal nanoparticles

    International Nuclear Information System (INIS)

    A green and facile approach of producing reduced graphene oxide (RGO) by the reduction of graphene oxide (GO) with a monosaccharide medicine glucosamine (GL) was developed. The effect of several factors on the GO reduction, including pH, the weight ratio of GL/GO, and the reaction temperature was studied. The deoxygenation process was monitored with UV–Vis absorption spectroscopy, and the reducing degree of GO was determined with X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray photoelectron spectroscopy, and transmission electron microscopy. Au nanoparticles (about 3.3–4.2 nm) (AuNPs)/RGO and Ag nanoparticles (about 6 nm) (AgNPs)/RGO materials were prepared in two different ways using the above reduction method. They were then used to catalyze the Suzuki–Miyaura coupling reaction of phenyl halide and phenylboronic acid to produce biphenyl, and the highest yield of biphenyl for AuNPs/RGO was 99 %. In addition, the AgNPs/RGO materials exhibited a surface-enhanced Raman scattering effect, and some RGO peaks were enhanced. This approach opens up a new, practical, and green reducing method to prepare RGO for large-scale practical application.