WorldWideScience

Sample records for biomimetic materials research

  1. Biomimetic superwettable materials with structural colours.

    Science.gov (United States)

    Wang, Zelinlan; Guo, Zhiguang

    2017-12-05

    Structural colours and superwettability are of great interest due to their unique characteristics. However, the application of materials with either structural colours or superwettability is limited. Moreover, materials possessing both structural colours and superwettability are crucial for many practical applications. The combination of structural colours and superwettability can result in materials for use various applications, such as in sensors, detectors, bioassays, anti-counterfeiting, and liquid actuators, by controlling surfaces to repel or absorb liquids. Regarding superwettability and structural colours, surface texture and chemical composition are two factors for the construction of materials with superwettable structural colours. This review aims at offering a comprehensive elaboration of the mechanism, recent biomimetic research, and applications of biomimetic superwettable materials with structural colours. Furthermore, this review provides significant insight into the design, fabrication, and application of biomimetic superwettable materials with structural colours.

  2. Biomimetics materials, structures and processes : examples, ideas and case studies

    CERN Document Server

    Bruckner, Dietmar; Hellmich, Christian; Schmiedmayer, Heinz-Bodo; Stachelberger, Herbert; Gebeshuber, Ille

    2011-01-01

    The book presents an outline of current activities in the field of biomimetics and integrates a variety of applications comprising biophysics, surface sciences, architecture and medicine. Biomimetics as innovation method is characterised by interdisciplinary information transfer from the life sciences to technical application fields aiming at increased performance, functionality and energy efficiency. The contributions of the book relate to the research areas: - Materials and structures in nanotechnology and biomaterials - Biomimetic approaches to develop new forms, construction principles and design methods in architecture - Information and dynamics in automation, neuroinformatics and biomechanics Readers will be informed about the latest research approaches and results in biomimetics with examples ranging from bionic nano-membranes to function-targeted design of tribological surfaces and the translation of natural auditory coding strategies.

  3. Biomimetics in materials science self-healing, self-lubricating, and self-cleaning materials

    CERN Document Server

    Nosonovsky, Michael

    2012-01-01

    Biomimetics in Materials Science provides a comprehensive theoretical and practical review of biomimetic materials with self-healing, self-lubricating and self-cleaning properties. These three topics are closely related and constitute rapidly developing areas of study. The field of self-healing materials requires a new conceptual understanding of this biomimetic technology, which is in contrast to traditional  engineering processes such as wear and fatigue.  Biomimetics in Materials Science is the first monograph to be devoted to these materials. A new theoretical framework for these processes is presented based on the concept of multi-scale structure of entropy and non-equilibrium thermodynamics, together with a detailed review of the available technology. The latter includes experimental, modeling, and simulation results obtained on self-healing/lubricating/cleaning materials since their emergence in the past decade. Describes smart, biomimetic materials in the context of nanotechnology, biotechnology, an...

  4. Biomimetic hydrogel materials

    Science.gov (United States)

    Bertozzi, Carolyn; Mukkamala, Ravindranath; Chen, Qing; Hu, Hopin; Baude, Dominique

    2000-01-01

    Novel biomimetic hydrogel materials and methods for their preparation. Hydrogels containing acrylamide-functionalized carbohydrate, sulfoxide, sulfide or sulfone copolymerized with a hydrophilic or hydrophobic copolymerizing material selected from the group consisting of an acrylamide, methacrylamide, acrylate, methacrylate, vinyl and a derivative thereof present in concentration from about 1 to about 99 wt %. and methods for their preparation. The method of use of the new hydrogels for fabrication of soft contact lenses and biomedical implants.

  5. Biomimetic Materials for Pathogen Neutralization

    National Research Council Canada - National Science Library

    Ingber, Donald

    1997-01-01

    ...) and polymer chemistry fabrication technologies for the production of synthetic 'biomimetic' materials that exhibit the mechanical responsiveness and biochemical processing capabilities of living cells and tissues...

  6. Research trends in biomimetic medical materials for tissue engineering: 3D bioprinting, surface modification, nano/micro-technology and clinical aspects in tissue engineering of cartilage and bone.

    Science.gov (United States)

    Chen, Cen; Bang, Sumi; Cho, Younghak; Lee, Sahnghoon; Lee, Inseop; Zhang, ShengMin; Noh, Insup

    2016-01-01

    This review discusses about biomimetic medical materials for tissue engineering of bone and cartilage, after previous scientific commentary of the invitation-based, Korea-China joint symposium on biomimetic medical materials, which was held in Seoul, Korea, from October 22 to 26, 2015. The contents of this review were evolved from the presentations of that symposium. Four topics of biomimetic medical materials were discussed from different research groups here: 1) 3D bioprinting medical materials, 2) nano/micro-technology, 3) surface modification of biomaterials for their interactions with cells and 4) clinical aspects of biomaterials for cartilage focusing on cells, scaffolds and cytokines.

  7. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.

    Science.gov (United States)

    Kim, Hwan D; Amirthalingam, Sivashanmugam; Kim, Seunghyun L; Lee, Seunghun S; Rangasamy, Jayakumar; Hwang, Nathaniel S

    2017-12-01

    Various strategies have been explored to overcome critically sized bone defects via bone tissue engineering approaches that incorporate biomimetic scaffolds. Biomimetic scaffolds may provide a novel platform for phenotypically stable tissue formation and stem cell differentiation. In recent years, osteoinductive and inorganic biomimetic scaffold materials have been optimized to offer an osteo-friendly microenvironment for the osteogenic commitment of stem cells. Furthermore, scaffold structures with a microarchitecture design similar to native bone tissue are necessary for successful bone tissue regeneration. For this reason, various methods for fabricating 3D porous structures have been developed. Innovative techniques, such as 3D printing methods, are currently being utilized for optimal host stem cell infiltration, vascularization, nutrient transfer, and stem cell differentiation. In this progress report, biomimetic materials and fabrication approaches that are currently being utilized for biomimetic scaffold design are reviewed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Biomimetic Structural Materials: Inspiration from Design and Assembly.

    Science.gov (United States)

    Yaraghi, Nicholas A; Kisailus, David

    2018-04-20

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  9. Biomimetic Structural Materials: Inspiration from Design and Assembly

    Science.gov (United States)

    Yaraghi, Nicholas A.; Kisailus, David

    2018-04-01

    Nature assembles weak organic and inorganic constituents into sophisticated hierarchical structures, forming structural composites that demonstrate impressive combinations of strength and toughness. Two such composites are the nacre structure forming the inner layer of many mollusk shells, whose brick-and-mortar architecture has been the gold standard for biomimetic composites, and the cuticle forming the arthropod exoskeleton, whose helicoidal fiber-reinforced architecture has only recently attracted interest for structural biomimetics. In this review, we detail recent biomimetic efforts for the fabrication of strong and tough composite materials possessing the brick-and-mortar and helicoidal architectures. Techniques discussed for the fabrication of nacre- and cuticle-mimetic structures include freeze casting, layer-by-layer deposition, spray deposition, magnetically assisted slip casting, fiber-reinforced composite processing, additive manufacturing, and cholesteric self-assembly. Advantages and limitations to these processes are discussed, as well as the future outlook on the biomimetic landscape for structural composite materials.

  10. Accelerating the design of biomimetic materials by integrating RNA-seq with proteomics and materials science.

    Science.gov (United States)

    Guerette, Paul A; Hoon, Shawn; Seow, Yiqi; Raida, Manfred; Masic, Admir; Wong, Fong T; Ho, Vincent H B; Kong, Kiat Whye; Demirel, Melik C; Pena-Francesch, Abdon; Amini, Shahrouz; Tay, Gavin Z; Ding, Dawei; Miserez, Ali

    2013-10-01

    Efforts to engineer new materials inspired by biological structures are hampered by the lack of genomic data from many model organisms studied in biomimetic research. Here we show that biomimetic engineering can be accelerated by integrating high-throughput RNA-seq with proteomics and advanced materials characterization. This approach can be applied to a broad range of systems, as we illustrate by investigating diverse high-performance biological materials involved in embryo protection, adhesion and predation. In one example, we rapidly engineer recombinant squid sucker ring teeth proteins into a range of structural and functional materials, including nanopatterned surfaces and photo-cross-linked films that exceed the mechanical properties of most natural and synthetic polymers. Integrating RNA-seq with proteomics and materials science facilitates the molecular characterization of natural materials and the effective translation of their molecular designs into a wide range of bio-inspired materials.

  11. Biomimetic materials for controlling bone cell responses.

    Science.gov (United States)

    Drevelle, Olivier; Faucheux, Nathalie

    2013-01-01

    Bone defects that cannot "heal spontaneously during life" will become an ever greater health problem as populations age. Harvesting autografts has several drawbacks, such as pain and morbidity at both donor and acceptor sites, the limited quantity of material available, and frequently its inappropriate shape. Researchers have therefore developed alternative strategies that involve biomaterials to fill bone defects. These biomaterials must be biocompatible and interact with the surrounding bone tissue to allow their colonization by bone cells and blood vessels. The latest generation biomaterials are not inert; they control cell responses like adhesion, proliferation and differentiation. These biomaterials are called biomimetic materials. This review focuses on the development of third generation materials. We first briefly describe the bone tissue with its cells and matrix, and then how bone cells interact with the extracellular matrix. The next section covers the materials currently used to repair bone defects. Finally, we describe the strategies employed to modify the surface of materials, such as coating with hydroxyapatite and grafting biomolecules.

  12. 3D Printing of Lotus Root-Like Biomimetic Materials for Cell Delivery and Tissue Regeneration.

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan; Jiang, Xinquan; Wu, Chengtie

    2017-12-01

    Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root-like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration.

  13. 3D Printing of Lotus Root‐Like Biomimetic Materials for Cell Delivery and Tissue Regeneration

    Science.gov (United States)

    Feng, Chun; Zhang, Wenjie; Deng, Cuijun; Li, Guanglong; Chang, Jiang; Zhang, Zhiyuan

    2017-01-01

    Abstract Biomimetic materials have drawn more and more attention in recent years. Regeneration of large bone defects is still a major clinical challenge. In addition, vascularization plays an important role in the process of large bone regeneration and microchannel structure can induce endothelial cells to form rudimentary vasculature. In recent years, 3D printing scaffolds are major materials for large bone defect repair. However, these traditional 3D scaffolds have low porosity and nonchannel structure, which impede angiogenesis and osteogenesis. In this study, inspired by the microstructure of natural plant lotus root, biomimetic materials with lotus root‐like structures are successfully prepared via a modified 3D printing strategy. Compared with traditional 3D materials, these biomimetic materials can significantly improve in vitro cell attachment and proliferation as well as promote in vivo osteogenesis, indicating potential application for cell delivery and bone regeneration. PMID:29270348

  14. Smart Materials in the Netherlands. From fundamental research to innovative societal applications; Smart Materials in Nederland. Van Fundamenteel Onderzoek naar Innovatieve Maatschappelijke Toepassingen

    Energy Technology Data Exchange (ETDEWEB)

    Callant, C.

    2012-11-15

    Research in the field of smart materials in the Netherlands is subdivided into structural materials research and functional materials research. In addition, it shows a breakdown by type of material: metals, polymers and composites. Netherlands is particularly active in a number of sub-areas carries out research on a global level, such as selfhealing materials and biomimetic materials [Dutch] Onderzoek op het gebied van slimme materialen wordt in Nederland onderverdeeld in constructief materiaalonderzoek en functioneel materiaalonderzoek. Daarnaast kent men een onderverdeling naar soort materiaal: metalen, polymeren en composieten. Nederland is op een aantal deelgebieden bijzonder actief en voert daarbij onderzoek uit op wereldniveau, zoals selfhealing materials en biomimetic materials.

  15. A biomimetic approach toward artificial bone-like materials

    OpenAIRE

    Bertozzi, Carolyn R.

    2001-01-01

    Bone consists of microcrystalline hydroxyapatite and collagen, an elastic protein matrix that is decorated with mineral-nucleating phosphoproteins. Our rational design of artificial bone-like material uses natural bone as a guide. Hydrogel and self-assembling polymers that possess anionic groups suitably positioned for nucleating biominerals, and therefore mimic the natural function of the collagen-phosphoprotein matrix in bone, were designed to direct template-driven biomimetic mineralizatio...

  16. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures.

    Science.gov (United States)

    Zan, Guangtao; Wu, Qingsheng

    2016-03-16

    In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Biomimetics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Biomimetics is the field of scientific endeavour, which attempts to design systems and syn- thesise materials through ... natural systems with a view to achieve analogous synthetic design and manufacture. On the ..... Industrial production.

  18. Biomimetic microsensors inspired by marine life

    CERN Document Server

    Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Triantafyllou, Michael S

    2017-01-01

    This book narrates the development of various biomimetic microelectromechanical systems (MEMS) sensors, such as pressure, flow, acceleration, chemical, and tactile sensors, that are inspired by sensing phenomenon that exist in marine life. The research described in this book is multi-faceted and combines the expertise and understanding from diverse fields, including biomimetics, microfabrication, sensor engineering, MEMS design, nanotechnology, and material science. A series of chapters examine the design and fabrication of MEMS sensors that function on piezoresistive, piezoelectric, strain gauge, and chemical sensing principles. By translating nature-based engineering solutions to artificial manmade technology, we could find innovative solutions to critical problems.

  19. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease.

    Science.gov (United States)

    Sacramento, Ana S; Moreira, Felismina T C; Guerreiro, Joana L; Tavares, Ana P; Sales, M Goreti F

    2017-10-01

    This work describes a novel approach to produce an antibody-like biomimetic material. It includes preparing composite imprinted material never presented before, with highly conductive support nanostructures and assembling a high conductivity polymeric layer at low temperature. Overall, such highly conductive material may enhance the final features of electrically-based devices. Acetylcholine (ACh) was selected as target analyte, a neurotransmitter of importance in Alzheimer's disease. Potentiometric transduction was preferred, allowing quick responses and future adaptation to point-of-care requirements. The biomimetic material was obtained by bulk polymerization, where ACh was placed in a composite matrix of multiwalled carbon nanotubes (MWCNTs) and aniline (ANI). Subsequent polymerization, initiated by radical species, yielded a polymeric structure of polyaniline (PANI) acting as physical support of the composite. A non-imprinted material (NIM) having only PANI/MWCNT (without ACh) has been prepared for comparison of the biomimetic-imprinted material (BIM). RAMAN and Fourier Transform Infrared spectroscopy (FTIR), Transmission Electron microscopy (TEM), and Scanning Electron microscope (SEM) analysis characterized the structures of the materials. The ability of this biomaterial to rebind ACh was confirmed by including it as electroactive compound in a PVC/plasticizer mixture. The membranes with imprinted material and anionic additive presented the best analytical characteristics, with a sensitivity of 83.86mV decade -1 and limit of detection (LOD) of 3.45×10 -5 mol/L in HEPES buffer pH4.0. Good selectivity was observed against creatinine, creatine, glucose, cysteine and urea. The electrodes were also applied on synthetic serum samples and seemed a reliable tool for screening ACh in synthetic serum samples. The overall performance showed fast response, reusability, simplicity and low price. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  1. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  2. Biomimetics

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    Abstract. The well-organised multifunctional structures, systems and biogenic materials found in nature have attracted the interest of scientists working in many disciplines. The efforts have resulted in the development of a new and rapidly growing field of scientific effort called biomimetics. In this article we present a.

  3. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    Energy Technology Data Exchange (ETDEWEB)

    Tomar, Vikas [Purdue Univ., West Lafayette, IN (United States)

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  4. “Click & seed” approach to the biomimetic modification of material surfaces

    Czech Academy of Sciences Publication Activity Database

    Proks, Vladimír; Jaroš, J.; Pop-Georgievski, Ognen; Kučka, Jan; Popelka, Štěpán; Dvořák, P.; Hampl, A.; Rypáček, František

    2012-01-01

    Roč. 12, č. 9 (2012), s. 1232-1242 ISSN 1616-5187 R&D Projects: GA AV ČR KJB400500904; GA ČR GAP108/11/1857; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505 Keywords : biomimetic modifications * click chemistry * peptide radiolabeling Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.742, year: 2012

  5. Biomimetic mineral coatings in dental and orthopaedic implantology

    NARCIS (Netherlands)

    Liu, Y.; de Groot, K.; Hunziker, E.B.

    2009-01-01

    Biomimetic techniques are used to deposit coatings of calcium phosphate upon medical devices. The procedure is conducted under near-physiological, or "biomimetic", conditions of temperature and pH primarily to improve their biocompatibility and biodegradability of the materials. The inorganic layers

  6. Biomimetics: nature based innovation

    National Research Council Canada - National Science Library

    Bar-Cohen, Yoseph

    2012-01-01

    "Based on the concept that nature offers numerous sources of inspiration for inventions related to mechanisms, materials, processes, and algorithms, this book covers the topic of biomimetics and the inspired innovation...

  7. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  8. Adipose Stem Cell Coating of Biomimetic β-TCP Macrospheres by Use of Laboratory Centrifuge.

    Science.gov (United States)

    Chou, Joshua; Green, David W; Singh, Krishneel; Hao, Jia; Ben-Nissan, Besim; Milthorpe, Bruce

    2013-02-01

    Biomimetic materials such as coral exoskeletons possess unique architectural structures with a uniform and interconnected porous network that can be beneficial as a scaffold material. In addition, these marine structures can be hydrothermally converted to calcium phosphates, while retaining the original structural properties. The ability of biomaterials to stimulate the local microenvironment is one of the main focuses in tissue engineering, and directly coating the scaffold with stem cells facilitates future potential applications in therapeutics and regenerative medicine. In this article we describe a new and simple method that uses a laboratory centrifuge to coat hydrothermally derived beta-tricalcium phosphate macrospheres from coral exoskeleton with stem cells. In this research the optimal seeding duration and speed were determined to be 1 min and 700 g. Scanning electron micrographs showed complete surface coverage by stem cells within 7 days of seeding. This study constitutes an important step toward achieving functional tissue-engineered implants by increasing our understanding of the influence of dynamic parameters on the efficiency and distribution of stem cell attachment to biomimetic materials and how stem cells interact with biomimetic materials.

  9. Biomimetic dentistry

    OpenAIRE

    Suchetana Goswami

    2018-01-01

    “Biomimetics” is the field of science that uses the natural system of synthesizing materials through biomimicry. This method can be widely used in dentistry for regeneration of dental structures and replacement of lost dental tissues. This is a review paper that states its scope, history, different fields of biomimetic dentistry, and its future conditions in India.

  10. Methane hydroxylation: a biomimetic approach

    International Nuclear Information System (INIS)

    Shilov, Aleksandr E; Shteinman, Al'bert A

    2012-01-01

    The review addresses direct methane oxidation — an important fundamental problem, which has attracted much attention of researchers in recent years. Analysis of the available results on biomimetic and bio-inspired methane oxygenation has demonstrated that assimilating of the experience of Nature on oxidation of methane and other alkanes significantly enriches the arsenal of chemistry and can radically change the character of the entire chemical production, as well as enables the solution of many material, energetic and environmental problems. The bibliography includes 310 references.

  11. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin

    2016-02-23

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important method of providing water. In nature, through millions of year evolution, some animals and plants in many of the arid regions have developed unique and highly efficient systems with delicate microstructures and composition for the purpose of fog collection to survive the harsh conditions. With the unique ability of fog collection, these creatures could readily cope with insufficient access to fresh water or lack of precipitation. These natural examples have inspired the design and fabrication of artificial fog collection materials and devices. In this chapter, we will first introduce some natural examples for their unique fog collection capability, and then give some examples of the bioinspired materials and devices that are fabricated artificially to mimic these natural creatures for the purpose of fog collection. We believe that the biomimetic strategy is one of the most promising routes for the design and fabrication of functional materials and devices for the solution of the global water crisis.

  12. Research on Biomimetic Models and Nanomechanical Behaviour of Membranous Wings of Chinese Bee Apis cerana cerana Fabricius

    Directory of Open Access Journals (Sweden)

    Yanru Zhao

    2018-01-01

    Full Text Available The structures combining the veins and membranes of membranous wings of the Chinese bee Apis cerana cerana Fabricius into a whole have excellent load-resisting capacity. The membranous wings of Chinese bees were taken as research objects and the mechanical properties of a biomimetic model of membranous wings as targets. In order to understand and learn from the biosystem and then make technical innovation, the membranous wings of Chinese bees were simulated and analysed with reverse engineering and finite element method. The deformations and stress states of the finite element model of membranous wings were researched under the concentrated force, uniform load, and torque. It was found that the whole model deforms evenly and there are no unusual deformations arising. The displacements and deformations are small and transform uniformly. It was indicated that the veins and membranes combine well into a whole to transmit loads effectively, which illustrates the membranous wings of Chinese bees having excellent integral mechanical behaviour and structure stiffness. The realization of structure models of the membranous wings of Chinese bees and analysis of the relativity of structures and performances or functions will provide an inspiration for designing biomimetic thin-film materials with superior load-bearing capacity.

  13. Biomimetic membranes and methods of making biomimetic membranes

    Science.gov (United States)

    Rempe, Susan; Brinker, Jeffrey C.; Rogers, David Michael; Jiang, Ying-Bing; Yang, Shaorong

    2016-11-08

    The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.

  14. Biological and Biomimetic Comb Polyelectrolytes

    Directory of Open Access Journals (Sweden)

    Aristeidis Papagiannopoulos

    2010-05-01

    Full Text Available Some new phenomena involved in the physical properties of comb polyelectrolyte solutions are reviewed. Special emphasis is given to synthetic biomimetic materials, and the structures formed by these molecules are compared with those of naturally occurring glycoprotein and proteoglycan solutions. Developments in the determination of the structure and dynamics (viscoelasticity of comb polymers in solution are also covered. Specifically the appearance of multi-globular structures, helical instabilities, liquid crystalline phases, and the self-assembly of the materials to produce hierarchical comb morphologies is examined. Comb polyelectrolytes are surface active and a short review is made of some recent experiments in this area that relate to their morphology when suspended in solution. We hope to emphasize the wide variety of phenomena demonstrated by the vast range of naturally occurring comb polyelectrolytes and the challenges presented to synthetic chemists designing biomimetic materials.

  15. Biomimetic dentistry

    Directory of Open Access Journals (Sweden)

    Suchetana Goswami

    2018-01-01

    Full Text Available “Biomimetics” is the field of science that uses the natural system of synthesizing materials through biomimicry. This method can be widely used in dentistry for regeneration of dental structures and replacement of lost dental tissues. This is a review paper that states its scope, history, different fields of biomimetic dentistry, and its future conditions in India.

  16. Biomimetic Spider Leg Joints: A Review from Biomechanical Research to Compliant Robotic Actuators

    Directory of Open Access Journals (Sweden)

    Stefan Landkammer

    2016-07-01

    Full Text Available Due to their inherent compliance, soft actuated joints are becoming increasingly important for robotic applications, especially when human-robot-interactions are expected. Several of these flexible actuators are inspired by biological models. One perfect showpiece for biomimetic robots is the spider leg, because it combines lightweight design and graceful movements with powerful and dynamic actuation. Building on this motivation, the review article focuses on compliant robotic joints inspired by the function principle of the spider leg. The mechanism is introduced by an overview of existing biological and biomechanical research. Thereupon a classification of robots that are bio-inspired by spider joints is presented. Based on this, the biomimetic robot applications referring to the spider principle are identified and discussed.

  17. New Hybrid Route to Biomimetic Synthesis

    National Research Council Canada - National Science Library

    Morse, Daniel

    2003-01-01

    To develop economical low-temperature routes to biomimetic synthesis of high-performance composite materials, with control of composition and structure based on the molecular mechanisms controlling...

  18. Controllable biomimetic adhesion using embedded phase change material

    International Nuclear Information System (INIS)

    Krahn, J; Sameoto, D; Menon, C

    2011-01-01

    In many cases, such as in the instance of climbing robots or temporary adhesives, there is the need to be able to dynamically control the level of adhesion a biomimetic dry adhesive can provide. In this study, the effect of changing the backing layer stiffness of a dry adhesive is examined. Embedding a phase change material within the backing of a synthetic dry adhesive sheet allows the stiffness to be tailored at different points of a preload and adhesion cycle. Larger contact areas and more equal load sharing between adhesive fibres can be achieved by increasing the backing layer stiffness after initial deformation when the adhesive backing is loaded in its softened state. Adhesion behaviour is examined when the backing layer is maintained in solid and softened phases during complete load cycles and for load cycles under the condition of contact with the softened phase backing followed by pull-off during the solid phase. Absolute adhesion force is increased for trials in which a soft backing layer hardens prior to pull-off. This effect is due to the increased contact area made between the rounded probe and the softened material during preloading and the more equal load sharing condition during pull-off when the backing layer becomes stiff again

  19. Challenges in biomimetic design and innovation

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael; Shu, Li

    Biomimetic design copies desired principles found in nature and implement them into artificial applications. Applications could be products we use in our daily life but it can also be used to inspire material innovation. However there are significant challenges in performing biomimetic design. One....... This is a key issue in design and innovation work where problem identification and systematic search for suitable solution principle are major activities. One way to deal with this challenge is to use a biology search method. The use of such a method is illustrated with a case story describing the design...... including the terminology and knowledge organisation. It is often easy to recognise the splendour of a biological solution, but it can be much more difficult to understand the underlying mechanisms. Another challenge in biomimetic design is the search and identification of relevant solutions in nature...

  20. Biomimetic magnetic nanoparticles

    OpenAIRE

    Klem, Michael T.; Young, Mark; Douglas, Trevor

    2005-01-01

    Magnetic nanoparticles are of considerable interest because of their potential use in high-density memory devices, spintronics, and applications in diagnostic medicine. The conditions for synthesis of these materials are often complicated by their high reaction temperatures, costly reagents, and post-processing requirements. Practical applications of magnetic nanoparticles will require the development of alternate synthetic strategies that can overcome these impediments. Biomimetic approaches...

  1. Biomimetics: forecasting the future of science, engineering, and medicine.

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark's skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations.

  2. Biomimetics: forecasting the future of science, engineering, and medicine

    Science.gov (United States)

    Hwang, Jangsun; Jeong, Yoon; Park, Jeong Min; Lee, Kwan Hong; Hong, Jong Wook; Choi, Jonghoon

    2015-01-01

    Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. PMID:26388692

  3. Insights on synergy of materials and structures in biomimetic platelet-matrix composites

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2018-01-01

    Hybrid materials such as biomimetic platelet-matrix composites are in high demand to confer low weight and multifunctional mechanical properties. This letter reports interfacial-bond regulated assembly of polymers on cement-an archetype model with significant infrastructure applications. We demonstrate a series of 20+ molecular dynamics studies on decoding and optimizing the complex interfacial interactions including the role and types of various heterogeneous, competing interfacial bonds that are key to adhesion and interfacial strength. Our results show an existence of an optimum overlap length scale (˜15 nm) between polymers and cement crystals, exhibiting the best balance of strength, toughness, stiffness, and ductility for the composite. This finding, combined with the fundamental insights into the nature of interfacial bonds, provides key hypotheses for selection and processing of constituents to deliberate the best synergy in the structure and materials of platelet-matrix composites.

  4. An efficient biomimetic coating methodology for a prosthetic alloy

    International Nuclear Information System (INIS)

    Adawy, Alaa; Abdel-Fattah, Wafa I.

    2013-01-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6 h of the whole soaking process. Highlights: ► The manuscript describes a fast and efficient biomimetic coating methodology. ► This methodology can be used for metallic implants. ► 316L was coated with crystalline hydroxyapatite. ► Addition of strontium and zinc lead to the deposition of brushite. ► Coating of all synthetic solutions is highly crystalline

  5. Evaporation-induced assembly of biomimetic polypeptides

    International Nuclear Information System (INIS)

    Keyes, Joseph; Junkin, Michael; Cappello, Joseph; Wu Xiaoyi; Wong, Pak Kin

    2008-01-01

    We report an evaporation assisted plasma lithography (EAPL) process for guided self-assembly of a biomimetic silk-elastinlike protein (SELP). We demonstrate the formation of SELP structures from millimeter to submicrometer range on plasma-treatment surface templates during an evaporation-induced self-assembly process. The self-assembly processes at different humidities and droplet volumes were investigated. The process occurs efficiently in a window of optimized operating conditions found to be at 70% relative humidity and 8 μl volume of SELP solution. The EAPL approach provides a useful technique for the realization of functional devices and systems using these biomimetic materials

  6. Biomimetic synthesis and characterization of semiconducting hybrid

    Indian Academy of Sciences (India)

    Triple hybrid materials based on polyaniline-polyethylene glycol and cadmium sulphide have been prepared by the duffusion–limited biomimetic route and characterized by a number of spectroscopic, XRD, SEM, thermal and electrical measurements. These hybrid materials have been prepared by controlled precipitation of ...

  7. Amelogenin and Enamel Biomimetics

    Science.gov (United States)

    Ruan, Qichao; Moradian-Oldak, Janet

    2015-01-01

    Mature tooth enamel is acellular and does not regenerate itself. Developing technologies that rebuild tooth enamel and preserve tooth structure is therefore of great interest. Considering the importance of amelogenin protein in dental enamel formation, its ability to control apatite mineralization in vitro, and its potential to be applied in fabrication of future bio-inspired dental material this review focuses on two major subjects: amelogenin and enamel biomimetics. We review the most recent findings on amelogenin secondary and tertiary structural properties with a focus on its interactions with different targets including other enamel proteins, apatite mineral, and phospholipids. Following a brief overview of enamel hierarchical structure and its mechanical properties we will present the state-of-the-art strategies in the biomimetic reconstruction of human enamel. PMID:26251723

  8. Biotechnologies and biomimetics for civil engineering

    CERN Document Server

    Labrincha, J; Diamanti, M; Yu, C-P; Lee, H

    2015-01-01

    Putting forward an innovative approach to solving current technological problems faced by human society, this book encompasses a holistic way of perceiving the potential of natural systems. Nature has developed several materials and processes which both maintain an optimal performance and are also totally biodegradable, properties which can be used in civil engineering. Delivering the latest research findings to building industry professionals and other practitioners, as well as containing information useful to the public, ‘Biotechnologies and Biomimetics for Civil Engineering’ serves as an important tool to tackle the challenges of a more sustainable construction industry and the future of buildings.

  9. Bio-mimetic Flow Control

    Science.gov (United States)

    Choi, Haecheon

    2009-11-01

    Bio-mimetic engineering or bio-mimetics is the application of biological methods and systems found in nature to the study and design of engineering systems and modern technology (from Wikipedia). The concept itself is old, but successful developments have been made recently, especially in the research field of flow control. The objective of flow control based on the bio-mimetic approach is to develop novel concepts for reducing drag, increasing lift and enhancing aerodynamic performance. For skin friction reduction, a few ideas have been suggested such as the riblet from shark, compliant surface from dolphin, microbubble injection and multiple front-body curvature from penguin, and V-shaped protrusion from sailfish. For form drag reduction, several new attempts have been also made recently. Examples include the V-shaped spanwise grooves from saguaro cactus, overall shape of box fish, longitudinal grooves on scallop shell, bill of swordfish, hooked comb on owl wing, trailing-edge protrusion on dragonfly wing, and fillet. For the enhancement of aerodynamic performance, focuses have been made on the birds, fish and insects: e.g., double layered feather of landing bird, leading-edge serration of humpback-whale flipper, pectoral fin of flying fish, long tail on swallowtail-butterfly wing, wing flapping motion of dragonfly, and alula in birds. Living animals adapt their bodies to better performance in multi purposes, but engineering requires single purpose in most cases. Therefore, bio-mimetic approaches often produce excellent results more than expected. However, they are sometimes based on people's wrong understanding of nature and produce unwanted results. Successes and failures from bio-mimetic approaches in flow control will be discussed in the presentation.

  10. Tissue bionics: examples in biomimetic tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Green, David W [Bone and Joint Research Group, Developmental Origins of Health and Disease, General Hospital, University of Southampton, SO16 6YD (United Kingdom)], E-mail: Hindoostuart@googlemail.com

    2008-09-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic.

  11. Tissue bionics: examples in biomimetic tissue engineering

    International Nuclear Information System (INIS)

    Green, David W

    2008-01-01

    Many important lessons can be learnt from the study of biological form and the functional design of organisms as design criteria for the development of tissue engineering products. This merging of biomimetics and regenerative medicine is termed 'tissue bionics'. Clinically useful analogues can be generated by appropriating, modifying and mimicking structures from a diversity of natural biomatrices ranging from marine plankton shells to sea urchin spines. Methods in biomimetic materials chemistry can also be used to fabricate tissue engineering scaffolds with added functional utility that promise human tissues fit for the clinic

  12. Do Biomimetic Students Think Outside the Box?

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2017-01-01

    analysed. The empirical material comprises 111 students working on 28 different functional design problems. On average teams identify 9.0 relevant biological phenomena and manage to produce a physical proof-of-principle for the selected biological analogy. 39% of the analogies can be characterised as well...... phenomena? If they concentrate on animals and plants, which they beforehand have knowledge about, it could be expected that solutions will remind of what they would have found without using biomimetics. To investigate this question, the empirical results from a university course in biomimetics have been...

  13. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    Science.gov (United States)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental

  14. Biomimetic design method for innovation and sustainability

    CERN Document Server

    Helfman Cohen, Yael

    2017-01-01

    Presenting a novel biomimetic design method for transferring design solutions from nature to technology, this book focuses on structure-function patterns in nature and advanced modeling tools derived from TRIZ, the theory of inventive problem-solving. The book includes an extensive literature review on biomimicry as an engine of both innovation and sustainability, and discusses in detail the biomimetic design process, current biomimetic design methods and tools. The structural biomimetic design method for innovation and sustainability put forward in this text encompasses (1) the research method and rationale used to develop and validate this new design method; (2) the suggested design algorithm and tools including the Findstructure database, structure-function patterns and ideality patterns; and (3) analyses of four case studies describing how to use the proposed method. This book offers an essential resource for designers who wish to use nature as a source of inspiration and knowledge, innovators and sustain...

  15. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    Energy Technology Data Exchange (ETDEWEB)

    Shotorbani, Behnaz Banimohamad [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Alizadeh, Effat, E-mail: Alizadehe@tbzmed.ac.ir [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Salehi, Roya [Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Drug Applied Research Center and Faculty of advanced Medical Science, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); The Umbilical Cord Stem Cell Research Center (UCSRC), Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Barzegar, Abolfazl [Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz (Iran, Islamic Republic of); Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of)

    2017-02-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  16. Adhesion of mesenchymal stem cells to biomimetic polymers: A review

    International Nuclear Information System (INIS)

    Shotorbani, Behnaz Banimohamad; Alizadeh, Effat; Salehi, Roya; Barzegar, Abolfazl

    2017-01-01

    The mesenchymal stem cells (MSCs) are promising candidates for cell therapy due to the self-renewal, multi-potency, ethically approved state and suitability for autologous transplantation. However, key issue for isolation and manipulation of MSCs is adhesion in ex-vivo culture systems. Biomaterials engineered for mimicking natural extracellular matrix (ECM) conditions which support stem cell adhesion, proliferation and differentiation represent a main area of research in tissue engineering. Some of them successfully enhanced cells adhesion and proliferation because of their biocompatibility, biomimetic texture, and chemistry. However, it is still in its infancy, therefore intensification and optimization of in vitro, in vivo, and preclinical studies is needed to clarify efficacies as well as applicability of those bioengineered constructs. The aim of this review is to discuss mechanisms related to the in-vitro adhesion of MSCs, surfaces biochemical, biophysical, and other factors (of cell's natural and artificial micro-environment) which could affect it and a review of previous research attempting for its bio-chemo-optimization. - Highlights: • The main materials utilized for fabrication of biomimetic polymers are presented. • MSCs cell-material adhesion mechanism and involved molecules are reviewed. • Surface modifications of polymers in terms of MSC adhesion improving are discussed.

  17. Biomimetic actuators using electroactive polymers (EAP) as artificial muscles

    Science.gov (United States)

    Bar-Cohen, Yoseph

    2006-01-01

    Evolution has resolved many of nature's challenges leading to lasting solutions with maximal performance and effective use of resources. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems and many other benefits. The field of mimicking nature is known as Biomimetics and one of its topics includes electroactive polymers that gain the moniker artificial muscles. Integrating EAP with embedded sensors, self-repair and many other capabilities that are used in composite materials can add greatly to the capability of smart biomimetic systems. Such development would enable fascinating possibilities potentially turning science fiction ideas into engineering reality.

  18. Helicoidal microstructure of Scarabaei cuticle and biomimetic research

    International Nuclear Information System (INIS)

    Chen, B.; Peng, X.; Cai, C.; Niu, H.; Wu, X.

    2006-01-01

    Insect cuticles as a natural biocomposite include many favorable microstructures which have been refined over centuries and endow the cuticles excellent mechanical and physical properties, such as light weight, high strength and toughness, etc. The various microstructures of a Scarabaei cuticle are investigated with a scanning electronic microscope and reported in this paper. It is found that the cuticle is a kind of fiber-reinforced biocomposite composed of chitin-fiber layers and sclerous protein matrixes. Different chitin-fiber layers have different orientations, composed of crossed and helicoidal structures at different location. In the helicoidal structure, each fiber layer rotates with an almost fixed angle against its neighboring layer. The maximum pullout energy of the helicoidal structure is analyzed based on the representative model of the structure. The result shows that the pullout energy of the helicoidal structure is markedly larger than that of the conventional 0 o -structure. A biomimetic composite with the observed helicoidal structure is designed and fabricated. A comparative test shows that the fracture toughness of the biomimetic composite is markedly larger than that of the 0 o -layer composite

  19. Biofouling and Design of a Biomimetic Hull-Grooming Tool

    Science.gov (United States)

    2007-09-14

    have barred the use of organotin compounds such as tributyltin ( TBT ) and copper-based paints, which are currently used by the Navy and have become...copper into the water, killing the fouling organisms. There is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers...is new research in biomimetic polymers that deter fouling, but are non- toxic . These polymers are rigidly attached to the hull surface extending

  20. Molecular motor assembly of a biomimetic system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Active biological molecules and functional structures can be fabricated into a bio-mimetic system by using molecular assembly method. Such materials can be used for the drug delivery, disease diagnosis and therapy, and new nanodevice construction.

  1. A review of selected pumping systems in nature and engineering--potential biomimetic concepts for improving displacement pumps and pulsation damping.

    Science.gov (United States)

    Bach, D; Schmich, F; Masselter, T; Speck, T

    2015-09-03

    The active transport of fluids by pumps plays an essential role in engineering and biology. Due to increasing energy costs and environmental issues, topics like noise reduction, increase of efficiency and enhanced robustness are of high importance in the development of pumps in engineering. The study compares pumps in biology and engineering and assesses biomimetic potentials for improving man-made pumping systems. To this aim, examples of common challenges, applications and current biomimetic research for state-of-the art pumps are presented. The biomimetic research is helped by the similar configuration of many positive displacement pumping systems in biology and engineering. In contrast, the configuration and underlying pumping principles for fluid dynamic pumps (FDPs) differ to a greater extent in biology and engineering. However, progress has been made for positive displacement as well as for FDPs by developing biomimetic devices with artificial muscles and cilia that improve energetic efficiency and fail-safe operation or reduce noise. The circulatory system of vertebrates holds a high biomimetic potential for the damping of pressure pulsations, a common challenge in engineering. Damping of blood pressure pulsation results from a nonlinear viscoelastic behavior of the artery walls which represent a complex composite material. The transfer of the underlying functional principle could lead to an improvement of existing technical solutions and be used to develop novel biomimetic damping solutions. To enhance efficiency or thrust of man-made fluid transportation systems, research on jet propulsion in biology has shown that a pulsed jet can be tuned to either maximize thrust or efficiency. The underlying principle has already been transferred into biomimetic applications in open channel water systems. Overall there is a high potential to learn from nature in order to improve pumping systems for challenges like the reduction of pressure pulsations, increase of jet

  2. Biomimetic electrospun nanofibers for tissue regeneration

    International Nuclear Information System (INIS)

    Liao, Susan; Li Bojun; Ma Zuwei; Wei He; Chan Casey; Ramakrishna, Seeram

    2006-01-01

    Nanofibers exist widely in human tissue with different patterns. Electrospinning nanotechnology has recently gained a new impetus due to the introduction of the concept of biomimetic nanofibers for tissue regeneration. The advanced electrospinning technique is a promising method to fabricate a controllable continuous nanofiber scaffold similar to the natural extracellular matrix. Thus, the biomedical field has become a significant possible application field of electrospun fibers. Although electrospinning has developed rapidly over the past few years, electrospun nanofibers are still at a premature research stage. Further comprehensive and deep studies on electrospun nanofibers are essential for promoting their biomedical applications. Current electrospun fiber materials include natural polymers, synthetic polymers and inorganic substances. This review briefly describes several typically electrospun nanofiber materials or composites that have great potential for tissue regeneration, and describes their fabrication, advantages, drawbacks and future prospects. (topical review)

  3. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].

    Science.gov (United States)

    Li, Siriguleng; Hu, Xiaowen

    2014-09-01

    To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.

  4. The importance of the biomimetic composites components for recreating the optical properties and molecular composition of intact dental tissues.

    Science.gov (United States)

    Seredin, P. V.; Goloshchapov, D. L.; Gushchin, M. S.; Ippolitov, Y. A.; Prutskij, T.

    2017-11-01

    The objective of this paper was to investigate whether it is possible to obtain biomimetic materials recreating the luminescent properties and molecular composition of intact dental tissues. Biomimetic materials were produced and their properties compared with native dental tissues. In addition, the overall contribution of the organic and non-organic components in the photoluminescence band was investigated. The results showed that it is possible to develop biomimetic materials with similar molecular composition and optical properties to native dental tissues for the early identification of dental caries.

  5. Biomimetic Flow Sensors

    NARCIS (Netherlands)

    Casas, J.; Liu, Chang; Krijnen, Gijsbertus J.M.

    2012-01-01

    Biomimetic flow sensors are biologically inspired devices that measure the speed and direction of fluids. This survey starts by describing the role and functioning of airflow-sensing hairs in arthropods and in fishes, carries on with the biomimetic MEMS implementations, both for air and water flow

  6. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)

    2014-02-15

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  7. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    International Nuclear Information System (INIS)

    Visan, A.; Grossin, D.; Stefan, N.; Duta, L.; Miroiu, F.M.; Stan, G.E.; Sopronyi, M.; Luculescu, C.; Freche, M.; Marsan, O.; Charvilat, C.; Ciuca, S.; Mihailescu, I.N.

    2014-01-01

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ FWHM ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite

  8. Biomimetic engineering of colloidal nanoarchitectures with "in vitro" and "in vivo" functionality

    OpenAIRE

    Einfalt, Tomaž

    2017-01-01

    Biomimetic engineering opens unprecedented possibilities of combining biomolecules (i.e. proteins, DNA, polysaccharides) with synthetic materials (i.e. synthetic polymers). This combination results in unique hybrid systems with functionalities that mimic processes in living organisms. While the translational value of functional biomimetically engineered structures is of exceptional importance in fields such as technology, engineering, chemistry, biology and medicine, due to the properties the...

  9. Patterns of Growth—Biomimetics and Architectural Design

    Directory of Open Access Journals (Sweden)

    Petra Gruber

    2017-04-01

    Full Text Available This paper discusses the approach of biomimetic design in architecture applied to the theme of growth in biology by taking two exemplary research projects at the intersection of arts and sciences. The first project, ‘Biornametics’, dealt with patterns from nature; the second project ‘Growing as Building (GrAB’ took on biological growth as a specific theme for the transfer to architecture and the arts. Within a timeframe of five years (2011–2015, the research was conducted under the Program for Arts-based Research PEEK (Programm zur Entwicklung und Erschliessung der Künste of the Austrian Science Fund FWF (Fonds zur Förderung der wissenschaftlichen Forschung. The underlying hypothesis was that growth processes in nature have not been studied for transfer into technology and architecture yet and that, with advanced software tools, promising applications could be found. To ensure a high degree of innovation, this research was done with an interdisciplinary team of architects, engineers, and scientists (mainly biologists to lay the groundwork for future product-oriented technological solutions. Growth, as one of the important characteristics of living organisms, is used as a frame for research into systems and principles that shall deliver innovative and sustainable solutions in architecture and the arts. Biomimetics as a methodology was used to create and guide information transfer from the life sciences to innovative proto-architectural solutions. The research aimed at transferring qualities present in biological growth; for example, adaptiveness, exploration, or local resource harvesting into technical design and production processes. In contrast to our current building construction, implementing principles of growth could potentially transform building towards a more integrated and sustainable setting, a new living architecture. Tools and methods, especially Quality Function Deployment (QFD for matching biological role models with

  10. Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach

    Directory of Open Access Journals (Sweden)

    Salmah B. Karman

    2015-01-01

    Full Text Available Heavy metal wastewater poses a threat to human life and causes significant environmental problems. Bioremediation provides a sustainable waste management technique that uses organisms to remove heavy metals from contaminated water through a variety of different processes. Biosorption involves the use of biomass, such as plant extracts and microorganisms (bacteria, fungi, algae, yeast, and represents a low-cost and environmentally friendly method of bioremediation and resource management. Biosorption-based biosynthesis is proposed as a means of removing heavy metals from wastewaters and soils as it aids the development of heavy metal nanoparticles that may have an application within the technology industry. Phytomining provides a further green method of managing the metal content of wastewater. These approaches represent a viable means of removing toxic chemicals from the effluent produced during the process of manufacturing, and the bioremediation process, furthermore, has the potential to save metal resources from depletion. Biomimetic resource management comprises bioremediation, biosorption, biosynthesis, phytomining, and further methods that provide innovative ways of interpreting waste and pollutants as raw materials for research and industry, inspired by materials, structures, and processes in living nature.

  11. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    OpenAIRE

    Abdalla Abdal-hay; Khalil Abdelrazek Khalil; Abdel Salam Hamdy; Fawzi F. Al-Jassir

    2017-01-01

    Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles ...

  12. Biomimetics in drug delivery systems: A critical review.

    Science.gov (United States)

    Sheikhpour, Mojgan; Barani, Leila; Kasaeian, Alibakhsh

    2017-05-10

    Today, the advanced drug delivery systems have been focused on targeted drug delivery fields. The novel drug delivery is involved with the improvement of the capacity of drug loading in drug carriers, cellular uptake of drug carriers, and the sustained release of drugs within target cells. In this review, six groups of therapeutic drug carriers including biomimetic hydrogels, biomimetic micelles, biomimetic liposomes, biomimetic dendrimers, biomimetic polymeric carriers and biomimetic nanostructures, are studied. The subject takes advantage of the biomimetic methods of productions or the biomimetic techniques for the surface modifications, similar to what accrues in natural cells. Moreover, the effects of these biomimetic approaches for promoting the drug efficiency in targeted drug delivery are visible. The study demonstrates that the fabrication of biomimetic nanocomposite drug carriers could noticeably promote the efficiency of drugs in targeted drug delivery systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Biomimetics: forecasting the future of science, engineering, and medicine

    Directory of Open Access Journals (Sweden)

    Hwang J

    2015-09-01

    Full Text Available Jangsun Hwang,1 Yoon Jeong,1,2 Jeong Min Park,3 Kwan Hong Lee,1,2,4 Jong Wook Hong,1,2 Jonghoon Choi1,2 1Department of Bionano Technology, Graduate School, Hanyang University, Seoul, 2Department of Bionano Engineering, Hanyang University ERICA, Ansan, Korea; 3Department of Biomedical Engineering, Boston University, 4OpenView Venture Partners, Boston, MA, USA Abstract: Biomimetics is the study of nature and natural phenomena to understand the principles of underlying mechanisms, to obtain ideas from nature, and to apply concepts that may benefit science, engineering, and medicine. Examples of biomimetic studies include fluid-drag reduction swimsuits inspired by the structure of shark’s skin, velcro fasteners modeled on burrs, shape of airplanes developed from the look of birds, and stable building structures copied from the backbone of turban shells. In this article, we focus on the current research topics in biomimetics and discuss the potential of biomimetics in science, engineering, and medicine. Our report proposes to become a blueprint for accomplishments that can stem from biomimetics in the next 5 years as well as providing insight into their unseen limitations. Keywords: biomimicry, tissue engineering, biomaterials, nature, nanotechnology, nanomedicine

  14. A Biomimetic Haptic Sensor

    OpenAIRE

    Ben Mitchinson; Ian Gilhespy; Chris Melhuish; Mokhtar Nibouche; Tony J. Prescott; Anthony G. Pipe; Martin J. Pearson

    2008-01-01

    The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primar...

  15. Biomimetic architectures by plasma processing fabrication and applications

    CERN Document Server

    Chattopadhyay, Surojit

    2014-01-01

    Photonic structures in the animal kingdom: valuable inspirations for bio-mimetic applications. Moth eye-type anti-reflecting nanostructures by an electron cyclotron resonance plasma. Plasma-processed biomimetic nano/microstructures. Wetting properties of natural and plasma processed biomimetic surfaces. Biomimetic superhydrophobic surface by plasma processing. Biomimetic interfaces of plasma modified titanium alloy.

  16. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  17. A future of living machines?: International trends and prospects in biomimetic and biohybrid systems

    Science.gov (United States)

    Prescott, Tony J.; Lepora, Nathan; Vershure, Paul F. M. J.

    2014-03-01

    Research in the fields of biomimetic and biohybrid systems is developing at an accelerating rate. Biomimetics can be understood as the development of new technologies using principles abstracted from the study of biological systems, however, biomimetics can also be viewed from an alternate perspective as an important methodology for improving our understanding of the world we live in and of ourselves as biological organisms. A biohybrid entity comprises at least one artificial (engineered) component combined with a biological one. With technologies such as microscale mobile computing, prosthetics and implants, humankind is moving towards a more biohybrid future in which biomimetics helps us to engineer biocompatible technologies. This paper reviews recent progress in the development of biomimetic and biohybrid systems focusing particularly on technologies that emulate living organisms—living machines. Based on our recent bibliographic analysis [1] we examine how biomimetics is already creating life-like robots and identify some key unresolved challenges that constitute bottlenecks for the field. Drawing on our recent research in biomimetic mammalian robots, including humanoids, we review the future prospects for such machines and consider some of their likely impacts on society, including the existential risk of creating artifacts with significant autonomy that could come to match or exceed humankind in intelligence. We conclude that living machines are more likely to be a benefit than a threat but that we should also ensure that progress in biomimetics and biohybrid systems is made with broad societal consent.

  18. Fabrication and characterisation of a novel biomimetic anisotropic ceramic/polymer-infiltrated composite material.

    Science.gov (United States)

    Al-Jawoosh, Sara; Ireland, Anthony; Su, Bo

    2018-04-10

    To fabricate and characterise a novel biomimetic composite material consisting of aligned porous ceramic preforms infiltrated with polymer. Freeze-casting was used to fabricate and control the microstructure and porosity of ceramic preforms, which were subsequently infiltrated with 40-50% by volume UDMA-TEGDMA polymer. The composite materials were then subjected to characterisation, namely density, compression, three-point bend, hardness and fracture toughness testing. Samples were also subjected to scanning electron microscopy and computerised tomography (Micro-CT). Three-dimensional aligned honeycomb-like ceramic structures were produced and full interpenetration of the polymer phase was observed using micro-CT. Depending on the volume fraction of the ceramic preform, the density of the final composite ranged from 2.92 to 3.36g/cm 3 , compressive strength ranged from 206.26 to 253.97MPa, flexural strength from 97.73 to 145.65MPa, hardness ranged from 1.46 to 1.62GPa, and fracture toughness from 3.91 to 4.86MPam 1/2 . Freeze-casting provides a novel method to engineer composite materials with a unique aligned honeycomb-like interpenetrating structure, consisting of two continuous phases, inorganic and organic. There was a correlation between the ceramic fraction and the subsequent, density, strength, hardness and fracture toughness of the composite material. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  19. Biomimetic Composite Scaffold for Breast Reconstruction Following Tumor Resection

    National Research Council Canada - National Science Library

    Patrick, Jr, Charles W

    2005-01-01

    ... of life and outcomes are markedly improved. We hypothesized that a novel composite material consisting of silk fibroin and chitosan will act as a biomimetic scaffold amenable to in vivo adipogenesis. The specific aims (SAs...

  20. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2017-03-15

    cells, biomolecularinterfaces and bio-mimetic processes to direct the formation of new classes of complex, symbiotic, hierarchical materials with life...like structure and functionality. This aim is predicated on two principal goals: 1) use of living/fixed cells to direct the formation of new classes...self-sensing, repair and replication; simultaneously hard , tough, and strong protection systems. Natural materials exhibit well optimized property

  1. The state of the art in biomimetics

    International Nuclear Information System (INIS)

    Lepora, Nathan F; Prescott, Tony J; Verschure, Paul

    2013-01-01

    Biomimetics is a research field that is achieving particular prominence through an explosion of new discoveries in biology and engineering. The field concerns novel technologies developed through the transfer of function from biological systems. To analyze the impact of this field within engineering and related sciences, we compiled an extensive database of publications for study with network-based information analysis techniques. Criteria included publications by year and journal or conference, and subject areas judged by popular and common terms in titles. Our results reveal that this research area has expanded rapidly from less than 100 papers per year in the 1990s to several thousand papers per year in the first decade of this century. Moreover, this research is having impact across a variety of research themes, spanning robotics, computer science and bioengineering. In consequence, biomimetics is becoming a leading paradigm for the development of new technologies that will potentially lead to significant scientific, societal and economic impact in the near future. (perspective)

  2. The state of the art in biomimetics.

    Science.gov (United States)

    Lepora, Nathan F; Verschure, Paul; Prescott, Tony J

    2013-03-01

    Biomimetics is a research field that is achieving particular prominence through an explosion of new discoveries in biology and engineering. The field concerns novel technologies developed through the transfer of function from biological systems. To analyze the impact of this field within engineering and related sciences, we compiled an extensive database of publications for study with network-based information analysis techniques. Criteria included publications by year and journal or conference, and subject areas judged by popular and common terms in titles. Our results reveal that this research area has expanded rapidly from less than 100 papers per year in the 1990s to several thousand papers per year in the first decade of this century. Moreover, this research is having impact across a variety of research themes, spanning robotics, computer science and bioengineering. In consequence, biomimetics is becoming a leading paradigm for the development of new technologies that will potentially lead to significant scientific, societal and economic impact in the near future.

  3. S09 Symposium KK, Structure-Property Relationships in Biomineralized and Biomimetic Composites

    Energy Technology Data Exchange (ETDEWEB)

    David Kisailus; Lara Estroff; Himadri S. Gupta; William J. Landis; Pablo D. Zavattieri

    2010-06-07

    The technical presentations and discussions at this symposium disseminated and assessed current research and defined future directions in biomaterials research, with a focus on structure-function relationships in biological and biomimetic composites. The invited and contributed talks covered a diverse range of topics from fundamental biology, physics, chemistry, and materials science to potential applications in developing areas such as light-weight composites, multifunctional and smart materials, biomedical engineering, and nanoscaled sensors. The invited speakers were chosen to create a stimulating program with a mixture of established and junior faculty, industrial and academic researchers, and American and international experts in the field. This symposium served as an excellent introduction to the area for younger scientists (graduate students and post-doctoral researchers). Direct interactions between participants also helped to promote potential future collaborations involving multiple disciplines and institutions.

  4. Application and numerical simulation research on biomimetic drag-reducing technology for gas pipelining

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Deyuan; Luo Yuehao; Chen Huawei [Beihang Univ., Beijing (China). School of Mechanical Engineering and Automation

    2011-06-15

    For the purpose of increasing the transmission capacity of gas pipelines, the internal coating technology has been vastly put into application, and a remarkable benefit has been achieved so far. However, with the reduction of wall roughness, the small convex parts are all completely submerged in the viscous sublayer, the gas pipeline becomes a 'hydraulic smooth pipe', even by smoothing the coating surface further, it is difficult to reduce wall friction. Therefore, in order to increase the transportation capacity on the basis of internal coating, the new methods and technologies should be researched and investigated, and perhaps, the biomimetic drag-reducing technology is a good approach. In this paper, according to the planning parameters of the second pipeline of the West-to-East gas transmission project, the best drag reducing effect grooves are calculated and designed, and based on the characteristics and properties of internal coating (AW-01 epoxy resin), the Pre-Cured Micro- Rolling Technology (PCMRT) is discussed and presented, the rolling equipment is also designed and analyzed, the rolling process can be easily added on the available production line. Aiming at the field operating parameters of the gas pipeline in China, and the drag-reducing effect of the grooved surface is analyzed and discussed comprehensively. In addition, the economic benefit of adopting the biomimetic drag reduction technology is investigated. (orig.)

  5. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 28; Issue 6. Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF. S Bharati M K Sinha ... Optical microscopic and SEM observations revealed the deposition of Ca–P layer on the titanium alloy by both the methods. Thickness of coating ...

  6. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  7. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Science.gov (United States)

    Algieri, Catia; Drioli, Enrico; Guzzo, Laura; Donato, Laura

    2014-01-01

    An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template) was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported. PMID:25196110

  8. Cosmeceutical product consisting of biomimetic peptides: antiaging effects in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Gazitaeva ZI

    2017-01-01

    Full Text Available Zarema I Gazitaeva,1 Anna O Drobintseva,2 Yongji Chung,3 Victoria O Polyakova,2 Igor M Kvetnoy2 1Institute of Beauty Fijie, Moscow, 2Department of Pathomorphology, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Saint-Petersburg, Russian Federation; 3Caregen Co., Ltd. Research Center, Seoul, South Korea Background: Biomimetic peptides are synthetic compounds that are identical to amino acid sequence synthesized by an organism and can interact with growth factor receptors and provide antiaging clinical effects.Purpose: The purpose of this study was to investigate the effects of biomimetic peptides on the repair processes in the dermis using a model of cell cultures and in vivo.Patients and methods: Five female volunteers were subjected to the injection of biomimetic peptides 1 month prior to the abdominoplasty procedure. Cell culture, immunocytochemistry, and confocal microscopy methods were used in this study.Results: Biomimetic peptides regulate the synthesis of proteins Ki-67, type I procollagen, AP-1, and SIRT6 in cell cultures of human fibroblasts. They contribute to the activation of regeneration processes and initiation of mechanisms that prevent aging. Intradermal administration of complex of biomimetic peptides produces a more dense arrangement of collagen fibers in the dermis and increased size of the fibers after 2 weeks. The complex of biomimetic peptides was effective in the in vivo experiments, where an increase in the proliferative and synthetic activities of fibroblasts was observed.Conclusion: This investigation showed that the studied peptides have biological effects, testifying the stimulation of reparative processes in the skin under their control. Keywords: biomimetic peptides, skin aging, collagen, reparation processes, mesotherapy

  9. Biomimetic nanoparticles for inflammation targeting

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available There have been many recent exciting developments in biomimetic nanoparticles for biomedical applications. Inflammation, a protective response involving immune cells, blood vessels, and molecular mediators directed against harmful stimuli, is closely associated with many human diseases. As a result, biomimetic nanoparticles mimicking immune cells can help achieve molecular imaging and precise drug delivery to these inflammatory sites. This review is focused on inflammation-targeting biomimetic nanoparticles and will provide an in-depth look at the design of these nanoparticles to maximize their benefits for disease diagnosis and treatment.

  10. Biomimetics in Tribology

    Science.gov (United States)

    Gebeshuber, I. C.; Majlis, B. Y.; Stachelberger, H.

    Science currently goes through a major change. Biology is evolving as new Leitwissenschaft, with more and more causation and natural laws being uncovered. The term `technoscience' denotes the field where science and technology are inseparably interconnected, the trend goes from papers to patents, and the scientific `search for truth' is increasingly replaced by search for applications with a potential economic value. Biomimetics, i.e. knowledge transfer from biology to technology, is a field that has the potential to drive major technical advances. The biomimetic approach might change the research landscape and the engineering culture dramatically, by the blending of disciplines. It might substantially support successful mastering of current tribological challenges: friction, adhesion, lubrication and wear in devices and systems from the meter to the nanometer scale. A highly successful method in biomimectics, the biomimicry innovation method, is applied in this chapter to identify nature's best practices regarding two key issues in tribology: maintenance of the physical integrity of a system, and permanent as well as temporary attachment. The best practices identified comprise highly diverse organisms and processes and are presented in a number of tables with detailed references.

  11. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion

    International Nuclear Information System (INIS)

    Wang Zhenlong; Hang Guanrong; Wang Yangwei; Li Jian; Du Wei

    2008-01-01

    An embedded shape memory alloy (SMA) wire actuated biomimetic fin is presented, and based on this module for biomimetic underwater propulsion, a micro robot fish (146 mm in length, 30 g in weight) and a robot squid (242 mm in length, 360 g in weight) were developed. Fish swim by undulating their body and/or fins. Squid and cuttlefish can also swim by undulating their fins. To simplify engineering modeling, the undulating swimming movement is assumed to be the integration of the movements of many flexible bending segments connected in parallel or in series. According to this idea, a biomimetic fin which can bend flexibly was developed. The musculature of a cuttlefish fin was investigated to aid the design of the biomimetic fin. SMA wires act as 'muscle fibers' to drive the biomimetic fin just like the transverse muscles of the cuttlefish fin. During the bending phase, elastic energy is stored in the elastic substrate and skin, and during the return phase, elastic energy is released to power the return movement. Theorem analysis of the bending angle was performed to estimate the bending performance of the biomimetic fin. Experiments were carried out on single-face fins with latex rubber skin and silicone skin (SF-L and SF-S) to compare the bending angle, return time, elastic energy storage and reliability. Silicone was found to be the better skin. A dual-face fin with silicone skin (DF-S) was tested in water to evaluate the actuating performance and to validate the reliability. Thermal analysis of the SMA temperature was performed to aid the control strategy. The micro robot fish and robot squid employ one and ten DF-S, respectively. Swimming experiments with different actuation frequencies were carried out. The speed and steering radius of the micro robot fish reached 112 mm s −1 and 136 mm, respectively, and the speed and rotary speed of the robot squid reached 40 mm s −1 and 22° s −1 , respectively

  12. Phospholipid-sepiolite biomimetic interfaces for the immobilization of enzymes.

    Science.gov (United States)

    Wicklein, Bernd; Darder, Margarita; Aranda, Pilar; Ruiz-Hitzky, Eduardo

    2011-11-01

    Biomimetic interfaces based on phosphatidylcholine (PC) assembled to the natural silicate sepiolite were prepared for the stable immobilization of the urease and cholesterol oxidase enzymes. This is an important issue in practical advanced applications such as biocatalysis or biosensing. The supported lipid bilayer (BL-PC), prepared from PC adsorption, was used for immobilization of enzymes and the resulting biomimetic systems were compared to several other supported layers including a lipid monolayer (ML-PC), a mixed phosphatidylcholine/octyl-galactoside layer (PC-OGal), a cetyltrimethylammonium monolayer (CTA), and also to the bare sepiolite surface. Interfacial characteristics of these layers were investigated with a focus on layer packing density, hydrophilicity/hydrophobicity, and surface charge, which are being considered as key points for enzyme immobilization and stabilization of their biological activity. Cytoplasmic urease and membrane-bound cholesterol oxidase, which served as model enzymes, were immobilized on the different PC-based hybrid materials to probe their biomimetic character. Enzymatic activity was assessed by cyclic voltammetry and UV-vis spectrophotometry. The resulting enzyme/bio-organoclay hybrids were applied as active phase of a voltammetric urea biosensor and cholesterol bioreactor, respectively. Urease supported on sepiolite/BL-PC proved to maintain its enzymatic activity over several months while immobilized cholesterol oxidase demonstrated high reusability as biocatalyst. The results emphasize the good preservation of bioactivity due to the accommodation of the enzymatic system within the biomimetic lipid interface on sepiolite.

  13. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering

    International Nuclear Information System (INIS)

    Zhou, Changchun; Ye, Xingjiang; Fan, Yujiang; Tan, Yanfei; Qing, Fangzu; Zhang, Xingdong; Ma, Liang

    2014-01-01

    A three-level hierarchical calcium phosphate/collagen/hydroxyapatite (CaP/Col/HAp) scaffold for bone tissue engineering was developed using biomimetic synthesis. Porous CaP ceramics were first prepared as substrate materials to mimic the porous bone structure. A second-level Col network was then composited into porous CaP ceramics by vacuum infusion. Finally, a third-level HAp layer was achieved by biomimetic mineralization. The three-level hierarchical biomimetic scaffold was characterized using scanning electron microscopy, energy-dispersive x-ray spectra, x-ray diffraction and Fourier transform infrared spectroscopy, and the mechanical properties of the scaffold were evaluated using dynamic mechanical analysis. The results show that this scaffold exhibits a similar structure and composition to natural bone tissues. Furthermore, this three-level hierarchical biomimetic scaffold showed enhanced mechanical strength compared with pure porous CaP scaffolds. The biocompatibility and osteoinductivity of the biomimetic scaffolds were evaluated using in vitro and in vivo tests. Cell culture results indicated the good biocompatibility of this biomimetic scaffold. Faster and increased bone formation was observed in these scaffolds following a six-month implantation in the dorsal muscles of rabbits, indicating that this biomimetic scaffold exhibits better osteoinductivity than common CaP scaffolds. (papers)

  14. Biomimetic devices functionalized by membrane channel proteins

    Science.gov (United States)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  15. Biomimetics: determining engineering opportunities from nature

    Science.gov (United States)

    Fish, Frank E.

    2009-08-01

    The biomimetic approach seeks to incorporate designs based on biological organisms into engineered technologies. Biomimetics can be used to engineer machines that emulate the performance of organisms, particularly in instances where the organism's performance exceeds current mechanical technology or provides new directions to solve existing problems. For biologists, an adaptationist program has allowed for the identification of novel features of organisms based on engineering principles; whereas for engineers, identification of such novel features is necessary to exploit them for biomimetic development. Adaptations (leading edge tubercles to passively modify flow and high efficiency oscillatory propulsive systems) from marine animals demonstrate potential utility in the development of biomimetic products. Nature retains a store of untouched knowledge, which would be beneficial in advancing technology.

  16. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2010-01-01

    The paper illustrates how biomimetics can be applied in sensor design. Biomimetics is an engineering discipline that uses nature as an inspiration source for generating ideas for how to solve engineering problems. Using biomimetics involves a search for relevant cases, a proper analysis...... of biomimetic studies of sense organs in animals....

  17. Plastic deformation in nano-scale multilayer materials — A biomimetic approach based on nacre

    Energy Technology Data Exchange (ETDEWEB)

    Lackner, Juergen M., E-mail: juergen.lackner@joanneum.at [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Waldhauser, Wolfgang [JOANNEUM RESEARCH Forschungsges.m.b.H., Institute for Surface Technologies and Photonics, Functional Surfaces, Leobner Strasse 94, A-8712 Niklasdorf (Austria); Major, Boguslaw; Major, Lukasz [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, IMIM-PAN, ul. Reymonta 25, PL-30059 Krakow (Poland); Kot, Marcin [University of Science and Technology, AGH, Aleja Adama Mickiewicza 30, 30-059 Krakow (Poland)

    2013-05-01

    The paper reports about a biomimetic based comparison of deformation in magnetron sputtered multilayer coatings based on titanium (Ti), titanium nitride (TiN) and diamond-like carbon (DLC) layers and the deformation mechanisms in nacre of mollusc shells. Nacre as highly mineralized tissue combines high stiffness and hardness with high toughness, enabling resistance to fracture and crack propagation during tensile loading. Such behaviour is based on a combination of load transmission by tensile stressed aragonite tablets and shearing in layers between the tablets. Shearing in these polysaccharide and protein interlayers demands hydrated conditions. Otherwise, nacre has similar brittle behaviour to aragonite. To prevent shear failure, shear hardening occurs by progressive tablet locking due to wavy dovetail-like surface geometry of the tablets. Similar effects by shearing and strain hardening mechanisms were found for Ti interlayers between TiN and DLC layers in high-resolution transmission electron microscopy studies, performed in deformed zones beneath spherical indentations. 7 nm thin Ti films are sufficient for strong toughening of the whole multi-layered coating structure, providing a barrier for propagation of cracks, starting from tensile-stressed, hard, brittle TiN or DLC layers. - Highlights: • Biomimetic approach to TiN-diamond-like carbon (DLC) multilayers by sputtering • Investigation of deformation in/around hardness indents by HR-TEM • Plastic deformation with shearing in 7-nm thick Ti interlayers in TiN–DLC multilayers • Biomimetically comparable to nacre deformation.

  18. Biomimetically Reinforced Polyvinyl Alcohol-Based Hybrid Scaffolds for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Hwan D. Kim

    2017-11-01

    Full Text Available Articular cartilage has a very limited regeneration capacity. Therefore, injury or degeneration of articular cartilage results in an inferior mechanical stability, load-bearing capacity, and lubrication capability. Here, we developed a biomimetic scaffold consisting of macroporous polyvinyl alcohol (PVA sponges as a platform material for the incorporation of cell-embedded photocrosslinkable poly(ethylene glycol diacrylate (PEGDA, PEGDA-methacrylated chondroitin sulfate (PEGDA-MeCS; PCS, or PEGDA-methacrylated hyaluronic acid (PEGDA-MeHA; PHA within its pores to improve in vitro chondrocyte functions and subsequent in vivo ectopic cartilage tissue formation. Our findings demonstrated that chondrocytes encapsulated in PCS or PHA and loaded into macroporous PVA hybrid scaffolds maintained their physiological phenotypes during in vitro culture, as shown by the upregulation of various chondrogenic genes. Further, the cell-secreted extracellular matrix (ECM improved the mechanical properties of the PVA-PCS and PVA-PHA hybrid scaffolds by 83.30% and 73.76%, respectively, compared to their acellular counterparts. After subcutaneous transplantation in vivo, chondrocytes on both PVA-PCS and PVA-PHA hybrid scaffolds significantly promoted ectopic cartilage tissue formation, which was confirmed by detecting cells positively stained with Safranin-O and for type II collagen. Consequently, the mechanical properties of the hybrid scaffolds were biomimetically reinforced by 80.53% and 210.74%, respectively, compared to their acellular counterparts. By enabling the recapitulation of biomimetically relevant structural and functional properties of articular cartilage and the regulation of in vivo mechanical reinforcement mediated by cell–matrix interactions, this biomimetic material offers an opportunity to control the desired mechanical properties of cell-laden scaffolds for cartilage tissue regeneration.

  19. Biomimetic water-collecting materials inspired by nature.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang; Liu, Weimin

    2016-03-11

    Nowadays, water shortage is a severe issue all over the world, especially in some arid and undeveloped areas. Interestingly, a variety of natural creatures can collect water from fog, which can provide a source of inspiration to develop novel and functional water-collecting materials. Recently, as an increasingly hot research topic, bioinspired materials with the water collection ability have captured vast scientific attention in both practical applications and fundamental research studies. In this review, we summarize the mechanisms of water collection in various natural creatures and present the fabrications, functions, applications, and new developments of bioinspired materials in recent years. The theoretical basis related to the phenomenon of water collection containing wetting behaviors and water droplet transportations is described in the beginning, i.e., the Young's equation, Wenzel model, Cassie model, surface energy gradient model and Laplace pressure equation. Then, the water collection mechanisms of three typical and widely researched natural animals and plants are discussed and their corresponding bioinspired materials are simultaneously detailed, which are cactus, spider, and desert beetles, respectively. This is followed by introducing another eight animals and plants (butterfly, shore birds, wheat awns, green bristlegrass, the Cotula fallax plant, Namib grass, green tree frogs and Australian desert lizards) that are rarely reported, exhibiting water collection properties or similar water droplet transportation. Finally, conclusions and outlook concerning the future development of bioinspired fog-collecting materials are presented.

  20. Biomimetic synthesis of cellular SiC based ceramics from plant ...

    Indian Academy of Sciences (India)

    Unknown

    SiC based materials so derived can be used in structural applications and in designing high temperature filters and catalyst supports. Keywords. Biomimetic synthesis; carbonaceous biopreform; biomorphic Si–SiC ceramic composites; porous cellular SiC ceramics. 1. Introduction. In recent years, there has been tremendous ...

  1. Biomimetic synthesis of noble metal nanocrystals

    Science.gov (United States)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  2. BIOMIMETIC STRATEGIES IN ORGANIC SYNTHESIS. TERPENES

    Directory of Open Access Journals (Sweden)

    V. Kulcitki

    2012-12-01

    Full Text Available The current paper represents an outline of the selected contributions to the biomimetic procedures and approaches for the synthesis of terpenes with complex structure and diverse functionalisation pattern. These include homologation strategies, cyclisations, rearrangements, as well as biomimetic remote functionalisations.

  3. Formation of Biomimetic Hydroxyapatite Coating on Titanium Plates

    Directory of Open Access Journals (Sweden)

    Ievgen Volodymyrovych PYLYPCHUK

    2014-09-01

    Full Text Available Hydroxyapatite (HA has long been used as a coating material in the implant industry for orthopedic implant applications. HA is the natural inorganic constituent of bone and teeth. By coating titanium (base material of implant engineering because of its lightness and durability with hydroxyapatite, we can provide higher biocompatibility of titanium implants, according to HA ability to form a direct biochemical bond with living tissues. This article reports a biomimetic approach for coating hydroxyapatite with titanium A method of modifying the surface of titanium by organic modifiers (for creating functional groups on the surface, followed by formation "self-assembled" layer of biomimetic hydroxyapatite in simulated body fluid (SBF. FTIR and XPS confirmed the formation of hydroxyapatite coatings on titanium surface. Comparative study of the formation of HA on the surface of titanium plates modified by different functional groups: Ti(≡OH, Ti/(≡Si-OH and Ti/(≡COOH is conducted. It was found that the closest to natural stoichiometric hydroxyapatite Ca/P ratio was obtained on Ti/(≡COOH samples. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4974

  4. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  5. Characterization of a biomimetic coating on dense and porous titanium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, M.N. da; Pereira, L.C. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Ribeiro, A.A.; Oliveira, M.V. de, E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Andrade, M.C. de [Universidade do Estado do Rio de Janeiro (IPRJ/UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico

    2010-07-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  6. Foundation of the Outstanding Toughness in Biomimetic and Natural Spider Silk.

    Science.gov (United States)

    Anton, Arthur Markus; Heidebrecht, Aniela; Mahmood, Nasir; Beiner, Mario; Scheibel, Thomas; Kremer, Friedrich

    2017-12-11

    Spider dragline silk is distinguished through the highest toughness of all natural as well as artificial fiber materials. To unravel the toughness's molecular foundation and to enable manufacturing biomimetic analogues, we investigated the morphological and functional structure of recombinant fibers, which exhibit toughness similar to that of the natural template, on the molecular scale by means of vibrational spectroscopy and on the mesoscale by X-ray scattering. Whereas the former was used to identify protein secondary structures and their alignment in the natural as well as artificial silks, the latter revealed nanometer-sized crystallites on the higher structural level. Furthermore, a spectral red shift of a crystal-specific absorption band demonstrated that macroscopically applied stress is directly transferred to the molecular scale, where it is finally dissipated. Concerning this feature, both the natural as well as the biomimetic fibers are almost indistinguishable, giving rise to the toughness of both fiber materials.

  7. Characterization of a biomimetic coating on dense and porous titanium substrates

    International Nuclear Information System (INIS)

    Rocha, M.N. da; Pereira, L.C.; Andrade, M.C. de

    2010-01-01

    Bioactive materials have been studied as coatings on bioinert subtracts. Thus, it is possible to combine the bioactivity of materials such as calcium phosphate with the excellent mechanical properties of metals. Titanium (Ti) implants can be bioactivated by a biomimetic precipitation method. This study introduces a biomimetic method under a simplified solution (SS) with calcium and phosphorus ions. As substrates, commercially pure Ti sheet and micro-porous Ti samples produced by powder metallurgy were used. The substrates were submitted to chemical and heat treating and then immersed in the SS for 7, 14, 21 days. Surface roughness was evaluated by confocal scanning optical microscopy. Coating characterization was performed by scanning electron microscopy and high resolution X-ray diffraction (XRD). The results showed calcium phosphate crystal morphologies observed in all samples, which was confirmed by XRD phase identifications. These results reveal the solution potential for coating Ti substrates. (author)

  8. Diffraction from relief gratings on a biomimetic elastomer cast

    International Nuclear Information System (INIS)

    Guerrero, Raphael A.; Aranas, Erika B.

    2010-01-01

    Biomimetic optical elements combine the optimized designs of nature with the versatility of materials engineering. We employ a beetle carapace as the template for fabricating relief gratings on an elastomer substrate. Biological surface features are successfully replicated by a direct casting procedure. Far-field diffraction effects are discussed in terms of the Fraunhofer approximation in Fourier space.

  9. Models and prototypes of biomimetic devices to architectural purposes

    Directory of Open Access Journals (Sweden)

    Silvia Titotto

    2014-12-01

    Full Text Available This paper presents some results of an ongoing interdisciplinary research about models and prototypes of biomimetic devices via installations and the focus of this paper is to outline this research role in architectural purposes as it perpasses the cultural and heritage contexts by being a way of understanding and living in the world as well as taking place in the world as devices or environments that pass on to future generations to use, learn from and be inspired by. Both the theoretical and the experimental work done so far point out that installations built with association of laser cutting and rapid prototyping techniques might be on the best feasible ways for developing and testing new technologies involved in biomimetic devices to architectural purposes that put both tectonics and nature as their central theme. 

  10. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  11. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  12. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Bajraktari, Niada; Madsen, Henrik Tækker; Nielsen, K. H.

    consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...... a simple unit operation based on osmotic extraction of water from dilute peptide samples with no – or very little loss of sample material. A big challenge in modern water treatment is the handling of micropollutants. One example of these is the pollution of ground-/drinking water with pesticides, which...

  13. Biomimetic and bio-inspired uses of mollusc shells.

    Science.gov (United States)

    Morris, J P; Wang, Y; Backeljau, T; Chapelle, G

    2016-06-01

    Climate change and ocean acidification are likely to have a profound effect on marine molluscs, which are of great ecological and economic importance. One process particularly sensitive to climate change is the formation of biominerals in mollusc shells. Fundamental research is broadening our understanding of the biomineralization process, as well as providing more informed predictions on the effects of climate change on marine molluscs. Such studies are important in their own right, but their value also extends to applied sciences. Biominerals, organic/inorganic hybrid materials with many remarkable physical and chemical properties, have been studied for decades, and the possibilities for future improved use of such materials for society are widely recognised. This article highlights the potential use of our understanding of the shell biomineralization process in novel bio-inspired and biomimetic applications. It also highlights the potential for the valorisation of shells produced as a by-product of the aquaculture industry. Studying shells and the formation of biominerals will inspire novel functional hybrid materials. It may also provide sustainable, ecologically- and economically-viable solutions to some of the problems created by current human resource exploitation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Biomimetics applied to centering in micro-assembly

    DEFF Research Database (Denmark)

    Shu, L.H.; Lenau, Torben Anker; Hansen, Hans Nørgaard

    2003-01-01

    This paper describes the application of a biomimetic search method to develop ideas for centering objects in micro-assembly. Biomimetics involves the imitation of biological phenomena to solve problems. An obstacle to the use of biomimetics in engineering is knowledge of biological phenomena...... that is relevant to the problem at hand. The method described here starts with an engineering problem, and then systematically searches for analogous biological phenomena using functional keywords. This method is illustrated by finding and using analogies for the problem of positioning and centering objects during...

  15. Biomimetics Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    This book presents an overview of the general field of biomimetics - lessons from nature. It presents various examples of biomimetics, including roughness-induced superomniphobic surfaces which provide functionality of commercial interest. The major focus in the book is on lotus effect, rose petal effect, shark skin effect, and gecko adhesion.  For each example, the book first presents characterization of an object to understand how a natural object provides functionality, followed by modeling and then fabrication of structures in the lab using nature’s route to verify one’s understanding of nature and provide guidance for development of optimum structures. Once it is understood how nature does it, examples of fabrication of optimum structures using smart materials and fabrication techniques, are presented. Examples of nature inspired objects are also presented throughout.

  16. A Biomimetic Conductive Tendril for Ultrastretchable and Integratable Electronics, Muscles, and Sensors.

    Science.gov (United States)

    Cheng, Yin; Wang, Ranran; Chan, Kwok Hoe; Lu, Xin; Sun, Jing; Ho, Ghim Wei

    2018-04-24

    Adaptive tendril coiling of climbing plants has long inspired the artificial soft microsystem for actuation and morphing. The current bionic research efforts on tendril coiling focus on either the preparation of materials with the coiling geometry or the design of self-shaping materials. However, the realization of two key functional features of the tendril, the spring-like buffering connection and the axial contraction, remains elusive. Herein, we devise a conductive tendril by fusing conductive yarns into tendril configuration, bypassing the prevailing conductivity constraints and mechanical limitations. The conductive tendril not only inherits an electrophysiology buffering mechanics with exceptional conductance retention ability against extreme stretching but also exhibits excellent contractive actuation performance. The integrative design of the ultraelastic conductive tendril shows a combination of compliant mobility, actuation, and sensory capabilities. Such smart biomimetic material holds great prospects in the fields of ultrastretchable electronics, artificial muscles, and wearable bioelectronic therapeutics.

  17. Growth of aragonite calcium carbonate nanorods in the biomimetic anodic aluminum oxide template

    Science.gov (United States)

    Lee, Inho; Han, Haksoo; Lee, Sang-Yup

    2010-04-01

    In this study, a biomimetic template was prepared and applied for growing calcium carbonate (CaCO 3) nanorods whose shape and polymorphism were controlled. A biomimetic template was prepared by adsorbing catalytic dipeptides into the pores of an anodic aluminum oxide (AAO) membrane. Using this peptide-adsorbed template, mineralization and aggregation of CaCO 3 was carried out to form large nanorods in the pores. The nanorods were aragonite and had a structure similar to nanoneedle assembly. This aragonite nanorod formation was driven by both the AAO template and catalytic function of dipeptides. The AAO membrane pores promoted generation of aragonite polymorph and guided nanorod formation by guiding the nanorod growth. The catalytic dipeptides promoted the aggregation and further dehydration of calcium species to form large nanorods. Functions of the AAO template and catalytic dipeptides were verified through several control experiments. This biomimetic approach makes possible the production of functional inorganic materials with controlled shapes and crystalline structures.

  18. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    Science.gov (United States)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  19. Tuning biomimetic membrane barrier properties by hydrocarbon, cholesterol and polymeric additives

    DEFF Research Database (Denmark)

    Palanco, Marta Espina; Skovgaard, Nils; Hansen, Jesper Søndergaard

    2017-01-01

    The barrier properties of cellular membranes are increasingly attracting attention as a source of inspiration for designing biomimetic membranes. The broad range of potential technological applications makes the use of lipid and lately also polymeric materials a popular choice for constructing...... biomimetic membranes, where the barrier properties can be controlled by the composition of the membrane constituent elements. Here we investigate the membrane properties reported by the light-induced proton pumping activity of bacteriorhodopsin (bR) reconstituted in three vesicle systems of different...... membrane composition. Specifically we quantify how the resulting proton influx and efflux rates are influenced by the membrane composition using a variety of membrane modulators. We demonstrate that by adding hydrocarbons to vesicles with reconstituted bR formed from asolectin lipids the resulting...

  20. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Nguyen, Canh Toan; Phung, Hoa; Nguyen, Tien Dat; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Choi, Hyouk Ryeol; Nam, Jae-do

    2014-01-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators. (paper)

  1. Biomimetic design processes in architecture: morphogenetic and evolutionary computational design

    International Nuclear Information System (INIS)

    Menges, Achim

    2012-01-01

    Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies. (paper)

  2. Patterns of Growth—Biomimetics and Architectural Design

    OpenAIRE

    Petra Gruber; Barbara Imhof

    2017-01-01

    This paper discusses the approach of biomimetic design in architecture applied to the theme of growth in biology by taking two exemplary research projects at the intersection of arts and sciences. The first project, ‘Biornametics’, dealt with patterns from nature; the second project ‘Growing as Building (GrAB)’ took on biological growth as a specific theme for the transfer to architecture and the arts. Within a timeframe of five years (2011–2015), the research was conducted under the Program ...

  3. Bioinspired, biomimetic, double-enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate

    DEFF Research Database (Denmark)

    Lopez-Heredia, Marco A.; Łapa, Agata; Mendes, Ana Carina Loureiro

    2017-01-01

    Hydrogels are popular materials for tissue regeneration. Incorporation of biologically active substances, e.g. enzymes, is straightforward. Hydrogel mineralization is desirable for bone regeneration. Here, hydrogels of Gellan Gum (GG), a biocompatible polysaccharide, were mineralized biomimetically...... of osteoblast-like cells....

  4. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  5. Biomimetic High-Density Lipoproteins from a Gold Nanoparticle Template

    Science.gov (United States)

    Luthi, Andrea Jane

    For hundreds of years the field of chemistry has looked to nature for inspiration and insight to develop novel solutions for the treatment of human diseases. The ability of chemists to identify, mimic, and modifiy small molecules found in nature has led to the discovery and development of many important therapeutics. Chemistry on the nanoscale has made it possible to mimic natural, macromolecular structures that may also be useful for understanding and treating diseases. One example of such a structure is high-density lipoprotein (HDL). The goal of this work is to use a gold nanoparticle (Au NP) as a template to synthesize functional mimics of HDL and characterize their structure and function. Chapter 1 details the structure and function of natural HDL and how chemistry on the nanoscale provides new strategies for mimicking HDL. This Chapter also describes the first examples of using nanoparticles to mimic HDL. Chapter 2 reports the synthesis and characterization of biomimetic HDL using different sizes of Au NPs and different surface chemistries and how these variables can be used to tailor the properties of biomimetic HDL. From these studies the optimal strategy for synthesizing biomimetic HDL was determined. In Chapter 3, the optimization of the synthesis of biomimetic HDL is discussed as well as a full characterization of its structure. In addition, the work in this chapter shows that biomimetic HDL can be synthesized on a large scale without alterations to its structure or function. Chapter 4 focuses on understanding the pathways by which biomimetic HDL accepts cholesterol from macrophage cells. The results of these studies demonstrate that biomimetic HDL is able to accept cholesterol by both active and passive pathways of cholesterol efflux. In Chapter 5 the preliminary results of in vivo studies to characterize the pharmacokinetics and pharmacodynamics of biomimetic HDL are presented. These studies suggest that biomimetic HDL traffics through tissues prone to

  6. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways.

    Science.gov (United States)

    Walther, Andreas; Bjurhager, Ingela; Malho, Jani-Markus; Pere, Jaakko; Ruokolainen, Janne; Berglund, Lars A; Ikkala, Olli

    2010-08-11

    Although remarkable success has been achieved to mimic the mechanically excellent structure of nacre in laboratory-scale models, it remains difficult to foresee mainstream applications due to time-consuming sequential depositions or energy-intensive processes. Here, we introduce a surprisingly simple and rapid methodology for large-area, lightweight, and thick nacre-mimetic films and laminates with superior material properties. Nanoclay sheets with soft polymer coatings are used as ideal building blocks with intrinsic hard/soft character. They are forced to rapidly self-assemble into aligned nacre-mimetic films via paper-making, doctor-blading or simple painting, giving rise to strong and thick films with tensile modulus of 45 GPa and strength of 250 MPa, that is, partly exceeding nacre. The concepts are environmentally friendly, energy-efficient, and economic and are ready for scale-up via continuous roll-to-roll processes. Excellent gas barrier properties, optical translucency, and extraordinary shape-persistent fire-resistance are demonstrated. We foresee advanced large-scale biomimetic materials, relevant for lightweight sustainable construction and energy-efficient transportation.

  7. Reverse Engineering Nature to Design Biomimetic Total Knee Implants.

    Science.gov (United States)

    Varadarajan, Kartik Mangudi; Zumbrunn, Thomas; Rubash, Harry E; Malchau, Henrik; Muratoglu, Orhun K; Li, Guoan

    2015-10-01

    While contemporary total knee arthroplasty (TKA) provides tremendous clinical benefits, the normal feel and function of the knee is not fully restored. To address this, a novel design process was developed to reverse engineer "biomimetic" articular surfaces that are compatible with normal soft-tissue envelope and kinematics of the knee. The biomimetic articular surface is created by moving the TKA femoral component along in vivo kinematics of normal knees and carving out the tibial articular surface from a rectangular tibial block. Here, we describe the biomimetic design process. In addition, we utilize geometric comparisons and kinematic simulations to show that; (1) tibial articular surfaces of conventional implants are fundamentally incompatible with normal knee motion, and (2) the anatomic geometry of the biomimetic surface contributes directly to restoration of normal knee kinematics. Such biomimetic implants may enable us to achieve the long sought after goal of a "normal" knee post-TKA surgery. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Controlling the Biomimetic Implant Interface: Modulating Antimicrobial Activity by Spacer Design

    Science.gov (United States)

    Wisdom, Cate; Vanoosten, Sarah Kay; Boone, Kyle W.; Khvostenko, Dmytro; Arnold, Paul M.; Snead, Malcolm L.; Tamerler, Candan

    2016-08-01

    Surgical site infection is a common cause of post-operative morbidity, often leading to implant loosening, ultimately requiring revision surgery, increased costs and worse surgical outcomes. Since implant failure starts at the implant surface, creating and controlling the bio-material interface will play a critical role in reducing infection while improving host cell-to-implant interaction. Here, we engineered a biomimetic interface based upon a chimeric peptide that incorporates a titanium binding peptide (TiBP) with an antimicrobial peptide (AMP) into a single molecule to direct binding to the implant surface and deliver an antimicrobial activity against S. mutans and S. epidermidis, two bacteria which are linked with clinical implant infections. To optimize antimicrobial activity, we investigated the design of the spacer domain separating the two functional domains of the chimeric peptide. Lengthening and changing the amino acid composition of the spacer resulted in an improvement of minimum inhibitory concentration by a three-fold against S. mutans. Surfaces coated with the chimeric peptide reduced dramatically the number of bacteria, with up to a nine-fold reduction for S. mutans and a 48-fold reduction for S. epidermidis. Ab initio predictions of antimicrobial activity based on structural features were confirmed. Host cell attachment and viability at the biomimetic interface were also improved compared to the untreated implant surface. Biomimetic interfaces formed with this chimeric peptide offer interminable potential by coupling antimicrobial and improved host cell responses to implantable titanium materials, and this peptide based approach can be extended to various biomaterials surfaces.

  9. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  10. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  11. Characterization of biomimetically synthesized Hap-Gel nanocomposites as bone substitute

    International Nuclear Information System (INIS)

    Bera, Tanmay; Vivek, A N; Saraf, S K; Ramachandrarao, P

    2008-01-01

    There is an increasing demand for an affordable and easy-to-fabricate material to help patients having a long bone gap. In this paper, we describe the biomimetic synthesis of Hap-Gel in situ nanocomposite powders with varied proportions. Their biocompatibility and bone regeneration abilities were assessed on a rabbit model. The use of Hap crystals and Gel molecule, the soluble form of bone protein, makes the nanocomposites comparable to natural bone in constituents. The application of biomimetic principles improves crystal morphology and the interaction of Hap crystals with the Gel molecules as seen through in vitro characterizations. Out of the various compositions studied, one with 80:20 proportions of Hap to Gel proved to be closest to the characteristics of natural bone. The immunological response to this composite, assessed through intradermal inoculation, did not reveal any reaction. The in vivo implantation studies in the femoral condyle of the animals, as assessed by serial post-operative follow-up radiography and the histological evaluation, revealed a good biocompatibility and bone-regeneration ability of the material. Thus, nanocomposites of Hap-Gel have a great potential for serving as an effective and affordable biomaterial for bone grafting applications

  12. Full-Color Biomimetic Photonic Materials with Iridescent and Non-Iridescent Structural Colors.

    Science.gov (United States)

    Kawamura, Ayaka; Kohri, Michinari; Morimoto, Gen; Nannichi, Yuri; Taniguchi, Tatsuo; Kishikawa, Keiki

    2016-09-23

    The beautiful structural colors in bird feathers are some of the brightest colors in nature, and some of these colors are created by arrays of melanin granules that act as both structural colors and scattering absorbers. Inspired by the color of bird feathers, high-visibility structural colors have been created by altering four variables: size, blackness, refractive index, and arrangement of the nano-elements. To control these four variables, we developed a facile method for the preparation of biomimetic core-shell particles with melanin-like polydopamine (PDA) shell layers. The size of the core-shell particles was controlled by adjusting the core polystyrene (PSt) particles' diameter and the PDA shell thicknesses. The blackness and refractive index of the colloidal particles could be adjusted by controlling the thickness of the PDA shell. The arrangement of the particles was controlled by adjusting the surface roughness of the core-shell particles. This method enabled the production of both iridescent and non-iridescent structural colors from only one component. This simple and novel process of using core-shell particles containing PDA shell layers can be used in basic research on structural colors in nature and their practical applications.

  13. Contact kinematics of biomimetic scales

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Ranajay; Ebrahimi, Hamid; Vaziri, Ashkan, E-mail: vaziri@coe.neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-12-08

    Dermal scales, prevalent across biological groups, considerably boost survival by providing multifunctional advantages. Here, we investigate the nonlinear mechanical effects of biomimetic scale like attachments on the behavior of an elastic substrate brought about by the contact interaction of scales in pure bending using qualitative experiments, analytical models, and detailed finite element (FE) analysis. Our results reveal the existence of three distinct kinematic phases of operation spanning linear, nonlinear, and rigid behavior driven by kinematic interactions of scales. The response of the modified elastic beam strongly depends on the size and spatial overlap of rigid scales. The nonlinearity is perceptible even in relatively small strain regime and without invoking material level complexities of either the scales or the substrate.

  14. Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density.

    Science.gov (United States)

    Li, Jingchao; Li, Xiaomeng; Zhang, Jing; Kawazoe, Naoki; Chen, Guoping

    2017-07-01

    Nanostructured materials have drawn a broad attention for their applications in biomedical fields. Ligand-modified nanomaterials can well mimic the dynamic extracellular matrix (ECM) microenvironments to regulate cell functions and fates. Herein, ECM mimetic gold nanoparticles (Au NPs) with tunable surface arginine-glycine-aspartate (RGD) density are designed and synthesized to induce the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The biomimetic Au NPs with an average size of 40 nm shows good biocompatibility without affecting the cell proliferation in the studied concentration range. The RGD motifs on Au NPs surface facilitate cellular uptake of NPs into monolayer hMSCs through integrin-mediated endocytosis. The biomimetic NPs have a promotive effect on cartilaginous matrix production and marker gene expression in cell pellet culture, especially for the biomimetic Au NPs with high surface RGD density. This study provides a novel strategy for fabricating biomimetic NPs to regulate cell differentiation, which holds great potentials in tissue engineering and biomedical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Sustainability assessment of a lightweight biomimetic ceiling structure

    International Nuclear Information System (INIS)

    Antony, Florian; Speck, Thomas; Speck, Olga; Grießhammer, Rainer

    2014-01-01

    An intensive and continuous debate centres on the question of whether biomimetics has a specific potential to contribute to sustainability. In the context of a case study, the objective of this paper is to contribute to this debate by presenting the first systematic approach to assess the sustainability of a complex biomimetic product. The object of inquiry is a lecture hall's ribbed slab. Based on criteria suggested by the Association of German Engineers (VDI), it has been verified that the slab has been correctly defined as biomimetic. Moreover, a systematic comparative product sustainability assessment has been carefully carried out. For purposes of comparison, estimated static calculations have been performed for conceivable current state-of-the-art lightweight ceiling structures. Alternative options are a hollow article slab and a pre-stressed flat slab. Besides a detailed benefit analysis and a discussion of social effects, their costs have also been compared. A particularly detailed life cycle assessment on the respective environmental impacts has also been performed. Results show that the biomimetic ribbed slab built in the 1960s is able to keep up with the current state-of-the-art lightweight solutions in terms of sustainability. These promising results encourage a systematic search for a broad range of sustainable biomimetic solutions. (paper)

  16. Aloe vera Induced Biomimetic Assemblage of Nucleobase into Nanosized Particles

    Science.gov (United States)

    Chauhan, Arun; Zubair, Swaleha; Sherwani, Asif; Owais, Mohammad

    2012-01-01

    Aim Biomimetic nano-assembly formation offers a convenient and bio friendly approach to fabricate complex structures from simple components with sub-nanometer precision. Recently, biomimetic (employing microorganism/plants) synthesis of metal and inorganic materials nano-particles has emerged as a simple and viable strategy. In the present study, we have extended biological synthesis of nano-particles to organic molecules, namely the anticancer agent 5-fluorouracil (5-FU), using Aloe vera leaf extract. Methodology The 5-FU nano- particles synthesized by using Aloe vera leaf extract were characterized by UV, FT-IR and fluorescence spectroscopic techniques. The size and shape of the synthesized nanoparticles were determined by TEM, while crystalline nature of 5-FU particles was established by X-ray diffraction study. The cytotoxic effects of 5-FU nanoparticles were assessed against HT-29 and Caco-2 (human adenocarcinoma colorectal) cell lines. Results Transmission electron microscopy and atomic force microscopic techniques confirmed nano-size of the synthesized particles. Importantly, the nano-assembled 5-FU retained its anticancer action against various cancerous cell lines. Conclusion In the present study, we have explored the potential of biomimetic synthesis of nanoparticles employing organic molecules with the hope that such developments will be helpful to introduce novel nano-particle formulations that will not only be more effective but would also be devoid of nano-particle associated putative toxicity constraints. PMID:22403622

  17. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.

    Science.gov (United States)

    Chen, Luzhuo; Weng, Mingcen; Zhou, Zhiwei; Zhou, Yi; Zhang, Lingling; Li, Jiaxin; Huang, Zhigao; Zhang, Wei; Liu, Changhong; Fan, Shoushan

    2015-12-22

    In recent years, electroactive polymers have been developed as actuator materials. As an important branch of electroactive polymers, electrothermal actuators (ETAs) demonstrate potential applications in the fields of artificial muscles, biomimetic devices, robotics, and so on. Large-shape deformation, low-voltage-driven actuation, and ultrafast fabrication are critical to the development of ETA. However, a simultaneous optimization of all of these advantages has not been realized yet. Practical biomimetic applications are also rare. In this work, we introduce an ultrafast approach to fabricate a curling actuator based on a newly designed carbon nanotube and polymer composite, which completely realizes all of the above required advantages. The actuator shows an ultralarge curling actuation with a curvature greater than 1.0 cm(-1) and bending angle larger than 360°, even curling into a tubular structure. The driving voltage is down to a low voltage of 5 V. The remarkable actuation is attributed not only to the mismatch in the coefficients of thermal expansion but also to the mechanical property changes of materials during temperature change. We also construct an S-shape actuator to show the possibility of building advanced-structure actuators. A weightlifting walking robot is further designed that exhibits a fast-moving motion while lifting a sample heavier than itself, demonstrating promising biomimetic applications.

  18. 2012 Gordon Research Conference on Bioinspired Materials - Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Chilkoti, Ashutosk [Duke Univ., Durham, NC (United States)

    2012-06-29

    The emerging, interdisciplinary field of Bioinspired Materials focuses on developing a fundamental understanding of the synthesis, directed self-assembly and hierarchical organization of natural occurring materials, and uses this understanding to engineer new bioinspired artificial materials for diverse applications. The inaugural 2012 Gordon Conference on Bioinspired Materials seeks to capture the excitement of this burgeoning field by a cutting-edge scientific program and roster of distinguished invited speakers and discussion leaders who will address the key issues in the field. The Conference will feature a wide range of topics, such as materials and devices from DNA, reprogramming the genetic code for design of new materials, peptide, protein and carbohydrate based materials, biomimetic systems, complexity in self-assembly, and biomedical applications of bioinspired materials.

  19. Effect of distribution of striated laser hardening tracks on dry sliding wear resistance of biomimetic surface

    Science.gov (United States)

    Su, Wei; Zhou, Ti; Zhang, Peng; Zhou, Hong; Li, Hui

    2018-01-01

    Some biological surfaces were proved to have excellent anti-wear performance. Being inspired, Nd:YAG pulsed laser was used to create striated biomimetic laser hardening tracks on medium carbon steel samples. Dry sliding wear tests biomimetic samples were performed to investigate specific influence of distribution of laser hardening tracks on sliding wear resistance of biomimetic samples. After comparing wear weight loss of biomimetic samples, quenched sample and untreated sample, it can be suggested that the sample covered with dense laser tracks (3.5 mm spacing) has lower wear weight loss than the one covered with sparse laser tracks (4.5 mm spacing); samples distributed with only dense laser tracks or sparse laser tracks (even distribution) were proved to have better wear resistance than samples distributed with both dense and sparse tracks (uneven distribution). Wear mechanisms indicate that laser track and exposed substrate of biomimetic sample can be regarded as hard zone and soft zone respectively. Inconsecutive striated hard regions, on the one hand, can disperse load into small branches, on the other hand, will hinder sliding abrasives during wear. Soft regions with small range are beneficial in consuming mechanical energy and storing lubricative oxides, however, soft zone with large width (>0.5 mm) will be harmful to abrasion resistance of biomimetic sample because damages and material loss are more obvious on surface of soft phase. As for the reason why samples with even distributed bionic laser tracks have better wear resistance, it can be explained by the fact that even distributed laser hardening tracks can inhibit severe worn of local regions, thus sliding process can be more stable and wear extent can be alleviated as well.

  20. Biomimetic engineering: towards a self-assembled nanotechnology

    International Nuclear Information System (INIS)

    Braach-Maksvytis, V.

    2002-01-01

    Full text: The Nanoscience and Systems program was set up within CSIRO Telecommunications and Industrial Physics three years ago with an emphasis on biomimetic engineering, with the aim of developing new cross-disciplinary research in traditional physics areas. By combining expertise in experimental and theoretical physics with biology and chemistry, new approaches towards understanding and using nanoscale systems and devices are being explored. Research in the program ranges from using self-assembled lipid membranes for surface passivation of GaAs transistors to the electrical properties of nanoparticle films and devices. An overview of the research will be given, highlighting the diversity of nanotechnology applications

  1. Biomimetics: The early years | Michael | Annals of Ibadan ...

    African Journals Online (AJOL)

    Biomimetics is a relatively new term and an evolving discipline with the potentials for transforming every aspect of medicine. Biomimetics or biomimicry is the imitation of the models, systems, and elements of nature for the purpose of solving complex biological puzzles. Insights into biological processes have already resulted ...

  2. Triangular prism-shaped β-peptoid helices as unique biomimetic scaffolds

    DEFF Research Database (Denmark)

    Laursen, Jonas Striegler; Harris, Pernille; Fristrup, Peter

    2015-01-01

    β-Peptoids are peptidomimetics based on N-alkylated β-aminopropionic acid residues (or N-alkyl-β-alanines). This type of peptide mimic has previously been incorporated in biologically active ligands and has been hypothesized to be able to exhibit foldamer properties. Here we show, for the first t...... of novel biomimetics that display functional groups with high accuracy in three dimensions, which has potential for development of new functional materials....

  3. Additive Manufacturing of Biomedical Constructs with Biomimetic Structural Organizations.

    Science.gov (United States)

    Li, Xiao; He, Jiankang; Zhang, Weijie; Jiang, Nan; Li, Dichen

    2016-11-09

    Additive manufacturing (AM), sometimes called three-dimensional (3D) printing, has attracted a lot of research interest and is presenting unprecedented opportunities in biomedical fields, because this technology enables the fabrication of biomedical constructs with great freedom and in high precision. An important strategy in AM of biomedical constructs is to mimic the structural organizations of natural biological organisms. This can be done by directly depositing cells and biomaterials, depositing biomaterial structures before seeding cells, or fabricating molds before casting biomaterials and cells. This review organizes the research advances of AM-based biomimetic biomedical constructs into three major directions: 3D constructs that mimic tubular and branched networks of vasculatures; 3D constructs that contains gradient interfaces between different tissues; and 3D constructs that have different cells positioned to create multicellular systems. Other recent advances are also highlighted, regarding the applications of AM for organs-on-chips, AM-based micro/nanostructures, and functional nanomaterials. Under this theme, multiple aspects of AM including imaging/characterization, material selection, design, and printing techniques are discussed. The outlook at the end of this review points out several possible research directions for the future.

  4. Artificial Muscles Based on Electroactive Polymers as an Enabling Tool in Biomimetics

    Science.gov (United States)

    Bar-Cohen, Y.

    2007-01-01

    Evolution has resolved many of nature's challenges leading to working and lasting solutions that employ principles of physics, chemistry, mechanical engineering, materials science, and many other fields of science and engineering. Nature's inventions have always inspired human achievements leading to effective materials, structures, tools, mechanisms, processes, algorithms, methods, systems, and many other benefits. Some of the technologies that have emerged include artificial intelligence, artificial vision, and artificial muscles, where the latter is the moniker for electroactive polymers (EAPs). To take advantage of these materials and make them practical actuators, efforts are made worldwide to develop capabilities that are critical to the field infrastructure. Researchers are developing analytical model and comprehensive understanding of EAP materials response mechanism as well as effective processing and characterization techniques. The field is still in its emerging state and robust materials are still not readily available; however, in recent years, significant progress has been made and commercial products have already started to appear. In the current paper, the state-of-the-art and challenges to artificial muscles as well as their potential application to biomimetic mechanisms and devices are described and discussed.

  5. Acoustic beam control in biomimetic projector via velocity gradient

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Xiaowei; Dong, Erqian; Song, Zhongchang [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); Zhang, Yu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu; Tang, Liguo [Key Laboratory of Underwater Acoustic Communication and Marine Information Technology of the Ministry of Education, Xiamen University, Xiamen 361005 (China); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005 (China); Cao, Wenwu, E-mail: yuzhang@xmu.edu.cn, E-mail: dzk@psu.edu [Department of Mathematics and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Li, Songhai [Sanya Key Laboratory of Marin Mammal and Marine Bioacoustics, Sanya Institute of Deep-Sea Science and Engineering, Chinese Academy of Science, Sanya 57200 (China); Zhang, Sai [Faculty of Science, Jiangsu University, Zhenjiang 212013 (China)

    2016-07-04

    A biomimetic projector (BioP) based on computerized tomography of pygmy sperm whale's biosonar system has been designed using gradient-index (GRIN) material. The directivity of this BioP device was investigated as function of frequency and the velocity gradient of the GRIN material. A strong beam control over a broad bandwidth at the subwavelength scale has been achieved. Compared with a bare subwavelength source, the main lobe pressure of the BioP is about five times as high and the angular resolution is one order of magnitude better. Our results indicate that this BioP has excellent application potential in miniaturized underwater sonars.

  6. Biomimetic chemical sensors using bioengineered olfactory and taste cells.

    Science.gov (United States)

    Du, Liping; Zou, Ling; Zhao, Luhang; Wang, Ping; Wu, Chunsheng

    2014-01-01

    Biological olfactory and taste systems are natural chemical sensing systems with unique performances for the detection of environmental chemical signals. With the advances in olfactory and taste transduction mechanisms, biomimetic chemical sensors have achieved significant progress due to their promising prospects and potential applications. Biomimetic chemical sensors exploit the unique capability of biological functional components for chemical sensing, which are often sourced from sensing units of biological olfactory or taste systems at the tissue level, cellular level, or molecular level. Specifically, at the cellular level, there are mainly two categories of cells have been employed for the development of biomimetic chemical sensors, which are natural cells and bioengineered cells, respectively. Natural cells are directly isolated from biological olfactory and taste systems, which are convenient to achieve. However, natural cells often suffer from the undefined sensing properties and limited amount of identical cells. On the other hand, bioengineered cells have shown decisive advantages to be applied in the development of biomimetic chemical sensors due to the powerful biotechnology for the reconstruction of the cell sensing properties. Here, we briefly summarized the most recent advances of biomimetic chemical sensors using bioengineered olfactory and taste cells. The development challenges and future trends are discussed as well.

  7. Bio-mimetic mechanisms of natural hierarchical materials: a review.

    Science.gov (United States)

    Chen, Qiang; Pugno, Nicola M

    2013-03-01

    Natural selection and evolution develop a huge amount of biological materials in different environments (e.g. lotus in water and opuntia in desert). These biological materials possess many inspiring properties, which hint scientists and engineers to find some useful clues to create new materials or update the existing ones. In this review, we highlight some well-studied (e.g. nacre shell) and newly-studied (e.g. turtle shell) natural materials, and summarize their hierarchical structures and mechanisms behind their mechanical properties, from animals to plants. These fascinating mechanisms suggest to researchers to investigate natural materials deeply and broadly, and to design or fabricate new bio-inspired materials to serve our life. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Biomimetics as a design methodology – possibilities and challenges

    DEFF Research Database (Denmark)

    Lenau, Torben Anker

    2009-01-01

    Biomimetics – or bionik as it is called in parts of Europe – offer a number of promising opportunities and challenges for the designer. The paper investigates how biomimetics as a design methodology is used in engineering design by looking at examples of biological searches and highlight...

  9. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Ben Mitchinson

    2008-11-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  10. A Biomimetic Haptic Sensor

    Directory of Open Access Journals (Sweden)

    Martin J. Pearson

    2005-12-01

    Full Text Available The design and implementation of the periphery of an artificial whisker sensory system is presented. It has been developed by adopting a biomimetic approach to model the structure and function of rodent facial vibrissae. The artificial vibrissae have been formed using composite materials and have the ability to be actively moved or whisked. The sensory structures at the root of real vibrissae has been modelled and implemented using micro strain gauges and Digital Signal Processors. The primary afferents and vibrissal trigeminal ganglion have been modelled using empirical data taken from electrophysiological measurements, and implemented in real-time using a Field Programmable Gate Array. Pipelining techniques were employed to maximise the utility of the FPGA hardware. The system is to be integrated into a more complete whisker sensory model, including neural structures within the central nervous system, which can be used to orient a mobile robot.

  11. Biomimetics and the case of the remarkable ragworms

    Science.gov (United States)

    Hesselberg, Thomas

    2007-08-01

    Biomimetics is a rapidly growing field both as an academic and as an applied discipline. This paper gives a short introduction to the current status of the discipline before it describes three approaches to biomimetics: the mechanism-driven, which is based on the study of a specific mechanism; the focused organism-driven, which is based on the study of one function in a model organism; and the integrative organism-driven approach, where multiple functions of a model organism provide inspiration. The first two are established approaches and include many modern studies and the famous biomimetic discoveries of Velcro and the Lotus-Effect, whereas the last approach is not yet well recognized. The advantages of the integrative organism-driven approach are discussed using the ragworms as a case study. A morphological and locomotory study of these marine polychaetes reveals their biomimetic potential, which includes using their ability to move in slippery substrates as inspiration for novel endoscopes, using their compound setae as models for passive friction structures and using their three gaits, slow crawling, fast crawling, and swimming as well as their rapid burrowing technique to provide inspiration for the design of displacement pumps and multifunctional robots.

  12. Designing Biomimetic, Dissipative Material Systems

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, Anna C. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Whitesides, George M. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology; Brinker, C. Jeffrey [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering. Dept. of Chemistry. Dept. of Molecular Genetics and Microbiology. Center for Micro-Engineered Materials; Aranson, Igor S. [UChicago, LLC., Argonne, IL (United States); Chaikin, Paul [New York Univ. (NYU), NY (United States). Dept. of Physics; Dogic, Zvonimir [Brandeis Univ., Waltham, MA (United States). Dept. of Physics; Glotzer, Sharon [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering. Dept. of Materials Science and Engineering. Dept. of Macromolecular Science and Engineering Physics; Hammer, Daniel [Univ. of Pennsylvania, Philadelphia, PA (United States). School of Engineering and Applied Science; Irvine, Darrell [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Dept. of Materials Science and Engineering and Biological Engineering; Little, Steven R. [Univ. of Pittsburgh, PA (United States). Chemical Engineering Dept.; Olvera de la Cruz, Monica [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Parikh, Atul N. [Univ. of California, Davis, CA (United States). Dept. of Biomedical Engineering. Dept. of Chemical Engineering and Materials Science; Stupp, Samuel [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering. Dept. of Chemistry. Dept. of Medicine. Dept. of Biomedical Engineering; Szostak, Jack [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry and Chemical Biology

    2016-01-21

    Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.

  13. Biomimetic approaches for green tribology: from the lotus effect to blood flow control

    International Nuclear Information System (INIS)

    Maani, Nazanin; Rayz, Vitaliy S; Nosonovsky, Michael

    2015-01-01

    The research in Green tribology combines several areas including biomimetic tribomaterials and surfaces for controlled adhesion. Biomimetic surfaces mimic living nature and thus they are eco-friendly. The most famous biomimetic surface effect is the Lotus effect (reduction of water adhesion to a solid surface due to micro/nanostructuring of the solid surface). Several extensions of the Lotus effect have been discussed in the literature including the oleophobicity (repelling organic liquids such as oils), underwater oleophobicity to reduce fouling, and the shark skin effect (flow drag reduction due to specially oriented micro-riblets). Here we suggest a potentially important application of micro/nanostructured surfaces in the biomedical area: the micro/nanostructure controlled adhesion in blood flow. Blood is a suspension, and its adhesion properties are different from those of water and oil. For many cardiovascular applications, it is desirable to reduce stagnation and clotting of blood. Therefore, both the underwater oleophobicuity and shark-skin effect can be used. We discuss how computational fluid dynamics models can be used to investigate the structure–property relationships of surface pattern-controlled blood flow adhesion. (paper)

  14. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  15. Biomimetic routes to nanoscale-toughened oxide ceramics

    Science.gov (United States)

    Deschaume, Olivier

    In this work, a novel anion exchange technique has been developed and optimised in order to prepare extra-pure, hydroxide-free solutions of aluminium polyoxocations (A113 and A130) as well as for the preparation of nanosized, highly monodisperse aluminium hydroxide particles in the particle size range 20-200nm. In order for the evolution and composition of the resulting systems to be monitored, an array of characterisation techniques including 27A1 NMR, dynamic light scattering, po-tentiometry, conductometry and UV-Vis spectroscopy, have been implemented and complemented with successful data treatment strategies. The quantitative data obtained indicates that the static anion exchange method is a soft, environmentally friendly, low-cost, energy-saving and convenient procedure for the preparation of Al- containing model systems. The A1 species obtained can be used for high-precision model studies on A1 speciation, and serve as nanosize precursors to a variety of Al-containing materials. The use of these pure A1 precursors has a clear advantage in materials synthesis arising from an improved understanding and better control of A1 speciation. In a second development of the project, the model systems have been used in a nanotectonic approach to biomimetic materials synthesis, with possible applications to the optimisation of Al-containing materials such as ceramics or composite films. Bearing this aim in mind, the interactions of the prepared aluminium species with the model protein BSA and a bioelastomer, elastin, were monitored and the resulting composite materials characterised. The methodology developed for the synthesis and characterisation of pure A1 species and A1 species/biomolecule systems is a robust base for further studies spanning research fields such as Chemistry, Biology or Environmental sciences, and possess a large potential for application to industrial products and processes.

  16. Biomimetic modelling.

    OpenAIRE

    Vincent, Julian F V

    2003-01-01

    Biomimetics is seen as a path from biology to engineering. The only path from engineering to biology in current use is the application of engineering concepts and models to biological systems. However, there is another pathway: the verification of biological mechanisms by manufacture, leading to an iterative process between biology and engineering in which the new understanding that the engineering implementation of a biological system can bring is fed back into biology, allowing a more compl...

  17. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  18. Biomimetics of human movement: functional or aesthetic?

    International Nuclear Information System (INIS)

    Harris, Christopher M

    2009-01-01

    How should robotic or prosthetic arms be programmed to move? Copying human smooth movements is popular in synthetic systems, but what does this really achieve? We cannot address these biomimetic issues without a deep understanding of why natural movements are so stereotyped. In this article, we distinguish between 'functional' and 'aesthetic' biomimetics. Functional biomimetics requires insight into the problem that nature has solved and recognition that a similar problem exists in the synthetic system. In aesthetic biomimetics, nature is copied for its own sake and no insight is needed. We examine the popular minimum jerk (MJ) model that has often been used to generate smooth human-like point-to-point movements in synthetic arms. The MJ model was originally justified as maximizing 'smoothness'; however, it is also the limiting optimal trajectory for a wide range of cost functions for brief movements, including the minimum variance (MV) model, where smoothness is a by-product of optimizing the speed-accuracy trade-off imposed by proportional noise (PN: signal-dependent noise with the standard deviation proportional to mean). PN is unlikely to be dominant in synthetic systems, and the control objectives of natural movements (speed and accuracy) would not be optimized in synthetic systems by human-like movements. Thus, employing MJ or MV controllers in robotic arms is just aesthetic biomimetics. For prosthetic arms, the goal is aesthetic by definition, but it is still crucial to recognize that MV trajectories and PN are deeply embedded in the human motor system. Thus, PN arises at the neural level, as a recruitment strategy of motor units and probably optimizes motor neuron noise. Human reaching is under continuous adaptive control. For prosthetic devices that do not have this natural architecture, natural plasticity would drive the system towards unnatural movements. We propose that a truly neuromorphic system with parallel force generators (muscle fibres) and noisy

  19. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  20. A biomimetic jellyfish robot based on ionic polymer metal composite actuators

    International Nuclear Information System (INIS)

    Yeom, Sung-Weon; Oh, Il-Kwon

    2009-01-01

    A biomimetic jellyfish robot based on ionic polymer metal composite actuators was fabricated and activated to mimic real locomotive behavior with pulse and recovery processes. To imitate the curved shape of the jellyfish, a thermal treatment was applied to obtain a permanent initial deformation of a hemispherical form. The bio-inspired input signal was generated for mimicking real locomotion of the jellyfish. The vertical floating displacement and the thrust force of the biomimetic jellyfish robot under various input signals were measured and compared. The present results show that the bio-inspired electrical input signal with pulse-recovery process generates much higher floating velocity of the biomimetic jellyfish robot in comparison with pure sinusoidal excitations. The curved shape of the IPMC actuator through thermal treatments can be successfully applied to mimic the real biomimetic robots with smooth curves

  1. Synthetic Hydroxyapatite as a Biomimetic Oral Care Agent.

    Science.gov (United States)

    Enax, Joachim; Epple, Matthias

    Human tooth enamel consists mostly of minerals, primarily hydroxyapatite, Ca10(PO4)6(OH)2, and thus synthetic hydroxyapatite can be used as a biomimetic oral care agent. This review describes the synthesis and characterization of hydroxyapatite from a chemist's perspective and provides an overview of its current use in oral care, with a focus on dentin hypersensitivity, caries, biofilm management, erosion, and enamel lesions. Reviews and original research papers published in English and German were included. The efficiency of synthetic hydroxyapatite in occluding open dentin tubules, resulting in a protection for sensitive teeth, has been well documented in a number of clinical studies. The first corresponding studies on caries, biofilm management and erosion have provided evidence for a positive effect of hydroxyapatite either as a main or synergistic agent in oral care products. However, more in situ and in vivo studies are needed due to the complexity of the oral milieu and to further clarify existing results. Due to its biocompatibility and similarity to biologically formed hydroxyapatite in natural tooth enamel, synthetic hydroxyapatite is a promising biomimetic oral care ingredient that may extend the scope of preventive dentistry.

  2. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants

    International Nuclear Information System (INIS)

    Dicker, M P M; Bond, I P; Weaver, P M; Rossiter, J M

    2014-01-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation—actuation induced by, and controlled with light—through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex—yet extremely elegant—process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices. (paper)

  3. Acceleration of biomimetic mineralization to apply in bone regeneration

    International Nuclear Information System (INIS)

    Jayasuriya, A Champa; Shah, Chiragkumar; Ebraheim, Nabil A; Jayatissa, Ahalapitiya H

    2008-01-01

    The delivery of growth factors and therapeutic drugs into bone defects is a major clinical challenge. Biomimetically prepared bone-like mineral (BLM) containing a carbonated apatite layer can be used to deliver growth factors and drugs in a controlled manner. In the conventional biomimetic process, BLM can be deposited on the biodegradable polymer surfaces by soaking them in simulated body fluid (SBF) for 16 days or more. The aim of this study was to accelerate the biomimetic process of depositing BML in the polymer surfaces. We accelerated the deposition of mineral on 3D poly(lactic-co-glycolic acid) (PLGA) porous scaffolds to 36-48 h by modifying the biomimetic process parameters and applying surface treatments to PLGA scaffolds. The BLM was coated on scaffolds after surface treatments followed by incubation at 37 0 C in 15 ml of 5x SBF. We characterized the BLM created using the accelerated biomineralization process with wide angle x-ray diffraction (XRD), Fourier transform infrared (FTIR) microscopy, and scanning electron microscopy (SEM). The FTIR and XRD analyses of mineralized scaffolds show similarities between biomimetically prepared BLM, and bone bioapatite and carbonated apatite. We also found that the BLM layer on the surface of scaffolds was stable even after 21 days immersed in Tris buffered saline and cell culture media. This study suggests that BLM was stable for at least 3 weeks in both media, and therefore, BLM has a potential for use as a carrier for biological molecules for localized release applications as well as bone tissue engineering applications

  4. Hydroxyapatite coating on stainless steel by biomimetic method

    International Nuclear Information System (INIS)

    Dias, V.M.; Maia Filho, A.L.M.; Silva, G.; Sousa, E. de; Cardoso, K.R.

    2010-01-01

    Austenitic stainless steels are widely used in implants due to their high mechanical strength and corrosion, however, are not able to connect to bone tissue and were classified as bioinert. The calcium phosphate ceramics such as hydroxyapatite (HA) are bioactive materials and create strong chemical bonds with bone tissue, but its brittleness and low fracture toughness render its use in conditions of high mechanical stress. The coating of steel with the bioactive ceramics such as HA, combines the properties of interest of both materials, accelerating bone formation around the implant. In this study, austenitic stainless steel samples were coated with apatite using the biomimetic method. The effect of three different surface conditions of steel and the immersion time in the SBF solution on the coating was evaluated. The samples were characterized by SEM, EDS and X-ray diffraction. (author)

  5. Material design and structural color inspired by biomimetic approach

    International Nuclear Information System (INIS)

    Saito, Akira

    2011-01-01

    Generation of structural color is one of the essential functions realized by living organisms, and its industrial reproduction can result in numerous applications. From this viewpoint, the mechanisms, materials, analytical methods and fabrication technologies of the structural color are reviewed in this paper. In particular, the basic principles of natural photonic materials, the ideas developed from these principles, the directions of applications and practical industrial realizations are presented by summarizing the recent research results. (topical review)

  6. Framing biomimetics in a strategic orientation perspective (biopreneuring)

    DEFF Research Database (Denmark)

    Ulhøi, John Parm

    2015-01-01

    somewhat overlooked. This paper fills some of that void. Business orientation literature is applied to identify some of the key strategic aspects associated with commercial translations. In closing, this paper briefly sketches out some key implications for business research and for affected decision-makers.......This paper discusses how design originally rooted in biology can be translated into applications outside its original domain (biomimetics), and thus become strategically important for commercial organisations. This paper will also discuss how concepts from organisation and management theory can...

  7. Biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2009-01-01

    preventing the passage of others, a property critical for the overall conservation of the cells internal pH and salt concentration. Both ion and water channels are highly efficient membrane pore proteins capable of transporting solutes at very high rates, up to 109 molecules per second. Carrier proteins...... and biomimetic support matrix. Also the stability of the incorporated protein must be addressed and the protein-biomimetic matrix must be encapsulated in order to protect it and make it sufficiently stable in a final application. Here I will review and discuss these challenges and how they are met in some...

  8. Biomimetic electroactive polyimide with rose petal-like surface structure for anticorrosive coating application

    Directory of Open Access Journals (Sweden)

    W. F. Ji

    2017-08-01

    Full Text Available In this work, an electroactive polyimide (EPI coating with biomimetic surface structure of rose petal used in anticorrosion application was first presented. First of all, amino-capped aniline trimer (ACAT was synthesized by oxidative coupling reaction, followed by characterized through Fourier transform infrared spectroscooy (FTIR, liquid chromatography – mass spcerometry (LC-MS and proton nuclear magnetic resonance (1H-NMR spectroscopy. Subsequently, as-prepared ACAT was reacted with isopropylidenediphenoxy-bis(phthalic anhydride (BPADA to give electroactive poly(amic acid (EPAA. Moreover, poly(dimethylsiloxane (PDMS was used to be the soft negative template for pattern transfer from the surface of rose petal to the surface of polymer coating. The EPI coating with biomimetic structure was obtained by programmed heating the EPAA slurry casting onto the negative PDMS template. The anticorrosive performance of as-prepared biomimetic EPI coating was demonstrated by performing a series of electrochemical measurements (Tafel, Nyquist, and Bode plots upon cold-rolled steel (CRS electrode in a NaCl aqueous solution. It should be noted that the biomimetic EPI coating with rose petal-like structure was found to exhibit better anticorrosion than that of EPI without biomimetic structure. Moreover, the surface contact angle of water droplets for biomimetic EPI coating was found to be ~150°, which is significantly higher than that of EPI coating with smooth structure (~87°, indicating that the EPI coating with biomimetic structure reveals better hydrophobicity. The apparent mechanism for improved anticorrosive properties is twofold: (1 the biomimetic structure of EPI coating can repel water droplets. (2 electroactivity of EPI coating promotes the formation of densely passive layer of metal oxide on metallic surface.

  9. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  10. Advancing materials research

    International Nuclear Information System (INIS)

    Langford, H.D.; Psaras, P.A.

    1987-01-01

    The topics discussed in this volume include historical perspectives in the fields of materials research and development, the status of selected scientific and technical areas, and current topics in materials research. Papers are presentd on progress and prospects in metallurgical research, microstructure and mechanical properties of metals, condensed-matter physics and materials research, quasi-periodic crystals, and new and artifically structured electronic and magnetic materials. Consideration is also given to materials research in catalysis, advanced ceramics, organic polymers, new ways of looking at surfaces, and materials synthesis and processing

  11. Influence of the modulated two-step synthesis of biogenic hydroxyapatite on biomimetic products' surface

    Science.gov (United States)

    Miculescu, Florin; Mocanu, Aura Cătălina; Stan, George E.; Miculescu, Marian; Maidaniuc, Andreea; Cîmpean, Anisoara; Mitran, Valentina; Voicu, Stefan Ioan; Machedon-Pisu, Teodor; Ciocan, Lucian Toma

    2018-04-01

    Processing calcium-rich natural resources, such as marble and mussel seashells, into biomimetic products could constitute an environmentally-friendly and economically sustainable alternative given their geographical widespread. Hitherto, their value for biomedicine was demonstrated only for seashells, with the technological exploitation approaches still facing challenges with respect to the identification of generic synthesis parameters capable to allow the reproducible and designed synthesis of calcium phosphate at an industrial-ready level. In this study was targeted the optimization of Rathje synthesis method for the fabrication of biogenic calcium phosphates, by conveniently adjusting the chemical composition of employed reagents. It was shown that post-synthesis heat-treatment of compacted powders is the key step for inducing structural transformations suitable to attain biomimetic products for reconstructive orthopedic applications. The sintered materials have been multi-parametricallyevaluated from morpho-compositional, structural, wettability, mechanical and cytocompatibility points of view and the results have been cross-examined and discussed. Convenient and efficient preparation routes to produce biogenic hydroxyapatite have been identified. The functional performances of the as-prepared biogenic ceramics endorse their use as a solid and inexpensive alternative source material for the fabrication of various bone regenerative products and implant coatings.

  12. Effects of striated laser tracks on thermal fatigue resistance of cast iron samples with biomimetic non-smooth surface

    International Nuclear Information System (INIS)

    Tong, Xin; Zhou, Hong; Liu, Min; Dai, Ming-jiang

    2011-01-01

    In order to enhance the thermal fatigue resistance of cast iron materials, the samples with biomimetic non-smooth surface were processed by Neodymium:Yttrium Aluminum Garnet (Nd:YAG) laser. With self-controlled thermal fatigue test method, the thermal fatigue resistance of smooth and non-smooth samples was investigated. The effects of striated laser tracks on thermal fatigue resistance were also studied. The results indicated that biomimetic non-smooth surface was benefit for improving thermal fatigue resistance of cast iron sample. The striated non-smooth units formed by laser tracks which were vertical with thermal cracks had the best propagation resistance. The mechanisms behind these influences were discussed, and some schematic drawings were introduced to describe them.

  13. Highly penetrative liposome nanomedicine generated by a biomimetic strategy for enhanced cancer chemotherapy.

    Science.gov (United States)

    Jia, Yali; Sheng, Zonghai; Hu, Dehong; Yan, Fei; Zhu, Mingting; Gao, Guanhui; Wang, Pan; Liu, Xin; Wang, Xiaobing; Zheng, Hairong

    2018-04-25

    Liposome nanomedicine has been successfully applied for cancer chemotherapy in patients. However, in general, the therapeutic efficacy is confined by its limited accumulation and penetration in solid tumors. Here, we established a biomimetic strategy for the preparation of highly penetrative liposome nanomedicine for enhanced chemotherapeutic efficacy. By applying this unique type of nanomedicine, membrane proteins on the cancer cells are used as highly penetrative targeting ligands. Biomimetic liposomes are highly stable, exhibiting a superior in vitro homologous targeting ability, and a 2.25-fold deeper penetration in 3D tumor spheroids when compared to conventional liposome nanomedicine. The fluorescence/photoacoustic dual-modal imaging approach demonstrated enhanced tumor accumulation and improved tumor penetration of the biomimetic liposome in C6 glioma tumor-bearing nude mice. Following the intravenous administration of biomimetic liposome nanomedicine, the tumor inhibition rate reached up to 93.3%, which was significantly higher when compared to that of conventional liposome nanomedicine (69.3%). Moreover, histopathological analyses demonstrated that biomimetic liposome nanomedicine has limited side effects. Therefore, these results suggested that a cancer cell membrane-based biomimetic strategy may provide a breakthrough approach for enhancing drug penetration and improving treatment efficacy, holding a great promise for further clinical studies.

  14. Small Molecule and Polymer Effects on Bio-mimetic Sensors

    OpenAIRE

    Garcia, Ignacio J.; Branan, Nicole; Wells, Todd A.

    2005-01-01

    Formation of biomimetic membranes for the purpose of producing a protein based infrared biosensor has proven to be a difficult obstacle. Several methods have been employed and reproducibility is becoming more frequent. The use of polystyrene as an adhesion layer between the biomimetic and diamond surfaces is the most reliable form of reproducibility yet encountered. Unique properties of acetylcholine esterase based biosensors include infrared absorption bands that are not present in either th...

  15. Ionic Colloidal Molding as a Biomimetic Scaffolding Strategy for Uniform Bone Tissue Regeneration.

    Science.gov (United States)

    Zhang, Jian; Jia, Jinpeng; Kim, Jimin P; Shen, Hong; Yang, Fei; Zhang, Qiang; Xu, Meng; Bi, Wenzhi; Wang, Xing; Yang, Jian; Wu, Decheng

    2017-05-01

    Inspired by the highly ordered nanostructure of bone, nanodopant composite biomaterials are gaining special attention for their ability to guide bone tissue regeneration through structural and biological cues. However, bone malformation in orthopedic surgery is a lingering issue, partly due to the high surface energy of traditional nanoparticles contributing to aggregation and inhomogeneity. Recently, carboxyl-functionalized synthetic polymers have been shown to mimic the carboxyl-rich surface motifs of non-collagenous proteins in stabilizing hydroxyapatite and directing intrafibrillar mineralization in-vitro. Based on this biomimetic approach, it is herein demonstrated that carboxyl functionalization of poly(lactic-co-glycolic acid) can achieve great material homogeneity in nanocomposites. This ionic colloidal molding method stabilizes hydroxyapatite precursors to confer even nanodopant packing, improving therapeutic outcomes in bone repair by remarkably improving mechanical properties of nanocomposites and optimizing controlled drug release, resulting in better cell in-growth and osteogenic differentiation. Lastly, better controlled biomaterial degradation significantly improved osteointegration, translating to highly regular bone formation with minimal fibrous tissue and increased bone density in rabbit radial defect models. Ionic colloidal molding is a simple yet effective approach of achieving materials homogeneity and modulating crystal nucleation, serving as an excellent biomimetic scaffolding strategy to rebuild natural bone integrity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A low-cost, high-yield fabrication method for producing optimized biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2009-01-01

    We present a low-cost, large-scale method of fabricating biomimetic dry adhesives. This process is useful because it uses all photosensitive polymers with minimum fabrication costs or complexity to produce molds for silicone-based dry adhesives. A thick-film lift-off process is used to define molds using AZ 9260 photoresist, with a slow acting, deep UV sensitive material, PMGI, used as both an adhesion promoter for the AZ 9260 photoresist and as an undercutting material to produce mushroom-shaped fibers. The benefits to this process are ease of fabrication, wide range of potential layer thicknesses, no special surface treatment requirements to demold silicone adhesives and easy stripping of the full mold if process failure does occur. Sylgard® 184 silicone is used to cast full sheets of biomimetic dry adhesives off 4'' diameter wafers, and different fiber geometries are tested for normal adhesion properties. Additionally, failure modes of the adhesive during fabrication are noted and strategies for avoiding these failures are discussed. We use this fabrication method to produce different fiber geometries with varying cap diameters and test them for normal adhesion strengths. The results indicate that the cap diameters relative to post diameters for mushroom-shaped fibers dominate the adhesion properties

  17. Photoexcited iron porphyrin as biomimetic catalysts

    International Nuclear Information System (INIS)

    Bartocci, C.; Maldotti, A.; Varani, G.; Consiglio Nazionale delle Ricerche, Ferrara

    1996-01-01

    Photoexcited iron porphyrins can be of some interest in both fine and industrial chemistry in view of the preparation of new efficient biomimetic catalysts, working with high selectivity under mild temperature and pressure

  18. Energy-based and biomimetic robotics

    NARCIS (Netherlands)

    Folkertsma, Gerrit Adriaan

    2017-01-01

    All physical systems interact by exchanging power, or energy. This energy can be explicitly taken into account when designing robotic systems, in dynamic models of systems and controllers, leading to more insight in energy-related effects. In this thesis, a biomimetic cheetah robot is developed, by

  19. Iron porphyrin-modified PVDF membrane as a biomimetic material and its effectiveness on nitric oxide binding

    Science.gov (United States)

    Can, Faruk; Demirci, Osman Cahit; Dumoulin, Fabienne; Erhan, Elif; Arslan, Leyla Colakerol; Ergenekon, Pınar

    2017-10-01

    Nitric oxide (NO) is a reactive gas well-known as an air pollutant causing severe environmental problems. NO is also an important signaling molecule having a strong affinity towards heme proteins in the body. Taking this specialty as a model, a biomimetic membrane was developed by modification of the membrane surface with iron-porphyrin which depicts very similar structure to heme proteins. In this study, PVDF membrane was coated with synthesized (4-carboxyphenyl)-10,15,20-triphenyl-porphyrin iron(III) chloride (FeCTPP) to promote NO fixation on the surface. The coated membrane was characterized in terms of ATR-IR spectra, contact angle measurement, chemical composition, and morphological structure. Contact angle of original PVDF first decreased sharply after plasma treatment and surface polymerization steps but after incorporation of FeCTPP, the surface acquired its hydrophobicity again. NO binding capability of modified membrane surface was evaluated on the basis of X-ray Photoelectron. Upon exposure to NO gas, a chemical shift of Fe+3 and appearance of new N peak was observed due to the electron transfer from NO ligand to Fe ion with the attachment of nitrosyl group to FeCTPP. This modification brings the functionality to the membrane for being used in biological systems such as membrane bioreactor material in biological NO removal technology.

  20. Selected papers from the 7th International Conference on Biomimetics, Artificial Muscles and Nano-bio (BAMN2013)

    Science.gov (United States)

    Shahinpoor, Mohsen; Oh, Ilkwon

    2014-07-01

    The 7th International Congress on Biomimetics, Artificial Muscles and Nano-Bio was held on the magnificent and beautiful Jeju Island in Korea on 26-30 August 2013. In June 2007, the volcanic island and lava tube cave systems were designated as UNESCO World Natural Heritage Sites for their natural beauty and unique geographical values. The aim of the congress was to offer high-level lectures, extensive discussions and communications covering the state-of-the-art on biomimetics, artificial muscles, and nano-bio technologies providing an overview of their potential applications in the industrial, biomedical, scientific and robotic fields. This conference provided a necessary platform for an ongoing dialogue between researchers from different areas (chemistry, physics, biology, medicine, engineering, robotics, etc) within biomimetics, artificial muscle and nano-bio technologies. This special issue of Smart Materials and Structures is devoted to a selected number of research papers that were presented at BAMN2013. Of the 400 or so papers and over 220 posters presented at this international congress, 15 papers were finally received, reviewed and accepted for this special issue, following the regular peer review procedures of the journal. The special issue covers polymeric artificial muscles, electroactive polymers, multifunctional nanocomposites, and their applications. In particular, electromechanical performance and other characteristics of ionic polymer-metal composites (IPMCs) fabricated with various commercially available ion exchange membranes are discussed. Additionally, the control of free-edge interlaminar stresses in composite laminates using piezoelectric actuators is elaborated on. Further, the electrode effects of a cellulose-based electroactive paper energy harvester are described. Next, a flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators is discussed. A broad coverage of bio-applications of IPMC transducers is

  1. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Science.gov (United States)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang

    2017-08-01

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion.

  2. A review of underwater bio-mimetic propulsion: cruise and fast-start

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Li-Ming; Cao, Yong-Hui; Pan, Guang, E-mail: PanGuang_010@163.com [School of Marine Science and Technology, Northwestern Polytechnical University, Xian 710072 (China)

    2017-08-15

    This paper reviews recent developments in the understanding of underwater bio-mimetic propulsion. Two impressive models of underwater propulsion are considered: cruise and fast-start. First, we introduce the progression of bio-mimetic propulsion, especially underwater propulsion, where some primary conceptions are touched upon. Second, the understanding of flapping foils, considered as one of the most efficient cruise styles of aquatic animals, is introduced, where the effect of kinematics and the shape and flexibility of foils on generating thrust are elucidated respectively. Fast-start propulsion is always exhibited when predator behaviour occurs, and we provide an explicit introduction of corresponding zoological experiments and numerical simulations. We also provide some predictions about underwater bio-mimetic propulsion. (review)

  3. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Science.gov (United States)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E.

    2013-09-01

    Biomineralization of hydroxyapatite (Ca10(PO4)6(OH)2) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 × 10-3 to 3.1 × 10-3 OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  4. Biomimetic nanoparticles with polynucleotide and PEG mixed-monolayers enhance calcium phosphate mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Kayla B.; McHugh, Sean M.; Dapsis, Katherine J.; Petty, Alexander R.; Gerdon, Aren E., E-mail: gerdoar@emmanuel.edu [Emmanuel College (United States)

    2013-09-15

    Biomineralization of hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is of significant importance in biomedical applications such as bone and dental repair, and biomimetic control of mineral formation may lead to more effective restorative procedures. Gold nanoparticles are functional scaffolds on which to assemble multi-component monolayers capable of mimicking protein activity in the templated synthesis of calcium phosphate. The goal of this research was to explore nanoparticle templates with mixed-monolayers of uncharged polar polyethylene glycol (PEG) molecules and highly charged polynucleotide and amino acid molecules in their ability to influence mineralization rates and mineral particle size and morphology. This research demonstrates through time-resolved optical density and dynamic light scattering measurements that the combination of tiopronin, PEG, and DNA presented on a nanoparticle surface decreases nanoparticle aggregation from 59 to 21 nm solvated radius, increases mineralization kinetics from 1.5 Multiplication-Sign 10{sup -3} to 3.1 Multiplication-Sign 10{sup -3} OD/min, and decreases mineral particle size from 685 to 442 nm average radius. FT-IR and TEM data demonstrate that mineralized material, while initially amorphous, transforms to a semi-crystalline material when guided by template interactions. This demonstrates that surface-tailored monolayer protected cluster scaffolds are successful and controllable mineralization templates with further potential for biomedical applications involving calcium phosphate and other biomaterials.

  5. Cationic amino acids specific biomimetic silicification in ionic liquid: a quest to understand the formation of 3-D structures in diatoms.

    Directory of Open Access Journals (Sweden)

    Rajesh Ramanathan

    Full Text Available The intricate, hierarchical, highly reproducible, and exquisite biosilica structures formed by diatoms have generated great interest to understand biosilicification processes in nature. This curiosity is driven by the quest of researchers to understand nature's complexity, which might enable reproducing these elegant natural diatomaceous structures in our laboratories via biomimetics, which is currently beyond the capabilities of material scientists. To this end, significant understanding of the biomolecules involved in biosilicification has been gained, wherein cationic peptides and proteins are found to play a key role in the formation of these exquisite structures. Although biochemical factors responsible for silica formation in diatoms have been studied for decades, the challenge to mimic biosilica structures similar to those synthesized by diatoms in their natural habitats has not hitherto been successful. This has led to an increasingly interesting debate that physico-chemical environment surrounding diatoms might play an additional critical role towards the control of diatom morphologies. The current study demonstrates this proof of concept by using cationic amino acids as catalyst/template/scaffold towards attaining diatom-like silica morphologies under biomimetic conditions in ionic liquids.

  6. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  7. Development of solid supports for electrochemical study of biomimetic membrane systems

    DEFF Research Database (Denmark)

    Mech-Dorosz, Agnieszka

    cushion directly on a gold electrode microchip and on a polyethersulfone (PES) support grafted by in situ polymerized hydrogel. Both strategies proved to be suitable for immobilization of functional bRh loaded lipo-polymersomes. Amperometric monitoring showed that the PES membrane support facilitated......Biomimetic membranes are model membrane systems used as an experimental tool to study fundamental cellular membrane physics and functionality of reconstituted membrane proteins. By exploiting the properties of biomimetic membranes resembling the functions of biological membranes, it is possible...... to construct biosensors for high-throughput screening of potential drug candidates. Among a variety of membrane model systems used for biomimetic approach, lipid bilayers in the form of black lipid membranes (BLMs) and lipo-polymersomes (vesicle structures composed of lipids and polymers), both...

  8. Biological activity of lactoferrin-functionalized biomimetic hydroxyapatite nanocrystals

    Directory of Open Access Journals (Sweden)

    Nocerino N

    2014-03-01

    Full Text Available Nunzia Nocerino,1 Andrea Fulgione,1 Marco Iannaccone,1 Laura Tomasetta,1 Flora Ianniello,1 Francesca Martora,1 Marco Lelli,2 Norberto Roveri,2 Federico Capuano,3 Rosanna Capparelli1 1Department of Agriculture Special Biotechnology Center Federico II, CeBIOTEC Biotechnology, University of Naples Federico II, Naples, 2Department of Chemistry, G Ciamician, Alma Mater Studiorum, University of Bologna, Bologna, 3Department of Food Inspection IZS ME, Naples, Italy Abstract: The emergence of bacterial strains resistant to antibiotics is a general public health problem. Progress in developing new molecules with antimicrobial properties has been made. In this study, we evaluated the biological activity of a hybrid nanocomposite composed of synthetic biomimetic hydroxyapatite surface-functionalized by lactoferrin (LF-HA. We evaluated the antimicrobial, anti-inflammatory, and antioxidant properties of LF-HA and found that the composite was active against both Gram-positive and Gram-negative bacteria, and that it modulated proinflammatory and anti-inflammatory responses and enhanced antioxidant properties as compared with LF alone. These results indicate the possibility of using LF-HA as an antimicrobial system and biomimetic hydroxyapatite as a candidate for innovative biomedical applications. Keywords: lactoferrin, hydroxyapatite nanocrystals, biomimetism, biological activity, drug delivery

  9. Isotope research materials

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Preparation of research isotope materials is described. Topics covered include: separation of tritium from aqueous effluents by bipolar electrolysis; stable isotope targets and research materials; radioisotope targets and research materials; preparation of an 241 Am metallurgical specimen; reactor dosimeters; ceramic and cermet development; fission-fragment-generating targets of 235 UO 2 ; and wire dosimeters for Westinghouse--Bettis

  10. Tunable hydrodynamic characteristics in microchannels with biomimetic superhydrophobic (lotus leaf replica) walls.

    Science.gov (United States)

    Dey, Ranabir; Raj M, Kiran; Bhandaru, Nandini; Mukherjee, Rabibrata; Chakraborty, Suman

    2014-05-21

    The present work comprehensively addresses the hydrodynamic characteristics through microchannels with lotus leaf replica (exhibiting low adhesion and superhydrophobic properties) walls. The lotus leaf replica is fabricated following an efficient, two-step, soft-molding process and is then integrated with rectangular microchannels. The inherent biomimetic, superhydrophobic surface-liquid interfacial hydrodynamics, and the consequential bulk flow characteristics, are critically analyzed by the micro-particle image velocimetry technique. It is observed that the lotus leaf replica mediated microscale hydrodynamics comprise of two distinct flow regimes even within the low Reynolds number paradigm, unlike the commonly perceived solely apparent slip-stick dominated flows over superhydrophobic surfaces. While the first flow regime is characterized by an apparent slip-stick flow culminating in an enhanced bulk throughput rate, the second flow regime exhibits a complete breakdown of the aforementioned laminar and uni-axial flow model, leading to a predominantly no-slip flow. Interestingly, the critical flow condition dictating the transition between the two hydrodynamic regimes is intrinsically dependent on the micro-confinement effect. In this regard, an energetically consistent theoretical model is also proposed to predict the alterations in the critical flow condition with varying microchannel configurations, by addressing the underlying biomimetic surface-liquid interfacial conditions. Hence, the present research endeavour provides a new design-guiding paradigm for developing multi-functional microfluidic devices involving biomimetic, superhydrophobic surfaces, by judicious exploitation of the tunable hydrodynamic characteristics in the two regimes.

  11. Challenges in Commercializing Biomimetic Membranes.

    Science.gov (United States)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine; Braekevelt, Sylvie; Lauritzen, Karsten; Hélix-Nielsen, Claus

    2015-11-05

    The discovery of selective water channel proteins-aquaporins-has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market-in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  12. Major Intrinsic Proteins in Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus

    2010-01-01

    or as sensor devices based on e.g., the selective permeation of metalloids. In principle a MIP based membrane sensor/separation device requires the supporting biomimetic matrix to be virtually impermeable to anything but water or the solute in question. In practice, however, a biomimetic support matrix....../separation technology, a unique class of membrane transport proteins is especially interesting the major intrinsic proteins (MIPs). Generally, MIPs conduct water molecules and selected solutes in and out of the cell while preventing the passage of other solutes, a property critical for the conservation of the cells...... internal pH and salt concentration. Also known as water channels or aquaporins they are highly efficient membrane pore proteins some of which are capable of transporting water at very high rates up to 109 molecules per second. Some MIPs transport other small, uncharged solutes, such as glycerol and other...

  13. Biomimetic nanoparticles: preparation, characterization and biomedical applications

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2010-04-01

    Full Text Available Ana Maria Carmona-RibeiroBiocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, BrazilAbstract: Mimicking nature is a powerful approach for developing novel lipid-based devices for drug and vaccine delivery. In this review, biomimetic assemblies based on natural or synthetic lipids by themselves or associated to silica, latex or drug particles will be discussed. In water, self-assembly of lipid molecules into supramolecular structures is fairly well understood. However, their self-assembly on a solid surface or at an interface remains poorly understood. In certain cases, hydrophobic drug granules can be dispersed in aqueous solution via lipid adsorption surrounding the drug particles as nanocapsules. In other instances, hydrophobic drug molecules attach as monomers to borders of lipid bilayer fragments providing drug formulations that are effective in vivo at low drug-to-lipid-molar ratio. Cationic biomimetic particles offer suitable interfacial environment for adsorption, presentation and targeting of biomolecules in vivo. Thereby antigens can effectively be presented by tailored biomimetic particles for development of vaccines over a range of defined and controllable particle sizes. Biomolecular recognition between receptor and ligand can be reconstituted by means of receptor immobilization into supported lipidic bilayers allowing isolation and characterization of signal transduction steps.Keywords: cationic lipid, phospholipids, bilayer fragments, vesicles, silica, polymeric particles, antigens, novel cationic immunoadjuvants, drugs

  14. Artificial cilia of magnetically tagged polymer nanowires for biomimetic mechanosensing

    International Nuclear Information System (INIS)

    Schroeder, P; Schotter, J; Shoshi, A; Eggeling, M; Brückl, H; Bethge, O; Hütten, A

    2011-01-01

    Polymeric nanowires of polypyrrole have been implemented as artificial cilia on giant-magneto-resistive multilayer sensors for a biomimetic sensing approach. The arrays were tagged with a magnetic material, the stray field of which changes relative to the underlying sensor as a consequence of mechanical stimuli which are delivered by a piezoactuator. The principle resembles balance sensing in mammals. Measurements of the sensor output voltage suggest a proof of concept at frequencies of around 190 kHz and a tag thickness of ∼300 nm. Characterization was performed by scanning electron microscopy and magnetic force microscopy. Micromagnetic and finite-element simulations were conducted to assess basic sensing aspects.

  15. Biomimetic micromechanical adaptive flow-sensor arrays

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.; Floris, J.; Dijkstra, Marcel; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2007-01-01

    We report current developments in biomimetic flow-sensors based on flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound with energy sensitivities

  16. Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available The combination of nanotechnology, biology, and bioengineering greatly improved the developments of nanomaterials with unique functions and properties. Biomolecules as the nanoscale building blocks play very important roles for the final formation of functional nanostructures. Many kinds of novel nanostructures have been created by using the bioinspired self-assembly and subsequent binding with various nanoparticles. In this review, we summarized the studies on the fabrications and sensor applications of biomimetic nanostructures. The strategies for creating different bottom-up nanostructures by using biomolecules like DNA, protein, peptide, and virus, as well as microorganisms like bacteria and plant leaf are introduced. In addition, the potential applications of the synthesized biomimetic nanostructures for colorimetry, fluorescence, surface plasmon resonance, surface-enhanced Raman scattering, electrical resistance, electrochemistry, and quartz crystal microbalance sensors are presented. This review will promote the understanding of relationships between biomolecules/microorganisms and functional nanomaterials in one way, and in another way it will guide the design and synthesis of biomimetic nanomaterials with unique properties in the future.

  17. Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.

    Science.gov (United States)

    Marras, Stefano; Porfiri, Maurizio

    2012-08-07

    The integration of biomimetic robots in a fish school may enable a better understanding of collective behaviour, offering a new experimental method to test group feedback in response to behavioural modulations of its 'engineered' member. Here, we analyse a robotic fish and individual golden shiners (Notemigonus crysoleucas) swimming together in a water tunnel at different flow velocities. We determine the positional preference of fish with respect to the robot, and we study the flow structure using a digital particle image velocimetry system. We find that biomimetic locomotion is a determinant of fish preference as fish are more attracted towards the robot when its tail is beating rather than when it is statically immersed in the water as a 'dummy'. At specific conditions, the fish hold station behind the robot, which may be due to the hydrodynamic advantage obtained by swimming in the robot's wake. This work makes a compelling case for the need of biomimetic locomotion in promoting robot-animal interactions and it strengthens the hypothesis that biomimetic robots can be used to study and modulate collective animal behaviour.

  18. The TacTip Family: Soft Optical Tactile Sensors with 3D-Printed Biomimetic Morphologies.

    Science.gov (United States)

    Ward-Cherrier, Benjamin; Pestell, Nicholas; Cramphorn, Luke; Winstone, Benjamin; Giannaccini, Maria Elena; Rossiter, Jonathan; Lepora, Nathan F

    2018-04-01

    Tactile sensing is an essential component in human-robot interaction and object manipulation. Soft sensors allow for safe interaction and improved gripping performance. Here we present the TacTip family of sensors: a range of soft optical tactile sensors with various morphologies fabricated through dual-material 3D printing. All of these sensors are inspired by the same biomimetic design principle: transducing deformation of the sensing surface via movement of pins analogous to the function of intermediate ridges within the human fingertip. The performance of the TacTip, TacTip-GR2, TacTip-M2, and TacCylinder sensors is here evaluated and shown to attain submillimeter accuracy on a rolling cylinder task, representing greater than 10-fold super-resolved acuity. A version of the TacTip sensor has also been open-sourced, enabling other laboratories to adopt it as a platform for tactile sensing and manipulation research. These sensors are suitable for real-world applications in tactile perception, exploration, and manipulation, and will enable further research and innovation in the field of soft tactile sensing.

  19. Scalable manufacturing of biomimetic moldable hydrogels for industrial applications

    Science.gov (United States)

    Yu, Anthony C.; Chen, Haoxuan; Chan, Doreen; Agmon, Gillie; Stapleton, Lyndsay M.; Sevit, Alex M.; Tibbitt, Mark W.; Acosta, Jesse D.; Zhang, Tony; Franzia, Paul W.; Langer, Robert; Appel, Eric A.

    2016-12-01

    Hydrogels are a class of soft material that is exploited in many, often completely disparate, industrial applications, on account of their unique and tunable properties. Advances in soft material design are yielding next-generation moldable hydrogels that address engineering criteria in several industrial settings such as complex viscosity modifiers, hydraulic or injection fluids, and sprayable carriers. Industrial implementation of these viscoelastic materials requires extreme volumes of material, upwards of several hundred million gallons per year. Here, we demonstrate a paradigm for the scalable fabrication of self-assembled moldable hydrogels using rationally engineered, biomimetic polymer-nanoparticle interactions. Cellulose derivatives are linked together by selective adsorption to silica nanoparticles via dynamic and multivalent interactions. We show that the self-assembly process for gel formation is easily scaled in a linear fashion from 0.5 mL to over 15 L without alteration of the mechanical properties of the resultant materials. The facile and scalable preparation of these materials leveraging self-assembly of inexpensive, renewable, and environmentally benign starting materials, coupled with the tunability of their properties, make them amenable to a range of industrial applications. In particular, we demonstrate their utility as injectable materials for pipeline maintenance and product recovery in industrial food manufacturing as well as their use as sprayable carriers for robust application of fire retardants in preventing wildland fires.

  20. Toward a New Generation of Smart Biomimetic Actuators for Architecture.

    Science.gov (United States)

    Poppinga, Simon; Zollfrank, Cordt; Prucker, Oswald; Rühe, Jürgen; Menges, Achim; Cheng, Tiffany; Speck, Thomas

    2017-10-24

    Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture. Here, a concise review of the state-of-the-art of plant movement principles and derived biomimetic devices is provided. Achieving complex and higher-dimensional shape changes and passive-hydraulic actuation at a considerable time scale, as well as mechanical robustness of the motile technical structures, is challenging. For example, almost all currently available bioinspired hydraulic actuators show similar limitations due to the poroelastic time scale. Therefore, a major challenge is increasing the system size to the meter range, with actuation times of minutes or below. This means that response speed and flow rate need significant improvement for the systems, and the long-term performance degradation issue of hygroscopic materials needs to be addressed. A theoretical concept for "escaping" the poroelastic regime is proposed, and the possibilities for enhancing the mechanical properties of passive-hydraulic bilayer actuators are discussed. Furthermore, the promising aspects for further studies to implement tropistic movement behavior are presented, i.e., movement that depends on the direction of the triggering stimulus, which can finally lead to "smart building skins" that autonomously and self-sufficiently react to changing environmental stimuli in a direction-dependent manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Desalination by biomimetic aquaporin membranes: Review of status and prospects

    DEFF Research Database (Denmark)

    Tang, C.Y.; Zhao, Y.; Wang, R.

    2013-01-01

    Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review is to prov......Based on their unique combination of offering high water permeability and high solute rejection aquaporin proteins have attracted considerable interest over the last years as functional building blocks of biomimetic membranes for water desalination and reuse. The purpose of this review...... is to provide an overview of the properties of aquaporins, their preparation and characterization. We discuss the challenges in exploiting the remarkable properties of aquaporin proteins for membrane separation processes and we present various attempts to construct aquaporin in membranes for desalination......; including an overview of our own recent developments in aquaporin-based membranes. Finally we outline future prospects of aquaporin based biomimetic membrane for desalination and water reuse....

  2. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  3. Investigation research on autonomous responsive materials; Jiritsu oto zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    A survey was made on autonomous responsive materials as a new material which reversibly change molecular structures and the aggregation state according to external stimuli. Autonomous responsive materials imitate environmental responsibility in the living organism system and have sensing, control and active functions for external stimuli. The materials are highly efficient and environmentally friendly. In biomimetic materials for soft actuators, drastic changes by temperature of elastic modulus of water-swollen hydrogel are used to the motion. In order to molecularly design stimulus-responsible polymer gel, studied are the relation between the micro structure and stimulus responsibility, dynamic correlation between the micro structure and the macro structure, etc. In the biomedical field, new cure and diagnosis using innovative materials are expected, and the application of autonomous responsive materials to the field is studied. For example, using hydrogel responding the temperature and the surface and controlling by temperature the interaction with components of the organism such as protein and cells, drug delivery in the organism is optimized. Also studied is the application of hydrophilic/hydrophobic changes by temperature to the chromatography. 215 refs., 47 figs., 11 tabs.

  4. Biomimetic Designs Inspired by Seashells-Seashells Helping ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 6. Biomimetic Designs Inspired by Seashells - Seashells Helping Engineers Design Better Ceramics. Kiran Akella. General Article Volume 17 Issue 6 June 2012 pp 573-591 ...

  5. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    Science.gov (United States)

    Zhou, Shanshan

    Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the

  6. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O2 multiphase composites

    International Nuclear Information System (INIS)

    Wysokowski, Marcin; Motylenko, Mykhaylo; Rafaja, David; Koltsov, Iwona; Stöcker, Hartmut; Szalaty, Tadeusz J.; Bazhenov, Vasilii V.; Stelling, Allison L.; Beyer, Jan; Heitmann, Johannes; Jesionowski, Teofil; Petovic, Slavica; Đurović, Mirko; Ehrlich, Hermann

    2017-01-01

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O 2 composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO 2 , predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O 2 and (Ti,Zr)O 2 composites. • Chitin-(Ti,Zr)O 2 composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O 2 composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O 2 composite. • (Ti,Zr)O 2 composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O 2 .

  7. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  8. Green Tribology Biomimetics, Energy Conservation and Sustainability

    CERN Document Server

    Bhushan, Bharat

    2012-01-01

    Tribology is the study of friction, wear and lubrication. Recently, the concept of “green tribology” as “the science and technology of the tribological aspects of ecological balance and of environmental and biological impacts” was introduced. The field of green tribology includes tribological technology that mimics living nature (biomimetic surfaces) and thus is expected to be environmentally friendly, the control of friction and wear that is of importance for energy conservation and conversion, environmental aspects of lubrication and surface modification techniques, and tribological aspects of green applications such as wind-power turbines or solar panels. This book is the first comprehensive volume on green tribology. The chapters are prepared by leading experts in their fields and cover such topics as biomimetics, environmentally friendly lubrication, tribology of wind turbines and renewable sources of energy, and ecological impact of new technologies of surface treatment.

  9. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  10. A Novel Soft Biomimetic Microrobot with Two Motion Attitudes

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2012-12-01

    Full Text Available  A variety of microrobots have commonly been used in the fields of biomedical engineering and underwater operations during the last few years. Thanks to their compact structure, low driving power, and simple control systems, microrobots can complete a variety of underwater tasks, even in limited spaces. To accomplish our objectives, we previously designed several bio-inspired underwater microrobots with compact structure, flexibility, and multi-functionality, using ionic polymer metal composite (IPMC actuators. To implement high-position precision for IPMC legs, in the present research, we proposed an electromechanical model of an IPMC actuator and analysed the deformation and actuating force of an equivalent IPMC cantilever beam, which could be used to design biomimetic legs, fingers, or fins for an underwater microrobot. We then evaluated the tip displacement of an IPMC actuator experimentally. The experimental deflections fit the theoretical values very well when the driving frequency was larger than 1 Hz. To realise the necessary multi-functionality for adapting to complex underwater environments, we introduced a walking biomimetic microrobot with two kinds of motion attitudes: a lying state and a standing state. The microrobot uses eleven IPMC actuators to move and two shape memory alloy (SMA actuators to change its motion attitude. In the lying state, the microrobot implements stick-insect-inspired walking/rotating motion, fish-like swimming motion, horizontal grasping motion, and floating motion. In the standing state, it implements inchworm-inspired crawling motion in two horizontal directions and grasping motion in the vertical direction. We constructed a prototype of this biomimetic microrobot and evaluated its walking, rotating, and floating speeds experimentally. The experimental results indicated that the robot could attain a maximum walking speed of 3.6 mm/s, a maximum rotational speed of 9°/s, and a maximum floating speed of 7

  11. Obtaining hydroxyapatite coatings on titanium by the biomimetic method

    International Nuclear Information System (INIS)

    Paz, A.; Martin, Y.; Pazos, L. M.; Parodi, M. B.; Ybarra, G. O.; Gonzalez, J. E.

    2011-01-01

    In this work, a study about the deposition of hydroxyapatite on a titanium substrate employing the biomimetic method is presented. A solution with high content of calcium and phosphorus (SCS) was used. In addition, activation of titanium with hydrogen peroxide and hydrochloric acid and a subsequent heat treatment was performed. The characterization of materials used and the coating obtained was carried out by Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). As a result of the activation processes a hydrated titanium oxide was formed. On the active surface, a coating of hydroxyapatite was obtained after a period of 24 h, which has a thickness of about 2-4 μm. (Author) 21 refs.

  12. Biomimetics in the design of a robotic exoskeleton for upper limb therapy

    Science.gov (United States)

    Baniqued, Paul Dominick E.; Dungao, Jade R.; Manguerra, Michael V.; Baldovino, Renann G.; Abad, Alexander C.; Bugtai, Nilo T.

    2018-02-01

    Current methodologies in designing robotic exoskeletons for upper limb therapy simplify the complex requirements of the human anatomy. As a result, such devices tend to compromise safety and biocompatibility with the intended user. However, a new design methodology uses biological analogues as inspiration to address these technical issues. This approach follows that of biomimetics, a design principle that uses the extraction and transfer of useful information from natural morphologies and processes to solve technical design issues. In this study, a biomimetic approach in the design of a 5-degree-of-freedom robotic exoskeleton for upper limb therapy was performed. A review of biomimetics was first discussed along with its current contribution to the design of rehabilitation robots. With a proposed methodological framework, the design for an upper limb robotic exoskeleton was generated using CATIA software. The design was inspired by the morphology of the bones and the muscle force transmission of the upper limbs. Finally, a full design assembly presented had integrated features extracted from the biological analogue. The successful execution of a biomimetic design methodology made a case in providing safer and more biocompatible robots for rehabilitation.

  13. Challenges in Commercializing Biomimetic Membranes

    Directory of Open Access Journals (Sweden)

    Mark Perry

    2015-11-01

    Full Text Available The discovery of selective water channel proteins—aquaporins—has prompted growing interest in using these proteins, as the building blocks for designing new types of membranes. However, as with any other new and potentially disruptive technology, barriers for successful market entry exist. One category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments relevant for biomimetic aquaporin membranes.

  14. Design of Self-Oscillating Gels and Application to Biomimetic Actuators

    Directory of Open Access Journals (Sweden)

    Ryo Yoshida

    2010-03-01

    Full Text Available As a novel biomimetic polymer, we have developed polymer gels with an autonomous self-oscillating function. This was achieved by utilizing oscillating chemical reactions, called the Belousov-Zhabotinsky (BZ reaction, which is recognized as a chemical model for understanding several autonomous phenomena in biological systems. Under the coexistence of the reactants, the polymer gel undergoes spontaneous swelling-deswelling changes without any on-off switching by external stimuli. In this review, our recent studies on the self-oscillating polymer gels and application to biomimetic actuators are summarized.

  15. Biomimetic Nanofibrillation in Two-Component Biopolymer Blends with Structural Analogs to Spider Silk

    Science.gov (United States)

    Xie, Lan; Xu, Huan; Li, Liang-Bin; Hsiao, Benjamin S.; Zhong, Gan-Ji; Li, Zhong-Ming

    2016-10-01

    Despite the enormous potential in bioinspired fabrication of high-strength structure by mimicking the spinning process of spider silk, currently accessible routes (e.g., microfluidic and electrospinning approaches) still have substantial function gaps in providing precision control over the nanofibrillar superstructure, crystalline morphology or molecular orientation. Here the concept of biomimetic nanofibrillation, by copying the spiders’ spinning principles, was conceived to build silk-mimicking hierarchies in two-phase biodegradable blends, strategically involving the stepwise integration of elongational shear and high-pressure shear. Phase separation confined on nanoscale, together with deformation of discrete phases and pre-alignment of polymer chains, was triggered in the elongational shear, conferring the readiness for direct nanofibrillation in the latter shearing stage. The orderly aligned nanofibrils, featuring an ultralow diameter of around 100 nm and the “rigid-soft” system crosslinked by nanocrystal domains like silk protein dopes, were secreted by fine nanochannels. The incorporation of multiscale silk-mimicking structures afforded exceptional combination of strength, ductility and toughness for the nanofibrillar polymer composites. The proposed spider spinning-mimicking strategy, offering the biomimetic function integration unattainable with current approaches, may prompt materials scientists to pursue biopolymer mimics of silk with high performance yet light weight.

  16. Biomimetic synthesis and morphological control of metal carbonates at the air/solution interface

    International Nuclear Information System (INIS)

    Lee, Shichoon; Cho, Kilwon; Son, Younggon

    2012-01-01

    Biomimetic approaches can provide a means of fabricating nanostructured materials under environmentally benign conditions. In this paper, we synthesized metal carbonate films, such as calcite, strontianite, malachite, and hydrozincite films, at the air-solution interface of solutions containing corresponding metal ions by using inflowing CO 2 from the atmosphere. The addition of acidic polymers, fulfilling the role of an acidic protein in biomineralization, provided CaCO 3 nanofibers, SrCO 3 nanofibers oriented in a specific direction, and copper carbonate and zinc carbonate hydroxide thin films. The metal carbonates prepared in this study were used as precursors for the formation of metal oxide nanocrystals via pyrolysis. This work showed that various metal carbonates and metal oxides with nanostructures can be prepared by using atmospheric CO 2 . - Highlights: ► Biomimetic synthesis of metal carbonate nanofilms at the air/solution interface. ► The reaction between metal ions and carbonate ions derived from CO 2 in the air. ► Calcium, strontium, copper and zinc carbonates were formed. ► The morphologies of the nanofilms were controlled by adding the acidic polymer. ► Nanostructured metal oxides were prepared by pyrolysis of the metal carbonates.

  17. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    OpenAIRE

    Mariana Calora Quintino de Oliveira; Marcos Roberto de Vasconcelos Lanza; José Luis Paz Jara; Maria Del Pilar Taboada Sotomayor

    2011-01-01

    This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA) system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphy...

  18. Biomimetic and microbial approaches to solar fuel generation.

    Science.gov (United States)

    Magnuson, Ann; Anderlund, Magnus; Johansson, Olof; Lindblad, Peter; Lomoth, Reiner; Polivka, Tomas; Ott, Sascha; Stensjö, Karin; Styring, Stenbjörn; Sundström, Villy; Hammarström, Leif

    2009-12-21

    Photosynthesis is performed by a multitude of organisms, but in nearly all cases, it is variations on a common theme: absorption of light followed by energy transfer to a reaction center where charge separation takes place. This initial form of chemical energy is stabilized by the biosynthesis of carbohydrates. To produce these energy-rich products, a substrate is needed that feeds in reductive equivalents. When photosynthetic microorganisms learned to use water as a substrate some 2 billion years ago, a fundamental barrier against unlimited use of solar energy was overcome. The possibility of solar energy use has inspired researchers to construct artificial photosynthetic systems that show analogy to parts of the intricate molecular machinery of photosynthesis. Recent years have seen a reorientation of efforts toward creating integrated light-to-fuel systems that can use solar energy for direct synthesis of energy-rich compounds, so-called solar fuels. Sustainable production of solar fuels is a long awaited development that promises extensive solar energy use combined with long-term storage. The stoichiometry of water splitting into molecular oxygen, protons, and electrons is deceptively simple; achieving it by chemical catalysis has proven remarkably difficult. The reaction center Photosystem II couples light-induced charge separation to an efficient molecular water-splitting catalyst, a Mn(4)Ca complex, and is thus an important template for biomimetic chemistry. In our aims to design biomimetic manganese complexes for light-driven water oxidation, we link photosensitizers and charge-separation motifs to potential catalysts in supramolecular assemblies. In photosynthesis, production of carbohydrates demands the delivery of multiple reducing equivalents to CO(2). In contrast, the two-electron reduction of protons to molecular hydrogen is much less demanding. Virtually all microorganisms have enzymes called hydrogenases that convert protons to hydrogen, many of

  19. Thermal gelation and tissue adhesion of biomimetic hydrogels

    International Nuclear Information System (INIS)

    Burke, Sean A; Ritter-Jones, Marsha; Lee, Bruce P; Messersmith, Phillip B

    2007-01-01

    Marine and freshwater mussels are notorious foulers of natural and manmade surfaces, secreting specialized protein adhesives for rapid and durable attachment to wet substrates. Given the strong and water-resistant nature of mussel adhesive proteins, significant potential exists for mimicking their adhesive characteristics in bioinspired synthetic polymer materials. An important component of these proteins is L-3,4-dihydroxylphenylalanine (DOPA), an amino acid believed to contribute to mussel glue solidification through oxidation and crosslinking reactions. Synthetic polymers containing DOPA residues have previously been shown to crosslink into hydrogels upon the introduction of oxidizing reagents. Here we introduce a strategy for stimuli responsive gel formation of mussel adhesive protein mimetic polymers. Lipid vesicles with a bilayer melting transition of 37 0 C were designed from a mixture of dipalmitoyl and dimyristoyl phosphatidylcholines and exploited for the release of a sequestered oxidizing reagent upon heating from ambient to physiologic temperature. Colorimetric studies indicated that sodium-periodate-loaded liposomes released their cargo at the phase transition temperature, and when used in conjunction with a DOPA-functionalized poly(ethylene glycol) polymer gave rise to rapid solidification of a crosslinked polymer hydrogel. The tissue adhesive properties of this biomimetic system were determined by in situ thermal gelation of liposome/polymer hydrogel between two porcine dermal tissue surfaces. Bond strength measurements showed that the bond formed by the adhesive hydrogel (mean = 35.1 kPa, SD = 12.5 kPa, n = 11) was several times stronger than a fibrin glue control tested under the same conditions. The results suggest a possible use of this biomimetic strategy for repair of soft tissues

  20. ADAPTIVE BUILDING EXOSKELETONS: A biomimetic model for the rehabilitation of social housing

    Directory of Open Access Journals (Sweden)

    Giuliana Scuderi

    2015-03-01

    Full Text Available This research is an attempt to describe a new biomimetic model for the rehabilitation of social housing. In particular, the constructions built in Europe in the post Second World War period suffer of material and social degradation requiring architectural, functional and structural interventions. The analysis of the state of the art underlined the importance of the envelope in the definition of new performances and standards. Through a bio-mimicry approach, the paper shows the process leading to the definition of a building exoskeleton: a structural envelope able to solve complex sets of problems integrating different building systems. Adaptability results being a fundamental property to define an effective seismic and structural behavior but also to respond to changing user’s needs and environmental conditions. In the last part of the paper, information about feasible technologies and techniques to realize the exoskeleton are presented. Finally, the conclusions show the potentiality of the model if applied in critical contexts where intensive and diffusive interventions of recovery of social housing are needed.

  1. Progress on CD-DVD laser microfabrication method to develop cell culture scaffolds integrating biomimetic characteristics

    Science.gov (United States)

    Hautefeuille, Mathieu; Vázquez-Victorio, Genaro; Cruz-Ramírez, Aaron; Cabriales, Lucia; Jiménez-Diaz, Edgar; Escutia-Guadarrama, Lidia; López-Aparicio, Jehú; Pérez-Calixto, Daniel; Cano-Jorge, Mariel; Nieto-Rivera, Brenda; Sánchez-Olvera, Raúl

    2018-02-01

    The development of organ-on-chip and biological scaffolds is currently requiring simpler methods to microstructure biocompatible materials in three dimensions, fabricate structural and functional elements in biomaterials or modify the physicochemical properties of desired substrates. With the aim of creating simple, cost-effective alternatives to conventional existing techniques to produce such platforms with very specific properties, a low-power CD-DVD laser pickup head was recycled and mounted on a programmable three-axis micro-displacement system in order to modify the surface of polymeric materials in a local fashion. Thanks to a specially-designed method using a strongly absorbing additive coating the materials of interest, it has been possible to establish and precisely control processes useful in microtechnology for biomedical applications and normally restricted to much less affordable high-power lasers. In this work, we present our latest progress regarding the application of our fabrication technique to the development of organ-on-chip platforms thanks to the simple integration of several biomimetic characteristics typically achieved with traditional, less cost-effective microtechnology methods in one step or through replica-molding. Our straightforward approach indeed enables great control of local laser microablation for true on-demand biomimetic micropatterned designs in several transparent polymers and hydrogels of tunable stiffness and is allowing integration of microfluidics, microelectronics, optical waveguides, surface microstructuring and even transfer of superficial protein micropatterns on a variety of biocompatible materials. The results presented here were validated using hepatic and fibroblasts cell lines to demonstrate the viability of our procedure for organ-on-chip development and show the impact of such features in cell culture.

  2. Robust High Performance Aquaporin based Biomimetic Membranes

    DEFF Research Database (Denmark)

    Helix Nielsen, Claus; Zhao, Yichun; Qiu, C.

    2013-01-01

    on top of a support membrane. Control membranes, either without aquaporins or with the inactive AqpZ R189A mutant aquaporin served as controls. The separation performance of the membranes was evaluated by cross-flow forward osmosis (FO) and reverse osmosis (RO) tests. In RO the ABM achieved a water......Aquaporins are water channel proteins with high water permeability and solute rejection, which makes them promising for preparing high-performance biomimetic membranes. Despite the growing interest in aquaporin-based biomimetic membranes (ABMs), it is challenging to produce robust and defect...... permeability of ~ 4 L/(m2 h bar) with a NaCl rejection > 97% at an applied hydraulic pressure of 5 bar. The water permeability was ~40% higher compared to a commercial brackish water RO membrane (BW30) and an order of magnitude higher compared to a seawater RO membrane (SW30HR). In FO, the ABMs had > 90...

  3. Biomimetics: From Bioinformatics to Rational Design of Dendrimers as Gene Carriers

    Science.gov (United States)

    Araya-Durán, Ingrid; Varas-Concha, Ignacio; Almonacid, Daniel Eduardo; González-Nilo, Fernando Danilo

    2015-01-01

    Biomimetics, or the use of principles of Nature for developing new materials, is a paradigm that could help Nanomedicine tremendously. One of the current challenges in Nanomedicine is the rational design of new efficient and safer gene carriers. Poly(amidoamine) (PAMAM) dendrimers are a well-known class of nanoparticles, extensively used as non-viral nucleic acid carriers, due to their positively charged end-groups. Yet, there are still several aspects that can be improved for their successful application in in vitro and in vivo systems, including their affinity for nucleic acids as well as lowering their cytotoxicity. In the search of new functional groups that could be used as new dendrimer-reactive groups, we followed a biomimetic approach to determine the amino acids with highest prevalence in protein-DNA interactions. Then we introduced them individually as terminal groups of dendrimers, generating a new class of nanoparticles. Molecular dynamics studies of two systems: PAMAM-Arg and PAMAM-Lys were also performed in order to describe the formation of complexes with DNA. Results confirmed that the introduction of amino acids as terminal groups in a dendrimer increases their affinity for DNA and the interactions in the complexes were characterized at atomic level. We end up by briefly discussing additional modifications that can be made to PAMAM dendrimers to turned them into promising new gene carriers. PMID:26382062

  4. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    International Nuclear Information System (INIS)

    Guo Qingchun; Zhou Hong; Wang Chengtao; Zhang Wei; Lin Pengyu; Sun Na; Ren Luquan

    2009-01-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  5. Effect of medium on friction and wear properties of compacted graphite cast iron processed by biomimetic coupling laser remelting process

    Science.gov (United States)

    Guo, Qing-chun; Zhou, Hong; Wang, Cheng-tao; Zhang, Wei; Lin, Peng-yu; Sun, Na; Ren, Luquan

    2009-04-01

    Stimulated by the cuticles of soil animals, an attempt to improve the wear resistance of compact graphite cast iron (CGI) with biomimetic units on the surface was made by using a biomimetic coupled laser remelting process in air and various thicknesses water film, respectively. The microstructures of biomimetic units were examined by scanning electron microscope and X-ray diffraction was used to describe the microstructure and identify the phases in the melted zone. Microhardness was measured and the wear behaviors of biomimetic specimens as functions of different mediums as well as various water film thicknesses were investigated under dry sliding condition, respectively. The results indicated that the microstructure zones in the biomimetic specimens processed with water film are refined compared with that processed in air and had better wear resistance increased by 60%, the microhardness of biomimetic units has been improved significantly. The application of water film provided finer microstructures and much more regular grain shape in biomimetic units, which played a key role in improving the friction properties and wear resistance of CGI.

  6. Biomimetic materials and design: biointerfacial strategies, tissue engineering, and targeted drug delivery

    National Research Council Canada - National Science Library

    Dillow, Angela K; Lowman, Anthony M

    2002-01-01

    ... significant immune responses or toxicity issues- became the focus of the rational decision for materials to be used within the body. Biodegradable polymers also became (and still are) a focus of much research in the area of biomaterials science. Using biodegradable materials, the goal is to produce polymers with appropriate mechanical properties that de...

  7. Developing the ultimate biomimetic flow-sensor array

    NARCIS (Netherlands)

    Bruinink, C.M.; Jaganatharaja, R.K.; de Boer, Meint J.; Berenschot, Johan W.; Kolster, M.L.; Lammerink, Theodorus S.J.; Wiegerink, Remco J.; Krijnen, Gijsbertus J.M.

    2009-01-01

    This contribution reports on the major developments and achievements in our group on fabricating highly sensitive biomimetic flow-sensor arrays. The mechanoreceptive sensory hairs of crickets are taken as a model system for their ability to perceive flow signals at thermal noise levels and,

  8. Evaluation of a biomimetic 3D substrate based on the Human Elastin-like Polypeptides (HELPs) model system for elastolytic activity detection.

    Science.gov (United States)

    Corich, Lucia; Busetti, Marina; Petix, Vincenzo; Passamonti, Sabina; Bandiera, Antonella

    2017-08-10

    Elastin is a fibrous protein that confers elasticity to tissues such as skin, arteries and lung. It is extensively cross-linked, highly hydrophobic and insoluble. Nevertheless, elastin can be hydrolysed by bacterial proteases in infectious diseases, resulting in more or less severe tissue damage. Thus, development of substrates able to reliably and specifically detect pathogen-secreted elastolytic activity is needed to improve the in vitro evaluation of the injury that bacterial proteases may provoke. In this work, two human biomimetic elastin polypeptides, HELP and HELP1, as well as the matrices derived from HELP, have been probed as substrates for elastolytic activity detection. Thirty strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients were analyzed in parallel with standard substrates, to detect proteolytic and elastolytic activity. Results point to the HELP-based 3D matrix as an interesting biomimetic model of elastin to assess bacterial elastolytic activity in vitro. Moreover, this model substrate enables to further elucidate the mechanism underlying elastin degradation at molecular level, as well as to develop biomimetic material-based devices responsive to external stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Science.gov (United States)

    To, Janet; Torres, Jaume

    2015-08-10

    In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  10. Can Stabilization and Inhibition of Aquaporins Contribute to Future Development of Biomimetic Membranes?

    Directory of Open Access Journals (Sweden)

    Janet To

    2015-08-01

    Full Text Available In recent years, the use of biomimetic membranes that incorporate membrane proteins, i.e., biomimetic-hybrid membranes, has increased almost exponentially. Key membrane proteins in these systems have been aquaporins, which selectively permeabilize cellular membranes to water. Aquaporins may be incorporated into synthetic lipid bilayers or to more stable structures made of block copolymers or solid-state nanopores. However, translocation of aquaporins to these alien environments has adverse consequences in terms of performance and stability. Aquaporins incorporated in biomimetic membranes for use in water purification and desalination should also withstand the harsh environment that may prevail in these conditions, such as high pressure, and presence of salt or other chemicals. In this respect, modified aquaporins that can be adapted to these new environments should be developed. Another challenge is that biomimetic membranes that incorporate high densities of aquaporin should be defect-free, and this can only be efficiently ascertained with the availability of completely inactive mutants that behave otherwise like the wild type aquaporin, or with effective non-toxic water channel inhibitors that are so far inexistent. In this review, we describe approaches that can potentially be used to overcome these challenges.

  11. Evaluation in vitro and in vivo of biomimetic hydroxyapatite coated on titanium dental implants

    International Nuclear Information System (INIS)

    Rigo, E.C.S.; Boschi, A.O.; Yoshimoto, M.; Allegrini, S.; Konig, B.; Carbonari, M.J.

    2004-01-01

    Among several materials used as dental implants, metals present relatively high tensile strengths. Although metals are biotolerable, they do not adhere to bone tissues. On the other hand, bioactive ceramics are known to chemically bind to bone tissues, but they are not enough mechanically resistant to tension stresses. To overcome this drawback, biotolerable metals can be coated with bioactive ceramics. Various methods can be employed for coating ceramic layers on metal substrates, among them ion sputtering, plasma spray, sol-gel, electrodeposition and a biomimetic process [E.C.S. Rigo, L.C. Oliveira, L.A. Santos, A.O. Boschi, R.G. Carrodeguas. Implantes metalicos recobertos com hidroxiapatita. Revista de Engenharia Biomedica, vol. 15 (1999), numeros 1-2, 21-29. Rio de Janeiro]. The aim of this work was to study the effect of the substitution of G glass, employed in the conventional biomimetic method during the nucleation stage, by a solution of sodium silicate (SS) on the chemical and morphological characteristics, and the adhesion of biomimetic coatings deposited on Ti implants. The obtained coatings were analyzed by diffuse reflectance FTIR spectroscopy (DRIFT) and scanning electron microscopy (SEM). Titanium implants were immersed in synthetic body fluid (SBF) and SS. All implants were left inside an incubator at 37 deg. C for 7 days, followed by immersion in 1.5 SBF and taken back to the incubator for additional 6 days at 37 deg. C. The 1.5 SBF were refreshed every 2 days. At the end of the treatment, the implants were washed in distilled and deionized water and dried at room temperature. To check the osseointegration, titanium implants coated with biomimetic method were inserted in rabbit's tibia, remaining there for 8 weeks. During the healing period, polyfluorochrome sequential labeling was inoculated in the rabbits to determine the period of bone remodeling. Results from DRIFT and SEM showed that, for all processing variants employed, a HA coating was

  12. Bio-Optics and Bio-Inspired Optical Materials.

    Science.gov (United States)

    Tadepalli, Sirimuvva; Slocik, Joseph M; Gupta, Maneesh K; Naik, Rajesh R; Singamaneni, Srikanth

    2017-10-25

    Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.

  13. Biomimetic superhydrophobic surface of high adhesion fabricated with micronano binary structure on aluminum alloy.

    Science.gov (United States)

    Liu, Yan; Liu, Jindan; Li, Shuyi; Liu, Jiaan; Han, Zhiwu; Ren, Luquan

    2013-09-25

    Triggered by the microstructure characteristics of the surfaces of typical plant leaves such as the petals of red roses, a biomimetic superhydrophobic surface with high adhesion is successfully fabricated on aluminum alloy. The essential procedure is that samples were processed by a laser, then immersed and etched in nitric acid and copper nitrate, and finally modified by DTS (CH3(CH2)11Si(OCH3)3). The obtained surfaces exhibit a binary structure consisting of microscale crater-like pits and nanoscale reticula. The superhydrophobicity can be simultaneously affected by the micronano binary structure and chemical composition of the surface. The contact angle of the superhydrophobic surface reaches up to 158.8 ± 2°. Especially, the surface with micronano binary structure is revealed to be an excellent adhesive property with petal-effect. Moreover, the superhydrophobic surfaces show excellent stability in aqueous solution with a large pH range and after being exposed long-term in air. In this way, the multifunctional biomimetic structural surface of the aluminum alloy is fabricated. Furthermore, the preparation technology in this article provides a new route for other metal materials.

  14. rFN/Cad-11-Modified Collagen Type II Biomimetic Interface Promotes the Adhesion and Chondrogenic Differentiation of Mesenchymal Stem Cells

    Science.gov (United States)

    Guo, Hongfeng; Zhang, Yuan; Li, Zhengsheng; Kang, Fei; Yang, Bo; Kang, Xia; Wen, Can; Yan, Yanfei; Jiang, Bo; Fan, Yujiang

    2013-01-01

    Properties of the cell-material interface are determining factors in the successful function of cells for cartilage tissue engineering. Currently, cell adhesion is commonly promoted through the use of polypeptides; however, due to their lack of complementary or modulatory domains, polypeptides must be modified to improve their ability to promote adhesion. In this study, we utilized the principle of matrix-based biomimetic modification and a recombinant protein, which spans fragments 7–10 of fibronectin module III (heterophilic motif ) and extracellular domains 1–2 of cadherin-11 (rFN/Cad-11) (homophilic motif ), to modify the interface of collagen type II (Col II) sponges. We showed that the designed material was able to stimulate cell proliferation and promote better chondrogenic differentiation of rabbit mesenchymal stem cells (MSCs) in vitro than both the FN modified surfaces and the negative control. Further, the Col II/rFN/Cad-11-MSCs composite stimulated cartilage formation in vivo; the chondrogenic effect of Col II alone was much less significant. These results suggested that the rFN/Cad-11-modified collagen type II biomimetic interface has dual biological functions of promoting adhesion and stimulating chondrogenic differentiation. This substance, thus, may serve as an ideal scaffold material for cartilage tissue engineering, enhancing repair of injured cartilage in vivo. PMID:23919505

  15. Materials research at CMAM

    International Nuclear Information System (INIS)

    Zucchiatti, Alessandro

    2013-01-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming

  16. Materials research at CMAM

    Science.gov (United States)

    Zucchiatti, Alessandro

    2013-07-01

    The Centro de Micro Analisis de Materiales (CMAM) is a research centre of the Universidad Autónoma de Madrid dedicated to the modification and analysis of materials using ion beam techniques. The infrastructure, based on a HVEE 5MV tandem accelerator, provided with a coaxial Cockcroft Walton charging system, is fully open to research groups of the UAM, to other public research institutions and to private enterprises. The CMAM research covers a few important lines such as advanced materials, surface science, biomedical materials, cultural heritage, materials for energy production. The Centre gives as well support to university teaching and technical training. A detail description of the research infrastructures and their use statistics will be given. Some of the main research results will be presented to show the progress of research in the Centre in the past few years and to motivate the strategic plans for the forthcoming.

  17. Couple of biomimetic surfaces with different morphologies for remanufacturing nonuniform wear rail surface

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Yang, Lin; Zhang, Haifeng; Feng, Li; Zhang, Peng

    2018-02-01

    In this work, biomimetic laser treatment was performed on repairing and remanufacturing the nonuniform worn rail surface. The wearing depth distribution of three work regions of a failure rail surface was discussed, and different thickness hardening layers with different microstructure, microhardness and wear resistances were detected from the worm surfaces. Varying wear resistances of the surfaces with different biomimetic morphologies were obtained by biomimetic laser treatments, and the corresponding effect on the lubrication sliding wear of treated and untreated surfaces were studied for comparative study. In addition, the relationship between wear resistance and the spacing of units was also provided, which can lay the important theoretical foundation for avoiding the wear resistance of the serious worn surface is less than that of the slight worn surface in the future practical applications.

  18. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  19. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  20. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2002-01-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel

  1. Free-standing biomimetic polymer membrane imaged with atomic force microscopy

    DEFF Research Database (Denmark)

    Rein, Christian; Pszon-Bartosz, Kamila Justyna; Jensen, Karin Bagger Stibius

    2011-01-01

    Fluid polymeric biomimetic membranes are probed with atomic force microscopy (AFM) using probes with both normal tetrahedrally shaped tips and nanoneedle-shaped Ag2Ga rods. When using nanoneedle probes, the collected force volume data show three distinct membrane regions which match the expected...... membrane structure when spanning an aperture in a hydrophobic scaffold. The method used provides a general method for mapping attractive fluid surfaces. In particular, the nanoneedle probing allows for characterization of free-standing biomimetic membranes with thickness on the nanometer scale suspended...... over 300-μm-wide apertures, where the membranes are stable toward hundreds of nanoindentations without breakage. © 2010 American Chemical Society....

  2. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Alternate dipping preparation of biomimetic apatite layers in the presence of carbonate ions

    International Nuclear Information System (INIS)

    Chatelain, Grégory; Bourgeois, Damien; Meyer, Daniel; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude

    2014-01-01

    The classical simulated body fluids method cannot be employed to prepare biomimetic apatites encompassing metallic ions that lead to very stable phosphates. This is the case for heavy metals such as uranium, whose presence in bone mineral after contamination deserves toxicological study. We have demonstrated that existing methods, based on alternate dipping into calcium and phosphate ions solutions, can be adapted to achieve this aim. We have also especially studied the impact of the presence of carbonate ions in the medium as these are necessary to avoid hydrolysis of the contaminating metallic cations. Both the apatite–collagen complex method and a standard chemical (STD) method employing only mineral solutions lead to biomimetic apatites when calcium and carbonate ions are introduced simultaneously. The obtained materials were fully characterized and we established that the STD method tolerates the presence of carbonate ions much better, and this leads to homogeneous samples. Emphasis was set on the repeatability of the method to ensure the relevancy of further work performed on series of samples. Finally, osteoblasts cultured on these samples also proved a similar yield and standard-deviation in their adenosine triphosphate content when compared to commercially available substrates designed to study of such cell cultures. (paper)

  4. Development and in vitro examination of materials for osseointegration

    Science.gov (United States)

    Jalota, Sahil

    Bone is a connective tissue with nanosized particles of carbonated apatitic calcium phosphate dispersed in a hydrated collagen matrix. With the ageing of the baby boomer population, an increasing number of people sustain bone fractures and defects. Hence, efforts are underway to develop materials to hasten the healing and repairing of such defects. These materials are termed as artificial bone substitutes. This study represents innovative techniques for development of bone implant materials and improving the existing substitute materials. Emphasis was on three different kinds of materials: Metals (titanium and alloys), Ceramics (calcium phosphates), and Polymers (collagen). The bioactivity of titanium and alloys, resorptivity of calcium phosphates and biocompatibility of collagen were the major issues with these materials. These issues are appropriately addressed in this dissertation. For titanium and alloys, biomimetic coating methodology was developed for uniformly and evenly coating 3-D titanium structures. Cracks were observed in these coatings and a protocol was developed to form crack-free biomimetic coatings. In calcium phosphates, increasing the resorption rate of HA (hydroxyapatite) and decreasing the resorption rate of beta-TCP (beta-tricalcium phosphate) were studied. HA-based ceramics were synthesized with Na+ and CO32- ions dopings, and development of biphasic mixtures of HA-beta-TCP and HA-Rhenanite was performed. Similarly, beta-TCP ceramics were synthesized with Zn 2+ ion doping and development of beta-TCP-HA biphasic mixtures was performed. In case of collagen, a biomimetic coating process was developed that decreased the time to coat the collagen substrates and also increased biocompatibility, as determined by the response of mouse osteoblasts.

  5. A review paper on biomimetic calcium phosphate coatings

    NARCIS (Netherlands)

    Lin, X.; de Groot, K.; Wang, D.; Hu, Q.; Wismeijer, D.; Liu, Y.

    2015-01-01

    Biomimetic calcium phosphate coatings have been developed for bone regeneration and repair because of their biocompatibility, osteoconductivity, and easy preparation. They can be rendered osteoinductive by incorporating an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2), into the

  6. Advances in Dental Materials through Nanotechnology: Facts, Perspectives and Toxicological Aspects.

    Science.gov (United States)

    Padovani, Gislaine C; Feitosa, Victor P; Sauro, Salvatore; Tay, Franklin R; Durán, Gabriela; Paula, Amauri J; Durán, Nelson

    2015-11-01

    Nanotechnology is currently driving the dental materials industry to substantial growth, thus reflecting on improvements in materials available for oral prevention and treatment. The present review discusses new developments in nanotechnology applied to dentistry, focusing on the use of nanomaterials for improving the quality of oral care, the perspectives of research in this arena, and discussions on safety concerns regarding the use of dental nanomaterials. Details are provided on the cutting-edge properties (morphological, antibacterial, mechanical, fluorescence, antitumoral, and remineralization and regeneration potential) of polymeric, metallic and inorganic nano-based materials, as well as their use as nanocluster fillers, in nanocomposites, mouthwashes, medicines, and biomimetic dental materials. Nanotoxicological aspects, clinical applications, and perspectives for these nanomaterials are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Surface Topography and Mechanical Strain Promote Keratocyte Phenotype and Extracellular Matrix Formation in a Biomimetic 3D Corneal Model.

    Science.gov (United States)

    Zhang, Wei; Chen, Jialin; Backman, Ludvig J; Malm, Adam D; Danielson, Patrik

    2017-03-01

    The optimal functionality of the native corneal stroma is mainly dependent on the well-ordered arrangement of extracellular matrix (ECM) and the pressurized structure. In order to develop an in vitro corneal model, it is crucial to mimic the in vivo microenvironment of the cornea. In this study, the influence of surface topography and mechanical strain on keratocyte phenotype and ECM formation within a biomimetic 3D corneal model is studied. By modifying the surface topography of materials, it is found that patterned silk fibroin film with 600 grooves mm -1 optimally supports cell alignment and ECM arrangement. Furthermore, treatment with 3% dome-shaped mechanical strain, which resembles the shape and mechanics of native cornea, significantly enhances the expression of keratocyte markers as compared to flat-shaped strain. Accordingly, a biomimetic 3D corneal model, in the form of a collagen-modified, silk fibroin-patterned construct subjected to 3% dome-shaped strain, is created. Compared to traditional 2D cultures, it supports a significantly higher expression of keratocyte and ECM markers, and in conclusion better maintains keratocyte phenotype, alignment, and fusiform cell shape. Therefore, the novel biomimetic 3D corneal model developed in this study serves as a useful in vitro 3D culture model to improve current 2D cultures for corneal studies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Extreme biomimetic approach for synthesis of nanocrystalline chitin-(Ti,Zr)O{sub 2} multiphase composites

    Energy Technology Data Exchange (ETDEWEB)

    Wysokowski, Marcin, E-mail: Marcin.Wysokowski@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Motylenko, Mykhaylo; Rafaja, David [TU Bergakademie Freiberg, Institute of Materials Science, Gustav-Zeuner-Str. 5, 09596, Freiberg (Germany); Koltsov, Iwona [Laboratory of Nanostructures, Institute of High Pressure Physics of The Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw (Poland); Stöcker, Hartmut [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Szalaty, Tadeusz J. [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Bazhenov, Vasilii V., E-mail: vasily.bazhenov@gmail.com [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany); Stelling, Allison L. [Duke University, Department of Biochemistry, Durham, NC, 27708 (United States); Beyer, Jan; Heitmann, Johannes [TU Bergakademie Freiberg, Institute of Applied Physics, Leipziger str. 23, 09596, Freiberg (Germany); Jesionowski, Teofil [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, 60965, Poznan (Poland); Petovic, Slavica; Đurović, Mirko [Institute of Marine Biology, Dobrota, 85330, Kotor (Montenegro); Ehrlich, Hermann [TU Bergakademie Freiberg, Institute of Experimental Physics, Leipziger str. 23, 09596, Freiberg (Germany)

    2017-02-15

    This work presents an extreme biomimetics route for the modification of the surface of fibre-based scaffolds of poriferan origin by the creation of novel nanostructured multiphase biocomposites. The exceptional thermal stability of the nanostructured sponge chitin allowed for the formation of a novel nanocrystalline chitin-(Ti,Zr)O{sub 2} composite with a well-defined nanoscale structure under hydrothermal conditions (160 °C). Using a combination of experimental techniques, including X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, EDX mapping and near-edge electron loss spectroscopy (ELNES) in TEM and thermogravimetry/differential scanning calorimetry coupled with mass spectrometry; we showed that this bioorganic scaffold facilitates selective crystallization of TiO{sub 2}, predominantly in form of anatase, over the monoclinic zirconium dioxide (baddeleyite). The control of the crystal morphology through the chitin templates is also demonstrated. Obtained samples were characterized in terms of their photoluminescent properties and photocatalytic performance. These data confirm the high potential of the extreme biomimetics approach for developing a new generation of multiphase biopolymer-based nanostructured materials. - Highlights: • Extreme biomimetically prepared chitin-(Ti,Zr)O{sub 2} and (Ti,Zr)O{sub 2} composites. • Chitin-(Ti,Zr)O{sub 2} composite contains anatase as the most inorganic component. • The mean crystallite size is (31.7 ± 0.3) nm for chitin-(Ti,Zr)O{sub 2} composite. • The mean crystallite size is (2.4 ± 0.5) nm for (Ti,Zr)O{sub 2} composite. • (Ti,Zr)O{sub 2} composite is 2 times more effective photocatalyst than chitin-(Ti,Zr)O{sub 2}.

  9. Coating of Bio-mimetic Minerals-Substituted Hydroxyapatite on Surgical Grade Stainless Steel 316L by Electrophoretic Deposition for Hard tissue Applications

    Science.gov (United States)

    Govindaraj, Dharman; Rajan, Mariappan

    2018-02-01

    Third-era bio-implant materials intend to empower particular live cell reactions at the atomic level, these materials represented with a resorbable and biocompatibility that bodies recuperate once they have been embedded. Necessitate to decrease expenses in public health services has required the utilization of surgical grade stainless steel (SS 316L) as the most inexpensive choice for orthodontic and orthopaedic implants. 316L SS is one of the broadly used implant biomaterials in orthodontic and orthopaedic surgeries. Yet, frequently those discharge for toxic metal ions is confirm from the implants and hence a second surgery is required will remove those implant material. One approach to managing the discharge of toxic metal ions is to coat the implant substance with bio-mimetic minerals in hydroxyapatite (HA). Bio-mimetic minerals such as magnesium (Mg), strontium (Sr), also zinc (Zn) were revealed with animate bone growth furthermore restrain bone resorption both in vitro and in vivo. The present work deals with the electrophoretic deposition (EPD) for multi minerals substituted hydroxyapatite (M-HA) on the surface treated 316L SS under distinctive temperatures (27°C, (room temperature), 60 and 80°C). The resultant coatings were characterized by FT-IR, XRD, SEM-EDX, adhesion strength and leach out analysis.

  10. Biomimetic calcium phosphate coatings: : Physicochemistry and biological activity

    NARCIS (Netherlands)

    Barrère, F.

    2002-01-01

    Plasma-sprayed hydroxylapatite coatings on metallic prosthesis significantly increased the success rate of hip arthroplasty, namely from about 90% after 10 years for cemented hip stems to 98% for HA coated ones. Nowadays, the biomimetic approach has received increased interest because of the

  11. Biomimetic vibrissal sensing for robots.

    Science.gov (United States)

    Pearson, Martin J; Mitchinson, Ben; Sullivan, J Charles; Pipe, Anthony G; Prescott, Tony J

    2011-11-12

    Active vibrissal touch can be used to replace or to supplement sensory systems such as computer vision and, therefore, improve the sensory capacity of mobile robots. This paper describes how arrays of whisker-like touch sensors have been incorporated onto mobile robot platforms taking inspiration from biology for their morphology and control. There were two motivations for this work: first, to build a physical platform on which to model, and therefore test, recent neuroethological hypotheses about vibrissal touch; second, to exploit the control strategies and morphology observed in the biological analogue to maximize the quality and quantity of tactile sensory information derived from the artificial whisker array. We describe the design of a new whiskered robot, Shrewbot, endowed with a biomimetic array of individually controlled whiskers and a neuroethologically inspired whisking pattern generation mechanism. We then present results showing how the morphology of the whisker array shapes the sensory surface surrounding the robot's head, and demonstrate the impact of active touch control on the sensory information that can be acquired by the robot. We show that adopting bio-inspired, low latency motor control of the rhythmic motion of the whiskers in response to contact-induced stimuli usefully constrains the sensory range, while also maximizing the number of whisker contacts. The robot experiments also demonstrate that the sensory consequences of active touch control can be usefully investigated in biomimetic robots.

  12. Fusion program research materials inventory

    International Nuclear Information System (INIS)

    Roche, T.K.; Wiffen, F.W.; Davis, J.W.; Lechtenberg, T.A.

    1984-01-01

    Oak Ridge National Laboratory maintains a central inventory of research materials to provide a common supply of materials for the Fusion Reactor Materials Program. This will minimize unintended material variations and provide for economy in procurement and for centralized record keeping. Initially this inventory is to focus on materials related to first-wall and structural applications and related research, but various special purpose materials may be added in the future. The use of materials from this inventory for research that is coordinated with or otherwise related technically to the Fusion Reactor Materials Program of DOE is encouraged

  13. Biomimetic propulsion under random heaving conditions, using active pitch control

    Science.gov (United States)

    Politis, Gerasimos; Politis, Konstantinos

    2014-05-01

    Marine mammals travel long distances by utilizing and transforming wave energy to thrust through proper control of their caudal fin. On the other hand, manmade ships traveling in a wavy sea store large amounts of wave energy in the form of kinetic energy for heaving, pitching, rolling and other ship motions. A natural way to extract this energy and transform it to useful propulsive thrust is by using a biomimetic wing. The aim of this paper is to show how an actively pitched biomimetic wing could achieve this goal when it performs a random heaving motion. More specifically, we consider a biomimetic wing traveling with a given translational velocity in an infinitely extended fluid and performing a random heaving motion with a given energy spectrum which corresponds to a given sea state. A formula is invented by which the instantaneous pitch angle of the wing is determined using the heaving data of the current and past time steps. Simulations are then performed for a biomimetic wing at different heave energy spectra, using an indirect Source-Doublet 3-D-BEM, together with a time stepping algorithm capable to track the random motion of the wing. A nonlinear pressure type Kutta condition is applied at the trailing edge of the wing. With a mollifier-based filtering technique, the 3-D unsteady rollup pattern created by the random motion of the wing is calculated without any simplifying assumptions regarding its geometry. Calculated unsteady forces, moments and useful power, show that the proposed active pitch control always results in thrust producing motions, with significant propulsive power production and considerable beneficial stabilizing action to ship motions. Calculation of the power required to set the pitch angle prove it to be a very small percentage of the useful power and thus making the practical application of the device very tractable.

  14. Influence of Nanotechnology and the Role of Nanostructures in Biomimetic Studies and Their Potential Applications

    Directory of Open Access Journals (Sweden)

    Puneet Garg

    2017-05-01

    Full Text Available With the advent of nanotechnology, by looking further deep down into the molecular level, today, we are able to understand basic and applied sciences even better than ever before. Not only has nanoscience and nanotechnology allowed us to study the composing structures of materials in detail, it has also allowed us to fabricate and synthesize such nanostructures using top-down and bottom-up approaches. One such field, which has been significantly influenced by the dawn of nanotechnology is biomimetics. With powerful spectroscopic and microscopic tools presenting us with images like double nanostructured pillars on the lotus surface for superhydrophobicity, the conical protuberances of moth eye demonstrating anti-reflection properties and nanostructured spatulae of gecko feet for high adhesivity, we are now able to fabricate these structures in the lab with properties showing close resemblance to their natural counterparts. Here, we present a review of various nanostructures that exist in nature, their fabrication techniques and some of their promising future applications. We hope this review will provide the reader with a basic understanding of what biomimetics is and how nanotechnology has significantly influenced this field.

  15. Materials research in the Nuclear Research Centre Karlsruhe

    International Nuclear Information System (INIS)

    Kleykamp, H.

    1990-03-01

    This report gives a survey of the research work done at the Institute for Material and Solids Research at Karlsruhe. The following subjects are dealt with: Instrumental analysis; producing thin films; corrosion; failure mechanism and damage analysis; fuel elements, ceramic nuclear fuels and can and structure materials for fast breeder reactors; material problems and ceramic breeding materials for nuclear fusion plants; glass materials for the treatment of radioactive waste; super-conducting materials; amorphous metals, new high alloyed steels; ceramic high performance materials; hard materials; compound materials and polymers. (MM) [de

  16. Controlling lipid oxidation via a biomimetic iron chelating active packaging material.

    Science.gov (United States)

    Tian, Fang; Decker, Eric A; Goddard, Julie M

    2013-12-18

    Previously, a siderophore-mimetic metal chelating active packaging film was developed by grafting poly(hydroxamic acid) (PHA) from the surface of polypropylene (PP) films. The objective of the current work was to demonstrate the potential applicability of this PP-g-PHA film to control iron-promoted lipid oxidation in food emulsions. The iron chelating activity of this film was investigated, and the surface chemistry and color intensity of films were also analyzed after iron chelation. In comparison to the iron chelating activity in the free Fe(3+) solution, the PP-g-PHA film retained approximately 50 and 30% of its activity in nitrilotriacetic acid (NTA)/Fe(3+) and citric acid/Fe(3+) solutions, respectively (pH 5.0), indicating a strong chelating strength for iron. The ability of PP-g-PHA films to control lipid oxidation was demonstrated in a model emulsion system (pH 3.0). PP-g-PHA films performed even better than ethylenediaminetetraacetic acid (EDTA) in preventing the formation of volatile oxidation products. The particle size and ζ potential results of emulsions indicated that PP-g-PHA films had no adverse effects on the stability of the emulsion system. Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) analysis suggested a non-migratory nature of the PP-g-PHA film surface. These results suggest that such biomimetic, non-migratory metal chelating active packaging films have commercial potential in protecting foods against iron-promoted lipid oxidation.

  17. Enzymatic hydrolysis of biomimetic bacterial cellulose-hemicellulose composites.

    Science.gov (United States)

    Penttilä, Paavo A; Imai, Tomoya; Hemming, Jarl; Willför, Stefan; Sugiyama, Junji

    2018-06-15

    The production of biofuels and other chemicals from lignocellulosic biomass is limited by the inefficiency of enzymatic hydrolysis. Here a biomimetic composite material consisting of bacterial cellulose and wood-based hemicelluloses was used to study the effects of hemicelluloses on the enzymatic hydrolysis with a commercial cellulase mixture. Bacterial cellulose synthesized in the presence of hemicelluloses, especially xylan, was found to be more susceptible to enzymatic hydrolysis than hemicellulose-free bacterial cellulose. The reason for the easier hydrolysis could be related to the nanoscale structure of the substrate, particularly the packing of cellulose microfibrils into ribbons or bundles. In addition, small-angle X-ray scattering was used to show that the average nanoscale morphology of bacterial cellulose remained unchanged during the enzymatic hydrolysis. The reported easier enzymatic hydrolysis of bacterial cellulose produced in the presence of wood-based xylan offers new insights to overcome biomass recalcitrance through genetic engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Microfluidic devices for investigation of biomimetic membranes for sensor and separation applications

    DEFF Research Database (Denmark)

    Pszon-Bartosz, Kamila Justyna

    to microfluidic designs involving protein delivery to biomimetic membranes developed for sensor and separation applications. Finally, an OMP functionality modulation with β-cyclodextrin (β-CD) was shown and revealed the protein potential application as a sensor. Moreover, the β-CD blocker may be used to prevent...... for industrial applications. Among them are the inherent fragility of lipid membranes, the challenge of up-scaling the effective membrane area and the quantification of the protein delivery to the lipid membrane which may determined the biomimetic membrane application. This PhD thesis addresses the above...

  19. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze

    Indian Academy of Sciences (India)

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM ...

  20. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    Energy Technology Data Exchange (ETDEWEB)

    Lindahl, Carl [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Xia, Wei, E-mail: wei.xia@angstrom.uu.se [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Engqvist, Håkan [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Engineering Sciences, Ångstrom Laboratory, Uppsala University, Uppsala (Sweden); Snis, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Arcam AB, Krokslätts Fabriker 27 A, SE-431 37 Mölndal (Sweden); Lausmaa, Jukka [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, Borås (Sweden); Palmquist, Anders [BIOMATCELL Vinn Excellence Center of Biomaterials and Cell Therapy, Gothenburg (Sweden); Department of Biomaterials, Sahlgrenska Academy at the University of Gothenburg, Gothenburg (Sweden)

    2015-10-30

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca{sup 2+} in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  1. Biomimetic calcium phosphate coating of additively manufactured porous CoCr implants

    International Nuclear Information System (INIS)

    Lindahl, Carl; Xia, Wei; Engqvist, Håkan; Snis, Anders; Lausmaa, Jukka; Palmquist, Anders

    2015-01-01

    Highlights: • A route for coating complex shaped electron beam melted implants is presented. • Biomimetic HA coatings were deposited on CoCr alloys using a solution method. • Deposited biomimetic coating was partially crystalline, slightly calcium deficient. • Coating morphology was plate-like with crystallites forming roundish flowers. • Present coating procedure could be useful for porous implants made by EBM. - Abstract: The aim of this work was to study the feasibility to use a biomimetic method to prepare biomimetic hydroxyapatite (HA) coatings on CoCr substrates with short soaking times and to characterize the properties of such coatings. A second objective was to investigate if the coatings could be applied to porous CoCr implants manufactured by electron beam melting (EBM). The coating was prepared by immersing the pretreated CoCr substrates and EBM implants into the phosphate-buffered solution with Ca"2"+ in sealed plastic bottles, kept at 60 °C for 3 days. The formed coating was partially crystalline, slightly calcium deficient and composed of plate-like crystallites forming roundish flowers in the size range of 300–500 nm. Cross-section imaging showed a thickness of 300–500 nm. In addition, dissolution tests in Tris–HCl up to 28 days showed that a substantial amount of the coating had dissolved, however, undergoing only minor morphological changes. A uniform coating was formed within the porous network of the additive manufactured implants having similar thickness and morphology as for the flat samples. In conclusion, the present coating procedure allows coatings to be formed on CoCr and could be used for complex shaped, porous implants made by additive manufacturing.

  2. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto; Hansen, Michael; Kynde, Søren

    2015-01-01

    In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.......In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs...... for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional...

  3. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  4. Development of high effectiveness biomimetic materials by radiation

    International Nuclear Information System (INIS)

    Nho, Youngchang; Lim, Younmook; Gwon, Huijeong; Park, Jongseok; Jeong, Sungin; Jo, Seonyoung

    2013-09-01

    The aims of this project is to develop the high-performance biomedical new materials. In the 1 st project, we have developed the polymer matrix for drug delivery systems (DDS) for mucosa membrane. We studied on the drug release behavior such as election of drug loading method for antibiotics, propolis and adrenocortic hormone valuation of drug release behavior. The oral DDS is to cure gingival disease as well as inflammation in mouth. It is expected that a new market will be created in the field of DDS for oral mucosa. The 2 nd project, we have developed the multi-functional artificial skin for substitution of animal test such as toxicity, whitening, wrinkle improvement, skin for substitution and skin sensitivity by radiation. It is expected for the above development of biocompatible artificial skin model with good physical property by using radiation technique to be useful for the future biology, cosmetics and pharmaceutical research

  5. Development of high effectiveness biomimetic materials by radiation

    Energy Technology Data Exchange (ETDEWEB)

    Nho, Youngchang; Lim, Younmook; Gwon, Huijeong; Park, Jongseok; Jeong, Sungin; Jo, Seonyoung

    2013-09-15

    The aims of this project is to develop the high-performance biomedical new materials. In the 1{sup st} project, we have developed the polymer matrix for drug delivery systems (DDS) for mucosa membrane. We studied on the drug release behavior such as election of drug loading method for antibiotics, propolis and adrenocortic hormone valuation of drug release behavior. The oral DDS is to cure gingival disease as well as inflammation in mouth. It is expected that a new market will be created in the field of DDS for oral mucosa. The 2{sup nd} project, we have developed the multi-functional artificial skin for substitution of animal test such as toxicity, whitening, wrinkle improvement, skin for substitution and skin sensitivity by radiation. It is expected for the above development of biocompatible artificial skin model with good physical property by using radiation technique to be useful for the future biology, cosmetics and pharmaceutical research.

  6. Forward osmosis biomimetic membranes in industrial and environmental applications

    DEFF Research Database (Denmark)

    Madsen, Henrik Tækker; Søgaard, Erik Gydesen; Bajraktari, Niada

    Membrane processes have in recent years found increasing uses in several sectors where separation of one or more components from a solvent, typically water, is required. The most widespread types of membranes are polymeric and pressure driven, but the high pressures that are required results...... consumption and lead to much more stable operations, but is currently limited by the availability of suitable membranes. However, by introducing aquaporin protein channels into a polymeric membrane to make a biomimetic membrane, the vision of both high flux and separation efficiency may be achieved......) a single use filtration module containing a sample reservoir and a biomimetic aquaporin based forward osmosis membrane. 2) a multi-use desktop forward osmosis system containing draw solution mixing, and monitoring devices. The sample is placed in the single use module and the module is then mounted...

  7. Sensing in nature: using biomimetics for design of sensors

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Cheong, Hyunmin; Shu, Li

    2008-01-01

    limitations/implications – Biomimetics can be a challenge to engineers due to the terminology from another scientific discipline. Practical implications – Using a formalised search method is a way of solving the problem of finding the relevant biological analogies. Originality/value – The paper is of value...... of sense organs in animals and illustrates how a formal search method developed at University of Toronto can be applied to sensor design. Design/methodology/approach – Using biomimetics involves a search for relevant cases, a proper analysis of the biological solutions, identification of design principles...... and design of the desired artefact. The present search method is based on formulation of relevant keywords and search for occurrences in a standard university biology textbook. Most often a simple formulation of keywords and a following search is not enough to generate a sufficient amount of useful ideas...

  8. Experimental parametric study of a biomimetic fish robot actuated by piezoelectric actuators

    Science.gov (United States)

    Wiguna, T.; Park, Hoon C.; Heo, S.; Goo, Nam S.

    2007-04-01

    This paper presents an experiment and parametric study of a biomimetic fish robot actuated by the Lightweight Piezocomposite Actuator (LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF (Body and Caudal Fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, stiffness, area, and aspect ratio. It is found that a high aspect ratio caudal fin contributes to high swimming speed. The robotic fish propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for a 300 V p-p input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot is examined by calculating Strouhal number, Froude number, Reynolds number, and power consumption.

  9. Case Study in Biomimetic Design: Handling and Assembly of Microparts

    DEFF Research Database (Denmark)

    Shu, Li; Hansen, Hans Nørgaard; Gegeckaite, Asta

    2006-01-01

    This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves stic...... and the abscission process in plants inspired concepts of new automated handling devices for microobjects. The design, development and testing of a gripping device based on biological principles for the automated handling and assembly of a microscrew is presented.......This paper describes the application of the biomimetic design process to the development of automated gripping devices for microparts. Handling and assembly of micromechanical parts is complicated by size effects that occur when part dimensions are scaled down. A common complication involves...

  10. Lactoferrin Adsorbed onto Biomimetic Hydroxyapatite Nanocrystals Controlling - In Vivo - the Helicobacter pylori Infection

    Science.gov (United States)

    Fulgione, Andrea; Nocerino, Nunzia; Iannaccone, Marco; Roperto, Sante; Capuano, Federico; Roveri, Norberto; Lelli, Marco; Crasto, Antonio; Calogero, Armando; Pilloni, Argenia Paola; Capparelli, Rosanna

    2016-01-01

    Background The resistance of Helicobacter pylori to the antibiotic therapy poses the problem to discover new therapeutic approaches. Recently it has been stated that antibacterial, immunomodulatory, and antioxidant properties of lactoferrin are increased when this protein is surface-linked to biomimetic hydroxyapatite nanocrystals. Objective Based on these knowledge, the aim of the study was to investigate the efficacy of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles with cell free supernatant from probiotic Lactobacillus paracasei as an alternative therapy against Helicobacter pylori infection. Methods Antibacterial and antinflammatory properties, humoral antibody induction, histopathological analysis and absence of side effects were evaluated in both in vitro and in vivo studies. Results The tests carried out have been demonstrated better performance of lactoferrin delivered by biomimetic hydroxyapatite nanoparticles combined with cell free supernatant from probiotic Lactobacillus paracasei compared to both lactoferrin and probiotic alone or pooled. Conclusion These findings indicate the effectiveness and safety of our proposed therapy as alternative treatment for Helicobacter pylori infection. PMID:27384186

  11. Biomimetic syntheses of phenols from polyketones.

    Science.gov (United States)

    Evans, G E; Garson, M J; Griffin, D A; Leeper, F J; Stauton, J

    1978-01-01

    As a result of speculation that many enzymes control polyketone cyclization in vivo by converting a key carbonyl group to a cis-enol ether derivative, we describe two novel biomimetic cyclizations. The first involves condensation of two C6 units derived from triacetic lactone to form an arylpyrone related to aloenin. In the second a naphthapyrone of the rubrofusarin type is formed by condensation of an orsellinic acid derivative with the ether of triacetic lactone.

  12. Bioactive gyroid scaffolds formed by sacrificial templating of nanocellulose and nanochitin hydrogels as instructive platforms for biomimetic tissue engineering.

    Science.gov (United States)

    Torres-Rendon, Jose Guillermo; Femmer, Tim; De Laporte, Laura; Tigges, Thomas; Rahimi, Khosrow; Gremse, Felix; Zafarnia, Sara; Lederle, Wiltrud; Ifuku, Shinsuke; Wessling, Matthias; Hardy, John G; Walther, Andreas

    2015-05-20

    A sacrificial templating process using lithographically printed minimal surface structures allows complex de novo geo-metries of delicate hydrogel materials. The hydrogel scaffolds based on cellulose and chitin nanofibrils show differences in terms of attachment of human mesenchymal stem cells, and allow their differentiation into osteogenic outcomes. The approach here serves as a first example toward designer hydrogel scaffolds viable for biomimetic tissue engineering. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Water-Soluble Cellulose Derivatives Are Sustainable Additives for Biomimetic Calcium Phosphate Mineralization

    Directory of Open Access Journals (Sweden)

    Andreas Taubert

    2016-10-01

    Full Text Available The effect of cellulose-based polyelectrolytes on biomimetic calcium phosphate mineralization is described. Three cellulose derivatives, a polyanion, a polycation, and a polyzwitterion were used as additives. Scanning electron microscopy, X-ray diffraction, IR and Raman spectroscopy show that, depending on the composition of the starting solution, hydroxyapatite or brushite precipitates form. Infrared and Raman spectroscopy also show that significant amounts of nitrate ions are incorporated in the precipitates. Energy dispersive X-ray spectroscopy shows that the Ca/P ratio varies throughout the samples and resembles that of other bioinspired calcium phosphate hybrid materials. Elemental analysis shows that the carbon (i.e., polymer contents reach 10% in some samples, clearly illustrating the formation of a true hybrid material. Overall, the data indicate that a higher polymer concentration in the reaction mixture favors the formation of polymer-enriched materials, while lower polymer concentrations or high precursor concentrations favor the formation of products that are closely related to the control samples precipitated in the absence of polymer. The results thus highlight the potential of (water-soluble cellulose derivatives for the synthesis and design of bioinspired and bio-based hybrid materials.

  14. RGD Peptide-Grafted Graphene Oxide as a New Biomimetic Nano interface for Impedance-Monitoring Cell Behaviors

    International Nuclear Information System (INIS)

    Li, J.; Zheng, L.; Zeng, L.; Zhang, Y.; Jiang, L.; Song, J.; Li, J.; Zheng, L.; Song, J.; Li, J.; Zheng, L.; Song, J.

    2016-01-01

    A new biomimetic nano interface was constructed by facile grafting the bioactive arginylglycylaspartic acid (RGD) peptide on the graphene oxide (GO) surface through carbodiimide and N-hydroxysuccinimide coupling amidation reaction. The formed RGD-GO nano composites own unique two-dimensional structure and desirable electrochemical performance. The linked RGD peptides could improve GO∼s biocompatibility and support the adhesion and proliferation of human periodontal ligament fibroblasts (HPLFs) on RGD-GO biofilm surface. Furthermore the biologically active RGD-GO nano composites were demonstrated as a potential biomimetic nano interface for monitoring cell bio behaviors by electrochemical impedance spectroscopy (EIS). By analysis of the data obtained from equivalent circuit-fitting impedance spectroscopy, the information related to cell membrane capacitance, cell-cell gap resistance, and cell-electrode interface gap resistance in the process of cell adhesion and proliferation could be obtained. Besides, this proposed impedance-based cell sensor could be used to assess the inhibition effect of the lipopolysaccharide (LPS) on the HPLFs proliferation. Findings from this work suggested that RGD peptide functionalized GO nano materials may be not only applied in dental tissue engineering but also used as a sensor interface for electrochemical detection and analysis of cell behaviors in vitro.

  15. A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture

    OpenAIRE

    Osama Al-Sehail

    2017-01-01

    This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge ...

  16. Synthetic biology and biomimetic chemistry as converging technologies fostering a new generation of smart biosensors.

    Science.gov (United States)

    Scognamiglio, Viviana; Antonacci, Amina; Lambreva, Maya D; Litescu, Simona C; Rea, Giuseppina

    2015-12-15

    Biosensors are powerful tunable systems able to switch between an ON/OFF status in response to an external stimulus. This extraordinary property could be engineered by adopting synthetic biology or biomimetic chemistry to obtain tailor-made biosensors having the desired requirements of robustness, sensitivity and detection range. Recent advances in both disciplines, in fact, allow to re-design the configuration of the sensing elements - either by modifying toggle switches and gene networks, or by producing synthetic entities mimicking key properties of natural molecules. The present review considered the role of synthetic biology in sustaining biosensor technology, reporting examples from the literature and reflecting on the features that make it a useful tool for designing and constructing engineered biological systems for sensing application. Besides, a section dedicated to bioinspired synthetic molecules as powerful tools to enhance biosensor potential is reported, and treated as an extension of the concept of biomimetic chemistry, where organic synthesis is used to generate artificial molecules that mimic natural molecules. Thus, the design of synthetic molecules, such as aptamers, biomimetics, molecular imprinting polymers, peptide nucleic acids, and ribozymes were encompassed as "products" of biomimetic chemistry. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Heparan Sulfate: A Potential Candidate for the Development of Biomimetic Immunomodulatory Membranes

    Directory of Open Access Journals (Sweden)

    Bruna Corradetti

    2017-09-01

    Full Text Available Clinical trials have demonstrated that heparan sulfate (HS could be used as a therapeutic agent for the treatment of inflammatory diseases. Its anti-inflammatory effect makes it suitable for the development of biomimetic innovative strategies aiming at modulating stem cells behavior toward a pro-regenerative phenotype in case of injury or inflammation. Here, we propose collagen type I meshes fabricated by solvent casting and further crosslinked with HS (HS-Col to create a biomimetic environment resembling the extracellular matrix of soft tissue. HS-Col meshes were tested for their capability to provide physical support to stem cells’ growth, maintain their phenotypes and immunosuppressive potential following inflammation. HS-Col effect on stem cells was investigated in standard conditions as well as in an inflammatory environment recapitulated in vitro through a mix of pro-inflammatory cytokines (tumor necrosis factor-α and interferon-gamma; 20 ng/ml. A significant increase in the production of molecules associated with immunosuppression was demonstrated in response to the material and when cells were grown in presence of pro-inflammatory stimuli, compared to bare collagen membranes (Col, leading to a greater inhibitory potential when mesenchymal stem cells were exposed to stimulated peripheral blood mononuclear cells. Our data suggest that the presence of HS is able to activate the molecular machinery responsible for the release of anti-inflammatory cytokines, potentially leading to a faster resolution of inflammation.

  18. Fabrication of highly porous biodegradable biomimetic nanocomposite as advanced bone tissue scaffold

    Directory of Open Access Journals (Sweden)

    Abdalla Abdal-hay

    2017-02-01

    Full Text Available Development of bioinspired or biomimetic materials is currently a challenge in the field of tissue regeneration. In-situ 3D biomimetic microporous nanocomposite scaffold has been developed using a simple lyophilization post hydrothermal reaction for bone healing applications. The fabricated 3D porous scaffold possesses advantages of good bonelike apatite particles distribution, thermal properties and high porous interconnected network structure. High dispersion bonelike apatite nanoparticles (NPs rapidly nucleated and deposited from surrounding biological minerals within chitosan (CTS matrices using hydrothermal technique. After that, freeze-drying method was applied on the composite solution to form the desired porous 3D architecture. Interestingly, the porosity and pore size of composite scaffold were not significantly affected by the particles size and particles content within the CTS matrix. Our results demonstrated that the compression modulus of porous composite scaffold is twice higher than that of plain CTS scaffold, indicating a maximization of the chemical interaction between polymer matrix and apatite NPs. Cytocompatibility test for MC3T3-E1 pre-osteoblasts cell line using MTT-indirect assay test showed that the fabricated 3D microporous nanocomposite scaffold possesses higher cell proliferation and growth than that of pure CTS scaffold. Collectively, our results suggest that the newly developed highly porous apatite/CTS nanocomposite scaffold as an alternative of hydroxyapatite/CTS scaffold may serve as an excellent porous 3D platform for bone tissue regeneration.

  19. Mercury-Supported Biomimetic Membranes for the Investigation of Antimicrobial Peptides

    Directory of Open Access Journals (Sweden)

    Lucia Becucci

    2014-01-01

    Full Text Available Tethered bilayer lipid membranes (tBLMs consist of a lipid bilayer interposed between an aqueous solution and a hydrophilic “spacer” anchored to a gold or mercury electrode. There is great potential for application of these biomimetic membranes for the elucidation of structure-function relationships of membrane peptides and proteins. A drawback in the use of mercury-supported tBLMs with respect to gold-supported ones is represented by the difficulty in applying surface sensitive, spectroscopic and scanning probe microscopic techniques to gather information on the architecture of these biomimetic membranes. Nonetheless, mercury-supported tBLMs are definitely superior to gold-supported biomimetic membranes for the investigation of the function of membrane peptides and proteins, thanks to a fluidity and lipid lateral mobility comparable with those of bilayer lipid membranes interposed between two aqueous phases (BLMs, but with a much higher robustness and resistance to electric fields. The different features of mercury-supported tBLMs reconstituted with functionally active membrane proteins and peptides of bacteriological or pharmacological interest may be disclosed by a judicious choice of the most appropriate electrochemical techniques. We will describe the way in which electrochemical impedance spectroscopy, potential-step chronocoulometry, cyclic voltammetry and phase-sensitive AC voltammetry are conveniently employed to investigate the structure of mercury-supported tBLMs and the mode of interaction of antimicrobial peptides reconstituted into them.

  20. A spongy graphene based bimorph actuator with ultra-large displacement towards biomimetic application.

    Science.gov (United States)

    Hu, Ying; Lan, Tian; Wu, Guan; Zhu, Zicai; Chen, Wei

    2014-11-07

    Bimorph actuators, consisting of two layers with asymmetric expansion and generating bending displacement, have been widely researched. Their actuation performances greatly rely on the difference of coefficients of thermal expansion (CTE) between the two material layers. Here, by introducing a spongy graphene (sG) paper with a large negative CTE as well as high electrical-to-thermal properties, an electromechanical sG/PDMS bimorph actuator is designed and fabricated, showing an ultra-large bending displacement output under low voltage stimulation (curvature of about 1.2 cm(-1) at 10 V for 3 s), a high displacement-to-length ratio (∼0.79), and vibration motion at AC voltage (up to 10 Hz), which is much larger and faster than that of the other electromechanical bimorph actuators. Based on the sG/PDMS bimorph serving as the "finger", a mechanical gripper is constructed to realize the fast manipulation of the objects under 0.1 Hz square wave voltage stimulation (0-8 V). The designed bimorph actuator coupled with ultra-large bending displacement, low driven voltage, and the ease of fabrication may open up substantial possibilities for the utilization of electromechanical actuators in practical biomimetic device applications.

  1. A biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2014-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a one-axis biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. An analytical model

  2. Materials research with neutron beams from a research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Root, J.; Banks, D. [Canadian Neutron Beam Centre, Chalk River Laboratories, Chalk River, Ontario (Canada)

    2015-03-15

    Because of the unique ways that neutrons interact with matter, neutron beams from a research reactor can reveal knowledge about materials that cannot be obtained as easily with other scientific methods. Neutron beams are suitable for imaging methods (radiography or tomography), for scattering methods (diffraction, spectroscopy, and reflectometry) and for other possibilities. Neutron-beam methods are applied by students and researchers from academia, industry and government to support their materials research programs in several disciplines: physics, chemistry, materials science and life science. The arising knowledge about materials has been applied to advance technologies that appear in everyday life: transportation, communication, energy, environment and health. This paper illustrates the broad spectrum of materials research with neutron beams, by presenting examples from the Canadian Neutron Beam Centre at the NRU research reactor in Chalk River. (author)

  3. Progress on bioinspired, biomimetic, and bioreplication routes to harvest solar energy

    Science.gov (United States)

    Martín-Palma, Raúl J.; Lakhtakia, Akhlesh

    2017-06-01

    Although humans have long been imitating biological structures to serve their particular purposes, only a few decades ago engineered biomimicry began to be considered a technoscientific discipline with a great problem-solving potential. The three methodologies of engineered biomimicry-viz., bioinspiration, biomimetic, and bioreplication-employ and impact numerous technoscientific fields. For producing fuels and electricity by artificial photosynthesis, both processes and porous surfaces inspired by plants and certain marine animals are under active investigation. Biomimetically textured surfaces on the subwavelength scale have been shown to reduce the reflectance of photovoltaic solar cells over the visible and the near-infrared regimes. Lenticular compound lenses bioreplicated from insect eyes by an industrially scalable technique offer a similar promise.

  4. Effects of PEGylation on biomimetic synthesis of magnetoferritin nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Caiyun, E-mail: ycy@mail.iggcas.ac.cn; Cao, Changqian, E-mail: changqiancao@mail.iggcas.ac.cn; Cai, Yao, E-mail: caiyao@mail.iggcas.ac.cn; Xu, Huangtao, E-mail: xuhuangtao@mail.iggcas.ac.cn; Zhang, Tongwei, E-mail: ztw@mail.iggcas.ac.cn; Pan, Yongxin, E-mail: yxpan@mail.iggcas.ac.cn [Institute of Geology and Geophysics, Chinese Academy of Sciences, Key Laboratory of Earth and Planetary Physics (China)

    2017-03-15

    Recent studies have demonstrated that ferrimagnetic magnetoferritin nanoparticles are a promising novel magnetic nanomaterial in biomedical applications, including biocatalysis, imaging, diagnostics, and tumor therapy. Here we investigated the PEGylation of human H-ferritin (HFn) proteins and the possible influence on biomimetic synthesis of magnetoferritin nanoparticles. The outer surface of HFn proteins was chemically modified with different PEG molecular weights (PEG10K and PEG20K) and different modification ratios (HFn subunit:PEG20K = 1:1, 1:2, 1:4). The PEGylated HFn proteins were used for biomimetic synthesis of ferrimagnetic magnetoferritin nanoparticles. We found that, compared with magnetoferritin using non-PEGylated HFn protein templates, the synthesized magnetoferritin using the PEGylated HFn protein templates possessed larger magnetite cores, higher magnetization and relaxivity values, and improved thermal stability. These results suggest that the PEGylation of H-ferritin may improve the biomineralization of magnetoferritin nanoparticles and enhance their biomedical applications.

  5. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  6. Biomimetic processing of oriented crystalline ceramic layers

    Energy Technology Data Exchange (ETDEWEB)

    Cesarano, J.; Shelnutt, J.A.

    1997-10-01

    The aim of this project was to develop the capabilities for Sandia to fabricate self assembled Langmuir-Blodgett (LB) films of various materials and to exploit their two-dimensional crystalline structure to promote the growth of oriented thin films of inorganic materials at room temperature. This includes the design and synthesis of Langmuir-active (amphiphilic) organic molecules with end groups offering high nucleation potential for various ceramics. A longer range goal is that of understanding the underlying principles, making it feasible to use the techniques presented in this report to fabricate unique oriented films of various materials for electronic, sensor, and membrane applications. Therefore, whenever possible, work completed in this report was completed with the intention of addressing the fundamental phenomena underlying the growth of crystalline, inorganic films on template layers of highly organized organic molecules. This problem was inspired by biological processes, which often produce exquisitely engineered structures via templated growth on polymeric layers. Seashells, for example, exhibit great toughness owing to their fine brick-and-mortar structure that results from templated growth of calcium carbonate on top of layers of ordered organic proteins. A key goal in this work, therefore, is to demonstrate a positive correlation between the order and orientation of the template layer and that of the crystalline ceramic material grown upon it. The work completed was comprised of several parallel efforts that encompassed the entire spectrum of biomimetic growth from solution. Studies were completed on seashells and the mechanisms of growth for calcium carbonate. Studies were completed on the characterization of LB films and the capability developed for the in-house fabrication of these films. Standard films of fatty acids were studied as well as novel polypeptides and porphyrins that were synthesized.

  7. Surface Modifications of Support Partitions for Stabilizing Biomimetic Membrane Arrays

    DEFF Research Database (Denmark)

    Perry, Mark; Hansen, Jesper Schmidt; Jensen, Karin Bagger Stibius

    2011-01-01

    with a high signal-to-noise (s/n) ratio. We demonstratesd this by reconstituting gA and α-hemolysin (α-HL) into BLM arrays. The improvement in membrane array lifetime and s/n ratio demonstrates that surface plasma polymerization of the supporting partition can be used to increase the stability of biomimetic......Black lipid membrane (BLM) formation across apertures in an ethylene tetra-fluoroethylene (ETFE) partition separating two aqueous compartments is an established technique for the creation of biomimetic membranes. Recently multi-aperture BLM arrays have attracted interest and in order to increase...... BLM array stability we studied the effect of covalently modifying the partition substrate using surface plasma polymerization with hydrophobic n-hexene, 1-decene and hexamethyldisiloxane (HMDSO) as modification groups. Average lifetimes across singlesided HMDSO modified partitions or using 1-decene...

  8. Bio-functionalization of Titanium (Ti) by Amine Groups for Advanced Materials Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a multifunctional biomimetic material that exhibits damage tolerant and self‐healing adhesive properties for space and terrestrial applications that is...

  9. Biomimetic Receptors for Bioanalyte Detection by Quartz Crystal Microbalances — From Molecules to Cells

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2014-12-01

    Full Text Available A universal label-free detection of bioanalytes can be performed with biomimetic quartz crystal microbalance (QCM coatings prepared by imprinting strategies. Bulk imprinting was used to detect the endocrine disrupting chemicals (EDCs known as estradiols. The estrogen 17β-estradiol is one of the most potent EDCs, even at very low concentrations. A highly sensitive, selective and robust QCM sensor was fabricated for real time monitoring of 17β-estradiol in water samples by using molecular imprinted polyurethane. Optimization of porogen (pyrene and cross-linker (phloroglucinol levels leads to improved sensitivity, selectivity and response time of the estradiol sensor. Surface imprinting of polyurethane as sensor coating also allowed us to generate interaction sites for the selective recognition of bacteria, even in a very complex mixture of interfering compounds, while they were growing from their spores in nutrient solution. A double molecular imprinting approach was followed to transfer the geometrical features of natural bacteria onto the synthetic polymer to generate biomimetic bacteria. The use of biomimetic bacteria as template makes it possible to prepare multiple sensor coatings with similar sensitivity and selectivity. Thus, cell typing, e.g., differentiation of bacteria strains, bacteria growth profile and extent of their nutrition, can be monitored by biomimetic mass sensors. Obviously, this leads to controlled cell growth in bioreactors.

  10. Structure–function relationship of the foam-like pomelo peel (Citrus maxima)—an inspiration for the development of biomimetic damping materials with high energy dissipation

    International Nuclear Information System (INIS)

    Thielen, M; Schmitt, C N Z; Eckert, S; Speck, T; Seidel, R

    2013-01-01

    The mechanical properties of artificial foams are mainly determined by the choice of bulk materials and relative density. In natural foams, in contrast, variation to optimize properties is achieved by structural optimization rather than by conscious substitution of bulk materials. Pomelos (Citrus maxima) have a thick foam-like peel which is capable of dissipating considerable amounts of kinetic energy and thus this fruit represents an ideal role model for the development of biomimetic impact damping structures. This paper focuses on the analysis of the biomechanics of the pomelo peel and on its structure–function relationship. It deals with the determination of the onset strain of densification of this foam-like tissue and on how this property is influenced by the arrangement of vascular bundles. It was found here that the vascular bundles branch in a very regular manner—every 16.5% of the radial peel thickness—and that the surrounding peel tissue (pericarp) attains its exceptional thickness mainly by the expansion of existing interconnected cells causing an increasing volume of the intercellular space, rather than by cell division. These findings lead to the discussion of the pomelo peel as an inspiration for fibre-reinforced cast metallic foams with the capacity for excellent energy dissipation. (paper)

  11. Hydroxyapatite coating by biomimetic method on titanium alloy ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. This article reports a biomimetic approach for coating hydroxyapatite on titanium alloy at ambient temperature. In the present study, coating was obtained by soaking the substrate in a 5 times concentrated simulated body fluid (5XSBF) solution for different periods of time with and without the use of CaO–SiO2.

  12. 9-Fluorenylmethyl (Fm) Disulfides: Biomimetic Precursors for Persulfides

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chung-Min; Johnson, Brett A.; Duan, Jicheng; Park, Jeong-Jin; Day, Jacob J.; Gang, David; Qian, Wei-Jun; Xian, Ming

    2016-03-04

    Protein S-sulfhydration has been recognized as an important post-translational modification that regulates H2S signals. However, the reactivity and biological implications of the products of S-sulfhydration, i.e. persulfides, are still unclear. This is mainly due to the instability of persulfides and difficulty to access these molecules. Under physiological conditions persulfides mainly exist in anionic forms because of their low pKa values. However, current methods do not allow for the direct generation of persulfide anions under biomimetic and non-H2S conditions. Herein we report the development of a functional disulfide, FmSSPy-A (Fm =9-fluorenylmethyl; Py = pyridinyl). This reagent can effectively convert both small molecule and protein thiols (-SH) to form –S-SFm adducts under mild conditions. It allows for a H2S-free and biomimetic protocol to generate highly reactive persulfides (in their anionic forms). We also demonstrated the high nucleophilicity of persulfides toward a number of thiol-blocking reagents. This method holds promise for further understanding the chemical biology of persulfides and S-sulfhydration.

  13. Color-producing mechanism of morpho butterfly wings and biomimetics; Cho no hasshoku kiko to biomimetics

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, H. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1999-07-01

    Although the synthetic dyes and pigments originating in the 19th century are now at the height of their prosperity, there is an earnest hope for technology for realizing `supercolor.` If it is presumed that the features of such supercolor are to be found in outstanding clearness and high resistance to fading in the presence of ultraviolet rays, etc., the supercolor will be quite tough to deal with. When attention is steered toward the living world, however, there are cases of easily producing such by morphogenesis at the level of several tens of nanometers. In this paper, the development of a novel material is presented from the viewpoint of biomimetic engineering that the author et al. are engaged in. The coloring on the wings of a butterfly Morpho Sulkowskyi of South American origin is the product of interaction between light and the physical, microscopic structure of scales, and the coloring is extremely clear and remains free of fading except in case the microstructure is destroyed. This mechanism is applied for the development of a supercolor fiber. As the result, a structurally coloring fiber is created by stretching a molten composite string. In this effort, reformed polyester and polyamide different in refraction factor are used in place of substance layers and air layers on the butterfly wings. (NEDO)

  14. Biomimetic electrochemistry from conducting polymers. A review

    International Nuclear Information System (INIS)

    Otero, T.F.; Martinez, J.G.; Arias-Pardilla, J.

    2012-01-01

    Highlights: ► Composition and properties of conducting polymers change during reactions. ► These properties are being exploited to develop biomimetic reactive and soft devices. ► The state of the art for artificial muscles sensing working conditions was reviewed. ► Smart membranes, drug delivery devices and nervous interfaces were also reviewed. - Abstract: Films of conducting polymers in the presence of electrolytes can be oxidized or reduced by the flow of anodic or cathodic currents. Ions and solvent are exchanged during a reaction for charge and osmotic pressure balance. A reactive conducting polymer contains ions and solvent. Such variation of composition during a reaction is reminiscent of the biological processes in cells. Along changes to the composition of the material during a reaction, there are also changes to other properties, including: volume (electrochemomechanical), colour (electrochromic), stored charge (electrical storage), porosity or permselectivity (electroporosity), stored chemicals, wettability and so on. Most of those properties mimic similar property changes in organs during their functioning. These properties are being exploited to develop biomimetic reactive and soft devices: artificial muscles and polymeric actuators; supercapacitors and all organic batteries; smart membranes; electron-ion transducers; nervous interfaces and artificial synapses, or drug delivery devices. In this review we focus on the state of the art for artificial muscles, smart membranes and electron-ion transducers. The reactive nature of those devices provide them with a unique advantage related to the present days technologies: any changes in the surrounding physical or chemical variable acting on the electrochemical reaction rate will be sensed by the device while working. Working under constant current (driving signal), the evolution of the device potential or the evolution of the consumed electrical energy (sensing signals) senses and quantifies the

  15. Materials irradiation research in neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Noda, Kenji; Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    Materials irradiation researches are planned in Neutron Science Research Program. A materials irradiation facility has been conceived as one of facilities in the concept of Neutron Science Research Center at JAERI. The neutron irradiation field of the facility is characterized by high flux of spallation neutrons with very wide energy range up to several hundred MeV, good accessibility to the irradiation field, good controllability of irradiation conditions, etc. Extensive use of such a materials irradiation facility is expected for fundamental materials irradiation researches and R and D of nuclear energy systems such as accelerator-driven incineration plant for long-lifetime nuclear waste. In this paper, outline concept of the materials irradiation facility, characteristics of the irradiation field, preliminary technical evaluation of target to generate spallation neutrons, and materials researches expected for Neutron Science Research program are described. (author)

  16. The precursors effects on biomimetic hydroxyapatite ceramic powders.

    Science.gov (United States)

    Yoruç, Afife Binnaz Hazar; Aydınoğlu, Aysu

    2017-06-01

    In this study, effects of the starting material on chemical, physical, and biological properties of biomimetic hydroxyapatite ceramic powders (BHA) were investigated. Characterization and chemical analysis of BHA powders were performed by using XRD, FT-IR, and ICP-AES. Microstructural features such as size and morphology of the resulting BHA powders were characterized by using BET, nano particle sizer, pycnometer, and SEM. Additionally, biological properties of the BHA ceramic powders were also investigated by using water-soluble tetrazolium salts test (WST-1). According to the chemical analysis of BHA ceramic powders, chemical structures of ceramics which are prepared under different conditions and by using different starting materials show differences. Ceramic powders which are produced at 80°C are mainly composed of hydroxyapatite, dental hydroxyapatite (contain Na and Mg elements in addition to Ca), and calcium phosphate sulfide. However, these structures are altered at high temperatures such as 900°C depending on the features of starting materials and form various calcium phosphate ceramics and/or their mixtures such as Na-Mg-hydroxyapatite, hydroxyapatite, Mg-Whitlockit, and chloroapatite. In vitro cytotoxicity studies showed that amorphous ceramics produced at 80°C and ceramics containing chloroapatite structure as main or secondary phases were found to be extremely cytotoxic. Furthermore, cell culture studies showed that highly crystalline pure hydroxyapatite structures were extremely cytotoxic due to their high crystallinity values. Consequently, the current study indicates that the selection of starting materials which can be used in the production of calcium phosphate ceramics is very important. It is possible to produce calcium phosphate ceramics which have sufficient biocompatibility at physiological pH values and by using appropriate starting materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Electro-active paper for a durable biomimetic actuator

    International Nuclear Information System (INIS)

    Yun, Sung-Ryul; Yun, Gyu Young; Kim, Jung Hwan; Chen, Yi; Kim, Jaehwan

    2009-01-01

    Cellulose electro-active paper (EAPap), known as a smart material, has merits in terms of low voltage operation, light weight, dryness, low power consumption, biodegradability, abundance and low price. Since EAPap requires low power consumption, a remotely driven actuator has been proposed using microwave power transmission. This concept is attractive for many biomimetic systems such as crawling micro-insect robots, flying objects like dragon flies and smart wallpapers. However, the actuation performance of EAPap is sensitive to humidity and degrades with time. Thus, in this paper, a durable EAPap is studied. The fabrication of EAPap is explained and the actuation performance is shown with applied electric field, frequency, humidity level and time. The fabrication process includes dissolving cellulose fibers, eliminating solvent and Li ions with a mixture of deionized water and isopropyl alcohol, washing with water, drying and coating with gold. The morphology of the fabricated EAPap is analyzed by taking scanning electron microscope images and x-ray diffractograms. The actuation performance is tested in terms of bending displacement with frequency, time and humidity level

  18. Online Monitoring of Electrochemical Degradation of Paracetamol through a Biomimetic Sensor

    Directory of Open Access Journals (Sweden)

    Mariana Calora Quintino de Oliveira

    2011-01-01

    Full Text Available This paper reports, for the first time, the online monitoring to the electrochemical degradation of the paracetamol using a biomimetic sensor coupled to a Flow Injection Analysis (FIA system. The electrochemical degradation of the drug was carried out in aqueous medium using a flow-by reactor with a DSA anode. The process efficiency was monitored at real time by the biomimetic sensor constructed by modifying a glassy carbon electrode with a Nafion membrane doped with iron tetrapyridinoporphyrazine (FeTPyPz. Simultaneously, we carried out off-line analysis by liquid chromatography (HPLC during the experiments in order to validate the proposed system. In addition, to investigate the degradation products of the paracetamol electrolysis, we used the techniques of UPLC/MS and GC/MS.

  19. Scaling laws for a compliant biomimetic swimmer

    Science.gov (United States)

    Gibouin, Florence; Raufaste, Christophe; Bouret, Yann; Argentina, Mederic

    2017-11-01

    Motivated by the seminal work of Lord Lighthill in the sixties, we study the motion of inertial aquatic swimmers that propels with undulatory gaits. In 2014, Gazzola et al. have uncovered the law linking the swimming velocity to the kinematics of the swimmer and the fluid properties. At high Reynolds numbers, the velocity appears to be equal to 0.4 Af /(2 π) , where A and f are respectively the amplitude and the frequency of the oscillating fin. We have constructed a compliant biomimetic swimmer, whose muscles have been modeled through a torque distribution thanks to a servomotor. A soft polymeric material mimics the flesh and provides the flexibility. By immersing our robot into a water tunnel, we find and characterize the operating point for which the propulsive force balances the drag. We bring the first experimental proof of the former law and probe large amplitude undulations which exhibits nonlinear effects. All data collapse perfectly onto a single master curve. We investigate the role of the fin flexibility by varying its length and its thickness and we figured out the existence of an efficient swimming regime. We thank the support of CNRS and Université Côte d'Azur.

  20. Biomimetics in Modern Organizations – Laws or Metaphors?

    Directory of Open Access Journals (Sweden)

    Markus Schatten

    2011-06-01

    Full Text Available Biomimetics, the art and science of imitating nature and life for technological solutions is discussed from a modern organization theory perspective. The main hypothesis of this article is that there are common laws in nature that are applicable to living, social and likewise organizational systems. To take advantage of these laws, the study of nature’s principles for their application to organizations is proposed – a process which is in product and technology design known as bionic creativity engineering. In a search for most interesting concepts borrowed from nature we found amoeba organizations, the theory of autopoiesis or self-creation, neural networks, heterarchies, as well as fractals and bioteaming which are described and reviewed. Additionally other concepts like swarm intelligence, stigmergy, as well as genesis and reproduction, are introduced. In the end all these ideas are summarized and guidelines for further research are given.

  1. Piezoelectric Templates – New Views on Biomineralization and Biomimetics

    Science.gov (United States)

    Stitz, Nina; Eiben, Sabine; Atanasova, Petia; Domingo, Neus; Leineweber, Andreas; Burghard, Zaklina; Bill, Joachim

    2016-01-01

    Biomineralization in general is based on electrostatic interactions and molecular recognition of organic and inorganic phases. These principles of biomineralization have also been utilized and transferred to bio-inspired synthesis of functional materials during the past decades. Proteins involved in both, biomineralization and bio-inspired processes, are often piezoelectric due to their dipolar character hinting to the impact of a template’s piezoelectricity on mineralization processes. However, the piezoelectric contribution on the mineralization process and especially the interaction of organic and inorganic phases is hardly considered so far. We herein report the successful use of the intrinsic piezoelectric properties of tobacco mosaic virus (TMV) to synthesize piezoelectric ZnO. Such films show a two-fold increase of the piezoelectric coefficient up to 7.2 pm V−1 compared to films synthesized on non-piezoelectric templates. By utilizing the intrinsic piezoelectricity of a biotemplate, we thus established a novel synthesis pathway towards functional materials, which sheds light on the whole field of biomimetics. The obtained results are of even broader and general interest since they are providing a new, more comprehensive insight into the mechanisms involved into biomineralization in living nature. PMID:27212583

  2. Induction of bone formation by smart biphasic hydroxyapatite tricalcium phosphate biomimetic matrices in the non-human primate Papio ursinus

    CSIR Research Space (South Africa)

    Ripamonti, U

    2008-01-01

    Full Text Available Long-term studies in the non-human primate Chacma baboon Papio ursinus were set to investigate the induction of bone formation by biphasic hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) biomimetic matrices. HA/β-TCP biomimetic matrices in a pre...

  3. Fabrication of biomimetic superhydrophobic surface using hierarchical polyaniline spheres.

    Science.gov (United States)

    Dong, Xiaofei; Wang, Jixiao; Zhao, Yanchai; Wang, Zhi; Wang, Shichang

    2011-06-01

    Wettability and water-adhesion behavior are the most important properties of solid surfaces from both fundamental and practical aspects. Here, the biomimetic superhydrophobic surface was fabricated via a simple coating process using polyaniline (PANI) microspheres which is covered with PANI nanowires as functional component, and poly-vinyl butyral (PVB, poly-vinyl alcohol crosslinked with n-butylaldehyde) as PANI microsphere adhering improvement agent to the substrate. The obtained surface displays superhydrophobic behavior without any modification with low-surface-energy materials such as thiol- or fluoroalkylsilane. The effects of coating process and the content of PANI microspheres on superhydropbobic behavior were discussed. Combine contact angle, water-adhesion measurements, scanning electronic microscopy (SEM) observations with selected areas energy dispersion spectrometer (EDS), the hydrophobic mechanism was proposed. The superhydrophobicity is attributed to a hierarchical morphology of PANI microspheres and the nature of the material itself. In addition, induced by van der Waals forces, the created superhydrophobic surface here shows the strong water-adhesion behavior. The surface has the combination performance of Lotus leaf and gecko's pad. The special wettability would be of great significance to the liquid microtransport in microfluid devices. The experimental results show that the ordinary coating process is a facile approach for fabrication of superhydrophobic surfaces.

  4. Processing bulk natural wood into a high-performance structural material

    Science.gov (United States)

    Jianwei Song; Chaoji Chen; Shuze Zhu; Mingwei Zhu; Jiaqi Dai; Upamanyu Ray; Yiju Li; Yudi Kuang; Yongfeng Li; Nelson Quispe; Yonggang Yao; Amy Gong; Ulrich H. Leiste; Hugh A. Bruck; J. Y. Zhu; Azhar Vellore; Heng Li; Marilyn L. Minus; Zheng Jia; Ashlie Martini; Teng Li; Liangbing Hu

    2018-01-01

    Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites)1–8. Natural wood is a low-cost and abundant material and has been used...

  5. Universal composition-structure-property maps for natural and biomimetic platelet-matrix composites and stacked heterostructures.

    Science.gov (United States)

    Sakhavand, Navid; Shahsavari, Rouzbeh

    2015-03-16

    Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.

  6. Biomimetic elastomeric, conductive and biodegradable polycitrate-based nanocomposites for guiding myogenic differentiation and skeletal muscle regeneration.

    Science.gov (United States)

    Du, Yuzhang; Ge, Juan; Li, Yannan; Ma, Peter X; Lei, Bo

    2018-03-01

    Artificial muscle-like biomaterials have gained tremendous interests owing to their broad applications in regenerative medicine, wearable devices, bioelectronics and artificial intelligence. Unfortunately, key challenges are still existed for current materials, including biomimetic viscoelasticity, biocompatibility and biodegradation, multifunctionality. Herein, for the first time, we develop highly elastomeric, conductive and biodegradable poly (citric acid-octanediol-polyethylene glycol)(PCE)-graphene (PCEG) nanocomposites, and demonstrate their applications in myogenic differentiation and guiding skeletal muscle tissue regeneration. In PCEG nanocomposites, PCE provides the biomimetic elastomeric behavior, and the addition of reduced graphene oxide (RGO) endows the enhanced mechanical strength and conductivity. The highly elastomeric behavior, significantly enhanced modulus (400%-800%), strength (200%-300%) of PCEG nanocomposites with controlled biodegradability and electrochemical conductivity were achieved. The myoblasts proliferation and myogenic differentiation were significantly improved by PCEG nanocomposite. Significantly high in vivo biocompatibility of PCEG nanocomposites was observed when implanted in the subcutaneous tissue for 4 weeks in rats. PCEG nanocomposites could significantly enhance the muscle fibers and blood vessels formation in vivo in a skeletal muscle lesion model of rat. This study may provide a novel strategy to develop multifunctional elastomeric nanocomposites with high biocompatibility for potential soft tissue regeneration and stretchable bioelectronic devices. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    International Nuclear Information System (INIS)

    Jung, Yong Chae; Bhushan, Bharat

    2010-01-01

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  8. Towards a real-time interface between a biomimetic model of sensorimotor cortex and a robotic arm

    OpenAIRE

    Dura-Bernal, Salvador; Chadderdon, George L; Neymotin, Samuel A; Francis, Joseph T; Lytton, William W

    2014-01-01

    Brain-machine interfaces can greatly improve the performance of prosthetics. Utilizing biomimetic neuronal modeling in brain machine interfaces (BMI) offers the possibility of providing naturalistic motor-control algorithms for control of a robotic limb. This will allow finer control of a robot, while also giving us new tools to better understand the brain’s use of electrical signals. However, the biomimetic approach presents challenges in integrating technologies across multiple hardware and...

  9. Engineering Tough Materials: Biomimetic Eggshell

    Science.gov (United States)

    2016-08-29

    Fellow Dr. David Labonte Cambridge University Engineering Dept., Trumpington Street, Cambridge CB2 1PZ, UK ~ Approved for public release; distribution...with a brief outlook, including next steps to pursue in the new cooperative research arrangement between ERDC and the University of Cambridge . Summary...HCl in 2 h at room temperature. Shell & Membrane Shell Outer membrane Inner membrane Figure 1: Cross section of an eggshell illustrating the direct

  10. Layer-by-Layer Assembled Nanotubes as Biomimetic Nanoreactors for Calcium Carbonate Deposition.

    Science.gov (United States)

    He, Qiang; Möhwald, Helmuth; Li, Junbai

    2009-09-17

    Enzyme-loaded magnetic polyelectrolyte multilayer nanotubes prepared by layer-by-layer assembly combined with the porous template could be used as biomimetic nanoreactors. It is demonstrated that calcium carbonate can be biomimetically synthesized inside the cavities of the polyelectrolyte nanotubes by the catalysis of urease, and the size of the calcium carbonate precipitates was controlled by the cavity dimensions. The metastable structure of the calcium carbonate precipitates inside the nanotubes was protected by the outer shell of the polyelectrolyte multilayers. These features may allow polyelectrolyte nanotubes to be applied in the fields of nanomaterials synthesis, controlled release, and drug delivery. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reactor Materials Research

    International Nuclear Information System (INIS)

    Van Walle, E.

    2001-01-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  12. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  13. A Novel Nanocomposite Particle of Hydroxyapatite and Silk Fibroin: Biomimetic Synthesis and Its Biocompatibility

    Directory of Open Access Journals (Sweden)

    Lin Niu

    2010-01-01

    Full Text Available A novel bone-like biomaterial of hydroxyapatite (HAP and silk fibroin (SF composite was developed by biomimetic synthesis. The composite was precipitated from drops of Ca(OH2 suspension and H3PO4 solution with SF. With this method, the HAP nanocrystals were obtained by self-assembling on a SF surface whose c-axis was aligned with the long-axis direction of SF in microstructures; this shares the same misconstrues of collagen and HAP with that in the natural bone. The HAP/SF composite then demonstrated that it could promote osteoblast proliferation in vitro and new bone formation in vivo. The novel biomaterial is a promising material for bone replacement and regeneration.

  14. Study of biocompatible and biological materials

    CERN Document Server

    Pecheva, Emilia

    2017-01-01

    The book gives an overview on biomineralization, biological, biocompatible and biomimetic materials. It reveals the use of biomaterials alone or in composites, how their performance can be improved by tailoring their surface properties by external factors and how standard surface modification techniques can be applied in the area of biomaterials to beneficially influence their growth on surfaces.

  15. Biomimetic mineralization of calcium carbonate/carboxymethylcellulose microspheres for lysozyme immobilization

    International Nuclear Information System (INIS)

    Lu Zheng; Zhang Juan; Ma Yunzi; Song Siyue; Gu Wei

    2012-01-01

    Porous calcium carbonate/carboxymethylcellulose (CaCO 3 /CMC) microspheres were prepared by the biomimetic mineralization method for lysozyme immobilization via adsorption. The size and morphology of CaCO 3 /CMC microspheres were characterized by transmitted electron microscopy (TEM) and zeta potential measurement. The lysozyme immobilization was verified by Fourier transform infrared (FTIR) spectroscopy. The effects of pHs and temperatures on lysozyme adsorption were investigated as well. It was revealed that CaCO 3 /CMC microspheres could immobilize lysozyme efficiently via electrostatic interactions and a maximum adsorption capacity of 450 mg/g was achieved at pH 9.2 and 25 °C. Moreover, it was found that the adsorption process fitted well with the Langmuir isothermal model. In addition, UV, fluorescence, and circular dichroism (CD) spectroscopic studies showed that lysozyme maintained its original secondary structure during the adsorption/desorption process. Our study therefore demonstrated that CaCO 3 /CMC microsphere can be used as a cost-effective and efficient support for lysozyme immobilization. - Graphical abstract: CaCO 3 /CMC microsphere was prepared by a facile biomimetic mineralization method and can be used as an efficient and cost-effective support for lysozyme immobilization. Highlights: ► CaCO 3 /CMC microspheres were prepared by the biomimetic mineralization method. ► Lysozyme was efficiently immobilized to CaCO 3 /CMC microspheres via adsorption. ► A maximum adsorption capacity of 450 mg/g was obtained at pH 9.2 and 25 °C. ► The original secondary structure of lysozyme was maintained upon immobilization.

  16. Stabilization of Phenylalanine Ammonia Lyase from Rhodotorula glutinis by Encapsulation in Polyethyleneimine-Mediated Biomimetic Silica.

    Science.gov (United States)

    Cui, Jiandong; Liang, Longhao; Han, Cong; Lin Liu, Rong

    2015-06-01

    Phenylalanine ammonia lyase (PAL) from Rhodotorula glutinis was encapsulated within polyethyleneimine-mediated biomimetic silica. The main factors in the preparation of biomimetic silica were optimized by response surface methodology (RSM). Compared to free PAL (about 2 U), the encapsulated PAL retained more than 43 % of their initial activity after 1 h of incubation time at 60 °C, whereas free PAL lost most of activity in the same conditions. It was clearly indicated that the thermal stability of PAL was improved by encapsulation. Moreover, the encapsulated PAL exhibited the excellent stability of the enzyme against denaturants and storage stability, and pH stability was improved by encapsulation. Operational stability of 7 reaction cycles showed that the encapsulated PAL was stable. Nevertheless, the K m value of encapsulated PAL in biomimetic silica was higher than that of the free PAL due to lower total surface area and increased mass transfer resistance.

  17. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    Science.gov (United States)

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.

  18. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes

    Science.gov (United States)

    Manzanares, Maria-Cristina; Ginebra, Maria-Pau; Franch, Jordi

    2015-01-01

    The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed. PMID:26132468

  19. In Vivo Osteogenic Potential of Biomimetic Hydroxyapatite/Collagen Microspheres: Comparison with Injectable Cement Pastes.

    Directory of Open Access Journals (Sweden)

    Erika Cuzmar

    Full Text Available The osteogenic capacity of biomimetic calcium deficient hydroxyapatite microspheres with and without collagen obtained by emulsification of a calcium phosphate cement paste has been evaluated in an in vivo model, and compared with an injectable calcium phosphate cement with the same composition. The materials were implanted into a 5 mm defect in the femur condyle of rabbits, and bone formation was assessed after 1 and 3 months. The histological analysis revealed that the cements presented cellular activity only in the margins of the material, whereas each one of the individual microspheres was covered with osteogenic cells. Consequently, bone ingrowth was enhanced by the microspheres, with a tenfold increase compared to the cement, which was associated to the higher accessibility for the cells provided by the macroporous network between the microspheres, and the larger surface area available for osteoconduction. No significant differences were found in terms of bone formation associated with the presence of collagen in the materials, although a more extensive erosion of the collagen-containing microspheres was observed.

  20. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  1. Materials Research Department Annual report 1998

    Energy Technology Data Exchange (ETDEWEB)

    Winther, Grethe; Hansen, N [eds.

    1999-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1998 are described. The scientific work is presented in five chapters: Materials Science, Materials Engineering, Materials Technology, Materials Chemistry and Fusion Materials. A survey is given of the Departments collaboration with national and international industries and research institutions. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists and educational activities are included. (au) 165 refs.

  2. Materials Research Department Annual report 1998

    International Nuclear Information System (INIS)

    Winther, Grethe; Hansen, N.

    1999-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1998 are described. The scientific work is presented in five chapters: Materials Science, Materials Engineering, Materials Technology, Materials Chemistry and Fusion Materials. A survey is given of the Departments collaboration with national and international industries and research institutions. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists and educational activities are included. (au)

  3. Preparation of biomimetic nano-structured films with multi-scale roughness

    Science.gov (United States)

    Shelemin, A.; Nikitin, D.; Choukourov, A.; Kylián, O.; Kousal, J.; Khalakhan, I.; Melnichuk, I.; Slavínská, D.; Biederman, H.

    2016-06-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45-240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery.

  4. Preparation of biomimetic nano-structured films with multi-scale roughness

    International Nuclear Information System (INIS)

    Shelemin, A; Nikitin, D; Choukourov, A; Kylián, O; Kousal, J; Khalakhan, I; Melnichuk, I; Slavínská, D; Biederman, H

    2016-01-01

    Biomimetic nano-structured films are valuable materials in various applications. In this study we introduce a fully vacuum-based approach for fabrication of such films. The method combines deposition of nanoparticles (NPs) by gas aggregation source and deposition of overcoat thin film that fixes the nanoparticles on a surface. This leads to the formation of nanorough surfaces which, depending on the chemical nature of the overcoat, may range from superhydrophilic to superhydrophobic. In addition, it is shown that by proper adjustment of the amount of NPs it is possible to tailor adhesive force on superhydrophobic surfaces. Finally, the possibility to produce NPs in a wide range of their size (45–240 nm in this study) makes it possible to produce surfaces not only with single scale roughness, but also with bi-modal or even multi-modal character. Such surfaces were found to be superhydrophobic with negligible water contact angle hysteresis and hence truly slippery. (paper)

  5. Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds.

    Science.gov (United States)

    Kaynak Bayrak, Gökçe; Demirtaş, T Tolga; Gümüşderelioğlu, Menemşe

    2017-02-10

    Simulated body fluid (SBF) can form calcium phosphates on osteoinductive materials, so it is widely used for coating of bone scaffolds to mimic natural extracellular matrix (ECM). However, difficulties of bulk coating in 3D scaffolds and the necessity of long process times are the common problems for coating with SBF. In the present study, a microwave-assisted process was developed for rapid and internal coating of chitosan scaffolds. The scaffolds were fabricated as superporous hydrogel (SPH) by combining microwave irradiation and gas foaming methods. Then, they were immersed into 10x  SBF-like solution and homogenous bone-like hydroxyapatite (HA) coating was achieved by microwave treatment at 600W without the need of any nucleating agent. Cell culture studies with MC3T3-E1 preosteoblasts showed that microwave-assisted biomimetic HA coating process could be evaluated as an efficient and rapid method to obtain composite scaffolds for bone tissue engineering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Biomimetic chromatographic analysis of selenium species: Application for the estimation of their pharmacokinetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Tsopelas, Fotios [National Technical University of Athens, Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, Athens (Greece); University of Athens, Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Athens (Greece); Tsantili-Kakoulidou, Anna [University of Athens, Laboratory of Pharmaceutical Chemistry, School of Pharmacy, Athens (Greece); Ochsenkuehn-Petropoulou, Maria [National Technical University of Athens, Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, Athens (Greece)

    2010-07-15

    The retention behavior of selenites, selenates, seleno-dl-methionine, selenocystine, selenocystamine, selenourea, dimethyl selenide, and dimethyl diselenide was investigated by means of biomimetic liquid chromatography. For this purpose, two immobilized artificial membrane (IAM) columns, namely, IAM.PC.DD2 and IAM.PC.MG, and two immobilized plasma protein columns, human serum albumin (HSA) and {alpha}{sub 1}-acid glycoprotein (AGP) columns, were employed using different mobile phase conditions in respect to pH and buffer composition. In general, satisfactory interrelations between retention factors obtained with the two IAM stationary phases and HSA/AGP columns were obtained. Large differences were observed between biomimetic retention factors and octanol-water logD values, since the latter fail to describe electrostatic interactions. In contrast, despite the column diversity, the net retention outcome on all four biomimetic columns was quite similar, especially in the presence of phosphate-buffered saline, which by its effective shielding alleviates the differences between the stationary phases. Of the two IAM columns, IAM.PC.DD2 showed better performance when compared with HSA and AGP columns as well as to octanol-water partitioning. Biomimetic chromatographic indices were further used to estimate the percentage of human oral absorption and plasma protein binding of the eight selenium species investigated, according to equations previously reported in the literature. The estimated values of human oral absorption imply moderate absorption only for dimethyl diselenide, which also may exhibit considerable plasma protein binding. Moderate affinity for plasma proteins should also be expected for dimethyl selenide and selenocystamine. (orig.)

  7. Upper Limb-Hand 3D Display System for Biomimetic Myoelectric Hand Simulator

    National Research Council Canada - National Science Library

    Jimenez, Gonzalo

    2001-01-01

    A graphics system displaying both upper limb posture and opening-closing of a prosthetic hand was developed for realtime operation of our biomimetic myoelectric hand simulator, Posture of the upper...

  8. Overview of materials research in South Africa

    CSIR Research Space (South Africa)

    Du Preez, W

    2011-09-01

    Full Text Available : Metals and Metals Processes Materials Science and Manufacturing 7 September 2011 ? CSIR 2010 Slide 5 Outline of presentation ? Introduction ? Drivers of Materials Research Since 1996 ? Research Themes and Focus ? CSIR 2010 Slide 6 Introduction...-metal matrix composites ? Piezoelectric materials ? Light metals ? Laser processing of materials ? CSIR 2010 Slide 7 Drivers of Materials Research Since 1996 ? 1996 White Paper on Science and Technology (S&T) ? 1999 Manufacturing/Materials & Mining...

  9. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  10. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells ons biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Boer, Jan; de Groot, K.

    2009-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the

  11. Biomimetic soluble collagen purified from bones.

    Science.gov (United States)

    Ferreira, Ana Marina; Gentile, Piergiorgio; Sartori, Susanna; Pagliano, Cristina; Cabrele, Chiara; Chiono, Valeria; Ciardelli, Gianluca

    2012-11-01

    Type I collagen has been extensively exploited as a biomaterial for biomedical applications and drug delivery; however, small molecular alterations occurring during the isolation procedure and its interaction with residual bone extracellular matrix molecules or proteins might affect the overall material biocompatibility and performance. The aim of the current work is to study the potential alterations in collagen properties and organization associated with the absence of proteoglycans, which mimic pathological conditions associated with age-related diseases. A new approach for evaluating the effect of proteoglycans on the properties of isolated type I collagen from the bone matrix is described. Additional treatment with guanidine hydrochloride was introduced to remove residual proteoglycans from the collagen matrix. The properties of the isolated collagen with/without guanidine hydrochloride treatment were investigated and compared with a commercial rabbit collagen as control. We demonstrate that the absence of proteoglycans in the isolated type I collagen affects its thermal properties, the extraction into its native structure, and its ability to hydrate and self-assemble into fibers. The fine control and tuning of all these features, linked to the absence of non-collagenous proteins as proteoglycans, offer the possibility of designing new strategies and biomaterials with advanced biomimetic properties aimed at regenerating bone tissue in the case of fragility and/or defects. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    A novel biomimetic approach in designing and fabricating engineering ceramic materials has gained much interest in recent times. Following this approach, synthesis has been made of dense Si–SiC duplex ceramic composites and highly porous SiC ceramics in the image of the morphological features inherent in the ...

  13. Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible

    Directory of Open Access Journals (Sweden)

    González-Domínguez E

    2017-08-01

    Full Text Available Elena González-Domínguez,1,* Nerea Iturrioz-Rodríguez,2,* Esperanza Padín-González,2 Juan Villegas,2 Lorena García-Hevia,2 Moisés Pérez-Lorenzo,1 Wolfgang J Parak,3 Miguel A Correa-Duarte,1,* Mónica L Fanarraga2,* 1Department of Physical Chemistry, Biomedical Research Center (CINBIO, Southern Galicia Institute of Health Research (IISSG, Biomedical Research Networking Center for Mental Health (CIBERSAM, Universidade de Vigo, Vigo, Spain; 2Nanomedicine Group, Universidad de Cantabria-IDIVAL, Santander, Spain; 3Department of Physics, Philipps Universität Marburg, Marburg, Germany *These authors contributed equally to this work Abstract: Carbon nanotubes (CNTs are likely to transform the therapeutic and diagnostic fields in biomedicine during the coming years. However, the fragmented vision of their side effects and toxicity in humans has proscribed their use as nanomedicines. Most studies agree that biocompatibility depends on the state of aggregation/dispersion of CNTs under physiological conditions, but conclusions are confusing so far. This study designs an experimental setup to investigate the cytotoxic effect of individualized multiwalled CNTs compared to that of identical nanotubes assembled on submicrometric structures. Our results demonstrate how CNT cytotoxicity is directly dependent on the nanotube dispersion at a given dosage. When CNTs are gathered onto silica templates, they do not interfere with cell proliferation or survival becoming highly compatible. These results support the hypothesis that CNT cytotoxicity is due to the biomimetics of these nanomaterials with the intracellular nanofilaments. These findings provide major clues for the development of innocuous CNT-containing nanodevices and nanomedicines. Keywords: MWCNTs, biomimetics, cytoskeleton, microtubules, apoptosis, migration, proliferation

  14. Recent Progress in Advanced Nanobiological Materials for Energy and Environmental Applications

    Directory of Open Access Journals (Sweden)

    Hyo-Jick Choi

    2013-12-01

    Full Text Available In this review, we briefly introduce our efforts to reconstruct cellular life processes by mimicking natural systems and the applications of these systems to energy and environmental problems. Functional units of in vitro cellular life processes are based on the fabrication of artificial organelles using protein-incorporated polymersomes and the creation of bioreactors. This concept of an artificial organelle originates from the first synthesis of poly(siloxane-poly(alkyloxazoline block copolymers three decades ago and the first demonstration of protein activity in the polymer membrane a decade ago. The increased value of biomimetic polymers results from many research efforts to find new applications such as functionally active membranes and a biochemical-producing polymersome. At the same time, foam research has advanced to the point that biomolecules can be efficiently produced in the aqueous channels of foam. Ongoing research includes replication of complex biological processes, such as an artificial Calvin cycle for application in biofuel and specialty chemical production, and carbon dioxide sequestration. We believe that the development of optimally designed biomimetic polymers and stable/biocompatible bioreactors would contribute to the realization of the benefits of biomimetic systems. Thus, this paper seeks to review previous research efforts, examine current knowledge/key technical parameters, and identify technical challenges ahead.

  15. Nanofluidics in two-dimensional layered materials: inspirations from nature.

    Science.gov (United States)

    Gao, Jun; Feng, Yaping; Guo, Wei; Jiang, Lei

    2017-08-29

    With the advance of chemistry, materials science, and nanotechnology, significant progress has been achieved in the design and application of synthetic nanofluidic devices and materials, mimicking the gating, rectifying, and adaptive functions of biological ion channels. Fundamental physics and chemistry behind these novel transport phenomena on the nanoscale have been explored in depth on single-pore platforms. However, toward real-world applications, one major challenge is to extrapolate these single-pore devices into macroscopic materials. Recently, inspired partially by the layered microstructure of nacre, the material design and large-scale integration of artificial nanofluidic devices have stepped into a completely new stage, termed 2D nanofluidics. Unique advantages of the 2D layered materials have been found, such as facile and scalable fabrication, high flux, efficient chemical modification, tunable channel size, etc. These features enable wide applications in, for example, biomimetic ion transport manipulation, molecular sieving, water treatment, and nanofluidic energy conversion and storage. This review highlights the recent progress, current challenges, and future perspectives in this emerging research field of "2D nanofluidics", with emphasis on the thought of bio-inspiration.

  16. Directed Fluid Transport with Biomimetic ``Silia'' Arrays

    Science.gov (United States)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2008-10-01

    We present results on the long-range, directed fluid transport produced by the collective beating of arrays of biomimetic ``silia.'' Silia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material. With external permanent magnets we actuate our silia such that their motion mimics the beating of biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia and seek to answer open questions about the nature of particle advection in such a system. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the tips of the silia, while between the silia tips and floor particle motion is complicated and suggestive of chaotic advection.

  17. Fusion reactor materials research in China

    International Nuclear Information System (INIS)

    Qian Jiapu

    1994-10-01

    The fusion materials research in China is introduced. Many kinds of structural materials (such as Ti-modified stainless steel, ferritic steel, HT-9, HT-7, oxide dispersion strengthening ferritic steel), tritium breeders (lithium, Li 2 O, γ-LiAlO 2 ) and plasma facing materials (PFMs) (graphite with TiC and SiC coatings) have been developed or being developed. A systematic research activities on irradiation effects, compatibility, plasma materials interaction, thermal shock during disruption, tritium production, release and permeation, neutron multiplication in Be and Pb, etc. have been performed. The research activities are summarized and some experimental results are also given

  18. Materials Engineering Research Facility (MERF)

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s Materials Engineering Research Facility (MERF) enables engineers to develop manufacturing processes for producing advanced battery materials in sufficient...

  19. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu

    2017-07-27

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  20. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    KAUST Repository

    Li, Zhenyu; Valladares Linares, Rodrigo; Bucs, Szilard; Fortunato, Luca; Hé lix-Nielsen, Claus; Vrouwenvelder, Johannes S.; Ghaffour, NorEddine; Leiknes, TorOve; Amy, Gary

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin based biomimetic membrane in simulated membrane cleaning processes. The effects of cleaning agents on water flux and salt rejection were evaluated. The membrane showed a good resistance to the chemical agents. The water flux after chemical cleaning showed significant increases, particularly after cleaning with NaOCl and Alconox. Changes in the membrane structure and increased hydrophilicity in the surrounding areas of the aquaporin may be accountable for the increase in water permeability. The membrane shows stable salt rejection up to 99% after all cleaning agents were tested. A 15-day experiment with secondary wastewater effluent as the feed solution and seawater as the draw solution showed a stable flux and high salt rejection. The average rejection of the dissolved organic carbon from wastewater after the 15-day test was 90%. The results demonstrated that the aquaporin based biomimetic FO membrane exhibits chemical resistance for most agents used in membrane cleaning procedures, maintaining a stable flux and high salt rejection.

  1. Solid state NMR method development and studies of biological and biomimetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yanyan [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    This thesis describes application and development of advanced solid-state nuclear magnetic resonance techniques for complex materials, in particular organic-inorganic nanocomposites and thermoelectric tellurides. The apatite-collagen interface, essential for understanding the biomineralization process in bone and engineering the interface for controlled bio-mimetic synthesis and optimized mechanical properties, is buried within the nanocomposite of bone. We used multinuclear solid-state NMR to study the composition and structure of the interface. Citrate has been identified as the main organic molecule strongly bound to the apatite surface with a density of 1/(2 nm)2, covering 1/6 of the total surface area in bovine bone. Citrate provides more carboxylate groups, one of the key functional groups found to affect apatite nucleation and growth, than all the non-collagenous proteins all together in bone; thus we propose that citrate stabilizes apatite crystals at a very small thickness of ~3 nm (4 unit cells) to increase bone fracture tolerance. The hypothesis has been confirmed in vitro by adding citrate in the bio-mimetic synthesis of polymerhydroxyapatite nanocomposites. The results have shown that the size of hydroxyapatite nanocrystals decreases as increasing citrate concentration. With citrate concentrations comparable to that in body fluids, similar-sized nanocrystals as in bone have been produced. Besides the dimensions of the apatite crystals, the composition of bone also affects its biofunctional and macroscopic mechanical properties; therefore, our team also extended its effort to enhance the inorganic portion in our bio-mimetic synthesis from originally 15 wt% to current 50 wt% compared to 65 wt% in bovine bone, by using Lysine-Leucine hydroxyapatite nucleating diblock co-polypeptide, which forms a gel at very low concentration. In this thesis, various advanced solid state NMR techniques have been employed to characterize nanocomposites

  2. Biological and Biomimetic Low-Temperature Routes to Materials for Energy Applications

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Daniel E. [Univ. of California, Santa Barbara, CA (United States). Inst. for Collaborative Biotechnologies

    2016-08-29

    New materials are needed to significantly improve the efficiencies of energy harnessing, transduction and storage, yet the synthesis of advanced composites and multi-metallic semiconductors with nanostructures optimized for these functions remains poorly understood and even less well controlled. To help address this need, we proposed three goals: (1) to further investigate the hierarchical structure of the biologically synthesized silica comprising the skeletal spicules of sponges that we discovered, to better resolve the role and mechanism of templating by the hierarchically assembled silicatein protein filament; (2) to extend our molecular and genetic analyses and engineering of silicatein, the self-assembling, structure-directing, silica-synthesizing enzyme we discovered and characterized, to better understand and manipulate the catalysis and templating of semiconductor synthesis,; and (3) to further investigate, scale up and harness the biologically inspired, low-temperature, kinetically controlled catalytic synthesis method we developed (based on the mechanism we discovered in silicatein) to investigate the kinetic control of the structure-function relationships in magnetic materials, and develop new materials for energy applications. The bio-inspired catalytic synthesis method we have developed is low-cost, low temperature, and operates without the use of polluting chemicals. In addition to direct applications for improvement of batteries and fuel cells, the broader impact of this research includes a deeper fundamental understanding of the factors governing kinetically controlled synthesis and its control of the emergent nanostructure and performance of a wide range of nanomaterials for energy applications.

  3. The Materiality of Research

    DEFF Research Database (Denmark)

    Meier, Ninna

    2016-01-01

    In this feature essay, Ninna Meier reflects on the materiality of the writing – and re-writing – process in academic research. She explores the ways in which our ever-accummulating thoughts come to form layers on the material objects in which we write our notes and discusses the pleasures of co-authorship....

  4. MSRR Rack Materials Science Research Rack

    Science.gov (United States)

    Reagan, Shawn

    2017-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and the European Space Agency (ESA) for materials science investigations on the International Space Station (ISS). The MSRR is managed at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The MSRR facility subsystems were manufactured by Teledyne Brown Engineering (TBE) and integrated with the ESA/EADS-Astrium developed Materials Science Laboratory (MSL) at the MSFC Space Station Integration and Test Facility (SSITF) as part of the Systems Development Operations Support (SDOS) contract. MSRR was launched on STS-128 in August 2009, and is currently installed in the U. S. Destiny Laboratory Module on the ISS. Materials science is an integral part of developing new, safer, stronger, more durable materials for use throughout everyday life. The goal of studying materials processing in space is to develop a better understanding of the chemical and physical mechanisms involved, and how they differ in the microgravity environment of space. To that end, the MSRR accommodates advanced investigations in the microgravity environment of the ISS for basic materials science research in areas such as solidification of metals and alloys. MSRR allows for the study of a variety of materials including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. Currently the NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA developed Materials

  5. Biomimetic Sonar for Electrical Activation of the Auditory Pathway

    Directory of Open Access Journals (Sweden)

    D. Menniti

    2017-01-01

    Full Text Available Relying on the mechanism of bat’s echolocation system, a bioinspired electronic device has been developed to investigate the cortical activity of mammals in response to auditory sensorial stimuli. By means of implanted electrodes, acoustical information about the external environment generated by a biomimetic system and converted in electrical signals was delivered to anatomically selected structures of the auditory pathway. Electrocorticographic recordings showed that cerebral activity response is highly dependent on the information carried out by ultrasounds and is frequency-locked with the signal repetition rate. Frequency analysis reveals that delta and beta rhythm content increases, suggesting that sensorial information is successfully transferred and integrated. In addition, principal component analysis highlights how all the stimuli generate patterns of neural activity which can be clearly classified. The results show that brain response is modulated by echo signal features suggesting that spatial information sent by biomimetic sonar is efficiently interpreted and encoded by the auditory system. Consequently, these results give new perspective in artificial environmental perception, which could be used for developing new techniques useful in treating pathological conditions or influencing our perception of the surroundings.

  6. Materials Research Department annual report 1999

    DEFF Research Database (Denmark)

    Sørensen, Bent F.; Hansen, Niels

    2000-01-01

    with national and international industries and research institutions and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditures of theDepartment are given. Lists of staff members, visiting scientists, publications and other Department activities......Selected activities of the Materials Research Department at Risø National Laboratory during 1999 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given ofthe Department's participation in collaboration...

  7. Materials Research Department annual report 2000

    International Nuclear Information System (INIS)

    Winther, G.; Hansen, N.

    2001-03-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 2000 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's industrial collaboration, educational activities and academic activities, such as collaboration with other research institutions, committee work and a list of publications. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members and visiting scientists are included. (au)

  8. Incomparable hardness and modulus of biomimetic porous polyurethane films prepared by directional melt crystallization of a solvent

    Science.gov (United States)

    An, Suyeong; Kim, Byoungsoo; Lee, Jonghwi

    2017-07-01

    Porous materials with surprisingly diverse structures have been utilized in nature for many functional purposes. However, the structures and applications of porous man-made polymer materials have been limited by the use of processing techniques involving foaming agents. Herein, we demonstrate for the first time the outstanding hardness and modulus properties of an elastomer that originate from the novel processing approach applied. Polyurethane films of 100-μm thickness with biomimetic ordered porous structures were prepared using directional melt crystallization of a solvent and exhibited hardness and modulus values that were 6.8 and 4.3 times higher than those of the random pore structure, respectively. These values surpass the theoretical prediction of the typical model for porous materials, which works reasonably well for random pores but not for directional pores. Both the ordered and random pore structures exhibited similar porosities and pore sizes, which decreased with increasing solution concentration. This unexpectedly significant improvement of the hardness and modulus could open up new application areas for porous polymeric materials using this relatively novel processing technique.

  9. Self-organisation processes in the chemistry of materials

    International Nuclear Information System (INIS)

    Tretyakov, Yuri D

    2003-01-01

    The review concerns conservative and dissipative self-organisation phenomena in those physicochemical systems, whose evolution involves formation of diverse chemically complex products, including functional ceramics, supramolecular compounds, and nanocomposites as well as fractal, template and epitaxial structures. It is demonstrated that the use of nonlinear dynamics approaches facilitates organisation of the reaction zone during the synthesis of materials under nonequilibrium conditions in an optimum manner and that biomimetism and biomineralisation processes open up new prospects for materials design.

  10. [Strategies to choose scaffold materials for tissue engineering].

    Science.gov (United States)

    Gao, Qingdong; Zhu, Xulong; Xiang, Junxi; Lü, Yi; Li, Jianhui

    2016-02-01

    Current therapies of organ failure or a wide range of tissue defect are often not ideal. Transplantation is the only effective way for long time survival. But it is hard to meet huge patients demands because of donor shortage, immune rejection and other problems. Tissue engineering could be a potential option. Choosing a suitable scaffold material is an essential part of it. According to different sources, tissue engineering scaffold materials could be divided into three types which are natural and its modified materials, artificial and composite ones. The purpose of tissue engineering scaffold is to repair the tissues or organs damage, so could reach the ideal recovery in its function and structure aspect. Therefore, tissue engineering scaffold should even be as close as much to the original tissue or organs in function and structure. We call it "organic scaffold" and this strategy might be the drastic perfect substitute for the tissues or organs in concern. Optimized organization with each kind scaffold materials could make up for biomimetic structure and function of the tissue or organs. Scaffold material surface modification, optimized preparation procedure and cytosine sustained-release microsphere addition should be considered together. This strategy is expected to open new perspectives for tissue engineering. Multidisciplinary approach including material science, molecular biology, and engineering might find the most ideal tissue engineering scaffold. Using the strategy of drawing on each other strength and optimized organization with each kind scaffold material to prepare a multifunctional biomimetic tissue engineering scaffold might be a good method for choosing tissue engineering scaffold materials. Our research group had differentiated bone marrow mesenchymal stem cells into bile canaliculi like cells. We prepared poly(L-lactic acid)/poly(ε-caprolactone) biliary stent. The scaffold's internal played a part in the long-term release of cytokines which

  11. Materials research in AECL, Spring 1970

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-05-15

    This report gives a summary of materials research at Atomic Energy of Canada Limited. The topics covered in this report include engineering design with brittle materials, texture and mechanical properties of zirconium alloy tubing, structural damage by ion bombardment, research on silicon carbide, shallow phosphorus diffusion in p-type silicon and scanning electron microscopy. CRNL facilities for the examination of irradiated materials is also discussed.

  12. Materials research in AECL, Spring 1970

    International Nuclear Information System (INIS)

    1970-05-01

    This report gives a summary of materials research at Atomic Energy of Canada Limited. The topics covered in this report include engineering design with brittle materials, texture and mechanical properties of zirconium alloy tubing, structural damage by ion bombardment, research on silicon carbide, shallow phosphorus diffusion in p-type silicon and scanning electron microscopy. CRNL facilities for the examination of irradiated materials is also discussed

  13. Proteins and Peptides in Biomimetic Polymeric Membranes

    DEFF Research Database (Denmark)

    Perez, Alfredo Gonzalez

    2013-01-01

    This chapter discusses recent advances and the main advantages of block copolymers for functional membrane protein reconstitution in biomimetic polymeric membranes. A rational approach to the reconstitution of membrane proteins in a functional form can be addressed by a more holistic view by using...... other kind of nonbiological amphiphilic molecules. An interesting possibility could be the use of self-assembled proteins in a lipid-free membrane mimicking the capside of some viruses. The membrane proteins that have been more actively used in combination with block copolymer membranes are gramicidin...

  14. Materials Research Department annual report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B.F.; Hansen, N. [eds.

    2000-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1999 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in collaboration with national and international industries and research institutions and of its actitivities within education and training. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  15. Materials Research Department annual report 2000

    Energy Technology Data Exchange (ETDEWEB)

    Winther, G.; Hansen, N. [eds.

    2001-03-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 2000 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's industrial collaboration, educational activities and academic activities, such as collaboration with other research institutions, committee work and a list of publications. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members and visiting scientists are included. (au)

  16. Materials Research Department annual report 1999

    International Nuclear Information System (INIS)

    Soerensen, B.F.; Hansen, N.

    2000-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1999 are described. The scientific work is presented in three chapters: Materials Science, Materials Engineering and Materials Technology. A survey is given of the Department's participation in collaboration with national and international industries and research institutions and of its actitivities within education and training. Furthermore, the main figures outlining the funding and expenditures of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  17. Biomimetic Architecture in Building Envelope Maintenance (A Literature

    Directory of Open Access Journals (Sweden)

    Agus Salim N.A.

    2014-01-01

    Full Text Available The study of biomimetic architecture on building envelope is the main structure of this research. The concept is believed more sustainable and efficient for energy saving, operating cost consumption, waste recycle and design renewal in the future. The inspiration from the nature developed the intention on this study to explore on what and how this concept to overcome the problems through design. Biomimicry does catch the attention of human to study more on the system and function of its nature course. The designers are not exception influenced by this concept when the form, shape, texture and colour inspired them in their design. The domination of building form will affect the building envelope as the skin of the structure. A clear impact on building failure is begun with building envelope appearance without a proper maintenance. The faults in building design place a heavy burden on the building for the rest of its operational life and there is no compensation for it. In such situations, the responsibility falls on the shoulders of the designer.

  18. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed; Kosel, Jü rgen

    2015-01-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  19. Biomimetic magnetic nanocomposite for smart skins

    KAUST Repository

    Alfadhel, Ahmed

    2015-11-01

    We report a biomimetic tactile sensor consisting of magnetic nanocomposite artificial cilia and magnetic sensors. The nanocomposite is fashioned from polydimethylsiloxane and iron nanowires and exhibits a permanent magnetic behavior. This enables remote operation without an additional magnetic field to magnetize the nanowires, which simplifies device integration. Moreover, the highly elastic and easy patternable nanocomposite is corrosion resistant and thermally stable. The highly sensitive and power efficient tactile sensors can detect vertical and shear forces from interactions with objects. The sensors can operate in dry and wet environment with the ability to measure different properties such as the texture and the movement or stability of objects, with easily adjustable performance.

  20. Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling.

    Science.gov (United States)

    de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2015-08-01

    Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate

  1. Osteoinductive peptide-functionalized nanofibers with highly ordered structure as biomimetic scaffolds for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Gao X

    2015-11-01

    Full Text Available Xiang Gao,1,2,* Xiaohong Zhang,3,* Jinlin Song,1,2 Xiao Xu,4 Anxiu Xu,1 Mengke Wang,4 Bingwu Xie,1 Enyi Huang,2 Feng Deng,1,2 Shicheng Wei2–41College of Stomatology, 2Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Medical University, Chongqing, 3Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, 4Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University School and Hospital of Stomatology, Beijing, People’s Republic of China*These authors contributed equally to this workAbstract: The construction of functional biomimetic scaffolds that recapitulate the topographical and biochemical features of bone tissue extracellular matrix is now of topical interest in bone tissue engineering. In this study, a novel surface-functionalized electrospun polycaprolactone (PCL nanofiber scaffold with highly ordered structure was developed to simulate the critical features of native bone tissue via a single step of catechol chemistry. Specially, under slightly alkaline aqueous solution, polydopamine (pDA was coated on the surface of aligned PCL nanofibers after electrospinning, followed by covalent immobilization of bone morphogenetic protein-7-derived peptides onto the pDA-coated nanofiber surface. Contact angle measurement, Raman spectroscopy, and X-ray photoelectron spectroscopy confirmed the presence of pDA and peptides on PCL nanofiber surface. Our results demonstrated that surface modification with osteoinductive peptides could improve cytocompatibility of nanofibers in terms of cell adhesion, spreading, and proliferation. Most importantly, Alizarin Red S staining, quantitative real-time polymerase chain reaction, immunostaining, and Western blot revealed that human mesenchymal stem cells cultured on aligned nanofibers with osteoinductive peptides exhibited enhanced osteogenic differentiation potential than

  2. A crude protective film on historic stones and its artificial preparation through biomimetic synthesis

    Science.gov (United States)

    Liu, Qiang; Zhang, Bingjian; Shen, Zhongyue; Lu, Huanming

    2006-12-01

    A biomimetic film has been found on the surface of the historic stone buildings and monuments. The stone inscriptions under the film are preserved so well that has not been damaged for more than 1000 years. Samples of the crude film have been analyzed by XRD, FTIR, PLM, EDA, SEM and TEM. The results show that it consists mainly of calcium oxalate monohydrate. On the basis of the existence of the organism debris, it is concluded that the film should be a product of biomineralization. According to this hypothesis, a similar film has been prepared on the stone surface through biomimetic synthesis in our laboratory. The preliminary analysis shows that the artificial protective film functions well.

  3. Biomimetic coprecipitation of calcium phosphate and bovine serum albumin on titanium alloy

    NARCIS (Netherlands)

    Liu, Yuelian; Layrolle, Pierre; de Bruijn, Joost Dick; van Blitterswijk, Clemens; de Groot, K.

    2001-01-01

    Titanium alloy implants were precoated biomimetically with a thin and dense layer of calcium phosphate and then incubated either in a supersaturated solution of calcium phosphate or in phosphate-buffered saline, each containing bovine serum albumin (BSA) at various concentrations, under

  4. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Biomimetic approaches to modulate cellular adhesion in biomaterials: A review.

    Science.gov (United States)

    Rahmany, Maria B; Van Dyke, Mark

    2013-03-01

    Natural extracellular matrix (ECM) proteins possess critical biological characteristics that provide a platform for cellular adhesion and activation of highly regulated signaling pathways. However, ECM-based biomaterials can have several limitations, including poor mechanical properties and risk of immunogenicity. Synthetic biomaterials alleviate the risks associated with natural biomaterials but often lack the robust biological activity necessary to direct cell function beyond initial adhesion. A thorough understanding of receptor-mediated cellular adhesion to the ECM and subsequent signaling activation has facilitated development of techniques that functionalize inert biomaterials to provide a biologically active surface. Here we review a range of approaches used to modify biomaterial surfaces for optimal receptor-mediated cell interactions, as well as provide insights into specific mechanisms of downstream signaling activation. In addition to a brief overview of integrin receptor-mediated cell function, so-called "biomimetic" techniques reviewed here include (i) surface modification of biomaterials with bioadhesive ECM macromolecules or specific binding motifs, (ii) nanoscale patterning of the materials and (iii) the use of "natural-like" biomaterials. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Enzymatic pH control for biomimetic depostion of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, te J.; Habibovic, P.; Birgani, Z.T.; Li, Y.B.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  7. Enzymatic pH control for biomimetic deposition of calcium phosphate coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.G.; Nejadnik, M.R.; Nudelman, F.; Walboomers, X.F.; Riet, J. te; Habibovic, P.; Tahmasebi Birgani, Z.; Li, Y.; Bomans, P.H.; Jansen, J.A.; Sommerdijk, N.A.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study examines the enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of calcium phosphate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  8. Metalloporphyrins immobilized in Fe3O4@SiO2 mesoporous submicrospheres: Reusable biomimetic catalysts for hydrocarbon oxidation.

    Science.gov (United States)

    Barbosa, Isaltino A; de Sousa Filho, Paulo C; da Silva, Douglas L; Zanardi, Fabrício B; Zanatta, Lucas D; de Oliveira, Adilson J A; Serra, Osvaldo A; Iamamoto, Yassuko

    2016-05-01

    We successfully immobilized metalloporphyrins (MeP) in mesoporous silica coating magnetite spheres. In this sense, we prepared two different classes of core@shell supports, which comprise aligned (Fe3O4-AM-MeP, MeP=FeP or MnP) and non-aligned (Fe3O4-NM-MeP, MeP=FeP or MnP) mesoporous magnetic structures. X-ray diffractometry and energy dispersive X-ray spectroscopy confirmed the mesoporous nature of the silica shell of the materials. Magnetization measurements, scanning and transmission electron microscopies (SEM/TEM), electrophoretic mobility (ζ-potential), and infrared spectroscopy (FTIR) also confirm the composition and structure of the materials. The catalysts maintained their catalytic activity during nine reaction cycles toward hydrocarbon oxidation processes without detectable catalyst leaching. The catalysis results revealed a biomimetic pattern of cytochrome P450-type enzymes, thus confirming that the prepared materials are can effectively mimic the activity of such groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Environmental TEM for Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  10. Environmental TEM in Materials Research

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Wagner, Jakob Birkedal

    Over the last decades, electron microscopy has played a large role in materials research. The increasing use of particularly environmental transmission electron microscopy (ETEM) in materials science provides new possibilities for investigating nanoscale components at work. Careful experimentation...

  11. Directed Fluid Transport and Mixing with Biomimetic Cilia Arrays

    Science.gov (United States)

    Shields, A. R.; Evans, B. A.; Carstens, B. L.; Falvo, M. R.; Washburn, S.; Superfine, R.

    2009-03-01

    We present results on the long-range, directed fluid transport and fluidic mixing produced by the collective beating of arrays of biomimetic cilia. These artificial cilia are arrays of free-standing nanorods roughly the size of biological cilia, which we fabricate from a polymer-magnetic nanoparticle composite material and actuate with permanent magnets to mimic biological cilia. Biological cilia have evolved to produce microscale fluid transport and are increasingly being recognized as critical components in a wide range of biological systems. However, despite much effort cilia generated fluid flows remain an area of active study. In the last decade, cilia-driven fluid flow in the embryonic node of vertebrates has been implicated as the initial left-right symmetry breaking event in these embryos. With silia we generate directional fluid transport by mimicking the tilted conical beating of these nodal cilia. By seeding fluorescent microparticles into the fluid we have noted the existence of two distinct flow regimes. The fluid flow is directional and coherent above the cilia tips, while between the cilia tips and the floor particle motion is complicated and suggestive of chaotic advection.

  12. Biomimetic Hydrogel Composites for Soil Stabilization and Contaminant Mitigation.

    Science.gov (United States)

    Zhao, Zhi; Hamdan, Nasser; Shen, Li; Nan, Hanqing; Almajed, Abdullah; Kavazanjian, Edward; He, Ximin

    2016-11-15

    We have developed a novel method to synthesize a hyper-branched biomimetic hydrogel network across a soil matrix to improve the mechanical strength of the loose soil and simultaneously mitigate potential contamination due to excessive ammonium. This method successfully yielded a hierarchical structure that possesses the water retention, ion absorption, and soil aggregation capabilities of plant root systems in a chemically controllable manner. Inspired by the robust organic-inorganic composites found in many living organisms, we have combined this hydrogel network with a calcite biomineralization process to stabilize soil. Our experiments demonstrate that poly(acrylic acid) (PAA) can work synergistically with enzyme-induced carbonate precipitation (EICP) to render a versatile, high-performance soil stabilization method. PAA-enhanced EICP provides multiple benefits including lengthening of water supply time, localization of cementation reactions, reduction of harmful byproduct ammonium, and achievement of ultrahigh soil strength. Soil crusts we have obtained can sustain up to 4.8 × 10 3 kPa pressure, a level comparable to cementitious materials. An ammonium removal rate of 96% has also been achieved. These results demonstrate the potential for hydrogel-assisted EICP to provide effective soil improvement and ammonium mitigation for wind erosion control and other applications.

  13. Enzymatic pH Control for Biomimetic Deposition of Calcium Phosphate Coatings

    NARCIS (Netherlands)

    Nijhuis, A.W.; Reza Nejadnik, M.; Nudelman, F.; Walboomers, X.F.; te Riet, J.; Habibovic, Pamela; Tahmasebi Birgani, Zeinab; Yubao, L.; Bomans, P.H.H.; Jansen, J.A.; Sommerdijk, N.A.J.M.; Leeuwenburgh, S.C.G.

    2014-01-01

    The current study has focused on enzymatic decomposition of urea into carbon dioxide and ammonia as a means to increase the pH during biomimetic deposition of Calcium Phospate (CaP) onto implant surfaces. The kinetics of the enzymatically induced pH increase were studied by monitoring pH, calcium

  14. Challenges in commercializing biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Madsen, Steen Ulrik; Jørgensen, Tine Elkjær

    2015-01-01

    category includes customer-related barriers, which can be influenced to some extent. Another category includes market-technical-related barriers, which can be very difficult to overcome by an organization/company aiming at successfully introducing their innovation on the market—in particular if both...... the organization and the technology are at early stages. Often, one faces barriers from both these categories at the same time, which makes it necessary to gain insight of the particular market when introducing a new innovative product. In this review we present the basic concepts and discuss some...... of these barriers and challenges associated with introducing biomimetic aquaporin membranes. These include technical issues in membrane production and product testing. Then we discuss possible business models for introducing new technologies in general, followed by a presentation of beach-head market segments...

  15. Biomimetic artificial sphincter muscles: status and challenges

    Science.gov (United States)

    Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert

    2016-04-01

    Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.

  16. Determination of catechin in green tea using a catechol oxidase biomimetic sensor

    International Nuclear Information System (INIS)

    Fernandes, Suellen C.; Osorio, Renata El-Hage M. de Barros; Anjos, Ademir dos; Neves, Ademir; Micke, Gustavo Amadeu; Vieira, Iolanda C.

    2008-01-01

    A catechol oxidase biomimetic sensor, based on a novel copper(II) complex, was developed for the determination of catechin in green tea and the results were compared with those obtained by capillary electrophoresis. The dinuclear copper(II) complex, [Cu 2 (HL)(μ-CH 3 COO)](ClO 4 ), containing the ligand N,N-[bis-(2-pyridylmethyl)]-N',N'-[(2-hydroxybenzyl)(2-hydroxy-3,5-di-tert - butylbenzyl)]-1,3-propanediamine-2-ol (H 3 L), was synthesized and characterized by IR, 1 H NMR and elemental analysis. The best conditions for the optimization of the biomimetic sensor were established by square wave voltammetry. The best performance for this sensor was obtained in 75:15:10% (m/m/m) of the graphite powder:nujol:copper(II) complex, 0.05 mol L -1 phosphate buffer solution (pH 7.5) and frequency, pulse amplitude, scan increment at 30 Hz, 80 mV, 3.3 mV, respectively. The analytical curve was linear in the concentration range 4.95 x 10 -6 to 3.27 x 10 -5 mol L -1 (r = 0.9993) with a detection limit of 2.8 x 10 -7 mol L -1 . This biomimetic sensor demonstrated long-term stability (9 months; 800 determinations) and reproducibility with a relative standard deviation of 3.5%. The recovery of catechin from green tea samples ranged from 93.8 to 106.9% and the determination, compared with that obtained using capillary electrophoresis, was found to be acceptable at the 95% confidence level. (author)

  17. Design and fabrication of a biomimetic gyroscope inspired by the fly's haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2012-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly's haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and their drive mode has been characterized. First measurements indicate excitable gyropscopes with natural

  18. Research study of conjugate materials; Conjugate material no chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper reported an introductory research on possibilities of new glass `conjugate materials.` The report took up the structure and synthetic process of conjugate materials to be researched/developed, classified them according to structural elements on molecular, nanometer and cluster levels, and introduced the structures and functions. Further, as glasses with new functions to be proposed, the paper introduced transparent and high-strength glass used for houses and vehicles, light modulation glass which realizes energy saving and optical data processing, and environmentally functional glass which realizes environmental cleaning or high performance biosensor. An initial survey was also conducted on rights of intellectual property to be taken notice of in Japan and abroad in the present situation. Reports were summed up and introduced of Osaka National Research Institute, Electrotechnical Laboratory, and National Industrial Research Institute of Nagoya which are all carrying out leading studies of conjugate materials. 235 refs., 135 figs., 6 tabs.

  19. Development of biomimetic thermoplastic polyurethane/fibroin small-diameter vascular grafts via a novel electrospinning approach.

    Science.gov (United States)

    Yu, Emily; Mi, Hao-Yang; Zhang, Jue; Thomson, James A; Turng, Lih-Sheng

    2018-04-01

    A new electrospinning approach for fabricating vascular grafts with a layered, circumferentially aligned, and micro-wavy fibrous structure similar to natural elastic tissues has been developed. The customized electrospinning collector was able to generate wavy fibers using the dynamic "jump rope" collecting process, which also solved the sample removal problem for mandrel-type collectors. In this study, natural silk fibroin and synthetic thermoplastic polyurethane (TPU) were combined at different weight ratios to produce hybrid small-diameter vascular grafts. The purpose of combining these two materials was to leverage the bioactivity and tunable mechanical properties of these natural and synthetic materials. Results showed that the electrospun fiber morphology was highly influenced by the material compositions and solvents employed. All of the TPU/fibroin hybrid grafts had mechanical properties comparable to natural blood vessels. The circumferentially aligned and wavy biomimetic configuration provided the grafts with a sufficient toe region and the capacity for long-term usage under repeated dilatation and contraction. Cell culture tests with human endothelial cells (EC) also revealed high cell viability and good biocompatibility for these grafts. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 985-996, 2018. © 2017 Wiley Periodicals, Inc.

  20. Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake

    International Nuclear Information System (INIS)

    Rao, Lang; Xu, Jun-Hua; Cai, Bo; Liu, Huiqin; Li, Ming; Jia, Yan; Xiao, Liang; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong

    2016-01-01

    Suppression of the reticuloendothelial system (RES) uptake is one of the most challenging tasks in nanomedicine. Coating stratagems using polymers, such as poly(ethylene glycol) (PEG), have led to great success in this respect. Nevertheless, recent observations of immunological response toward these synthetic polymers have triggered a search for better alternatives. In this work, natural red blood cell (RBC) membranes are camouflaged on the surface of Fe 3 O 4 nanoparticles for reducing the RES uptake. In vitro macrophage uptake, in vivo biodistribution and pharmacokinetic studies demonstrate that the RBC membrane is a superior alternative to the current gold standard PEG for nanoparticle ‘stealth’. Furthermore, we systematically investigate the in vivo potential toxicity of RBC membrane-coated nanoparticles by blood biochemistry, whole blood panel examination and histology analysis based on animal models. The combination of synthetic nanoparticles and natural cell membranes embodies a novel and biomimetic nanomaterial design strategy and presents a compelling property of functional materials for a broad range of biomedical applications. (paper)

  1. Biomimetic polymers in analytical chemistry. Part 1: preparation and applications of MIP (Molecularly Imprinted Polymers) in extraction and separation techniques

    International Nuclear Information System (INIS)

    Tarley, Cesar Ricardo Teixeira; Sotomayor, Maria del Pilar Taboada; Kubota, Lauro Tatsuo

    2005-01-01

    MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented. (author)

  2. Interplay of static and dynamic features in biomimetic smart ears.

    Science.gov (United States)

    Pannala, Mittu; Meymand, Sajjad Zeinoddini; Müller, Rolf

    2013-06-01

    Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated from elastic rubber sheets have been used to study the impact of these static and dynamic features on the acoustic device characteristics. The basic shape of the prototypes was an obliquely truncated horn augmented with three static local shape features: vertical ridge, pinna-rim incision and frontal flap (antitragus). The prototype shape was deformed dynamically using a one-point actuation mechanism to produce a biomimetic bending of the prototype's tip. In isolation, the local shape features had little impact on the device beampattern. However, strong interactions were observed between these features and the overall deformation. The further the prototype tip was bent down, the stronger the beampatterns associated with combinations of multiple features differed from the upright configuration in the prominence of sidelobes. This behavior was qualitatively similar to numerical predictions for horseshoe bats. Hence, the interplay between static and dynamic features could be a bioinspired principle for affecting large changes through the dynamic manipulations of interactions that are sensitive to small geometrical changes.

  3. Ionic-liquid materials for the electrochemical challenges of the future.

    Science.gov (United States)

    Armand, Michel; Endres, Frank; MacFarlane, Douglas R; Ohno, Hiroyuki; Scrosati, Bruno

    2009-08-01

    Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

  4. Ionic-liquid materials for the electrochemical challenges of the future

    Science.gov (United States)

    Armand, Michel; Endres, Frank; Macfarlane, Douglas R.; Ohno, Hiroyuki; Scrosati, Bruno

    2009-08-01

    Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.

  5. Thermophysical methods in materials research

    International Nuclear Information System (INIS)

    Rohde, M.

    2003-01-01

    Thermophysical properties, namely the thermal conductivity, diffusivity and the heat capacity determine the behavior of every material under heat load. Therefore these properties are important not only for design purposes but also for the development of advanced materials. Within this contribution an overview will be given about measurement techniques for thermophysical properties. Some aspects of materials characterization and process development will be highlighted using selected research results. (orig.)

  6. Biomimetic material strategies for cardiac tissue engineering

    International Nuclear Information System (INIS)

    Prabhakaran, Molamma P.; Venugopal, J.; Kai, Dan; Ramakrishna, Seeram

    2011-01-01

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  7. Biomimetic material strategies for cardiac tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Venugopal, J. [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Kai, Dan [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (Singapore); Ramakrishna, Seeram [Health Care and Energy Materials Laboratory, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2011-04-08

    Cardiovascular disease precedes many serious complications including myocardial infarction (MI) and it remains a major problem for the global community. Adult mammalian heart has limited ability to regenerate and compensate for the loss of cardiomyocytes. Restoration of cardiac function by replacement of diseased myocardium with functional cardiomyocytes is an intriguing strategy because it offers a potential cure for MI. Biomaterials are fabricated in nanometer scale dimensions by combining the chemical, biological, mechanical and electrical aspects of material for potential tissue engineering (TE) applications. Synthetic polymers offer advantageous in their ability to tailor the mechanical properties, and natural polymers offer cell recognition sites necessary for cell, adhesion and proliferation. Cardiac tissue engineering (TE) aim for the development of a bioengineered construct that can provide physical support to the damaged cardiac tissue by replacing certain functions of the damaged extracellular matrix and prevent adverse cardiac remodeling and dysfunction after MI. Electrospun nanofibers are applied as heart muscle patches, while hydrogels serve as a platform for controlled delivery of growth factors, prevent mechanical complications and assist in cell recruitment. This article reviews the applications of different natural and synthetic polymeric materials utilized as cardiac patches, injectables or 3D constructs for cardiac TE. Smart organization of nanoscale assemblies with synergistic approaches of utilizing nanofibers and hydrogels could further advance the field of cardiac tissue engineering. Rapid innovations in biomedical engineering and cell biology will bring about new insights in the development of optimal scaffolds and methods to create tissue constructs with relevant contractile properties and electrical integration to replace or substitute the diseased myocardium.

  8. VEGF-incorporated biomimetic poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Deng, Meng; Lv, Qing; Jiang, Tao; Khan, Yusuf M; Nair, Lakshmi S; Laurencin, Cato T

    2012-11-01

    Regenerative engineering approaches utilizing biomimetic synthetic scaffolds provide alternative strategies to repair and restore damaged bone. The efficacy of the scaffolds for functional bone regeneration critically depends on their ability to induce and support vascular infiltration. In the present study, three-dimensional (3D) biomimetic poly(lactide-co-glycolide) (PLAGA) sintered microsphere scaffolds were developed by sintering together PLAGA microspheres followed by nucleation of minerals in a simulated body fluid. Further, the angiogenic potential of vascular endothelial growth factor (VEGF)-incorporated mineralized PLAGA scaffolds were examined by monitoring the growth and phenotypic expression of endothelial cells on scaffolds. Scanning electron microscopy micrographs confirmed the growth of bone-like mineral layers on the surface of microspheres. The mineralized PLAGA scaffolds possessed interconnectivity and a compressive modulus of 402 ± 61 MPa and compressive strength of 14.6 ± 2.9 MPa. Mineralized scaffolds supported the attachment and growth and normal phenotypic expression of endothelial cells. Further, precipitation of apatite layer on PLAGA scaffolds resulted in an enhanced VEGF adsorption and prolonged release compared to nonmineralized PLAGA and, thus, a significant increase in endothelial cell proliferation. Together, these results demonstrated the potential of VEGF-incorporated biomimetic PLAGA sintered microsphere scaffolds for bone tissue engineering as they possess the combined effects of osteointegrativity and angiogenesis. Copyright © 2012 Wiley Periodicals, Inc.

  9. Changes in 3D Midfacial Parameters after Biomimetic Oral Appliance Therapy in Adults

    Directory of Open Access Journals (Sweden)

    G Dave Singh

    2014-01-01

    Conclusion: These data support the notion that maxillary bone width and volume can be changed in nongrowing adults. Furthermore, midfacial redevelopment may provide a potentially-useful method of managing adults diagnosed with obstructive sleep apnea, using biomimetic, oral appliances.

  10. Influence of the Chemical Design on the Coherent Photoisomerization of Biomimetic Molecular Switches

    Directory of Open Access Journals (Sweden)

    Olivucci Massimo

    2013-03-01

    Full Text Available Ultrafast transient absorption spectroscopy reveals the effect of chemical substitutions on the photoreaction kinetics of biomimetic photoswitches displaying coherent dynamics. Ground state vibrational coherences are no longer observed when the excited state lifetime exceeds 300fs.

  11. Laminin and biomimetic extracellular elasticity enhance functional differentiation in mammary epithelia

    Energy Technology Data Exchange (ETDEWEB)

    Alcaraz, Jordi; Xu, Ren; Mori, Hidetoshi; Nelson, Celeste M.; Mroue, Rana; Spencer, Virginia A.; Brownfield, Doug; Radisky, Derek C.; Bustamante, Carlos; Bissell, Mina J.

    2008-10-20

    In the mammary gland, epithelial cells are embedded in a 'soft' environment and become functionally differentiated in culture when exposed to a laminin-rich extracellular matrix gel. Here, we define the processes by which mammary epithelial cells integrate biochemical and mechanical extracellular cues to maintain their differentiated phenotype. We used single cells cultured on top of gels in conditions permissive for {beta}-casein expression using atomic force microscopy to measure the elasticity of the cells and their underlying substrata. We found that maintenance of {beta}-casein expression required both laminin signalling and a 'soft' extracellular matrix, as is the case in normal tissues in vivo, and biomimetic intracellular elasticity, as is the case in primary mammary epithelial organoids. Conversely, two hallmarks of breast cancer development, stiffening of the extracellular matrix and loss of laminin signalling, led to the loss of {beta}-casein expression and non-biomimetic intracellular elasticity. Our data indicate that tissue-specific gene expression is controlled by both the tissues unique biochemical milieu and mechanical properties, processes involved in maintenance of tissue integrity and protection against tumorigenesis.

  12. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    Directory of Open Access Journals (Sweden)

    Bruno Alves Rocha

    2014-01-01

    Full Text Available Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes.

  13. Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications

    International Nuclear Information System (INIS)

    Nathanael, A. Joseph; Im, Young Min; Oh, Tae Hwan; Yuvakkumar, R.; Mangalaraj, D.

    2015-01-01

    Graphical abstract: - Highlights: • Novel ‘bowtie’ like biomimetic HA/TiO 2 nanocomposite coatings were prepared. • Simple sol–gel method was used to achieve this novel structure. • Details analysis confirms the formation of bowtie like structure in many ways. • Their functional analysis showed their enhanced activity for biomedical application. - Abstract: This article describes a systematic study of the biomimetic hierarchical growth of hydroxyapatite (HA)/titania (TiO 2 ) nanocomposite layered coatings applied by a simple sol–gel dip coating method. Highly stable HA and TiO 2 sols were prepared prior to inducing biomimetic hierarchical growth. Initially, the samples formed a small leaf like structure; however, increasing the dipping cycle resulted in formation of an elongated seed-like structure. Increasing the number of dipping cycles further resulted in a ‘bowtie’ or straw-bale like nanowire structure with a length of 500 nm and a width of 100 nm. Each nanowire like structure had a width of very few nanometers. The crystalline structures, micro/nano structures and surface properties of the coatings were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy respectively. In vitro cellular assays revealed that the growth of the cells in the ‘bowtie’ like structure improved over other samples

  14. Biomimetic hierarchical growth and self-assembly of hydroxyapatite/titania nanocomposite coatings and their biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Nathanael, A. Joseph, E-mail: ajosephnc@yahoo.com [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Im, Young Min [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Oh, Tae Hwan, E-mail: taehwanoh@ynu.ac.kr [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan (Korea, Republic of); Yuvakkumar, R. [Department of Nanomaterials Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore (India)

    2015-03-30

    Graphical abstract: - Highlights: • Novel ‘bowtie’ like biomimetic HA/TiO{sub 2} nanocomposite coatings were prepared. • Simple sol–gel method was used to achieve this novel structure. • Details analysis confirms the formation of bowtie like structure in many ways. • Their functional analysis showed their enhanced activity for biomedical application. - Abstract: This article describes a systematic study of the biomimetic hierarchical growth of hydroxyapatite (HA)/titania (TiO{sub 2}) nanocomposite layered coatings applied by a simple sol–gel dip coating method. Highly stable HA and TiO{sub 2} sols were prepared prior to inducing biomimetic hierarchical growth. Initially, the samples formed a small leaf like structure; however, increasing the dipping cycle resulted in formation of an elongated seed-like structure. Increasing the number of dipping cycles further resulted in a ‘bowtie’ or straw-bale like nanowire structure with a length of 500 nm and a width of 100 nm. Each nanowire like structure had a width of very few nanometers. The crystalline structures, micro/nano structures and surface properties of the coatings were characterized by X-ray diffraction, scanning electron microscopy and atomic force microscopy respectively. In vitro cellular assays revealed that the growth of the cells in the ‘bowtie’ like structure improved over other samples.

  15. Research reactors and materials testing

    International Nuclear Information System (INIS)

    Vidal, H.

    1986-01-01

    Research reactors can be classified in three main groups according to the moderator which is used. Their technical characteristics are given and the three most recent research and materials testing reactors are described: OSIRIS, ORPHEE and the high-flux reactor of Grenoble. The utilization of research reactors is reviewed in four fields of activity: training, fundamental or applied research and production (eg. radioisotopes) [fr

  16. The preosteoblast response of electrospinning PLGA/PCL nanofibers: effects of biomimetic architecture and collagen I

    Directory of Open Access Journals (Sweden)

    Qian YZ

    2016-08-01

    Full Text Available Yunzhu Qian,1,2 Hanbang Chen,1 Yang Xu,1 Jianxin Yang,2 Xuefeng Zhou,3 Feimin Zhang,1 Ning Gu3 1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 2Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou, 3School of Biological Science and Medical Engineering, Southeast University, Nanjing, People’s Republic of China Abstract: Constructing biomimetic structure and incorporating bioactive molecules is an effective strategy to achieve a more favorable cell response. To explore the effect of electrospinning (ES nanofibrous architecture and collagen I (COL I-incorporated modification on tuning osteoblast response, a resorbable membrane composed of poly(lactic-co-glycolic acid/poly(caprolactone (PLGA/PCL; 7:3 w/w was developed via ES. COL I was blended into PLGA/PCL solution to prepare composite ES membrane. Notably, relatively better cell response was delivered by the bioactive ES-based membrane which was fabricated by modification of 3,4-dihydroxyphenylalanine and COL I. After investigation by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurement, and mechanical test, polyporous three-dimensional nanofibrous structure with low tensile force and the successful integration of COL I was obtained by the ES method. Compared with traditional PLGA/PCL membrane, the surface hydrophilicity of collagen-incorporated membranes was largely enhanced. The behavior of mouse preosteoblast MC3T3-E1 cell infiltration and proliferation on membranes was studied at 24 and 48 hours. The negative control was fabricated by solvent casting. Evaluation of cell adhesion and morphology demonstrated that all the ES membranes were more favorable for promoting the cell adhesion and spreading than the casting membrane. Cell Counting Kit-8 assays revealed that biomimetic architecture, surface topography, and bioactive properties of membranes were favorable for cell

  17. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2014-04-09

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a significant role. The biomimetic portion was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  18. Surface morphology of laser tracks used for forming the non-smooth biomimetic unit of 3Cr2W8V steel under different processing parameters

    International Nuclear Information System (INIS)

    Zhang Zhihui; Zhou Hong; Ren Luquan; Tong Xin; Shan Hongyu; Li Xianzhou

    2008-01-01

    Aiming to form the high quality of non-smooth biomimetic unit, the influence of laser processing parameters (pulse energy, pulse duration, frequency and scanning speed in the present work) on the surface morphology of scanned tracks was studied based on the 3Cr2W8V die steel. The evolution of the surface morphology was explained according to the degree of melting and vaporization of surface material, and the trend of mean surface roughness and maximum peak-to-valley height. Cross-section morphology revealed the significant microstructural characteristic of the laser-treated zone used for forming the functional zone on the biomimetic surface. Results showed that the combination of pulse energy and pulse duration plays a major role in determining the local height difference on the irradiated surface and the occurrence of melting or vaporization. While frequency and scanning speed have a minor effect on the change of the surface morphology, acting mainly by the different overlapping amount and overlapping mode. The mechanisms behind these influences were discussed, and schematic drawings were introduced to describe the mechanisms

  19. Biomimetic triblock copolymer membrane arrays: a stable template for functional membrane proteins

    DEFF Research Database (Denmark)

    Gonzalez-Perez, A.; Jensen, Karin Bagger Stibius; Vissing, Thomas

    2009-01-01

    It is demonstrated that biomimetic stable triblock copolymer membrane arrays can be prepared using a scaffold containing 64 apertures of 300 μm diameter each. The membranes were made from a stock solution of block copolymers with decane as a solvent using a new deposition method. By using decane...

  20. Modified glycogen as construction material for functional biomimetic microfibers.

    Science.gov (United States)

    Rabyk, Mariia; Hruby, Martin; Vetrik, Miroslav; Kucka, Jan; Proks, Vladimir; Parizek, Martin; Konefal, Rafal; Krist, Pavel; Chvatil, David; Bacakova, Lucie; Slouf, Miroslav; Stepanek, Petr

    2016-11-05

    We describe a conceptually new, microfibrous, biodegradable functional material prepared from a modified storage polysaccharide also present in humans (glycogen) showing strong potential as direct-contact dressing/interface material for wound healing. Double bonds were introduced into glycogen via allylation and were further exploited for crosslinking of the microfibers. Triple bonds were introduced by propargylation and served for further click functionalization of the microfibers with bioactive peptide. A simple solvent-free method allowing the preparation of thick layers was used to produce microfibers (diameter ca 2μm) from allylated and/or propargylated glycogen. Crosslinking of the samples was performed by microtron beta-irradiation, and the irradiation dose was optimized to 2kGy. The results from biological testing showed that these highly porous, hydrophilic, readily functionalizable materials were completely nontoxic to cells growing in their presence. The fibers were gradually degraded in the presence of cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Inspiration from heart development: Biomimetic development of functional human cardiac organoids.

    Science.gov (United States)

    Richards, Dylan J; Coyle, Robert C; Tan, Yu; Jia, Jia; Wong, Kerri; Toomer, Katelynn; Menick, Donald R; Mei, Ying

    2017-10-01

    Recent progress in human organoids has provided 3D tissue systems to model human development, diseases, as well as develop cell delivery systems for regenerative therapies. While direct differentiation of human embryoid bodies holds great promise for cardiac organoid production, intramyocardial cell organization during heart development provides biological foundation to fabricate human cardiac organoids with defined cell types. Inspired by the intramyocardial organization events in coronary vasculogenesis, where a diverse, yet defined, mixture of cardiac cell types self-organizes into functional myocardium in the absence of blood flow, we have developed a defined method to produce scaffold-free human cardiac organoids that structurally and functionally resembled the lumenized vascular network in the developing myocardium, supported hiPSC-CM development and possessed fundamental cardiac tissue-level functions. In particular, this development-driven strategy offers a robust, tunable system to examine the contributions of individual cell types, matrix materials and additional factors for developmental insight, biomimetic matrix composition to advance biomaterial design, tissue/organ-level drug screening, and cell therapy for heart repair. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Active materials for adaptive architectural envelopes based on plant adaptation principles

    Directory of Open Access Journals (Sweden)

    Marlen Lopez

    2015-06-01

    Full Text Available In this paper, the authors present research into adaptive architectural envelopes that adapt to environmental changes using active materials, as a result of application of biomimetic principles from plants to architecture. Buildings use large amounts of energy in order to maintain their internal comfort, because conventional buildings are designed to provide a static design solution. Most of the current solutions for facades are not designed for optimum adaptation to contextual issues and needs, while biological solutions to adaptation are often complex, multi-functional and highly responsive. We focus on plant adaptations to the environment, as, due to their immobility, they have developed special means of protection against weather changing conditions. Furthermore, recent developments in new technologies are allowing the possibility to transfer these plant adaptation strategies to technical implementation. These technologies include: multi-material 3D printing, advances in materials science and new capabilities in simulation software. Unlike traditional mechanical activation used for dynamic systems in kinetic facades, adaptive architectural envelopes require no complex electronics, sensors, or actuators. The paper proposes a research of the relationship that can be developed between active materials and environmental issues in order to propose innovative and low-tech design strategies to achieve living envelopes according to plant adaptation principles.  

  3. Advances in Functionalized Materials Research 2016

    International Nuclear Information System (INIS)

    Predoi, D.; Motelica-Heino, M.; Guegan, R.; Coustumer, L.Ph.

    2016-01-01

    In the last years, due to the rapid progress of technology, new materials at nano metric scale with special properties have become a flourishing field of research in materials science. The unique physicochemical properties of materials induced by various parameters such as mean size, shape, purity, crystallographic structure, and surface can generate effective solutions to challenging environmental and biomedical problems. As a result of this approach a large number of techniques were developed that enable obtaining novel materials at nano metric scale with specific and reproducible properties and parameters. Below will be highlighted studies on promising properties on the applicability of new materials that could lead to innovative applications in the medical field. Therefore, this special issue is focused on expected advances in the area of functionalized materials at nano metric scale. Due to multidisciplinarity of this topic, this special issue is comprised of a wide range of original research articles as well as review papers on the design and synthesis of functionalized nano materials, their structural, morphological, and biological characterization, and their potential uses in medical and environmental applications

  4. Materials Surfaces and sterility

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2001-04-01

    A question of great interest in sterile and clean room technology is how can we devise a standard for the guarantee of sterility? Sterility is of widespread importance: it gives the life-time of our daily milk or yogurt, dominates the nature of food packing, and determines the feasibility of the miniaturization of biotechnology plants. All these phenomena are based on the principle of bioadhesion. Bioadhesion is also the basis of the biomimetic material technologies, like the attachment of selected protein layers that can be used for nanomasking. (orig.)

  5. Biomimetic Membrane Arrays on Cast Hydrogel Supports

    DEFF Research Database (Denmark)

    Roerdink-Lander, Monique; Ibragimova, Sania; Rein Hansen, Christian

    2011-01-01

    , provides mechanical support but at the cost of small molecule transport through the membrane−support sandwich. To stabilize biomimetic membranes while allowing transport through a membrane−support sandwich, we have investigated the feasibility of using an ethylene tetrafluoroethylene (ETFE......)/hydrogel sandwich as the support. The sandwich is realized as a perforated surface-treated ETFE film onto which a hydrogel composite support structure is cast. We report a simple method to prepare arrays of lipid bilayer membranes with low intrinsic electrical conductance on the highly permeable, self......-supporting ETFE/hydrogel sandwiches. We demonstrate how the ETFE/hydrogel sandwich support promotes rapid self-thinning of lipid bilayers suitable for hosting membrane-spanning proteins....

  6. Biomimetic Growth of Hydroxyapatite on Kenaf Fibers

    Directory of Open Access Journals (Sweden)

    Saiful Izwan Abd Razak

    2016-01-01

    Full Text Available Biomimetic hydroxyapatite (HA growth on mercerized kenaf fiber (KF was achieved by immersion in a simulated body fluid (SBF solution with the addition of a chelating agent. An electron micrograph revealed uniform HA layers on the KF within 14 days of immersion with significant vibrational peaks of HA components. The tensile tests showed no significant drops in the unit break of the modified fibers. This new bone-like apatite coating on KF can be useful in the field of bone tissue engineering. The key motivation for this new approach was that it utilizes the abundantly available kenaf plant resource as the biobased template.

  7. Biomimetic synthesis and antiproliferative properties of racemic natural(-) and unnnatural(+) glyceollin I

    Science.gov (United States)

    A 14-step biomimetic synthetic route to glyceollin I in ca. 1.5% overall yield has been developed. In addition to being useful for the elaboration of analogs that can contribute to SAR, this route provides practical access to analytical standards that may be used for quality control purposes when gl...

  8. Optimization of a biomimetic bone cement: role of DCPD.

    Science.gov (United States)

    Panzavolta, Silvia; Bracci, Barbara; Rubini, Katia; Bigi, Adriana

    2011-08-01

    We previously proposed a biomimetic α-tricalcium phosphate (α-TCP) bone cement where gelatin controls the transformation of α-TCP into calcium deficient hydroxyapatite (CDHA), leading to improved mechanical properties. In this study we investigated the setting and hardening processes of biomimetic cements containing increasing amounts of CaHPO(4)·2H2O (DCPD) (0, 2.5, 5, 10, 15 wt.%), with the aim to optimize composition. Both initial and final setting times increased significantly when DCPD content accounts for 10 wt.%, whereas cements containing 15 wt.% DCPD did not set at all. Differential scanning calorimetry (DSC), X-ray diffraction (XRD), thermogravimetry (TG) and scanning electron microscopy (SEM) investigations were performed on samples maintained in physiological solution for different times. DCPD dissolution starts soon after cement preparation, but the rate of transformation decreases on increasing DCPD initial content in the samples. The rate of α-TCP to CDHA conversion during hardening decreases on increasing DCPD initial content. Moreover, the presence of DCPD prevents gelatin release during hardening. The combined effects of gelatin and DCPD on the rate of CDHA formation and porosity lead to significantly improved mechanical properties, with the best composition displaying a compressive strength of 35 MPa and a Young modulus of 1600 MPa. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  10. Reductive debromination of polybrominated diphenyl ethers in anaerobic sediment and a biomimetic system.

    Science.gov (United States)

    Tokarz, John A; Ahn, Mi-Youn; Leng, June; Filley, Timothy R; Nies, Loring

    2008-02-15

    Because of the bioaccumulation of penta- and tetrapolybrominated diphenyl ether (PBDE) flame retardants in biota,the environmental biotransformation of decabromodiphenyl ether (BDE-209) is of interest. BDE-209 accounts for more than 80% by mass of PBDE production and is the dominant PBDE in sediments. Most sediments are anaerobic and reports of microbial reductive dehalogenation of hydrophobic persistent organohalogen pollutants are numerous. Reductive debromination of BDE-209 in the environment could provide a significant source of lesser-brominated PBDEs to biota. Moreover, a recent study showed that BDE-209 debrominates in sewage sludge, and another demonstrated that some halorespiring bacteria will debrominate BDE-209. To determine whether reductive debromination of BDE-209 occurs in sediments, parallel experiments were conducted using anaerobic sediment microcosms and a cosolvent-enhanced biomimetic system. In the biomimetic system, reductive debromination occurred at rates corresponding to bromine substitution levels with a BDE-209 half-life of only 18 s compared with a halflife of almost 60 days for 2,2',4,4'-tetrabromodiphenyl ether. In sediment, the measured debromination half-life of BDE-209 was well over a decade and was in good agreement with the predicted value obtained from the biomimetic experiment. Product congeners were predominantly double para-substituted. BDE-209 debrominated in sediment with a corresponding increase in nona-, octa-, hepta-, and hexa-PBDEs. Nine new PBDE congeners appeared in sediment from reductive debromination. Given the very large BDE-209 burden already in sediments globally, it is important to determine whether this transformation is a significant source of lesser-brominated PBDEs to the environment.

  11. Electrospun biomimetic scaffold of hydroxyapatite/chitosan supports enhanced osteogenic differentiation of mMSCs

    International Nuclear Information System (INIS)

    Peng Hongju; Feng Bei; Yuan Huihua; Zhang Yanzhong; Yin Zi; Liu Huanhuan; Chen Xiao; Ouyang Hongwei; Su Bo

    2012-01-01

    Engaging functional biomaterial scaffolds to regulate stem cell differentiation has drawn a great deal of attention in the tissue engineering and regenerative medicine community. In this study, biomimetic composite nanofibrous scaffolds of hydroxyapatite/chitosan (HAp/CTS) were prepared to investigate their capacity for inducing murine mesenchymal stem cells (mMSCs) to differentiate into the osteogenic lineage, in the absence and presence of an osteogenic supplementation (i.e., ascorbic acid, β-glycerol phosphate, and dexamethasone), respectively. Using electrospun chitosan (CTS) nanofibrous scaffolds as the control, cell morphology, growth, specific osteogenic genes expression, and quantified proteins secretion on the HAp/CTS scaffolds were sequentially examined and assessed. It appeared that the HAp/CTS scaffolds supported better attachment and proliferation of the mMSCs. Most noteworthy was that in the absence of the osteogenic supplementation, expression of osteogenic genes including collagen I (Col I), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), and osteocalcin (OCN) were significantly upregulated in mMSCs cultured on the HAp/CTS nanofibrous scaffolds. Also increased secretion of the osteogenesis protein markers of alkaline phosphatase and collagen confirmed that the HAp/CTS nanofibrous scaffold markedly promoted the osteogenic commitment in the mMSCs. Moreover, the presence of osteogenic supplementation proved an enhanced efficacy of mMSC osteogenesis on the HAp/CTS nanofibrous scaffolds. Collectively, this study demonstrated that the biomimetic nanofibrous HAp/CTS scaffolds could support and enhance the adhesion, proliferation, and particularly osteogenic differentiation of the mMSCs. It also substantiated the potential of using biomimetic nanofibrous scaffolds of HAp/CTS for functional bone repair and regeneration applications. (paper)

  12. Accuracy of Positioning Autonomous Biomimetic Underwater Vehicle Using Additional Measurement of Distances

    Directory of Open Access Journals (Sweden)

    Naus Krzysztof

    2016-12-01

    Full Text Available The article describes a study of problem of estimating the position coordinates of Autonomous Biomimetic Underwater Vehicle (ABUV using two methods: dead reckoning (DR and extended Kalman filter (EKF. In the first part of the paper, navigation system of ABUV is described and scientific problem with underwater positioning is formulated. The main part describes a way of estimating the position coordinates using DR and EKF and a numerical experiment involving motion of ABUV along the predetermined test distance. The final part of the paper contains a comparative statistical analysis of the results, carried out for assessing the accuracy of estimation of the position coordinates using DR and EKF methods. It presents the generalized conclusions from the research and the problems relating to the proper placement of the components of the system measuring distances.

  13. NASA Lewis Research Center's materials and structures division

    International Nuclear Information System (INIS)

    Weymueller, C.R.

    1976-01-01

    Research activities at the NASA Lewis Research Center on materials and structures are discussed. Programs are noted on powder metallurgy superalloys, eutectic alloys, dispersion strengthened alloys and composite materials. Discussions are included on materials applications, coatings, fracture mechanics, and fatigue

  14. Materials Research Department annual report 1996

    International Nuclear Information System (INIS)

    Soerensen, B.F.; Hansen, N.

    1997-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1996 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  15. Materials Research Department annual report 1997

    International Nuclear Information System (INIS)

    Soerensen, B.F.; Hansen, N.

    1998-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1997 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department's participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au)

  16. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquaporin...

  17. Aquaporin based biomimetic membrane in forward osmosis: Chemical cleaning resistance and practical operation

    DEFF Research Database (Denmark)

    Li, Zhenyu; Linares, Rodrigo Valladares; Bucs, Szilard

    2017-01-01

    Aquaporin plays a promising role in fabricating high performance biomimetic forward osmosis (FO) membranes. However, aquaporin as a protein also has a risk of denaturation caused, by various chemicals, resulting in a possible decay of membrane performance. The present study tested a novel aquapor...

  18. Design and fabrication of a biomimetic gyroscope inspired by the fly’s haltere

    NARCIS (Netherlands)

    Droogendijk, H.; Brookhuis, Robert Anton; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    We report on the design and fabrication of a MEMS-based gyroscopic system inspired by the fly’s haltere system. Two types of so-called biomimetic gyroscopes have been designed, fabricated and partially characterized. First measurements indicate excitable gyropscopes with natural frequencies in the

  19. The Design and Implementation of a Biomimetic Robot Fish

    OpenAIRE

    Chao Zhou; Min Tan; Nong Gu; Zhiqiang Cao; Shuo Wang; Long Wang

    2008-01-01

    In this paper, a novel design of a biomimetic robot fish is presented. Based on the propulsion and maneuvering mechanisms of real fishes, a tail mechanical structure with cams and connecting rods for fitting carangiform fish body wave is designed, which provides the main propulsion. Two pectoral fins are mounted, and each pectoral fin can flap separately and rotate freely. Coordinating the movements of the tail and pectoral fins, the robot fish can simulate the movements of fishes in water. I...

  20. Biomimetic "Cactus Spine" with Hierarchical Groove Structure for Efficient Fog Collection.

    Science.gov (United States)

    Bai, Fan; Wu, Juntao; Gong, Guangming; Guo, Lin

    2015-07-01

    A biomimetic "cactus spine" with hierarchical groove structure is designed and fabricated using simple electrospinning. This novel artificial cactus spine possesses excellent fog collection and water transportation ability. A model cactus equipped with artificial spines also shows a great water storage capacity. The results can be helpful in the development of water collectors and may make a contribution to the world water crisis.

  1. Biomimetic surface structuring using cylindrical vector femtosecond laser beams

    Science.gov (United States)

    Skoulas, Evangelos; Manousaki, Alexandra; Fotakis, Costas; Stratakis, Emmanuel

    2017-03-01

    We report on a new, single-step and scalable method to fabricate highly ordered, multi-directional and complex surface structures that mimic the unique morphological features of certain species found in nature. Biomimetic surface structuring was realized by exploiting the unique and versatile angular profile and the electric field symmetry of cylindrical vector (CV) femtosecond (fs) laser beams. It is shown that, highly controllable, periodic structures exhibiting sizes at nano-, micro- and dual- micro/nano scales can be directly written on Ni upon line and large area scanning with radial and azimuthal polarization beams. Depending on the irradiation conditions, new complex multi-directional nanostructures, inspired by the Shark’s skin morphology, as well as superhydrophobic dual-scale structures mimicking the Lotus’ leaf water repellent properties can be attained. It is concluded that the versatility and features variations of structures formed is by far superior to those obtained via laser processing with linearly polarized beams. More important, by exploiting the capabilities offered by fs CV fields, the present technique can be further extended to fabricate even more complex and unconventional structures. We believe that our approach provides a new concept in laser materials processing, which can be further exploited for expanding the breadth and novelty of applications.

  2. Flagellin based biomimetic coatings: From cell-repellent surfaces to highly adhesive coatings.

    Science.gov (United States)

    Kovacs, Boglarka; Patko, Daniel; Szekacs, Inna; Orgovan, Norbert; Kurunczi, Sandor; Sulyok, Attila; Khanh, Nguyen Quoc; Toth, Balazs; Vonderviszt, Ferenc; Horvath, Robert

    2016-09-15

    Biomimetic coatings with cell-adhesion-regulating functionalities are intensively researched today. For example, cell-based biosensing for drug development, biomedical implants, and tissue engineering require that the surface adhesion of living cells is well controlled. Recently, we have shown that the bacterial flagellar protein, flagellin, adsorbs through its terminal segments to hydrophobic surfaces, forming an oriented monolayer and exposing its variable D3 domain to the solution. Here, we hypothesized that this nanostructured layer is highly cell-repellent since it mimics the surface of the flagellar filaments. Moreover, we proposed flagellin as a carrier molecule to display the cell-adhesive RGD (Arg-Gly-Asp) peptide sequence and induce cell adhesion on the coated surface. The D3 domain of flagellin was replaced with one or more RGD motifs linked by various oligopeptides modulating flexibility and accessibility of the inserted segment. The obtained flagellin variants were applied to create surface coatings inducing cell adhesion and spreading to different levels, while wild-type flagellin was shown to form a surface layer with strong anti-adhesive properties. As reference surfaces synthetic polymers were applied which have anti-adhesive (PLL-g-PEG poly(l-lysine)-graft-poly(ethylene glycol)) or adhesion inducing properties (RGD-functionalized PLL-g-PEG). Quantitative adhesion data was obtained by employing optical biochips and microscopy. Cell-adhesion-regulating coatings can be simply formed on hydrophobic surfaces by using the developed flagellin-based constructs. The developed novel RGD-displaying flagellin variants can be easily obtained by bacterial production and can serve as alternatives to create cell-adhesion-regulating biomimetic coatings. In the present work, we show for the first time that. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Electrospun polyvinyl alcohol–collagen–hydroxyapatite nanofibers: a biomimetic extracellular matrix for osteoblastic cells

    International Nuclear Information System (INIS)

    Song Wei; Shi Tong; Ren Weiping; Markel, David C; Wang Sunxi; Mao Guangzhao

    2012-01-01

    The failure of prosthesis after total joint replacement is due to the lack of early implant osseointegration. In this study polyvinyl alcohol–collagen–hydroxyapatite (PVA-Col-HA) electrospun nanofibrous meshes were fabricated as a biomimetic bone-like extracellular matrix for the modification of orthopedic prosthetic surfaces. In order to reinforce the PVA nanofibers, HA nanorods and Type I collagen were incorporated into the nanofibers. We investigated the morphology, biodegradability, mechanical properties and biocompatibility of the prepared nanofibers. Our results showed these inorganic–organic blended nanofibers to be degradable in vitro. The encapsulated nano-HA and collagen interacted with the PVA content, reinforcing the hydrolytic resistance and mechanical properties of nanofibers that provided longer lasting stability. The encapsulated nano-HA and collagen also enhanced the adhesion and proliferation of murine bone cells (MC3T3) in vitro. We propose the PVA-Col-HA nanofibers might be promising modifying materials on implant surfaces for orthopedic applications. (paper)

  4. Cupula-Inspired Hyaluronic Acid-Based Hydrogel Encapsulation to Form Biomimetic MEMS Flow Sensors.

    Science.gov (United States)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Kanhere, Elgar; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael S

    2017-07-28

    Blind cavefishes are known to detect objects through hydrodynamic vision enabled by arrays of biological flow sensors called neuromasts. This work demonstrates the development of a MEMS artificial neuromast sensor that features a 3D polymer hair cell that extends into the ambient flow. The hair cell is monolithically fabricated at the center of a 2 μm thick silicon membrane that is photo-patterned with a full-bridge bias circuit. Ambient flow variations exert a drag force on the hair cell, which causes a displacement of the sensing membrane. This in turn leads to the resistance imbalance in the bridge circuit generating a voltage output. Inspired by the biological neuromast, a biomimetic synthetic hydrogel cupula is incorporated on the hair cell. The morphology, swelling behavior, porosity and mechanical properties of the hyaluronic acid hydrogel are characterized through rheology and nanoindentation techniques. The sensitivity enhancement in the sensor output due to the material and mechanical contributions of the micro-porous hydrogel cupula is investigated through experiments.

  5. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis.

    Science.gov (United States)

    Corradetti, Bruna; Taraballi, Francesca; Minardi, Silvia; Van Eps, Jeffrey; Cabrera, Fernando; Francis, Lewis W; Gazze, Salvatore A; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2016-05-01

    cell populations inducing chronic inflammation and diseases in damaged cartilage. This work should be of broad interest because it proposes an implantable biomimetic material, which holds the promise for a variety of medical conditions that necessitate the functional restoration of damaged cartilage tissue (such as trauma, diseases, deformities, or cancer). ©AlphaMed Press.

  6. Materials Research Department annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B F; Hansen, N [eds.

    1998-04-01

    Selected activities of the Materials Research Department at Risoe National Laboratory during 1997 are described. The scientific work is presented in four chapters: Materials Science, Materials Chemistry, Materials Engineering and Materials Technology. A survey is given of the Department`s participation in international collaboration and of its activities within education and training. Furthermore, the main figures outlining the funding and expenditure of the Department are given. Lists of staff members, visiting scientists, publications and other Department activities are included. (au) 278 refs.

  7. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China); Zhang, Di [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030 (China); Zheng, Zhi, E-mail: zhengzhi9999@yahoo.com.cn [Institute of Surface Micro and Nano Materials, Xuchang University, Xuchang, Henan Province 461000 (China)

    2012-06-15

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  8. Biomimetic synthesis of hierarchical crystalline hydroxyapatite fibers in large-scale

    International Nuclear Information System (INIS)

    Xing, Chaogang; Ge, Suxiang; Huang, Baojun; Bo, Yingying; Zhang, Di; Zheng, Zhi

    2012-01-01

    Highlights: ► Crystalline hierarchical hydroxyapatite (HAp) fibers are synthesized. ► We employ a biomimetic route by using cotton cloth as a natural bio-template. ► We study the effects of pH, ultrasonic cleaning time, and calcination temperature. ► We obtain an optimized reaction condition. ► This is a low cost method for production of hierarchical HAp fibers. -- Abstract: Crystalline hierarchical hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 , HAp)] fibers were successfully synthesized via a biomimetic route by using cotton cloth as a natural bio-template. The effects of pH value, aging time, ultrasonic cleaning time, and calcination temperature on the purity and morphology of the resulting hydroxyapatite (HAp) were monitored by scanning election microscope (SEM), X-ray diffraction (XRD), and infrared spectrophotometer (IR) to obtain an optimized reaction condition, namely, pH 9, ultrasonic cleaning for 1 min, aging for 24 h, and calcination at 600 °C for 4 h. We found that the natural cellulose could not only control the morphology of HAp but also lower its phase transformation temperature. The impact of this method lies in its low cost and successful production of large-scale patterning of three-dimensional hierarchical HAp fibers.

  9. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-12-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements-including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth-were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light-tissue interactions and characterizing biophotonic system performance.

  10. Materials and Molecular Research Division annual report, 1978

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    Research is presented concerning materials science including metallurgy and ceramics; solid state physics; and materials chemistry; chemical sciences covering radiation science, chemical physics, and chemical energy; nuclear science; coal research; solar energy; magnetic fusion, conservation; and environmental research. (FS)

  11. A Novel General Chemistry Laboratory: Creation of Biomimetic Superhydrophobic Surfaces through Replica Molding

    Science.gov (United States)

    Verbanic, Samuel; Brady, Owen; Sanda, Ahmed; Gustafson, Carolina; Donhauser, Zachary J.

    2014-01-01

    Biomimetic replicas of superhydrophobic lotus and taro leaf surfaces can be made using polydimethylsiloxane. These replicas faithfully reproduce the microstructures of the leaves' surface and can be analyzed using contact angle goniometry, self-cleaning experiments, and optical microscopy. These simple and adaptable experiments were used to…

  12. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    Science.gov (United States)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  13. Biomimetic Synthesis of Gelatin Polypeptide-Assisted Noble-Metal Nanoparticles and Their Interaction Study

    Science.gov (United States)

    Liu, Ying; Liu, Xiaoheng; Wang, Xin

    2011-12-01

    Herein, the generation of gold, silver, and silver-gold (Ag-Au) bimetallic nanoparticles was carried out in collagen (gelatin) solution. It first showed that the major ingredient in gelatin polypeptide, glutamic acid, acted as reducing agent to biomimetically synthesize noble metal nanoparticles at 80°C. The size of nanoparticles can be controlled not only by the mass ratio of gelatin to gold ion but also by pH of gelatin solution. Interaction between noble-metal nanoparticles and polypeptide has been investigated by TEM, UV-visible, fluorescence spectroscopy, and HNMR. This study testified that the degradation of gelatin protein could not alter the morphology of nanoparticles, but it made nanoparticles aggregated clusters array (opposing three-dimensional α-helix folding structure) into isolated nanoparticles stabilized by gelatin residues. This is a promising merit of gelatin to apply in the synthesis of nanoparticles. Therefore, gelatin protein is an excellent template for biomimetic synthesis of noble metal/bimetallic nanoparticle growth to form nanometer-sized device.

  14. Design, preparation and preliminary use of a novel biomimetic agent rFN/CAD

    Directory of Open Access Journals (Sweden)

    Hong KUANG

    2012-12-01

    Full Text Available Objective  To prepare a novel biomimetic agent with adhesive and osteoinduction capabilities, and provide a new approach for improving seeding cell adhesion and osteoblastic differentiation on a scaffold surface. Methods  A novel bifunctional recombinant protein was engineered and prepared by bioinformatics, standard molecular cloning, protein expression and purification techniques. A centrifugal cell adhesive assay and an osteoinduction assay were employed to determine the biofunction ex vivo. Results  A 1954bp long DNA chimera of FN Ⅲ7-10/CAD11 EC1-2 and recombinant FN Ⅲ7-10/CAD11 EC1-2 of 641 amino acids were obtained. Polystyrene surface coated with this protein significantly increased the adhesive property and osteodifferentiation of human bone marrow mesenchymal stem cells. Conclusion  rFN/CAD possesses dual biofunctions of osteoblastic adhesion and differentiation, which can be further applied as an ideal biomimetic molecule for surface modification.

  15. Overview of materials research for fusion reactors

    International Nuclear Information System (INIS)

    Muroga, T.; Gasparotto, M.; Zinkle, S.J.

    2002-01-01

    Materials research for fusion reactors is overviewed from Japanese, EU and US perspectives. Emphasis is placed on programs and strategies for developing blanket structural materials, and recent highlights in research and development for reduced activation ferritic martensitic steels, vanadium alloys and SiC/SiC composites, and in mechanistic experimental and modeling studies. The common critical issue for the candidate materials is the effect of irradiation with helium production. For the qualification of materials up to the full lifetime of a DEMO and Power Plant reactors, an intense neutron source with relevant fusion neutron spectra is crucial. Elaborate use of the presently available irradiation devices will facilitate efficient and sound materials development within the required time scale

  16. Design, fabrication and characterisation of a biomimetic accelerometer inspired by the cricket's clavate hair

    NARCIS (Netherlands)

    Droogendijk, H.; de Boer, Meint J.; Sanders, Remco G.P.; Krijnen, Gijsbertus J.M.

    2013-01-01

    Crickets use so-called clavate hairs to sense (gravitational) acceleration to obtain information on their orientation. Inspired by this clavate hair system, a biomimetic accelerometer has been developed and fabricated using surface micromachining and SU-8 lithography. First measurements indicate

  17. A Biomimetic Approach for Designing a Full External Breast Prosthesis: Post-Mastectomy

    Directory of Open Access Journals (Sweden)

    Pedro Cruz

    2018-03-01

    Full Text Available This work presents the design of a new breast prosthesis using the biomimetic technique for cases of complete mastectomy to address the problem of the increasing number of women diagnosed with breast cancer in Mexico who are candidates for a mastectomy. The designed prosthesis considers the morphology of a real breast regarding its internal structure to obtain authentic mobility and feel. In order to accomplish this, a model was obtained in 3D CAD using a coordinate measuring machine (CMM that can be scalable without losing its qualities, and which can be used in any type of patient; afterwards, a finite element model was developed and a static analysis performed with suggested load cases to evaluate the sensitivity and naturalness of the prosthesis; and finally, a modal analysis was conducted. The results obtained in displacements and in distribution of stress for the load cases assessed are consistent with those of a real breast: there were smooth contours and there was natural mobility in the prosthesis designed by means of the biomimetic technique.

  18. In vivo remineralization of dentin using an agarose hydrogel biomimetic mineralization system

    Science.gov (United States)

    Han, Min; Li, Quan-Li; Cao, Ying; Fang, Hui; Xia, Rong; Zhang, Zhi-Hong

    2017-02-01

    A novel agarose hydrogel biomimetic mineralization system loaded with calcium and phosphate was used to remineralize dentin and induce the oriented densely parallel packed HA layer on defective dentin surface in vivo in a rabbit model. Firstly, the enamel of the labial surface of rabbits’ incisor was removed and the dentin was exposed to oral environment. Secondly, the hydrogel biomimetic mineralization system was applied to the exposed dentin surface by using a custom tray. Finally, the teeth were extracted and evaluated by scanning electron microscopy, X-ray diffraction, and nanoindentation test after a certain time of mineralization intervals. The regenerated tissue on the dentin surface was composed of highly organised HA crystals. Densely packed along the c axis, these newly precipitated HA crystals were perpendicular to the underlying dental surface with a tight bond. The demineralized dentin was remineralized and dentinal tubules were occluded by the grown HA crystals. The nanohardness and elastic modulus of the regenerated tissue were similar to natural dentin. The results indicated a potential clinical use for repairing dentin-exposed related diseases, such as erosion, wear, and dentin hypersensitivity.

  19. Biomimetic oral mucin from polymer micelle networks

    Science.gov (United States)

    Authimoolam, Sundar Prasanth

    Mucin networks are formed by the complexation of bottlebrush-like mucin glycoprotein with other small molecule glycoproteins. These glycoproteins create nanoscale strands that then arrange into a nanoporous mesh. These networks play an important role in ensuring surface hydration, lubricity and barrier protection. In order to understand the functional behavior in mucin networks, it is important to decouple their chemical and physical effects responsible for generating the fundamental property-function relationship. To achieve this goal, we propose to develop a synthetic biomimetic mucin using a layer-by-layer (LBL) deposition approach. In this work, a hierarchical 3-dimensional structures resembling natural mucin networks was generated using affinity-based interactions on synthetic and biological surfaces. Unlike conventional polyelectrolyte-based LBL methods, pre-assembled biotin-functionalized filamentous (worm-like) micelles was utilized as the network building block, which from complementary additions of streptavidin generated synthetic networks of desired thickness. The biomimetic nature in those synthetic networks are studied by evaluating its structural and bio-functional properties. Structurally, synthetic networks formed a nanoporous mesh. The networks demonstrated excellent surface hydration property and were able capable of microbial capture. Those functional properties are akin to that of natural mucin networks. Further, the role of synthetic mucin as a drug delivery vehicle, capable of providing localized and tunable release was demonstrated. By incorporating antibacterial curcumin drug loading within synthetic networks, bacterial growth inhibition was also demonstrated. Thus, such bioactive interfaces can serve as a model for independently characterizing mucin network properties and through its role as a drug carrier vehicle it presents exciting future opportunities for localized drug delivery, in regenerative applications and as bio

  20. Microfabrication of hierarchical structures for engineered mechanical materials

    Science.gov (United States)

    Vera Canudas, Marc

    Materials found in nature present, in some cases, unique properties from their constituents that are of great interest in engineered materials for applications ranging from structural materials for the construction of bridges, canals and buildings to the fabrication of new lightweight composites for airplane and automotive bodies, to protective thin film coatings, amongst other fields. Research in the growing field of biomimetic materials indicates that the micro-architectures present in natural materials are critical to their macroscopic mechanical properties. A better understanding of the effect that structure and hierarchy across scales have on the material properties will enable engineered materials with enhanced properties. At the moment, very few theoretical models predict mechanical properties of simple materials based on their microstructures. Moreover these models are based on observations from complex biological systems. One way to overcome this challenge is through the use of microfabrication techniques to design and fabricate simple materials, more appropriate for the study of hierarchical organizations and microstructured materials. Arrays of structures with controlled geometry and dimension can be designed and fabricated at different length scales, ranging from a few hundred nanometers to centimeters, in order to mimic similar systems found in nature. In this thesis, materials have been fabricated in order to gain fundamental insight into the complex hierarchical materials found in nature and to engineer novel materials with enhanced mechanical properties. The materials fabricated here were mechanically characterized and compared to simple mechanics models to describe their behavior with the goal of applying the knowledge acquired to the design and synthesis of future engineered materials with novel properties.

  1. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  2. Biomimetic Polyaminoacids as Precursors for Optical-Active Intelligent Materials

    National Research Council Canada - National Science Library

    Popova, G

    2003-01-01

    ...; function on nanoscale; stimula-responsive study; intelligent materials formation. Modified polyglutamic acid with dyes regular set possesses specific ability to self-assembly with cooperative rearrangement under outer temperature...

  3. Energy Materials Research Laboratory (EMRL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Energy Materials Research Laboratory at the Savannah River National Laboratory (SRNL) creates a cross-disciplinary laboratory facility that lends itself to the...

  4. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    International Nuclear Information System (INIS)

    Banerjee, Pradipta; Madhu, S.; Chandra Babu, N.K.; Shanthi, C.

    2015-01-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl 2 , 5 mM of Na 2 HPO 4 , 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO − and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals

  5. Design of biomimetic cellular scaffolds for co-culture system and their application

    Science.gov (United States)

    Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun

    2017-01-01

    The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966

  6. Bio-inspired materials engineering using polysaccharide based biotemplates

    International Nuclear Information System (INIS)

    Zollfrank, C.

    2007-01-01

    Nano-structured materials with a controlled microstructure and tailored properties at a scale below 100 nm are of interest for applications in micro-mechanical, sensor and biomedical devices. In contrast to top-down manufacturing processes the formation of solid matter structures in nature is templated and directed by biomacromolecules such as polysaccharides and polypeptides. A promising biomimetic route for the directed deposition of ceramic materials is the application of anisotropically structured biomacromolecules as patterned templates. The polysaccharides exhibit a hierarchical multi scale order as well as self-assembly properties. The bio-inspired deposition and formation of ceramic phases on biomolecular polysaccharide templates was investigated. The polysaccharides were used at various structural levels from the molecular scale up to three-dimensional parts in the millimetre range. The versatility of polysaccharide shaping capabilities was explored using dissolved polysaccharide molecules as well as thin films for the or simultaneous or successive formation of inorganic mineral phases. Microalgae with a spherical appearance of 5 micro-m were applied in mineralisation studies. The extracellular polysaccharide (EPS) layers on the microalgae were used as biotemplates for manufacturing of functional ceramics. The obtained results on the mineralisation of inorganic phases on polysaccharides are adapted for novel biomimetic routes used in the fabrication for functional and biomedical ceramics. (author)

  7. Basic materials research programs at the U.S. Air Force Office of Scientific Research

    International Nuclear Information System (INIS)

    Carlson, Herbert C.; Goretta, K.C.

    2006-01-01

    The Air Force Office of Scientific Research (AFOSR) annually sponsors approximately 5000 research scientists at 1000 universities and laboratories, generating about 10,000 Ph.D. graduates per decade, all expected to publish their basic research findings in peer-reviewed journals. After a brief introduction of the nature of AFOSR's support to basic research in the U.S. and international scientific communities, work it supports at the frontiers of materials science is highlighted. One focused research theme that drives our investment is the MEANS program. It begins with the end in mind; materials are designed with practicable manufacture as an explicit initial goal. AFOSR's broad research portfolio comprises many materials. Nanotechnology efforts include optical materials that reduce distortion to the scale of the nanoparticles themselves. Advances in semiconductors include breakthroughs in Group III nitrides, some of which emanated from Asia under sponsorship from AFOSR's Asian office. Advances in structural materials include those for use at ultra-high temperatures and self-healing composites. The growing role of high-performance computing in design and study of functional, biological, and structural materials is also discussed

  8. Development of supported biomimetic membranes for insertion of aquaporin protein water channels for novel water filtration applications

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard

    ). This constitutes a new methodology to correctly and functionally reconstitute membrane proteins in controllable amounts into giant vesicles. The method for formation of giant protein vesicles subsequently led to the first functional prototype of an aquaporin-membrane water filtration device.......Aquaporins represent a class of membrane protein channels found in all living organisms that selectively transport water molecules across biological membranes. The work presented in this thesis was motivated by the conceptual idea of incorporating aquaporin water channels into biomimetic membranes...... to develop novel water separation technologies. To accomplish this, it is necessary to construct an efficient platform to handle biomimetic membranes. Moreover, general methods are required to reliable and controllable reconstitute membrane proteins into artificially made model membranes...

  9. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    pp 101-108 Alloys and Steels. In vitro biomimetic deposition of apatite on alkaline and heat treated Ti6Al4V alloy surface · K Fatehi F Moztarzadeh M Solati-Hashjin M Tahriri M Rezvannia R Ravarian · More Details Abstract Fulltext PDF. Titanium alloy (Ti6Al4V) substrates, having the ability of biomimetic calcium ...

  10. Enhancing Osteoconduction of PLLA-Based Nanocomposite Scaffolds for Bone Regeneration Using Different Biomimetic Signals to MSCs

    Directory of Open Access Journals (Sweden)

    Nicola Baldini

    2012-02-01

    Full Text Available In bone engineering, the adhesion, proliferation and differentiation of mesenchymal stromal cells rely on signaling from chemico-physical structure of the substrate, therefore prompting the design of mimetic “extracellular matrix”-like scaffolds. In this study, three-dimensional porous poly-L-lactic acid (PLLA-based scaffolds have been mixed with different components, including single walled carbon nanotubes (CNT, micro-hydroxyapatite particles (HA, and BMP2, and treated with plasma (PT, to obtain four different nanocomposites: PLLA + CNT, PLLA + CNTHA, PLLA + CNT + HA + BMP2 and PLLA + CNT + HA + PT. Adult bone marrow mesenchymal stromal cells (MSCs were derived from the femur of orthopaedic patients, seeded on the scaffolds and cultured under osteogenic induction up to differentiation and mineralization. The release of specific metabolites and temporal gene expression profiles of marrow-derived osteoprogenitors were analyzed at definite time points, relevant to in vitro culture as well as in vivo differentiation. As a result, the role of the different biomimetic components added to the PLLA matrix was deciphered, with BMP2-added scaffolds showing the highest biomimetic activity on cells differentiating to mature osteoblasts. The modification of a polymeric scaffold with reinforcing components which also work as biomimetic cues for cells can effectively direct osteoprogenitor cells differentiation, so as to shorten the time required for mineralization.

  11. Recent advances on gradient hydrogels in biomimetic cartilage tissue engineering [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Ivana Gadjanski

    2017-12-01

    Full Text Available Articular cartilage (AC is a seemingly simple tissue that has only one type of constituting cell and no blood vessels and nerves. In the early days of tissue engineering, cartilage appeared to be an easy and promising target for reconstruction and this was especially motivating because of widespread AC pathologies such as osteoarthritis and frequent sports-induced injuries. However, AC has proven to be anything but simple. Recreating the varying properties of its zonal structure is a challenge that has not yet been fully answered. This caused the shift in tissue engineering strategies toward bioinspired or biomimetic approaches that attempt to mimic and simulate as much as possible the structure and function of the native tissues. Hydrogels, particularly gradient hydrogels, have shown great potential as components of the biomimetic engineering of the cartilaginous tissue.

  12. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  13. EDITORIAL: Electroactive polymer materials

    Science.gov (United States)

    Bar-Cohen, Yoseph; Kim, Kwang J.; Ryeol Choi, Hyouk; Madden, John D. W.

    2007-04-01

    Imitating nature's mechanisms offers enormous potential for the improvement of our lives and the tools we use. This field of the study and imitation of, and inspiration from, nature's methods, designs and processes is known as biomimetics. Artificial muscles, i.e. electroactive polymers (EAPs), are one of the emerging technologies enabling biomimetics. Polymers that can be stimulated to change shape or size have been known for many years. The activation mechanisms of such polymers include electrical, chemical, pneumatic, optical and magnetic. Electrical excitation is one of the most attractive stimulators able to produce elastic deformation in polymers. The convenience and practicality of electrical stimulation and the continual improvement in capabilities make EAP materials some of the most attractive among activatable polymers (Bar-Cohen Y (ed) 2004 Electroactive Polymer (EAP) Actuators as Artificial Muscles—Reality, Potential and Challenges 2nd edn, vol PM136 (Bellingham, WA: SPIE Press) pp 1-765). As polymers, EAP materials offer many appealing characteristics that include low weight, fracture tolerance and pliability. Furthermore, they can be configured into almost any conceivable shape and their properties can be tailored to suit a broad range of requirements. These capabilities and the significant change of shape or size under electrical stimulation while being able to endure many cycles of actuation are inspiring many potential possibilities for EAP materials among engineers and scientists in many different disciplines. Practitioners in biomimetics are particularly excited about these materials since they can be used to mimic the movements of animals and insects. Potentially, mechanisms actuated by EAPs will enable engineers to create devices previously imaginable only in science fiction. For many years EAP materials received relatively little attention due to their poor actuation capability and the small number of available materials. In the last fifteen

  14. The future research of material science

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Hironobu [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    High Energy Accelerator Research Organization (KEK), which was established on 1 April, consists of two institutes. One of these is Institute of Materials Structure Science. New research program in the new institute using synchrotron radiation, neutrons and muons are discussed. (author)

  15. Biomimetic flow-sensor arrays based on the filiform hairs on the cerci of crickets

    NARCIS (Netherlands)

    Wiegerink, Remco J.; Floris, J.; Jaganatharaja, R.K.; Izadi, N.; Lammerink, Theodorus S.J.; Krijnen, Gijsbertus J.M.

    2007-01-01

    In this paper we report on the latest developments in biomimetic flow-sensors based on the flow sensitive mechano-sensors of crickets. Crickets have one form of acoustic sensing evolved in the form of mechanoreceptive sensory hairs. These filiform hairs are highly perceptive to low-frequency sound

  16. Reactor core materials research and integrated material database establishment

    International Nuclear Information System (INIS)

    Ryu, Woo Seog; Jang, J. S.; Kim, D. W.

    2002-03-01

    Mainly two research areas were covered in this project. One is to establish the integrated database of nuclear materials, and the other is to study the behavior of reactor core materials, which are usually under the most severe condition in the operating plants. During the stage I of the project (for three years since 1999) in- and out of reactor properties of stainless steel, the major structural material for the core structures of PWR (Pressurized Water Reactor), were evaluated and specification of nuclear grade material was established. And the damaged core components from domestic power plants, e.g. orifice of CVCS, support pin of CRGT, etc. were investigated and the causes were revealed. To acquire more resistant materials to the nuclear environments, development of the alternative alloys was also conducted. For the integrated DB establishment, a task force team was set up including director of nuclear materials technology team, and projector leaders and relevant members from each project. The DB is now opened in public through the Internet

  17. Influence of different temperatures on the thermal fatigue behavior and thermal stability of hot-work tool steel processed by a biomimetic couple laser technique

    Science.gov (United States)

    Meng, Chao; Zhou, Hong; Zhou, Ying; Gao, Ming; Tong, Xin; Cong, Dalong; Wang, Chuanwei; Chang, Fang; Ren, Luquan

    2014-04-01

    Three kinds of biomimetic non-smooth shapes (spot-shape, striation-shape and reticulation-shape) were fabricated on the surface of H13 hot-work tool steel by laser. We investigated the thermal fatigue behavior of biomimetic non-smooth samples with three kinds of shapes at different thermal cycle temperature. Moreover, the evolution of microstructure, as well as the variations of hardness of laser affected area and matrix were studied and compared. The results showed that biomimetic non-smooth samples had better thermal fatigue behavior compared to the untreated samples at different thermal cycle temperatures. For a given maximal temperature, the biomimetic non-smooth sample with reticulation-shape had the optimum thermal fatigue behavior, than with striation-shape which was better than that with the spot-shape. The microstructure observations indicated that at different thermal cycle temperatures the coarsening degrees of microstructures of laser affected area were different and the microstructures of laser affected area were still finer than that of the untreated samples. Although the resistance to thermal cycling softening of laser affected area was lower than that of the untreated sample, laser affected area had higher microhardness than the untreated sample at different thermal cycle temperature.

  18. Deep reduced PEDOT films support electrochemical applications: Biomimetic color front.

    Directory of Open Access Journals (Sweden)

    Toribio Fernandez OTERO

    2015-02-01

    Full Text Available Most of the literature accepts, despite many controversial results, that during oxidation/reduction films of conducting polymers move from electronic conductors to insulators. Thus, engineers and device’s designers are forced to use metallic supports to reoxidize the material for reversible device work. Electrochromic front experiments appear as main visual support of the claimed insulating nature of reduced conducting polymers. Here we present a different design of the biomimetic electrochromic front that corroborates the electronic and ionic conducting nature of deep reduced films. The direct contact PEDOT metal/electrolyte and film/electrolyte was prevented from electrolyte contact until 1cm far from the metal contact with protecting Parafilm®. The deep reduced PEDOT film supports the flow of high currents promoting reaction induced electrochromic color changes beginning 1 cm far from the metal-polymer electrical contact and advancing, through the reduced film, towards the metal contact. Reverse color changes during oxidation/reduction always are initiated at the film/electrolyte contact advancing, under the protecting film, towards the film/metal contact. Both reduced and oxidized states of the film demonstrate electronic and ionic conductivities high enough to be used for electronic applications or, as self-supported electrodes, for electrochemical devices. The electrochemically stimulated conformational relaxation (ESCR model explains those results.

  19. Effects of Laser Energies on Wear and Tensile Properties of Biomimetic 7075 Aluminum Alloy

    Science.gov (United States)

    Yuan, Yuhuan; Zhang, Peng; Zhao, Guoping; Gao, Yang; Tao, Lixi; Chen, Heng; Zhang, Jianlong; Zhou, Hong

    2018-03-01

    Inspired by the non-smooth surface of certain animals, a biomimetic coupling unit with various sizes, microstructure, and hardness was prepared on the surface of 7075 aluminum alloy. Following experimental studies were conducted to investigate the wear and tensile properties with various laser energy inputs. The results demonstrated that the non-smooth surface with biomimetic coupling units had a positive effect on both the wear resistance and tensile property of 7075 aluminum alloy. In addition, the sample with the unit fabricated by the laser energy of 420.1 J/cm2 exhibited the most significant improvement on the wear and tensile properties owing to the minimum grain size and the highest microhardness. Also, the weight loss of the sample was one-third of the untreated one's, and the yield strength, the ultimate tensile strength, and the elongation improved by 20, 20, and 34% respectively. Moreover, the mechanisms of wear and tensile properties improvement were also analyzed.

  20. Dense and porous titanium substrates with a biomimetic calcium phosphate coating

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, A.A., E-mail: aantunesr@yahoo.com.br [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Balestra, R.M. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil); Rocha, M.N. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Peripolli, S.B. [Materials Metrology Division, National Institute of Metrology, Normalization and Quality, No. 50 Nossa Senhora das Gracas Street, Building 3, 25250-020 Duque de Caxias, RJ (Brazil); Andrade, M.C. [Polytechnic Institute of Rio de Janeiro, Rio de Janeiro State University, s/n, Alberto Rangel Street, 28630-050 Nova Friburgo, RJ (Brazil); Pereira, L.C. [Metallurgical and Materials Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, RJ (Brazil); Oliveira, M.V. [Powder Technology Laboratory, Materials Processing and Characterization Division, National Institute of Technology, No. 82 Venezuela Avenue, Room 602, 20081-312 Rio de Janeiro, RJ (Brazil)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer A biomimetic coating method with simplified solution is proposed. Black-Right-Pointing-Pointer Titanium substrates are submitted to chemical and heat treatments. Black-Right-Pointing-Pointer Titanium substrates are coated with biocompatible calcium phosphate phases. Black-Right-Pointing-Pointer The simplified solution shows potential to be applied as a coating technique. - Abstract: The present work studied a biomimetic method using a simplified solution (SS) with calcium and phosphorus ions for coating titanium substrates, in order to improve their bioactivity. Commercially pure titanium dense sheet, microporous and macroporous titanium samples, both produced by powder metallurgy, were treated in NaOH solution followed by heat-treating and immersed in SS for 7, 14 or 21 days. The samples characterization was performed by quantitative metallographic analysis, confocal scanning optical microscopy, scanning electron microscopy, energy dispersive spectroscopy and low angle X-ray diffraction. The results showed coatings with calcium phosphate precipitation in all samples, with globular or plate-like morphology, typical of hydroxyapatite and octacalcium phosphate, respectively, indicating that the solution (SS) has potential for coating titanium substrates. In addition, the different surfaces of substrates had an effect on the formed calcium phosphate phase and thickness of coatings, depending on the substrate type and imersion time in the simplified solution.

  1. Charged Nanowire-Directed Growth of Amorphous Calcium Carbonate Nanosheets in a Mixed Solvent for Biomimetic Composite Films.

    Science.gov (United States)

    Liu, Yangyi; Liu, Lei; Chen, Si-Ming; Chang, Fu-Jia; Mao, Li-Bo; Gao, Huai-Ling; Ma, Tao; Yu, Shu-Hong

    2018-04-19

    Bio-inspired mineralization is an effective way for fabricating complicated inorganic materials, which inspires us to develop new methods to synthesize materials with fascinating properties. In this article, we report that the charged tellurium nanowires (TeNWs) can be used as bio-macromolecule analogues to direct the formation of amorphous calcium carbonate (ACC) nanosheets (ACCNs) in a mixed solvent. The effects of surface charges and the concentration of the TeNWs on the formation of ACCNs have been investigated. Particularly, the produced ACCNs can be functionalized by Fe3O4 nanoparticles to produce magnetic ACC/Fe3O4 hybrid nanosheets, which can be used to construct ACC/Fe3O4 composite films through a self-evaporation process. Moreover, sodium alginate-ACC nanocomposite films with remarkable toughness and good transmittance can also be fabricated by using such ACCNs as nanoscale building blocks. This mineralization approach in a mixed solvent using charged tellurium nanowires as bio-macromolecule analogues provides a new way for the synthesis of ACCNs, which can be used as nanoscale building blocks for fabrication of biomimetic composite films.

  2. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Xu, Lu, E-mail: xl2013109@163.com; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming, E-mail: li_sanming2013@163.com

    2015-10-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures.

  3. Biomimetic synthesized chiral mesoporous silica: Structures and controlled release functions as drug carrier

    International Nuclear Information System (INIS)

    Li, Jing; Xu, Lu; Yang, Baixue; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-01-01

    This work initially illustrated the formation mechanism of chiral mesoporous silica (CMS) in a brand new insight named biomimetic synthesis. Three kinds of biomimetic synthesized CMS (B-CMS, including B-CMS1, B-CMS2 and B-CMS3) were prepared using different pH or stirring rate condition, and their characteristics were tested with transmission electron microscope and small angle X-ray diffraction. The model drug indomethacin was loaded into B-CMS and drug loading content was measured using ultraviolet spectroscopy. The result suggested that pH condition influenced energetics of self-assembly process, mainly packing energetics of the surfactant, while stirring rate was the more dominant factor to determine particle length. In application, indomethacin loading content was measured to be 35.3%, 34.8% and 35.1% for indomethacin loaded B-CMS1, indomethacin loaded B-CMS2 and indomethacin loaded B-CMS3. After loading indomethacin into B-CMS carriers, surface area, pore volume and pore diameter of B-CMS carriers were reduced. B-CMS converted crystalline state of indomethacin to amorphous state, leading to the improved indomethacin dissolution. B-CMS1 controlled drug release without burst-release, while B-CMS2 and B-CMS3 released indomethacin faster than B-CMS1, demonstrating that the particle length, the ordered lever of multiple helixes, the curvature degree of helical channels and pore diameter greatly contributed to the release behavior of indomethacin loaded B-CMS. - Highlights: • Chiral mesoporous silica was synthesized using biomimetic method. • pH influenced energetics of self-assembly process of chiral mesoporous silica. • Stirring rate determined the particle length of chiral mesoporous silica. • Controlled release behaviors of chiral mesoporous silica varied based on structures

  4. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  5. Methods and Experimental Protocols to Design a Simulated Bio-Mimetic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Hadi El Daou

    2013-05-01

    Full Text Available Abstract This paper presents a bio-mimetic approach to design and simulate a tortoise-like virtual robot. This study takes a multidisciplinary approach: from in vivo and in vitro experiments on animals, data are collected and used to design, control and simulate a bio-mimetic virtual robot using MD ADAMS platform. From the in vitro experiments, the geometrical and inertial properties of body limbs are measured, and a model of tortoise kinematics is derived. From the in vivo experiments the contact forces between each limb and the ground are measured. The contributions of hind and forelimbs in the generation of propelling and braking forces are studied. The motion of the joints between limb segments are recorded and used to solve the inverse kinematics problem. A virtual model of a tortoise-like robot is built; it is a linkage of 15 rigid bodies articulated by 22 degrees of freedom. This model is referred to as TATOR II. It has the inertial and geometrical properties measured during the in vitro experiments. TATOR II motion is achieved using a Proportional-Derivative controller copying the joint angle trajectories calculated from the in vivo experiments.

  6. Computational modelling of oxygenation processes in enzymes and biomimetic model complexes

    OpenAIRE

    de Visser, Sam P.; Quesne, Matthew G.; Martin, Bodo; Comba, Peter; Ryde, Ulf

    2014-01-01

    With computational resources becoming more efficient and more powerful and at the same time cheaper, computational methods have become more and more popular for studies on biochemical and biomimetic systems. Although large efforts from the scientific community have gone into exploring the possibilities of computational methods on large biochemical systems, such studies are not without pitfalls and often cannot be routinely done but require expert execution. In this review we summarize and hig...

  7. Research and materials irradiation reactors

    International Nuclear Information System (INIS)

    Ballagny, A.; Guigon, B.

    2004-01-01

    Devoted to the fundamental and applied research on materials irradiation, research reactors are nuclear installations where high neutrons flux are maintained. After a general presentation of the research reactors in the world and more specifically in France, this document presents the heavy water cooled reactors and the water cooled reactors. The third part explains the technical characteristics, thermal power, neutron flux, operating and details the Osiris, the RHF (high flux reactor), the Orphee and the Jules Horowitz reactors. The last part deals with the possible utilizations. (A.L.B.)

  8. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Science.gov (United States)

    Green, David W.; Lee, Jung-Seok; Jung, Han-Sung

    2016-01-01

    The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a “water-tight” barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachment complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia, and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organizing cell–cell connections, cell–matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption, and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis. PMID:26903872

  9. Small-Scale Fabrication of Biomimetic Structures for Periodontal Regeneration

    Directory of Open Access Journals (Sweden)

    David William Green

    2016-02-01

    Full Text Available The periodontium is the supporting tissues for the tooth organ and is vulnerable to destruction, arising from overpopulating pathogenic bacteria and spirochaetes. The presence of microbes together with host responses can destroy large parts of the periodontium sometimes leading tooth loss. Permanent tissue replacements are made possible with tissue engineering techniques. However, existing periodontal biomaterials cannot promote proper tissue architectures, necessary tissue volumes within the periodontal pocket and a water-tight barrier, to become clinically acceptable. New kinds of small-scale engineered biomaterials, with increasing biological complexity are needed to guide proper biomimetic regeneration of periodontal tissues. So the ability to make compound structures with small modules, filled with tissue components, is a promising design strategy for simulating the anatomical complexity of the periodotium attachement complexes along the tooth root and the abutment with the tooth collar. Anatomical structures such as, intima, adventitia and special compartments such as the epithelial cell rests of Malassez or a stellate reticulum niche need to be engineered from the start of regeneration to produce proper periodontium replacement.. It is our contention that the positioning of tissue components at the origin is also necessary to promote self-organising cell-cell connections, cell-matrix connections. This leads to accelerated, synchronized and well-formed tissue architectures and anatomies. This strategy is a highly effective preparation for tackling periodontitis, periodontium tissue resorption and to ultimately prevent tooth loss. Furthermore, such biomimetic tissue replacements will tackle problems associated with dental implant support and perimimplantitis.

  10. Magnetic materials in Japan research, applications and potential

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This, the third report in Elsevier's Materials Technology in Japan series, concentrates on magnetic materials as a topic gaining worldwide attention, and each chapter looks not only at current research, but also describes the technology as it is being applied and its future potential. Magnetic-related research is the second largest field of research in Japan after semiconductors, with the estimated number of researchers and engineers engaged in magnetics-related activities currently at 20,000. This research report serves as both a review of

  11. A human endogenous protein exerts multi-role biomimetic chemistry in synthesis of paramagnetic gold nanostructures for tumor bimodal imaging.

    Science.gov (United States)

    Yang, Weitao; Wu, Xiaoli; Dou, Yan; Chang, Jin; Xiang, Chenyang; Yu, Jiani; Wang, Jun; Wang, Xiuli; Zhang, Bingbo

    2018-04-01

    Protein-mediated biomimetic nanoparticles because of simplicity of their synthesis, subdued nonspecific adsorption, improved pharmacokinetics, and biocompatibility have been receiving increasing attention recently. Nevertheless, only a handful of proteins have been developed for biomimetic synthesis. Worse still, most of them are constrained on single-function usages in chemistry. Exploring new functional proteins, especially those with multi-dentate moieties for multi-role biomimetic chemistry, still remains a substantial challenge. Here, we report on a human endogenous protein, glutathione S-transferase (GST), with favorable amino acid motifs, that has innate talents in incubating high quality gold nanoparticles without adding reducing agents at physiological temperature, and particularly can further anchor gadolinium ions without adding extra chelators. The resultant paramagnetic AuNPs@GST Gd exhibits highly crystallization and uniform size of ca. 10 nm. Compared with clinical contrast agents (Iopamidol, Magnevist), AuNPs@GST Gd shows better imaging performance (e.g. enhanced relaxivity and larger X-ray attenuation efficiency) with clear evidence from Monte Carlo simulation and in vitro experimental results. Further in vivo imaging demonstrates good tumor targeting and clearance of AuNPs@GST Gd without obvious systemic toxicity. Particularly, low immunogenicity of AuNPs@GST Gd is certified by immunological status evaluation of T cells after stimulated with them. This study for the first time demonstrates the manipulation of a human protein for multi-role biomimetic chemistry depending on its unique amino acid motifs and its incorporation into a synthetic agent for potentially addressing some critical issues in cancer nanotheranostics such as synthetic methodology, biocompatibility, function integration, targeting, and immunogenicity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Green tribology: principles, research areas and challenges.

    Science.gov (United States)

    Nosonovsky, Michael; Bhushan, Bharat

    2010-10-28

    In this introductory paper for the Theme Issue on green tribology, we discuss the concept of green tribology and its relation to other areas of tribology as well as other 'green' disciplines, namely, green engineering and green chemistry. We formulate the 12 principles of green tribology: the minimization of (i) friction and (ii) wear, (iii) the reduction or complete elimination of lubrication, including self-lubrication, (iv) natural and (v) biodegradable lubrication, (vi) using sustainable chemistry and engineering principles, (vii) biomimetic approaches, (viii) surface texturing, (ix) environmental implications of coatings, (x) real-time monitoring, (xi) design for degradation, and (xii) sustainable energy applications. We further define three areas of green tribology: (i) biomimetics for tribological applications, (ii) environment-friendly lubrication, and (iii) the tribology of renewable-energy application. The integration of these areas remains a primary challenge for this novel area of research. We also discuss the challenges of green tribology and future directions of research.

  13. Animal coloration research: why it matters.

    Science.gov (United States)

    Caro, Tim; Stoddard, Mary Caswell; Stuart-Fox, Devi

    2017-07-05

    While basic research on animal coloration is the theme of this special edition, here we highlight its applied significance for industry, innovation and society. Both the nanophotonic structures producing stunning optical effects and the colour perception mechanisms in animals are extremely diverse, having been honed over millions of years of evolution for many different purposes. Consequently, there is a wealth of opportunity for biomimetic and bioinspired applications of animal coloration research, spanning colour production, perception and function. Fundamental research on the production and perception of animal coloration is contributing to breakthroughs in the design of new materials (cosmetics, textiles, paints, optical coatings, security labels) and new technologies (cameras, sensors, optical devices, robots, biomedical implants). In addition, discoveries about the function of animal colour are influencing sport, fashion, the military and conservation. Understanding and applying knowledge of animal coloration is now a multidisciplinary exercise. Our goal here is to provide a catalyst for new ideas and collaborations between biologists studying animal coloration and researchers in other disciplines.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  14. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    Science.gov (United States)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  15. Biomimetic shark skin: design, fabrication and hydrodynamic function.

    Science.gov (United States)

    Wen, Li; Weaver, James C; Lauder, George V

    2014-05-15

    Although the functional properties of shark skin have been of considerable interest to both biologists and engineers because of the complex hydrodynamic effects of surface roughness, no study to date has successfully fabricated a flexible biomimetic shark skin that allows detailed study of hydrodynamic function. We present the first study of the design, fabrication and hydrodynamic testing of a synthetic, flexible, shark skin membrane. A three-dimensional (3D) model of shark skin denticles was constructed using micro-CT imaging of the skin of the shortfin mako (Isurus oxyrinchus). Using 3D printing, thousands of rigid synthetic shark denticles were placed on flexible membranes in a controlled, linear-arrayed pattern. This flexible 3D printed shark skin model was then tested in water using a robotic flapping device that allowed us to either hold the models in a stationary position or move them dynamically at their self-propelled swimming speed. Compared with a smooth control model without denticles, the 3D printed shark skin showed increased swimming speed with reduced energy consumption under certain motion programs. For example, at a heave frequency of 1.5 Hz and an amplitude of ± 1 cm, swimming speed increased by 6.6% and the energy cost-of-transport was reduced by 5.9%. In addition, a leading-edge vortex with greater vorticity than the smooth control was generated by the 3D printed shark skin, which may explain the increased swimming speeds. The ability to fabricate synthetic biomimetic shark skin opens up a wide array of possible manipulations of surface roughness parameters, and the ability to examine the hydrodynamic consequences of diverse skin denticle shapes present in different shark species. © 2014. Published by The Company of Biologists Ltd.

  16. Hydrogen Tunneling in Enzymes and Biomimetic Models

    Energy Technology Data Exchange (ETDEWEB)

    Layfield, Joshua P.; Hammes-Schiffer, Sharon

    2013-12-20

    Hydrogen transfer reactions play an important role throughout chemistry and biology. In general, hydrogen transfer reactions encompass proton and hydride transfer, which are associated with the transfer of a positively or negatively charged species, respectively, and proton-coupled electron transfer (PCET), which corresponds to the net transfer of one electron and one proton in the simplest case. Such PCET reactions can occur by either a sequential mechanism, in which the proton or electron transfers first, or a concerted mechanism, in which the electron and proton transfer in a single kinetic step with no stable intermediate. Furthermore, concerted PCET reactions can be subdivided into hydrogen atom transfer (HAT), which corresponds to the transfer of an electron and proton between the same donor and acceptor (i.e., the transfer of a predominantly neutral species), and electron-proton transfer (EPT), which corresponds to the transfer of an electron and proton between different donors and acceptors, possibly even in different directions. In all of these types of hydrogen transfer reactions, hydrogen tunneling could potentially play a signficant role. The theoretical development portion of this Review was supported by the National Science Foundation under CHE-10-57875. The biological portion of this Review was funded by NIH Grant No. GM056207. The biomimetic portion was supported as part of the Center for Molecular Electro-catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences.

  17. Biomimetic 'Green' Synthesis of Nanomaterials Using Antioxidants-Vitamins, Glutathione and Polyphenols from Tea and Wine

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis of nanomaterials via benign biomimetic ‘greener’ alternatives,1 such as the use antioxidants present in a variety of natural products, and ubiquitous glutathione in aqueous media.2 Vitamins B1, B2, C, and tea ...

  18. Proceedings of the Nineteenth DOE Solar Photochemistry Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document is a compilation of reports presented at the Nineteenth DOE Solar Photochemistry Research Conference. Sessions included photophysical properties of transition metal complexes, cage effects on photochemistry, charge transfer, photo-induced charge separation in biomimetic molecules, photosynthesis, and electron transfer.

  19. The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

    Directory of Open Access Journals (Sweden)

    Florian Antony

    2016-12-01

    Full Text Available Background: The debate on the question whether biomimetics has a specific potential to contribute to sustainability is discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint Lotusan®.Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA. For purposes of comparison, the façade paint Jumbosil® was chosen as reference for a conventional paint available on the market. The benefit analysis showed that both paints fulfil equally well the requirements of functional utility. With respect to the symbolic utility, Lotusan® has a particular added aesthetic value by the preservation of the optical quality over the life cycle. Within the social analysis no substantial differences between the two paints could be found regarding the handling and disposal of the final products. Regarding the life-cycle cost, Lotusan® is the more expensive product. However, the higher investment cost for a Lotusan®-based façade painting are more than compensated by the longer life time, resulting in both reduced overall material demand and lower labour cost. In terms of the life-cycle impact assessment, it can be ascertained that substantial differences between the paints arise from the respective service life, which are presented in terms of four scenario analyses.Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could be demonstrated that

  20. Limits of Nature and Advances of Technology: What Does Biomimetics Have to Offer to Aquatic Robots?

    Directory of Open Access Journals (Sweden)

    F. E. Fish

    2006-01-01

    Full Text Available In recent years, the biomimetic approach has been utilized as a mechanism for technological advancement in the field of robotics. However, there has not been a full appreciation of the success and limitations of biomimetics. Similarities between natural and engineered systems are exhibited by convergences, which define environmental factors, which impinge upon design, and direct copying that produces innovation through integration of natural and artificial technologies. Limitations of this integration depend on the structural and mechanical differences of the two technologies and on the process by which each technology arises. The diversity of organisms that arose through evolutionary descent does not necessarily provide all possible solutions of optimal functions. However, in instances where organisms exhibit superior performance to engineered systems, features of the organism can be targeted for technology transfer. In this regard, cooperation between biologists and engineers is paramount.

  1. Karlsruhe Nuclear Research Center, Institute of Materials Research. Progress report on research and development work in 1993

    International Nuclear Information System (INIS)

    1994-03-01

    The Institute consists of three parts IMF I, IMF II and IMF III. The tasks are divided into applied material physics (IMF I), material and structural mechanics (IMF II) and material process technology (IMF III). IMF I works preferably on the development of metallic, non-metallic and compound materials and on questions of the structure and properties of boundary surfaces and surface protection coatings. The main work of IMF II is the reliability of components, failure mechanics and the science of damage. IMF III examines process technology questions in the context of the manufacture of ceramic materials and fusion materials and the design of nuclear components. The Institute works on various main points of the Kernforschungszentrum in its research work, particularly in nuclear fusion, micro-system technique, nuclear safety research, superconductivity and in processes with little harmful substances and waste. Material and strength problems for future fusion reactors and fission reactors, in powerful micro systems and safety-related questions of nuclear technology are examined. Also, research not bound to projects in the field of metallic, ceramic and polymer materials for high stresses is carried out. (orig.) [de

  2. Quantitative Interpretation of Multifrequency Multimode EPR Spectra of Metal Containing Proteins, Enzymes, and Biomimetic Complexes.

    Science.gov (United States)

    Petasis, Doros T; Hendrich, Michael P

    2015-01-01

    Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.

  3. Electrochemical characterization of hydrogels for biomimetic applications

    DEFF Research Database (Denmark)

    Peláez, L.; Romero, V.; Escalera, S.

    2011-01-01

    ) or a photoinitiator (P) to encapsulate and stabilize biomimetic membranes for novel separation technologies or biosensor applications. In this paper, we have investigated the electrochemical properties of the hydrogels used for membrane encapsulation. Specifically, we studied the crosslinked hydrogels by using...... electrochemical impedance spectroscopy (EIS), and we demonstrated that chemically crosslinked hydrogels had lower values for the effective electrical resistance and higher values for the electrical capacitance compared with hydrogels with photoinitiated crosslinking. Transport numbers were obtained using......〉 and 〈Pw〉 values than PEG‐1000‐DMA‐P and PEG‐400‐DA‐P hydrogels. In conclusion, our results show that hydrogel electrochemical properties can be controlled by the choice of polymer and type of crosslinking used and that their water and salt permeability properties are congruent with the use of hydrogels...

  4. Biomimetically grown apatite spheres from aggregated bioglass nanoparticles with ultrahigh porosity and surface area imply potential drug delivery and cell engineering applications.

    Science.gov (United States)

    El-Fiqi, Ahmed; Buitrago, Jennifer O; Yang, Sung Hee; Kim, Hae-Won

    2017-09-15

    Here we communicate the generation of biomimetically grown apatite spheres from aggregated bioglass nanoparticles and the potential properties applicable for drug delivery and cell/tissue engineering. Ion releasing nanoparticulates of bioglass (85%SiO 2 -15%CaO) in a mineralizing medium show an intriguing dynamic phenomenon - aggregation, mineralization to apatite, integration and growth into micron-sized (1.5-3μm) spheres. During the progressive ionic dissolution/precipitation reactions, nano-to-micro-morphology, glass-to-crystal composition, and the physico-chemical properties (porosity, surface area, and charge) change dynamically. With increasing reaction period, the apatite becomes more crystallized with increased crystallinity and crystal size, and gets a composition closer to the stoichiometry. The developed microspheres exhibit hierarchical surface nanostructure, negative charge (ς-potential of -20mV), and ultrahigh mesoporosity (mesopore size of 6.1nm, and the resultant surface area of 63.7m 2 /g and pore volume of 0.153cm 3 /g) at 14days of mineralization, which are even higher than those of its precursor bioglass nanoparticles. Thanks to these properties, the biomimetic mineral microspheres take up biological molecules effectively, i.e., loading capacity of positive-charged protein is over 10%. Of note, the release is highly sustainable at a constant rate, i.e., profiling almost 'zero-order' kinetics for 4weeks, suggesting the potential usefulness as protein delivery systems. The biomimetic mineral microspheres hold some remnant Si in the core region, and release calcium, phosphate, and silicate ions over the test period, implying the long-term ionic-related therapeutic functions. The mesenchymal stem cells favour the biomimetic spheres with an excellent viability. Due to the merit of sizes (a few micrometers), the spheres can be intercalated into cells, mediating cellular interactions in 3D cell-spheroid engineering, and also can stimulate osteogenic

  5. New developments in photon and materials research

    CERN Document Server

    2013-01-01

    This book presents the most recent updates in the field of photon and optical materials research. It is devoted to various interdisciplinary subjects such as fundamental photon physics, bio and medical photon physics, ultrafast non-linear optics, quasiparticle excitation and spectroscopy, coherent mid-infrared (IR) light sources, functional optoelectronic materials and optical fibres, and quantum nano-structured devices for various important technological applications. It contains 19 authoritative peer-reviewed chapters regarding experimental and theoretical research in these fields, contributed by young scientists and engineers (assistant or associate professor level) along with well-established experts. The response of materials to electromagnetic fields, namely light-matter interaction, has been of special concern in fundamental optical sciences. The ability to fabricate and/or engineer new materials and structures is giving rise to revolutionary changes in the field, which also includes soft condensed mat...

  6. Plutonium contaminated materials research programme

    International Nuclear Information System (INIS)

    Higson, S.G.

    1986-01-01

    The paper is a progress report for 1985 from the Plutonium Contaminated Materials Working Party (PCMWP). The PCMWP co-ordinates research and development on a national basis in the areas of management, treatment and immobilisation of plutonium contaminated materials, for the purpose of waste management. The progress report contains a review of the development work carried out in eight areas, including: reduction of arisings, plutonium measurement, sorting and packaging, washing of shredded combustible PCM, decommissioning and non-combustible PCM treatment, PCM immobilisation, treatment of alpha bearing liquid wastes, and engineering objectives. (UK)

  7. Isolation and biomimetic synthesis of (±)-guajadial B, a novel meroterpenoid from Psidium guajava.

    Science.gov (United States)

    Gao, Yuan; Wang, Gang-Qiang; Wei, Kun; Hai, Ping; Wang, Fei; Liu, Ji-Kai

    2012-12-07

    (±)-Guajadial B (1), an unusual humulene-based meroterpenoid, was isolated as a racemate from the leaves of Psidium guajava, collected from Vietnam. The structure of this novel secondary metabolite was established on the basis of extensive analysis of NMR spectra and confirmed by biomimetic synthesis in a domino three-component coupling reaction.

  8. New Directions of Research in Molecules and Materials

    Indian Academy of Sciences (India)

    Wintec

    New Directions of Research in Molecules and Materials. Foreword. 'Materials' has ... Solution phase chemistry is a central aspect of materials as demonstrated by. Panchakarla and ... Changes at the atomic scale affect bulk properties such as ...

  9. Indentation versus Rolling: Dependence of Adhesion on Contact Geometry for Biomimetic Structures.

    Science.gov (United States)

    Moyle, Nichole; He, Zhenping; Wu, Haibin; Hui, Chung-Yuen; Jagota, Anand

    2018-04-03

    Numerous biomimetic structures made from elastomeric materials have been developed to produce enhancement in properties such as adhesion, static friction, and sliding friction. As a property, one expects adhesion to be represented by an energy per unit area that is usually sensitive to the combination of shear and normal stresses at the crack front but is otherwise dependent only on the two elastic materials that meet at the interface. More specifically, one would expect that adhesion measured by indentation (a popular and convenient technique) could be used to predict adhesion hysteresis in the more practically important rolling geometry. Previously, a structure with a film-terminated fibrillar geometry exhibited dramatic enhancement of adhesion by a crack-trapping mechanism during indentation with a rigid sphere. Roughly isotropic structures such as the fibrillar geometry show a strong correlation between adhesion enhancement in indentation versus adhesion hysteresis in rolling. However, anisotropic structures, such as a film-terminated ridge-channel geometry, surprisingly show a dramatic divergence between adhesion measured by indentation versus rolling. We study this experimentally and theoretically, first comparing the adhesion of the anisotropic ridge-channel structure to the roughly isotropic fibrillar structure during indentation with a rigid sphere, where only the isotropic structure shows adhesion enhancement. Second, we examine in more detail the anomalous anisotropic film-terminated ridge-channel structure during indentation with a rigid sphere versus rolling to show why these structures show a dramatic adhesion enhancement for the rolling case and no adhesion enhancement for indentation.

  10. Fiscal 1992 survey report. Survey of research trends in search for important research domains; 1992 nendo juten kenkyu ryoiki tansaku no tame no kenkyu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    For contribution of suggestions for establishing directions and concrete tasks for new industrial technology research and development projects, a survey is conducted about trends of industrial technology development and into research domains where importance will gather in the future, for which development trends are studied such as limiting, providing of intelligence, and advanced composition. In this report, domains expected to become important in the future are investigated. Important subjects are found in the domains of the space limiting (micromachining, atom/molecule manipulation, microanalysis, etc.), the time limiting (super-spacetime processing, quantum device, femtosecond technology, 4-dimensional device, etc.), biomimetics and providing of intelligence (intelligent material, neural network, genetic algorithm, artificial life, sensor fusion, intelligent robot, etc.). In addition to these, 'ultrastructure that learns from organisms,' 'intensive interaction system,' and 'nonlinearity/chaos technology' are proposed as promising fields of development. Since Japan is traditionally strong in hardware technologies relating to micromachining and substance/material processing, good results will be attained when the industrial, governmental, and academic circles exert endeavors. (NEDO)

  11. Fiscal 1992 survey report. Survey of research trends in search for important research domains; 1992 nendo juten kenkyu ryoiki tansaku no tame no kenkyu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    For contribution of suggestions for establishing directions and concrete tasks for new industrial technology research and development projects, a survey is conducted about trends of industrial technology development and into research domains where importance will gather in the future, for which development trends are studied such as limiting, providing of intelligence, and advanced composition. In this report, domains expected to become important in the future are investigated. Important subjects are found in the domains of the space limiting (micromachining, atom/molecule manipulation, microanalysis, etc.), the time limiting (super-spacetime processing, quantum device, femtosecond technology, 4-dimensional device, etc.), biomimetics and providing of intelligence (intelligent material, neural network, genetic algorithm, artificial life, sensor fusion, intelligent robot, etc.). In addition to these, 'ultrastructure that learns from organisms,' 'intensive interaction system,' and 'nonlinearity/chaos technology' are proposed as promising fields of development. Since Japan is traditionally strong in hardware technologies relating to micromachining and substance/material processing, good results will be attained when the industrial, governmental, and academic circles exert endeavors. (NEDO)

  12. Fish-inspired self-powered microelectromechanical flow sensor with biomimetic hydrogel cupula

    Science.gov (United States)

    Bora, M.; Kottapalli, A. G. P.; Miao, J. M.; Triantafyllou, M. S.

    2017-10-01

    Flow sensors inspired from lateral line neuromasts of cavefish have been widely investigated over decades to develop artificial sensors. The design and function of these natural sensors have been mimicked using microelectromechanical systems (MEMS) based sensors. However, there is more to the overall function and performance of these natural sensors. Mimicking the morphology and material properties of specialized structures like a cupula would significantly help to improve the existing designs. Toward this goal, the paper reports development of a canal neuromast inspired piezoelectric sensor and investigates the role of a biomimetic cupula in influencing the performance of the sensor. The sensor was developed using microfabrication technology and tested for the detection of the steady-state and oscillatory flows. An artificial cupula was synthesized using a soft hydrogel material and characterized for morphology and mechanical properties. Results show that the artificial cupula had a porous structure and high mechanical strength similar to the biological canal neuromast. Experimental results show the ability of these sensors to measure the steady-state flows accurately, and for oscillatory flows, an increase in the sensor output was detected in the presence of the cupula structure. This is the first time a MEMS based piezoelectric sensor is demonstrated to detect steady-state flows using the principle of vortex-induced vibrations. The bioinspired sensor developed in this work would be investigated further to understand the role of the cupula structure in biological flow sensing mechanisms, thus contributing toward the design of highly sensitive and efficient sensors for various applications such as underwater robotics, microfluidics, and biomedical devices.

  13. 3D Biomimetic Magnetic Structures for Static Magnetic Field Stimulation of Osteogenesis

    OpenAIRE

    Irina Alexandra Paun; Roxana Cristina Popescu; Bogdan Stefanita Calin; Cosmin Catalin Mustaciosu; Maria Dinescu; Catalin Romeo Luculescu

    2018-01-01

    We designed, fabricated and optimized 3D biomimetic magnetic structures that stimulate the osteogenesis in static magnetic fields. The structures were fabricated by direct laser writing via two-photon polymerization of IP-L780 photopolymer and were based on ellipsoidal, hexagonal units organized in a multilayered architecture. The magnetic activity of the structures was assured by coating with a thin layer of collagen-chitosan-hydroxyapatite-magnetic nanoparticles composite. In vitro experime...

  14. Materials Science Research Rack Onboard the International Space Station

    Science.gov (United States)

    Reagan, Shawn; Frazier, Natalie; Lehman, John

    2016-01-01

    The Materials Science Research Rack (MSRR) is a research facility developed under a cooperative research agreement between NASA and ESA for materials science investigations on the International Space Station (ISS). MSRR was launched on STS-128 in August 2009 and currently resides in the U.S. Destiny Laboratory Module. Since that time, MSRR has logged more than 1400 hours of operating time. The MSRR accommodates advanced investigations in the microgravity environment on the ISS for basic materials science research in areas such as solidification of metals and alloys. The purpose is to advance the scientific understanding of materials processing as affected by microgravity and to gain insight into the physical behavior of materials processing. MSRR allows for the study of a variety of materials, including metals, ceramics, semiconductor crystals, and glasses. Materials science research benefits from the microgravity environment of space, where the researcher can better isolate chemical and thermal properties of materials from the effects of gravity. With this knowledge, reliable predictions can be made about the conditions required on Earth to achieve improved materials. MSRR is a highly automated facility with a modular design capable of supporting multiple types of investigations. The NASA-provided Rack Support Subsystem provides services (power, thermal control, vacuum access, and command and data handling) to the ESA-developed Materials Science Laboratory (MSL) that accommodates interchangeable Furnace Inserts (FI). Two ESA-developed FIs are presently available on the ISS: the Low Gradient Furnace (LGF) and the Solidification and Quenching Furnace (SQF). Sample Cartridge Assemblies (SCAs), each containing one or more material samples, are installed in the FI by the crew and can be processed at temperatures up to 1400?C. ESA continues to develop samples with 14 planned for launch and processing in the near future. Additionally NASA has begun developing SCAs to

  15. Material Transfer Agreement (MTA) | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    Material Transfer Agreements are appropriate for exchange of materials into or out of the Frederick National Laboratory for research or testing purposes, with no collaborative research by parties involving the materials.

  16. Research projects on life management: materials ageing

    International Nuclear Information System (INIS)

    Gomez Briceno, D.

    1997-01-01

    Materials ageing is a time-dependent process, that involves the loss of availability of nuclear plants. Radiation embrittlement, stress corrosion cracking, irradiation assisted stress corrosion cracking, and thermal ageing are the most relevant time-dependent material degradation mechanisms that can be identified in the materials ageing process. The Materials Programme of Nuclear Energy Institute at CIEMAT carries out research projects and metallurgical examinations of failed components to gain some insight into the mechanisms of materials degradation with a direct impact on the life management of nuclear plants. (Author)

  17. Research Progress of Building Materials Used in Construction Land

    Science.gov (United States)

    Niu, Yan

    2018-01-01

    Construction land preparation is an important aspect of land remediation project. The research of materials in the process of land improvement is the foundation and the core. Therefore, it is necessary to study the materials that may be involved in the process of building land preparation. In this paper, the research on the construction materials such as recycled concrete, geosynthetics, soil stabilizers, soil improvers, building insulation materials and inorganic fibrous insulation materials, which are commonly used in construction sites, is reviewed and discussed in this paper. Land remediation project involved in the construction of land materials to provide reference.

  18. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors

    Science.gov (United States)

    Helmuth, Brian; Choi, Francis; Matzelle, Allison; Torossian, Jessica L.; Morello, Scott L.; Mislan, K.A.S.; Yamane, Lauren; Strickland, Denise; Szathmary, P. Lauren; Gilman, Sarah E.; Tockstein, Alyson; Hilbish, Thomas J.; Burrows, Michael T.; Power, Anne Marie; Gosling, Elizabeth; Mieszkowska, Nova; Harley, Christopher D.G.; Nishizaki, Michael; Carrington, Emily; Menge, Bruce; Petes, Laura; Foley, Melissa M.; Johnson, Angela; Poole, Megan; Noble, Mae M.; Richmond, Erin L.; Robart, Matt; Robinson, Jonathan; Sapp, Jerod; Sones, Jackie; Broitman, Bernardo R.; Denny, Mark W.; Mach, Katharine J.; Miller, Luke P.; O’Donnell, Michael; Ross, Philip; Hofmann, Gretchen E.; Zippay, Mackenzie; Blanchette, Carol; Macfarlan, J.A.; Carpizo-Ituarte, Eugenio; Ruttenberg, Benjamin; Peña Mejía, Carlos E.; McQuaid, Christopher D.; Lathlean, Justin; Monaco, Cristián J.; Nicastro, Katy R.; Zardi, Gerardo

    2016-01-01

    At a proximal level, the physiological impacts of global climate change on ectothermic organisms are manifest as changes in body temperatures. Especially for plants and animals exposed to direct solar radiation, body temperatures can be substantially different from air temperatures. We deployed biomimetic sensors that approximate the thermal characteristics of intertidal mussels at 71 sites worldwide, from 1998-present. Loggers recorded temperatures at 10–30 min intervals nearly continuously at multiple intertidal elevations. Comparisons against direct measurements of mussel tissue temperature indicated errors of ~2.0–2.5 °C, during daily fluctuations that often exceeded 15°–20 °C. Geographic patterns in thermal stress based on biomimetic logger measurements were generally far more complex than anticipated based only on ‘habitat-level’ measurements of air or sea surface temperature. This unique data set provides an opportunity to link physiological measurements with spatially- and temporally-explicit field observations of body temperature. PMID:27727238

  19. PREFACE: Biomimetics, Artificial Muscles & Nano-Bio 2007: Scientists Meet Doctors

    Science.gov (United States)

    Fernández Otero, Toribio

    2008-02-01

    invaded by a new virus. A very expensive trial and error (still pseudo-alchemic) procedure has to be initiated to try to enable ill people to get better. Nowadays models from chemical kinetics do not include any quantification of either changes to the molecular interactions inside the system during reaction or structural information about the conformational changes brought about by enzymes or reactive proteins. From our point of view this is one the most important scientific challenges for the 21st century, involving responses to questions related to life, health and illness. Those responses, due to the magnitude of the challenge, can only be obtained by cooperative work involving chemists, physicist, engineers, biologists and clinicians. Figure Figure showing the full distance inside the universe. Small and large systems are submitted as `constant physical' interactions affording quite predictive models. Life is based on chemistry giving rise to simultaneous changes on all the molecular interactions included in the system: their interpretation is outside current chemical or physical models. Most technological advances developed by human beings are inspired by biological systems, organs, or mechanisms present in living creatures. The main difference between human technology and natural organs is the changes in chemical composition occurring inside the wet natural organ during actuation: they are reactive, soft and wet materials. Our artificial machines are constructed of dry materials that maintain a constant composition under actuation. This is the context proposed for the consecutive World Congresses on Biomimetics, Artificial Muscles & Nano-Bio and more specifically for the IVth Congress held in Torre Pacheco, Spain, 6-9 November 2007. The papers selected for this volume of Journal of Physics: Conference Series includes: dry and wet materials, chemically reactive or physically reactive materials, organic and inorganic materials, macroscopic films and nanoparticles

  20. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    Science.gov (United States)

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.