WorldWideScience

Sample records for biomethane potential bmp

  1. Towards a standardization of biomethane potential tests

    DEFF Research Database (Denmark)

    Holliger, C.; Alves, M.; Andrade, D.;

    2016-01-01

    Production of biogas fromdifferent organic materials is a most interesting source of renewable energy. The biomethane potential (BMP) of these materials has to be determined to get insight in design parameters for anaerobic digesters. Although several norms and guidelines for BMP tests exist, int...

  2. Defining the biomethane potential (BMP) of solid organic wastes and energy crops

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Alves, M.; Bolzonella, D.;

    2009-01-01

    The application of anaerobic digestion technology is growing worldwide because of its economic and environmental benefits. As a consequence, a number of studies and research activities dealing with the determination of the biogas potential of solid organic substrates have been carrying out in the...... Specialist Group of the International Water Association. This is the first step for the definition of a standard protocol....

  3. Biomethanation and Its Potential

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Karakashev, Dimitar Borisov; Batstone, Damien J.;

    2011-01-01

    matter via cascades of biochemical conversions to methane and carbon dioxide. Syntrophic relationships between hydrogen producers (acetogens) and hydrogen scavengers (homoacetogens, hydrogenotrophic methanogens, etc.) are critical to the process. Determination of practical and theoretical methane...... potential is very important for design for optimal process design, configuration, and effective evaluation of economic feasibility. A wide variety of process applications for biomethanation of wastewaters, slurries, and solid waste have been developed. They utilize different reactor types (fully mixed......, plugflow, biofilm, UASB, etc.) and process conditions (retention times, loading rates, temperatures, etc.) in order to maximize the energy output from the waste and also to decrease retention time and enhance process stability. Biomethanation has strong potential for the production of energy from organic...

  4. Biomethanation and its potential

    NARCIS (Netherlands)

    Angelidaki, I.; Karakashev, D.; Batstone, D.J.; Plugge, C.M.; Stams, A.J.M.

    2011-01-01

    Biomethanation is a process by which organic material is microbiologically converted under anaerobic conditions to biogas. Three main physiological groups of microorganisms are involved: fermenting bacteria, organic acid oxidizing bacteria, and methanogenic archaea. Microorganisms degrade organic ma

  5. The biomethane potential in Chile

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, M.; Miranda, J.A. [Institute for Energy and Environment gGmbH, German Biomass Research Centre, Torgauer Strasse 116, 04347 Leipzig (Germany); Kaltschmitt, M. [Institute for Energy and Environment gGmbH, German Biomass Research Centre, Torgauer Strasse 116, 04347 Leipzig (Germany); Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Eissendorfer Strasse 40, D-21073 Hamburg (Germany)

    2009-04-15

    Within the last decade natural gas gained considerable importance in Chile. The contribution of natural gas within the energy system will increase in the future by predicted 3.6% annually until the year 2015. Due to limited resources within its own country, the energy system of Chile depends on natural gas imports preferential from Argentina. Therefore, the aim of several stakeholders from policy and industry is to reduce the share of imported primary energy within the overall energy system. In order to reach this goal, the use of domestic resources and particularly the utilisation of biomass as one of the most important renewable sources of energy in Chile could play an important role. Against this background, the goal of this paper is the analysis of the technical potentials of biomethane as a substitute for natural gas. For the production of biomethane the anaerobic or bio-chemical (i.e. Biogas) as well as the thermo-chemical conversion pathways (i.e. Bio-SNG) are considered. The results of this analysis show that biomass converted to biomethane is a promising energy provision option for Chile and it contributes to the reduction of greenhouse gas emissions. (author)

  6. Biomethanation of Leucaena leucocephala: a potential biomass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaswami, V.; Sankar, K.; Sekaran, P.M.C.; Lalitha, K.

    1986-08-01

    Biomethanation of organic matter is now recognized as a viable alternative for production of energy. Among various biomass sources screened, Leucaena leucocephala, having a high biomethanation rate, has been identified as a potential substrate for large-scale methane generation. During semi- continuous fermentations at 30/sup 0/C with volatile solids (VS) ranging from 1.0-2.5 gl/sup -1/ at hydraulic retention time (HRT) ranging from 10-18 days, the yield of product gas per gram of volatile solids input was about 0.45-0.60l in the case of L. leucocephala and 0.15-0.20l from cow-manure. Mass spectrometric analysis of the product gas from L. leucocephala indicated a methane content of 78-80%. Batch fermentation for 80 days with input volatile solids of 40-44 g in a 2l digester resulted in a gas yield of 0.87l g/sup -1/ volatile solids input for L. leucocephala and 0.33l g for cow-manure. The complex degradation of solid organic matter involves multiphase interactions between microbes and their environment, optimisation and separation of predominantly acidogenic and methanogenic species was achieved in a multi-state digester with separate compartments. This design was used for degradation of L. leucocephala, which, from the results presented, appears to be a good candidate for an 'energy-farm' for large-scale biomethanation. (37 refs.)

  7. Statistical prediction of biomethane potentials based on the composition of lignocellulosic biomass

    DEFF Research Database (Denmark)

    Thomsen, Sune Tjalfe; Spliid, Henrik; Østergård, Hanne

    2014-01-01

    Mixture models are introduced as a new and stronger methodology for statistical prediction of biomethane potentials (BPM) from lignocellulosic biomass compared to the linear regression models previously used. A large dataset from literature combined with our own data were analysed using canonical...... affecting the quality of the prediction, as the regression coefficients for xC, xH and xR were not significantly different based on the dataset. The model was extended with an effect of different methods of analysing the biomass constituents content (DA) which had a significant impact. In conclusion...... linear and quadratic mixture models. The full model to predict BMP (R2>0.96), including the four biomass components cellulose (xC), hemicellulose (xH), lignin (xL) and residuals (xR=1-xC-xH-xL) had highly significant regression coefficients. It was possible to reduce the model without substantially...

  8. The potential for biomethane from grass and slurry to satisfy renewable energy targets.

    Science.gov (United States)

    Wall, David M; O'Kiely, Padraig; Murphy, Jerry D

    2013-12-01

    A biomethane potential (BMP) assessment of grass silage yielded 107 m(3)CH4 t(-1). Long term mono-digestion of grass silage can suffer due to a deficiency in essential nutrients; this may be overcome by co-digesting with slurry. Mono-digestion of slurry achieved a low yield of 16 m(3)CH4 t(-1). BMP assessments at a range of co-digestion ratios indicated methane yields were between 4% and 11% lower than the values calculated from mono-digestion. This paper suggests that co-digestion of the majority of slurry produced from dairy cows in Ireland with grass silage quantities equivalent to 1.1% of grassland on a 50:50 volatile solids basis would generate over 10% renewable energy supply in transport (RES-T). The industry proposed would equate to 170 digesters each treating 10,000 t a(-1) of grass silage and 40,000 t a(-1) of slurry from dairy cows.

  9. Assessment of factors influencing the biomethane yield of maize silages.

    Science.gov (United States)

    Mayer, Frédéric; Gerin, Patrick A; Noo, Anaïs; Foucart, Guy; Flammang, Jos; Lemaigre, Sébastien; Sinnaeve, Georges; Dardenne, Pierre; Delfosse, Philippe

    2014-02-01

    A large set of maize silage samples was produced to assess the major traits influencing the biomethane production of this crop. The biomass yield, the volatile solids contents and the biochemical methane potential (BMP) were measured to calculate the biomethane yield per hectare (average=7266m(3)ha(-1)). The most influential factor controlling the biomethane yield was the cropping environment. The biomass yield had more impact than the anaerobic digestibility. Nevertheless, the anaerobic digestibility of maize silages was negatively affected by high VS content in mature maize. Late maturing maize varieties produced high biomass yield with high digestibility resulting in high biomethane yield per hectare. The BMP was predicted with good accuracy using solely the VS content.

  10. Biochemicalmethane potential (BMP) of solid organic substrates

    DEFF Research Database (Denmark)

    Raposo, F.; Fernández-Cegrí, V.; de la Rubia, M.A.

    2011-01-01

    BACKGROUND: This paper describes results obtained for different participating research groups in an interlaboratory study related to biochemical methane potential (BMP). In this research work, all experimental conditions influencing the test such as inoculum, substrate characteristics and experim...

  11. Biomethanation of Carpet Grass (Axonopus fissifolius

    Directory of Open Access Journals (Sweden)

    Chima Ngumah

    2014-01-01

    Full Text Available Axonopus fissifolius commonly called “carpet grass” was subjected to anaerobic digestion for 30 days. Anaerobic digestion was carried out in a batch-fed process at the ambient temperature of 27-290C. Biomethane measurements were obtained by measuring the volume displacement of a saturated filtered calcium hydroxide solution in a transparent calibrated vessel.  42.7g of fresh carpet grass clippings yielded 1.955 L of biomethane. Biomethane potential (BMP of carpet grass for a 30 day anaerobic digestion was 0.05 m3 CH4 kg-1 TS. The rates of biomethane potentials for the first, second, third, fourth and fifth six-day intervals were 1.5mL g-1 TS (2.81%, 6.4mL g-1 TS (14.58%, 16.1mL g-1 TS (30.18%, 17.74mL g-1 TS (33.25%, and 10.23mL g-1 TS (19.81% respectively. The total solids, volatile solids and pH of feedstock and digestate were 85.80% and 85.56%, 90.91% and 87.58%, 6.6 (27oC and 6.9 (27oC respectively.  The relatively high biomethane potential of carpet grass at the ambient temperature presented in this paper depicts anaerobic digestion as a viable means of profitably treating grass waste for both sanitation and generating biomethane especially in the tropics where the ambient temperatures are usually favourable for optimum biomethanation for most part of the year, thus making the process affordable and less cumbersome.DOI http://dx.doi.org/10.5755/j01.erem.66.4.5228

  12. Sox9 potentiates BMP2-induced chondrogenic differentiation and inhibits BMP2-induced osteogenic differentiation.

    Science.gov (United States)

    Liao, Junyi; Hu, Ning; Zhou, Nian; Lin, Liangbo; Zhao, Chen; Yi, Shixiong; Fan, Tingxu; Bao, Wei; Liang, Xi; Chen, Hong; Xu, Wei; Chen, Cheng; Cheng, Qiang; Zeng, Yongming; Si, Weike; Yang, Zhong; Huang, Wei

    2014-01-01

    Bone morphogenetic protein 2 (BMP2) is one of the key chondrogenic growth factors involved in the cartilage regeneration. However, it also exhibits osteogenic abilities and triggers endochondral ossification. Effective chondrogenesis and inhibition of BMP2-induced osteogenesis and endochondral ossification can be achieved by directing the mesenchymal stem cells (MSCs) towards chondrocyte lineage with chodrogenic factors, such as Sox9. Here we investigated the effects of Sox9 on BMP2-induced chondrogenic and osteogenic differentiation of MSCs. We found exogenous overexpression of Sox9 enhanced the BMP2-induced chondrogenic differentiation of MSCs in vitro. Also, it inhibited early and late osteogenic differentiation of MSCs in vitro. Subcutaneous stem cell implantation demonstrated Sox9 potentiated BMP2-induced cartilage formation and inhibited endochondral ossification. Mouse limb cultures indicated that BMP2 and Sox9 acted synergistically to stimulate chondrocytes proliferation, and Sox9 inhibited BMP2-induced chondrocytes hypertrophy and ossification. This study strongly suggests that Sox9 potentiates BMP2-induced MSCs chondrogenic differentiation and cartilage formation, and inhibits BMP2-induced MSCs osteogenic differentiation and endochondral ossification. Thus, exogenous overexpression of Sox9 in BMP2-induced mesenchymal stem cells differentiation may be a new strategy for cartilage tissue engineering.

  13. Biochemical methane potential (BMP) of solid organic materials

    DEFF Research Database (Denmark)

    Raposo, Francisco; Fernández-Cegrí, V.; De la Rubia, M.A.

    2010-01-01

    This paper describes the results obtained for different participating research groups in an interlaboratory study related to the biochemical methane potential (BMP). In this research work, the full experimental conditions influencing the test such as inoculum, substrate characteristics and experi...

  14. Environmental assessment of two different crop systems in terms of biomethane potential production

    Energy Technology Data Exchange (ETDEWEB)

    Bacenetti, Jacopo; Fusi, Alessandra, E-mail: alessandra.fusi@unimi.it; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop. - Highlights: • Environmental impact of two crop systems was evaluated • Biomethane specific production tests were carried out • Alternative scenarios (different yields and crop management) were assessed • Maize single crop obtains the better environmental performance • Critical factors are: fertilizer and diesel fuel emissions and diesel fuel

  15. Biomethane potential of the POME generated in the palm oil industry in Ghana from 2002 to 2009.

    Science.gov (United States)

    Arthur, Richard; Glover, Kwasi

    2012-05-01

    The palm oil industry experienced significant improvement in its production level from 2002 to 2009 from the established companies, medium scale mills (MSM), small scale and other private holdings (SS and OPH) groups. However, the same cannot be said for treatment of the palm oil mill effluent (POME) produced. The quantity of crude palm oil (CPO) produced in Ghana from 2002 to 2009 and IPCC guidelines for National Greenhouse Gas Inventories, specifically on industrial wastewater were used in this study. During this period about 10 million cubic metres of POME was produced translating into biomethane potential of 38.5 million m(3) with equivalent of 388.29 GW h of energy. A linear growth model developed to predict the equivalent carbon dioxide (CO(2)) emissions indicates that if the biomethane is not harnessed then by 2015 the untreated POME could produce 0.58 million tCO(2)-eq and is expected to increase to 0.70 million tCO(2)-eq by 2020.

  16. Comparison of osteogenic potentials of human rat BMP4 and BMP6 gene therapy using [E1-] and [E1-,E2b-] adenoviral vectors

    Directory of Open Access Journals (Sweden)

    Hongwei Li, Jin Zhong Li, Debra D. Pittman, Andy Amalfitano, Gerald R. Hankins, Gregory A. Helm

    2006-01-01

    Full Text Available Osteogenic potentials of some recombinant human bone morphogenetic protein (BMP first-generation adenoviral vectors (ADhBMPs are significantly limited in immunocompetent animals. It is unclear what role expression of viral proteins and foreign proteins transduced by adenoviral vectors play in the host immune response and in ectopic bone formation. In this study two sets of experiments were designed and performed. First, rat BMP6 cDNA were amplified, sequenced, and recombined in first-generation adenoviral vector (ADrBMP6. A comparison of human and rat BMP6 adenoviral vectors demonstrated identical osteogenic activities in both immunodeficient and immunocompetent rats. Second, the activities of recombinant human BMP6 in E1- (ADhBMP6 and [E1-,E2b-] ( [E1-,E2b-]ADGFP&hBMP6, and [E1-,E2b-]ADhBMP6 adenoviral vectors were compared in both in vitro and in vivo models. Similar activities of these two generations of BMP adenoviral vectors were found in all models. These results indicate that the amount of viral gene expression and the source of the BMP cDNA are not major factors in the interruption of osteogenic potentials of recombinant BMP6 adenoviral vectors in immunocompetent animals.

  17. The effect of storage conditions on microbial community composition and biomethane potential in a biogas starter culture.

    Science.gov (United States)

    Hagen, Live Heldal; Vivekanand, Vivekanand; Pope, Phillip B; Eijsink, Vincent G H; Horn, Svein J

    2015-07-01

    A new biogas process is initiated by adding a microbial community, typically in the form of a sample collected from a functional biogas plant. This inoculum has considerable impact on the initial performance of a biogas reactor, affecting parameters such as stability, biogas production yields and the overall efficiency of the anaerobic digestion process. In this study, we have analyzed changes in the microbial composition and performance of an inoculum during storage using barcoded pyrosequencing of bacterial and archaeal 16S ribosomal RNA (rRNA) genes, and determination of the biomethane potential, respectively. The inoculum was stored at room temperature, 4 and -20 °C for up to 11 months and cellulose was used as a standard substrate to test the biomethane potential. Storage up to 1 month resulted in similar final methane yields, but the rate of methane production was reduced by storage at -20 °C. Longer storage times resulted in reduced methane yields and slower production kinetics for all storage conditions, with room temperature and frozen samples consistently giving the best and worst performance, respectively. Both storage time and temperature affected the microbial community composition and methanogenic activity. In particular, fluctuations in the relative abundance of Bacteroidetes were observed. Interestingly, a shift from hydrogenotrophic methanogens to methanogens with the capacity to perform acetoclastic methanogensis was observed upon prolonged storage. In conclusion, this study suggests that biogas inocula may be stored up to 1 month with low loss of methanogenic activity, and identifies bacterial and archaeal species that are affected by the storage.

  18. Modelling a demand driven biogas system for production of electricity at peak demand and for production of biomethane at other times.

    Science.gov (United States)

    O'Shea, R; Wall, D; Murphy, J D

    2016-09-01

    Four feedstocks were assessed for use in a demand driven biogas system. Biomethane potential (BMP) assays were conducted for grass silage, food waste, Laminaria digitata and dairy cow slurry. Semi-continuous trials were undertaken for all feedstocks, assessing biogas and biomethane production. Three kinetic models of the semi-continuous trials were compared. A first order model most accurately correlated with gas production in the pulse fed semi-continuous system. This model was developed for production of electricity on demand, and biomethane upgrading. The model examined a theoretical grass silage digester that would produce 435kWe in a continuous fed system. Adaptation to demand driven biogas required 187min to produce sufficient methane to run a 2MWe combined heat and power (CHP) unit for 60min. The upgrading system was dispatched 71min following CHP shutdown. Of the biogas produced 21% was used in the CHP and 79% was used in the upgrading system.

  19. An OxiTop (R) protocol for screening plant material for its biochemical methane potential (BMP)

    NARCIS (Netherlands)

    Pabon Pereira, C.P.; Castanares, G.; Lier, van J.B.

    2012-01-01

    A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop (R) system. NaOH pellets for CO2 absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle n

  20. The BMP2 antagonist inhibitor L51P enhances the osteogenic potential of BMP2 by simultaneous and delayed synergism.

    Science.gov (United States)

    Khattab, Hany Mohamed; Ono, Mitsuaki; Sonoyama, Wataru; Oida, Yasutaka; Shinkawa, Shigehiko; Yoshioka, Yuya; Maekawa, Kenji; Tabata, Yasuhiko; Sugama, Kazushige; Sebald, Walter; Kuboki, Takuo

    2014-12-01

    Bone morphogenetic protein 2 (BMP2) is a potent osteoinductive cytokine that plays crucial roles in bone repair. However, large amounts of BMP2 are required to induce sufficient bone formation in humans possibly due to a feedback response of BMP antagonists. The engineered BMP2 variant L51P is deficient in BMP receptor type I activation but maintains affinity for BMP antagonists and can allow for the inactivation of BMP antagonists, and eventually enhance BMP2 action. As hypothesized, simultaneous addition of L51P enhanced the BMP2-induced osteogenesis. To test the ability of L51P to competitively inactivate BMP antagonists, cell binding affinity of BMP2 ligands was investigated in the presence or absence of L51P. Because the BMP antagonists were highly expressed 3 days after exogenous BMP2 stimulation, we collected supernatants from 3-day stimulated cell cultures and used as condition culture media (CM). The results showed a significant decrease in the cell binding of BMP2 ligands when cells were incubated with exogenous BMP2 and CM, whereas L51P addition competitively rescued the suppression of BMP2-to-cell binding induced by CM incubation. In a delayed experimental model, L51P was applied 3 days after exogenous BMP2 stimulation and we could observe a striking enhancement of the BMP2-induced SMAD-1/5/8 phosphorylation and luciferase activity of the Id1 promoter compared to the simultaneous addition of the two factors. These findings provide a deeper insight into the cellular and molecular mechanisms involved in the effect of L51P in suppressing the BMP antagonists and enhancing BMP activity. Additionally, these results demonstrate that L51P is a promising down regulator of BMP-induced negative feedback, which could have a significant impact in future applications of BMP2 in research and clinical settings.

  1. Effect of Ultrasonic Pretreatment on Biomethane Potential of Two-Phase Olive Mill Solid Waste: Kinetic Approach and Process Performance

    Science.gov (United States)

    Rincón, B.; Bujalance, L.; Fermoso, F. G.; Martín, A.

    2014-01-01

    The effect of ultrasound (US) pretreatment on two-phase olive mil solid waste (OMSW) composition and subsequent anaerobic biodegradation was evaluated by chemical oxygen demand solubilization and biochemical methane potential (BMP) tests. OMSW was ultrasonically pretreated at a power of 200 W and frequency of 24 kHz for time periods of 20, 40, 60, 90, 120, and 180 minutes, corresponding to specific energies of 11367, 21121, 34072, 51284, 68557, and 106003 kJ/kg total solids, respectively. In order to evaluate the US pretreatment, a low, medium, and high exposure time, that is, 20, 90, and 180 min, were selected for BMP tests. Methane yields of 311 ± 15, 393 ± 14, and 370 ± 20 mL CH4/g VSadded (VS: volatile solids) were obtained for 20, 90, and 180 minutes, respectively, while the untreated OMSW gave 373 ± 4 mL CH4/g VSadded. From a kinetic point of view, the BMP tests showed a first exponential stage and a second sigmoidal stage. In the first stage, the kinetic constant obtained for US pretreated OMSW at 20 minutes was 46% higher than those achieved for the pretreated OMSW at 90 and 180 minutes and 48% higher than that for untreated OMSW. The maximum methane production rate achieved was 12% higher than that obtained for untreated OMSW. PMID:25197705

  2. Effect of ultrasonic pretreatment on biomethane potential of two-phase olive mill solid waste: kinetic approach and process performance.

    Science.gov (United States)

    Rincón, B; Bujalance, L; Fermoso, F G; Martín, A; Borja, R

    2014-01-01

    The effect of ultrasound (US) pretreatment on two-phase olive mil solid waste (OMSW) composition and subsequent anaerobic biodegradation was evaluated by chemical oxygen demand solubilization and biochemical methane potential (BMP) tests. OMSW was ultrasonically pretreated at a power of 200 W and frequency of 24 kHz for time periods of 20, 40, 60, 90, 120, and 180 minutes, corresponding to specific energies of 11367, 21121, 34072, 51284, 68557, and 106003 kJ/kg total solids, respectively. In order to evaluate the US pretreatment, a low, medium, and high exposure time, that is, 20, 90, and 180 min, were selected for BMP tests. Methane yields of 311 ± 15, 393 ± 14, and 370 ± 20 mL CH₄/g VSadded (VS: volatile solids) were obtained for 20, 90, and 180 minutes, respectively, while the untreated OMSW gave 373 ± 4 mL CH₄/g VSadded. From a kinetic point of view, the BMP tests showed a first exponential stage and a second sigmoidal stage. In the first stage, the kinetic constant obtained for US pretreated OMSW at 20 minutes was 46% higher than those achieved for the pretreated OMSW at 90 and 180 minutes and 48% higher than that for untreated OMSW. The maximum methane production rate achieved was 12% higher than that obtained for untreated OMSW.

  3. Comparison of osteogenic potentials of human rat BMP4 and BMP6 gene therapy using [E1-] and [E1-,E2b-] adenoviral vectors

    OpenAIRE

    Li, Hongwei; Li, Jin Zhong; D. Pittman, Debra; Amalfitano, Andy; Hankins, Gerald R.; Helm, Gregory A.

    2006-01-01

    Osteogenic potentials of some recombinant human bone morphogenetic protein (BMP) first-generation adenoviral vectors (ADhBMPs) are significantly limited in immunocompetent animals. It is unclear what role expression of viral proteins and foreign proteins transduced by adenoviral vectors play in the host immune response and in ectopic bone formation. In this study two sets of experiments were designed and performed. First, rat BMP6 cDNA were amplified, sequenced, and recombined in first-genera...

  4. Assessment of biomethanation potential of selected industrial organic effluents in India

    Energy Technology Data Exchange (ETDEWEB)

    Lata, Kusum; Kansal, Arun; Balakrishnan, Malini; Rajeshwari, K.V.; Kishore, V.V.N. [Tata Energy Research Institute, Darbari Seth Block, Habitat Place, Lodhi Road, 110 003 New Delhi (India)

    2002-05-01

    Anaerobic digestion is gaining wider acceptance in the present scenario over aerobic treatment due to production of biogas, which can be further used for meeting a part of energy demand. On the basis of primary and secondary data, the energy potential by the anaerobic digestion of the effluent from some of the polluting industries has been estimated in this paper. The pulp and paper industry has been found to have the maximum potential among others of the order of 1131 GWh{sub e}/a followed by distillery with a contribution of 830 GWh{sub e}/a to a total potential of 2963 GWh{sub e}/a equivalent electric energy. A total potential of 565 MW plant installation with anaerobic digestion technology has been estimated. The paper also describes the nature of wastewater generated by each sector, status of technologies for that sector in India and policy measures, which should be adopted for their large-scale adoption.

  5. Diplosphaera sp. MM1 - A microalga with phycoremediation and biomethane potential.

    Science.gov (United States)

    Liu, Cuixia; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Hu, Zhiquan; Xiao, Bo

    2016-10-01

    This study evaluated the potential of a microalga Diplosphaera sp. MM1 for its ability to generate energy through biomass production from wastewater remediation. 33% dairy wastewater and 50% winery wastewater demonstrated as promising alternative media for cultivating Diplosphaera sp. MM1 biomass. Interestingly, the alga cultivated in 50% winery wastewater with limited nitrogen produced the highest lipid content (43.07% total solid) and the lowest carbohydrate content (9.35% TS). On the contrary, the lowest lipid content (16.98% TS) and the highest carbohydrate content (29.39% TS) were exhibited by the alga cultivated in 33% dairy wastewater. The results from anaerobic digestion processes in terms of biochemical methane potential of the alga cultivated in BG-11 medium, 33% dairy wastewater and 50% winery wastewater were 197.39, 129.75 and 218.51NmLg(-1)VS, respectively. Further, this study demonstrates the potential of winery wastewater as a candidate to increase the lipid content of algae and enhance biofuel production of algal biomass.

  6. Environmental assessment of two different crop systems in terms of biomethane potential production.

    Science.gov (United States)

    Bacenetti, Jacopo; Fusi, Alessandra; Negri, Marco; Guidetti, Riccardo; Fiala, Marco

    2014-01-01

    The interest in renewable energy sources has gained great importance in Europe due to the need to reduce fossil energy consumption and greenhouse gas emissions, as required by the Renewable Energy Directive (RED) of the European Parliament. The production of energy from energy crops appears to be consistent with RED. The environmental impact related to this kind of energy primarily originates from crop cultivation. This research aimed to evaluate the environmental impact of different crop systems for biomass production: single and double crop. The environmental performances of maize and maize plus wheat were assessed from a life cycle perspective. Two alternative scenarios considering different yields, crop management, and climatic conditions, were also addressed. One normal cubic metre of potential methane was chosen as a functional unit. Methane potential production data were obtained through lab experimental tests. For both of the crop systems, the factors that have the greatest influence on the overall environmental burden are: fertilizer emissions, diesel fuel emissions, diesel fuel production, and pesticide production. Notwithstanding the greater level of methane potential production, the double crop system appears to have the worse environmental performance with respect to its single crop counterpart. This result is due to the bigger quantity of inputs needed for the double crop system. Therefore, the greater amount of biomass (silage) obtained through the double crop system is less than proportional to the environmental burden that results from the bigger quantity of inputs requested for double crop.

  7. Potential of wastewater-treating anaerobic granules for biomethanation of synthesis gas.

    Science.gov (United States)

    Guiot, Serge R; Cimpoia, Ruxandra; Carayon, Gaël

    2011-03-01

    Gasification of biomass produces a mixture of gas (mainly carbon monoxide (CO), carbon dioxide (CO(2)), and hydrogen (H(2))) called synthesis gas, or syngas, by thermal degradation without combustion. Syngas can be used for heat or electricity production by thermochemical processes. This project aims at developing an alternative way to bioupgrade syngas into biogas (mainly methane), via anaerobic fermentation. Nonacclimated industrial granular sludge to be used as reactor inoculum was initially evaluated for mesophilic carboxydotrophic methanogenesis potential in batch tests at 4 and 8 mmol CO/g VSS.d, in the absence and presence of H(2) and CO(2), respectively. Granular sludge was then introduced into a 30 L gas-lift reactor and supplied with CO, to study the production of methane and other metabolites, at different gas dilutions as well as feeding and recirculation rates. A maximal CO conversion efficiency of 75%, which was gas-liquid mass transfer limited, occurred at a CO partial pressure of 0.6 atm combined with a gas recirculation ratio of 20:1. The anaerobic granule potential for methanogenesis from CO was likely hydrogenotrophic, combined with CO-dependent H(2) formation, either under mesophilic or thermophilic conditions. Thermophilic conditions provide the anaerobic granules with a CO-bioconversion potential significantly larger (5-fold) than under mesophilic conditions, so long as the gas-liquid transfer is alleviated.

  8. Evaluation and modeling of biochemical methane potential (BMP) of landfilled solid waste: a pilot scale study

    DEFF Research Database (Denmark)

    Bilgili, M Sinan; Demir, Ahmet; Varank, Gamze

    2009-01-01

    The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH(4) potentials of solid wastes during 27 months of landfilling operation in two pilo...

  9. An OxiTop(®) protocol for screening plant material for its biochemical methane potential (BMP).

    Science.gov (United States)

    Pabón Pereira, C P; Castañares, G; van Lier, J B

    2012-01-01

    A protocol was developed for determining the biochemical methane potential (BMP) of plant material using the OxiTop(®) system. NaOH pellets for CO(2) absorption and different pretreatment methods were tested for their influence in the BMP test. The use of NaOH pellets in the headspace of the bottle negatively affected the stability of the test increasing the pH and inhibiting methanization. Sample comminution increased the biodegradability of plant samples. Our results clearly indicate the importance of test conditions during the assessment of anaerobic biodegradability of plant material, considering BMP differences as high as 44% were found. Guidelines and recommendations are given for screening plant material suitable for anaerobic digestion using the OxiTop(®) system.

  10. Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study

    NARCIS (Netherlands)

    Raposo, F.; Fernandez-Cegri, V.; Rubia, de la M.A.; Borja, R.; Beline, F.; Cavinato, C.; Demirer, G.; Fernandez, B.; Fernandez-Polanco, M.; Frigon, J.C.; Ganesh, R.; Kaparaju, P.; Koubova, J.; Mendez, R.; Menin, G.; Peene, A.; Scherer, P.; Torrijos, M.; Uellendahl, H.; Wierinck, I.; Wilde, de V.

    2011-01-01

    BACKGROUND: This paper describes results obtained for different participating research groups in an interlaboratory study related to biochemical methane potential (BMP). In this research work, all experimental conditions influencing the test such as inoculum, substrate characteristics and experiment

  11. Potential development of compressed bio-methane gas production from pig farms and elephant grass silage for transportation in Thailand.

    Science.gov (United States)

    Dussadee, Natthawud; Reansuwan, Kamoldara; Ramaraj, Rameshprabu

    2014-03-01

    This research project evaluated biogas production using anaerobic co-digestion of pig manure and elephant grass silage in large scale to delivered transportation directly for cars. Anaerobic co-digestion was estimated in three full-scale continuously stirred tank reactors (CSTRs) at 40°C. In the form of compressed bio-methane gas (CBG) production was 14,400m(3)/day (CH4 60-70%) amount of CBG was 9600m(3)/day. The procedure was enhanced by using molecular sieve, activated carbon for removal of moisture and CO2 membrane H2S and CO2 respectively. The results were demonstrated the amount of CO2, H2S gas was reduced along with CH4 was improved up to 90% by volume and compressed to 250bar tank pressure gauge to the fuel for cars. The CBG production, methane gas improvement and performance were evaluated before entering the delivered systems according to the energy standards. The production of CBG is advantageous to strengthen the Thailand biogas market.

  12. Evaluation of anaerobic co-digestion of dairy manure with food wastes via bio-methane potential assay and CSTR reactor.

    Science.gov (United States)

    Ye, Yulin; Zamalloa, Carlos; Lin, Hongjian; Yan, Mi; Schmidt, David; Hu, Bo

    2015-01-01

    The introduction of food wastes into anaerobic digestion (AD) brings a promising scenario of increasing feedstock availability and overall energy production from AD. This study evaluated the biodegradability and methane potential from co-digestion of two typical food wastes, kitchen waste and chicken fat, with dairy manure. For single substrate, the bio-methane potential assays showed that kitchen waste had the highest methane yield of 352 L-CH4 kg(-1)-VS added, 92% more than dairy manure alone. Chicken fat at the same Volatile Solid (VS) level (2 g L(-1)) inhibited bio-methane production. Addition of kitchen waste and chicken fat to a VS percentage of up to 40% improved overall methane yield by 44% and 34%, respectively. Synergistic effect was observed when either combining two or three substrates as AD feedstock, possibly as a result of increased biodegradability of organic materials in chicken fat and kitchen waste compared with dairy manure. Addition of chicken fat improved methane yield more than kitchen waste. However, addition of chicken fat VS over 0.8 g L(-1) should be cautiously done because it may cause reactor failure due to decrease in pH. The maximum methane yield was 425 L-CH4 kg(-1)-VS, achieved at a VS ratio of 2:2:1 for kitchen waste, chicken fat, and dairy manure. Results from batch AD experiment demonstrated that supplementing dairy manure to chicken fat and/or kitchen waste improved alkalinity of substrate due to the inclusion of more titratable bases in dairy manure, and therefore stabilized the methanogenesis and substantially improved biogas yield. A mixture of substrates of kitchen waste, chicken fat, and dairy manure at a ratio of 1:1:3 was fed to a continuously stirred tank reactor operated at organic loading rates of 3.28, 6.55, and 2.18 g-COD L(-1)-day (hydraulic retention time of 20, 10, and 30 days, respectively) under mesophilic condition, and methane production rate reached 0.65, 0.95, and 0.34 L-CH4 L(-1)-reactor-day.

  13. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills

    DEFF Research Database (Denmark)

    Mou, Zishen; Scheutz, Charlotte; Kjeldsen, Peter

    2014-01-01

    The biochemical methane potential (BMP) is an essential parameter when using first order decay (FOD) landfill gas (LFG) generation models to estimate methane (CH4) generation from landfills. Different categories of waste (mixed, shredder and sludge waste) with a low-organic content and temporarily...... for more than 60 days, with continuous monitoring of the cumulative CH4 generation. Results showed that samples of mixed waste and shredder waste had similar BMP results, which was in the range of 5.4–9.1 kg CH4/ton waste (wet weight) on average. As a calculated consequence, their degradable organic carbon...... values of 51.8–69.6 and 106.6–117.3 kg CH4/ton waste on average, respectively, and DOCC values of 3.84–5.12% and 7.96–8.74% of total weight. The same category of waste from different Danish landfills did not show significant variation. This research studied the BMP of Danish low-organic waste...

  14. Characteristics and stimulation potential with BMP-2 and BMP-7 of tenocyte-like cells isolated from the rotator cuff of female donors.

    Directory of Open Access Journals (Sweden)

    Franka Klatte-Schulz

    Full Text Available Tendon bone healing of the rotator cuff is often associated with non-healing or recurrent defects, which seems to be influenced by the patient's age and sex. The present study aims to examine cellular biological characteristics of tenocyte-like cells that may contribute to this impaired rotator cuff healing. Moreover, a therapeutic approach using growth factors could possibly stimulate tendon bone healing. Therefore, our second aim was to identify patient groups who would particularly benefit from growth factor stimulation. Tenocyte-like cells isolated from supraspinatus tendons of female donors younger and older than 65 years of age were characterized with respect to different cellular biological parameters, such as cell density, cell count, marker expression, collagen-I protein synthesis, and stem cell potential. Furthermore, cells of the donor groups were stimulated with BMP-2 and BMP-7 (200 and 1000 ng/ml in 3D-culture and analyzed for cell count, marker expression and collagen-I protein synthesis. Female donors older than 65 years of age showed significantly decreased cell count and collagen-I protein synthesis compared to cells from donors younger than 65 years. Cellular biological parameters including cell count, collagen-I and -III expression, and collagen-I protein synthesis of cells from both donor groups were stimulated with BMP-2 and BMP-7. The cells from donors older than 65 years revealed a decreased stimulation potential for cell count compared to the younger group. Cells from female donors older than 65 years of age showed inferior cellular biological characteristics. This may be one reason for a weaker healing potential observed in older female patients and should be taken into consideration for tendon bone healing of the rotator cuff.

  15. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste.

    Science.gov (United States)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-04-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties in relation to BMP, protein content, lipids, lignocellulose biofibres and easily degradable carbohydrates (carbohydrates other than lignocellulose biofibres). The three components in lignocellulose biofibres, i.e. lignin, cellulose and hemicellulose, were differentiated, and theoretical BMP (TBMP) and material degradability (BMP from laboratory incubation tests divided by TBMP) were expressed. Moreover, the degradability of lignocellulose biofibres (the share of volatile lignocellulose biofibre solids degraded in laboratory incubation tests) was calculated. Finally, BMP for average SSOHW composition in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability of material fractions such as vegetation waste, moulded fibres, animal straw, dirty paper and dirty cardboard, however, was constrained by lignin content. BMP for overall SSOHW (untreated) was 404 mL CH4 per g VS, which might increase if the relative content of material fractions, such as animal and vegetable food waste, kitchen tissue and dirty paper in the waste, becomes larger.

  16. Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste

    DEFF Research Database (Denmark)

    Naroznova, Irina; Møller, Jacob; Scheutz, Charlotte

    2016-01-01

    This study is dedicated to characterising the chemical composition and biochemical methane potential (BMP) of individual material fractions in untreated Danish source-separated organic household waste (SSOHW). First, data on SSOHW in different countries, available in the literature, were evaluated...... and then, secondly, laboratory analyses for eight organic material fractions comprising Danish SSOHW were conducted. No data were found in the literature that fully covered the objectives of the present study. Based on laboratory analyses, all fractions were assigned according to their specific properties...... in Denmark (untreated) was calculated, and the BMP contribution of the individual material fractions was then evaluated. Material fractions of the two general waste types, defined as "food waste" and "fibre-rich waste," were found to be anaerobically degradable with considerable BMP. Material degradability...

  17. Potential Roles of Bone Morphogenetic Protein (BMP-9 in Human Liver Diseases

    Directory of Open Access Journals (Sweden)

    Blanca Herrera

    2014-03-01

    Full Text Available Bone morphogenetic proteins (BMP-2 to BMP-15 belong to the Transforming Growth Factor (TGF-β superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF-2 represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize (“T stage” and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases.

  18. Potential Roles of Bone Morphogenetic Protein (BMP)-9 in Human Liver Diseases

    Science.gov (United States)

    Herrera, Blanca; Dooley, Steven; Breitkopf-Heinlein, Katja

    2014-01-01

    Bone morphogenetic proteins (BMP-2 to BMP-15) belong to the Transforming Growth Factor (TGF)-β superfamily and, besides their well-documented roles during embryogenesis and bone formation, some of them have recently been described to be involved in the pathogenesis of different organs, including the liver. The role of BMPs in liver damage responses including hepatocellular carcinoma (HCC) development has only begun to be addressed and strong evidence supports the concept of a pro-tumorigenic role of BMP signaling in HCC cells. BMP-9 (also termed Growth and Differentiation Factor (GDF)-2) represents the most recently discovered member of the BMP family. We have previously demonstrated that in HCC patient samples BMP-9 expression was positively associated with the tumor seize (“T stage”) and that it enhanced cell migration and induced epithelial to mesenchymal transition (EMT) in HCC cells in vitro. In another study we recently found that BMP-9 promotes growth in HCC cells, but not in non-transformed hepatocytes. Published as well as unpublished results obtained with primary hepatocytes support the concept of a dual function of BMP-9 in the liver: while in primary, non-malignant cells BMP-9 stabilizes the epithelial phenotype and inhibits proliferation, in HCC cells it induces cell growth and the acquisition of a migratory phenotype. In this review article we summarize current knowledge about BMPs in liver diseases, with special focus on the role of BMP-9 in HCC development and progression, that may provide new clues for a better understanding of the contribution of BMP-signaling to chronic liver diseases. PMID:24670474

  19. Sequential Treatment with SDF-1 and BMP-2 Potentiates Bone Formation in Calvarial Defects.

    Science.gov (United States)

    Hwang, Hee-Don; Lee, Jung-Tae; Koh, Jeong-Tae; Jung, Hong-Moon; Lee, Heon-Jin; Kwon, Tae-Geon

    2015-07-01

    Stromal cell-derived factor-1 (SDF-1) protein and its receptor, CXCR-4, play an important role in tissue repair and regeneration in various organs, including the bone. SDF-1 is indispensable for bone morphogenetic protein-2 (BMP-2)-induced osteogenic differentiation. However, SDF-1 is not needed after the osteogenic induction has been activated. Since the precise condition for the additive effects of combined DF-1 and BMP-2 in bone healing had not been fully investigated, we aimed to determine the optimal conditions for SDF-1- and BMP-2-mediated bone regeneration. We examined the in vitro osteoblastic differentiation and cell migration after sequential treatments with SDF-1 and BMP-2. Based on the in vitro additive effects of SDF-1 and BMP-2, the critical size defects of mice calvaria were treated with these cytokines in various sequences. Phosphate buffered saline (PBS)-, SDF-1-, or BMP-2-soaked collagen scaffolds were implanted into the calvarial defects (n=36). Periodic percutaneous injections of PBS or the cytokine SDF-1 and BMP-2 into the implanted scaffolds were performed on days 3 and 6, postoperatively. Six experimental groups were used according to the types and sequences of the cytokine treatments. After 28 days, the mice were euthanized and bone formation was evaluated with microcomputed tomography and histology. The molecular mechanism of the additive effect of SDF-1 and BMP-2 was evaluated by analyzing intracellular signal transduction through Smad and Erk phosphorylation. The in vitro experiments revealed that, among all the treatments, the treatment with BMP-2 after SDF-1 showed the strongest osteoblastic differentiation and enhanced cell migration. Similarly, in the animal model, the treatment with SDF-1 followed by BMP-2 treatment showed the highest degree of new bone regeneration than any other groups, including the one with continuous BMP-2 treatment. This new bone formation can be partially explained by the activation of Smad and Erk pathways

  20. Biomethanation potential of macroalgae Ulva spp. and Gracilaria spp. and in co-digestion with waste activated sludge.

    Science.gov (United States)

    Costa, J C; Gonçalves, P R; Nobre, A; Alves, M M

    2012-06-01

    Biochemical methane potential of four species of Ulva and Gracilaria genus was assessed in batch assays at mesophilic temperature. The results indicate a higher specific methane production (per volatile solids) for one of the Ulva sp. compared with other macroalgae and for tests running with 2.5% of total solids (196±9 L CH(4) kg(-1)VS). Considering that macroalgae can potentially be a post treatment of municipal wastewater for nutrients removal, co-digestion of macroalgae with waste activated sludge (WAS) was assessed. The co-digestion of macroalgae (15%) with WAS (85%) is feasible at a rate of methane production 26% higher than WAS alone without decreasing the overall biodegradability of the substrate (42-45% methane yield). The use of anoxic marine sediment as inoculum had no positive effect on the methane production in batch assays. The limiting step of the overall anaerobic digestion process was the hydrolysis.

  1. Experimental and computational investigation of the effect of hydrophobicity on aggregation and osteoinductive potential of BMP-2-derived peptide in a hydrogel matrix.

    Science.gov (United States)

    Moeinzadeh, Seyedsina; Barati, Danial; Sarvestani, Samaneh K; Karimi, Tahereh; Jabbari, Esmaiel

    2015-01-01

    An attractive approach to reduce the undesired side effects of bone morphogenetic proteins (BMPs) in regenerative medicine is to use osteoinductive peptide sequences derived from BMPs. Although the structure and function of BMPs have been studied extensively, there is limited data on structure and activity of BMP-derived peptides immobilized in hydrogels. The objective of this work was to investigate the effect of concentration and hydrophobicity of the BMP-2 peptide, corresponding to residues 73-92 of the knuckle epitope of BMP-2 protein, on peptide aggregation and osteogenic differentiation of human mesenchymal stem cells encapsulated in a polyethylene glycol (PEG) hydrogel. The peptide hydrophobicity was varied by capping PEG chain ends with short lactide segments. The BMP-2 peptide with a positive index of hydrophobicity had a critical micelle concentration (CMC) and formed aggregates in aqueous solution. Based on simulation results, there was a slight increase in the concentration of free peptide in solution with 1000-fold increase in peptide concentration. The dose-osteogenic response curve of the BMP-2 peptide was in the 0.0005-0.005 mM range, and osteoinductive potential of the BMP-2 peptide was significantly less than that of BMP-2 protein even at 1000-fold higher concentrations, which was attributed to peptide aggregation. Further, the peptide or PEG-peptide aggregates had significantly higher interaction energy with the cell membrane compared with the free peptide, which led to a higher nonspecific interaction with the cell membrane and loss of osteoinductive potential. Conjugation of the BMP-2 peptide to PEG increased CMC and osteoinductive potential of the peptide whereas conjugation to lactide-capped PEG reduced CMC and osteoinductive potential of the peptide. Experimental and simulation results revealed that osteoinductive potential of the BMP-2 peptide is correlated with its CMC and the free peptide concentration in aqueous medium and not the

  2. Biogas upgrading to biomethane. Proceedings; Biogasaufbereitung zu Biomethan. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-05

    Within the 6th Hanauer Dialogue 'Biogas upgrading to biomethane' at 21st February, 2008, the following lectures were held: (a) Processing of biogas - an introduction (Michael Beil); (b) The climate protecting targets of the Federal Republic of Germany: Which role will play the upgrading of biogas, and which legal boundary conditions are created by the Federal Government? (Uwe Holzhammer); (c) Future strategy: CH{sub 4} grids (Juergen Schmid); (d) Biogas upgrading and biomethane utilization in Sweden (Anneli Petersson); (e) Biogas upgrading and utilization of bio methane in Switzerland (Arthur Wellinger); (f) Biogas upgrading by means of pressure swing adsorption (Alfons Schulte-Schulze Berndt); (g) Biogas upgrading by means of pressurized water washing (Ulf Richter); (h) Biogas upgrading for feeding in public grids. The case of biogas plant Bruck a.d. Leitha (Michael Harasek); (i) Biogas upgrading by means of chemical absorption according to the LP Cooab process (Jerome van Beek); (j) Practical experiences in unpressurized amine washing MT bio methane (Karsten Wuensche); (k) Biogas upgrading by means of organic physical washing with HAASE biogas amplifiers (Roland Kahn); (l) Upgrading using cryogenic technology; the GPP registered -system (Jeroen de Pater); (m) Micro Gas Distribution Systems: Alternatives to biogas upgrading and grid injection (Michael Beil, Bernd Krautkremer); (n) Feeding of exchange gas. The case of project Straelen and Kerpen (Frank Schaefer); (o) Feeding of biogas from the view of grid operators (Norbert Nordmeyer); BIOGASMAX: Biogas as Vehicle Fuel - Market Expansion to 2020 Air Quality (Michael Beil, Uwe Hoffstede); (p) Study: Feeding of biogas into the natural gas distribution system (Fachagentur Nachwachsende Rohstoffe).

  3. Gene delivery nanocarriers of bioactive glass with unique potential to load BMP2 plasmid DNA and to internalize into mesenchymal stem cells for osteogenesis and bone regeneration

    Science.gov (United States)

    Kim, Tae-Hyun; Singh, Rajendra K.; Kang, Min Sil; Kim, Joong-Hyun; Kim, Hae-Won

    2016-04-01

    The recent development of bioactive glasses with nanoscale morphologies has spurred their specific applications in bone regeneration, for example as drug and gene delivery carriers. Bone engineering with stem cells genetically modified with this unique class of nanocarriers thus holds great promise in this avenue. Here we report the potential of the bioactive glass nanoparticle (BGN) system for the gene delivery of mesenchymal stem cells (MSCs) targeting bone. The composition of 15% Ca-added silica, proven to be bone-bioactive, was formulated into surface aminated mesoporous nanospheres with enlarged pore sizes, to effectively load and deliver bone morphogenetic protein-2 (BMP2) plasmid DNA. The enlarged mesopores were highly effective in loading BMP2-pDNA with an efficiency as high as 3.5 wt% (pDNA w.r.t. BGN), a level more than twice than for small-sized mesopores. The BGN nanocarriers released the genetic molecules in a highly sustained manner (for as long as 2 weeks). The BMP2-pDNA/BGN complexes were effectively internalized to rat MSCs with a cell uptake level of ~73%, and the majority of cells were transfected to express the BMP2 protein. Subsequent osteogenesis of the transfected MSCs was demonstrated by the expression of bone-related genes, including bone sialoprotein, osteopontin, and osteocalcin. The MSCs transfected with BMP2-pDNA/BGN were locally delivered inside a collagen gel to the target calvarium defects. The results showed significantly improved bone regeneration, as evidenced by the micro-computed tomographic, histomorphometric and immunohistochemical analyses. This study supports the excellent capacity of the BGN system as a pDNA-delivery nanocarrier in MSCs, and the engineered system, BMP2-pDNA/BGN with MSCs, may be considered a new promising candidate to advance the therapeutic potential of stem cells through genetic modification, targeting bone defects and diseases.The recent development of bioactive glasses with nanoscale morphologies has

  4. Improving the osteogenic potential of BMP-2 with hyaluronic acid hydrogel modified with integrin-specific fibronectin fragment

    NARCIS (Netherlands)

    Kisiel, M.; Martino, M.M.; Ventura, M.; Hubbell, J.A.; Hilborn, J.; Ossipov, D.A.

    2013-01-01

    While human bone morphogenetic protein-2 (rhBMP-2) is a promising growth factor for bone regeneration, its clinical efficacy has recently shown to be below expectation. In order to improve the clinical translation of rhBMP-2, there exists strong motivation to engineer better delivery systems. Hyalur

  5. Power-to-Gas coupling to biomethane production. A feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Saric, M.; Dijkstra, J.W.; Walspurger, S. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-09-15

    This preliminary feasibility study on coupling 'Power-to-gas' conversion chain to the bio-methane from producer gas shows a promising potential for efficient and cost effective operation. The production capacity of the biomethane plant can be doubled, while cold gas efficiency remains the same as compared to a standalone biomethane plant. The specifications of the natural gas grid can be reached at the condition that the allowed H2 content is not too strict. The study showed that such coupling implies that both methanation and SNG upgrade sections need to be designed to withstand variable operation conditions and part-load. The methanation section would have to deal with a turndown factor of 2 when switching from E-demand to E-excess operating mode while the CO2 removal section must work efficiently in part-load and respond well in shutdown/start-up operations.

  6. Development strategy of efficient bio-methane system by focused utilization of distributed biomass

    Institute of Scientific and Technical Information of China (English)

    Ouyang Pingkai

    2014-01-01

    Bio-methane,as a promising renewable green energy,the component and thermal value of which are very close to that of natural gas,indicates an enormous resource potential and could be employed as the al-ternative of fossil energy through the development of agro-industrial integration and efficient bio-methane sys-tem. Establishment of high efficient agro-industrial integrated bio-methane system is an important component of the renewable energy system and also a significant way of emission reduction.

  7. Grass Biomethane for Agriculture and Energy

    DEFF Research Database (Denmark)

    Korres, N.E.; Thamsiriroj, T.; Smith, B.

    2011-01-01

    Many factors enforce the intensification of grassland utilization which is associated with significant environmental impacts subjected to various legislative constraints. Nevertheless, the need for diversification in agricultural production and the sustainability in energy within the European Union...... by 2020 can be met since savings up to 89.4% under various scenarios can be achieved. Grass biomethane production compared to other liquid biofuels either when these are produced by indigenous of imported feedstocks is very promising. Grass biomethane, given the mature and well known technology...

  8. Manipulation of Fgf and Bmp signaling in teleost fishes suggests potential pathways for the evolutionary origin of multicuspid teeth.

    Science.gov (United States)

    Jackman, William R; Davies, Shelby H; Lyons, David B; Stauder, Caitlin K; Denton-Schneider, Benjamin R; Jowdry, Andrea; Aigler, Sharon R; Vogel, Scott A; Stock, David W

    2013-01-01

    Teeth with two or more cusps have arisen independently from an ancestral unicuspid condition in a variety of vertebrate lineages, including sharks, teleost fishes, amphibians, lizards, and mammals. One potential explanation for the repeated origins of multicuspid teeth is the existence of multiple adaptive pathways leading to them, as suggested by their different uses in these lineages. Another is that the addition of cusps required only minor changes in genetic pathways regulating tooth development. Here we provide support for the latter hypothesis by demonstrating that manipulation of the levels of Fibroblast growth factor (Fgf) or Bone morphogenetic protein (Bmp) signaling produces bicuspid teeth in the zebrafish (Danio rerio), a species lacking multicuspid teeth in its ancestry. The generality of these results for teleosts is suggested by the conversion of unicuspid pharyngeal teeth into bicuspid teeth by similar manipulations of the Mexican Tetra (Astyanax mexicanus). That these manipulations also produced supernumerary teeth in both species supports previous suggestions of similarities in the molecular control of tooth and cusp number. We conclude that despite their apparent complexity, the evolutionary origin of multicuspid teeth is positively constrained, likely requiring only slight modifications of a pre-existing mechanism for patterning the number and spacing of individual teeth.

  9. Alkaline Pretreatment of Sugarcane Bagasse and Filter Mud Codigested to Improve Biomethane Production

    Science.gov (United States)

    Mehryar, Esmaeil; Bi, Jinhua

    2016-01-01

    To enhance the codigestion of degradation and improve biomethane production potential, sugarcane bagasse and filter mud were pretreated by sodium hydroxide NaOH 1 N at 100°C for 15, 30, and 45 minutes, respectively. Biomethane generation from 1-liter batch reactor was studied at mesophilic temperature (37 ± 1)°C, solid concentrations of 6%, and five levels of mixing proportion with and without pretreatment. The results demonstrate that codigestion of filter mud with bagasse produces more biomethane than fermentation of filter mud as single substrate; even codigested substrate composition presented a better balance of nutrients (C/N ratio of 24.70) when codigestion ratio between filter mud and bagasse was 25 : 75 in comparison to filter mud as single substrate (C/N ratio 9.68). All the pretreatments tested led to solubilization of the organic matter, with a maximum lignin reduction of 86.27% and cumulative yield of biomethane (195.8 mL·gVS−1, digestion of pretreated bagasse as single substrate) obtained after 45 minutes of cooking by NaOH 1 N at 100°C. Under this pretreatment condition, significant increase in cumulative methane yield was observed (126.2 mL·gVS−1) at codigestion ratio of 25 : 75 between filter mud and bagasse by increase of 81.20% from untreated composition.

  10. Durable titania films for solar treatment of biomethanated spent wash

    Science.gov (United States)

    Akbarzadeh, Rokhsareh; S. Ghole, Vikram; Javadpour, Sirus

    2016-10-01

    The use of TiO2 films for treatment of biomethanated spent wash is reported. The films of TiO2 were formed and photocatalytic performance of the prepared films in degradation of methylene blue and biomethanated spent wash were studied. Photocatalytic use of these films was found to be effective for degradation of biomethanated spent wash. The photocatalyst was used up for 20 cycles without significant reduction in activities showing long life of the catalyst.

  11. Biochemical methane potential (BMP) of agro-food wastes from the Cider Region (Spain).

    Science.gov (United States)

    Nieto, P P; Hidalgo, D; Irusta, R; Kraut, D

    2012-01-01

    An inventory of agro-food industry organic waste streams with a high potential for biogas transformation was studied in a logistically viable area (Cider Region, Asturias, Spain). Three industries were selected as the most viable ones: livestock, dairy and beverage. The potential for methane production from six wastes (beverage waste, BW; milled apple waste, MA; milk waste, MK; yogurt waste, YG; fats and oils from dairy wastewater treatment, F&O and cattle manure, CM) at five different substrate:inoculum ratios (0.25, 0.50, 0.75, 1.00 and 1.50) was evaluated in laboratory batch assays. Obtained methane yields ranged from 202-549 mL STP CH(4)·g VS waste(-1), and the methane content in biogas ranged from 58-76%. The ultimate practical biochemical methane potentials were slightly affected by the substrate:inoculum ratio. The estimation of the regional fluxes of waste and methane potentials suggests anaerobic digestion as a sustainable solution for the valorization of the organic wastes generated in this Region.

  12. Influence of headspace pressure on methane production in Biochemical Methane Potential (BMP) tests.

    Science.gov (United States)

    Valero, David; Montes, Jesús A; Rico, José Luis; Rico, Carlos

    2016-02-01

    The biochemical methane potential test is the most commonly applied method to determine methane production from organic wastes. One of the parameters measured is the volume of biogas produced which can be determined manometrically by keeping the volume constant and measuring increases in pressure. In the present study, the effect of pressure accumulation in the headspace of the reactors has been studied. Triplicate batch trials employing cocoa shell, waste coffee grounds and dairy manure as substrates have been performed under two headspace pressure conditions. The results obtained in the study showed that headspace overpressures higher than 600mbar affected methane production for waste coffee grounds. On the contrary, headspace overpressures within a range of 600-1000mbar did not affect methane production for cocoa shell and dairy manure. With the analyses performed in the present work it has not been possible to determine the reasons for the lower methane yield value obtained for the waste coffee grounds under high headspace pressures.

  13. Model based sustainable production of biomethane

    OpenAIRE

    Biernacki, Piotr

    2014-01-01

    The main intention of this dissertation was to evaluate sustainable production of biomethane with use of mathematical modelling. To achieve this goal, widely acknowledged models like Anaerobic Digestion Model No.1 (ADM1), describing anaerobic digestion, and electrolyte Non-Random Two Liquid Model (eNRTL), for gas purification, were utilized. The experimental results, batch anaerobic digestion of different substrates and carbon dioxide solubility in 2-(Ethylamino)ethanol, were used to determin...

  14. Natural gas pipelines for biomethane distribution

    Energy Technology Data Exchange (ETDEWEB)

    Wojcik, Monika [PGNiG SA, Warszawa (Poland). Centrala Spolki

    2011-07-01

    The study reveals natural gas pipelines of high and medium pressure in Poland and Baltic countries, such as: Estonia, Latvia, Lithuania, Norway, Sweden, Germany, Finland and the Kaliningrad Oblast. The basic aim of the study was assessing the possibility of injecting biogas produced in biogas plants to the gas network or its use as CNG fuel delivered via pipeline directly to the station. Characterized qualitative factors for the transmission of the biogas (purified to the natural gas) in existing gas networks and proposes the location of the biogas plants in relation to the deployment of these networks. The study shows existing solutions of the distribution of biomethane in selected countries bordering the Baltic Sea, and analyzes the cross-border transmission capacity of the gas. The article also contains a characterization and assessment of legal and economic conditions affecting the use of biomethane processes as fuel for motor vehicles. It also shows the main priorities in this area and environmental and social benefits arising from the production and use of biomethane as a motor fuel. (orig.)

  15. BMP2、VEGF165双基因修饰的小鼠BMSCs复合人工骨的体内诱导成骨%In vivo osteogenic potential of calcium phosphate cement seeded with BMP2-and VEGF165-transduced mice BMSCs

    Institute of Scientific and Technical Information of China (English)

    孙立; 姜小峰; 田晓滨; 田家亮; 杨先腾; 胡如印; 张一; 韩伟; 陈涛

    2014-01-01

    目的 观察BMP2、VEGF165双基因转染的小鼠BMSCs复合自固化磷酸钙人工骨后的异位诱导成骨能力. 方法 脂质体介导下将含BMP2、VEGF165双基因的真核表达质粒pIRES转染小鼠BMSCs,转染空白质粒作阴性对照.用免疫组织化学和Western blot方法观察BMP2和VEGF165双基因在小鼠BMSCs内的表达;以自固化磷酸钙人工骨为支架,建立真核表达质粒pIRES-BMP2-VEGF165双基因修饰的组织工程骨植入小鼠右侧股骨肌袋内;将复合转染空白质粒小鼠BMSCs的自固化磷酸钙人工骨植入小鼠左侧股骨肌袋内.于术后第3天、第2,4,6周进行X线摄影对比后处死小鼠,取肌袋内组织行病理切片染色,观察成骨情况. 结果 小鼠BMSCs在转染BMP2、VEGF165基因后相关蛋白显著表达,由真核表达质粒pIRES-BMP2-VEGF165双基因修饰的组织工程骨在X线和病理学检查中相对于复合转染空白质粒小鼠BMSCs的组织工程骨具有更明显的异位成骨能力. 结论 由BMP2、VEGF165双基因质粒构建的组织工程骨有明显的异位成骨能力.%Objective To evaluate the ectopic osteogenic potential of calcium phosphate cement seeded with BMP2-and VEGF165-transduced mice BMSCs.Methods BMSCs transfected with recombinant plasmid pIRES-BMP2-VEGF165 using a liposome method were implanted into the muscle pouches of right thigh of the mice.BMSCs transfected only with pIRES served as a negative control and implanted into the muscle pouches of right thigh of the mice.Expressions of BMP2 and VEGF165 genes were assayed by immunohistochemical analysis and Western blot.Ectopic bone formation was evaluated by radiography and histology at 3 days and 2,4,and 6 weeks after implantation.Results Expressions of BMP2 and VEGF165 proteins were highly improved in BMP2-and VEGF165-transduced BMSCs.Calcium phosphate cement with BMSCs transfected with pIRES-BMP2-VEGF165 provided better ectopic osteogenesis compared to control group.Conclusion Tissue

  16. Biomethanation potential of biological and other wastes

    NARCIS (Netherlands)

    Costa, J.C.; Sousa, D.Z.; Pereira, M.A.; Stams, A.J.M.; Alves, M.M.

    2013-01-01

    Anaerobic technology has been traditionally applied for the treatment of carbon rich wastewater and organic residues. Anaerobic processes can be fully integrated in the biobased economy concept for resource recovery. After a brief introduction about applications of anaerobic processes to industrial

  17. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    Science.gov (United States)

    Moghaddam, Elham Ahmadi; Ahlgren, Serina; Nordberg, Åke

    2016-01-01

    Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes. PMID:28066762

  18. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective

    Directory of Open Access Journals (Sweden)

    Elham Ahmadi Moghaddam

    2016-12-01

    Full Text Available Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME, and ammonia, as fuel or platform chemicals, and combined heat and power (CHP. Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

  19. Assessment of Novel Routes of Biomethane Utilization in a Life Cycle Perspective.

    Science.gov (United States)

    Moghaddam, Elham Ahmadi; Ahlgren, Serina; Nordberg, Åke

    2016-01-01

    Biomethane, as a replacement for natural gas, reduces the use of fossil-based sources and supports the intended change from fossil to bio-based industry. The study assessed different biomethane utilization routes for production of methanol, dimethyl ether (DME), and ammonia, as fuel or platform chemicals and combined heat and power (CHP). Energy efficiency and environmental impacts of the different pathways was studied in a life cycle perspective covering the technical system from biomass production to the end product. Among the routes studied, CHP had the highest energy balance and least environmental impact. DME and methanol performed competently in energy balance and environmental impacts in comparison with the ammonia route. DME had the highest total energy output, as fuel, heat, and steam, among the different routes studied. Substituting the bio-based routes for fossil-based alternatives would give a considerable reduction in environmental impacts such as global warming potential and acidification potential for all routes studied, especially CHP, DME, and methanol. Eutrophication potential was mainly a result of biomass and biomethane production, with marginal differences between the different routes.

  20. Platelet-released supernatant induces osteoblastic differentiation of human mesenchymal stem cells: potential role of BMP-2

    Directory of Open Access Journals (Sweden)

    M Alini

    2010-12-01

    Full Text Available Platelet-rich preparations have recently gained popularity in maxillofacial and dental surgery, but their beneficial effect is still under debate. Furthermore, very little is known about the effect of platelet preparations at the cellular level, and the underlying mechanisms. In this study, we tested the effect of platelet-released supernatant (PRS on human mesenchymal stem cell (MSC differentiation towards an osteoblastic phenotype in vitro. Cultures of MSC were supplemented with PRS and typical osteoblastic markers were assessed at up to 28 days post-confluence. PRS showed an osteoinductive effect on MSC, as shown by an increased expression of typical osteoblastic marker genes such as collagen Ialpha1, bone sialoprotein II, BMP-2 and MMP-13, as well as by increased 45Ca2+ incorporation. Our results suggest that the effect of PRS on human MSC could be at least partially mediated by BMP-2.Activated autologous PRS could therefore provide an alternative to agents like recombinant bone growth factors by increasing osteoblastic differentiation of bone precursor cells at bone repair sites, although further studies are needed to fully support our observations.

  1. 抑制Runx2的表达增强BMP2诱导的干细胞成软骨分化%Suppression of Runx2 Potentiates BMP2-induced Chondrogenic Differentiation

    Institute of Scientific and Technical Information of China (English)

    孙泽绪; 赵辰; 廖军义; 王琦; 徐伟; 陈诚; 黄伟

    2016-01-01

    目的:利用腺病毒介导RNA干扰抑制成骨分化关键转录调控因子Runx2(Runt-related transcription factor 2)的表达,研究其对骨形态发生蛋白2(bone morphogenetic protein 2,BMP2)诱导间充质干细胞(mesenchymal stem cells,MSCs)成软骨分化的影响,并初步探讨相关机制.方法:利用腺病毒Ad-GFP、Ad-BMP2、Ad-SiRunx2感染C3H10T1/2细胞;共分4组:GFP组、BMP2组、BMP2+ SiRunx2组和SiRunx2组.Alcian blue染色检测各组软骨细胞基质糖胺聚糖分泌;RT-PCR检测Runx2、早期成软骨标志物(Col2a1)、蛋白聚糖(Aggrecan)及晚期成软骨标志物(Col10a1) mRNA表达水平;Western blot检测目的蛋白BMP2、Ⅱ型胶原(Col2a1)及X型胶原(Col10a1)的蛋白表达.结果:在BMP2诱导C3H10T1/2细胞成软骨分化过程中,下调Runx2的表达可以增强Col2a1、Aggrecan及软骨细胞外基质糖胺聚糖的合成,抑制Col10a1的合成.结论:下调Runx2表达可以增强BMP2诱导间充质干细胞成软骨分化能力,并抑制软骨细胞的成熟和肥大.

  2. Improving the osteogenic efficacy of BMP2 with mechano growth factor by regulating the signaling events in BMP pathway.

    Science.gov (United States)

    Deng, Moyuan; Liu, Peng; Xiao, Hualiang; Zhang, Yuanyuan; Wang, Yuanliang; Zhao, Jianhua; Xu, Jianzhong

    2015-09-01

    Local application of bone morphogenetic protein 2 (BMP2) is known to promote large bone defect healing and BMP2-initiated bone regeneration could be enhanced by an additional mechanical stimulation. The C-terminal 24-a.a. peptide of mechano growth factor (MGF24E), a mechanical-sensitive molecule, has been demonstrated to promote bone healing. Here, we propose a hypothesis that MGF24E could also improve the osteogenic efficacy of BMP2 by regulating the signaling events in the BMP pathway. To confirm the hypothesis, the potentials of MGF24E, BMP2 and BMP2/MGF24E combination treatments on the phosphorylation of Smad 1/5/8, the downstream osteogenesis-related gene expression and osteoblasts mineralization, are investigated with or without the blocking of Smad 5 siRNA. Furthermore, 15-mm rabbit radial bone defects were healed with the cytokine treatments and then evaluated by radiographic examination, histological assessment and immunohistochemical analysis. MGF24E could enhance the BMP2-induced Smad signaling pathway by upregulating the p-Smad protein expression and the downstream osteogenic gene expression. An amount of 5 nM BMP2 in a sub-25 nM concentration of MGF24E medium achieved a higher expression for ALP mRNA and a greater calcium mineral content compared with BMP2 alone. Nevertheless, the inhibition of the MGF24E-regulated BMP pathway could block osteogenesis induced by the dual treatment. In vivo, MGF24E treatment upregulated the endogenous BMP2 expression and the addition of MGF24E into the BMP2 treatment remarkably enhanced the bone mineral density (BMD), the radiographic scores and the histological restoration of the regenerated tissue against BMP2 treatment, suggesting a new strategy for BMP2 in bone defect healing.

  3. Environmental implications of biomethanation in conventional biogas plants

    Energy Technology Data Exchange (ETDEWEB)

    Khoiyangbam, R.S. [D.M. College of Science, Imphal-795 001, Manipur (India). Dept. of Environmental Science

    2011-07-01

    In India biomethanation in conventional biogas plants have been proposed as one of the appropriate alternative sources of energy which can counter the escalating demand of fossil fuels. The number of installation of biogas plants is increasing rapidly and the trend is expected to continue at least for the foreseeable future. Biogas plants like many other energy generating technologies are not absolutely free from environmental problems. Environmental impacts related to biomethanation may range from localized health effects due to air, water, soil and pathogenic contamination to global warming at the global scale. The probable health and environmental impacts of energy production in conventional biogas plants have not been fully understood or well documented. A comprehensive assessment seems essential to make this energy source more viable and sustainable. The current article discusses the various positive and negative environmental implications associated with biomethanation and also tries to highlight some mitigation options.

  4. Unveiling the Bmp13 Enigma: Redundant Morphogen or Crucial Regulator?

    Directory of Open Access Journals (Sweden)

    Lisa A Williams, Divya Bhargav, Ashish D Diwan

    2008-01-01

    Full Text Available Bone morphogenetic proteins are a diverse group of morphogens with influences not only on bone tissue, as the nomenclature suggests, but on multiple tissues in the body and often at crucial and influential periods in development. The purpose of this review is to identify and discuss current knowledge of one vertebrate BMP, Bone Morphogenetic Protein 13 (BMP13, from a variety of research fields, in order to clarify BMP13's functional contribution to developing and maintaining healthy tissues, and to identify potential future research directions for this intriguing morphogen. BMP13 is highly evolutionarily conserved (active domain >95% across diverse species from Zebrafish to humans, suggesting a crucial function. In addition, mutations in BMP13 have recently been associated with Klippel-Feil Syndrome, causative of numerous skeletal and developmental defects including spinal disc fusion. The specific nature of BMP13's crucial function is, however, not yet known. The literature for BMP13 is focused largely on its activity in the healing of tendon-like tissues, or in comparisons with other BMP family molecules for whom a clear function in embryo development or osteogenic differentiation has been identified. There is a paucity of detailed information regarding BMP13 protein activity, structure or protein processing. Whilst some activity in the stimulation of osteogenic or cartilaginous gene expression has been reported, and BMP13 expression is found in post natal cartilage and tendon tissues, there appears to be a redundancy of function in the BMP family, with several members capable of stimulating similar tissue responses. This review aims to summarise the known or potential role(s for BMP13 in a variety of biological systems.

  5. Emission and operating performance of a biomethane tractor with dual fuel engine; Emissions- und Betriebsverhalten eines Biomethan-Traktors mit Zuendstrahlmotor

    Energy Technology Data Exchange (ETDEWEB)

    Mautner, Sebastian [Technologie- und Foerderzentrum (TFZ), Straubing (Germany); Emberger, Peter; Thuneke, Klaus; Remmele, Edgar

    2016-08-01

    The use of biomethane as fuel for agricultural machinery with dual fuel technology is contributing to climate protection and ensures safe fuel supply. So far, hardly any documented operational experiences are known. The aim of the project, funded by the Bavarian Ministry of Economic Affairs and Media, Energy and Technology, was to investigate practicability for daily use and the emission behaviour of a Valtra N101 prototype tractor (exhaust stage IIIA). The retrofitted dual-fuel technology of the former conventional diesel tractor simultaneously uses biomethane or natural gas and diesel as ignition fuel. During the field test over 590 working hours, the tractor showed overall high reliability. On average the operating range in dual-fuel mode with one complete filling of the gas tanks was about 11.5 hours. On the tractor test bench a significant improvement of the exhaust emissions could be observed, since the gas ECU had been optimized and changed by the manufacturer. For dual-fuel operation, nitrogen oxides (NO{sub x}) are lower, whereas carbon monoxide (CO), hydrocarbons (HC) and particulate matter emissions (PM) are higher compared to solely diesel operation. In particular, HC emissions exceed the proposed limiting value, submitted by the European Commission. This is due to incomplete gas combustion and insufficient conversion by the exhaust after-treatment-system (methane slip). A big potential for optimization is expected by adjusting the operating point-specific gasdiesel ratio and improving the exhaust gas aftertreatment system.

  6. Biomethane production in an AnSBBR treating wastewater from biohydrogen process.

    Science.gov (United States)

    Lullio, T G; Souza, L P; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2014-11-01

    An anaerobic sequencing batch reactor containing immobilized biomass (AnSBBR) was used to produce biomethane by treating the effluent from another AnSBBR used to produce biohydrogen from glucose- (AR-EPHG) and sucrose-based (AR-EPHS) wastewater. In addition, biomethane was also produced from sucrose-based synthetic wastewater (AR-S) in a single AnSBBR to compare the performance of biomethane production in two steps (acidogenic and methanogenic) in relation to a one-step operation. The system was operated at 30 °C and at a fixed stirring rate of 300 rpm. For AR-EPHS treatment, concentrations were 1,000, 2,000, 3,000, and 4,000 mg chemical oxygen demand (COD) L(-1) and cycle lengths were 6 and 8 h. The applied volumetric organic loads were 2.15, 4.74, 5.44, and 8.22 g COD L(-1) day(-1). For AR-EPHG treatment, concentration of 4,000 mg COD L(-1) and 4-h cycle length (7.21 g COD L(-1) day(-1)) were used. For AR-S treatment, concentration was 4,000 mg COD L(-1) day(-1) and cycle lengths were 8 (7.04 g COD L(-1) day(-1)) and 12 h (4.76 g COD L(-1) day(-1)). The condition of 8.22 g COD L(-1) day(-1) (AR-EPHS) showed the best performance with respect to the following parameters: applied volumetric organic load of 7.56 g COD L(-1) day(-1), yield between produced methane and removed organic material of 0.016 mol CH4 g COD(-1), CH4 content in the produced biogas of 85 %, and molar methane productivity of 127.9 mol CH4 m(-3) day(-1). In addition, a kinetic study of the process confirmed the trend that, depending on the biodegradability characteristics of the wastewaters used, the two-step treatment (acidogenic for biohydrogen production and methanogenic for biomethane production) has potential advantages over the single-step process.

  7. The Role of natural gas and biomethane in the fuel mix of the future in Germany. Required action and potential solutions to accelerate adoption in transport applications; Erdgas und Biomethan im kuenftigen Kraftstoffmix. Handlungsbedarf und Loesungsansaetze fuer eine beschleunigte Etablierung im Verkehr

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-09-15

    The contribution under consideration reports on the need of action and on solution attempts for an accelerated establishment of natural gas and bio methane in the future fuel mix. The authors come to the following conclusions: The energy situation and climatic situation require a stronger diversification of fuels and drives. The targets for the amount of natural gas and bio methane as a fuel are not reached yet. The characteristics of natural gas speak for an accelerated establishment in the traffic sector. The admixture of bio methane can increase the climatic, environmental and resources advantages. In order to penetrate the market all participants involved must commit themselves to a concrete 'roadmap'. The contribution shows which measures must be converted by the participants involved in order to be able to utilize fully the potentials of the employment of natural gas and bio methane in the traffic sector.

  8. Wood to Bio-Methane demonstration project in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meijden, C.M.; Van der Drift, A.; Rietveld, G. [ECN Biomass and Energy Efficiency, Petten (Netherlands); Koenemann, J.W. [Dahlman Renewable Technology, P.O. Box 438, 3140 AK Maassluis (Netherlands); Sierhuis, W. [HVCgroup, P.O. Box 9199, 1800 GD, Alkmaar (Netherlands)

    2013-06-15

    The Energy research Centre of the Netherlands (ECN) has developed a biomass gasification technology, called the MILENA technology. The Milena gasification technology has a high cold gas efficiency and high methane yield, making it very suitable for gas engine and turbine applications as well as upgrading of the gas into Bio-Methane. An overall efficiency from biomass to power of over 30% is possible, whereas 70% efficiency is achievable from biomass to gas grid quality methane. HVC Group (situated in Alkmaar, North Holland) is a modern public service waste company. HVC converts waste streams which cannot be recycled into usable forms of energy. HVC has a 75 MWth waste wood boiler in operation which produces heat and electricity, and an anaerobic digester which converts domestic fruit, vegetable and garden waste into Bio-Methane. HVC expects an important role for Bio-Methane in the future and HVC has decided to join ECN with the development, demonstration and implementation of the MILENA Bio-Methane technology. Linked to the Bio-Methane demonstration project is the Netherlands Expertise Centre for Biomass Gasification. The MILENA demonstration project and the Gasification Expert Centre are supported by the following companies and organizations: HVC, TAQA, Gasunie, Dahlman, province of North Holland, the Alkmaar municipality and ECN. In 2010 and 2012 extensive lab-scale and pilot scale tests have been executed by ECN and HVC to proof that the gasification and gas cleaning technology is ready for commercial application. The final step in this test program was a duration test in the 800 kWth MILENA pilot plant coupled to the OLGA tar removal unit. The goal was to show high availability. The result of the test was an availability of the gasifier of 96% and an overall availability (including gas cooling and gas cleaning) of 85%. The results of the duration tests convinced HVC and the other partners that the technology is ready for scale-up. The results produced in the

  9. Wet air oxidation as a pretreatment option for selective biodegradability enhancement and biogas generation potential from complex effluent.

    Science.gov (United States)

    Padoley, K V; Tembhekar, P D; Saratchandra, T; Pandit, A B; Pandey, R A; Mudliar, S N

    2012-09-01

    This study looks at the possibility of wet air oxidation (WAO) based pretreatment of complex effluent to selectively enhance the biodegradability (without substantial COD destruction) and facilitate biogas generation potential. A lab-scale wet air oxidation reactor with biomethanated distillery wastewater (B-DWW) as a model complex effluent (COD 40,000 mg L(-1)) was used to demonstrate the proof-of-concept. The studies were conducted using a designed set of experiments and reaction temperature (150-200°C), air pressure (6-12 bar) and reaction time (15-120 min) were the main process variables of concern for WAO process optimization. WAO pretreatment of B-DWW enhanced the biodegradability of the complex wastewater by the virtue of enhancing its biodegradability index (BI) from 0.2 to 0.88, which indicate favorable Biochemical Methane Potential (BMP) for biogas generation. The kinetics of COD destruction and BI enhancement has also been reported.

  10. Two-phase anaerobic digestion of mixed waste streams to separate generation of bio-hydrogen and bio-methane

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Z.; Horam, N.J. [Leeds Univ. (United Kingdom). School of Civil Engineering

    2010-07-01

    The purpose of this study was to investigate the net energy potential of single stage mesophilic reactor and two phase mesophilic reactor (hydrogeniser followed by methaniser) using the mix of process industrial food waste (IFW) and sewage sludge (SS). Two-phase reactor efficiency was analysed based on individual optimum influent/environmental (C:N and pH) and reactor/engineering (HRT and OLR) conditions achieved using the batch and continuous reactor study for the hydrogen and methane. Optimum C:N 20 and pH 5.5{+-}0.5 was observed using the Bio-H{sub 2} potential (BHP) and C:N 15 and pH 6.5{+-}0.3 for the biochemical methane potential (BMP) test. The maximum hydrogen content of 47% (v/v) was achieved using OLR 6 g VS/L/d and HRT of 5 days. Increase in hydrogen yield was noticed with consistent decrease in OLR. The volatile solids (VS) removal and hydrogen yield was observed in range 41.3 to 47% and 112.3 to 146.7 mL/ gVS{sub removed}. The specific hydrogen production rate improved at low OLR, 0.2 to 0.4 L/(L.d) using OLR 7.1 and 6 g VS/L/d respectively was well corroborated comparable to previous reported results at OLR 6 gVS/L/d using the enriched carbohydrate waste stream in particular to food wastes. A significant increase in VFA concentrations were noticed shifting OLR higher from 6 g VS/L/d thereby unbalancing the reactor pH and the biogas yield respectively. In similar, maximum methane content of 70% (v/v) was achieved using OLR of 3.3 gVS/L/d and HRT of 10 days. Slight decrease in methane content was noticed thereby increasing HRT to 12 and 15 days respectively. The volatile solids (VS) removal and specific methane production rate was observed in range 57.6 to 68.7 and 0.22 to 1.19 L/(L.d). The specific methane production potential improved thereby reducing the HRT and optimum yield was recorded as 476.6 mL/gVS{sub removed} using OLR 3.3 gVS/L/d. The energy potential of optimum condition in single stage hydorgeniser is 2.27 MW/tonne VS{sub fed}. Using the

  11. Analysis of BMP4 and BMP7 signaling in breast cancer cells unveils time-dependent transcription patterns and highlights a common synexpression group of genes

    Directory of Open Access Journals (Sweden)

    Rodriguez-Martinez Alejandra

    2011-11-01

    Full Text Available Abstract Background Bone morphogenetic proteins (BMPs are members of the TGF-beta superfamily of growth factors. They are known for their roles in regulation of osteogenesis and developmental processes and, in recent years, evidence has accumulated of their crucial functions in tumor biology. BMP4 and BMP7, in particular, have been implicated in breast cancer. However, little is known about BMP target genes in the context of tumor. We explored the effects of BMP4 and BMP7 treatment on global gene transcription in seven breast cancer cell lines during a 6-point time series, using a whole-genome oligo microarray. Data analysis included hierarchical clustering of differentially expressed genes, gene ontology enrichment analyses and model based clustering of temporal data. Results Both ligands had a strong effect on gene expression, although the response to BMP4 treatment was more pronounced. The cellular functions most strongly affected by BMP signaling were regulation of transcription and development. The observed transcriptional response, as well as its functional outcome, followed a temporal sequence, with regulation of gene expression and signal transduction leading to changes in metabolism and cell proliferation. Hierarchical clustering revealed distinct differences in the response of individual cell lines to BMPs, but also highlighted a synexpression group of genes for both ligands. Interestingly, the majority of the genes within these synexpression groups were shared by the two ligands, probably representing the core molecular responses common to BMP4 and BMP7 signaling pathways. Conclusions All in all, we show that BMP signaling has a remarkable effect on gene transcription in breast cancer cells and that the functions affected follow a logical temporal pattern. Our results also uncover components of the common cellular transcriptional response to BMP4 and BMP7. Most importantly, this study provides a list of potential novel BMP target

  12. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10

    Science.gov (United States)

    Ruiz, Santiago; Zhao, Haitian; Chandakkar, Pallavi; Chatterjee, Prodyot K.; Papoin, Julien; Blanc, Lionel; Metz, Christine N.; Campagne, Fabien; Marambaud, Philippe

    2016-01-01

    Hereditary hemorrhagic telangiectasia (HHT) is a potentially life-threatening genetic vascular disorder caused by loss-of-function mutations in the genes encoding activin receptor-like kinase 1 (ALK1), endoglin, Smad4, and bone morphogenetic protein 9 (BMP9). Injections of mouse neonates with BMP9/10 blocking antibodies lead to HHT-like vascular defects in the postnatal retinal angiogenesis model. Mothers and their newborns share the same immunity through the transfer of maternal antibodies during lactation. Here, we investigated whether the transmammary delivery route could improve the ease and consistency of administering anti-BMP9/10 antibodies in the postnatal retinal angiogenesis model. We found that anti-BMP9/10 antibodies, when intraperitoneally injected into lactating dams, are efficiently transferred into the blood circulation of lactationally-exposed neonatal pups. Strikingly, pups receiving anti-BMP9/10 antibodies via lactation displayed consistent and robust vascular pathology in the retina, which included hypervascularization and defects in arteriovenous specification, as well as the presence of multiple and massive arteriovenous malformations. Furthermore, RNA-Seq analyses of neonatal retinas identified an increase in the key pro-angiogenic factor, angiopoietin-2, as the most significant change in gene expression triggered by the transmammary delivery of anti-BMP9/10 antibodies. Transmammary-delivered BMP9/10 immunoblocking in the mouse neonatal retina is therefore a practical, noninvasive, reliable, and robust model of HHT vascular pathology. PMID:27874028

  13. EU-Project REDUBAR. National and international biomethane networks; Das EU-Projekt REDUBAR. Nationale und internationale Biomethan-Netzwerke

    Energy Technology Data Exchange (ETDEWEB)

    Oettel, Eberhard; Rickert, Ingo [Foerdergesellschaft Erneuerbare Energien e.V. (FEE), Berlin (Germany); Albring, Peter [ILK Inst. fuer Luft- und Kaeltetechnikgemeinnuetzige GmbH, Dresden (Germany); Schrum, Peter; Tuaschke, Martin [BBK Bundesverband Biogene und RegenerativeKraft- und Treibstoffe e.V., Erkner (Germany)

    2009-07-01

    In an unprecedented appeal to the G8 Energy Ministers at their meeting 24./25.05.2009 at Rome, Italy, the Executive Secretary of the IEA International Energy Agency called for immediate and appropriate measures to counterbalance the effects of the global financial crisis. He demanded to invest substantially more in renewable energy sources (RES), energy efficiency (EE) and decarbonisation. Otherwise a long-lasting energy crisis could menace already by 2012 /2013 with far-reaching consequences for energy security and climate protection. The crisis could even lead to energy poverty. [1] The 16{sup th} European Biomass Conference ''From Research to Industry and Markets'' (02 - 06 June 2008, Valencia, Spain) approved that biomass is becoming a scarce commodity and urged decision-makers from politics, industry, transport, agriculture and forestry to increase exergy, decrease energy and augment substantially the energy efficiency of use of biomass in cascades from cultivation to polygeneration. Biomass is the only renewable carbon and energy carrier made by human beings. [2] Biogas produced by digestion from biological secondary raw materials and industrial crops would offer just these properties in its combustion in combined heat and power (CHP) plants to generate electricity and heat, and convert the heat into cold. But because of the location of the plant sites far away from heat sinks about half of its chemically bound energy is wasted. Just in this regard biomethane and in future bio-SNG are commodities with outstanding properties. As a natural gas substitute biomethane can be injected into the natural gas grid, used as automotive fuel or as a secondary renewable energy carrier utilised in high temperature industrial processes with high efficiency far away from the producing plants. Resulting from a study, several research institutes summarized that given well-defined conditions theoretically and under ideal assumptions all natural gas imported

  14. Bio methane in the cogeneration market and heating market. Status quo, potentials and recommendations for an accelerated market penetration; Biomethan im KWK- und Waermemarkt. Status Quo, Potenziale und Handlungsempfehlungen fuer eine beschleunigte Marktdurchdringung

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael; Rostek, Sandra (comps.)

    2010-07-15

    The current contribution of the German Energy Agency (Berlin, Federal Republic of Germany) reports on the present sale situation of bio methane on the coupled and uncoupled heating market. The contribution clarifies, why the existing support measures do not stimulate the demand for bio methane in the necessary order of magnitude. Without adjustment of the legal framework neither the considerable sales potentials can be established, nor the targets for the development of the biogas feeding can be achieved approximately. The low demand on bio methane led to a planning stop on the producer side. Direct need for action is required.

  15. Effect of BMP-2 and BMP-7 homodimers and a mixture of BMP-2/BMP-7 homodimers on osteoblast adhesion and growth following culture on a collagen scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Laflamme, Claude; Rouabhia, Mahmoud [Groupe de recherche en ecologie buccale, Faculte de medecine dentaire, Universite Laval, Quebec City, Quebec G1K 7P4 (Canada)], E-mail: Mahmoud.rouabhia@fmd.ulaval.ca

    2008-03-01

    In the present study, we studied the involvement of BMP-2 and BMP-7 as homodimers and as a mixture of homodimers in bone regeneration using an engineered bone model. The engineered bone model consisted of a collagen scaffold populated with osteoblasts that acted as a carrier for the BMPs. BMP-2, BMP-7 and a mixture of BMP-2/BMP-7 were used at final concentrations of 10 and 100 ng ml{sup -1}. Osteoblasts seeded onto a collagen scaffold were cultured for 24 h before being stimulated with the BMPs. Four days later, osteoblast adhesion to and growth on the scaffold were assessed. Osteocalcin, IL-6, metalloproteinase (MMP-2 and MMP-9) and protease inhibitor (TIMP-1 and TIMP-2) mRNA and protein levels were measured. Our results showed that the BMP-2, BMP-7 and a mixture of BMP-2/BMP-7 all promoted osteoblast growth on the collagen scaffold, with the mixture of BMP-2/BMP-7 enhancing the most growth. BMP-2 and the mixture of BMP-2/BMP-7 enhanced osteocalcin (an osteoblast differentiation marker) mRNA expression and protein secretion, likely via the IL-6 pathway given that IL-6 secretion was upregulated by BMP-7 and a mixture of BMP-2/BMP-7. BMPs promote extracellular matrix production by inhibiting MMP-2 mRNA and increasing TIMP-1 and TIMP-2 mRNA expressions and protein secretions. BMP-2, BMP-7 and the mixture of BMP-2/BMP-7 could promote bone regeneration via different mechanisms involving IL-6 and MMP inhibitors.

  16. PELA microspheres with encapsulated arginine-chitosan/pBMP-2 nanoparticles induce pBMP-2 controlled-release, transfected osteoblastic progenitor cells, and promoted osteogenic differentiation.

    Science.gov (United States)

    Xu, Xiaolong; Qiu, Sujun; Zhang, Yuxian; Yin, Jie; Min, Shaoxiong

    2017-03-01

    Repair of the bone injury remains a challenge in clinical practices. Recent progress in tissue engineering and therapeutic gene delivery systems have led to promising new strategies for successful acceleration of bone repair process. The aim of this study was to create a controlled-release system to slowly release the arginine-chitosan/plasmid DNA nanoparticles encoding BMP-2 gene (Arg-CS/pBMP-2 NPs), efficiently transfect osteoblastic progenitor cells, secrete functional BMP-2 protein, and promote osteogenic differentiation. In this study, chitosan was conjugated with arginine to generate arginine-chitosan polymer (Arg-CS) for gene delivery. Mix the Arg-CS with pBMP-2 to condense pBMP-2 into nano-sized particles. In vitro transfection assays demonstrated that the transfection efficiency of Arg-CS/pBMP-2 nanoparticles and the expression level of BMP-2 was obviously exceed control groups. Further, PELA microspheres as the controlled-release carrier for the nanoparticles were used to encapsulate Arg-CS/pBMP-2 NPs. We demonstrated that the Arg-CS/pBMP-2 NPs could slowly release from the PELA microspheres at least for 42 d. During the co-culture with the PELA microspheres, the content of BMP-2 protein secreted by MC3T3-E1 reached the peak at 7 d. After 21d, the secretion of BMP-2 protein still maintain a higher level. The alkaline phosphatase activity, alizarin red staining, and osteogenesis-related gene expression by real-time quantitative PCR analysis all showed the PELA microspheres entrapping with Arg-CS/pBMP-2 NPs can obviously induce the osteogenic differentiation. The results indicated that the Arg-CS is a suitable gene vector which can promote the gene transfection. And the novel PELA microspheres-nanoparticle controlled-release system has potential clinical application in the future after further research.

  17. Bmp2 and Bmp4 accelerate alveolar bone development.

    Science.gov (United States)

    Ou, Mingming; Zhao, Yibing; Zhang, Fangming; Huang, Xiaofeng

    2015-06-01

    Alveolar bone remodeling is a continuous process that takes place during development and in response to various physiological and pathological stimuli. However, detailed knowledge regarding the underlying mechanisms involved in alveolar bone development is still lacking. This study aims at improving our understanding of alveolar bone formation and the role of bone morphogenetic proteins (Bmps) in this process. Mice at embryonic (E) day 13.5 to postnatal (PN) day 15.5 were selected to observe the process of alveolar bone development. Alveolar bone development was found to be morphologically observable at E14.5. Molar teeth isolated from mice at PN7.5 were pretreated with Bmp2, Bmp4, Noggin, or BSA, and grafted subcutaneously into mice. The subcutaneously implanted tooth germs formed alveolar bone indicating the role of the dental follicle in alveolar bone development. Alveolar bone formation was increased after pretreatment with Bmp2 and Bmp4, but not with Noggin. Gene expression levels in dental follicle cells from murine molars were also determined by real-time RT-PCR. The expression levels of Runx2, Bsp, and Ocn were significantly higher in dental follicle cells cultured with Bmp2 or Bmp4, and significantly lower in those cultured with Noggin when compared with that of the BSA controls. Our results suggest that the dental follicle participates in alveolar bone formation and Bmp2/4 appears to accelerate alveolar bone development.

  18. Studies on biomethanation of water hyacinth (eichhornia crassipes using biocatalyst

    Directory of Open Access Journals (Sweden)

    Santanu Sarkar, Saikat Banerjee

    2013-01-01

    Full Text Available Water hyacinth is a huge source of biomass in tropical countries. That can be used for biogas production. The aim of this conversion process is to improve the quality, specific energy content, transportability, etc. of the raw biomass source or to capture gases which are naturally produced as biomass is micro biologically degraded. An experimental study on catalytic biomethanation of Water Hyacinth has been carried out in a semi batch digester at different substrate concentration using cow urine as an organic catalyst under controlled pH with in the range of 6.9 to 7.2. The rate of bio gas production varies with different conditions and parameters like temperature, stirring speed, feed concentration, catalyst concentration, etc. It has been found that the catalyst mainly increases the production rate of biogas from water hyacinth. Mathematical analysis of the experimental data on catalytic biomethanation has been done in the present study. Mathematical equations relating maximum specific growth rate and kinetic parameter at different substrate and catalyst concentration have been developed.

  19. Studies on biomethanation of water hyacinth (eichhornia crassipes) using biocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Santanu [Department of Chemical Engineering, Jadavpur University, Kolkata-700032 (India); Banerjee, Saikat [Department of Chemical Engineering, Salalah College of Technology, Salalah (Oman)

    2013-07-01

    Water hyacinth is a huge source of biomass in tropical countries. That can be used for biogas production. The aim of this conversion process is to improve the quality, specific energy content, transportability, etc. of the raw biomass source or to capture gases which are naturally produced as biomass is micro biologically degraded. An experimental study on catalytic biomethanation of Water Hyacinth has been carried out in a semi batch digester at different substrate concentration using cow urine as an organic catalyst under controlled pH with in the range of 6.9 to 7.2. The rate of bio gas production varies with different conditions and parameters like temperature, stirring speed, feed concentration, catalyst concentration, etc. It has been found that the catalyst mainly increases the production rate of biogas from water hyacinth. Mathematical analysis of the experimental data on catalytic biomethanation has been done in the present study. Mathematical equations relating maximum specific growth rate and kinetic parameter at different substrate and catalyst concentration have been developed.

  20. Characterization of anaerobic consortia coupled lignin depolymerization with biomethane generation.

    Science.gov (United States)

    Wu, Yi-Rui; He, Jianzhong

    2013-07-01

    Two sediment-free microbial consortia (LI3 and LP3) were established to depolymerize lignin under anaerobic conditions. During depolymerizing high molecular weight lignin to low molecular weight molecules, the two cultures produced biomethane up to 151.7 and 113.0 mL g(-1) total lignin. Furthermore, LI3 and LP3 could also utilize the biomass - oil palm empty fruit bunch fiber (OPEFB) to produce 190.6 and 195.6 mL methaneg(-1) total lignin in OPEFB, and at the same time improve the bioavailability of lignocellulosic matters for further enzymatic hydrolysis. The microbial community analysis by denature gradient gel electrophoresis (DGGE) and the high-density 16S rDNA gene microarray (PhyloChip) exhibited that Methanomethylovorans sp. (LI3) and Methanoculleus sp. (LP3) were the main methanogens present, and phylum Firmicutes and Bacteroidetes were mainly involved in the lignin depolymerization. The established microbial consortia with both lignin depolymerization and biomethane production provide profound application on the environmental friendly pretreatment of lignocellulosic materials.

  1. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling

    Science.gov (United States)

    Clément, Flora; Xu, Xinyi; Donini, Caterina F; Clément, Alice; Omarjee, Soleilmane; Delay, Emmanuel; Treilleux, Isabelle; Fervers, Béatrice; Le Romancer, Muriel; Cohen, Pascale A; Maguer-Satta, Véronique

    2017-01-01

    Bone morphogenetic protein 2 (BMP2) and BMP4 are key regulators of the fate and differentiation of human mammary epithelial stem cells (SCs), as well as of their niches, and are involved in breast cancer development. We established that MCF10A immature mammary epithelial cells reliably reproduce the BMP response that we previously identified in human primary epithelial SCs. In this model, we observed that BMP2 promotes luminal progenitor commitment and expansion, whereas BMP4 prevents lineage differentiation. Environmental pollutants are known to promote cancer development, possibly by providing cells with stem-like features and by modifying their niches. Bisphenols, in particular, were shown to increase the risk of developing breast cancer. Here, we demonstrate that chronic exposure to low doses of bisphenol A (BPA) or benzo(a)pyrene (B(a)P) alone has little effect on SCs properties of MCF10A cells. Conversely, we show that this exposure affects the response of immature epithelial cells to BMP2 and BMP4. Furthermore, the modifications triggered in MCF10A cells on exposure to pollutants appeared to be predominantly mediated by altering the expression and localization of type-1 receptors and by pre-activating BMP signaling, through the phosphorylation of small mothers against decapentaplegic 1/5/8 (SMAD1/5/8). By analyzing stem and progenitor properties, we reveal that BPA prevents the maintenance of SC features prompted by BMP4, whereas promoting cell differentiation towards a myoepithelial phenotype. Inversely, B(a)P prevents BMP2-mediated luminal progenitor commitment and expansion, leading to the retention of stem-like properties. Overall, our data indicate that BPA and B(a)P distinctly alter the fate and differentiation potential of mammary epithelial SCs by modulating BMP signaling. PMID:27740625

  2. KlimaCH4. Climate effects of biomethane economy; KlimaCH4. Klimaeffekte von Biomethan

    Energy Technology Data Exchange (ETDEWEB)

    Westerkamp, Tanja; Reinelt, Torsten; Oehmichen, Katja; Ponitka, Jens; Naumann, Karin

    2014-07-01

    Within the project ''Climate effects of biomethane economy'' (KlimaCH4) of the German Biomass Research Centre two methods for measurement of direct greenhouse gas emissions were analyzed for their applicability and comparability. In the context of concrete measurements direct emissions, mainly of methane, three biogas plants with methane treatment for feeding into the natural gas grid were quantified. These tests were carried out on the one hand directly on-site by using leak detection, enclosures and ''open chamber'' measurements, but also indirectly by optical remote sensing with tunable diode laser absorption spectrometry (TDLAS) and reverse dispersion modelling by inverse dispersion modeling. The on-site method offers the possibility, to investigate the influences of plant operation on emissions of known diffuse sources, inter alia, through the balance of the operating status with the timeline of a specific emission source (e.g. as increased release of methane due to stirring intervals). This is particularly useful for deriving appropriate measures to reduce emissions. The quantification of individual, diffuse emission sources is metrologically possibly only very costly to implement. The effort is depending to a considerable extent by the design and the size of the examined biogas plant. In order to detect the influence seasonal changing of environmental conditions recurring emission measurements were realized. The use of optical telemetry showed as an advantageous alternative to on-site method, because it can significantly reduce time required for emission measurements particularly at large biogas plants or plants with numerous individual sources. With only one measurement sequence all emission sources are covered, without consuming individual measurements. In addition, in comparision to the on-site method, the emission situation of the entire system can be better reproduced, since all individual sources are included in

  3. KlimaCH4. Climate effects of biomethane economy; KlimaCH4. Klimaeffekte von Biomethan

    Energy Technology Data Exchange (ETDEWEB)

    Westerkamp, Tanja; Reinelt, Torsten; Oehmichen, Katja; Ponitka, Jens; Naumann, Karin

    2014-07-01

    Within the project ''Climate effects of biomethane economy'' (KlimaCH4) of the German Biomass Research Centre two methods for measurement of direct greenhouse gas emissions were analyzed for their applicability and comparability. In the context of concrete measurements direct emissions, mainly of methane, three biogas plants with methane treatment for feeding into the natural gas grid were quantified. These tests were carried out on the one hand directly on-site by using leak detection, enclosures and ''open chamber'' measurements, but also indirectly by optical remote sensing with tunable diode laser absorption spectrometry (TDLAS) and reverse dispersion modelling by inverse dispersion modeling. The on-site method offers the possibility, to investigate the influences of plant operation on emissions of known diffuse sources, inter alia, through the balance of the operating status with the timeline of a specific emission source (e.g. as increased release of methane due to stirring intervals). This is particularly useful for deriving appropriate measures to reduce emissions. The quantification of individual, diffuse emission sources is metrologically possibly only very costly to implement. The effort is depending to a considerable extent by the design and the size of the examined biogas plant. In order to detect the influence seasonal changing of environmental conditions recurring emission measurements were realized. The use of optical telemetry showed as an advantageous alternative to on-site method, because it can significantly reduce time required for emission measurements particularly at large biogas plants or plants with numerous individual sources. With only one measurement sequence all emission sources are covered, without consuming individual measurements. In addition, in comparision to the on-site method, the emission situation of the entire system can be better reproduced, since all individual sources are included in

  4. Biomethane Production as an Alternative Bioenergy Source from Codigesters Treating Municipal Sludge and Organic Fraction of Municipal Solid Wastes

    Directory of Open Access Journals (Sweden)

    M. Evren Ersahin

    2011-01-01

    Full Text Available Energy recovery potential of a mesophilic co-digester treating OFMSW and primary sludge at an integrated biomethanization plant was investigated based on feasibility study results. Since landfilling is still the main solid waste disposal method in Turkey, land scarcity will become one of the most important obstacles. Restrictions for biodegradable waste disposal to sanitary landfills in EU Landfill Directive and uncontrolled long-term contamination with gas emissions and leachate necessitate alternative management strategies due to rapid increase in MSW production. Moreover, since energy contribution from renewable resources will be required more in the future with increasing oil prices and dwindling supplies of conventional energy sources, the significance of biogas as a renewable fuel has been increased in the last decade. Results indicated that almost 93% of annual total cost can be recovered if 100% renewable energy subsidy is implemented. Besides, considering the potential revenue when replacing transport fuels, about 26 heavy good vehicles or 549 cars may be powered per year by the biogas produced from the proposed biomethanization plant (PE = 100,000; XPS = 61 g TS/PE⋅day; XSS-OFMSW=50 g TS/PE⋅day.

  5. Challenges in the marketing and distribution of biomethane. Development of a new market; Herausforderungen in Marketing und Vertrieb von Biomethan. Ein neuer Markt entsteht

    Energy Technology Data Exchange (ETDEWEB)

    Herbes, Carsten [Unternehmensberatung Dr. Carsten Herbes (Germany); Hess, Felix

    2011-07-01

    Between 2007 and 2008 the German government created a market for biomethane by implementing a number of legislative changes (IEKP, EEG, EEWaermeG, GasNZV). Although in the last years a number of biomethane plants have been built, the total capacity of 50 operating plants (by end of 2010) stands only at 34 mio m{sup 3}/h (=3.000 MW/h/Jahr) (Source: Biogasrat e.V. 2011). This is merely 4% of the government's target of 6 bn m{sup 3}/year in 2020. The value chain in the biomethane market is very dynamic. First, new types of players have been emerging and second many established players are pursueing a stretegy of forward and backward integration. There are four paths of using biomethane: cogeneration units feeding electricity according to the German renewable energies act, heating in households, fueling of automobiles and utilization as raw material in the chemical industry. The customer value is created through cost advantages compared to other forms of energy, longterm price stability and superior ecological characteristics which can be used by industrial users in their marketing towards end customers. Biomethane producers have to take a number of important decisions concerning their marketing mix and the industry has just started to develop an adequate marketing tool box. (orig.)

  6. BMP2/BMPR1A is linked to tumour progression in dedifferentiated liposarcomas.

    Science.gov (United States)

    O'Neill, Hannah L; Cassidy, Amy P; Harris, Olivia B; Cassidy, John W

    2016-01-01

    Bone Morphogenic Protein 2 (BMP2) is a multipurpose cytokine, important in the development of bone and cartilage, and with a role in tumour initiation and progression. BMP2 signal transduction is dependent on two distinct classes of serine/threonine kinase known as the type I and type II receptors. Although the type I receptors (BMPR1A and BMPR1B) are largely thought to have overlapping functions, we find tissue and cellular compartment specific patterns of expression, suggesting potential for distinct BMP2 signalling outcomes dependent on tissue type. Herein, we utilise large publicly available datasets from The Cancer Genome Atlas (TCGA) and Protein Atlas to define a novel role for BMP2 in the progression of dedifferentiated liposarcomas. Using disease free survival as our primary endpoint, we find that BMP2 confers poor prognosis only within the context of high BMPR1A expression. Through further annotation of the TCGA sarcoma dataset, we localise this effect to dedifferentiated liposarcomas but find overall BMP2/BMP receptor expression is equal across subsets. Finally, through gene set enrichment analysis we link the BMP2/BMPR1A axis to increased transcriptional activity of the matrisome and general extracellular matrix remodelling. Our study highlights the importance of continued research into the tumorigenic properties of BMP2 and the potential disadvantages of recombinant human BMP2 (rhBMP2) use in orthopaedic surgery. For the first time, we identify high BMP2 expression within the context of high BMPR1A expression as a biomarker of disease relapse in dedifferentiated liposarcomas.

  7. A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria

    Energy Technology Data Exchange (ETDEWEB)

    Thamsiriroj, Thanasit; Murphy, Jerry D. [Department of Civil and Environmental Engineering, University College Cork (UCC), Cork (Ireland); Environmental Research Institute (ERI), University College Cork, Cork (Ireland)

    2011-04-15

    There are numerous ways to assess and compare biofuels. Gross energy per hectare reflects the quantity of product produced per unit of land. Net energy per hectare reflects the parasitic demand associated with the product per hectare. Gross and net energy per hectare are far superior for grass biomethane than rape seed biodiesel. For a biofuel made from residues the descriptor MJGJ{sub fuel}{sup -1} (MJ of biofuel produced per GJ of fossil fuel displaced) is more instructive; this reflects the relative efficiency of the biofuel. Of issue in the assessment is how to deal with co-products, by-products and residues. The allocation methodology allows for a variety of answers to be generated. UCO biodiesel has a good energy balance for any allocation approach; tallow biodiesel has a poor net energy unless credit is given for the co-production of meat and bone meal as a substitute fuel. To be deemed sustainable by the EU Renewable Energy Directive a value of 60% GHG savings is required for facilities built post 2017. A further crucial consideration is: how much fuel can be produced? This study shows that indigenous biodiesel produced in Ireland and grass biomethane may be deemed sustainable but only grass biomethane may produce a significant quantity, potentially satisfying the 10% renewable energy in transport target for 2020 as opposed to only 1.23% in total from all indigenous biodiesel systems. (author)

  8. Role of Smad7 in Sox9-potentiated and BMP2-induced differentiation of mouse mesenchymal stem cells into chondrocytes%Smad7在Sox9增强BMP2成软骨效应中的作用

    Institute of Scientific and Technical Information of China (English)

    赵辰; 黄伟; 梁熙; 廖军义; 周年; 胡宁; 赵智; 简长春

    2015-01-01

    目的 探讨Smad7在Sox9增强BMP2成软骨效应中的作用和机制.方法 将小鼠骨髓间充质干细胞(C3 H10T1/2)作为种子细胞,重组腺病毒Ad-BMP2和/或Ad-Sox9感染细胞,Ad-GFP感染细胞为对照.采用Real-time PCR、免疫细胞化学和Western blot分别检测感染后各组Smad7 mRNA表达水平和蛋白表达水平.采用Real-time PCR检测与Smad7相关因子MMP13与OPN mRNA的表达.结果 BMP2+Sox9组感染细胞7、11d时,Smad7 mRNA和蛋白表达水平均明显低于BMP2组(P<0.05);免疫细胞化学染色结果显示,BMP2+Sox9组Smad7染色明显弱于BMP2组;同时BMP2+Sox9组中与软骨最终成熟因子OPN与MMP13的表达均低于BMP2组(P<0.05).结论 在BMP2诱导间充质干细胞成软骨分化中,高表达的Smad7可被Sox9抑制,并抑制Smad7相关因子MMP13与OPN表达,从而解除了Smad7对BMP2成软骨的抑制作用,阻止了软骨细胞最终成熟骨化,有利于保持软骨发育与正常状态.

  9. Shh signaling, negatively regulated by BMP signaling, inhibits the osteo/dentinogenic differentiation potentials of mesenchymal stem cells from apical papilla.

    Science.gov (United States)

    Jiang, Qingsong; Du, Juan; Yin, Xiaonan; Shan, Zhaochen; Ma, Yushi; Ma, Ping; Du, Juan; Fan, Zhipeng

    2013-11-01

    Mesenchymal stem cells (MSCs) derived from dental tissues show promise for use in tooth-related tissue regeneration, but the molecular mechanisms underlying their directed differentiation remain unclear, limiting their usefulness. Sonic Hedgehog (Shh) signaling is a major signaling pathway that regulates cell differentiation and osteogenesis. We found that when Shh signaling was activated by human recombinant SHH-N protein or by overexpression of active mutant M2-Smoothened (SMO) in stem cells from apical papilla (SCAPs), GLI1, a key downstream transcription factor and a marker of Shh signaling, was upregulated. Subsequently, in vitro osteo/dentinogenic differentiation and in vivo osteogenesis were inhibited in SCAPs. Moreover, the expression of GLI1 and SMO were downregulated by BMP signaling while osteo/dentinogenic differentiation in SCAPs was upregulated. These results provide insights into the role of Shh signaling in the directed differentiation of MSCs derived from dental tissues and suggest possible target genes for optimizing the use of stem cells of dental origin for tissue regeneration applications.

  10. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  11. Anaerobic protozoa and their growth in biomethanation systems.

    Science.gov (United States)

    Priya, M; Haridas, Ajit; Manilal, V B

    2008-04-01

    This study was to investigate growth of protozoa and its influence on biodegradation in anaerobic treatment systems. It was done by specifically controlling and monitoring growth of protozoa versus degradation in continuous stirred anaerobic reactors and batch anaerobic reactors. Occurrence of a diverse protozoa population such as the ciliates, Prorodon, Vorticella, Cyclidium, Spathidium, Loxodes, Metopus were observed in stable anaerobic systems and the flagellates, Rhynchomonas, Naeglaria, Amoeboflagellates, Tetramitus, Trepomonas and Bodo during increased VFA concentration and affected periods of biomethanation. The abundance of ciliates in the anaerobic system had significant correlation with the reduction of MLSS, increased rate of COD removal and higher methane production. The results of this study thus tend to relate increased anaerobic degradation with the abundance of protozoa, mainly ciliates, which indicate their possible involvement in the process. Present study also reveals that performance of anaerobic process can be assessed by monitoring the protozoa population in the system.

  12. Risk variants in BMP4 promoters for nonsyndromic cleft lip/palate in a Chilean population

    Directory of Open Access Journals (Sweden)

    Suazo José

    2011-12-01

    Full Text Available Abstract Background Bone morphogenetic protein 4 gene (BMP4 plays a key role during maxillofacial development, since orofacial clefts are observed in animals when this gene is conditionally inactivated. We recently reported the existence of association between nonsyndromic cleft lip/palate (NSCLP and BMP4 polymorphisms by detecting transmission deviations for haplotypes that include a region containing a BMP4 promoter in case-parent trios. The aim of the present study was to search for possible causal mutations within BMP4 promoters (BMP4.1 and BMP4.2. Methods We analyzed the sequence of BMP4.1 and BMP4.2 in 167 Chilean NSCLP cases and 336 controls. Results We detected three novel variants in BMP4.1 (c.-5514G > A, c.-5365C > T and c.-5049C > T which could be considered as cleft risk factors due to their absence in controls. Additionally, rs2855530 G allele (BMP4.2 carriers showed an increased risk for NSCLP restricted to males (OR = 1.52; 95% C.I. = 1.07-2.15; p = 0.019. For this same SNP the dominant genotype model showed a higher frequency of G/G+G/C and a lower frequency of C/C in cases than controls in the total sample (p = 0.03 and in the male sample (p = 0.003. Bioinformatic prediction analysis showed that all the risk variants detected in this study could create new transcription factor binding motifs. Conclusions The sex-dependent association between rs2855530 and NSCLP could indirectly be related to the differential gene expression observed between sexes in animal models. We concluded that risk variants detected herein could potentially alter BMP4 promoter activity in NSCLP. Further functional and developmental studies are necessary to support this hypothesis.

  13. BMP-silk composite matrices heal critically sized femoral defects.

    Science.gov (United States)

    Kirker-Head, C; Karageorgiou, V; Hofmann, S; Fajardo, R; Betz, O; Merkle, H P; Hilbe, M; von Rechenberg, B; McCool, J; Abrahamsen, L; Nazarian, A; Cory, E; Curtis, M; Kaplan, D; Meinel, L

    2007-08-01

    Clinical drawbacks of bone grafting prompt the search for alternative bone augmentation technologies such as use of growth and differentiation factors, gene therapy, and cell therapy. Osteopromotive matrices are frequently employed for the local delivery and controlled release of these augmentation agents. Some matrices also provide an osteoconductive scaffold to support new bone growth. In this study, silkworm-derived silk fibroin was evaluated as an osteoconductive matrix for healing critical sized mid-femoral segmental defects in nude rats. Four treatment groups were assessed over eight weeks: silk scaffolds (SS) with recombinant human BMP-2 (rhBMP-2) and human mesenchymal stem cells (HMSC) that had been pre-differentiated along an osteoblastic lineage ex vivo (Group I; pdHMSC/rhBMP-2/SS); SS with rhBMP-2 and undifferentiated HMSCs (Group II; udHMSC/rhBMP-2/SS); SS and rhBMP-2 alone (Group III; rhBMP-2/SS); and empty defects (Group IV). Bi-weekly radiographs revealed a progressive and similar increase in Group I-III mean defect mineralization through post-operative week (POW) 8. Radiographs, dual energy x-ray absorptiometry, and micro-computed tomography confirmed that Groups I-III exhibited similar substantial and significantly (pwoven and lamellar bone bridging islands of silk matrix in Groups I and III. Group II defects possessed comparatively less new bone which was most abundant adjacent to the parent bone margins. Elsewhere the silk matrix was more often enveloped by poorly differentiated loose fibrous connective tissue. Group IV defects showed minimal new bone formation. None of the treatment groups attained the mean mineralization or the mean biomechanical strength of identical defects implanted with SS and pdHMSCs alone in a previous study. However, addition of rhBMP-2 to SS prompted more bone than was previously generated using udHMSC/SS or SS alone. These data imply the clinical potential of silk scaffolds and rhBMP-2 as composite osteopromotive

  14. A Review on the Valorization of Macroalgal Wastes for Biomethane Production

    Directory of Open Access Journals (Sweden)

    Yann Nicolas Barbot

    2016-06-01

    Full Text Available The increased use of terrestrial crops for biofuel production and the associated environmental, social and ethical issues have led to a search for alternative biomass materials. Terrestrial crops offer excellent biogas recovery, but compete directly with food production, requiring farmland, fresh water and fertilizers. Using marine macroalgae for the production of biogas circumvents these problems. Their potential lies in their chemical composition, their global abundance and knowledge of their growth requirements and occurrence patterns. Such a biomass industry should focus on the use of residual and waste biomass to avoid competition with the biomass requirements of the seaweed food industry, which has occurred in the case of terrestrial biomass. Overabundant seaweeds represent unutilized biomass in shallow water, beach and coastal areas. These eutrophication processes damage marine ecosystems and impair local tourism; this biomass could serve as biogas feedstock material. Residues from biomass processing in the seaweed industry are also of interest. This is a rapidly growing industry with algae now used in the comestible, pharmaceutical and cosmetic sectors. The simultaneous production of combustible biomethane and disposal of undesirable biomass in a synergistic waste management system is a concept with environmental and resource-conserving advantages.

  15. A Review on the Valorization of Macroalgal Wastes for Biomethane Production.

    Science.gov (United States)

    Barbot, Yann Nicolas; Al-Ghaili, Hashem; Benz, Roland

    2016-06-21

    The increased use of terrestrial crops for biofuel production and the associated environmental, social and ethical issues have led to a search for alternative biomass materials. Terrestrial crops offer excellent biogas recovery, but compete directly with food production, requiring farmland, fresh water and fertilizers. Using marine macroalgae for the production of biogas circumvents these problems. Their potential lies in their chemical composition, their global abundance and knowledge of their growth requirements and occurrence patterns. Such a biomass industry should focus on the use of residual and waste biomass to avoid competition with the biomass requirements of the seaweed food industry, which has occurred in the case of terrestrial biomass. Overabundant seaweeds represent unutilized biomass in shallow water, beach and coastal areas. These eutrophication processes damage marine ecosystems and impair local tourism; this biomass could serve as biogas feedstock material. Residues from biomass processing in the seaweed industry are also of interest. This is a rapidly growing industry with algae now used in the comestible, pharmaceutical and cosmetic sectors. The simultaneous production of combustible biomethane and disposal of undesirable biomass in a synergistic waste management system is a concept with environmental and resource-conserving advantages.

  16. Quantitative kinetics analysis of BMP2 uptake into cells and its modulation by BMP antagonists.

    Science.gov (United States)

    Alborzinia, Hamed; Schmidt-Glenewinkel, Hannah; Ilkavets, Iryna; Breitkopf-Heinlein, Katja; Cheng, Xinlai; Hortschansky, Peter; Dooley, Steven; Wölfl, Stefan

    2013-01-01

    Bone morphogenetic proteins (BMPs) are members of the TGFβ family of signaling proteins and play an important role during development and in tissue formation. BMP signaling is a well-studied process, which is initiated through binding of cognate receptors and processed through activation of Smad downstream mediators. A hallmark of BMP signaling is its modulation at the extracellular level through specific antagonists. Although it had been shown that BMP and TGFβ receptors are internalized following activation, little is known about the fate of BMP ligands. We prepared biologically active fluorescently labeled BMP2 and quantitatively analyzed its binding and uptake in cells using flow cytometry and confocal microscopy. Exogenous BMP2 was rapidly bound to the cell surface and subsequently internalized in a time-dependent manner and accumulated in the cell center. Although binding to the cell surface was limited by binding sites at the beginning, internalization continously increased with time, after a short delay. Using different inhibitors we found that internalization of BMP2 through endosomal particles occurred in a clathrin-dependent pathway. Furthermore, uptake of BMP2 was modulated in strikingly different ways by BMP2 antagonists. Although Noggin and Gremlin increased BMP2 uptake, Chordin blocked BMP2 uptake, which was concentration dependent in both cases. In conclusion, our findings present interesting mechanisms for the modulation of BMP signaling by concentration gradients of BMP ligands and antagonists in a dose- and time-dependent manner, which can provide an explanation of some properties of the BMP regulatory network.

  17. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)

    2002-08-01

    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  18. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass.

    Science.gov (United States)

    Papa, G; Rodriguez, S; George, A; Schievano, A; Orzi, V; Sale, K L; Singh, S; Adani, F; Simmons, B A

    2015-05-01

    In this study the efficiency of mild ionic liquid (IL) pretreatment and pressurized hot water (PHW) is evaluated and compared in terms of bioethanol and biomethane yields, with corn stover (CS) and switchgrass (SG) as model bioenergy crops. Both feedstocks pretreated with the IL 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] at 100°C for 3h exhibited lower glucose yield that those treated with harsher pretreatment conditions previously used. Compared to PHW, IL pretreatment demonstrated higher bioethanol yields; moreover IL pretreatment enhanced biomethane production. Taking into consideration both bioethanol and biomethane productions, results indicated that when using IL pretreatment, the total energy produced per kg of total solids was higher compared to untreated biomasses. Specifically energy produced from CS and SG was +18.6% and +34.5% respectively, as compared to those obtained by hot water treatment, i.e. +2.3% and +23.4% for CS and SG, respectively.

  19. BMP signaling in rats with TNBS-induced colitis following BMP7 therapy.

    Science.gov (United States)

    Maric, Ivana; Kucic, Natalia; Turk Wensveen, Tamara; Smoljan, Ivana; Grahovac, Blazenka; Zoricic Cvek, Sanja; Celic, Tanja; Bobinac, Dragica; Vukicevic, Slobodan

    2012-05-15

    Beyond stimulating bone formation, bone morphogenetic proteins (BMPs) are important in development, inflammation, and malignancy of the gut. We have previously shown that BMP7 has a regenerative, anti-inflammatory, and antiproliferative effect on experimental inflammatory bowel disease (IBD) in rats. To further investigate the BMP signaling pathway we monitored the effect of BMP7 therapy on the BMP signaling components in the rat colon during different stages of experimentally induced colitis by 2,4,6-trinitrobenzene sulfonic acid (TNBS). The results showed a significantly decreased BMP7 expression in the acute phase, followed by a significantly increased BMP2 and decreased BMP6 expression during the chronic phase of colitis. BMP7 therapy influenced the expression of several BMPs with the most prominent effect on downregulation of BMP2 and upregulation of BMP4 in the chronic phase of colitis. Importantly, connective tissue growth factor and noggin expression were elevated in the acute stage and significantly decreased upon BMP7 therapy. BMP receptor I expression was unchanged, whereas BMP receptor II was decreased at day 2 and increased at days 14 and 30 of TNBS inflammation. However, an opposite pattern of expression following BMP7 therapy has been observed. BMP7 increased the expression of BR-Smad including Smad3 and Smad4. Inhibitory Smads were increased in colitis and significantly decreased following BMP7 therapy at later stages of the disease. We suggest that BMP signaling was altered during TNBS-induced colitis and was recovered with BMP7 administration, suggesting that IBD is a reversible process.

  20. A Critical Assessment of Microbiological Biogas to Biomethane Upgrading Systems.

    Science.gov (United States)

    Rittmann, Simon K-M R

    2015-01-01

    Microbiological biogas upgrading could become a promising technology for production of methane (CH(4)). This is, storage of irregular generated electricity results in a need to store electricity generated at peak times for use at non-peak times, which could be achieved in an intermediate step by electrolysis of water to molecular hydrogen (H(2)). Microbiological biogas upgrading can be performed by contacting carbon dioxide (CO(2)), H(2) and hydrogenotrophic methanogenic Archaea either in situ in an anaerobic digester, or ex situ in a separate bioreactor. In situ microbiological biogas upgrading is indicated to require thorough bioprocess development, because only low volumetric CH(4) production rates and low CH(4) fermentation offgas content have been achieved. Higher volumetric production rates are shown for the ex situ microbiological biogas upgrading compared to in situ microbiological biogas upgrading. However, the ex situ microbiological biogas upgrading currently suffers from H(2) gas liquid mass transfer limitation, which results in low volumetric CH(4) productivity compared to pure H(2)/CO(2) conversion to CH(4). If waste gas utilization from biological and industrial sources can be shown without reduction in volumetric CH(4) productivity, as well as if the aim of a single stage conversion to a CH(4) fermentation offgas content exceeding 95 vol% can be demonstrated, ex situ microbiological biogas upgrading with pure or enrichment cultures of methanogens could become a promising future technology for almost CO(2)-neutral biomethane production.

  1. Expression patterns indicate that BMP2/4 and Chordin, not BMP5-8 and Gremlin, mediate dorsal-ventral patterning in the mollusk Crassostrea gigas.

    Science.gov (United States)

    Tan, Sujian; Huan, Pin; Liu, Baozhong

    2016-12-16

    Though several bilaterian animals use a conserved BMP2/4-Chordin antagonism to pattern the dorsal-ventral (DV) axis, the only lophotrochozoan species in which early DV patterning has been studied to date, the leech Helobdella robusta, appears to employ BMP5-8 and Gremlin. These findings call into question the conservation of a common DV patterning mechanism among bilaterian animals. To explore whether the unusual DV patterning mechanism in H. robusta is also used in other lophotrochozoan species, we investigated the expression of orthologous genes in the early embryo of a bivalve mollusk, Crassostrea gigas. Searching of the genome and phylogenetic analysis revealed that C. gigas possesses single orthologs of BMP2/4, Chordin, and BMP5-8 and no Gremlin homolog. Whole mount in situ hybridization revealed mRNA localization of BMP2/4 and Chordin on the opposite sides of embryos, suggesting the potential involvement of a BMP2/4-Chordin antagonism in DV patterning in this species. Furthermore, universal BMP5-8 expression and the absence of a Gremlin homolog in the C. gigas genome called into question any major contribution by BMP5-8 and Gremlin to early DV patterning in this species. Additionally, we identified seven genes showing asymmetric expression along the DV axis, providing further insight into DV patterning in C. gigas. We present the first report of a Chordin gene in a lophotrochozoan species and of the opposite expression of BMP2/4 (dorsal) and Chordin (ventral) along the D/V axis of a lophotrochozoan embryo. The findings of this study further the knowledge of axis formation in lophotrochozoan species and provide insight into the evolution of the animal DV patterning mechanism.

  2. Life cycle greenhouse gas impacts of ethanol, biomethane and limonene production from citrus waste

    Science.gov (United States)

    Pourbafrani, Mohammad; McKechnie, Jon; MacLean, Heather L.; Saville, Bradley A.

    2013-03-01

    The production of biofuel from cellulosic residues can have both environmental and financial benefits. A particular benefit is that it can alleviate competition for land conventionally used for food and feed production. In this research, we investigate greenhouse gas (GHG) emissions associated with the production of ethanol, biomethane, limonene and digestate from citrus waste, a byproduct of the citrus processing industry. The study represents the first life cycle-based evaluations of citrus waste biorefineries. Two biorefinery configurations are studied—a large biorefinery that converts citrus waste into ethanol, biomethane, limonene and digestate, and a small biorefinery that converts citrus waste into biomethane, limonene and digestate. Ethanol is assumed to be used as E85, displacing gasoline as a light-duty vehicle fuel; biomethane displaces natural gas for electricity generation, limonene displaces acetone in solvents, and digestate from the anaerobic digestion process displaces synthetic fertilizer. System expansion and two allocation methods (energy, market value) are considered to determine emissions of co-products. Considerable GHG reductions would be achieved by producing and utilizing the citrus waste-based products in place of the petroleum-based or other non-renewable products. For the large biorefinery, ethanol used as E85 in light-duty vehicles results in a 134% reduction in GHG emissions compared to gasoline-fueled vehicles when applying a system expansion approach. For the small biorefinery, when electricity is generated from biomethane rather than natural gas, GHG emissions are reduced by 77% when applying system expansion. The life cycle GHG emissions vary substantially depending upon biomethane leakage rate, feedstock GHG emissions and the method to determine emissions assigned to co-products. Among the process design parameters, the biomethane leakage rate is critical, and the ethanol produced in the large biorefinery would not meet EISA

  3. Bone Morphogenetic Protein (BMP-4 and BMP-7 regulate differentially Transforming Growth Factor (TGF-β1 in normal human lung fibroblasts (NHLF

    Directory of Open Access Journals (Sweden)

    Lloyd Clare M

    2010-06-01

    Full Text Available Abstract Background Airway remodelling is thought to be under the control of a complex group of molecules belonging to the Transforming Growth Factor (TGF-superfamily. The Bone Morphogenetic Proteins (BMPs belong to this family and have been shown to regulate fibrosis in kidney and liver diseases. However, the role of BMPs in lung remodelling remains unclear. BMPs may regulate tissue remodelling in asthma by controlling TGF-β-induced profibrotic functions in lung fibroblasts. Methods Cell cultures were exposed to TGF-β1 alone or in the presence of BMP-4 or BMP-7; control cultures were exposed to medium only. Cell proliferation was assessed by quantification of the incorporation of [3H]-thymidine. The expression of the mRNA encoding collagen type I and IV, tenascin C and fibronectin in normal human lung fibroblasts (NHLF was determined by real-time quantitative PCR and the main results were confirmed by ELISA. Cell differentiation was determined by the analysis of the expression of α-smooth muscle actin (α-SMA by western blot and immunohistochemistry. The effect on matrix metalloproteinase (MMP activity was assessed by zymography. Results We have demonstrated TGF-β1 induced upregulation of mRNAs encoding the extracellular matrix proteins, tenascin C, fibronectin and collagen type I and IV when compared to unstimulated NHLF, and confirmed these results at the protein level. BMP-4, but not BMP-7, reduced TGF-β1-induced extracellular matrix protein production. TGF-β1 induced an increase in the activity of the pro-form of MMP-2 which was inhibited by BMP-7 but not BMP-4. Both BMP-4 and BMP-7 downregulated TGF-β1-induced MMP-13 release compared to untreated and TGF-β1-treated cells. TGF-β1 also induced a myofibroblast-like transformation which was partially inhibited by BMP-7 but not BMP-4. Conclusions Our study suggests that some regulatory properties of BMP-7 may be tissue or cell type specific and unveil a potential regulatory role for

  4. Differential expression of Bmp2, Bmp4 and Bmp3 in embryonic development of mouse anterior and posterior palate

    Institute of Scientific and Technical Information of China (English)

    NIE Xu-guang

    2005-01-01

    Background The palate is differently regulated and developed along the anterior-posterior axis. The Bmp signal pathway plays a crucial role in palatogenesis. Conditioned-inactivation of Bmp type I receptor Alk2 or Alk3 in the neural crest or craniofacial region leads to palatal cleft in mice. However, how different Bmp members are involved in palatogenesis remains to be elucidated. In the present study, mRNA expression patterns of Bmp2, Bmp3 and Bmp4 in the developing anterior and posterior palates were examined and compared, focusing on the fusion stage. Methods To detect the expression of Bmp mRNA, antisense riboprobes were synthesized by in vitro transcription. Radioactive in situ hybridization was performed on sagital and coronal sections of mice head from E13 to E18. Results The expression of these Bmps were developmentally regulated in the anterior and posterior palates prior to, during and after palatal fusion. During palatal fusion, Bmp4 expression shifted from the anterior to the posterior palate, Bmp2 was highly expressed in both the anterior and posterior palates in this process, whereas Bmp3 was only localized in the posterior palate. They showed generally non-overlapping pattern in their expression domains. Thereafter, their expression was detected in both the anterior and posterior palates regulating osteogenesis and myogenesis respectively. Conclusions Bmp signalling is involved in palatogenesis in multiple stages and has multiple roles in regulating anterior and posterior palatal development. Disturbances of Bmp signalling during palatogenesis might be a possible mechanism of cleft palate.

  5. Effects of low dose FGF-2 and BMP-2 on healing of calvarial defects in old mice.

    Science.gov (United States)

    Charles, Lyndon F; Woodman, Jessica L; Ueno, Daisuke; Gronowicz, Gloria; Hurley, Marja M; Kuhn, Liisa T

    2015-04-01

    There is an age-associated reduction in the bone healing activity of bone morphogenetic protein-2 (BMP-2) that is currently addressed by administering higher doses of BMP-2 in elderly patients. The unwanted medical complications from high dose BMP-2 motivated this investigation to determine whether the addition of a low dose of fibroblast growth factor 2 (FGF-2) could enhance the ability of a lower dose of BMP-2 to heal calvarial bone defects in old mice (18-20 months old). FGF-2 (5 ng) and BMP-2 (2 μg) were administered by a controlled release two-phase biomaterial scaffold placed into the bone defect. FGF-2 released more rapidly and completely in vitro than BMP-2 (40% vs 2%). In vivo, both BMP-2 and FGF-2+BMP-2 groups formed more new bone in calvarial defects than scaffold alone (p FGF-2 only groups (p FGF-2 to BMP-2 as measured by microCT, but the pattern of bone deposition was different. In old mice, but not young, there was enhanced bony fill in the central bone defect area when the BMP-2 was supplemented with FGF-2. Histological analysis of the center of the defect revealed an increased bone volume (%BV/TV (p = 0.004)) from the addition of FGF-2. These studies suggest that combining a low dose of FGF-2 with a low dose of BMP-2 has the potential to increase bone healing in old mice relative to BMP-2 alone.

  6. Review of the integrated process for the production of grass biomethane.

    Science.gov (United States)

    Nizami, Abdul-Sattar; Korres, Nicholas E; Murphy, Jerry D

    2009-11-15

    Production of grass biomethane is an integrated process which involves numerous stages with numerous permutations. The grass grown can be of numerous species, and it can involve numerous cuts. The lignocellulosic content of grass increases with maturity of grass; the first cut offers more methane potential than the later cuts. Water-soluble carbohydrates (WSC) are higher (and as such methane potential is higher) for grass cut in the afternoon as opposed to that cut in the morning. The method of ensiling has a significant effect on the dry solids content of the grass silage. Pit or clamp silage in southern Germany and Austria has a solids content of about 40%; warm dry summers allow wilting of the grass before ensiling. In temperate oceanic climates like Ireland, pit silage has a solids content of about 21% while bale silage has a solids content of 32%. Biogas production is related to mass of volatile solids rather than mass of silage; typically one ton of volatile solid produces 300 m(3) of methane. The dry solids content of the silage has a significant impact on the biodigester configuration. Silage with a high solids content would lend itself to a two-stage process; a leach bed where volatile solids are converted to a leachate high in chemical oxygen demand (COD), followed by an upflow anaerobic sludge blanket where the COD can be converted efficiently to CH(4). Alternative configurations include wet continuous processes such as the ubiquitous continuously stirred tank reactor; this necessitates significant dilution of the feedstock to effect a solids content of 12%. Various pretreatment methods may be employed especially if the hydrolytic step is separated from the methanogenic step. Size reduction, thermal, and enzymatic methodologies are used. Good digester design is to seek to emulate the cow, thus rumen fluid offers great potential for hydrolysis.

  7. Anamet and biomet systems for biomethanation of organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Frostell, B.

    1985-01-01

    The Anamet system was originally developed to handle wastes from the Swedish sugar industry. It is a combined anaerobic-aerobic waste water treatment process (ANAMET - ANaerobic-Aerobic- METhane) where the waste water is firstly processed in an anaerobic contact reactor and secondly in an activated sludge plant. In the anaerobic stage, 60-95% of incoming biodegradable material is converted to biogas which is recovered as a fuel. In the subsequent aerobic stage, most of the remaining biodegradable material is removed resulting in overall BOD5 reductions of 95-99%. The excess biomass produced in the aerobic stage is digested in the anaerobic stage further increasing yield of biogas. The Anamet process has found wide-spread application in the food industry. In treatment of food industry waste waters, it has been possible to achieve 98-99.9% BOD5 reduction in the Anamet system. Gas recoveries amount to 0.18-0.33 cubic m methane per kg added COD. Recently, the Anamet process was introduced in the pulp and paper industry. The treatment of these waste waters often is somewhat problematic due to the presence of toxic or inhibitory materials and sulphate. This results in a somewhat lower anaerobic efficiency and also in lowered gas yields. In the Anamet system, anaerobic BOD5 reductions of 60-85% have been demonstrated. Totally, 90-95% BOD5 reduction can relatively easily be obtained. The Biomet system has been developed to treat solid organic wastes and energy crops. In this process, a thermophilic methanogenic stage is used up-stream the Anamet process. Promising results were demonstrated in a 50 cubic m pilot plant treating beet pulp. The paper reviews AC Biotechnics' pilot and full scale experience in treating waste waters and solid wastes by methane fermentation. Special attention is paid to the influence of different substrates in the biomethanation process, and on the possible biogas yield.

  8. BMP-2 Overexpression Augments Vascular Smooth Muscle Cell Motility by Upregulating Myosin Va via Erk Signaling

    Directory of Open Access Journals (Sweden)

    Ming Zhang

    2014-01-01

    Full Text Available Background. The disruption of physiologic vascular smooth muscle cell (VSMC migration initiates atherosclerosis development. The biochemical mechanisms leading to dysfunctional VSMC motility remain unknown. Recently, cytokine BMP-2 has been implicated in various vascular physiologic and pathologic processes. However, whether BMP-2 has any effect upon VSMC motility, or by what manner, has never been investigated. Methods. VSMCs were adenovirally transfected to genetically overexpress BMP-2. VSMC motility was detected by modified Boyden chamber assay, confocal time-lapse video assay, and a colony wounding assay. Gene chip array and RT-PCR were employed to identify genes potentially regulated by BMP-2. Western blot and real-time PCR detected the expression of myosin Va and the phosphorylation of extracellular signal-regulated kinases 1/2 (Erk1/2. Immunofluorescence analysis revealed myosin Va expression locale. Intracellular Ca2+ oscillations were recorded. Results. VSMC migration was augmented in VSMCs overexpressing BMP-2 in a dose-dependent manner. siRNA-mediated knockdown of myosin Va inhibited VSMC motility. Both myosin Va mRNA and protein expression significantly increased after BMP-2 administration and were inhibited by Erk1/2 inhibitor U0126. BMP-2 induced Ca2+ oscillations, generated largely by a “cytosolic oscillator”. Conclusion. BMP-2 significantly increased VSMCs migration and myosin Va expression, via the Erk signaling pathway and intracellular Ca2+ oscillations. We provide additional insight into the pathophysiology of atherosclerosis, and inhibition of BMP-2-induced myosin Va expression may represent a potential therapeutic strategy.

  9. Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Luo, Gang; Wang, Wen; Angelidaki, Irini

    2013-01-01

    Syngas is produced by thermal gasification of both non-renewable and renewable sources including biomass and coal, and it consists mainly of CO, CO2 and H2. In this paper we aim to bio-convert CO in the syngas to CH4. A novel technology for simultaneous sewage sludge treatment and CO biomethanation...

  10. Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste.

    Science.gov (United States)

    Meng, Ying; Li, Sang; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2015-03-01

    The lipase obtained from Aspergillums niger was applied to promote the hydrolysis of food waste for achieving high biomethane production. Two strategies of lipase additions were investigated. One (Group A) was to pre-treat food waste to pre-decompose lipid to fatty acids before anaerobic digestion, and another one (Group B) was to add lipase to anaerobic digester directly to degrade lipid inside digester. The lipase was used at the concentrations of 0.1%, 0.5%, and 1.0% (w/v). The results showed that Group A achieved higher biomethane production, TS and VS reductions than those of Group B. At 0.5% lipase concentration, Group A obtained experimental biomethane yield of 500.1 mL/g VS(added), 4.97-26.50% higher than that of Group B. The maximum Bd of 73.8% was also achieved in Group A. Therefore, lipase pre-treatment strategy is recommended. This might provide one of alternatives for efficient biomethane production from food waste and mitigating environmental impact associated.

  11. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects.

    Science.gov (United States)

    Xiong, Long; Zeng, Jianhua; Yao, Aihua; Tu, Qiquan; Li, Jingtang; Yan, Liang; Tang, Zhiming

    2015-01-01

    The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2), a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 μm) with a core (60±18 μm) and a mesoporous shell (180±42 m(2)/g surface area) were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 μg/mg). There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option for bone graft substitutes in bone regeneration.

  12. Mouse bone marrow stromal cells differentiate to neuron-like cells upon inhibition of BMP signaling.

    Science.gov (United States)

    Saxena, Monika; Prashar, Paritosh; Yadav, Prem Swaroop; Sen, Jonaki

    2016-01-01

    Bone marrow stromal cells (BMSCs) are a source of autologous stem cells that have the potential for undergoing differentiation into multiple cell types including neurons. Although the neuronal differentiation of mesenchymal stem cells has been studied for a long time, the molecular players involved are still not defined. Here we report that the genetic deletion of two members of the bone morphogenetic protein (Bmp) family, Bmp2 and Bmp4 in mouse BMSCs causes their differentiation into cells with neuron-like morphology. Surprisingly these cells expressed certain markers characteristic of both neuronal and glial cells. Based on this observation, we inhibited BMP signaling in mouse BMSCs through a brief exposure to Noggin protein which also led to their differentiation into cells expressing both neuronal and glial markers. Such cells seem to have the potential for further differentiation into subtypes of neuronal and glial cells and thus could be utilized for cell-based therapeutic applications.

  13. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1.

    Science.gov (United States)

    Shen, Jia; James, Aaron W; Zara, Janette N; Asatrian, Greg; Khadarian, Kevork; Zhang, James B; Ho, Stephanie; Kim, Hyun Ju; Ting, Kang; Soo, Chia

    2013-11-01

    Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a

  14. Repressive BMP2 gene regulatory elements near the BMP2 promoter

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shan [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Chandler, Ronald L. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Fritz, David T. [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States); Mortlock, Douglas P. [Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, TN (United States); Rogers, Melissa B., E-mail: rogersmb@umdnj.edu [Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry (UMDNJ), New Jersey Medical School (NJMS), Newark, NJ (United States)

    2010-02-05

    The level of bone morphogenetic protein 2 (BMP2) profoundly influences essential cell behaviors such as proliferation, differentiation, apoptosis, and migration. The spatial and temporal pattern of BMP2 synthesis, particular in diverse embryonic cells, is highly varied and dynamic. We have identified GC-rich sequences within the BMP2 promoter region that strongly repress gene expression. These elements block the activity of a highly conserved, osteoblast enhancer in response to FGF2 treatment. Both positive and negative gene regulatory elements control BMP2 synthesis. Detecting and mapping the repressive motifs is essential because they impede the identification of developmentally regulated enhancers necessary for normal BMP2 patterns and concentration.

  15. Phenotype characterization and sequence analysis of BMP2 and BMP4 variants in two Mexican families with oligodontia.

    Science.gov (United States)

    Mu, Y; Xu, Z; Contreras, C I; McDaniel, J S; Donly, K J; Chen, S

    2012-11-28

    Both BMP2 and BMP4 are involved in tooth development. We examined phenotypes and BMP2 and BMP4 gene variations in two Mexican oligodontia families. Physical and oral examinations and panoramic radiographs were performed on affected and unaffected members in these two families. The affected members lacked six or more teeth. DNA sequencing was performed to detect BMP2 and BMP4 gene variations. Three single nucleotide polymorphisms (SNPs) in BMP2 and BMP4 genes were identified in the two families, including one synonymous and two missense SNPs: BMP2 c261A>G, pS87S, BMP2 c570A>T, pR190S, and BMP4 c455T>C, pV152A. Among the six affected patients, 67% carried "GG" or "AG" genotype in BMP2 c261A>G and four were "TT" or "AT" genotype in BMP2 c570A>T (pR190S). Polymorphism of BMP4 c455T>C resulted in amino acid changes of Val/Ala (pV152A). BMP2 c261A>G and BMP4 c455T>C affect mRNA stability. This was the first time that BMP2 and BMP4 SNPs were observed in Mexican oligodontia families.

  16. BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality.

    Directory of Open Access Journals (Sweden)

    Mariëtte R Boon

    Full Text Available BACKGROUND/AIMS: Brown adipose tissue (BAT dissipates energy stored in triglycerides as heat via the uncoupling protein UCP-1 and is a promising target to combat hyperlipidemia and obesity. BAT is densely innervated by the sympathetic nervous system, which increases BAT differentiation and activity upon cold exposure. Recently, Bone Morphogenetic Protein 7 (BMP7 was identified as an inducer of BAT differentiation. We aimed to elucidate the role of sympathetic activation in the effect of BMP7 on BAT by treating mice with BMP7 at varying ambient temperature, and assessed the therapeutic potential of BMP7 in combating obesity. METHODS AND RESULTS: High-fat diet fed lean C57Bl6/J mice were treated with BMP7 via subcutaneous osmotic minipumps for 4 weeks at 21 °C or 28 °C, the latter being a thermoneutral temperature in which sympathetic activation of BAT is largely diminished. At 21 °C, BMP7 increased BAT weight, increased the expression of Ucp1, Cd36 and hormone-sensitive lipase in BAT, and increased total energy expenditure. BMP7 treatment markedly increased food intake without affecting physical activity. Despite that, BMP7 diminished white adipose tissue (WAT mass, accompanied by increased expression of genes related to intracellular lipolysis in WAT. All these effects were blunted at 28 °C. Additionally, BMP7 resulted in extensive 'browning' of WAT, as evidenced by increased expression of BAT markers and the appearance of whole clusters of brown adipocytes via immunohistochemistry, independent of environmental temperature. Treatment of diet-induced obese C57Bl6/J mice with BMP7 led to an improved metabolic phenotype, consisting of a decreased fat mass and liver lipids as well as attenuated dyslipidemia and hyperglycemia. CONCLUSION: Together, these data show that BMP7-mediated recruitment and activation of BAT only occurs at subthermoneutral temperature, and is thus likely dependent on sympathetic activation of BAT, and that BMP7 may be a

  17. BMP-7 Signaling and its Critical Roles in Kidney Development, the Responses to Renal Injury, and Chronic Kidney Disease.

    Science.gov (United States)

    Manson, Scott R; Austin, Paul F; Guo, Qiusha; Moore, Katelynn H

    2015-01-01

    Chronic kidney disease (CKD) is a significant health problem that most commonly results from congenital abnormalities in children and chronic renal injury in adults. The therapeutic potential of BMP-7 was first recognized nearly two decades ago with studies demonstrating its requirement for kidney development and ability to inhibit the pathogenesis of renal injury in models of CKD. Since this time, our understanding of CKD has advanced considerably and treatment strategies have evolved with the identification of many additional signaling pathways, cell types, and pathologic processes that contribute to disease progression. The purpose of this review is to revisit the seminal studies that initially established the importance of BMP-7, highlight recent advances in BMP-7 research, and then integrate this knowledge with current research paradigms. We will provide an overview of the evolutionarily conserved roles of BMP proteins and the features that allow BMP signaling pathways to function as critical signaling nodes for controlling biological processes, including those related to CKD. We will discuss the multifaceted functions of BMP-7 during kidney development and the potential for alterations in BMP-7 signaling to result in congenital abnormalities and pediatric kidney disease. We will summarize the renal protective effects of recombinant BMP-7 in experimental models of CKD and then propose a model to describe the potential physiological role of endogenous BMP-7 in the innate repair mechanisms of the kidneys that respond to renal injury. Finally, we will highlight emerging clinical approaches for applying our knowledge of BMP-7 toward improving the treatment of patients with CKD.

  18. Bacillus thuringiensis metalloproteinase Bmp1 functions as a nematicidal virulence factor.

    Science.gov (United States)

    Luo, Xiaoxia; Chen, Ling; Huang, Qiong; Zheng, Jinshui; Zhou, Wei; Peng, Donghai; Ruan, Lifang; Sun, Ming

    2013-01-01

    Some Bacillus thuringiensis strains have high toxicity to nematodes. Nematicidal activity has been found in several families of crystal proteins, such as Cry5, Cry6, and Cry55. The B. thuringiensis strain YBT-1518 has three cry genes that have high nematicidal activity. The whole genome sequence of this strain contains multiple potential virulence factors. To evaluate the pathogenic potential of virulence factors, we focused on a metalloproteinase called Bmp1. It encompasses a consecutive N-terminal signal peptide, an FTP superfamily domain, an M4 neutral protease GluZincin superfamily, two Big-3 superfamily motifs, and a Gram-positive anchor superfamily motif as a C-terminal domain. Here, we showed that purified Bmp1 protein showed metalloproteinase activity and toxicity against Caenorhabditis elegans (the 50% lethal concentration is 610 ± 9.37 μg/ml). In addition, mixing Cry5Ba with Bmp1 protein enhanced the toxicity 7.9-fold (the expected toxicity of the two proteins calculated from their separate toxicities) against C. elegans. Confocal microscopic observation revealed that Bmp1 protein was detected from around the mouth and esophagus to the intestine. Striking microscopic images revealed that Bmp1 degrades intestine tissues, and the Cry5Ba causes intestinal shrinkage from the body wall. Thus, the B. thuringiensis Bmp1 metalloproteinase is a nematicidal virulence factor. These findings give a new insight into the relationship between B. thuringiensis and its host nematodes.

  19. Osteogenesis Capacity of a Novel BMP/α-TCP Bioactive Composite Bone Cement

    Institute of Scientific and Technical Information of China (English)

    YANG Wei-zhong; ZHOU Da-li; YIN Shao-ya; YIN Guang-fu; GAO Li-da; ZHANG Yun

    2004-01-01

    To improve the osteogenesis ability of α-tricalcium phosphate (α-TCP) bone cement,a novel BMP/α-TCP composite bone cement was prepared.By measuring the setting time and compressive strength,the hydration characteristic of bone cement was evaluated.Animal experiments including histological observation,radiographic investigation as well as digital image analyses reveal the difference of osteogenesis ability among BMP,α-TCP bone cement and BMP/α-TCP composite bone cement.Results show that α-TCP bone cement possesses excellent hydration and setting properties as well as high mechanical property.Comparison experiments show that BMP/α-TCP composite bone cement has a stronger osteogenesis ability.The gross observation of the implant site does not exhibit any inflammation or necrosis.Histological analyses reveal that the material has good osteointegration with host bone,and new bone formation is detected within the materials,which are degrading.Strong osteogenesis ability of the composite is due to not only the excellent osteoconductive potential but also the osteoinductive potential contributed by active BMP releasing and the material degradation.Large skull defect could be well-healed by filling BMP/α-TCP composite bone cement.This novel material proves itself to be an absorbable and bioactive bone cement with an osteogenesis ability.

  20. Effect of BMP-2 Delivery Mode on Osteogenic Differentiation of Stem Cells

    Science.gov (United States)

    Kim, Yong-Jin; Kim, Ki-Suk; Jang, Hyon-Seok; Chung, Hyung-Min

    2017-01-01

    Differentiation of stem cells is an important strategy for regeneration of defective tissue in stem cell therapy. Bone morphogenetic protein-2 (BMP-2) is a well-known osteogenic differentiation factor that stimulates stem cell signaling pathways by activating transmembrane type I and type II receptors. However, BMPs have a very short half-life and may rapidly lose their bioactivity. Thus, a BMP delivery system is required to take advantage of an osteoinductive effect for osteogenic differentiation. Previously, BMP delivery has been designed and evaluated for osteogenic differentiation, focusing on carriers and sustained release system for delivery of BMPs. The effect of the delivery mode in cell culture plate on osteogenic differentiation potential was not evaluated. Herein, to investigate the effect of delivery mode on osteogenic differentiation of BM-MSCs in this study, we fabricated bottom-up release and top-down release systems for culture plate delivery of BMP-2. And also, we selected Arg-Gly-Asp- (RGD-) conjugated alginate hydrogel for BMP-2 delivery because alginate is able to release BMP-2 in a sustained manner and it is a biocompatible material. After 7 days of culture, the bottom-up release system in culture plate significantly stimulated alkaline phosphate activity of human bone marrow-mesenchymal stem cells. The present study highlights the potential value of the tool in stem cell therapy. PMID:28197209

  1. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro.

  2. Signal mingle: Micropatterns of BMP-2 and fibronectin on soft biopolymeric films regulate myoblast shape and SMAD signaling

    Science.gov (United States)

    Fitzpatrick, Vincent; Fourel, Laure; Destaing, Olivier; Gilde, Flora; Albigès-Rizo, Corinne; Picart, Catherine; Boudou, Thomas

    2017-01-01

    In vivo, bone morphogenetic protein 2 (BMP-2) exists both in solution and bound to the extracellular matrix (ECM). While these two modes of presentation are known to influence cell behavior distinctly, their role in the niche microenvironment and their functional relevance in the genesis of a biological response has sparsely been investigated at a cellular level. Here we used the natural affinity of BMP-2 for fibronectin (FN) to engineer cell-sized micropatterns of BMP-2. This technique allowed the simultaneous control of the spatial presentation of fibronectin-bound BMP-2 and cell spreading. These micropatterns induced a specific actin and adhesion organization around the nucleus, and triggered the phosphorylation and nuclear translocation of SMAD1/5/8 in C2C12 myoblasts and mesenchymal stem cells, an early indicator of their osteoblastic trans-differentiation. We found that cell spreading itself potentiated a BMP-2-dependent phosphorylation of SMAD1/5/8. Finally, we demonstrated that FN/BMP-2-mediated early SMAD signaling depended on LIM kinase 2 and ROCK, rather than myosin II activation. Altogether, our results show that FN/BMP-2 micropatterns are a useful tool to study the mechanisms underlying BMP-2-mediated mechanotransduction. More broadly, our approach could be adapted to other combinations of ECM proteins and growth factors, opening an exciting avenue to recreate tissue-specific niches in vitro. PMID:28134270

  3. Bone Regeneration using an Alpha 2 Beta 1 Integrin-Specific Hydrogel as a BMP-2 Delivery Vehicle

    Science.gov (United States)

    Shekaran, Asha; García, José R.; Clark, Amy Y.; Kavanaugh, Taylor E.; Lin, Angela S.; Guldberg, Robert E.; García, Andrés J.

    2014-01-01

    Non-healing bone defects present tremendous socioeconomic costs. Although successful in some clinical settings, bone morphogenetic protein (BMP) therapies require supraphysiological dose delivery for bone repair, raising treatment costs and risks of complications. We engineered a protease-degradable poly(ethylene glycol) (PEG) synthetic hydrogel functionalized with a triple helical, α2β1 integrin-specific peptide (GFOGER) as a BMP-2 delivery vehicle. GFOGER-functionalized hydrogels lacking BMP-2 directed human stem cell differentiation and produced significant enhancements in bone repair within a critical-sized bone defect compared to RGD hydrogels or empty defects. GFOGER functionalization was crucial to the BMP-2-dependent healing response. Importantly, these engineered hydrogels outperformed the current clinical carrier in repairing non-healing bone defects at low BMP-2 doses. GFOGER hydrogels provided sustained in vivo release of encapsulated BMP-2, increased osteoprogenitor localization in the defect site, enhanced bone formation and induced defect bridging and mechanically robust healing at low BMP-2 doses which stimulated almost no bone regeneration when delivered from collagen sponges. These findings demonstrate that GFOGER hydrogels promote bone regeneration in challenging defects with low delivered BMP-2 doses and represent an effective delivery vehicle for protein therapeutics with translational potential. PMID:24726536

  4. Intranasal BMP9 Ameliorates Alzheimer Disease-Like Pathology and Cognitive Deficits in APP/PS1 Transgenic Mice

    Science.gov (United States)

    Wang, Zigao; Xiong, Lu; Wan, Wenbin; Duan, Lijie; Bai, Xiaojing; Zu, Hengbing

    2017-01-01

    Alzheimer’s disease (AD) is the most common type of dementia and has no effective therapies. Previous studies showed that bone morphogenetic protein 9 (BMP9), an important factor in the differentiation and phenotype maintenance of cholinergic neurons, ameliorated the cholinergic defects resulting from amyloid deposition. These findings suggest that BMP9 has potential as a therapeutic agent for AD. However, the effects of BMP9 on cognitive function in AD and its underlying mechanisms remain elusive. In the present study, BMP9 was delivered intranasally to 7-month-old APP/PS1 mice for 4 weeks. Our data showed that intranasal BMP9 administration significantly improved the spatial and associative learning and memory of APP/PS1 mice. We also found that intranasal BMP9 administration significantly reduced the amyloid β (Aβ) plaques overall, inhibited tau hyperphosphorylation, and suppressed neuroinflammation in the transgenic mouse brain. Furthermore, intranasal BMP9 administration significantly promoted the expression of low-density lipoprotein receptor-related protein 1 (LRP1), an important membrane receptor involved in the clearance of amyloid β via the blood-brain barrier (BBB), and elevated the phosphorylation levels of glycogen synthase kinase-3β (Ser9), which is considered the main kinase involved in tau hyperphosphorylation. Our results suggest that BMP9 may be a promising candidate for treating AD by targeting multiple key pathways in the disease pathogenesis. PMID:28228716

  5. BRITER: a BMP responsive osteoblast reporter cell line.

    Directory of Open Access Journals (Sweden)

    Prem Swaroop Yadav

    Full Text Available BACKGROUND: BMP signaling pathway is critical for vertebrate development and tissue homeostasis. High-throughput molecular genetic screening may reveal novel players regulating BMP signaling response while chemical genetic screening of BMP signaling modifiers may have clinical significance. It is therefore important to generate a cell-based tool to execute such screens. METHODOLOGY/PRINCIPAL FINDINGS: We have established a BMP responsive reporter cell line by stably integrating a BMP responsive dual luciferase reporter construct in the immortalized calvarial osteoblast cells isolated from tamoxifen inducible Bmp2; Bmp4 double conditional knockout mouse strain. This cell line, named BRITER (BMP Responsive Immortalized Reporter cell line, responds robustly, promptly and specifically to exogenously added BMP2 protein. The sensitivity to added BMP may be further increased by depleting the endogenous BMP2 and BMP4 proteins. CONCLUSION: As the dynamic range of the assay (for BMP responsiveness is very high for BRITER and as it responds specifically and promptly to exogenously added BMP2 protein, BRITER may be used effectively for chemical or molecular genetic screening for BMP signaling modifiers. Identification of novel molecular players capable of influencing BMP signaling pathway may have clinical significance.

  6. Bone Morphogenetic Protein (BMP-7 expression is decreased in human hypertensive nephrosclerosis

    Directory of Open Access Journals (Sweden)

    Cohen Clemens D

    2010-11-01

    Full Text Available Abstract Background Bone Morphogenetic Protein (BMP-7 is protective in different animal models of acute and chronic kidney disease. Its role in human kidneys, and in particular hypertensive nephrosclerosis, has thus far not been described. Methods BMP-7 mRNA was quantified using real-time PCR and localised by immunostaining in tissue samples from normal and nephrosclerotic human kidneys. The impact of angiotensin (AT-II and the AT-II receptor antagonist telmisartan on BMP-7 mRNA levels and phosphorylated Smad 1/5/8 (pSmad 1/5/8 expression was quantified in proximal tubular cells (HK-2. Functional characteristics of BMP-7 were evaluated by testing its influence on TGF-β induced epithelial-to-mesenchymal transition (EMT, expression of TGF-β receptor type I (TGF-βRI and phosphorylated Smad 2 (pSmad 2 as well as on TNF-α induced apoptosis of proximal tubular cells. Results BMP-7 was predominantly found in the epithelia of the distal tubule and the collecting duct and was less abundant in proximal tubular cells. In sclerotic kidneys, BMP-7 was significantly decreased as demonstrated by real-time PCR and immunostaining. AT-II stimulation in HK-2 cells led to a significant decrease of BMP-7 and pSmad 1/5/8, which was partially ameliorated upon co-incubation with telmisartan. Only high concentrations of BMP-7 (100 ng/ml were able to reverse TNF-α-induced apoptosis and TGF-β-induced EMT in human proximal tubule cells possibly due to a decreased expression of TGF-βRI. In addition, BMP-7 was able to reverse TGF-β-induced phosphorylation of Smad 2. Conclusions The findings suggest a protective role for BMP-7 by counteracting the TGF-β and TNF-α-induced negative effects. The reduced expression of BMP-7 in patients with hypertensive nephrosclerosis may imply loss of protection and regenerative potential necessary to counter the disease.

  7. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia

    Directory of Open Access Journals (Sweden)

    Barisa Aiga

    2015-12-01

    Full Text Available The current needs of sustainable urban development are rising. As the transport sector expands, emissions continue to rise. Due to their negative impact on human health and the environment, air quality requirements are becoming more and more stringent. At the same time, the amount of waste is increasing. Europe Union policies attempt to relieve the pressure that these two stressors place on urban systems as they themselves expand. Today different solutions are available to decrease greenhouse gas emissions, increase air quality and improve waste management systems. Among them, waste-to-biomethane for use in urban systems deserves more attention. The paper focuses on application of the concept of waste-to-biomethane and the case study of Valmiera is evaluated. The results show that the application of the waste-to-biomethane strategy can contribute to a complete substitution of diesel fuel in urban buses and gives savings of around 1,000 tCO2/year. The price of the biomethane was found to be the most sensitive input factor. It is suggested that it should not exceed 0.40 EUR/Nm3 for a fuel conversion project of a fleet of 10 vehicles. Such a price can be ensured, if dry fermentation technology is chosen for biogas production. However, from the sustainability perspective, wet fermentation is more preferable due to the introduction of a source-separated organic waste management system in the region and higher gas yields. Introduction of this alternative requires additional funds which is a question of policy-level decisions.

  8. Waste-to-biomethane Concept Application: A Case Study of Valmiera City in Latvia

    Science.gov (United States)

    Barisa, Aiga; Dzene, Ilze; Rosa, Marika; Dobraja, Kristine

    2015-12-01

    The current needs of sustainable urban development are rising. As the transport sector expands, emissions continue to rise. Due to their negative impact on human health and the environment, air quality requirements are becoming more and more stringent. At the same time, the amount of waste is increasing. Europe Union policies attempt to relieve the pressure that these two stressors place on urban systems as they themselves expand. Today different solutions are available to decrease greenhouse gas emissions, increase air quality and improve waste management systems. Among them, waste-to-biomethane for use in urban systems deserves more attention. The paper focuses on application of the concept of waste-to-biomethane and the case study of Valmiera is evaluated. The results show that the application of the waste-to-biomethane strategy can contribute to a complete substitution of diesel fuel in urban buses and gives savings of around 1,000 tCO2/year. The price of the biomethane was found to be the most sensitive input factor. It is suggested that it should not exceed 0.40 EUR/Nm3 for a fuel conversion project of a fleet of 10 vehicles. Such a price can be ensured, if dry fermentation technology is chosen for biogas production. However, from the sustainability perspective, wet fermentation is more preferable due to the introduction of a source-separated organic waste management system in the region and higher gas yields. Introduction of this alternative requires additional funds which is a question of policy-level decisions.

  9. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion☆

    Institute of Scientific and Technical Information of China (English)

    Muhammad Jaffar; Yunzhi Pang; Hairong Yuan; Dexun Zou; Yanping Liu; Baoning Zhu; Rashid Mustafa Korai; Xiujin Li

    2016-01-01

    Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1%(K1), 3%(K2), 6%(K3) and 9%(K4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1. 86%of total solids (TS), 89%of volatile solids (VS) and 22%of lignocel ulose, cellulose and hemi-cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6%KOH. Enhanced bio-gas production and cumulative biomethane yield of 258 ml·(g VS)−1 were obtained increased by 45%and 41%respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (138%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.

  10. Rat adipose-derived stromal cells expressing BMP4 induce ectopic bone formation in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Lin LIN; Xin FU; Xin ZHANG; Lian-xu CHEN; Ji-ying ZHANG; Chang-long YU; Kang-tao MA; Chun-yan ZHOU

    2006-01-01

    Aim: Bone morphogenetic protein 4 (BMP4) is one of the main local contributing factors in callus formation in the early phase of fracture healing. Adipose-derived stromal cells (ADSC) are multipotent cells. The present study was conducted to investigate the osteogenic potential of ADSC when exposed to adenovirus containing BMP4 cDNA (Ad-BMP4). Methods: ADSC were harvested from Sprague-Dawley rats. After exposure to Ad-BMP4, ADSC were assessed by alkaline phos-phatase activity (ALP) assay, RT-PCR and von Kossa staining. BMP4 expression was assessed by RT-PCR, immunofluorescence and Western blot analysis. ADSC transduced with Ad-BMP4 were directly injected into the hind limb muscles of athymic mice. ADSC Ad-EGFP(enhanced green fluorescence protein) served as controls. All animals were examined by X-ray film and histological analysis. Results: The expression of BMP4 was confirmed at both mRNA and protein levels. The expression of the osteoblastic gene, ALP activity and von Kossa staining confirmed that ADSC transduced with Ad-BMP4 underwent rapid and marked osteoblast differentiation, whereas ADSC transduced with Ad-EGFP and cells left alone displayed no osteogenic differentiation. X-ray and histological examination confirmed new bone formation in athymic mice transplanted with ADSC transduced with Ad-BMP4. Conclusion: Our data demonstrated successful osteogenic differentiation of ADSC transduced with Ad-BMP4 in vitro and in vivo. ADSC may be an ideal source of mesenchyme lineage stem cells for gene therapy and tissue engineering.

  11. A carboxy terminal BMP/TGF-β binding site in secreted phosphoprotein 24 kD independently affects BMP-2 activity.

    Science.gov (United States)

    Tian, Haijun; Li, Chen-Shuang; Zhao, Ke-Wei; Wang, Jeffrey C; Duarte, M Eugenia L; David, Cynthia L; Phan, Kevin; Atti, Elisa; Brochmann, Elsa J; Murray, Samuel S

    2015-04-01

    Secreted phosphoprotein 24 kD (spp24) is a bone matrix protein isolated during attempts to identify osteogenic proteins. It is not osteogenic but performs other important roles in the regulation of bone metabolism, at least in part, by binding to and affecting the activity of members of the BMP/TGF-β family of cytokines. Spp24 exists in a number of forms that preserve the N-terminus and are truncated at the C-terminus. The hypothesized cytokine binding domain is present within the cystatin domain which is preserved in all of the N-terminal products. In this report, we describe a C-terminal fragment that is distinct from the cystatin domain and which independently binds to BMP-2 and TGF-β. This fragment inhibited BMP-2 activity in an ectopic bone forming assay. A shorter C-terminal product did not inhibit BMP-2 activity but improved bone quality induced by BMP-2 and produced increased calcium deposition outside of bone. Spp24 has been used to develop several potential therapeutic proteins. These results provide more information on the function of spp24 and provide other materials that can be exploited for clinical interventions.

  12. Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia

    Directory of Open Access Journals (Sweden)

    Emmanuelle eTillet

    2015-01-01

    Full Text Available Rendu-Osler-Weber syndrome, also known as hereditary hemorrhagic telangiectasia (HHT, is an autosomal dominant vascular disorder. Three genes are causally related to HHT: the ENG gene encoding endoglin, a co-receptor of the TGFß family (HHT1, the ACVRL1 gene encoding ALK1 (activin receptor-like kinase 1, a type I receptor of the TGFß family (HHT2, and the SMAD4 gene, encoding a transcription factor critical for this signaling pathway. Bone morphogenetic proteins (BMPs are growth factors of the TGFß family. Among them, BMP9 and BMP10 have been shown to bind directly with high affinity to ALK1 and endoglin, and BMP9 mutations have recently been linked to a vascular-anomaly syndrome that has phenotypic overlap with HHT. BMP9 and BMP10 are both circulating cytokines in blood, and the current working model is that BMP9 and BMP10 maintain a quiescent endothelial state that is dependent on the level of ALK1/endoglin activation on endothelial cells. In accordance with this model, to explain the etiology of HHT we hypothesize that a deficient BMP9/BMP10/ALK1/endoglin pathway may lead to re-activation of angiogenesis or a greater sensitivity to an angiogenic stimulus. Resulting endothelial hyperproliferation and hypermigration may lead to vasodilatation and formation of arteriovenous malformation (AVM. HHT would thus result from a defect in the angiogenic balance. This review will focus on the emerging role played by BMP9 and BMP10 in the development of this disease and the therapeutic approaches that this opens.

  13. BMP2-coprecipitated calcium phosphate granules enhance osteoinductivity of deproteinized bovine bone, and bone formation during critical-sized bone defect healing.

    Science.gov (United States)

    Liu, Tie; Zheng, Yuanna; Wu, Gang; Wismeijer, Daniel; Pathak, Janak L; Liu, Yuelian

    2017-01-31

    Most materials used clinically for filling critical-sized bone defects (CSBD), such as deproteinized bovine bone (DBB), lack osteoinductivity so that their therapeutic effects are far from satisfactory. The effect of bone morphogenic protein 2 (BMP2)-coprecipitated biomimetic calcium phosphate granules (BMP2-cop.BioCaP) on osteoinduction of DBB graft(s) during CSBD healing is still unknown. We investigated whether BMP2-cop.BioCaP affects the osteoinductivity of DBB, bone formation, and foreign body reaction during CSBD healing. DBB + BMP2-cop.BioCaP, DBB, DBB + BMP2, DBB + BioCaP, and autologous bone grafts were implanted in the CSBD of sheep. Bone formation, DBB/BioCaP degradability, foreign body reaction, and osteoinductivity of DBB were analyzed histologically and histomorphometrically at week 4 and 8. Combination of BMP2-cop.BioCaP and DBB healed CSBD as effectively as autologous bone grafts. About 95% of the BMP2-cop.BioCaP had been degraded and replaced by new bone at week 8 in the DBB + BMP2-cop.BioCaP-group. Foreign body reaction was reduced in the DBB + BMP2-cop.BioCaP-group compared to the other groups. The independent use of the BMP2-cop.BioCaP did not achieve a satisfactory bone repair. In conclusion, the BMP2-cop.BioCaP showed good degradability and biocompatibility, and enhanced osteoinductivity of DBB during CSBD healing in sheep, suggesting BMP2-cop.BioCaP as a potential osteoinducer to enhance the therapeutic effects of the graft materials in clinic.

  14. Laboratory investigations on continuous bio-methanization of energy crops as mono-substrate without supplementation

    Energy Technology Data Exchange (ETDEWEB)

    Demirel, Burak [Hamburg University of Applied Sciences (HAW Hamburg), Lifetec Process Engineering, Lohbruegger Kirchstrasse 65, 21033 Hamburg-Bergedorf (Germany); Bogazici University, Institute of Environmental Sciences, Bebek, 34342 Istanbul (Turkey)

    2009-06-15

    Continuous bio-methanization of an energy crop, namely the beet silage, was investigated in this laboratory-scale work as mono-substrate, using a mesophilic biogas digester controlled by a fuzzy logic control (FLC) technique and without using any supplementing or buffering agent, despite the low pH of the substrate around 3.80. The temperature, pH, redox potential (ORP), daily biogas production and composition of digester biogas were continuously measured online. During the operation, the hydraulic retention time (HRT) varied between 24.8 and 9 days, as the organic loading rate (OLR) ranged from 2.6 to 4.7 g L{sup -1} d{sup -1}. The average pH, specific gas production rate (spec. GPR) and volumetric gas production rate (vol. GPR) were determined to be 7.12, 0.31 L g VS{sup -1} d{sup -1} and 1.084 L L{sup -1} d{sup -1}, respectively. The average methane (CH{sub 4}) content of digester biogas was about 56%. The FLC technique, which was developed at HAW Hamburg for anaerobic conversion of acidic energy crops to methane, determined the daily feeding volume ({proportional_to} OLR/HRT) for the biogas digester, depending on the feedback from online pH and methane measurements, and on the calculation of the spec. GPR. The spec. GPR was calculated by the corrected daily biogas production. Through online monitoring of pH, biogas production rate and composition, and by use of the FLC technique, the acidic beet silage could continuously be converted to biogas, without using manure or any other kind of buffering or supplementing agent(s). The lab-scale anaerobic biogas digester performed stable and safe, without encountering any problems of instability, as indicated by an adequate amount of buffering capacity, a VFA content below 0.5 g L{sup -1} and a neutral pH range throughout the study. (author)

  15. THE IMPACT OF EXTRUSION ON THE BIOGAS AND BIOMETHANE YIELD OF PLANT SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Krzysztof Pilarski

    2016-09-01

    Full Text Available The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg, in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg. The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of

  16. Effect of Emdogain enamel matrix derivative and BMP-2 on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells.

    Science.gov (United States)

    Fawzy El-Sayed, Karim M; Dörfer, Christof; Ungefroren, Hendrick; Kassem, Neemat; Wiltfang, Jörg; Paris, Sebastian

    2014-07-01

    The objective of this study was to evaluate the effect of Emdogain (Enamel Matrix Derivative, EMD) and Bone Morphogenetic Protein-2 (BMP-2), either solely or in combination, on the gene expression and mineralized nodule formation of alveolar bone proper-derived stem/progenitor cells. Stem/progenitor cells were isolated from human alveolar bone proper, magnetically sorted using STRO-1 antibodies, characterized flowcytometrically for their surface markers' expression, and examined for colony formation and multilineage differentiation potential. Subsequently, cells were treated over three weeks with 100 μg/ml Emdogain (EMD-Group), or 100 ng/ml BMP-2 (BMP-Group), or a combination of 100 ng/ml BMP-2 and 100 μg/ml Emdogain (BMP/EMD-Group). Unstimulated stem/progenitor cells (MACS(+)-Group) and osteoblasts (OB-Group) served as controls. Osteogenic gene expression was analyzed using RTq-PCR after 1, 2 and 3 weeks (N = 3/group). Mineralized nodule formation was evaluated by Alizarin-Red staining. BMP and EMD up-regulated the osteogenic gene expression. The BMP Group showed significantly higher expression of Collagen-I, III, and V, Alkaline phosphatase and Osteonectin compared to MACS(+)- and OB-Group (p Emdogain and BMP-2 up-regulate the osteogenic gene expression of stem/progenitor cells. The combination of BMP-2 and Emdogain showed no additive effect and would not be recommended for a combined clinical stimulation.

  17. Molecular characterization, expression and methylation status analysis of BMP4 gene in skin tissue of Liaoning cashmere goat during hair follicle cycle.

    Science.gov (United States)

    Bai, Wen L; Dang, Yun L; Wang, Jiao J; Yin, Rong H; Wang, Ze Y; Zhu, Yu B; Cong, Yu Y; Xue, Hui L; Deng, Liang; Guo, Dan; Wang, Shi Q; Yang, Shu H

    2016-08-01

    Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family (BMPs). It is involved in the development and cycle of hair follicle, as well as, is thought to be a potential candidate gene for cashmere traits in goats. In the present study, we isolated and characterized a full-length open reading frame (ORF) of BMP4 cDNA from the skin tissue of Liaoning cashmere goat, and investigated the transcriptional pattern and methylation status of BMP4 gene in skin tissue of this breed during different stages of hair follicle cycle. The sequence analysis indicated that the isolated cDNA was 1264-bp in length containing a complete ORF of 1230-bp. It encoded a precursor peptide of 409 amino acids with a signal peptide of 19 amino acids. The structural analysis indicated that goat BMP4 contains typical TGF-β propeptide and TGF-β domains. In skin tissue, BMP4 is generally transcribed in an ascendant pattern from anagen to telogen. The methylation level of 5' flanking regulatory region of BMP4 gene might be involved in its mRNA expression in skin tissue: a higher BMP4 methylation level in skin coincides with a lower expression of BMP4 mRNA. These results from the present work provided a foundation for further insight into the functional and regulatory characteristics of BMP4 in the development and cycle of hair follicle in Liaoning Cashmere goat.

  18. Biologic effect and immunoisolating behavior of BMP-2 gene-transfected bone marrow-derived mesenchymal stem cells in APA microcapsules.

    Science.gov (United States)

    Ding, H F; Liu, R; Li, B G; Lou, J R; Dai, K R; Tang, T T

    2007-11-03

    We investigated the encapsulation of BMP-2 gene-modified mesenchymal stem cells (MSCs) in alginate-poly-L-lysine (APA) microcapsules for the persistent delivery of bone morphogenic protein-2 (BMP-2) to induce bone formation. An electrostatic droplet generator was employed to produce APA microcapsules containing encapsulated beta-gal or BMP-2 gene-transfected bone marrow-derived MSCs. We found that X-gal staining was still positive 28 days after encapsulation. Encapsulated BMP-2 gene-transfected cells were capable of constitutive delivery of BMP-2 proteins for at least 30 days. The encapsulated BMP-2 gene-transfected MSCs or the encapsulated non-gene transfer MSCs (control group) were cocultured with the undifferentiated MSCs. The gene products from the encapsulated BMP-2 cells could induce the undifferentiated MSCs to become osteoblasts that had higher alkaline phosphatase (ALP) activity than those in the control group (pAPA microcapsules could inhibit the permeation of fluorescein isothiocyanate-conjuncted immunoglobulin G. Mixed lymphocyte reaction also indicates that the APA microcapsules could prevent the encapsulated BMP-2 gene-transfected MSCs from initiating the cellular immune response. These results demonstrated that the nonautologous BMP-2 gene-transfected stem cells are of potential utility for enhancement of bone repair and bone regeneration in vivo.

  19. A feasibility study on the bioconversion of CO2 and H2 to biomethane by gas sparging through polymeric membranes.

    Science.gov (United States)

    Díaz, I; Pérez, C; Alfaro, N; Fdz-Polanco, F

    2015-06-01

    In this study, the potential of a pilot hollow-fiber membrane bioreactor for the conversion of H2 and CO2 to CH4 was evaluated. The system transformed 95% of H2 and CO2 fed at a maximum loading rate of 40.2 [Formula: see text] and produced 0.22m(3) of CH4 per m(3) of H2 fed at thermophilic conditions. H2 mass transfer to the liquid phase was identified as the limiting step for the conversion, and kLa values of 430h(-1) were reached in the bioreactor by sparging gas through the membrane module. A simulation showed that the bioreactor could upgrade biogas at a rate of 25m(3)/mR(3)d, increasing the CH4 concentration from 60 to 95%v. This proof-of-concept study verified that gas sparging through a membrane module can efficiently transfer H2 from gas to liquid phase and that the conversion of H2 and CO2 to biomethane is feasible on a pilot scale at noteworthy load rates.

  20. Improving Osteogenesis Activity on BMP-2-Immobilized PCL Fibers Modified by the γ-Ray Irradiation Technique

    Directory of Open Access Journals (Sweden)

    Young-Pil Yun

    2015-01-01

    Full Text Available The purpose of this study was to demonstrate the ability of BMP-2-immobilized polycaprolactone (PCL fibers modified using the γ-ray irradiation technique to induce the osteogenic differentiation of MG-63 cells. Poly acrylic acid (AAc was grafted onto the PCL fibers by the γ-ray irradiation technique. BMP-2 was then subsequently immobilized onto the AAc-PCL fibers (BMP-2/AAc-PCL. PCL and surface-modified PCL fibers was characterized by evaluation with a scanning electron microscope (SEM, X-ray photoelectron spectroscopy (XPS, and contact angle. The biological activity of the PCL and surface-modified PCL fibers were characterized by alkaline phosphatase (ALP activity, calcium deposition, and the mRNA expression of osteocalcin and osteopontin in MG-63 cells. Successfully grafted AAc and PCL fibers with immobilized BMP-2 were confirmed by XPS results. The results of the contact angle showed that BMP-2/AAc-PCL fibers have more hydrophilic properties in comparison to PCL fibers. The ALP activity, calcium deposition, and gene expressions of MG-63 cells grown on BMP-2/AAc-PCL fibers showed greatly induced osteogenic differentiation in comparison to the PCL fibers. In conclusion, these results demonstrated that BMP-2/AAc-PCL fibers have the potential to effectively induce the osteogenic differentiation of MG-63 cells.

  1. Accelerated bone growth in vitro by the conjugation of BMP2 peptide with hydroxyapatite on titanium alloy.

    Science.gov (United States)

    Cai, Yanli; Wang, Xiaoyan; Poh, Chye Khoon; Tan, Hark Chuan; Soe, Min Tun; Zhang, Sam; Wang, Wilson

    2014-04-01

    Titanium alloys have been widely used in orthopedic practice due to their inherent bioactivity, however it is still insufficient to truly and reliably incorporate into living bone. In this work, polydopamine film was employed to induce the growth of hydroxyapatite (HA) on titanium alloy to enhance its osteoconductivity. Bone morphogenetic protein-2 (BMP2) peptide was absorbed into the HA particles for osteoinductivity. The precipitation of HA and the existence of BMP2 peptide were examined by X-ray diffraction, X-ray photoelectron spectroscopy and fluorescence microscopy. The dissolution of HA and the release of BMP2 peptide were monitored by measuring the concentrations of calcium ions and BMP2 peptide in phosphate buffered saline solution, respectively. The effect of BMP2 peptide incorporated into HA coating on bone growth was evaluated in vitro by cell culture tests, including cell attachment, alkaline phosphatase (ALP) activity, and gene expression. The results show that the HA particles grown on the substrate are mediated by the polydopamine film. The BMP2 peptide is distributed uniformly on HA-coated substrate and released in a sustained manner. Moreover, the conjunction of HA and BMP2 peptide increases cell adhesion, ALP activity and gene expression of osteogenic markers, which are potentially useful in the development of enhanced orthopedic medical devices.

  2. Using feature objects aided strategy to evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion.

    Science.gov (United States)

    Zhou, Qi; Yuan, Hairong; Liu, Yanping; Zou, Dexun; Zhu, Baoning; Chufo, Wachemo A; Jaffar, Muhammad; Li, Xiujin

    2015-03-01

    Feature objects aided strategy was used to predict and evaluate the biomethane production of food waste and corn stalk anaerobic co-digestion. The kinetics of co-digestion and mono-digestion of food waste and/or corn stalk was also analyzed. The results indicated that the compositions of food waste and corn stalk were significantly different. The anaerobic digestion of three feature objects at different mixing ratios showed the different biomethane yields and kinetic constants. Food waste and corn stalk co-digestion enhanced the digestion rate and achieved 22.48% and 41.55% higher biomethane production than those of food waste and corn stalk mono-digestion, respectively.

  3. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  4. A Receptor Tyrosine Kinase Inhibitor, Dovitinib (TKI-258), Enhances BMP-2-Induced Osteoblast Differentiation In Vitro

    Science.gov (United States)

    Lee, Yura; Bae, Kyoung Jun; Chon, Hae Jung; Kim, Seong Hwan; Kim, Soon Ae; Kim, Jiyeon

    2016-01-01

    Dovitinib (TKI258) is a small molecule multi-kinase inhibitor currently in clinical phase I/II/III development for the treatment of various types of cancers. This drug has a safe and effective pharmacokinetic/pharmacodynamic profile. Although dovitinib can bind several kinases at nanomolar concentrations, there are no reports relating to osteoporosis or osteoblast differentiation. Herein, we investigated the effect of dovitinib on human recombinant bone morphogenetic protein (BMP)-2-induced osteoblast differentiation in a cell culture model. Dovitinib enhanced the BMP-2-induced alkaline phosphatase (ALP) induction, which is a representative marker of osteoblast differentiation. Dovitinib also stimulated the translocation of phosphorylated Smad1/5/8 into the nucleus and phosphorylation of mitogen-activated protein kinases, including ERK1/2 and p38. In addition, the mRNA expression of BMP-4, BMP-7, ALP, and OCN increased with dovitinib treatment. Our results suggest that dovitinib has a potent stimulating effect on BMP-2-induced osteoblast differentiation and this existing drug has potential for repositioning in the treatment of bone-related disorders. PMID:27025387

  5. BMP4 was associated with NSCL/P in an Asian population.

    Directory of Open Access Journals (Sweden)

    Qianqian Chen

    Full Text Available BACKGROUND: The Bone Morphogenetic Protein 4 gene (BMP4 is located in chromosome 14q22-q23 which has shown evidence of linkage for isolated nonsyndromic cleft lip with or without cleft palate (NSCL/P in a genome wide linkage analysis of human multiplex families. BMP4 has been shown to play crucial roles in lip and palatal development in animal models. Several candidate gene association analyses also supported its potential risk for NSCL/P, however, results across these association studies have been inconsistent. The aim of the current study was to test for possible association between markers in and around the BMP4 gene and NSCL/P in Asian and Maryland trios. METHODOLOGY/PRINCIPAL FINDINGS: Family Based Association Test was used to test for deviation from Mendelian assortment for 12 SNPs in and around BMP4. Nominal significant evidence of linkage and association was seen for three SNPs (rs10130587, rs2738265 and rs2761887 in 221 Asian trios and for one SNP (rs762642 in 76 Maryland trios. Statistical significance still held for rs10130587 after Bonferroni correction (corrected p = 0.019 among the Asian group. Estimated odds ratio for carrying the apparent high risk allele at this SNP was 1.61 (95%CI = 1.20, 2.18. CONCLUSIONS: Our results provided further evidence of association between BMP4 and NSCL/P.

  6. The Functions of BMP3 in Rabbit Articular Cartilage Repair

    Directory of Open Access Journals (Sweden)

    Zhe Zhang

    2015-10-01

    Full Text Available Bone morphogenetic proteins (BMPs play important roles in skeletal development and repair. Previously, we found fibroblast growth factor 2 (FGF2 induced up-regulation of BMP2, 3, 4 in the process of rabbit articular cartilage repair, which resulted in satisfactory repair effects. As BMP2/4 show a clearly positive effect for cartilage repair, we investigated the functions of BMP3 in rabbit articular cartilage repair. In this paper, we find that BMP3 inhibits the repair of partial-thickness defect of articular cartilage in rabbit by inducing the degradation of extracellular matrix, interfering with the survival of chondrocytes surrounding the defect, and directly inhibiting the expression of BMP2 and BMP4. Meanwhile BMP3 suppress the repair of full-thickness cartilage defect by destroying the subchondral bone through modulating the proliferation and differentiation of bone marrow stem cells (BMSCs, and directly increasing the expression of BMP4. Although BMP3 has different functions in the repair of partial and full-thickness defects of articular cartilage in rabbit, the regulation of BMP expression is involved in both of them. Together with our previous findings, we suggest the regulation of the BMP signaling pathway by BMP3 is essential in articular cartilage repair.

  7. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  8. Endoplasmic reticulum (ER stress inducible factor cysteine-rich with EGF-like domains 2 (Creld2 is an important mediator of BMP9-regulated osteogenic differentiation of mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Jiye Zhang

    Full Text Available Mesenchymal stem cells (MSCs are multipotent progenitors that can undergo osteogenic differentiation under proper stimuli. We demonstrated that BMP9 is one of the most osteogenic BMPs. However, the molecular mechanism underlying BMP9-initiated osteogenic signaling in MSCs remains unclear. Through gene expression profiling analysis we identified several candidate mediators of BMP9 osteogenic signaling. Here, we focus on one such signaling mediator and investigate the functional role of cysteine-rich with EGF-like domains 2 (Creld2 in BMP9-initiated osteogenic signaling. Creld2 was originally identified as an ER stress-inducible factor localized in the ER-Golgi apparatus. Our genomewide expression profiling analysis indicates that Creld2 is among the top up-regulated genes in BMP9-stimulated MSCs. We confirm that Creld2 is up-regulated by BMP9 in MSCs. ChIP analysis indicates that Smad1/5/8 directly binds to the Creld2 promoter in a BMP9-dependent fashion. Exogenous expression of Creld2 in MSCs potentiates BMP9-induced early and late osteogenic markers, and matrix mineralization. Conversely, silencing Creld2 expression inhibits BMP9-induced osteogenic differentiation. In vivo stem cell implantation assay reveals that exogenous Creld2 promotes BMP9-induced ectopic bone formation and matrix mineralization, whereas silencing Creld2 expression diminishes BMP9-induced bone formation and matrix mineralization. We further show that Creld2 is localized in ER and the ER stress inducers potentiate BMP9-induced osteogenic differentiation. Our results strongly suggest that Creld2 may be directly regulated by BMP9 and ER stress response may play an important role in regulating osteogenic differentiation.

  9. The effect of SDF-1α on low dose BMP-2 mediated bone regeneration by release from heparinized mineralized collagen type I matrix scaffolds in a murine critical size bone defect model.

    Science.gov (United States)

    Zwingenberger, Stefan; Langanke, Robert; Vater, Corina; Lee, Geoffrey; Niederlohmann, Eik; Sensenschmidt, Markus; Jacobi, Angela; Bernhardt, Ricardo; Muders, Michael; Rammelt, Stefan; Knaack, Sven; Gelinsky, Michael; Günther, Klaus-Peter; Goodman, Stuart B; Stiehler, Maik

    2016-09-01

    The treatment of critical size bone defects represents a challenge. The growth factor bone morphogenetic protein 2 (BMP-2) is clinically established but has potentially adverse effects when used at high doses. The aim of this study was to evaluate if stromal derived factor-1 alpha (SDF-1α) and BMP-2 released from heparinized mineralized collagen type I matrix (MCM) scaffolds have a cumulative effect on bone regeneration. MCM scaffolds were functionalized with heparin, loaded with BMP-2 and/or SDF-1α and implanted into a murine critical size femoral bone defect (control group, low dose BMP-2 group, low dose BMP-2 + SDF-1α group, and high dose BMP-2 group). After 6 weeks, both the low dose BMP-2 + SDF-1α group (5.8 ± 0.6 mm³, p = 0.0479) and the high dose BMP-2 group (6.5 ± 0.7 mm³, p = 0.008) had a significantly increased regenerated bone volume compared to the control group (4.2 ± 0.5 mm³). There was a higher healing score in the low dose BMP-2 + SDF-1α group (median grade 8; Q1-Q3 7-9; p = 0.0357) than in the low dose BMP-2 group (7; Q1-Q3 5-9) histologically. This study showed that release of BMP-2 and SDF-1α from heparinized MCM scaffolds allows for the reduction of the applied BMP-2 concentration since SDF-1α seems to enhance the osteoinductive potential of BMP-2. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2126-2134, 2016.

  10. Dual Delivery of EPO and BMP2 from a Novel Modular Poly-ɛ-Caprolactone Construct to Increase the Bone Formation in Prefabricated Bone Flaps.

    Science.gov (United States)

    Patel, Janki Jayesh; Modes, Jane E; Flanagan, Colleen L; Krebsbach, Paul H; Edwards, Sean P; Hollister, Scott J

    2015-09-01

    Poly-ɛ-caprolactone (PCL) is a biocompatible polymer that has mechanical properties suitable for bone tissue engineering; however, it must be integrated with biologics to stimulate bone formation. Bone morphogenetic protein-2 (BMP2) delivered from PCL produces bone when implanted subcutaneously, and erythropoietin (EPO) works synergistically with BMP2. In this study, EPO and BMP2 are adsorbed separately on two 3D-printed PCL scaffold modules that are assembled for codelivery on a single scaffold structure. This assembled modular PCL scaffold with dual BMP2 and EPO delivery was shown to increase bone growth in an ectopic location when compared with BMP2 delivery along a replicate scaffold structure. EPO (200 IU/mL) and BMP2 (65 μg/mL) were adsorbed onto the outer and inner portions of a modular scaffold, respectively. Protein binding and release studies were first quantified. Subsequently, EPO+BMP2 and BMP2 scaffolds were implanted subcutaneously in mice for 4 and 8 weeks, and the regenerated bone was analyzed with microcomputed tomography and histology; 8.6±1.4 μg BMP2 (22%) and 140±29 IU EPO (69.8%) bound to the scaffold and EPO was released in 7 days. Increased endothelial cell proliferation on EPO-adsorbed PCL discs indicated protein bioactivity. At 4 and 8 weeks, dual BMP2 and EPO delivery regenerated more bone (5.1±1.1 and 5.5±1.6 mm(3)) than BMP2 alone (3.8±1.1 and 4.3±1.7 mm(3)). BMP2 and EPO scaffolds had more ingrowth (1.4%±0.6%) in the outer module when compared with BMP2 (0.8%±0.3%) at 4 weeks. Dual delivery produced more dense cellular marrow, while BMP2 had more fatty marrow. Dual EPO and BMP2 delivery is a potential method to regenerate bone faster for prefabricated flaps.

  11. E. coli-Produced BMP-2 as a Chemopreventive Strategy for Colon Cancer: A Proof-of-Concept Study

    Directory of Open Access Journals (Sweden)

    Saravanan Yuvaraj

    2012-01-01

    Full Text Available Colon cancer is a serious health problem, and novel preventive and therapeutical avenues are urgently called for. Delivery of proteins with anticancer activity through genetically modified bacteria provides an interesting, potentially specific, economic and effective approach here. Interestingly, bone morphogenetic protein 2 (BMP-2 is an important and powerful tumour suppressor in the colon and is thus an attractive candidate protein for delivery through genetically modified bacteria. It has not been shown, however, that BMP production in the bacterial context is effective on colon cancer cells. Here we demonstrate that transforming E. coli with a cDNA encoding an ileal-derived mature human BMP-2 induces effective apoptosis in an in vitro model system for colorectal cancer, whereas the maternal organism was not effective in this respect. Furthermore, these effects were sensitive to cotreatment with the BMP inhibitor Noggin. We propose that prevention and treatment of colorectal cancer using transgenic bacteria is feasible.

  12. Synthetic scaffold coating with adeno-associated virus encoding BMP2 to promote endogenous bone repair.

    Science.gov (United States)

    Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E

    2012-03-01

    Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.

  13. 前列腺癌骨转移灶中BMP-2、BMP-4、BMP-7的表达及临床意义%Expression of BMP-2, BMP-4 and BMP-7 in human metastatic prostate cancer and their clinical significance

    Institute of Scientific and Technical Information of China (English)

    宫丽华; 孙晓淇; 刘宝岳; 黄啸原

    2012-01-01

    目的 检测BMP-2、BMP-4、BMP-7在前列腺癌骨转移灶中的表达,探讨其在前列腺癌成骨性转移中的作用.方法 采用免疫组化EnVision法检测28例前列腺癌骨转移病例及17例良性前列腺增生(benign prostate hyperplasia,BPH)病例中BMP-2、BMP-4、BMP-7的表达并对其进行对比分析.结果 BMP-2在所有前列腺癌骨转移灶及BPH病例中均表达,二者中其阳性率及表达强度无明显差异(P>0.05).BMP-4在前列腺癌骨转移灶及BPH中的阳性率无明显差异(P>0.05),但在前者中BMP-4的表达强度明显高于后者(P<0.05).BMP-7在前列腺癌骨转移灶中的阳性率及表达强度均明显高于BPH (P<0.05).在BPH的阳性表达病例中,BMP-2、BMP-4、BMP-7细胞质与细胞核同时阳性的表达率分别为13.3%、7.1%和11.1%,在前列腺癌骨转移灶的阳性表达病例中,BMP-2、BMP-4、BMP-7细胞质与细胞核的同时阳性的表达率均为100%,且细胞核的表达强度明显高于细胞质.结论 BMP-4、BMP-7在前列腺癌骨转移灶中高表达,提示其在前列腺癌的成骨性转移中可能起重要作用.%Purpose To analyze the expression of BMP-2, BMP-4, BMP-7 in prostate cancer with bone metastasis. Methods Iininu-nohistochemical technique was used to detect the expression of BMP-2, BMP-4 and BMP-7 in the bone osteobastic metastastic lesions of prostate cancer and the benign prostate hyperplasia ( BPH ). Results The expression of BMP-2 was detected in all samples and there was no difference between prostate cancer and BPH. The intensity of positivity of BMP-4 was higher in prostate cancer than that in BPH ( P < 0. 05 ), but the difference of positive rate between these two groups showed no significance. The intensity of positivity and the positive rate of BMP-7 were higher in prostate cancer than that in BPH ( P < 0. 05 ). The positive rate of staining involving both cyto-plasm and nuclear in BMP-2, BMP-4 and BMP-7-positive samples in BPH was respectively 13. 3

  14. Anaerobic digestion of solid waste in RAS: Effect of reactor type on the biochemical acidogenic potential (BAP) and assessment of the biochemical methane potential (BMP) by a batch assay

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Letelier-Gordo, Carlos Octavio; Lund, Ivar

    2015-01-01

    additional 14 and 20 days) in continuously stirred tank reactors. Generally, the VFA yield increased with time and no effect of the reactor type used was found within the time frame of the experiment. At 10 days HT or 10 days HRT the VFA yield reached 222.3 ± 30.5 and 203.4 ± 11.2 mg VFA g-1 TVS0 (total...... volatile solids at day 0) in batch and fed-batch reactor, respectively. For the fedbatch reactor, increasing HRT from 5 to 10 days gained no significant additional VFA yield. Prolonging the batch reactor experiment to 20 days increased VFA production further (273.9 ± 1.6 mg VFA g-1 TVS0, n=2). After 10...... for the design of an acidogenic continuously stirred reactor tank in a RAS single-sludge denitrification set-up. The biochemical methane potential of the sludge was estimated to 318 ± 29 g CH4 g-1 TVS0 by a batch assay and represented a higher utility of the solid waste when comparing the methane yield...

  15. Periosteal BMP2 activity drives bone graft healing.

    Science.gov (United States)

    Chappuis, Vivianne; Gamer, Laura; Cox, Karen; Lowery, Jonathan W; Bosshardt, Dieter D; Rosen, Vicki

    2012-10-01

    Bone graft incorporation depends on the orchestrated activation of numerous growth factors and cytokines in both the host and the graft. Prominent in this signaling cascade is BMP2. Although BMP2 is dispensable for bone formation, it is required for the initiation of bone repair; thus understanding the cellular mechanisms underlying bone regeneration driven by BMP2 is essential for improving bone graft therapies. In the present study, we assessed the role of Bmp2 in bone graft incorporation using mice in which Bmp2 has been removed from the limb prior to skeletal formation (Bmp2(cKO)). When autograft transplantations were performed in Bmp2cKO mice, callus formation and bone healing were absent. Transplantation of either a vital wild type (WT) bone graft into a Bmp2(cKO) host or a vital Bmp2(cKO) graft into a WT host also resulted in the inhibition of bone graft incorporation. Histological analyses of these transplants show that in the absence of BMP2, periosteal progenitors remain quiescent and healing is not initiated. When we analyzed the expression of Sox9, a marker of chondrogenesis, on the graft surface, we found it significantly reduced when BMP2 was absent in either the graft itself or the host, suggesting that local BMP2 levels drive periosteal cell condensation and subsequent callus cell differentiation. The lack of integrated healing in the absence of BMP2 was not due to the inability of periosteal cells to respond to BMP2. Healing was achieved when grafts were pre-soaked in rhBMP2 protein, indicating that periosteal progenitors remain responsive in the absence of BMP2. In contrast to the requirement for BMP2 in periosteal progenitor activation in vital bone grafts, we found that bone matrix-derived BMP2 does not significantly enhance bone graft incorporation. Taken together, our data show that BMP2 signaling is not essential for the maintenance of periosteal progenitors, but is required for the activation of these progenitors and their subsequent

  16. Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification.

    Science.gov (United States)

    Fu, Baisheng; Wang, Hongwei; Wang, Jinhua; Barouhas, Ivana; Liu, Wanqing; Shuboy, Adam; Bushinsky, David A; Zhou, Dongsheng; Favus, Murray J

    2013-01-01

    Genetic hypercalciuric stone-forming (GHS) rats have increased intestinal Ca absorption, decreased renal tubule Ca reabsorption and low bone mass, all of which are mediated at least in part by elevated tissue levels of the vitamin D receptor (VDR). Both 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and bone morphogenetic protein 2 (BMP2) are critical for normal maintenance of bone metabolism and bone formation, respectively. The complex nature of bone cell regulation suggests a potential interaction of these two important regulators in GHS rats. In the present study, BMP2 expression is suppressed by the VDR-1,25(OH)2D3 complex in Bone Marrow Stromal Cells (BMSCs) from GHS and SD rat and in UMR-106 cell line. We used chromatin immunoprecipitation (ChIP) assays to identify VDR binding to only one of several potential binding sites within the BMP2 promoter regions. This negative region also mediates suppressor reporter gene activity. The molecular mechanisms underlying the down-regulation of BMP2 by 1,25(OH)2D3 were studied in vitro in BMSCs and UMR-106 cells using the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (DAC) and the histone deacetylase inhibitor trichostatin A (TSA). Both DAC and TSA activate BMP2 expression in combination with 1,25(OH)2D3. Bisulfite DNA pyrosequencing reveals 1,25(OH)2D3 to completely hypermethylate a single CpG site in the same BMP2 promoter region identified by the ChIP and reporter gene assays. ChIP assays also show that 1,25(OH)2D3 can increase the repressive histone mark H3K9me2 and reduce the acetylation of histone H3 at the same BMP2 promoter region. Taken together, our results indicate that 1,25(OH)2D3 binding to VDR down-regulates BMP2 gene expression in BMSCs and osteoblast-like UMR-106 cells by binding to the BMP2 promoter region. The mechanism of this 1,25(OH)2D3-induced transcriptional repression of BMP2 involves DNA methylation and histone modification. The study provides novel evidence that 1,25(OH)2D3 represses bone

  17. What type of digester configurations should be employed to produce biomethane from grass silage?

    Energy Technology Data Exchange (ETDEWEB)

    Nizami, Abdul-Sattar; Murphy, Jerry D. [Department of Civil and Environmental Engineering, University College Cork, Cork (Ireland); Environmental Research Institute, University College Cork (Ireland)

    2010-08-15

    Grass is an excellent energy crop; it may be classified as a high yielding, low energy input, perennial crop. Over 90% of Irish agricultural land is under grass; thus farmers are familiar with, and comfortable with, this crop as opposed to a ''new energy crop'' such as Miscanthus. Of issue therefore is not the crop, but the methodology of generating energy from the crop. Numerous farmers across Europe (in particular Germany and Austria) use grass silage as a feedstock for biogas production; in a number of cases the produced biogas is scrubbed to biomethane and used as a transport fuel or injected into the natural gas grid. Many Irish farmers are considering converting from conventional farming such as beef production to grass biomethane production. Numerous technologies and combinations of such technologies are available; from one-stage batch dry systems to two-stage wet continuous systems; from one-stage continuous wet systems to two-stage systems incorporating a batch dry reactor coupled with a second stage high-rate reactor. This paper reviews work carried out both in the scientific literature and in practice at commercial scale. (author)

  18. Twisted gastrulation, a BMP antagonist, exacerbates podocyte injury.

    Directory of Open Access Journals (Sweden)

    Sachiko Yamada

    Full Text Available Podocyte injury is the first step in the progression of glomerulosclerosis. Previous studies have demonstrated the beneficial effect of bone morphogenetic protein 7 (Bmp7 in podocyte injury and the existence of native Bmp signaling in podocytes. Local activity of Bmp7 is controlled by cell-type specific Bmp antagonists, which inhibit the binding of Bmp7 to its receptors. Here we show that the product of Twisted gastrulation (Twsg1, a Bmp antagonist, is the central negative regulator of Bmp function in podocytes and that Twsg1 null mice are resistant to podocyte injury. Twsg1 was the most abundant Bmp antagonist in murine cultured podocytes. The administration of Bmp induced podocyte differentiation through Smad signaling, whereas the simultaneous administration of Twsg1 antagonized the effect. The administration of Bmp also inhibited podocyte proliferation, whereas simultaneous administration of Twsg1 antagonized the effect. Twsg1 was expressed in the glomerular parietal cells (PECs and distal nephron of the healthy kidney, and additionally in damaged glomerular cells in a murine model of podocyte injury. Twsg1 null mice exhibited milder hypoalbuminemia and hyperlipidemia, and milder histological changes while maintaining the expression of podocyte markers during podocyte injury model. Taken together, our results show that Twsg1 plays a critical role in the modulation of protective action of Bmp7 on podocytes, and that inhibition of Twsg1 is a promising means of development of novel treatment for podocyte injury.

  19. HIF-1α potentiates BMP2-induced chondrogenic differentiation but inhibits osteogenic differentiation in stem cells%低氧诱导因子-1α对骨形态发生蛋白2诱导的干细胞成软骨、成骨分化的影响

    Institute of Scientific and Technical Information of China (English)

    周年; 黄伟; 廖军义; 胡宁; 陈筱蓉; 梁熙; 司维柯; 杨忠; 易世雄

    2014-01-01

    目的 探讨低氧通路中关键转录调控因子低氧诱导因子-1α(hypoxia inducible factor-1α,HIF-1α)对骨形态发生蛋白2(bone morpho-genetic protein 2,BMP2)诱导干细胞骨、软骨分化的影响,阐明HIF-1 α在干细胞成骨、软骨分化中的作用.方法 构建相应腺病毒AdBMP2、AdHIF-1 α、AdGFP,单独或共同感染干细胞,Western blot法检测成软骨、成骨分化关键转录调控因子Sox9、Runx2的表达,Real-time PCR法检测成软骨、成骨分化标志物COL2A1、aggrecan、COL1 A1和ALP mRNA表达,Alcian blue、ALP及Alizarin red S染色检测软骨细胞外基质及骨基质钙盐沉积情况.进行干细胞裸鼠皮下移植,观察不同处理组形成骨块的组织结构情况,探讨HIF-1α对BMP2诱导干细胞成骨、软骨分化的影响.结果 诱导分化后第1、3天,BMP2+ HIF-1α组Sox9蛋白表达明显高于BMP2单独处理组,而BMP2+ HIF-1α组Runx2蛋白表达明显低于BMP2单独处理组.诱导分化后第7、9天,BMP2+ HIF-1α组COL2A1、aggrecan mRNA相对表达明显高于BMP2单独处理组(P<0.05),而BMP2+ HIF-1α组COL1 A1、ALP mRNA相对表达明显低于BMP2单独处理组(P<0.05).Alcianblue染色发现BMP2+ HIF-1α组软骨细胞外基质分泌多于BMP2单独处理组,染色更深;ALP染色发现BMP2+ HIF-1 α组ALP的活性弱于BMP2单独处理组;茜素红染色发现BMP2+ HIF-1α组较BMP2单独处理组骨基质钙盐沉积更少;体内试验组织学观察见BMP2+ HIF-1α组软骨成分更多,骨化不明显,BMP2单独处理组软骨成分少,软骨内骨化更明显.结论 HIF-1α明显增强了BMP2诱导的干细胞成软骨分化,抑制了成骨分化及软骨内骨化,维持了软骨分化表型.

  20. BMP7在非酒精性脂肪性肝病的作用机制探讨%Mechanism of BMP7 in non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    许敏; 张淑文; 李异玲

    2016-01-01

    骨形成蛋白7(bone morphogenetic protein 7,BMP7),又称成骨蛋白1(OP1),是一个35 KD的同型二聚体蛋白质。近年来研究发现,BMP7在改善代谢类疾病、促进棕色脂肪组织( brown adipose tissue,BAT)分化、抑制炎症、抑制肝纤维化等方面发挥着重要作用,且与肝癌预后相关,同时BMP7在非酒精性脂肪性肝病( non-alcoholic fatty liver disease,NAFLD)的发生及进展中发挥着重要作用,可能成为诊断及治疗NAFLD的新靶点。%Bone morphogenetic protein 7 (BMP7), also called OP1, is a 35 KD homodimer protein. Recently, studies have shown that BMP7 contributes to improve metabolic dysfunction, promote differentiation of brown adipose tis-sue ( BAT) , inhibit inflammation and liver fibrosis, and is associated with prognosis of hepatic carcinoma. BMP7 is also associated with occurrence and development of non-alcoholic fatty liver disease ( NAFLD) , and may be a potential target for diagnosing and treating NAFLD.

  1. β-Catenin-dependent transcription is central to Bmp-mediated formation of venous vessels.

    Science.gov (United States)

    Kashiwada, Takeru; Fukuhara, Shigetomo; Terai, Kenta; Tanaka, Toru; Wakayama, Yuki; Ando, Koji; Nakajima, Hiroyuki; Fukui, Hajime; Yuge, Shinya; Saito, Yoshinobu; Gemma, Akihiko; Mochizuki, Naoki

    2015-02-01

    β-catenin regulates the transcription of genes involved in diverse biological processes, including embryogenesis, tissue homeostasis and regeneration. Endothelial cell (EC)-specific gene-targeting analyses in mice have revealed that β-catenin is required for vascular development. However, the precise function of β-catenin-mediated gene regulation in vascular development is not well understood, since β-catenin regulates not only gene expression but also the formation of cell-cell junctions. To address this question, we have developed a novel transgenic zebrafish line that allows the visualization of β-catenin transcriptional activity specifically in ECs and discovered that β-catenin-dependent transcription is central to the bone morphogenetic protein (Bmp)-mediated formation of venous vessels. During caudal vein (CV) formation, Bmp induces the expression of aggf1, a putative causative gene for Klippel-Trenaunay syndrome, which is characterized by venous malformation and hypertrophy of bones and soft tissues. Subsequently, Aggf1 potentiates β-catenin transcriptional activity by acting as a transcriptional co-factor, suggesting that Bmp evokes β-catenin-mediated gene expression through Aggf1 expression. Bmp-mediated activation of β-catenin induces the expression of Nr2f2 (also known as Coup-TFII), a member of the nuclear receptor superfamily, to promote the differentiation of venous ECs, thereby contributing to CV formation. Furthermore, β-catenin stimulated by Bmp promotes the survival of venous ECs, but not that of arterial ECs. Collectively, these results indicate that Bmp-induced activation of β-catenin through Aggf1 regulates CV development by promoting the Nr2f2-dependent differentiation of venous ECs and their survival. This study demonstrates, for the first time, a crucial role of β-catenin-mediated gene expression in the development of venous vessels.

  2. Development of Physiologically Based Pharmacokinetic Model (PBPK) of BMP2 in Mice.

    Science.gov (United States)

    Utturkar, Aditya; Paul, Bikram; Akkiraju, Hemanth; Bonor, Jeremy; Dhurjati, Prasad; Nohe, Anja

    2013-01-01

    Bone Morphogenetic protein 2 holds great promise for potential applications in the clinic. It is a potent growth factor for the use in the cervical spine surgery (FDA approved 2002) and has been marketed as "Infuse" for treating open tibial shaft fractures (FDA approved 2004). However, its use is limited by several significant side effects that maybe due to its potency and effect on different stem cell populations in the spine. BMP2 is expressed throughout the human body in several tissues and at a very high concentration in the blood. BMP receptors, especially BMP receptor type Ia, is ubiquitously expressed in most tissues. Currently, it is difficult to determine how BMP2 is physiologically distributed in mice or humans and no quantitative models are available. A Physiologically-Based Pharmaco-Kinetic (PBPK) model has been developed to determine steady-state distribution of BMP2 in mice. The multi-compartmental PBPK model represents relevant organ/tissues with physiological accuracy. The organs/tissue compartments chosen were brain, lung, heart, liver, pancreas, kidney, uterus, bone and fat. A blood compartment maintained connectivity among the various organs. Four processes characterized the change in the concentration of the protein in every compartment: blood flow in, blood flow out, protein turnover and receptor binding in the organ. The unique aspects of the model are the determination of elimination using receptor kinetics and generation using protein turnover. The model also predicts steady state concentrations of BMP2 in tissues in mice and may be used for possible scale-up of dosage regimens in humans.

  3. Plasma Treated High-Density Polyethylene (HDPE Medpor Implant Immobilized with rhBMP-2 for Improving the Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jin-Su Lim

    2014-01-01

    Full Text Available We investigate the bone generation capacity of recombinant human bone morphogenetic protein-2 (rhBMP-2 immobilized Medpor surface through acrylic acid plasma-polymerization. Plasma-polymerization was carried out at a 20 W at an acrylic acid flow rate of 7 sccm for 5 min. The plasma-polymerized Medpor surface showed hydrophilic properties and possessed a high density of carboxyl groups. The rhBMP-2 was immobilized with covalently attached carboxyl groups using 1-ethyl-3-(3-dimethylaminopropyl carbodiimide and N-hydroxysuccinimide. Carboxyl groups and rhBMP-2 immobilization on the Medpor surface were identified by Fourier transform infrared spectroscopy. The activity of Medpor with rhBMP-2 immobilized was examined using an alkaline phosphatase assay on MC3T3-E1 cultured Medpor. These results showed that the rhBMP-2 immobilized Medpor increased the level of MC3T3-E1 cell differentiation. These results demonstrated that plasma surface modification has the potential to immobilize rhBMP-2 on polymer implant such as Medpor and can be used for the binding of bioactive nanomolecules in bone tissue engineering.

  4. Autologous implantation of BMP2-expressing dermal fibroblasts to improve bone mineral density and architecture in rabbit long bones.

    Science.gov (United States)

    Ishihara, Akikazu; Weisbrode, Steve E; Bertone, Alicia L

    2015-10-01

    Cell-mediated gene therapy may treat bone fragility disorders. Dermal fibroblasts (DFb) may be an alternative cell source to stem cells for orthopedic gene therapy because of their rapid cell yield and excellent plasticity with bone morphogenetic protein-2 (BMP2) gene transduction. Autologous DFb or BMP2-expressing autologous DFb were administered in twelve rabbits by two delivery routes; a transcortical intra-medullar infusion into tibiae and delayed intra-osseous injection into femoral drill defects. Both delivery methods of DFb-BMP2 resulted in a successful cell engraftment, increased bone volume, bone mineral density, improved trabecular bone microarchitecture, greater bone defect filling, external callus formation, and trabecular surface area, compared to non-transduced DFb or no cells. Cell engraftment within trabecular bone and bone marrow tissue was most efficiently achieved by intra-osseous injection of DFb-BMP2. Our results suggested that BMP2-expressing autologous DFb have enhanced efficiency of engraftment in target bones resulting in a measurable biologic response by the bone of improved bone mineral density and bone microarchitecture. These results support that autologous implantation of DFb-BMP2 warrants further study on animal models of bone fragility disorders, such as osteogenesis imperfecta and osteoporosis to potentially enhance bone quality, particularly along with other gene modification of these diseases.

  5. An Activin A/BMP2 chimera displays bone healing properties superior to those of BMP2

    Science.gov (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C.; Ye, Sang-kyu; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Recombinant Bone Morphogenetic Protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue which when mutated to the corresponding BMP2 residue resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures. PMID:24692083

  6. An activin A/BMP2 chimera, AB204, displays bone-healing properties superior to those of BMP2.

    Science.gov (United States)

    Yoon, Byung-Hak; Esquivies, Luis; Ahn, Chihoon; Gray, Peter C; Ye, Sang-Kyu; Kwiatkowski, Witek; Choe, Senyon

    2014-09-01

    Recombinant bone morphogenetic protein 2 (rhBMP2) has been used clinically to treat bone fractures in human patients. However, the high doses of rhBMP2 required for a therapeutic response can cause undesirable side effects. Here, we demonstrate that a novel Activin A/BMP2 (AB2) chimera, AB204, promotes osteogenesis and bone healing much more potently and effectively than rhBMP2. Remarkably, 1 month of AB204 treatment completely heals tibial and calvarial defects of critical size in mice at a concentration 10-fold lower than a dose of rhBMP2 that only partially heals the defect. We determine the structure of AB204 to 2.3 Å that reveals a distinct BMP2-like fold in which the Activin A sequence segments confer insensitivity to the BMP2 antagonist Noggin and an affinity for the Activin/BMP type II receptor ActRII that is 100-fold greater than that of BMP2. The structure also led to our identification of a single Activin A-derived amino acid residue, which, when mutated to the corresponding BMP2 residue, resulted in a significant increase in the affinity of AB204 for its type I receptor BMPRIa and a further enhancement in AB204's osteogenic potency. Together, these findings demonstrate that rationally designed AB2 chimeras can provide BMP2 substitutes with enhanced potency for treating non-union bone fractures.

  7. BMP2 Transfer to Neighboring Cells and Activation of Signaling.

    Science.gov (United States)

    Alborzinia, Hamed; Shaikhkarami, Marjan; Hortschansky, Peter; Wölfl, Stefan

    2016-09-01

    Morphogen gradients and concentration are critical features during early embryonic development and cellular differentiation. Previously we reported the preparation of biologically active, fluorescently labeled BMP2 and quantitatively analyzed their binding to the cell surface and followed BMP2 endocytosis over time on the level of single endosomes. Here we show that this internalized BMP2 can be transferred to neighboring cells and, moreover, also activates downstream BMP signaling in adjacent cells, indicated by Smad1/5/8 phosphorylation and activation of the downstream target gene id1. Using a 3D matrix to modulate cell-cell contacts in culture we could show that direct cell-cell contact significantly increased BMP2 transfer. Using inhibitors of vesicular transport, transfer was strongly inhibited. Interestingly, cotreatment with the physiological BMP inhibitor Noggin increased BMP2 uptake and transfer, albeit activation of Smad signaling in neighboring cells was completely suppressed. Our findings present a novel and interesting mechanism by which morphogens such as BMP2 can be transferred between cells and how this is modulated by BMP antagonists such as Noggin, and how this influences activation of Smad signaling by BMP2 in neighboring cells.

  8. Arsenite suppression of BMP signaling in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Marjorie A.; Qin, Qin [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States); Hu, Qin; Zhao, Bin [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Rice, Robert H., E-mail: rhrice@ucdavis.edu [Department of Environmental Toxicology, University of California, Davis, CA 95616-8588 (United States)

    2013-06-15

    Arsenic, a human skin carcinogen, suppresses differentiation of cultured keratinocytes. Exploring the mechanism of this suppression revealed that BMP-6 greatly increased levels of mRNA for keratins 1 and 10, two of the earliest differentiation markers expressed, a process prevented by co-treatment with arsenite. BMP also stimulated, and arsenite suppressed, mRNA for FOXN1, an important transcription factor driving early keratinocyte differentiation. Keratin mRNAs increased slowly after BMP-6 addition, suggesting they are indirect transcriptional targets. Inhibition of Notch1 activation blocked BMP induction of keratins 1 and 10, while FOXN1 induction was largely unaffected. Supporting a requirement for Notch1 signaling in keratin induction, BMP increased levels of activated Notch1, which was blocked by arsenite. BMP also greatly decreased active ERK, while co-treatment with arsenite maintained active ERK. Inhibition of ERK signaling mimicked BMP by inducing keratin and FOXN1 mRNAs and by increasing active Notch1, effects blocked by arsenite. Of 6 dual-specificity phosphatases (DUSPs) targeting ERK, two were induced by BMP unless prevented by simultaneous exposure to arsenite and EGF. Knockdown of DUSP2 or DUSP14 using shRNAs greatly reduced FOXN1 and keratins 1 and 10 mRNA levels and their induction by BMP. Knockdown also decreased activated Notch1, keratin 1 and keratin 10 protein levels, both in the presence and absence of BMP. Thus, one of the earliest effects of BMP is induction of DUSPs, which increases FOXN1 transcription factor and activates Notch1, both required for keratin gene expression. Arsenite prevents this cascade by maintaining ERK signaling, at least in part by suppressing DUSP expression. - Highlights: • BMP induces FOXN1 transcription. • BMP induces DUSP2 and DUSP14, suppressing ERK activation. • Arsenite suppresses levels of phosphorylated Smad1/5 and FOXN1 and DUSP mRNA. • These actions rationalize arsenite suppression of keratinocyte

  9. Proliferation and odontogenic differentiation of BMP2 gene‑transfected stem cells from human tooth apical papilla: an in vitro study.

    Science.gov (United States)

    Zhang, Wen; Zhang, Xiaolei; Ling, Junqi; Liu, Wei; Zhang, Xinchun; Ma, Jinglei; Zheng, Jianmao

    2014-10-01

    Stem cells from the apical papilla (SCAP) have odontogenic potential, which plays a pivotal role in the root dentin development of permanent teeth. Human bone morphogenetic protein 2 (BMP2) is a well-known gene that participates in regulating the odontogenic differentiation of dental tissue‑derived stem cells. However, little is known regarding the effects of the BMP2 gene on the proliferation and odontogenic differentiation of SCAP. This study aimed to evaluate the odontogenic differentiation potential of lentiviral‑mediated BMP2 gene‑transfected human SCAP (SCAP/BMP2) in vitro. SCAP were isolated by enzymatic dissociation of human teeth apical papillae. The multipotential of SCAP was verified by their osteogenic and adipogenic differentiation characteristics. The phenotype of SCAP was evaluated by flow cytometry (FCM). The proliferation status of the blank vector‑transfected SCAP (SCAP/Vector) and SCAP/BMP2 was analyzed by a cell counting kit-8 (CCK‑8). Odontogenic genes, including alkaline phosphatase (ALP), osteocalcin (OCN), dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) of the two groups of cells were evaluated by quantitative polymerase chain reaction (qPCR). ALP staining and alizarin red (AR) staining of the cells was performed on the 16th day after transfection. In vitro results of CCK-8, qPCR, ALP and AR staining demonstrated that: ⅰ) SCAP/BMP2 had a comparable proliferation rate to SCAP/Vector; ⅱ) SCAP/BMP2 presented significantly better potential to differentiate into odontoblasts compared to SCAP/Vector by upregulating ALP, OCN, DSPP and DMP1 genes; ⅲ) more ALP granules and mineralized deposits were formed by SCAP/BMP2 as compared to SCAP/Vector. The results suggested that lentiviral-mediated BMP2 gene transfection enhances the odontogenic differentiation capacity of human SCAP in vitro.

  10. Optimization of biomethanation focusing on high ammonia loaded processes

    DEFF Research Database (Denmark)

    Wang, Han

    , could theoretically mitigate the ammonia inhibition problem (Angelidaki et al., 1999). Therefore, the effect of co-digestion of cattle manure with lipids (i.e. glycerol trioleate (GTO)) under high ammonia levels (5 g NH4+-N·L-1) in anaerobic continuous stirred tank (CSTR) reactors (RGTO) was assessed...... and subsequently been converted together with carbon dioxide to methane by hydrogenotrophic methanogens, could potentially be more tolerant to ammonia toxicity. Therefore, the effect of different ammonia levels on this hydrogen assisted biogas upgrading process under different hydrogen partial pressure (0, 0.25, 0.......5 and 1 atm) in anaerobic reactors at both mesophilic and thermophilic temperature was evaluated. When the initial hydrogen partial pressure was 0.5 atm, the methane yield at high ammonia load (7 g NH4+-N L-1) was 41.0% and 22.3% lower than at low ammonia load (1 g NH4+-N L-1) in mesophilic...

  11. Dynamics and cellular localization of Bmp2, Bmp4, and Noggin transcription in the postnatal mouse skeleton.

    Science.gov (United States)

    Pregizer, Steven K; Mortlock, Douglas P

    2015-01-01

    Transcription of BMPs and their antagonists in precise spatiotemporal patterns is essential for proper skeletal development, maturation, maintenance, and repair. Nevertheless, transcriptional activity of these molecules in skeletal tissues beyond embryogenesis has not been well characterized. In this study, we used several transgenic reporter mouse lines to define the transcriptional activity of two potent BMP ligands, Bmp2 and Bmp4, and their antagonist, Noggin, in the postnatal skeleton. At 3 to 4 weeks of age, Bmp4 and Noggin reporter activity was readily apparent in most cells of the osteogenic or chondrogenic lineages, respectively, whereas Bmp2 reporter activity was strongest in terminally differentiated cells of both lineages. By 5 to 6 months, activity of the reporters had generally abated; however, the Noggin and Bmp2 reporters remained remarkably active in articular chondrocytes and persisted there indefinitely. We further found that endogenous Bmp2, Bmp4, and Noggin transcript levels in postnatal bone and cartilage mirrored the activity of their respective reporters in these tissues. Finally, we found that the activity of the Bmp2, Bmp4, and Noggin reporters in bone and cartilage at 3 to 4 weeks could be recapitulated in both osteogenic and chondrogenic culture models. These results reveal that Bmp2, Bmp4, and Noggin transcription persists to varying degrees in skeletal tissues postnatally, with each gene exhibiting its own cell type-specific pattern of activity. Illuminating these patterns and their dynamics will guide future studies aimed at elucidating both the causes and consequences of aberrant BMP signaling in the postnatal skeleton.

  12. Enhanced biomethanation of kitchen waste by different pre-treatments.

    Science.gov (United States)

    Ma, Jingxing; Duong, Thu Hang; Smits, Marianne; Verstraete, Willy; Carballa, Marta

    2011-01-01

    Five different pre-treatments were investigated to enhance the solubilisation and anaerobic biodegradability of kitchen waste (KW) in thermophilic batch and continuous tests. In the batch solubilisation tests, the highest and the lowest solubilisation efficiency were achieved with the thermo-acid and the pressure-depressure pre-treatments, respectively. However, in the batch biodegradability tests, the highest cumulative biogas production was obtained with the pressure-depressure method. In the continuous tests, the best performance in terms of an acceptable biogas production efficiency of 60% and stable in-reactor CODs and VFA concentrations corresponded to the pressure-depressure reactor, followed by freeze-thaw, acid, thermo-acid, thermo and control. The maximum OLR (5 g COD L(-1) d(-1)) applied in the pressure-depressure and freeze-thaw reactors almost doubled the control reactor. From the overall analysis, the freeze-thaw pre-treatment was the most profitable process with a net potential profit of around 11.5 € ton(-1) KW.

  13. BMP signaling induces digit regeneration in neonatal mice.

    Science.gov (United States)

    Yu, Ling; Han, Manjong; Yan, Mingquan; Lee, Eun-Chee; Lee, Jangwoo; Muneoka, Ken

    2010-02-01

    The regenerating digit tip of mice is a novel epimorphic response in mammals that is similar to fingertip regeneration in humans. Both display restricted regenerative capabilities that are amputation-level dependent. Using this endogenous regeneration model in neonatal mice, we have found that noggin treatment inhibits regeneration, thus suggesting a bone morphogenetic protein (BMP) requirement. Using non-regenerating amputation wounds, we show that BMP7 or BMP2 can induce a regenerative response. BMP-induced regeneration involves the formation of a mammalian digit blastema. Unlike the endogenous regeneration response that involves redifferentiation by direct ossification (evolved regeneration), the BMP-induced response involves endochondral ossification (redevelopment). Our evidence suggests that BMP treatment triggers a reprogramming event that re-initiates digit tip development at the amputation wound. These studies demonstrate for the first time that the postnatal mammalian digit has latent regenerative capabilities that can be induced by growth factor treatment.

  14. Continuous absorption of CO2 in packed column using MDEA solution for biomethane preparation

    Science.gov (United States)

    Mindaryani, A.; Budhijanto, W.; Ningrum, S. S.

    2016-11-01

    Nowadays, the energy consumption in Indonesia is increasing. Raising of energy consumption force Indonesia to find other energy resources. Biogas is one of the renewable energy, which was developed in anticipation to the fossil energy reduction. Reducing the content of impurities in biogas may reduce the corrosion impact and increase the combustion efficiency. The biomethane can be utilised as fuel for generator in small and medium scale industries (IKM). Continuous CO2 absorption in packed column using MDEA solution as absorbent is studied for biomethane preparation. CO2 absorption experiments was performed continuously in the packed absorption column with a diameter of 6 cm and 75 cm length. Gas is sparged from the bottom of the column while the liquid is pumped through the top of the column. The concentration of CO2 at exit gas is analysed by GC and recorded as a function of time. The flowrate of the inlet gas was varied at 1 LPM; 1.5 LPM; and 1.8 LPM. Variation of MDEA solution concentration used was 20% and 35.31%. Mathematical model for unsteady state CO2 absorption in packed column was developed. The reaction rate constant (k) and mass transfer coefficient KGa were determined by fitting the outlet CO2 concentration data as a function of time to the model solution with smallest Sum of Square of Errors (SSE). The experimental data shows that absorption of 1 LPM gas flow rate with 0,15 LPM MDEA solution flow rate may reduce 40 % CO2 to be 17 % CO2 in outlet gas. The steady state process reaches at 10 minutes. Increasing gas flow rates shows the higher overall mass transfer coefficient. The reaction rate constant is not affected by gas flow rate variation.

  15. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications.

  16. BMP-7 PROTEIN EXPRESSION IS DOWNREGULATED IN HUMAN DIABETIC NEPHROPATHY.

    Science.gov (United States)

    Ivanac-Janković, Renata; Ćorić, Marijana; Furić-Čunko, Vesna; Lovičić, Vesna; Bašić-Jukić, Nikolina; Kes, Petar

    2015-06-01

    Bone morphogenetic protein-7 (BMP-7) is expressed in all parts of the normal kidney parenchyma, being highest in the epithelium of proximal tubules. It protects kidney against acute and chronic injury, inflammation and fibrosis. Diabetic nephropathy is the leading cause of chronic kidney disease, and is characterized by decreased expression of BMP-7. The aim of our study was to analyze whether the expression of BMP-7 is significantly changed in advanced stages of human diabetic nephropathy. Immunohistochemical analysis of the expression of BMP-7 was performed on archival material of 30 patients that underwent renal biopsy and had confirmed diagnosis of diabetic nephropathy. Results showed that BMP-7 was differently expressed in the cytoplasm of epithelial cells of proximal tubules and podocytes among all stages of diabetic nephropathy. At early stages of diabetic nephropathy, BMP-7 was strongly positive in proximal tubules and podocytes, while low expression was recorded in the majority of samples at advanced stages. In conclusion, increased expression of BMP-7 at initial stages of diabetic nephropathy with subsequent decrease at advanced stage highlights the role of BMP-7 in the protection of kidney structure and function. Further investigations should be focused on disturbances of BMP-7 receptors and signaling pathways in patients with diabetic nephropathy.

  17. Wet air oxidation pretreatment of biomethanated distillery effluent: mapping pretreatment efficiency in terms color, toxicity reduction and biogas generation.

    Science.gov (United States)

    Sarat Chandra, T; Malik, S N; Suvidha, G; Padmere, M L; Shanmugam, P; Mudliar, S N

    2014-04-01

    The effluents from molasses-based distilleries after biomethanation are beset with problems of intensified dark brown color, high residual COD, low biodegradability index (BOD/COD ratio Wet air oxidation (WAO) pretreatment of biomethanated distillery effluent resulted in substantial enhancement in the biodegradability index (BI) (up to 0.8). WAO pretreated effluent on anaerobic digestion indicated favorable biogas generation with methane content up to 64% along with concomitant COD reduction up to 54.75%. The HPLC analysis indicated that the pretreatment facilitated degradation of major color containing compounds-namely melanoidins, up to 97.8%. The pretreated effluent with enhanced biodegradability along with substantially reduced color also indicated positive effect on seed germination (up to 100%), implying toxicity reduction of the effluent post WAO pretreatment.

  18. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.

    Science.gov (United States)

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E; Ginzburg, Yelena Z

    2016-03-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.

  19. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    Directory of Open Access Journals (Sweden)

    ChunMei Liu

    2015-01-01

    Full Text Available This research applied sodium hydroxide (NaOH pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  20. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    Science.gov (United States)

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  1. Evaluation of rhBMP-2/collagen/TCP-HA bone graft with and without bone marrow cells in the canine femoral multi defect model.

    Science.gov (United States)

    Luangphakdy, V; Shinohara, K; Pan, H; Boehm, C; Samaranska, A; Muschler, G F

    2015-01-12

    Recombinant human bone morphogenetic protein-2, when applied to an absorbable type 1 bovine collagen sponge (rhBMP-2/ACS) is an effective therapy in many bone grafting settings. Bone marrow aspirate (BMA) has also been used as a source of transplantable osteogenic connective tissue progenitors. This study was designed to characterize the performance of a scaffold comprising rhBMP-2/ACS in which the sponge wraps around tri-calcium phosphate hydroxyapatite granules (rhBMP-2/ACS/TCP-HA) and to test the hypothesis that addition of BMA will improve the performance of this construct in the Canine Femoral Multi Defect Model. In each subject, two sites were grafted with rhBMP-2/ACS/TCP-HA scaffold loaded with BMA clot and two other sites with rhBMP-2/ACS/TCP-HA scaffold loaded with wound blood (WB). After correction for unresorbed TCP-HA granules, sites grafted with rhBMP-2/ACS/TCP-HA+BMA and rhBMP-2/ACS/TCP-HA+WB were similar, with mean percent bone volumes of 10.9 %±1.2 and 11.2 %±1.2, respectively. No differences were seen in quantitative histomorphometry. While bone formation using both constructs was robust, this study did not support the hypothesis that the addition of unprocessed bone marrow aspirate clot improved bone regeneration in a site engrafted with rhBMP-2/ACS/TCP-HA+BMA. In contrast to prior studies using this model, new bone formation was greater at the center of the defect where TCP-HA was distributed. This finding suggests a potential synergy between rhBMP-2 and the centrally placed ceramic and cellular components of the graft construct. Further optimization may also require more uniform distribution of TCP-HA, alternative cell delivery strategies, and a more rigorous large animal segmental defect model.

  2. Changes with Age and the Effect of Recombinant Human BMP-2 on Proteoglycan and Collagen Gene Expression in Rabbit Anulus Fibrosus Cells

    Institute of Scientific and Technical Information of China (English)

    Qin-Ming FEI; Xiao-Xing JIANG; Tong-Yi CHEN; Jun LI; Hideki MURAKAMI; Kai-Jow TSAI; William C. HUTTON

    2006-01-01

    In order to compare the difference between young and old intervertebral disc cells and their responsiveness to recombinant human bone morphogenetic protein-2 (rhBMP-2), disc cells were isolated from the anulus fibrosus (AF) and transition zones of lumbar discs from eight old and eight young New Zealand white rabbits. Compared with the cells from the young rabbits, cells from old rabbits respond less to rhBMP-2 treatment with respect to sulfated-glycosaminoglycan (sGAG) synthesis and aggrecan gene expression. But in collagen Ⅰ and collagen Ⅱ gene expressions, there are no significant differences between the old and the young. When comparing sGAG content, aggrecan, and collagen Ⅱ gene expression of the old AF cells after rhBMP-2 treatment with that of the young AF cells without rhBMP-2 treatment, the old AF cells with rhBMP-2 treatment have a greater capacity to synthesize sGAG bound in the cells and to release sGAG in the media, as well as to express aggrecan and collagen Ⅱ gene. It can be concluded that old AF cells after rhBMP-2 treatment have a greater capacity to synthesize sGAG and express aggrecan and collagen Ⅱ as compared to young AF cells without rhBMP-2 treatment. Thus rhBMP-2 can reverse the decline in the anabolic capacity of the disc cells with ageing. So it seems that rhBMP-2 has potential for use as an agent to retard a key component of disc degeneration and loss of disc matrix.

  3. Effect of overexpression of vascular endothelial growth factor 165 on the osteogenic potential of bone morphogenetic protein%VEGF165过表达对BMP2成骨细胞分化影响的实验研究

    Institute of Scientific and Technical Information of China (English)

    张聪; 刘洪美; 李庆伟; 陈国武; 梁啸; 孟纯阳

    2015-01-01

    [目的]探讨腺病毒转染血管内皮生长因子165(vascular endothelial growth factor 165,VEGF165)对骨形态发生蛋白(bone morphogenetic protein 2,BMP2)促成骨细胞分化的抑制性作用研究.[方法]采用密度梯度离心法分离兔骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs),取第3代BMSCs进行细胞表型鉴定并作为细胞实验对象,使用Ad-BMP2和Ad-BMP2-VEGF165载体体外转染BMSCs,倒置荧光显微镜下观察GFP表达变化;同时ELISA和Westem blot检测BMP2和VEGF165蛋白的表达.然后,应用成骨细胞诱导培养液定向诱导BMSCs向成骨细胞分化.实验分3组:Ad-BMP2-VEGF165转染BMSCs组(Ad-BMP2-VEGF165组),Ad-BMP2转染BMSCs组(Ad-BMP2组),BMSCs组(对照组).分别在成骨细胞诱导培养后7、14、21 d,通过Real-time PCR分析ALP和OC mRNA相对表达水平和碱性磷酸酶(alkaline phosphatase,ALP)活性测定、骨钙素(Osteocalcin,OC)免疫组化染色来评价各组BMSCs成骨分化潜能的影响. [结果]第3代细胞表面高表达CD29(99.82%)、CD44 (94.14%),低表达CD14 (3.11%)、CD34 (0.34%);腺病毒转染后第5 h BMP2和hVEGF165蛋白水平表达最高;成骨细胞诱导培养14和21 d后,Ad-BMP2组成骨相关基因表达、OC免疫组化和ALP活性表达最高,结果与其他两组相比较差异具有统计学意义(P<0.05);而对照组表达最弱,与Ad-BMP2-VEGF165组比较差异具有统计学意义(P<0.05).[结论]腺病毒载体Ad-BMP2与Ad-BMP2-VEGF165转染BMSCs后,均具有明显促进BMSCs体外诱导成骨细胞分化潜能,但Ad-BMP2诱导作用更为显著,同时说明VEGF165可能对BMSCs成骨细胞分化起抑制作用.

  4. The Enhancement of Osteogenesis by Scaffold Based on Mineralized Recombinant Human-like Collagen Loading with rhBMP-2

    Institute of Scientific and Technical Information of China (English)

    WU Bin; ZHENG Qixin; GUO Xiaodong; WU Yongchao; WANG Yu; CUI Fuzai

    2009-01-01

    A biomimetic scaffold based on mineralized recombinant collagen,nano-hydroxyapatite/recombinant human-like collagen/poly(lactic acid)(nHA/RHLC/PLA),was prepared with recombinant human bone morphogenic protein-2(rhBMP-2)for improving the os-teoinductive property of the scaffold.The nHA/RHLC/PLA scaffolds loaded with 10μg rhBMP-2 and the unloaded scaffolds were implanted subcutaneously in the rat model.The osteogenetic capacity of these composites was evaluated by CT scan,ALP activity test and histological observation at 4 and 8 weeks after implantation.The experimental results indicated that the osteogenic capability of the scaffolds loaded with rhBMP-2 was superior to the unloaded scaffold.It was concluded that rhBMP-2 can enhance the osteoinductive property of the nHA/RHLC/PLA scaffold and the nHA/RHLC/PLA scaffold loaded with rhBMP-2 have the good potential of being used in bone tissue engineering.

  5. Bmp indicator mice reveal dynamic regulation of transcriptional response.

    Directory of Open Access Journals (Sweden)

    Anna L Javier

    Full Text Available Cellular responses to Bmp ligands are regulated at multiple levels, both extracellularly and intracellularly. Therefore, the presence of these growth factors is not an accurate indicator of Bmp signaling activity. While a common approach to detect Bmp signaling activity is to determine the presence of phosphorylated forms of Smad1, 5 and 8 by immunostaining, this approach is time consuming and not quantitative. In order to provide a simpler readout system to examine the presence of Bmp signaling in developing animals, we developed BRE-gal mouse embryonic stem cells and a transgenic mouse line that specifically respond to Bmp ligand stimulation. Our reporter identifies specific transcriptional responses that are mediated by Smad1 and Smad4 with the Schnurri transcription factor complex binding to a conserved Bmp-Responsive Element (BRE, originally identified among Drosophila, Xenopus and human Bmp targets. Our BRE-gal mES cells specifically respond to Bmp ligands at concentrations as low as 5 ng/ml; and BRE-gal reporter mice, derived from the BRE-gal mES cells, show dynamic activity in many cellular sites, including extraembryonic structures and mammary glands, thereby making this a useful scientific tool.

  6. BMP-2 and titanium particles synergistically activate osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Sun, S.X. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Guo, H.H. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Zhang, J. [Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi, China, Institute of Pathology, Xi' an Jiaotong University, Xi' an Shaanxi (China); Yu, B. [Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China); Sun, K.N.; Jin, Q.H. [Affiliated Hospital of Ningxia Medical University, Department of Orthopedics, Yinchuan, Ningxia Hui Autonomous Region, China, Department of Orthopedics, Affiliated Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region (China)

    2014-05-09

    A previous study showed that BMP-2 (bone morphogenetic protein-2) and wear debris can separately support osteoclast formation induced by the receptor activator of NF-κB ligand (RANKL). However, the effect of BMP-2 on wear debris-induced osteoclast formation is unclear. In this study, we show that neither titanium particles nor BMP-2 can induce osteoclast formation in RAW 264.7 mouse leukemic monocyte macrophage cells but that BMP-2 synergizes with titanium particles to enhance osteoclast formation in the presence of RANKL, and that at a low concentration, BMP-2 has an optimal effect to stimulate the size and number of multinuclear osteoclasts, expression of osteoclast genes, and resorption area. Our data also clarify that the effects caused by the increase in BMP-2 on phosphorylated SMAD levels such as c-Fos expression increased throughout the early stages of osteoclastogenesis. BMP-2 and titanium particles stimulate the expression of p-JNK, p-P38, p-IkB, and P50 compared with the titanium group. These data suggested that BMP-2 may be a crucial factor in titanium particle-mediated osteoclast formation.

  7. Regulation of BMP2-induced intracellular calcium increases in osteoblasts.

    Science.gov (United States)

    Xu, Wenfeng; Liu, Bo; Liu, Xue; Chiang, Martin Y M; Li, Bo; Xu, Zichen; Liao, Xiaoling

    2016-10-01

    Although bone morphogenetic protein-2 (BMP2) is a well-characterized regulator that stimulates osteoblast differentiation, little is known about how it regulates intracellular Ca(2+) signaling. In this study, intracellular Ca(2+) concentration ([Ca(2+) ]i ) upon BMP2 application, focal adhesion kinase (FAK) and Src activities were measured in the MC3T3-E1 osteoblast cell line using fluorescence resonance energy transfer-based biosensors. Increase in [Ca(2+) ]i , FAK, and Src activities were observed during BMP2 stimulation. The removal of extracellular calcium, the application of membrane channel inhibitors streptomycin or nifedipine, the FAK inhibitor PF-573228 (PF228), and the alkaline phosphatase (ALP) siRNA all blocked the BMP2-stimulated [Ca(2+) ]i increase, while the Src inhibitor PP1 did not. In contrast, a gentle decrease of endoplasmic reticulum calcium concentration was found after BMP2 stimulation, which could be blocked by both streptomycin and PP1. Further experiments revealed that BMP2-induced FAK activation could not be inhibited by PP1, ALP siRNA or the calcium channel inhibitor nifedipine. PF228, but not PP1 or calcium channel inhibitors, suppressed ALP elevation resulting from BMP2 stimulation. Therefore, our results suggest that BMP2 can increase [Ca(2+) ]i through extracellular calcium influx regulated by FAK and ALP and can deplete ER calcium through Src signaling simultaneously. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1725-1733, 2016.

  8. Clinical significance of serum BMP2 and BMP4 in patients with chronic hepatitis virus infection.%检测慢性肝病患者血清BMP2和BMP4的临床价值

    Institute of Scientific and Technical Information of China (English)

    温彪; 许翠萍

    2012-01-01

    Objective To study the significance of serum bone morphogenetic protein 2 ( BMP2 ) and bone morphogenetic protein 4 ( BMP4 ) in diagnosis and differential diagnosis of primary hepatic carcinoma ( PHC ). Methods Blood samples were drawn from 60 inpatients. According to their pathological diagnosis or clinical diagnosis, they were divided into three groups: 25 in primary hepatic carcinoma group, 17 in hepatic cirrhosis group and 18 in chronic hepatitis group. The control blood samples were collected from 9 healthy persons in health examination department. The serum levels of AFP, BMP2 and BMP4 were detected in all these groups. Results (T) The serum levels of BMP2 in PHC patients were lower than those of normal controls and patients with chronic hepatitis and hepatic cirrhosis. ( P <0.05 ). (2) The serum levels of BMP4 in patients with PHC were lower than those in other groups. ( P <0.05 ). (3) The sensitivity, specificity and veracity of serum BMP2 in diagnosis of PHC were 92.00% , 100% and 97.10% respectively. The sensitivity, specificity and veracity of serum BMP4 in diagnosis of PHC were 80.00% , 100% and 92.75% respectively. Conclusion There is certain value of serum BMP2 and BMP4 in diagnosis and differential diagnosis of PHC.%目的 研究慢性肝病患者血清中的骨形态发生蛋白2(BMP2)和骨形态发生蛋白4(BMP4)的表达,了解两者在诊断和鉴别诊断原发性肝癌(PHC)中的临床价值.方法 按照病理学诊断或者临床资料诊断,对住院的60例患者进行分组,PHC组25例,肝硬化组17例,肝炎组18例.9例健康对照组采自同期健康体检者.分别检测各组患者及正常者血清甲胎蛋白(AFP)、BMP2和BMP4.结果 ①PHC组患者血清中的BMP2较健康对照组、肝炎组、肝硬化组低,差异都有统计学意义(P<0.05).②PHC组患者血清BMP4较其余3组组低,差异都有统计学意义(P<0.01).③BMP2诊断PHC的敏感性为92.00%,特异性为100%,准确率是97.10%;BMP4

  9. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth.

    Science.gov (United States)

    Li, Jingyuan; Feng, Jifan; Liu, Yang; Ho, Thach-Vu; Grimes, Weston; Ho, Hoang Anh; Park, Shery; Wang, Songlin; Chai, Yang

    2015-04-20

    During embryogenesis, ectodermal stem cells adopt different fates and form diverse ectodermal organs, such as teeth, hair follicles, mammary glands, and salivary glands. Interestingly, these ectodermal organs differ in their tissue homeostasis, which leads to differential abilities for continuous growth postnatally. Mouse molars lose the ability to grow continuously, whereas incisors retain this ability. In this study, we found that a BMP-Smad4-SHH-Gli1 signaling network may provide a niche supporting transient Sox2+ dental epithelial stem cells in mouse molars. This mechanism also plays a role in continuously growing mouse incisors. The differential fate of epithelial stem cells in mouse molars and incisors is controlled by this BMP/SHH signaling network, which partially accounts for the different postnatal growth potential of molars and incisors. Collectively, our study highlights the importance of crosstalk between two signaling pathways, BMP and SHH, in regulating the fate of epithelial stem cells during organogenesis.

  10. Immunohistological Localization of BMP-2, BMP-7, and Their Receptors in Knee Joints with Focal Cartilage Lesions

    Directory of Open Access Journals (Sweden)

    Hagen Schmal

    2012-01-01

    Full Text Available Introduction. Although it is well known that BMP-2 and BMP-7 play significant roles in cartilage metabolism, data about intra-articular expression and localization of these proteins and their receptors in humans are rare. Methods. Biopsies of synovia and debrided cartilage were taken in patients undergoing autologous chondrocyte implantation. Expression of BMP-2, BMP-7, and their receptors BMPR-1A, BMPR-1B and BMPR-2 were semiquantitatively evaluated by immunohistological staining. Results. BMP-7 was equally highly expressed in all cartilage and synovial biopsies. Increased levels of BMPR-1A, but not of BMPR-1B, and BMPR-2, were found in all synovial and 47% of all cartilage samples (P=0.002. BMP-2 was positively scored in 47% of all cartilage and 40% of all synovial specimens. Defect size, KOSS, Henderson or Kellgren-Lawrence score did not statistically significant correlate with the expression of the analyzed proteins or Mankin and Pritzker scores. Duration of symptoms and localization of lesions were associated with KOSS (P<0.02, but there was no influence of these parameters on protein expression. Conclusions. BMP-2, BMP-7, and BMPR-1A were expressed in cartilage and synovia of knees with focal cartilage lesions. Although defect localization and duration of symptoms decisively influence KOSS, there was no associated alteration of protein expression observed.

  11. Expression of genes for bone morphogenetic proteins BMP-2, BMP-4 and BMP-6 in various parts of the human skeleton

    Directory of Open Access Journals (Sweden)

    Włodarski Krzysztof

    2007-12-01

    Full Text Available Abstract Background Differences in duration of bone healing in various parts of the human skeleton are common experience for orthopaedic surgeons. The reason for these differences is not obvious and not clear. Methods In this paper we decided to measure by the use of real-time RT-PCR technique the level of expression of genes for some isoforms of bone morphogenetic proteins (BMPs, whose role is proven in bone formation, bone induction and bone turnover. Seven bone samples recovered from various parts of skeletons from six cadavers of young healthy men who died in traffic accidents were collected. Activity of genes for BMP-2, -4 and -6 was measured by the use of fluorescent SYBR Green I. Results It was found that expression of m-RNA for BMP-2 and BMP-4 is higher in trabecular bone in epiphyses of long bones, cranial flat bones and corpus mandibulae then in the compact bone of diaphyses of long bones. In all samples examined the expression of m-RNA for BMP-4 was higher than for BMP-2. Conclusion It was shown that m-RNA for BMP-6 is not expressed in the collected samples at all. It is postulated that differences in the level of activation of genes for BMPs is one of the important factors which determine the differences in duration of bone healing of various parts of the human skeleton.

  12. Co-digestion of Whey with Glycerin in an AnSBBR for Biomethane Production.

    Science.gov (United States)

    Lovato, G; Ratusznei, S M; Rodrigues, J A D; Zaiat, M

    2016-01-01

    This study aimed to evaluate the co-digestion of cheese whey and glycerin in an anaerobic sequencing batch biofilm reactor (AnSBBR) with recirculation of the liquid phase applied to biomethane production. The applied volumetric organic load (AVOL) in all conditions was 7.5 kgCOD m(-3) day(-1). The feeding time was equal to half of the cycle time. The best condition for co-digestion was the wastewater with 75 % of cheese whey and 25 % of glycerin (chemical oxygen demand (COD) basis); it achieved a productivity of 101.8 molCH4 m(-3) day(-1) and a yield of 13.3 molCH4 kgCOD(-1) with 89 % of COD removal. This represents an increase of productivity of almost 9 and 30 % when compared to the anaerobic digestion of cheese whey and glycerin alone, respectively. The co-digestion proposed is a promising solution for both pollutants with the advantage of high energy production. A first-order kinetic model was fitted efficiently to the process.

  13. Future combustion methods for biomethane powered tractor engines; Zukuenftige Brennverfahren fuer biomethanbetriebene Traktormotoren

    Energy Technology Data Exchange (ETDEWEB)

    Prehn, Sascha; Harndorf, Horst [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Wichmann, Volker [Rostock Univ. (Germany). Maschinenlabor; Beberdick, Wolfgang

    2016-08-01

    Biomethane represents an alternative to fossil fuels (petrol, diesel), not only in the on-road sector. Methane-based fuels come in focus of farmers in the agriculture sector, due to cost constraints, increasing regulation of pollutant emissions and reduction of carbondioxid. To represent a monovalent gas operation, a functional model is derived from a series diesel engine for agricultural use. On the test engine, systematic studies on the combustion process are carried out by cylinder pressure indication and exhaust-emission measurement. Combustion under stoichiometric conditions (with or without exhaust gas recirculation) as well as the conversion of fuel from excess air is observed. The study shows that with a natural-gas engine, a complex post-treatment system of exhaust gas (DOC + DPF + SCR) that is typically for diesel engines can be dispensed with. The exhaust gas limits in force since 2014 and a limitation of methane on 0,5 g/kWh can be met with a stoichiometric combustion concept and a three way catalytic converter optimized for the methane oxidation.

  14. New Strategy for a Suitable Fast Stabilization of the Biomethanization Performance

    Directory of Open Access Journals (Sweden)

    L. A. Fernández-Güelfo

    2012-01-01

    Full Text Available The start-up strategies for thermophilic anaerobic reactors usually consist of an initial mesophilic stage (35°C, with an approximate duration of 185 days, and a subsequent thermophilic stage (55°C, which normally requires around 60 days to achieve the system stabilizatio. During the first 8–10 days of the mesophilic stage, the reactor is not fed so that the inoculum, which is generally a mesophilic anaerobic sludge, may be adapted to the organic solid waste. Between mesophilic and thermophilic conditions the reactor is still not fed in an effort to prevent possible imbalances in the proces. As a consequence, the start-up and stabilization of the biomethanization performance described in the literature require, at least, around 245 days. In this sense, a new strategy for the start-up and stabilization phases is presented in this study. This approach allows an important reduction in the overall time necessary for these stages in an anaerobic continuous stirred tank reactor (CSTR operated at thermophilic-dry conditions for treating the organic fraction of the municipal solid waste (OFMSW: 60 days versus 245 days of conventional strategies. The new strategy uses modified SEBAC technology to adapt an inoculum to the OFMSW and the operational conditions prior to seeding the CSTR.

  15. Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment.

    Science.gov (United States)

    Jafari, Omid; Zilouei, Hamid

    2016-08-01

    Nano-titanium dioxide (nanoTiO2) under ultraviolet irradiation (UV) followed by dilute sulfuric acid hydrolysis of sugarcane bagasse was used to enhance the production of biohydrogen and biomethane in a consecutive dark fermentation and anaerobic digestion. Different concentrations of 0.001, 0.01, 0.1 and 1g nanoTiO2/L under different UV times of 30, 60, 90 and 120min were used. Sulfuric acid (2%v/v) at 121°C was used for 15, 30 and 60min to hydrolyze the pretreated bagasse. For acidic hydrolysis times of 15, 30 and 60min, the highest total free sugar values were enhanced by 260%, 107%, and 189%, respectively, compared to samples without nanoTiO2 pretreatment. The highest hydrogen production samples for the same acidic hydrolysis times showed 88%, 127%, and 25% enhancement. The maximum hydrogen production of 101.5ml/g VS (volatile solids) was obtained at 1g nanoTiO2/L and 120min UV irradiation followed by 30min acid hydrolysis.

  16. Dynamics of BMP signaling in limb bud mesenchyme and polydactyly.

    Science.gov (United States)

    Norrie, Jacqueline L; Lewandowski, Jordan P; Bouldin, Cortney M; Amarnath, Smita; Li, Qiang; Vokes, Martha S; Ehrlich, Lauren I R; Harfe, Brian D; Vokes, Steven A

    2014-09-15

    Mutations in the Bone Morphogenetic Protein (BMP) pathway are associated with a range of defects in skeletal formation. Genetic analysis of BMP signaling requirements is complicated by the presence of three partially redundant BMPs that are required for multiple stages of limb development. We generated an inducible allele of a BMP inhibitor, Gremlin, which reduces BMP signaling. We show that BMPs act in a dose and time dependent manner in which early reduction of BMPs result in digit loss, while inhibiting overall BMP signaling between E10.5 and E11.5 allows polydactylous digit formation. During this period, inhibiting BMPs extends the duration of FGF signaling. Sox9 is initially expressed in normal digit ray domains but at reduced levels that correlate with the reduction in BMP signaling. The persistence of elevated FGF signaling likely promotes cell proliferation and survival, inhibiting the activation of Sox9 and secondarily, inhibiting the differentiation of Sox9-expressing chondrocytes. Our results provide new insights into the timing and clarify the mechanisms underlying BMP signaling during digit morphogenesis.

  17. Metastatic function of BMP-2 in gastric cancer cells: The role of PI3K/AKT, MAPK, the NF-{kappa}B pathway, and MMP-9 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Myoung Hee [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Oh, Sang Cheul [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Hyun Joo [Department of Pathology, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kang, Han Na; Kim, Jung Lim [Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Jun Suk [Division of Oncology/Hematology, Department of Internal Medicine, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Yoo, Young A., E-mail: ydanbi@korea.ac.kr [Brain Korea 21 Program for Biomedical Science, Korea University College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2011-07-15

    Bone morphogenetic proteins (BMPs) have been implicated in tumorigenesis and metastatic progression in various types of cancer cells, but the role and cellular mechanism in the invasive phenotype of gastric cancer cells is not known. Herein, we determined the roles of phosphoinositide 3-kinase (PI3K)/AKT, extracellular signal-regulated protein kinase (ERK), nuclear factor (NF)-{kappa}B, and matrix metalloproteinase (MMP) expression in BMP-2-mediated metastatic function in gastric cancer. We found that stimulation of BMP-2 in gastric cancer cells enhanced the phosphorylation of AKT and ERK. Accompanying activation of AKT and ERK kinase, BMP-2 also enhanced phosphorylation/degradation of I{kappa}B{alpha} and the nuclear translocation/activation of NF-{kappa}B. Interestingly, blockade of PI3K/AKT and ERK signaling using LY294002 and PD98059, respectively, significantly inhibited BMP-2-induced motility and invasiveness in association with the activation of NF-{kappa}B. Furthermore, BMP-2-induced MMP-9 expression and enzymatic activity was also significantly blocked by treatment with PI3K/AKT, ERK, or NF-{kappa}B inhibitors. Immunohistochemistry staining of 178 gastric tumor biopsies indicated that expression of BMP-2 and MMP-9 had a significant positive correlation with lymph node metastasis and a poor prognosis. These results indicate that the BMP-2 signaling pathway enhances tumor metastasis in gastric cancer by sequential activation of the PI3K/AKT or MAPK pathway followed by the induction of NF-{kappa}B and MMP-9 activity, indicating that BMP-2 has the potential to be a therapeutic molecular target to decrease metastasis.

  18. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    Science.gov (United States)

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. PMID:26869786

  19. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO₂ nanotube layers fabricated by lyophilization following trehalose addition.

    Science.gov (United States)

    Zhang, Xiaochen; Zhang, Zhiyuan; Shen, Gang; Zhao, Jun

    2016-01-01

    To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2) significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs.

  20. BMP2 gene delivery to bone mesenchymal stem cell by chitosan-g-PEI nonviral vector

    Science.gov (United States)

    Yue, Jianhui; Wu, Jun; Liu, Di; Zhao, Xiaoli; Lu, William W.

    2015-04-01

    Nanotechnology has made a significant impact on the development of nanomedicine. Nonviral vectors have been attracting more attention for the advantage of biosafety in gene delivery. Polyethylenimine (PEI)-conjugated chitosan (chitosan-g-PEI) emerged as a promising nonviral vector and has been demonstrated in many tumor cells. However, there is a lack of study focused on the behavior of this vector in stem cells which hold great potential in regenerative medicine. Therefore, in this study, in vitro gene delivering effect of chitosan-g-PEI was investigated in bone marrow stem cells. pIRES2-ZsGreen1-hBMP2 dual expression plasmid containing both the ZsGreen1 GFP reporter gene and the BMP2 functional gene was constructed for monitoring the transgene expression level. Chitosan-g-PEI-mediated gene transfer showed 17.2% of transfection efficiency and more than 80% of cell viability in stem cells. These values were higher than that of PEI. The expression of the delivered BMP2 gene in stem cells enhanced the osteogenic differentiation. These results demonstrated that chitosan-g-PEI is capable of applying in delivering gene to stem cells and providing potential applications in stem cell-based gene therapy.

  1. BMP2/BMP4 colorectal cancer susceptibility loci in northern and southern European populations.

    Science.gov (United States)

    Fernandez-Rozadilla, Ceres; Palles, Claire; Carvajal-Carmona, Luis; Peterlongo, Paolo; Nici, Carmela; Veneroni, Silvia; Pinheiro, Manuela; Teixeira, Manuel R; Moreno, Victor; Lamas, Maria-Jesus; Baiget, Montserrat; Lopez-Fernandez, L A; Gonzalez, Dolors; Brea-Fernandez, Alejandro; Clofent, Juan; Bujanda, Luis; Bessa, Xavier; Andreu, Montserrat; Xicola, Rosa; Llor, Xavier; Jover, Rodrigo; Castells, Antoni; Castellvi-Bel, Sergi; Carracedo, Angel; Tomlinson, Ian; Ruiz-Ponte, Clara

    2013-02-01

    Genome-wide association studies have successfully identified 20 colorectal cancer susceptibility loci. Amongst these, four of the signals are defined by tagging single nucleotide polymorphisms (SNPs) on regions 14q22.2 (rs4444235 and rs1957636) and 20p12.3 (rs961253 and rs4813802). These markers are located close to two of the genes involved in bone morphogenetic protein (BMP) signaling (BMP4 and BMP2, respectively). By investigating these four SNPs in an initial cohort of Spanish origin, we found substantial evidence that minor allele frequencies (MAFs) may be different in northern and southern European populations. Therefore, we genotyped three additional southern European cohorts comprising a total of 2028 cases and 4273 controls. The meta-analysis results show that only one of the association signals (rs961253) is effectively replicated in the southern European populations, despite adequate power to detect all four. The other three SNPs (rs4444235, rs1957636 and rs4813802) presented discordant results in MAFs and linkage disequilibrium patterns between northern and southern European cohorts. We hypothesize that this lack of replication could be the result of differential tagging of the functional variant in both sets of populations. Were this true, it would have complex consequences in both our ability to understand the nature of the real causative variants, as well as for further study designs.

  2. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading

    DEFF Research Database (Denmark)

    Wang, Wen; Xie, Li; Luo, Gang;

    2013-01-01

    (HFM). With pH control at 8.0, the added H2 and CO were fully consumed and no negative effects on the anaerobic degradation of sewage sludge were observed. The maximum CH4 content in the biogas was 99%. The addition of SCOG resulted in enrichment and dominance of homoacetogenetic genus Treponema......A new method for simultaneous coke oven gas (COG) biomethanation and in situ biogas upgrading in anaerobic reactor was developed in this study. The simulated coke oven gas (SCOG) (92% H2 and 8% CO) was injected directly into the anaerobic reactor treating sewage sludge through hollow fiber membrane...

  3. Turning Bone Morphogenetic Protein 2 (BMP2) on and off in Mesenchymal Cells.

    Science.gov (United States)

    Rogers, Melissa B; Shah, Tapan A; Shaikh, Nadia N

    2015-10-01

    The concentration, location, and timing of bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) gene expression must be precisely regulated. Abnormal BMP2 levels cause congenital anomalies and diseases involving the mesenchymal cells that differentiate into muscle, fat, cartilage, and bone. The molecules and conditions that influence BMP2 synthesis are diverse. Understandably, complex mechanisms control Bmp2 gene expression. This review includes a compilation of agents and conditions that can induce Bmp2. The currently known trans-regulatory factors and cis-regulatory elements that modulate Bmp2 expression are summarized and discussed. Bone morphogenetic protein 2 (BMP2, HGNC:1069, GeneID: 650) is a classical morphogen; a molecule that acts at a distance and whose concentration influences cell behavior. In mesenchymal cells, the concentration of BMP2 influences myogenesis, adipogenesis, chondrogenesis, and osteogenesis. Because the amount, timing, and location of BMP2 synthesis influence the allocation of cells to muscle, fat, cartilage, and bone, the mechanisms that regulate the Bmp2 gene are crucial. Key early mesodermal events that require precise Bmp2 regulation include heart specification and morphogenesis. Originally named for its osteoinductive properties, healing fractures requires BMP2. The human Bmp2 gene also has been linked to osteoporosis and osteoarthritis. In addition, all forms of pathological calcification in the vasculature and in cardiac valves involve the pro-osteogenic BMP2. The diverse tissues, mechanisms, and diseases influenced by BMP2 are too numerous to list here (see OMIM: 112261). However, in all BMP2-influenced pathologies, changes in the behavior and differentiation of pluripotent mesenchymal cells are a recurring theme. Consequently, much effort has been devoted to identifying the molecules and conditions that influence BMP2 synthesis and the complex mechanisms that control Bmp2 gene expression. This review begins with an

  4. L51P - A BMP2 variant with osteoinductive activity via inhibition of Noggin.

    Science.gov (United States)

    Albers, Christoph E; Hofstetter, Wilhelm; Sebald, Hans-Jörg; Sebald, Walter; Siebenrock, Klaus A; Klenke, Frank M

    2012-09-01

    Bone morphogenetic proteins (BMP) have to be applied at high concentrations to stimulate bone healing. The limited therapeutic efficacy may be due to the local presence of BMP antagonists such as Noggin. Thus, inhibiting BMP antagonists is an attractive therapeutic option. We hypothesized that the engineered BMP2 variant L51P stimulates osteoinduction by antagonizing Noggin-mediated inhibition of BMP2. Primary murine osteoblasts (OB) were treated with L51P, BMP2, and Noggin. OB proliferation and differentiation were quantified with XTT and alkaline phosphatase (ALP) assays. BMP receptor dependent intracellular signaling in OB was evaluated with Smad and p38 MAPK phosphorylation assays. BMP2, Noggin, BMP receptor Ia/Ib/II, osteocalcin, and ALP mRNA expressions were analyzed with real-time PCR. L51P stimulated OB differentiation by blocking Noggin mediated inhibition of BMP2. L51P did not induce OB differentiation directly and did not activate BMP receptor dependent intracellular signaling via the Smad pathway. Treatment of OB cultures with BMP2 but not with L51P resulted in an increased expression of ALP, BMP2, and Noggin mRNA. By inhibiting the BMP antagonist Noggin, L51P enhances BMP2 activity and stimulates osteoinduction without exhibiting direct osteoinductive function. Indirect osteoinduction with L51P seems to be advantageous to osteoinduction with BMP2 as BMP2 stimulates the expression of Noggin thereby self-limiting its own osteoinductive activity. Treatment with L51P is the first protein-based approach available to augment BMP2 induced bone regeneration through inhibition of BMP antagonists. The described strategy may help to decrease the amounts of exogenous BMPs currently required to stimulate bone healing.

  5. Expression Products of Chimeric BMP2 and BMP7 Induce Osteoblast Differentiation%BMP2与BMP7嵌合表达产物可诱导成骨细胞分化

    Institute of Scientific and Technical Information of China (English)

    胡丽玲; 李晓霞; 张镜宇; 王宝利

    2009-01-01

    目的:构建骨形态发生蛋白(BMP)2与BMP7嵌合表达的分泌型基因载体pcDNA3-BMP2/7,检测表达产物的成骨诱导活性.方法:聚合酶链反应(PCR)扩增BMP2与BMP7的成熟肽编码基因,利用重叠延伸PCR以柔性肽(Gly_4Ser)_3编码序列使两者嵌合并克隆到质粒pcDNA3/sec上,转染CHO-K1细胞筛选得到稳定克隆,以其条件培养基处理鼠胚胎成纤维细胞C3H10T1/2,通过RT-PCR研究BMP2/7嵌合表达产物的活性.结果:BMP2/7嵌合表达产物可以明显提高C3H10T1/2细胞碱性磷酸酶(Alkaline phosphatase,ALP)、骨钙素(Osteocalcin,Oc)成骨细胞表型基因以及特异性转录因子Runx2 (runt-related transcription factor 2)mRNA的表达(P < 0.01).结论:制备的BMP2/7嵌合表达产物能够形成异源二聚体,诱导非骨源性细胞向成骨细胞分化.%Objective: To study the osteoinductive activity of chimeric molecule of bone morphogenetic protein(BMP)2 and BMP7 expressed in mammalian cells. Methods: Sequences encoding mature peptides of BMP2 and BMP7 were separately amplified by PCR and then linked by overlap-extension PCR with a DNA sequence encoding a flexible peptide (Gly_4Ser)_3 between them. The chimeric DNA sequence was cloned into secretory expression plasmid pcDNA3/sec and then the recombinant plasmid pcDNA3 -BMP2/7 was transfected into CHO-K1 cells. In the presence of G418,cells that stably expressed BMP2/7 were screened out. Thereafter, the conditioned culture medium of the transfected cells was collected and used to treat C3H10T1/2 cells. RT-PCR was employed to study the activity of the recombinant product in inducing osteoblast differentiation. Results: The expression products of chimeric BMP2/7 significantly enhanced the mRNA expression levels of osteoblast phenotype genes, such as alkaline phosphatase, osteocalcin and osteoblast specific transcription factor runt-related transcription factor 2 in C3H10T1/2 cells(P < 0.01). Conclusion: The chimeric expression products of BMP2

  6. BMP4 density gradient in disk-shaped confinement

    Science.gov (United States)

    Bozorgui, Behnaz; Teimouri, Hamid; Kolomeisky, Anatoly B.

    We present a quantitative model that explains the scaling of BMP4 gradients during gastrulation and the recent experimental observation that geometric confinement of human embryonic stem cells is sufficient to recapitulate much of germ layer patterning. Based on a assumption that BMP4 diffusion rate is much smaller than the diffusion rate of it's inhibitor molecules, our results confirm that the length-scale which defines germ layer territories does not depend on system size.

  7. Kaempferol induces chondrogenesis in ATDC5 cells through activation of ERK/BMP-2 signaling pathway.

    Science.gov (United States)

    Nepal, Manoj; Li, Liang; Cho, Hyoung Kwon; Park, Jong Kun; Soh, Yunjo

    2013-12-01

    Endochondral bone formation occurs when mesenchymal cells condense to differentiate into chondrocytes, the primary cell types of cartilage. The aim of the present study was to identify novel factors regulating chondrogenesis. We investigated whether kaempferol induces chondrogenic differentiation in clonal mouse chondrogenic ATDC5 cells. Kaempferol treatment stimulated the accumulation of cartilage nodules in a dose-dependent manner. Kaempferol-treated ATDC5 cells stained more intensely with alcian blue staining than control cells, suggesting greater synthesis of matrix proteoglycans in the kaempferol-treated cells. Similarly, kaempferol induced greater activation of alkaline phosphatase activity than control cells, and it enhanced the expression of chondrogenic marker genes, such as collagen type I, collagen type X, OCN, Runx2, and Sox9. Kaempferol induced an acute activation of extracellular signal-regulated kinase (ERK) but not c-jun N-terminal kinase or p38 MAP kinase. PD98059, an inhibitor of MAPK/ERK, decreased in stained cells treated with kaempferol. Furthermore, kaempferol greatly expressed the protein and mRNA levels of BMP-2, suggesting chondrogenesis was stimulated via a BMP-2 pathway. Taken together, our results suggest that kaempferol has chondromodulating effects via an ERK/BMP-2 signaling pathway and could potentially be used as a therapeutic agent for bone growth disorders.

  8. Repair of segmental bone defects with bone marrow and BMP-2 adenovirus in the rabbit radius

    Science.gov (United States)

    Cheng, Lijia; Lu, Xiaofeng; Shi, Yujun; Li, Li; Xue, Jing; Zhang, Li; Xia, Jie; Wang, Yujia; Zhang, Xingdong; Bu, Hong

    2012-12-01

    Bone tissue engineering (BTE) is approached via implantation of autogenous mesenchymal stem cells (MSCs), marrow cells, or platelet-rich plasma, etc. To the contrary, gene therapy combining with the bone marrow (BM) has not been often reported. This study was performed to investigate whether a modified BTE method, that is, the BM and a recombinant human bone morphogenetic protein-2 adenovirus (Ad.hBMP-2) gene administering in hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics could accelerate the healing of segmental defects in the rabbit radius. In our study, ceramics were immersed in the adenovirus overnight, and half an hour before surgery, autologous BM aspirates were thoroughly mixed with the ceramics; at the same time, a 15-mm radius defect was introduced in the bilateral forelimbs of all animals, after that, this defect was filled with the following: (1) Ad.hBMP-2 + HA/β-TCP + autologous BM (group 1); (2) HA/β-TCP + Ad.hBMP-2 (group 2); (3) HA/β-TCP alone (group 3); (4) an empty defect as a control (group 4). Histological observation and μ-CT analyses were performed on the specimens at weeks 2, 4, 8, and 12, respectively. In group 1, new bone was observed at week 4 and BM appeared at week 12, in groups 2 and 3, new bone was observed at week 8 and it was more mature at week 12, in contrast, the defect was not bridged in group 4 at week 12. The new bone area percentage in group 1 was significantly higher than that in groups 2 and 3. Our study indicated that BM combined with hBMP-2 adenovirus and porous ceramics could significantly increase the amount of newly formed bone. And this modified BTE method thus might have potentials in future clinical application.

  9. Biohydrogen, biomethane and bioelectricity as crucial components of biorefinery of organic wastes: a review.

    Science.gov (United States)

    Poggi-Varaldo, Héctor M; Munoz-Paez, Karla M; Escamilla-Alvarado, Carlos; Robledo-Narváez, Paula N; Ponce-Noyola, M Teresa; Calva-Calva, Graciano; Ríos-Leal, Elvira; Galíndez-Mayer, Juvencio; Estrada-Vázquez, Carlos; Ortega-Clemente, Alfredo; Rinderknecht-Seijas, Noemí F

    2014-05-01

    the inverse cascade. Finally, biohydrogen, biomethane and bioelectricity could contribute to significant improvements for solid organic waste management in agricultural regions, as well as in urban areas.

  10. Constitutive activation of BMP signalling abrogates experimental metastasis of OVCA429 cells via reduced cell adhesion

    Directory of Open Access Journals (Sweden)

    Shepherd Trevor G

    2010-02-01

    Full Text Available Abstract Background Activation of bone morphogenetic protein (BMP4 signalling in human ovarian cancer cells induces a number of phenotypic changes in vitro, including altered cell morphology, adhesion, motility and invasion, relative to normal human ovarian surface epithelial cells. From these in vitro analyses, we had hypothesized that active BMP signalling promotes the metastatic potential of ovarian cancer. Methods To test this directly, we engineered OVCA429 human ovarian cancer cells possessing doxycycline-inducible expression of a constitutively-active mutant BMP receptor, ALK3QD, and administered these cells to immunocompromised mice. Further characterization was performed in vitro to address the role of activated BMP signalling on the EOC phenotype, with particular emphasis on epithelial-mesenchymal transition (EMT and cell adhesion. Results Unexpectedly, doxycycline-induced ALK3QD expression in OVCA429 cells reduced tumour implantation on peritoneal surfaces and ascites formation when xenografted into immunocompromised mice by intraperitoneal injection. To determine the potential mechanisms controlling this in vivo observation, we followed with several cell culture experiments. Doxycycline-induced ALK3QD expression enhanced the refractile, spindle-shaped morphology of cultured OVCA429 cells eliciting an EMT-like response. Using in vitro wound healing assays, we observed that ALK3QD-expressing cells migrated with long, cytoplasmic projections extending into the wound space. The phenotypic alterations of ALK3QD-expressing cells correlated with changes in specific gene expression patterns of EMT, including increased Snail and Slug and reduced E-cadherin mRNA expression. In addition, ALK3QD signalling reduced β1- and β3-integrin expression, critical molecules involved in ovarian cancer cell adhesion. The combination of reduced E-cadherin and β-integrin expression correlates directly with the reduced EOC cell cohesion in spheroids and

  11. Expression of human bone morphogenetic protein (BMP-2 and BMP-4 genes in transgenic bovine fibroblasts Expressão dos genes bone morphogenetic protein (BMP-2 e BMP-4 em fibroblastos bovinos transgênicos

    Directory of Open Access Journals (Sweden)

    C. Oleskovicz

    2004-08-01

    Full Text Available cDNAs dos genes bone morphogenetic protein-2 (BMP-2 e bone morphogenetic protein-4 (BMP-4 foram sintetizados a partir de RNA total extraído de tecidos ósseos de pacientes que apresentavam trauma facial (fraturas do maxilar entre o 7º e o 10º dia pós-trauma e clonados num vetor para expressão em células mamíferas, sob controle do promotor de citomegalovírus (CMV. Os vetores contendo os genes BMP-2 e o BMP-4 foram utilizados para a transfecção de fibroblastos bovinos. mRNAs foram indiretamente detectados por RT-PCR nas células transfectadas. As proteínas BMP-2 e BMP-4 foram detectadas mediante análises de Western blot. Os resultados demonstram a possibilidade de produção desses fatores de crescimento celular em fibroblastos bovinos. Essas células poderão ser utilizadas como fontes doadoras de material genético para a técnica de transferência nuclear na geração de animais transgênicos.

  12. Arginine methylation initiates BMP-induced Smad signaling

    Science.gov (United States)

    Xu, Jian; Wang, A. Hongjun; Oses-Prieto, Juan; Makhijani, Kalpana; Katsuno, Yoko; Pei, Ming; Yan, Leilei; Zheng, Y. George; Burlingame, Alma; Brückner, Katja; Derynck, Rik

    2014-01-01

    Summary Kinase activation and substrate phosphorylation commonly form the backbone of signaling cascades. Bone morphogenetic proteins (BMPs), a subclass of TGF-β family ligands, induce activation of their signaling effectors, the Smads, through C-terminal phosphorylation by transmembrane receptor kinases. However, the slow kinetics of Smad activation in response to BMP suggests a preceding step in the initiation of BMP signaling. We now show that arginine methylation, which is known to regulate gene expression, yet also modifies some signaling mediators, initiates BMP-induced Smad signaling. BMP-induced receptor complex formation promotes interaction of the methyltransferase PRMT1 with the inhibitory Smad6, resulting in Smad6 methylation and relocalization at the receptor, leading to activation of effector Smads through phosphorylation. PRMT1 is required for BMP-induced biological responses across species, as evidenced by the role of its ortholog Dart1 in BMP signaling during Drosophila wing development. Activation of signaling by arginine methylation may also apply to other signaling pathways. PMID:23747011

  13. Impact of biological treatments of bio-waste for nutrients, energy and bio-methane recovery in a life cycle perspective.

    Science.gov (United States)

    Di Maria, Francesco; Micale, Caterina; Contini, Stefano; Morettini, Emanuela

    2016-06-01

    Composting of the source-segregated organic fraction of municipal solid waste was compared in a life cycle perspective with conventional anaerobic digestion (AD), aimed at electricity substitution, and with AD aimed at biogas upgrading into bio-methane. Three different uses of the bio-methane were considered: injection in the natural gas grid for civil heating needs; use as fuel for high efficiency co-generation; use as fuel for vehicles. Scenarios with biogas upgrading showed quite similar impact values, generally higher than those of composting and conventional AD, for which there was a lower impact. A decisive contribution to the higher impact of the scenarios with bio-methane production was by the process for biogas upgrading. In any case the substitution of natural gas with bio-methane resulted in higher avoided impacts compared to electricity substitution by conventional AD. The uncertainty analysis confirmed the positive values for eutrophication, acidification and particulate matter. Large uncertainty was determined for global warming and photochemical ozone formation.

  14. Regulation of FSHβ induction in LβT2 cells by BMP2 and an Activin A/BMP2 chimera, AB215.

    Science.gov (United States)

    Jung, Jae Woo; Ahn, Chihoon; Shim, Sun Young; Gray, Peter C; Kwiatkowski, Witek; Choe, Senyon

    2014-10-01

    Activins and bone morphogenetic proteins (BMPs) share activin type 2 signaling receptors but utilize different type 1 receptors and Smads. We designed AB215, a potent BMP2-like Activin A/BMP2 chimera incorporating the high-affinity type 2 receptor-binding epitope of Activin A. In this study, we compare the signaling properties of AB215 and BMP2 in HEK293T cells and gonadotroph LβT2 cells in which Activin A and BMP2 synergistically induce FSHβ. In HEK293T cells, AB215 is more potent than BMP2 and competitively blocks Activin A signaling, while BMP2 has a partial blocking activity. Activin A signaling is insensitive to BMP pathway antagonism in HEK293T cells but is strongly inhibited by constitutively active (CA) BMP type 1 receptors. By contrast, the potencies of AB215 and BMP2 are indistinguishable in LβT2 cells and although AB215 blocks Activin A signaling, BMP2 has no inhibitory effect. Unlike HEK293T, Activin A signaling is strongly inhibited by BMP pathway antagonism in LβT2 cells but is largely unaffected by CA BMP type 1 receptors. BMP2 increases phospho-Smad3 levels in LβT2 cells, in both the absence and the presence of Activin A treatment, and augments Activin A-induced FSHβ. AB215 has the opposite effect and sharply decreases basal phospho-Smad3 levels and blocks Smad2 phosphorylation and FSHβ induction resulting from Activin A treatment. These findings together demonstrate that while AB215 activates the BMP pathway, it has opposing effects to those of BMP2 on FSHβ induction in LβT2 cells apparently due to its ability to block Activin A signaling.

  15. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H.; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-01-01

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2f/f;Bmp4f/fameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling. PMID:27146352

  16. Abrogation of epithelial BMP2 and BMP4 causes Amelogenesis Imperfecta by reducing MMP20 and KLK4 expression.

    Science.gov (United States)

    Xie, Xiaohua; Liu, Chao; Zhang, Hua; Jani, Priyam H; Lu, Yongbo; Wang, Xiaofang; Zhang, Bin; Qin, Chunlin

    2016-05-05

    Amelogenesis Imperfecta (AI) can be caused by the deficiencies of enamel matrix proteins, molecules responsible for the transportation and secretion of enamel matrix components, and proteases processing enamel matrix proteins. In the present study, we discovered the double deletion of bone morphogenetic protein 2 (Bmp2) and bone morphogenetic protein 4 (Bmp4) in the dental epithelium by K14-cre resulted in hypoplastic enamel and reduced density in X-ray radiography as well as shortened enamel rods under scanning electron microscopy. Such enamel phenotype was consistent with the diagnosis of hypoplastic amelogenesis imperfecta. Histological and molecular analyses revealed that the removal of matrix proteins in the mutant enamel was drastically delayed, which was coincided with the greatly reduced expression of matrix metalloproteinase 20 (MMP20) and kallikrein 4 (KLK4). Although the expression of multiple enamel matrix proteins was down-regulated in the mutant ameloblasts, the cleavage of ameloblastin was drastically impaired. Therefore, we attributed the AI primarily to the reduction of MMP20 and KLK4. Further investigation found that BMP/Smad4 signaling pathway was down-regulated in the K14-cre;Bmp2(f/f);Bmp4(f/f)ameloblasts, suggesting that the reduced MMP20 and KLK4 expression may be due to the attenuated epithelial BMP/Smad4 signaling.

  17. Trehalose maintains bioactivity and promotes sustained release of BMP-2 from lyophilized CDHA scaffolds for enhanced osteogenesis in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Jun Zhao

    Full Text Available Calcium phosphate (Ca-P scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2 loaded calcium-deficient hydroxyapatite (CDHA scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR and enzyme-linked immunosorbent assay (ELISA demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2 promoted osteogenic differentiation of bone marrow stromal cells (bMSCs significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ± 5.32% and area (40.71% ± 7.14% as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ± 0.44%, calcein: 6.08% ± 1.37% and mineral apposition rate (4.13 ± 0.62 µm/day in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17 ± 15.02 Mpa and

  18. BMP6 reverses TGF-β1-induced changes in HK-2 cells:implications for the treatment of renal fibrosis

    Institute of Scientific and Technical Information of China (English)

    Ji-dong YAN; Shuang YANG; Jie ZHANG; Tian-hui ZHU

    2009-01-01

    Aim:The aim of the study was to investigate the potential role of BMP6 in TGF-β1-mediated changes in HK-2 cells.Methods:BMP6 was purified via heparin affinity and reverse phase liquid chromatography.The purity,specificity,and bioactivity of BMP6 were determined by SDS-PAGE,Western blot assays,and the induction of alkaline phosphatase (ALP) activity,respectively.Cell proliferation,morphology,and expression levels of α-SMA and E-cadherin were assessed by cell viability,microscopy,and Western blot assays,respectively.In addition,cell adhesion abilities were determined by countingthe number of attached cells.The expression of fibronectin,collagen IV,matrix metalloproteinases 2 (MMP-2),and tissue inhibitors of matrix metalloproteinases 2 (TIMP-2) were analyzed using RT-PCR.MMP-2 activity was analyzed by zymography,whereas the activation of the MAPKs and Smad signaling were analyzed using Western blot assays and a reporter gene assay,respectively.Results:Our results indicated that recombinant BMP6 induced ALP activity in a dose-dependent and time-course-dependent manner.Treatment with TGF-β1 reduced both the cell proliferation and the expression of E-cadherin,induced a morphological transformation,decreased the expression and activity of MMP-2,and increased the expression levels of a-SMA,fibronectin,and TIMP-2 in HK-2 cells,All of these effects were inhibited when cells were treated with TGF-β1 in combination with rhBMP6,whereas rhBMP6 alone demonstrated no such effect.Treatment with TGF-β1,rhBMP6,or a combination of both had no effect on the expression of collagen Ⅳ.In addition,the administration of rhBMP6 prevented the enhanced adhesion behavior triggered by TGF-β1.Furthermore,the addition of rhBMP6 abrogated the JNK and Smad2/3 signaling that was activated by TGF-β1.Conclusion:BMP6 ameliorated the TGF-β1-induced changes in HK-2 cells.The suppression of TGF-β1-mediated JNK and Smad2/3 signaling activation were implicated in these effects.

  19. Combinatorial therapeutic targeting of BMP2 and MEK-ERK pathways in NF1-associated malignant peripheral nerve sheath tumors

    Science.gov (United States)

    Ahsan, Sidra; Ge, Yubin; Tainsky, Michael A.

    2016-01-01

    The clinical management of malignant peripheral nerve sheath tumors (MPNSTs) is challenging not only due to its aggressive and invasive nature, but also limited therapeutic options. Using gene expression profiling, our lab identified BMP2-SMAD1/5/8 pathway as a potential therapeutic target for treating MPNSTs. In this study, we explored the therapeutic impact of targeting BMP2-SMAD1/5/8 pathway in conjunction with RAS-MEK-ERK signaling, which is constitutively activated in MPNSTs. Our results indicated that single agent treatment with LDN-193189, a BMP2 Type I receptor inhibitor, did not affect the growth and survival of MPNST cells at biochemically relevant inhibitory concentrations. However, addition of a MEK1/2 inhibitor, selumetinib, to LDN-193189-treated cells resulted in significant inhibition of cell growth and induction of cell death. LDN-193189 at biochemically effective concentrations significantly inhibited motility and invasiveness of MPNST cells, and these effects were enhanced by the addition of selumetinib. Overall, our results advocate for a combinatorial therapeutic approach for MPNSTs that not only targets the growth and survival via inhibition of MEK1/2, but also its malignant spread by suppressing the activation of BMP2-SMAD1/5/8 pathway. Importantly, these studies were conducted in low-passage patient-derived MPNST cells, allowing for an investigation of the effects of the proposed drug treatments in a biologically-relevant context. PMID:27494873

  20. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    Science.gov (United States)

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-12-18

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting.

  1. Combinatorial therapeutic targeting of BMP2 and MEK-ERK pathways in NF1-associated malignant peripheral nerve sheath tumors.

    Science.gov (United States)

    Ahsan, Sidra; Ge, Yubin; Tainsky, Michael A

    2016-08-30

    The clinical management of malignant peripheral nerve sheath tumors (MPNSTs) is challenging not only due to its aggressive and invasive nature, but also limited therapeutic options. Using gene expression profiling, our lab identified BMP2-SMAD1/5/8 pathway as a potential therapeutic target for treating MPNSTs. In this study, we explored the therapeutic impact of targeting BMP2-SMAD1/5/8 pathway in conjunction with RAS-MEK-ERK signaling, which is constitutively activated in MPNSTs. Our results indicated that single agent treatment with LDN-193189, a BMP2 Type I receptor inhibitor, did not affect the growth and survival of MPNST cells at biochemically relevant inhibitory concentrations. However, addition of a MEK1/2 inhibitor, selumetinib, to LDN-193189-treated cells resulted in significant inhibition of cell growth and induction of cell death. LDN-193189 at biochemically effective concentrations significantly inhibited motility and invasiveness of MPNST cells, and these effects were enhanced by the addition of selumetinib. Overall, our results advocate for a combinatorial therapeutic approach for MPNSTs that not only targets the growth and survival via inhibition of MEK1/2, but also its malignant spread by suppressing the activation of BMP2-SMAD1/5/8 pathway. Importantly, these studies were conducted in low-passage patient-derived MPNST cells, allowing for an investigation of the effects of the proposed drug treatments in a biologically-relevant context.

  2. Site specificity of DSP-PP cleavage by BMP1.

    Science.gov (United States)

    Yang, Robert T; Lim, Glendale L; Yee, Colin T; Fuller, Robert S; Ritchie, Helena H

    2014-08-01

    Bone morphogenic protein 1 (BMP1), a metalloproteinase, is known to cleave a wide variety of extracellular matrix proteins, suggesting that a consensus substrate cleavage amino acid sequence might exist. However, while such a consensus sequence has been proposed based on P4 to P4' (i.e. the four amino acids flanking either side of the BMP1 cleavage site; P4P3P2P1|P1'P2'P3'P4') sequence homologies between two BMP1 substrates, dentin matrix protein 1 and dentin sialoprotein phosphophoryn (DSP-PP) (i.e. xMQx|DDP), no direct testing has so far been attempted. Using an Sf9 cell expression system, we have been able to produce large amounts of uncleaved DSP-PP. Point mutations introduced into this recombinant DSP-PP were then tested for their effects on DSP-PP cleavage by either Sf9 endogenous tolloid-related protein 1 (TLR-1) or by its human homolog, BMP1. Here, we have measured DSP-PP cleavage efficiencies after modifications based on P4-P4' sequence comparisons with dentin matrix protein 1, as well as for prolysyl oxidase and chordin, two other BMP1 substrates. Our results demonstrate that any mutations within or outside of the DSP-PP P4 to P4' cleavage site can block, impair or accelerate DSP-PP cleavage, and suggest that its BMP1 cleavage site is highly conserved in order to regulate its cleavage efficiency, possibly with additional assistance from its conserved exosites. Thus, BMP1 cleavage cannot be based on a consensus substrate cleavage site.

  3. Negative and positive auto-regulation of BMP expression in early eye development.

    Science.gov (United States)

    Huang, Jie; Liu, Ying; Filas, Benjamen; Gunhaga, Lena; Beebe, David C

    2015-11-15

    Previous results have shown that Bone Morphogenetic Protein (BMP) signaling is essential for lens specification and differentiation. How BMP signals are regulated in the prospective lens ectoderm is not well defined. To address this issue we have modulated BMP activity in a chicken embryo pre-lens ectoderm explant assay, and also studied transgenic mice, in which the type I BMP receptors, Bmpr1a and Acvr1, are deleted from the prospective lens ectoderm. Our results show that chicken embryo pre-lens ectoderm cells express BMPs and require BMP signaling for lens specification in vitro, and that in vivo inhibition of BMP signals in the mouse prospective lens ectoderm interrupts lens placode formation and prevents lens invagination. Furthermore, our results provide evidence that BMP expression is negatively auto-regulated in the lens-forming ectoderm, decreasing when the tissue is exposed to exogenous BMPs and increasing when BMP signaling is prevented. In addition, eyes lacking BMP receptors in the prospective lens placode develop coloboma in the adjacent wild type optic cup. In these eyes, Bmp7 expression increases in the ventral optic cup and the normal dorsal-ventral gradient of BMP signaling in the optic cup is disrupted. Pax2 becomes undetectable and expression of Sfrp2 increases in the ventral optic cup, suggesting that increased BMP signaling alter their expression, resulting in failure to close the optic fissure. In summary, our results suggest that negative and positive auto-regulation of BMP expression is important to regulate early eye development.

  4. Enhanced osteogenic activity and anti-inflammatory properties of Lenti-BMP-2-loaded TiO2 nanotube layers fabricated by lyophilization following trehalose addition

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-01-01

    Full Text Available Xiaochen Zhang,1 Zhiyuan Zhang,1 Gang Shen,2 Jun Zhao2 1Department of Oral and Maxillofacial Surgery, 2Department of Orthodontics, College of Stomatology, Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China Abstract: To enhance biocompatibility and osseointegration between titanium implants and surrounding bone tissue, numerous efforts have been made to modify the surface topography and composition of Ti implants. In this paper, Lenti-BMP-2-loaded TiO2 nanotube coatings were fabricated by lyophilization in the presence of trehalose to functionalize the surface. We characterized TiO2 nanotube layers in terms of the following: surface morphology; Lenti-BMP-2 and trehalose release; their ability to induce osteogenesis, proliferation, and anti-inflammation in vitro; and osseointegration in vivo. The anodized TiO2 nanotube surfaces exhibited an amorphous glassy matrix perpendicular to the Ti surface. Both Lenti-BMP-2 and trehalose showed sustained release over the course of 8 days. Results from real-time quantitative polymerase chain reaction studies demonstrated that lyophilized Lenti-BMP-2/TiO2 nanotubes constructed with trehalose (Lyo-Tre-Lenti-BMP-2 significantly promoted osteogenic differentiation of bone marrow stromal cells but not their proliferation. In addition, Lyo-Tre-Lenti-BMP-2 nanotubes effectively inhibited lipopolysaccharide-induced interleukin-1β and tumor necrosis factor-α production. In vivo, the formulation also promoted osseointegration. This study presents a promising new method for surface-modifying biomedical Ti-based implants to simultaneously enhance their osteogenic potential and anti-inflammatory properties, which can better satisfy clinical needs. Keywords: osteogenesis, anti-inflammation, TiO2 nanotube layers, Lenti-BMP-2, lyophilization, trehalose 

  5. Development of an efficient, non-viral transfection method for studying gene function and bone growth in human primary cranial suture mesenchymal cells reveals that the cells respond to BMP2 and BMP3

    Directory of Open Access Journals (Sweden)

    Dwivedi Prem P

    2012-08-01

    Full Text Available Abstract Background Achieving efficient introduction of plasmid DNA into primary cultures of mammalian cells is a common problem in biomedical research. Human primary cranial suture cells are derived from the connective mesenchymal tissue between the bone forming regions at the edges of the calvarial plates of the skull. Typically they are referred to as suture mesenchymal cells and are a heterogeneous population responsible for driving the rapid skull growth that occurs in utero and postnatally. To better understand the molecular mechanisms involved in skull growth, and in abnormal growth conditions, such as craniosynostosis, caused by premature bony fusion, it is essential to be able to easily introduce genes into primary bone forming cells to study their function. Results A comparison of several lipid-based techniques with two electroporation-based techniques demonstrated that the electroporation method known as nucleofection produced the best transfection efficiency. The parameters of nucleofection, including cell number, amount of DNA and nucleofection program, were optimized for transfection efficiency and cell survival. Two different genes and two promoter reporter vectors were used to validate the nucleofection method and the responses of human primary suture mesenchymal cells by fluorescence microscopy, RT-PCR and the dual luciferase assay. Quantification of bone morphogenetic protein (BMP signalling using luciferase reporters demonstrated robust responses of the cells to both osteogenic BMP2 and to the anti-osteogenic BMP3. Conclusions A nucleofection protocol has been developed that provides a simple and efficient, non-viral alternative method for in vitro studies of gene and protein function in human skull growth. Human primary suture mesenchymal cells exhibit robust responses to BMP2 and BMP3, and thus nucleofection can be a valuable method for studying the potential competing action of these two bone growth factors in a model

  6. Defining BMP functions in the hair follicle by conditional ablation of BMP receptor IA.

    Science.gov (United States)

    Kobielak, Krzysztof; Pasolli, H Amalia; Alonso, Laura; Polak, Lisa; Fuchs, Elaine

    2003-11-10

    Using conditional gene targeting in mice, we show that BMP receptor IA is essential for the differentiation of progenitor cells of the inner root sheath and hair shaft. Without BMPRIA activation, GATA-3 is down-regulated and its regulated control of IRS differentiation is compromised. In contrast, Lef1 is up-regulated, but its regulated control of hair differentiation is still blocked, and BMPRIA-null follicles fail to activate Lef1/beta-catenin-regulated genes, including keratin genes. Wnt-mediated transcriptional activation can be restored by transfecting BMPRIA-null keratinocytes with a constitutively activated beta-catenin. This places the block downstream from Lef1 expression but upstream from beta-catenin stabilization. Because mice lacking the BMP inhibitor Noggin fail to express Lef1, our findings support a model, whereby a sequential inhibition and then activation of BMPRIA is necessary to define a band of hair progenitor cells, which possess enough Lef1 and stabilized beta-catenin to activate the hair specific keratin genes and generate the hair shaft.

  7. A selection fit mechanism in BMP receptor IA as a possible source for BMP ligand-receptor promiscuity.

    Directory of Open Access Journals (Sweden)

    Stefan Harth

    Full Text Available BACKGROUND: Members of the TGF-β superfamily are characterized by a highly promiscuous ligand-receptor interaction as is readily apparent from the numeral discrepancy of only seven type I and five type II receptors available for more than 40 ligands. Structural and functional studies have been used to address the question of how specific signals can be deduced from a limited number of receptor combinations and to unravel the molecular mechanisms underlying the protein-protein recognition that allow such limited specificity. PRINCIPAL FINDINGS: In this study we have investigated how an antigen binding antibody fragment (Fab raised against the extracellular domain of the BMP receptor type IA (BMPR-IA recognizes the receptor's BMP-2 binding epitope and thereby neutralizes BMP-2 receptor activation. The crystal structure of the complex of the BMPR-IA ectodomain bound to the Fab AbD1556 revealed that the contact surface of BMPR-IA overlaps extensively with the contact surface for BMP-2 interaction. Although the structural epitopes of BMPR-IA to both binding partners coincides, the structures of BMPR-IA in the two complexes differ significantly. In contrast to the structural differences, alanine-scanning mutagenesis of BMPR-IA showed that the functional determinants for binding to the antibody and BMP-2 are almost identical. CONCLUSIONS: Comparing the structures of BMPR-IA bound to BMP-2 or bound to the Fab AbD1556 with the structure of unbound BMPR-IA shows that binding of BMPR-IA to its interaction partners follows a selection fit mechanism, possibly indicating that the ligand promiscuity of BMPR-IA is inherently encoded by structural adaptability. The functional and structural analysis of the BMPR-IA binding antibody AbD1556 mimicking the BMP-2 binding epitope may thus pave the way for the design of low-molecular weight synthetic receptor binders/inhibitors.

  8. BMP2-loaded hollow hydroxyapatite microspheres exhibit enhanced osteoinduction and osteogenicity in large bone defects

    Directory of Open Access Journals (Sweden)

    Xiong L

    2015-01-01

    Full Text Available Long Xiong,1 Jianhua Zeng,1 Aihua Yao,2 Qiquan Tu,3 Jingtang Li,1 Liang Yan,4 Zhiming Tang1 1Department of Osteology, People’s Hospital of Jiangxi Province, Nanchang, Jiangxi, People’s Republic of China; 2School of Materials Science and Engineering, Tongji University, Shanghai, People’s Republic of China; 3Department of Osteology, People’s Hospital of Jiujiang County, Jiujiang, Jiangxi, People’s Republic of China; 4Department of Osteology, The Third Hospital of Nanchang City, Nanchang, Jiangxi, People’s Republic of China Abstract: The regeneration of large bone defects is an osteoinductive, osteoconductive, and osteogenic process that often requires a bone graft for support. Limitations associated with naturally autogenic or allogenic bone grafts have demonstrated the need for synthetic substitutes. The present study investigates the feasibility of using novel hollow hydroxyapatite microspheres as an osteoconductive matrix and a carrier for controlled local delivery of bone morphogenetic protein 2 (BMP2, a potent osteogenic inducer of bone regeneration. Hollow hydroxyapatite microspheres (100±25 µm with a core (60±18 µm and a mesoporous shell (180±42 m2/g surface area were prepared by a glass conversion technique and loaded with recombinant human BMP2 (1 µg/mg. There was a gentle burst release of BMP2 from microspheres into the surrounding phosphate-buffered saline in vitro within the initial 48 hours, and continued at a low rate for over 40 days. In comparison with hollow hydroxyapatite microspheres without BMP2 or soluble BMP2 without a carrier, BMP2-loaded hollow hydroxyapatite microspheres had a significantly enhanced capacity to reconstitute radial bone defects in rabbit, as shown by increased serum alkaline phosphatase; quick and complete new bone formation within 12 weeks; and great biomechanical flexural strength. These results indicate that BMP2-loaded hollow hydroxyapatite microspheres could be a potential new option

  9. 3-OST-7 regulates BMP-dependent cardiac contraction.

    Directory of Open Access Journals (Sweden)

    Shiela C Samson

    2013-12-01

    Full Text Available The 3-O-sulfotransferase (3-OST family catalyzes rare modifications of glycosaminoglycan chains on heparan sulfate proteoglycans, yet their biological functions are largely unknown. Knockdown of 3-OST-7 in zebrafish uncouples cardiac ventricular contraction from normal calcium cycling and electrophysiology by reducing tropomyosin4 (tpm4 expression. Normal 3-OST-7 activity prevents the expansion of BMP signaling into ventricular myocytes, and ectopic activation of BMP mimics the ventricular noncontraction phenotype seen in 3-OST-7 depleted embryos. In 3-OST-7 morphants, ventricular contraction can be rescued by overexpression of tropomyosin tpm4 but not by troponin tnnt2, indicating that tpm4 serves as a lynchpin for ventricular sarcomere organization downstream of 3-OST-7. Contraction can be rescued by expression of 3-OST-7 in endocardium, or by genetic loss of bmp4. Strikingly, BMP misregulation seen in 3-OST-7 morphants also occurs in multiple cardiac noncontraction models, including potassium voltage-gated channel gene, kcnh2, affected in Romano-Ward syndrome and long-QT syndrome, and cardiac troponin T gene, tnnt2, affected in human cardiomyopathies. Together these results reveal 3-OST-7 as a key component of a novel pathway that constrains BMP signaling from ventricular myocytes, coordinates sarcomere assembly, and promotes cardiac contractile function.

  10. Bmp4 from the optic vesicle specifies murine retina formation.

    Science.gov (United States)

    Huang, Jie; Liu, Ying; Oltean, Alina; Beebe, David C

    2015-06-01

    Previous studies of mouse embryos concluded that after the optic vesicle evaginates from the ventral forebrain and contacts the surface ectoderm, signals from the ectoderm specify the distal region of the optic vesicle to become retina and signals from the optic vesicle induce the lens. Germline deletion of Bmp4 resulted in failure of lens formation. We performed conditional deletion of Bmp4 from the optic vesicle to test the function of Bmp4 in murine eye development. The optic vesicle evaginated normally and contacted the surface ectoderm. Lens induction did not occur. The optic cup failed to form and the expression of retina-specific genes decreased markedly in the distal optic vesicle. Instead, cells in the prospective retina expressed genes characteristic of the retinal pigmented epithelium. We conclude that Bmp4 is required for retina specification in mice. In the absence of Bmp4, formation of the retinal pigmented epithelium is the default differentiation pathway of the optic vesicle. Differences in the signaling pathways required for specification of the retina and retinal pigmented epithelium in chicken and mouse embryos suggest major changes in signaling during the evolution of the vertebrate eye.

  11. In silico Mechano-Chemical Model of Bone Healing for the Regeneration of Critical Defects: The Effect of BMP-2.

    Directory of Open Access Journals (Sweden)

    Frederico O Ribeiro

    Full Text Available The healing of bone defects is a challenge for both tissue engineering and modern orthopaedics. This problem has been addressed through the study of scaffold constructs combined with mechanoregulatory theories, disregarding the influence of chemical factors and their respective delivery devices. Of the chemical factors involved in the bone healing process, bone morphogenetic protein-2 (BMP-2 has been identified as one of the most powerful osteoinductive proteins. The aim of this work is to develop and validate a mechano-chemical regulatory model to study the effect of BMP-2 on the healing of large bone defects in silico. We first collected a range of quantitative experimental data from the literature concerning the effects of BMP-2 on cellular activity, specifically proliferation, migration, differentiation, maturation and extracellular matrix production. These data were then used to define a model governed by mechano-chemical stimuli to simulate the healing of large bone defects under the following conditions: natural healing, an empty hydrogel implanted in the defect and a hydrogel soaked with BMP-2 implanted in the defect. For the latter condition, successful defect healing was predicted, in agreement with previous in vivo experiments. Further in vivo comparisons showed the potential of the model, which accurately predicted bone tissue formation during healing, bone tissue distribution across the defect and the quantity of bone inside the defect. The proposed mechano-chemical model also estimated the effect of BMP-2 on cells and the evolution of healing in large bone defects. This novel in silico tool provides valuable insight for bone tissue regeneration strategies.

  12. Interplay between self-assembled structure of bone morphogenetic protein-2 (BMP-2) and osteoblast functions in three-dimensional titanium alloy scaffolds: Stimulation of osteogenic activity.

    Science.gov (United States)

    Nune, K C; Kumar, A; Murr, L E; Misra, R D K

    2016-02-01

    Three-dimensional cellular scaffolds are receiving significant attention in bone tissue engineering to treat segmental bone defects. However, there are indications of lack of significant osteoinductive ability of three-dimensional cellular scaffolds. In this regard, the objective of the study is to elucidate the interplay between bone morphogenetic protein (BMP-2) and osteoblast functions on 3D mesh structures with different porosities and pore size that were fabricated by electron beam melting. Self-assembled dendritic microstructure with interconnected cellular-type morphology of BMP-2 on 3D scaffolds stimulated osteoblast functions including adhesion, proliferation, and mineralization, with prominent effect on 2-mm mesh. Furthermore, immunofluorescence studies demonstrated higher density and viability of osteoblasts on lower porosity mesh structure (2 mm) as compared to 3- and 4-mm mesh structures. Enhanced filopodia cellular extensions with extensive cell spreading was observed on BMP-2 treated mesh structures, a behavior that is attributed to the unique self-assembled structure of BMP-2 that effectively communicates with the cells. The study underscores the potential of BMP-2 in imparting osteoinductive capability to the 3D printed scaffolds.

  13. Recovering biomethane and nutrients from anaerobic digestion of water hyacinth (Eichhornia crassipes) and its co-digestion with fruit and vegetable waste.

    Science.gov (United States)

    Hernández-Shek, M A; Cadavid-Rodríguez, L S; Bolaños, I V; Agudelo-Henao, A C

    2016-01-01

    The potential to recover bioenergy from anaerobic digestion of water hyacinth (WH) and from its co-digestion with fruit and vegetable waste (FVW) was investigated. Initially, biogas and methane production were studied using the biochemical methane potential (BMP) test at 2 g volatile solids (VS) L(-1) of substrate concentration, both in the digestion of WH alone and in its co-digestion with FVW (WH-FVW ratio of 70:30). Subsequently, the biogas production was optimized in terms of total solids (TS) concentration, testing 4 and 6% of TS. The BMP test showed a biogas yield of 0.114 m(3) biogas kg(-1) VSadded for WH alone. On the other hand, the biogas potential from the WH-FVW co-digestion was 0.141 m(3) biogas kg(-1) VSadded, showing an increase of 23% compared to that of WH alone. Maximum biogas production of 0.230 m(3) biogas kg(-1) VSadded was obtained at 4% of TS in the co-digestion of WH-FVW. Using semi-continuously stirred tank reactors, 1.3 m(3) biogas yield kg(-1) VSadded was produced using an organic loading rate of 2 kg VS m(-3) d(-1) and hydraulic retention time of 15 days. It was also found that a WH-FVW ratio of 80:20 improved the process in terms of pH stability. Additionally, it was found that nitrogen can be recovered in the liquid effluent with a potential for use as a liquid fertilizer.

  14. A BMP regulatory network controls ectodermal cell fate decisions at the neural plate border.

    Science.gov (United States)

    Reichert, Sabine; Randall, Rebecca A; Hill, Caroline S

    2013-11-01

    During ectodermal patterning the neural crest and preplacodal ectoderm are specified in adjacent domains at the neural plate border. BMP signalling is required for specification of both tissues, but how it is spatially and temporally regulated to achieve this is not understood. Here, using a transgenic zebrafish BMP reporter line in conjunction with double-fluorescent in situ hybridisation, we show that, at the beginning of neurulation, the ventral-to-dorsal gradient of BMP activity evolves into two distinct domains at the neural plate border: one coinciding with the neural crest and the other abutting the epidermis. In between is a region devoid of BMP activity, which is specified as the preplacodal ectoderm. We identify the ligands required for these domains of BMP activity. We show that the BMP-interacting protein Crossveinless 2 is expressed in the BMP activity domains and is under the control of BMP signalling. We establish that Crossveinless 2 functions at this time in a positive-feedback loop to locally enhance BMP activity, and show that it is required for neural crest fate. We further demonstrate that the Distal-less transcription factors Dlx3b and Dlx4b, which are expressed in the preplacodal ectoderm, are required for the expression of a cell-autonomous BMP inhibitor, Bambi-b, which can explain the specific absence of BMP activity in the preplacodal ectoderm. Taken together, our data define a BMP regulatory network that controls cell fate decisions at the neural plate border.

  15. 骨钙素在BMP2/7异源二聚体诱导种植体周围骨缺损再生中的表达%Expression of osteocalcin using rhBMP2/7 heterodimer in peri-implant bone defects compared to BMP2 homodimer and BMP7 homodimer

    Institute of Scientific and Technical Information of China (English)

    孙平; 王利民; 冯剑颖

    2011-01-01

    目的:研究骨钙素在使用BMP2/7异源二聚体促进种植体周骨缺损再生中的表达.方法:建立小型猪种植体周骨缺损模型,并使用BMP2/7异源二聚体及BMP2、BMP7同源二聚体促进骨再生,采用免疫组化方法分别在2、3、6周时检测新骨中骨钙素表达.结果:在各实验组中,骨钙素3周时表达达到最高值.在2、3、6周,BMP2/7组骨钙素表达均强于BMP2、BMP7同源二聚体组及对照组.结论:在以同样较低浓度(30ng/ml)作用于小型猪种植体周骨缺损诱导新骨形成过程中,BMP2/7异源二聚体较BMP、BMP7同源二聚体有效促进骨钙素的表达.%To delineate expression of osteocalcin induced by recombinant human bone morphogenetic protein (BMP)2/7 heterodimer in peri-implant bone defects in comparison to BMP2 and BMP7 homodimer.Methods: Identical peri-implant bone defects were created on the frontal skull of minipig. Collagen sponges with the same dose BMP2/7 heterodimer、 BMP2 homodimer 、 BMP7 homodimer 、 or BMPs were adopted to treat the freshly created implant bed. Titanium implants were centrally implanted with 4mm-flxture within bone defects. Immunohistochemical method was applied to evaluate the expression of osteocalcin (OCN) after 2, 3, and 6 weeks of implantation. Results: The OCN proteins displayed intensity peaks at 3 weeks (P<0.05) in all the groups. Immunoreactive expression of OCN of BMP2/7 group was more intensity than BMP2、 BMP7 and control group at 2, 3, and 6 weeks post-operation (P<0.05). Conclusions: Purified recombinant human BMP2/7 heterodimer can enhance the expression of OCN with significant differences over BMP2 homodimers or BMP7 homodimers with the same low-dose (30ng/ml).

  16. Effect of cobalt supplementation and fractionation on the biological response in the biomethanization of Olive Mill Solid Waste.

    Science.gov (United States)

    Pinto-Ibieta, F; Serrano, A; Jeison, D; Borja, R; Fermoso, F G

    2016-07-01

    Due to the low trace metals concentration in the Olive Mill Solid Waste (OMSW), a proposed strategy to improve its biomethanization is the supplementation of key metals to enhance the microorganism activity. Among essential trace metals, cobalt has been reported to have a crucial role in anaerobic degradation. This study evaluates the effect of cobalt supplementation to OMSW, focusing on the connection between fractionation of cobalt in the system and the biological response. The highest biological responses was found in a range from 0.018 to 0.035mg/L of dissolved cobalt (0.24-0.65mg total cobalt/L), reaching improvements up to 23% and 30% in the methane production rate and the methane yield coefficient, respectively. It was found that the dissolved cobalt fraction is more accurately related with the biological response than the total cobalt. The total cobalt is distorted by the contribution of dissolved and non-dissolved inert fractions.

  17. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment

    DEFF Research Database (Denmark)

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin

    2016-01-01

    Greenhouse gas (GHG) emission savings from biofuels dramatically depend upon the source of energy displaced and the effects induced outside the energy sector, for instance land-use changes (LUC). Using consequential life-cycle assessment and including LUC effects, this study provides GHG emission...... factors (EFs) for bioelectricity, biomethane, and bioethanol produced from twenty-four biomasses (from dedicated crops to residues of different origin) under a fossil and a non-fossil energy system. Accounting for numerous variations in the pathways, a total of 554 GHG EFs were quantified. The results...... showed that, important GHG savings were obtained with residues and seaweed, both under fossil and non-fossil energy systems. For high-yield perennial crops (e.g. willow and Miscanthus), GHG savings were achieved only under fossil energy systems. Biofuels from annual crops and residues that are today used...

  18. High rate biomethanation technology for solid waste management and rapid biogas production: An emphasis on reactor design parameters.

    Science.gov (United States)

    Dahiya, Shikha; Joseph, Johny

    2015-01-01

    A high rate biomethanation digester was designed and fabricated to study its real field treatment efficiency and simultaneous biogas generation. The major design parameters like self mixing, delinking hydraulic retention time and solid retention time etc. were considered for efficient performance. It was operated with an organic loading rate (OLR) of 1.5kg/m(3)d(-1) with composite food waste for about one year. The maximum treatment efficiency achieved with respect to total solid (TS) reduction and volatile solids (VS) reduction was 94.5% and 89.7%, respectively. Annual mean biogas of about 0.16m(3)/kgVSd(-1) was observed with methane content varying from 56% to 60% (v/v). The high competence of high rate digester is attributed to its specific design features and intermittent mixing of the digester contents and also due to the hydrodynamic principles involved in its operation.

  19. Regulatory role of BMP-9 in steroidogenesis by rat ovarian granulosa cells.

    Science.gov (United States)

    Hosoya, Takeshi; Otsuka, Fumio; Nakamura, Eri; Terasaka, Tomohiro; Inagaki, Kenichi; Tsukamoto-Yamauchi, Naoko; Hara, Takayuki; Toma, Kishio; Komatsubara, Motoshi; Makino, Hirofumi

    2015-03-01

    BMPs expressed in the ovary differentially regulate steroidogenesis by granulosa cells. BMP-9, a circulating BMP, is associated with cell proliferation, apoptosis and differentiation in various tissues. However, the effects of BMP-9 on ovarian function have yet to be elucidated. Here we investigated BMP-9 actions on steroidogenesis using rat primary granulosa cells. BMP-9 potently suppressed FSH-induced progesterone production, whereas it did not affect FSH-induced estradiol production by granulosa cells. The effects of BMP-9 on FSH-induced steroidogenesis were not influenced by the presence of oocytes. FSH-induced cAMP synthesis and FSH-induced mRNA expression of steroidogenic factors, including StAR, P450scc, 3βHSD2 and FSHR, were suppressed by treatment with BMP-9. BMP-9 mRNA expression was detected in granulosa cells but not in oocytes. BMP-9 readily activated Smad1/5/8 phosphorylation and Id-1 transcription in granulosa cells. Analysis using ALK inhibitors indicated that BMP-9 actions were mediated via type-I receptors other than ALK-2, -3 and -6. Furthermore, experiments using extracellular domains (ECDs) for BMP type-I and -II receptor constructs revealed that the effects of BMP-9 were reversed by ECDs for ALK-1 and BMPRII. Thus, the functional receptors for BMP-9 in granulosa cells were most likely to be the complex of ALK-1 and BMPRII. Collectively, the results of the present study showed that BMP-9 can affect luteinization and that there are two possible sources of BMP-9, serum and granulosa cells in the ovary.

  20. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    Science.gov (United States)

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis.

  1. Biogas Purification Technology Producing Bio-methane and Its Applications%沼气净化提纯制生物甲烷技术与应用

    Institute of Scientific and Technical Information of China (English)

    江皓; 吴全贵; 周红军

    2012-01-01

    Purification of biogas could produce high quality bio-methane which could replace the use of natural gas. The related technologies on purification of biogas were reviewed in this paper. The application prospect of high quality bio-methane in China were discussed and evaluated. The obstacles for its industrial development in China were also analyzed. Suggestions were made for future development.%文章对沼气净化与提纯的相关技术进行了综述,并对生物甲烷在我国的应用前景进行了分析与评价,最后对我国产业发展障碍进行了分析,并对未来发展提出了几点建议.

  2. Mechanical loading increased BMP-2 expression which promoted osteogenic differentiation of tendon-derived stem cells.

    Science.gov (United States)

    Rui, Yun Feng; Lui, Pauline Po Yee; Ni, Ming; Chan, Lai Shan; Lee, Yuk Wa; Chan, Kai Ming

    2011-03-01

    This study aimed to investigate the effect of repetitive tensile loading on the expression of BMP-2 and the effect of BMP-2 on the osteogenic differentiation of tendon-derived stem cells (TDSCs) in vitro. Repetitive stretching was applied to TDSCs isolated from rat patellar tendon at 0%, 4%, and 8%, 0.5 Hz. The expression of BMP-2 was detected by Western blotting and qPCR. To study the osteogenic effects of BMP-2 on TDSCs, BMP-2 was added to the TDSC monolayer for the detection of ALP activity and calcium nodule formation in a separate experiment. TDSCs adhered, proliferated, and aligned along the direction of externally applied tensile force while they were randomly oriented in the control group. Western blotting showed increased expression of BMP-2 in 4% and 8% stretching groups but not in the control group. Up-regulation of BMP-2 mRNA was also observed in the 4% stretching group. BMP-2 increased the osteogenic differentiation of TDSCs as indicated by higher ALP cytochemical staining, ALP activity, and calcium nodule formation. Repetitive tensile loading increased the expression of BMP-2 and addition of BMP-2 enhanced osteogenic differentiation of TDSCs. Activation of BMP-2 expression in TDSCs during tendon overuse might provide a possible explanation of ectopic calcification in calcifying tendinopathy.

  3. Biological activity of a genetically modified BMP-2 variant with inhibitory activity

    Directory of Open Access Journals (Sweden)

    Kübler Alexander C

    2009-02-01

    Full Text Available Abstract Background Alterations of the binding epitopes of bone morphogenetic protein-2 (BMP-2 lead to a modified interaction with the ectodomains of BMP receptors. In the present study the biological effect of a BMP-2 double mutant with antagonistic activity was evaluated in vivo. Methods Equine-derived collagenous carriers were loaded with recombinant human BMP-2 (rhBMP-2 in a well-known dose to provide an osteoinductive stimulus. The study was performed in a split animal design: carriers only coupled with rhBMP-2 (control were implanted into prepared cavities of lower limb muscle of rats, specimens coupled with rhBMP-2 as well as BMP-2 double mutant were placed into the opposite limb in the same way. After 28 days the carriers were explanted, measured radiographically and characterized histologically. Results As expected, the BMP-2 loaded implants showed a typical heterotopic bone formation. The specimens coupled with both proteins showed a significant decreased bone formation in a dose dependent manner. Conclusion The antagonistic effect of a specific BMP-2 double mutant could be demonstrated in vivo. The dose dependent influence on heterotopic bone formation by preventing rhBMP-2 induced osteoinduction suggests a competitive receptor antagonism.

  4. A new class of small molecule inhibitor of BMP signaling.

    Directory of Open Access Journals (Sweden)

    Caroline E Sanvitale

    Full Text Available Growth factor signaling pathways are tightly regulated by phosphorylation and include many important kinase targets of interest for drug discovery. Small molecule inhibitors of the bone morphogenetic protein (BMP receptor kinase ALK2 (ACVR1 are needed urgently to treat the progressively debilitating musculoskeletal disease fibrodysplasia ossificans progressiva (FOP. Dorsomorphin analogues, first identified in zebrafish, remain the only BMP inhibitor chemotype reported to date. By screening an assay panel of 250 recombinant human kinases we identified a highly selective 2-aminopyridine-based inhibitor K02288 with in vitro activity against ALK2 at low nanomolar concentrations similar to the current lead compound LDN-193189. K02288 specifically inhibited the BMP-induced Smad pathway without affecting TGF-β signaling and induced dorsalization of zebrafish embryos. Comparison of the crystal structures of ALK2 with K02288 and LDN-193189 revealed additional contacts in the K02288 complex affording improved shape complementarity and identified the exposed phenol group for further optimization of pharmacokinetics. The discovery of a new chemical series provides an independent pharmacological tool to investigate BMP signaling and offers multiple opportunities for pre-clinical development.

  5. Fstl1 antagonizes BMP signaling and regulates ureter development.

    Directory of Open Access Journals (Sweden)

    Jingyue Xu

    Full Text Available Bone morphogenetic protein (BMP signaling pathway plays important roles in urinary tract development although the detailed regulation of its activity in this process remains unclear. Here we report that follistatin-like 1 (Fstl1, encoding a secreted extracellular glycoprotein, is expressed in developing ureter and antagonizes BMP signaling activity. Mouse embryos carrying disrupted Fstl1 gene displayed prominent hydroureter arising from proximal segment and ureterovesical junction defects. These defects were associated with significant reduction in ureteric epithelial cell proliferation at E15.5 and E16.5 as well as absence of subepithelial ureteral mesenchymal cells in the urinary tract at E16.5 and E18.5. At the molecular level, increased BMP signaling was found in Fstl1 deficient ureters, indicated by elevated pSmad1/5/8 activity. In vitro study also indicated that Fstl1 can directly bind to ALK6 which is specifically expressed in ureteric epithelial cells in developing ureter. Furthermore, Sonic hedgehog (SHH signaling, which is crucial for differentiation of ureteral subepithelial cell proliferation, was also impaired in Fstl1(-/- ureter. Altogether, our data suggest that Fstl1 is essential in maintaining normal ureter development by antagonizing BMP signaling.

  6. Calcium phosphate implants coatings as carriers for BMP-2

    NARCIS (Netherlands)

    Liu, Y.; He, J.F.; Hunziker, E.B.

    2009-01-01

    The osteoconductivity of dental implants can be improved by coating them with a layer of calcium phosphate (CaP), which can be rendered osteoinductive by functionalizing it with an osteogenic agent, such as bone morphogenetic protein 2 (BMP-2). In the present study, we wished to compare the osteoind

  7. BMP analysis system for watershed-based stormwater management.

    Science.gov (United States)

    Zhen, Jenny; Shoemaker, Leslie; Riverson, John; Alvi, Khalid; Cheng, Mow-Soung

    2006-01-01

    Best Management Practices (BMPs) are measures for mitigating nonpoint source (NPS) pollution caused mainly by stormwater runoff. Established urban and newly developing areas must develop cost effective means for restoring or minimizing impacts, and planning future growth. Prince George's County in Maryland, USA, a fast-growing region in the Washington, DC metropolitan area, has developed a number of tools to support analysis and decision making for stormwater management planning and design at the watershed level. These tools support watershed analysis, innovative BMPs, and optimization. Application of these tools can help achieve environmental goals and lead to significant cost savings. This project includes software development that utilizes GIS information and technology, integrates BMP processes simulation models, and applies system optimization techniques for BMP planning and selection. The system employs the ESRI ArcGIS as the platform, and provides GIS-based visualization and support for developing networks including sequences of land uses, BMPs, and stream reaches. The system also provides interfaces for BMP placement, BMP attribute data input, and decision optimization management. The system includes a stand-alone BMP simulation and evaluation module, which complements both research and regulatory nonpoint source control assessment efforts, and allows flexibility in the examining various BMP design alternatives. Process based simulation of BMPs provides a technique that is sensitive to local climate and rainfall patterns. The system incorporates a meta-heuristic optimization technique to find the most cost-effective BMP placement and implementation plan given a control target, or a fixed cost. A case study is presented to demonstrate the application of the Prince George's County system. The case study involves a highly urbanized area in the Anacostia River (a tributary to Potomac River) watershed southeast of Washington, DC. An innovative system of

  8. Kaempferol inhibits vascular smooth muscle cell migration by modulating BMP-mediated miR-21 expression.

    Science.gov (United States)

    Kim, Kwangho; Kim, Sunghwan; Moh, Sang Hyun; Kang, Hara

    2015-09-01

    Bioflavonoids are known to induce cardioprotective effects by inhibiting vascular smooth muscle cell (VSMC) proliferation and migration. Kaempferol has been shown to inhibit VSMC proliferation. However, little is known about the effect of kaempferol on VSMC migration and the underlying molecular mechanisms. Our studies provide the first evidence that kaempferol inhibits VSMC migration by modulating the BMP4 signaling pathway and microRNA expression levels. Kaempferol activates the BMP signaling pathway, induces miR-21 expression and downregulates DOCK4, 5, and 7, leading to inhibition of cell migration. Moreover, kaempferol antagonizes the PDGF-mediated pro-migratory effect. Therefore, our study uncovers a novel regulatory mechanism of VSMC migration by kaempferol and suggests that miRNA modulation by kaempferol is a potential therapy for cardiovascular diseases.

  9. Immunohistological localization of BMP-2, BMP-7, and their receptors in knee joints with focal cartilage lesions

    DEFF Research Database (Denmark)

    Schmal, Hagen; Mehlhorn, Alexander T; Pilz, Ingo H

    2012-01-01

    , but not of BMPR-1B, and BMPR-2, were found in all synovial and 47% of all cartilage samples (P = 0.002). BMP-2 was positively scored in 47% of all cartilage and 40% of all synovial specimens. Defect size, KOSS, Henderson or Kellgren-Lawrence score did not statistically significant correlate with the expression...

  10. BMP2-encapsulated chitosan coatings on functionalized Ti surfaces and their performance in vitro and in vivo.

    Science.gov (United States)

    Han, Lu; Lin, Hong; Lu, Xiong; Zhi, Wei; Wang, Ke-Feng; Meng, Fan-Zhi; Jiang, Ou

    2014-07-01

    Bone morphogenic protein-2 (BMP2)-encapsulated chitosan (CS) coatings were prepared to immobilize BMP2 on titanium (Ti) surfaces. The Ti substrates were functionalized through a three-step process: alkali treatment, silanization with 3-aminopropyltriethoxysilane and aldehydation with glutaraldehyde (GA). BMP2-encapsulated CS coatings (BMP2-CS) were bonded to Ti surfaces through reactions between the aldehyde groups of GA and the amine groups of CS. Direct BMP2 immobilization on aldehyde-treated Ti (BMP2-Ti) and pure CS coatings (CS-Ti) were used as controls. The release rate of BMP2-CS-Ti was half of that of BMP2-Ti at initial stage, which indicates that the CS coatings are suitable carriers for sustained BMP2 release. The osteoinductivities of BMP2-CS-Ti, BMP2-Ti, CS-Ti and pristine Ti were examined by both in vitro cell tests and in vivo experiments. Bone marrow stem cell (BMSC) culture indicated that BMP2-CS-Ti is more potent in stimulating the differentiation of the adhering BMSC than the three other groups. Rabbit femur implantation revealed the excellent osteoinductivity of BMP2-CS-coated Ti implants. These results demonstrate that the BMP2-encapsulated CS coatings are stable osteoinductive coatings that realize the sustained release of BMP2 and maintain the activity of the protein.

  11. 腺病毒介导BMP2和BMP7基因共转染骨髓间充质干细胞表达人BMP2/7异源二聚体%The feasibility of adenoviral co-transduction of BMP2 and BMP7 for the expression of recombinant human BMP2/7 heterodimer in rat bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    高涛; 唐胜建; 牛常英; 苗春雷; 张伟; 周陆陆; 吴彩风; 刘方军

    2016-01-01

    Objective To investigate the feasibility of rat bone marrow mesenchymal stem cells (BMSCs) as the target cell of adenovirus-mediated co-transduction of BMP2 and BMP7 genes and then facilitate the expression of recombinant BMP2/7 heterodimer protein.Methods 3 adult male Fischer 344 rats of about 10 weeks of age were used for harvest and in vitro culture of rat BMSCs.Recombinant adenovirus vector carrying BMP2 or BMP7 target genes were constructed with AdMax vector system,and production of high-titer adenoviruses were packaged with HEK293T cells and then concentrated with CSCl2 density-gradient ultra-centrifugation.Rat BMSCs from passage 3 were seeded in 6-well plates at the concentration of 10 000 cells/cm2.After overnight pre-culture,BMSCs were allowed to culture in 200 μl serum-free alpha MEM containing both Ad-BMP2 and Ad-BMP7 adenovirus (100 MOI of each virus).After 7 days in vitro culture,conditioned cell culture supernatants were collected and followed by immunoprecipitation through immune protein G columns pre-loaded with mouse anti-human BMP7 antibody.The resulted protein immune-precipitates were used to assay the expression of BMP2/7 heterodimers via Western Blot and ELISA assay.As a negative control,Rat BMSCs were also genetically transduced with Ad-GFP virus at a concentration of 200 MOI.Results Our data demonstrated that recombinant adenoviruses carrying BMP2 or BMP7 target gene was successfully reconstructed,packaged,and confirmed via Western Blot assay,which as respected,presented as an unique band at 55 000 size for BMP2 or 49 000 size for BMP7.Adenovirus Ad-GFP was used to verify the integrity of recombinant virus and its transfection efficiency in rat BMSCs,which showed well cell attachment to culture plate and had no cytotoxicity.Green fluorescent protein in BMSCs was also noted eminently under fluorescent microscope.Combined transduction with AdBMP2 plus Ad-BMP7 resulted in the formation of BMP2/7 heterodimers from rat BMSCs.Analysis of

  12. Regulation of the BMP Signaling-Responsive Transcriptional Network in the Drosophila Embryo.

    Science.gov (United States)

    Deignan, Lisa; Pinheiro, Marco T; Sutcliffe, Catherine; Saunders, Abbie; Wilcockson, Scott G; Zeef, Leo A H; Donaldson, Ian J; Ashe, Hilary L

    2016-07-01

    The BMP signaling pathway has a conserved role in dorsal-ventral axis patterning during embryonic development. In Drosophila, graded BMP signaling is transduced by the Mad transcription factor and opposed by the Brinker repressor. In this study, using the Drosophila embryo as a model, we combine RNA-seq with Mad and Brinker ChIP-seq to decipher the BMP-responsive transcriptional network underpinning differentiation of the dorsal ectoderm during dorsal-ventral axis patterning. We identify multiple new BMP target genes, including positive and negative regulators of EGF signaling. Manipulation of EGF signaling levels by loss- and gain-of-function studies reveals that EGF signaling negatively regulates embryonic BMP-responsive transcription. Therefore, the BMP gene network has a self-regulating property in that it establishes a balance between its activity and that of the antagonistic EGF signaling pathway to facilitate correct patterning. In terms of BMP-dependent transcription, we identify key roles for the Zelda and Zerknüllt transcription factors in establishing the resulting expression domain, and find widespread binding of insulator proteins to the Mad and Brinker-bound genomic regions. Analysis of embryos lacking the BEAF-32 insulator protein shows reduced transcription of a peak BMP target gene and a reduction in the number of amnioserosa cells, the fate specified by peak BMP signaling. We incorporate our findings into a model for Mad-dependent activation, and discuss its relevance to BMP signal interpretation in vertebrates.

  13. BMP-2 induces versican and hyaluronan that contribute to post-EMT AV cushion cell migration.

    Directory of Open Access Journals (Sweden)

    Kei Inai

    Full Text Available Distal outgrowth and maturation of mesenchymalized endocardial cushions are critical morphogenetic events during post-EMT atrioventricular (AV valvuloseptal morphogenesis. We explored the role of BMP-2 in the regulation of valvulogenic extracellular matrix (ECM components, versican and hyaluronan (HA, and cell migration during post-EMT AV cushion distal outgrowth/expansion. We observed intense staining of versican and HA in AV cushion mesenchyme from the early cushion expansion stage, Hamburger and Hamilton (HH stage-17 to the cushion maturation stage, HH stage-29 in the chick. Based on this expression pattern we examined the role of BMP-2 in regulating versican and HA using 3D AV cushion mesenchymal cell (CMC aggregate cultures on hydrated collagen gels. BMP-2 induced versican expression and HA deposition as well as mRNA expression of versican and Has2 by CMCs in a dose dependent manner. Noggin, an antagonist of BMP, abolished BMP-2-induced versican and HA as well as mRNA expression of versican and Has2. We further examined whether BMP-2-promoted cell migration was associated with expression of versican and HA. BMP-2- promoted cell migration was significantly impaired by treatments with versican siRNA and HA oligomer. In conclusion, we provide evidence that BMP-2 induces expression of versican and HA by AV CMCs and that these ECM components contribute to BMP-2-induced CMC migration, indicating critical roles for BMP-2 in distal outgrowth/expansion of mesenchymalized AV cushions.

  14. Complexation and sequestration of BMP-2 from an ECM mimetic hyaluronan gel for improved bone formation.

    Directory of Open Access Journals (Sweden)

    Marta Kisiel

    Full Text Available Bone morphogenetic protein-2 (BMP-2 is considered a promising adjuvant for the treatment of skeletal non-union and spinal fusion. However, BMP-2 delivery in a conventional collagen scaffold necessitates a high dose to achieve an efficacious outcome. To lower its effective dose, we precomplexed BMP-2 with the glycosaminoglycans (GAGs dermatan sulfate (DS or heparin (HP, prior to loading it into a hyaluronic acid (HA hydrogel. In vitro release studies showed that BMP-2 precomplexed with DS or HP had a prolonged delivery compared to without GAG. BMP-2-DS complexes achieved a slightly faster release in the first 24 h than HP; however, both delivered BMP-2 for an equal duration. Analysis of the kinetic interaction between BMP-2 and DS or HP showed that HP had approximately 10 times higher affinity for BMP-2 than DS, yet it equally stabilized the protein, as determined by alkaline phosphatase activity. Ectopic bone formation assays at subcutaneous sites in rats demonstrated that HA hydrogel-delivered BMP-2 precomplexed with GAG induced twice the volume of bone compared with BMP-2 delivered uncomplexed to GAG.

  15. Effect of grafting BMP2-derived peptide to nanoparticles on osteogenic and vasculogenic expression of stromal cells.

    Science.gov (United States)

    Mercado, Angel E; Yang, Xiaoming; He, Xuezhong; Jabbari, Esmaiel

    2014-01-01

    Bone morphogenetic protein-2 (BMP2) plays a major role in initiating the cascade of osteogenesis. However, high doses of exogenous BMP2 coupled with diffusion away from the intended site cause adverse side-effects. An alternative is to use biodegradable polymeric nanoparticles (NPs) grafted with peptides of the active domains of BMP2. NPs present a multivalent form of the peptide for stronger interaction with cell surface receptors, leading to a stronger activation of osteogenic signalling pathways. The objective of this work was to compare osteogenic activity of the BMP2 peptide (BMP2Pe), corresponding to residues 73-92 of BMP2 protein (BMP2Pr), grafted to biodegradable NPs with that of BMP2 protein (BMP2Pr). BMP2Pe was functionalized with a cysteine residue and grafted to poly(lactide fumarate) and poly(lactide-co-ethylene oxide fumarate) (PLAF/PLEOF) NPs via a thioether link. The calcium content of bone marrow stromal (BMS) cells cultured in osteogenic medium supplemented with BMP2 peptide/protein-grafted NPs (BMP2Pe-gNP and BMP2Pr-gNP) was slightly higher than other BMP2-treated groups, but all osteogenic groups showed similar levels of mineralization after 21 days. The expression pattern of master transcription factors Dlx5 and Runx2 indicated that BMP2 protein induced faster osteogenic signalling than the BMP peptide. The expression level of Osteopontin (OP), Osteocalcin (OC) and PECAM-1 in the NP-grafted BMP2 groups was significantly higher than those of ungrafted BMP2Pr and BMP2Pe groups, which may be due to a more effective presentation of the peptide/protein to cell surface receptors, thus leading to a stronger interaction of the peptide/protein with clustered cell surface receptors.

  16. Bone morphogenetic protein-5 (BMP-5 promotes dendritic growth in cultured sympathetic neurons

    Directory of Open Access Journals (Sweden)

    Higgins Dennis

    2001-09-01

    Full Text Available Abstract Background BMP-5 is expressed in the nervous system throughout development and into adulthood. However its effects on neural tissues are not well defined. BMP-5 is a member of the 60A subgroup of BMPs, other members of which have been shown to stimulate dendritic growth in central and peripheral neurons. We therefore examined the possibility that BMP-5 similarly enhances dendritic growth in cultured sympathetic neurons. Results Sympathetic neurons cultured in the absence of serum or glial cells do not form dendrites; however, addition of BMP-5 causes these neurons to extend multiple dendritic processes, which is preceded by an increase in phosphorylation of the Smad-1 transcription factor. The dendrite-promoting activity of BMP-5 is significantly inhibited by the BMP antagonists noggin and follistatin and by a BMPR-IA-Fc chimeric protein. RT-PCR and immunocytochemical analyses indicate that BMP-5 mRNA and protein are expressed in the superior cervical ganglia (SCG during times of initial growth and rapid expansion of the dendritic arbor. Conclusions These data suggest a role for BMP-5 in regulating dendritic growth in sympathetic neurons. The signaling pathway that mediates the dendrite-promoting activity of BMP-5 may involve binding to BMPR-IA and activation of Smad-1, and relative levels of BMP antagonists such as noggin and follistatin may modulate BMP-5 signaling. Since BMP-5 is expressed at relatively high levels not only in the developing but also the adult nervous system, these findings suggest the possibility that BMP-5 regulates dendritic morphology not only in the developing, but also the adult nervous system.

  17. BMP2 induces osteoblast apoptosis in a maturation state and noggin-dependent manner.

    Science.gov (United States)

    Hyzy, Sharon L; Olivares-Navarrete, Rene; Schwartz, Zvi; Boyan, Barbara D

    2012-10-01

    Large doses of bone morphogenetic protein 2 (BMP2) are used clinically to induce bone formation in challenging bone defects. However, complications after treatment include swelling, ectopic bone formation, and adjacent bone resorption. While BMP2 can be effective, it is important to characterize the mechanism of the deleterious effects to optimize its use. The aim of this study was to determine the effect of BMP2 on apoptosis in osteoblast lineage cells and to determine the role of the BMP inhibitor Noggin in this process. Human mesenchymal stem cells (MSCs), immature osteoblast-like MG63 cells, and mature normal human osteoblasts (NHOst) were treated with BMP2. A model system of increased endogenous BMP signaling was created by silencing Noggin (shNOG-MG63). Finally, the BMP pathway regulating apoptosis in NHOst was examined using BMP signaling inhibitors (5Z-7-oxozeaenol, dorsomorphin, H-8). Apoptosis was characterized by caspase-3, BAX/BCL2, p53, and DNA fragmentation. BMP2 induced apoptosis in a cell-type dependent manner. While the effect was minor in MSCs, MG63 cells had modest increases and NHOst cells had robust increases apoptosis after BMP2 treatment. Apoptosis was significantly higher in shNOG-MG63 than MG63 cells. 5Z-7-oxozeaenol and dorsomorphin eliminated the BMP2-induced increase in DNA fragmentation in NHOst, suggesting roles for TAB/TAK1 and Smad signaling. These results indicate that the apoptotic effect of BMP2 is dependent on cell maturation state, inducing apoptosis in committed osteoblasts through Smad and TAB/TAK1 signaling, and is regulated by Noggin. Dose and delivery must be optimized in therapeutic applications of BMP2 to minimize complications.

  18. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation

    Directory of Open Access Journals (Sweden)

    Sogo Yu

    2011-08-01

    Full Text Available Abstract Background Safe and efficient gene transfer systems are needed for tissue engineering. We have developed an apatite composite layer including the bone morphogenetic protein-2 (BMP-2 gene and fibronectin (FB, and we evaluated its ability to induce bone formation. Methods An apatite composite layer was evaluated to determine the efficiency of gene transfer to cells cultured on it. Cells were cultured on a composite layer including the BMP-2 gene and FB, and BMP-2 gene expression, BMP-2 protein concentrations, alkaline phosphatase (ALP activity, and osteocalcin (OC concentrations were measured. A bone defect on the cranium of rats was treated with hydroxyapatite (HAP-coated ceramic buttons with the apatite composite layer including the BMP-2 gene and FB (HAP-BMP-FB. The tissue concentration of BMP-2, bone formation, and the expression levels of the BMP-2, ALP, and OC genes were all quantified. Results The apatite composite layer provided more efficient gene transfer for the cultured cells than an apatite composite layer without FB. The BMP-2 concentration was approximately 100~600 pg/mL in the cell-culture medium. Culturing the cells on the apatite composite layer for 27 days increased ALP activity and OC concentrations. In animal experiments, the tissue concentrations of BMP-2 were over 100 pg/mg in the HAP-BMP-FB group and approximately 50 pg/mg in the control groups. Eight weeks later, bone formation was more enhanced in the HAP-BMP-FB group than in the control groups. In the tissues surrounding the HAP button, the gene expression levels of ALP and OC increased. Conclusion The BMP-2 gene-FB-apatite composite layer might be useful for bone engineering.

  19. Direct BMP2/4 signaling through BMP receptor IA regulates fetal thymocyte progenitor homeostasis and differentiation to CD4+CD8+ double-positive cell.

    Science.gov (United States)

    Hager-Theodorides, Ariadne L; Ross, Susan E; Sahni, Hemant; Mishina, Yuji; Furmanski, Anna L; Crompton, Tessa

    2014-01-01

    BMP2/4 signaling is required for embryogenesis and involved in thymus morphogenesis and T-lineage differentiation. In vitro experiments have shown that treatment of thymus explants with exogenous BMP4 negatively regulated differentiation of early thymocyte progenitors and the transition from CD4-CD8- (DN) to CD4+CD8+ (DP). Here we show that in vivo BMP2/4 signaling is required for fetal thymocyte progenitor homeostasis and expansion, but negatively regulates differentiation from DN to DP cell. Unexpectedly, conditional deletion of BMPRIA from fetal thymocytes (using the Cre-loxP system and directing excision to hematopoietic lineage cells with the Vav promoter) demonstrated that physiological levels of BMP2/4 signaling directly to thymocytes through BMPRIA are required for normal differentiation and expansion of early fetal DN thymocytes. In contrast, the arrest in early thymocyte progenitor differentiation caused by exogenous BMP4 treatment of thymus explants is induced in part by direct signaling to thymocytes through BMPRIA, and in part by indirect signaling through non-hematopoietic cells. Analysis of the transition from fetal DN to DP cell, both by ex vivo analysis of conditional BMPRIA-deficient thymocytes and by treatment of thymus explants with the BMP4-inhibitor Noggin demonstrated that BMP2/4 signaling is a negative regulator at this stage. We showed that at this stage of fetal T-cell development BMP2/4 signals directly to thymocytes through BMPRIA.

  20. 成釉细胞瘤中bmp2基因突变的发现%Gene mutation of bmp2 in ameloblastoma

    Institute of Scientific and Technical Information of China (English)

    岳文; 杨连甲; 朱峰; 晏伟

    2000-01-01

    目的:分析成釉细胞瘤组织中bmp2成熟肽基因片段的序列,探讨bmp2基因突变存在的可能性以明确其病理机制.方法:提取肿瘤组织中的RNA,用RT-PCR方法得到bmp2成熟肽基因片段,克隆后进行序列测定和分析.结果:首次发现成釉细胞瘤组织中有bmp2基因突变:AAG→AAA,GAG→AAG,并引起相应多肽的结构改变.结论:成釉细胞瘤中存在bmp2基因突变,并有可能在病理机制中起重要作用.

  1. Immortalization and characterization of mouse floxed Bmp2/4 osteoblasts

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Li-An [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi-an (China); Yuan, Guohua; Yang, Guobin [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Key Laboratory of Oral Biomedical Engineering Ministry of Education, Wuhan (China); Ortiz-Gonzalez, Iris [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Yang, Wuchen; Cui, Yong [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); MacDougall, Mary [Department of Oral/Maxillofacial Surgery, University of Alabama, Birmingham, AL (United States); Donly, Kevin J. [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States); Harris, Stephen [Department of Periodontics, Dental School, The University of Texas Health Science Center at San Antonio, TX (United States); Chen, Shuo, E-mail: chens0@uthscsa.edu [Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, TX (United States)

    2009-08-14

    Generation of a floxed Bmp2/4 osteoblast cell line is a valuable tool for studying the modulatory effects of Bmp2 and Bmp4 on osteoblast differentiation as well as relevant molecular events. In this study, primary floxed Bmp2/4 mouse osteoblasts were cultured and transfected with simian virus 40 large T-antigen. Transfection was verified by polymerase chain reaction (PCR) and immunohistochemistry. To examine the characteristics of the transfected cells, morphology, proliferation and mineralization were analyzed, expression of cell-specific genes including Runx2, ATF4, Dlx3, Osx, dentin matrix protein 1, bone sialoprotein, osteopontin, osteocalcin, osteonectin and collagen type I was detected. These results show that transfected floxed Bmp2/4 osteoblasts bypassed senescence with a higher proliferation rate, but retain the genotypic and phenotypic characteristics similar to the primary cells. Thus, we for the first time demonstrate the establishment of an immortalized mouse floxed Bmp2/4 osteoblast cell line.

  2. Age-Associated Increase in BMP Signaling Inhibits Hippocampal Neurogenesis.

    Science.gov (United States)

    Yousef, Hanadie; Morgenthaler, Adam; Schlesinger, Christina; Bugaj, Lukasz; Conboy, Irina M; Schaffer, David V

    2015-05-01

    Hippocampal neurogenesis, the product of resident neural stem cell proliferation and differentiation, persists into adulthood but decreases with organismal aging, which may contribute to the age-related decline in cognitive function. The mechanisms that underlie this decrease in neurogenesis are not well understood, although evidence in general indicates that extrinsic changes in an aged stem cell niche can contribute to functional decline in old stem cells. Bone morphogenetic protein (BMP) family members are intercellular signaling proteins that regulate stem and progenitor cell quiescence, proliferation, and differentiation in various tissues and are likewise critical regulators of neurogenesis in young adults. Here, we establish that BMP signaling increases significantly in old murine hippocampi and inhibits neural progenitor cell proliferation. Furthermore, direct in vivo attenuation of BMP signaling via genetic and transgenic perturbations in aged mice led to elevated neural stem cell proliferation, and subsequent neurogenesis, in old hippocampi. Such advances in our understanding of mechanisms underlying decreased hippocampal neurogenesis with age may offer targets for the treatment of age-related cognitive decline.

  3. BMP4 Signaling is Involved in the Generation of Inner Ear Sensory Epithelia

    OpenAIRE

    Wang Yucheng; Zhao Yanling; Wang Zhengmin; Corrales Carleton E; Li Huawei; Liu Hong; Heller Stefan

    2005-01-01

    Abstract Background The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments. Results Here we use a chicken otocyst culture system to perform quantitative studies on th...

  4. Acute BMP2 upregulation following induction of ischemic osteonecrosis in immature femoral head.

    Science.gov (United States)

    Kamiya, Nobuhiro; Shafer, Sasha; Oxendine, Ila; Mortlock, Douglas P; Chandler, Ronald L; Oxburgh, Leif; Kim, Harry K W

    2013-03-01

    Juvenile ischemic osteonecrosis of the femoral head (IOFH) is one of the most serious hip conditions causing the femoral head deformity. Little is known about BMP signaling following ischemic osteonecrosis. In this study, we found acute BMP2 upregulation in the femoral head cartilage 24h after ischemic induction using our immature pig IOFH model. Similarly, in our ischemic osteonecrosis mouse model, BMP2 expression and BMP signaling were enhanced in the articular cartilage surrounding the necrotic bone. BMP2 was increased in cartilage explants and primary chondrocytes under hypoxia (1% O(2)) compared with normoxia (21% O(2)). Addition of the hypoxia inducible factor 1 (HIF1) activator DFO significantly increased BMP2 while HIF1 silencing (siHIF1) only partially reduced BMP2, suggesting other mechanisms of BMP2 upregulation being present. Hypoxia is known to induce the production of free oxygen radicals, which are converted to hydrogen peroxide (H(2)O(2)) by superoxide dismutase 2 (SOD2). As an alternative mechanism, we investigated the effect of H(2)O(2)/SOD2 production on BMP2 upregulation. Chondrocytes produced more H(2)O(2) under hypoxia than normoxia. H(2)O(2) addition to the chondrocyte culture also significantly increased BMP2 expression. SOD2 was also dramatically increased in the ischemic pig cartilage at 24h following surgery and in primary chondrocytes/cartilage explants culture under hypoxia. SOD2 protein addition to the chondrocyte culture significantly increased BMP2. Moreover, DFO significantly increased SOD2 while HIF1 silencing only partially reduced SOD2. These results suggest that the acute BMP2 response of chondrocytes to ischemic osteonecrosis is more dominantly through the H(2)O(2) production and only partly through the HIF1 pathway.

  5. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment.

    Science.gov (United States)

    Tonini, Davide; Hamelin, Lorie; Alvarado-Morales, Merlin; Astrup, Thomas Fruergaard

    2016-05-01

    Greenhouse gas (GHG) emission savings from biofuels dramatically depend upon the source of energy displaced and the effects induced outside the energy sector, for instance land-use changes (LUC). Using consequential life-cycle assessment and including LUC effects, this study provides GHG emission factors (EFs) for bioelectricity, biomethane, and bioethanol produced from twenty-four biomasses (from dedicated crops to residues of different origin) under a fossil and a non-fossil energy system. Accounting for numerous variations in the pathways, a total of 554 GHG EFs were quantified. The results showed that, important GHG savings were obtained with residues and seaweed, both under fossil and non-fossil energy systems. For high-yield perennial crops (e.g. willow and Miscanthus), GHG savings were achieved only under fossil energy systems. Biofuels from annual crops and residues that are today used in the feed sector should be discouraged, as LUC GHG emissions exceeded any GHG savings from displacing conventional energy sources.

  6. The effect of seasonal variation on biomethane production from seaweed and on application as a gaseous transport biofuel.

    Science.gov (United States)

    Tabassum, Muhammad Rizwan; Xia, Ao; Murphy, Jerry D

    2016-06-01

    Biomethane produced from seaweed may be used as a transport biofuel. Seasonal variation will have an effect on this industry. Laminaria digitata, a typical Irish brown seaweed species, shows significant seasonal variation both in proximate, ultimate and biochemical composition. The characteristics in August were optimal with the lowest level of ash (20% of volatile solids), a C:N ratio of 32 and the highest specific methane yield measured at 327LCH4kgVS(-1), which was 72% of theoretical yield. The highest yield per mass collected of 53m(3)CH4t(-1) was achieved in August, which is 4.5 times higher than the lowest value, obtained in December. A seaweed cultivation area of 11,800ha would be required to satisfy the 2020 target for advanced biofuels in Ireland, of 1.25% renewable energy supply in transport (RES-T) based on the optimal gross energy yield obtained in August (200GJha(-1)yr(-1)).

  7. Calcium phosphate nanoparticles carrying BMP-7 plasmid DNA induce an osteogenic response in MC3T3-E1 pre-osteoblasts.

    Science.gov (United States)

    Hadjicharalambous, Chrystalleni; Kozlova, Diana; Sokolova, Viktoriya; Epple, Matthias; Chatzinikolaidou, Maria

    2015-12-01

    Functionalized calcium phosphate nanoparticles with osteogenic activity were prepared. Polyethyleneimine-stabilized calcium phosphate nanoparticles were coated with a shell of silica and covalently functionalized by silanization with thiol groups. Between the calcium phosphate surface and the outer silica shell, plasmid DNA which encoded either for bone morphogenetic protein 7 (BMP-7) or for enhanced green fluorescent protein was incorporated as cargo. The plasmid DNA-loaded calcium phosphate nanoparticles were used for the transfection of the pre-osteoblastic MC3T3-E1 cells. The cationic nanoparticles showed high transfection efficiency together with a low cytotoxicity. Their potential to induce an osteogenic response by transfection was demonstrated by measuring the alkaline phosphatase (ALP) activity and calcium deposition with alizarin red staining. The expression of the osteogenic markers Alp, Runx2, ColIa1 and Bsp was investigated by means of real-time quantitative polymerase chain reaction. It was shown that phBMP-7-loaded nanoparticles can provide a means of transient transfection and localized production of BMP-7 in MC3T3-E1 cells, with a subsequent increase of two osteogenic markers, specifically ALP activity and calcium accumulation in the extracellular matrix. Future strategies to stimulate bone regeneration focus into enhancing transfection efficiency and achieving higher levels of BMP-7 produced by the transfected cells.

  8. Cell saver filtering of extravasated rhBMP-2 after degenerative scoliosis reconstruction

    Directory of Open Access Journals (Sweden)

    Gabriel Liu, MBBCh, MSc, FRCS, FAMS (Orth

    2015-06-01

    Full Text Available RhBMP-2 is a bone fusion enhancer commonly used in scoliosis reconstruction surgery. It is delivered via an absorbable collagen sponge but has been known to migrate away from its delivery site. RhBMP-2 extravasation in surgical drainage has been noted during first two days post-surgery. Cell savers are widely used in scoliosis reconstruction to limit transfusion requirements and are commonly deployed in cases where rhBMP-2 is used for fusion augmentation. It is not known whether rhBMP-2 is present in salvaged blood or filtered away during cell saver recycling. Through this case series of four patients who underwent scoliosis reconstruction, we assess cell saver efficacy in filtering rhBMP-2 molecules by quantifying the amount of rhBMP-2 present in salvaged blood obtained after postoperative drainage recycling by OrthoPAT® cell saver and comparing it to rhBMP-2 leakage in postoperative drainage without cell saver recycling. We report an almost 10-fold reduction of rhBMP-2 concentration in salvaged blood obtained after cell saver recycling of postoperative drainage, suggesting cell saver effectiveness in filtering rhBMP-2 molecules.

  9. Mutations in GDF5 reveal a key residue mediating BMP inhibition by NOGGIN.

    Directory of Open Access Journals (Sweden)

    Petra Seemann

    2009-11-01

    Full Text Available Signaling output of bone morphogenetic proteins (BMPs is determined by two sets of opposing interactions, one with heterotetrameric complexes of cell surface receptors, the other with secreted antagonists that act as ligand traps. We identified two mutations (N445K,T in patients with multiple synostosis syndrome (SYM1 in the BMP-related ligand GDF5. Functional studies of both mutants in chicken micromass culture demonstrated a gain of function caused by a resistance to the BMP-inhibitor NOGGIN and an altered signaling effect. Residue N445, situated within overlapping receptor and antagonist interfaces, is highly conserved among the BMP family with the exception of BMP9 and BMP10, in which it is substituted with lysine. Like the mutant GDF5, both BMPs are insensitive to NOGGIN and show a high chondrogenic activity. Ectopic expression of BMP9 or the GDF5 mutants resulted in massive induction of cartilage in an in vivo chick model presumably by bypassing the feedback inhibition imposed by endogenous NOGGIN. Swapping residues at the mutation site alone was not sufficient to render Bmp9 NOG-sensitive; however, successive introduction of two additional substitutions imparted high to total sensitivity on customized variants of Bmp9. In conclusion, we show a new mechanism for abnormal joint development that interferes with a naturally occurring regulatory mechanism of BMP signaling.

  10. The BMP Pathway Participates in Human Naive CD4+ T Cell Activation and Homeostasis.

    Directory of Open Access Journals (Sweden)

    Víctor G Martínez

    Full Text Available Bone Morphogenetic Proteins (BMPs form a group of secreted factors that belongs to the TGF-β superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.

  11. Regulation of BMP4 on the proliferation and differentiation in SVZa neural stem cells

    Institute of Scientific and Technical Information of China (English)

    LIU Shiyong; ZHANG Zhiyuan; SONG Yechun; QIU Kejun; ZHANG Kecheng; AN Ning; ZHOU Zheng; CAI Wenqin; YANG Hui

    2004-01-01

    The neural stem cells in the anterior subventricular zone (SVZa) mainly generate the progenitors that will differentiate into neurons, and along a highly circumscribed migratory access--Rostral migratory stream (RMS), they migrate to the olfactory bulbs (OB). To understand the effects of BMPs on SVZa neural stem cells, in this study BMP4 at various concentrations was used to induce SVZa neural stem cells, and the living cell labeling using BMP4 promotor conjugated with red fluorescence protein showed the expression of BMP4 dynamically. The results demonstrated that low BMP4 doses (1-5 ng/mL)promoted while high doses (10-100 ng/mL) inhibited the proliferation of SVZa neural stem cells, and BMP4 promoted neuron differentiation in the early stage (1-3 d), howeverm,it inhibited the neuron commitment after 4 d. Noggin, the antagonist of BMP4, blocked the physiological effects of BMP4. In OB, BMP4 is mainly to accelerate the progenitors to withdraw from the cell cycle and trigger the differentiation, and in RMS, it promotes the proliferation of committed progenitors and not differentiation, further in SVZa, BMP4 enhances astrocyte commitment.

  12. Study on Z-H/BMP Toughened Compound Artificial Bone and Its Osteogenesis

    Institute of Scientific and Technical Information of China (English)

    XU Wei-guo; CHEN An-min; SUN Shu-zhen

    2003-01-01

    The purpose of this study was to find a kind of new artificial bone for anterior spinal fusion.ZrO2 stabilized by Y2O3 ( Y- PSZ), porous hydroxyapatite ( HA ) and bone morphogenetic protein (BMP) were used to make artificial compound bone ( Y2O3 ) ZrO2 -HA/ BMP( Z-H/ BMP ) , whose function was tested, microstructure and mineralogic composition constitution were analysised by SEM and XRD , and the corresponding animal tests were porformed. Osteogenesis of the material was observed by eyes, histology and SEM. Experimental results show that the component and ossific activity of Z-H/BMP were satisfactory.

  13. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo.

  14. Endocytosis contributes to BMP2-induced Smad signalling and neuronal growth.

    Science.gov (United States)

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2017-02-08

    Bone morphogenetic protein 2 (BMP2) is a neurotrophic factor which induces the growth of midbrain dopaminergic (DA) neurons in vitro and in vivo, and its neurotrophic effects have been shown to be dependent on activation of BMP receptors (BMPRs) and Smad 1/5/8 signalling. However, the precise intracellular cascades that regulate BMP2-BMPR-Smad-signalling-induced neurite growth remain unknown. Endocytosis has been shown to regulate Smad 1/5/8 signalling and differentiation induced by BMPs. However, these studies were carried out in non-neural cells. Indeed, there are scant reports regarding the role of endocytosis in BMP-Smad signalling in neurons. To address this, and to further characterise the mechanisms regulating the neurotrophic effects of BMP2, the present study examined the role of dynamin-dependent endocytosis in BMP2-induced Smad signalling and neurite growth in the SH-SY5Y neuronal cell line. The activation, temporal kinetics and magnitude of Smad 1/5/8 signalling induced by BMP2 were significantly attenuated by dynasore-mediated inhibition of endocytosis in SH-SY5Y cells. Furthermore, BMP2-induced increases in neurite length and neurite branching in SH-SY5Y cells were significantly reduced following inhibition of dynamin-dependent endocytosis using dynasore. This study demonstrates that BMP2-induced Smad signalling and neurite growth is regulated by dynamin-dependent endocytosis in a model of human midbrain dopaminergic neurons.

  15. TGF-β1刺激下损伤的前交叉韧带和内侧副韧带中BMP-1基因的表达%Differential BMP-1 expression in injured anterior cruciate ligament and medial collateral ligament fibroblasts induced by TGF-β1

    Institute of Scientific and Technical Information of China (English)

    尹琳; 谢静; 蒋稼欢; 王春莉; 张艳君; 许春明; KL Paul Sung

    2012-01-01

    Objective To investigate the differential expression of bone morphogenetic protein-1 (BMP-1) in injured anterior cruciate ligament ( ACL) and medial collateral ligament ( MCL) fibroblasts induced by TGF-p,, and to find out the differences between the poorly self-healing ACL and well functionally self-healing MCL fibroblasts. Methods Fibroblasts were primarily cultured from clinical ACL and MCL samples, and then given 12% mechanical stretch injury and treated by 1, 5 and 50 ng/ml TGF-β1 for 2 h, or by 5 ng/ml TGF-β,1 for 2, 6, 12 and 24 h respectively at the same time. The expression of BMP-1 in the above treated and untreated fibroblasts were detected by reversed-transcript PCR and real-time quantitative PCR. Western blotting was used to detect the expression of BMP-1 in the injured fibroblasts induced by 5 ng/ml TGF-p, for 48 h. Results TGF-p, treatment resulted in an increased mRNA expression of BMP-1 in the injured fibroblasts in a dose-depended manner, especially in the cells from MCL than in those from ACL (about 1 times higher, P <0. 05). Compared with the fibroblasts without TGF-p, treatment, 5 ng/ml TGF-p, treatment for 24 h made the expression of BMP-1 reach the summit in ACL (6.1 folds higher, P <0.05) and in MCL (9.84 folds higher, P <0.05). Compared with the control, the protein expression of BMP-1 were elevated to 2. 32 and 3. 84 folds higher in ACL and MCL respectively after 5 ng/ml TGF-p, treatment for 48 h (P <0.01). Conclusion TGF-p, affects the expression of BMP-1 in the injured fibroblasts, and then directly affects activities of lysyl oxiadse in the extracellular matrix, implying its potential significant value and clinical usage in repair of injured ACL.%目的 观察在转化生长因子-β1(transforming growth factor betal,TGF-β1)作用下,损伤的前交叉韧带(anterior cruciate ligament,ACL)和内侧副韧带(medial collateral ligament,MCL)中骨形态发生蛋白-1(bone morphogenetic protein-1,BMP-1)基因的表达,找出TGF-31、BMP

  16. BMP2 induced osteogenic differentiation of human umbilical cord stem cells in a peptide-based hydrogel scaffold

    Science.gov (United States)

    Lakshmana, Shruthi M.

    Craniofacial tissue loss due to traumatic injuries and congenital defects is a major clinical problem around the world. Cleft palate is the second most common congenital malformation in the United States occurring with an incidence of 1 in 700. Some of the problems associated with this defect are feeding difficulties, speech abnormalities and dentofacial anomalies. Current treatment protocol offers repeated surgeries with extended healing time. Our long-term goal is to regenerate bone in the palatal region using tissue-engineering approaches. Bone tissue engineering utilizes osteogenic cells, osteoconductive scaffolds and osteoinductive signals. Mesenchymal stem cells derived from human umbilical cord (HUMSCs) are highly proliferative with the ability to differentiate into osteogenic precursor cells. The primary objective of the study was to characterize HUMSCs and culture them in a 3D hydrogel scaffold and investigate their osteogenic potential. PuraMatrix(TM) is an injectable 3D nanofiber scaffold capable of self-assembly when exposed to physiologic conditions. Our second objective was to investigate the effect of Bone Morphogenic Protein 2 (BMP2) in enhancing the osteogenic differentiation of HUMSCs encapsulated in PuraMatrix(TM). We isolated cells isolated from Wharton's Jelly region of the umbilical cord obtained from NDRI (New York, NY). Isolated cells satisfied the minimal criteria for mesenchymal stem cells (MSCs) as defined by International Society of Cell Therapy in terms of plastic adherence, fibroblastic phenotype, surface marker expression and osteogenic differentiation. Flow Cytometry analysis showed that cells were positive for CD73, CD90 and CD105 while negative for hematopoietic marker CD34. Alkaline phosphatase activity (ALP) of HUMSCs showed peak activity at 2 weeks (pBMP2 at doses of 50ng/ml, 100ng/ml and 200ng/ml. A significant upregulation of ALP gene in BMP2 treated cells was seen compared to HUMSCs treated in osteogenic medium (pBMP2 dose of

  17. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  18. Soluble VEGFR1 reverses BMP2 inhibition of intramembranous ossification during healing of cortical bone defects.

    Science.gov (United States)

    Hu, Kai; Besschetnova, Tatiana Y; Olsen, Bjorn R

    2016-09-07

    BMP2 is widely used for promotion of bone repair and regeneration. However, bone formation induced by BMP2 is quite variable. Bone forming progenitor cells in different locations appear to respond to BMP2 in different ways, and repair outcomes can vary as a consequence of modulating effects by other factors. In this study, we have examined the effects of VEGF on BMP2-induced repair of a cortical bone defect, a 1 mm diameter drill hole, in the proximal tibia of mice. Treatment of the defect with either a bolus of PBS or soluble VEGFR1 (sVEGFR1), a decoy receptor for VEGF, had the same effects on bone formation via intramembranous ossification in the defect and cartilage formation and injured periosteum, during the healing process. In contrast, treatment with BMP2 inhibited intramembranous bone formation in the defect while it promoted cartilage and endochondral bone formation in the injured periosteum compared with mice treated with PBS or sVEGFR1. The inhibitory effect of BMP2 on bone formation was unlikely due to increased osteoclast activity and decreased invasion of blood vessels in the defect. Most importantly, co-delivery of BMP2 and sVEGFR1 reversed the inhibition of intramembranous bone formation by BMP2. Furthermore, the decreased accumulation of collagen and production of bone matrix proteins in the defect of groups with BMP2 treatment could also be prevented by co-delivery of BMP2 and sVEGFR1. Our data indicate that introducing a VEGF-binding protein, such as sVEGFR1, to reduce levels of extracellular VEGF, may enhance the effects of BMP2 on intramembranous bone formation. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

  19. BMP2 induces chondrogenic differentiation, osteogenic differentiation and endochondral ossification in stem cells.

    Science.gov (United States)

    Zhou, Nian; Li, Qi; Lin, Xin; Hu, Ning; Liao, Jun-Yi; Lin, Liang-Bo; Zhao, Chen; Hu, Zhen-Ming; Liang, Xi; Xu, Wei; Chen, Hong; Huang, Wei

    2016-10-01

    Bone morphogenetic protein 2 (BMP2), a member of the transforming growth factor-β (TGF-β) super-family, is one of the main chondrogenic growth factors involved in cartilage regeneration. BMP2 is known to induce chondrogenic differentiation in various types of stem cells in vitro. However, BMP2 also induces osteogenic differentiation and endochondral ossification in mesenchymal stem cells (MSCs). Although information regarding BMP2-induced chondrogenic and osteogenic differentiation within the same system might be essential for cartilage tissue engineering, few studies concerning these issues have been conducted. In this study, BMP2 was identified as a regulator of chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. BMP2 was used to regulate chondrogenic and osteogenic differentiation in stem cells within the same culture system in vitro and in vivo. Any changes in the differentiation markers were assessed. BMP2 was found to induce chondrogenesis and osteogenesis in vitro via the expression of Sox9, Runx2 and its downstream markers. According to the results of the subcutaneous stem cell implantation studies, BMP2 not only induced cartilage formation but also promoted endochondral ossification during ectopic bone/cartilage formation. In fetal limb cultures, BMP2 promoted chondrocyte hypertrophy and endochondral ossification. Our data reveal that BMP2 can spontaneously induce chondrogenic differentiation, osteogenic differentiation and endochondral bone formation within the same system. Thus, BMP2 can be used in cartilage tissue engineering to regulate cartilage formation but has to be properly regulated for cartilage tissue engineering in order to retain the cartilage phenotype.

  20. Preparation of alternate fuels by means of bio-methanization, pyrolysis and gasification; Preparation thermique de combustibles alternatifs par bio-methanisation, thermolyse et gazeification

    Energy Technology Data Exchange (ETDEWEB)

    Fontana, A.; Jung, C.G. [Universite Libre de Bruxelles (Belgium)

    2003-06-01

    The paper gives a general description of wastes and their various components each of them depending on their behaviour during the beneficiation treatment: water, organic matters (bio-degradable and non bio-degradable), mineral matters and metals some examples are given. Various processes are available: compost production, bio-methanization and thermal processes. These thermal processes are incineration, gasification and pyrolysis, depending on the quantity (or absence) of air during the process. The paper gives a description of these processes as well as the type of equipment that are utilised. (authors)

  1. Genetic analysis reveals an unexpected role of BMP7 in initiation of ureteric bud outgrowth in mouse embryos.

    Directory of Open Access Journals (Sweden)

    Alexandre Gonçalves

    Full Text Available BACKGROUND: Genetic analysis in the mouse revealed that GREMLIN1 (GREM1-mediated antagonism of BMP4 is essential for ureteric epithelial branching as the disruption of ureteric bud outgrowth and renal agenesis in Grem1-deficient embryos is restored by additional inactivation of one Bmp4 allele. Another BMP ligand, BMP7, was shown to control the proliferative expansion of nephrogenic progenitors and its requirement for nephrogenesis can be genetically substituted by Bmp4. Therefore, we investigated whether BMP7 in turn also participates in inhibiting ureteric bud outgrowth during the initiation of metanephric kidney development. METHODOLOGY/PRINCIPAL FINDINGS: Genetic inactivation of one Bmp7 allele in Grem1-deficient mouse embryos does not alleviate the bilateral renal agenesis, while complete inactivation of Bmp7 restores ureteric bud outgrowth and branching. In mouse embryos lacking both Grem1 and Bmp7, GDNF/WNT11 feedback signaling and the expression of the Etv4 target gene, which regulates formation of the invading ureteric bud tip, are restored. In contrast to the restoration of ureteric bud outgrowth and branching, nephrogenesis remains aberrant as revealed by the premature loss of Six2 expressing nephrogenic progenitor cells. Therefore, very few nephrons develop in kidneys lacking both Grem1 and Bmp7 and the resulting dysplastic phenotype is indistinguishable from the one of Bmp7-deficient mouse embryos. CONCLUSIONS/SIGNIFICANCE: Our study reveals an unexpected inhibitory role of BMP7 during the onset of ureteric bud outgrowth. As BMP4, BMP7 and GREM1 are expressed in distinct mesenchymal and epithelial domains, the localized antagonistic interactions of GREM1 with BMPs could restrict and guide ureteric bud outgrowth and branching. The robustness and likely significant redundancy of the underlying signaling system is evidenced by the fact that global reduction of Bmp4 or inactivation of Bmp7 are both able to restore ureteric bud outgrowth

  2. Bmp signaling is at the heart of vertebrate left-right asymmetry

    NARCIS (Netherlands)

    Verhoeven, M.C.

    2009-01-01

    Bone morphogenetic protein (Bmp) signaling is vitally important in many aspects of cardiac development. These include cardiac induction and differentiation and establishing the L/R axis. In this thesis, we focus on the role of Bmp signaling in securing proper cardiac asymmetry, by (1) establishing c

  3. Whole-Farm Evaluation of Phosphorus Crystallization as a Dairy Farm BMP

    Science.gov (United States)

    A recently proven method for precipitating significant phosphorus from dairy lagoons was incorporated to the Integrated Farm System Model. A whole-farm analysis of this BMP, including environmental and economical effects, were evaluated for an organic dairy farm in Washington. The BMP provides a non...

  4. An evolutionarily conserved enhancer regulates Bmp4 expression in developing incisor and limb bud.

    Directory of Open Access Journals (Sweden)

    Dolrudee Jumlongras

    Full Text Available To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs. These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium.

  5. BMP2-SMAD signaling represses the proliferation of embryonic neural stem cells through YAP.

    Science.gov (United States)

    Yao, Minghui; Wang, Yadong; Zhang, Peng; Chen, Hong; Xu, Zhiheng; Jiao, Jianwei; Yuan, Zengqiang

    2014-09-03

    Previous studies have shown that the Hippo pathway effector yes-associated protein (YAP) plays an important role in maintaining stem cell proliferation. However, the precise molecular mechanism of YAP in regulating murine embryonic neural stem cells (NSCs) remains largely unknown. Here, we show that bone morphogenetic protein-2 (BMP2) treatment inhibited the proliferation of mouse embryonic NSCs, that YAP was critical for mouse NSC proliferation, and that BMP2 treatment-induced inhibition of mouse NSC proliferation was abrogated by YAP knockdown, indicating that the YAP protein mediates the inhibitory effect of BMP2 signaling. Additionally, we found that BMP2 treatment reduced YAP nuclear translocation, YAP-TEAD interaction, and YAP-mediated transactivation. BMP2 treatment inhibited YAP/TEAD-mediated Cyclin D1 (ccnd1) expression, and knockdown of ccnd1 abrogated the BMP2-mediated inhibition of mouse NSC proliferation. Mechanistically, we found that Smad1/4, effectors of BMP2 signaling, competed with YAP for the interaction with TAED1 and inhibited YAP's cotranscriptional activity. Our data reveal mechanistic cross talk between BMP2 signaling and the Hippo-YAP pathway in murine NSC proliferation, which may be exploited as a therapeutic target in neurodegenerative diseases and aging.

  6. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells.

    NARCIS (Netherlands)

    Jong, D.S. de; Steegenga, W.T.; Hendriks, J.M.; Zoelen, E.J.J. van; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  7. Angiocrine Bmp2 signaling in murine liver controls normal iron homeostasis.

    Science.gov (United States)

    Koch, Philipp-Sebastian; Olsavszky, Victor; Ulbrich, Friederike; Sticht, Carsten; Demory, Alexandra; Leibing, Thomas; Henzler, Thomas; Meyer, Mathias; Zierow, Johanna; Schneider, Sven; Breitkopf-Heinlein, Katja; Gaitantzi, Haristi; Spencer-Dene, Bradley; Arnold, Bernd; Klapproth, Kay; Schledzewski, Kai; Goerdt, Sergij; Géraud, Cyrill

    2017-01-26

    Microvascular endothelial cells (ECs) display a high degree of phenotypic and functional heterogeneity among different organs. Organ-specific ECs control their tissue microenvironment by angiocrine factors in health and disease. Liver sinusoidal endothelial cells (LSECs) are uniquely differentiated to fulfill important organ-specific functions in development, under homeostatic conditions, and in regeneration and liver pathology. Recently, Bmp2 has been identified by us as an organ-specific angiokine derived from LSECs. To study angiocrine Bmp2 signaling in the liver, we conditionally deleted Bmp2 in LSECs using EC subtype-specific Stab2-Cre mice. Genetic inactivation of hepatic angiocrine Bmp2 signaling in Stab2-Cre;Bmp2(fl/fl) (Bmp2(LSECKO)) mice caused massive iron overload in the liver and increased serum iron levels and iron deposition in several organs similar to classic hereditary hemochromatosis. Iron overload was mediated by decreased hepatic expression of hepcidin, a key regulator of iron homeostasis. Thus, angiocrine Bmp2 signaling within the hepatic vascular niche represents a constitutive pathway indispensable for iron homeostasis in vivo that is nonredundant with Bmp6. Notably, we demonstrate that organ-specific angiocrine signaling is essential not only for the homeostasis of the respective organ but also for the homeostasis of the whole organism.

  8. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells

    NARCIS (Netherlands)

    Jong, de D.S.; Steegenga, W.T.; Hendriks, J.M.A.; Zoelen, van E.J.J.; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  9. Dkk1 haploinsufficiency requires expression of Bmp2 for bone anabolic activity.

    Science.gov (United States)

    Intini, Giuseppe; Nyman, Jeffry S

    2015-06-01

    Bone fractures remain a serious health burden and prevention and enhanced healing of fractures have been obtained by augmenting either BMP or Wnt signaling. However, whether BMP and Wnt signaling are both required or are self-sufficient for anabolic and fracture healing activities has never been fully elucidated. Mice haploinsufficient for Dkk1 (Dkk1(+/-)) exhibit a high bone mass phenotype due to an up-regulation of canonical Wnt signaling while mice lacking Bmp2 expression in the limbs (Bmp2(c/c);Prx1::cre) succumb to spontaneous fracture and are unable to initiate fracture healing; combined, these mice offer an opportunity to examine the requirement for activated BMP signaling on the anabolic and fracture healing activity of Wnts. When Dkk1(+/-) mice were crossed with Bmp2(c/c);Prx1::cre mice, the offspring bearing both genetic alterations were unable to increase bone mass and heal fractures, indicating that increased canonical Wnt signaling is unable to exploit its activity in absence of Bmp2. Thus, our data suggest that BMP signaling is required for Wnt-mediated anabolic activity and that therapies aimed at preventing fractures and fostering fracture repair may need to target both pathways for maximal efficacy.

  10. TGF-b/BMP signaling and other molecular events:regulation of osteoblastogenesis and bone formation

    Institute of Scientific and Technical Information of China (English)

    Md Shaifur Rahman; Naznin Akhtar; Hossen Mohammad Jamil; Rajat Suvra Banik; Sikder M Asaduzzaman

    2015-01-01

    Transforming growth factor-beta (TGF-b)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-b/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-b (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-b/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-b/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and b-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-b/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.

  11. BMP9-Induced Survival Effect in Liver Tumor Cells Requires p38MAPK Activation

    Directory of Open Access Journals (Sweden)

    María García-Álvaro

    2015-08-01

    Full Text Available The study of bone morphogenetic proteins (BMPs role in tumorigenic processes, and specifically in the liver, has gathered importance in the last few years. Previous studies have shown that BMP9 is overexpressed in about 40% of hepatocellular carcinoma (HCC patients. In vitro data have also shown evidence that BMP9 has a pro-tumorigenic action, not only by inducing epithelial to mesenchymal transition (EMT and migration, but also by promoting proliferation and survival in liver cancer cells. However, the precise mechanisms driving these effects have not yet been established. In the present work, we deepened our studies into the intracellular mechanisms implicated in the BMP9 proliferative and pro-survival effect on liver tumor cells. In HepG2 cells, BMP9 induces both Smad and non-Smad signaling cascades, specifically PI3K/AKT and p38MAPK. However, only the p38MAPK pathway contributes to the BMP9 growth-promoting effect on these cells. Using genetic and pharmacological approaches, we demonstrate that p38MAPK activation, although dispensable for the BMP9 proliferative activity, is required for the BMP9 protective effect on serum withdrawal-induced apoptosis. These findings contribute to a better understanding of the signaling pathways involved in the BMP9 pro-tumorigenic role in liver tumor cells.

  12. BMP4 signaling is involved in the generation of inner ear sensory epithelia

    Directory of Open Access Journals (Sweden)

    Wang Yucheng

    2005-08-01

    Full Text Available Abstract Background The robust expression of BMP4 in the incipient sensory organs of the inner ear suggests possible roles for this signaling protein during induction and development of auditory and vestibular sensory epithelia. Homozygous BMP4-/- animals die before the inner ear's sensory organs develop, which precludes determining the role of BMP4 in these organs with simple gene knockout experiments. Results Here we use a chicken otocyst culture system to perform quantitative studies on the development of inner ear cell types and show that hair cell and supporting cell generation is remarkably reduced when BMP signaling is blocked, either with its antagonist noggin or by using soluble BMP receptors. Conversely, we observed an increase in the number of hair cells when cultured otocysts were treated with exogenous BMP4. BMP4 treatment additionally prompted down-regulation of Pax-2 protein in proliferating sensory epithelial progenitors, leading to reduced progenitor cell proliferation. Conclusion Our results implicate BMP4 in two events during chicken inner ear sensory epithelium formation: first, in inducing the switch from proliferative sensory epithelium progenitors to differentiating epithelial cells and secondly, in promoting the differentiation of hair cells within the developing sensory epithelia.

  13. Elucidation of a novel pathway through which HDAC1 controls cardiomyocyte differentiation through expression of SOX-17 and BMP2.

    Directory of Open Access Journals (Sweden)

    Eneda Hoxha

    Full Text Available Embryonic Stem Cells not only hold a lot of potential for use in regenerative medicine, but also provide an elegant and efficient way to study specific developmental processes and pathways in mammals when whole animal gene knock out experiments fail. We have investigated a pathway through which HDAC1 affects cardiovascular and more specifically cardiomyocyte differentiation in ES cells by controlling expression of SOX17 and BMP2 during early differentiation. This data explains current discrepancies in the role of HDAC1 in cardiovascular differentiation and sheds light into a new pathway through which ES cells determine cardiovascular cell fate.

  14. BMP2 Regulation of CXCL12 Cellular, Temporal, and Spatial Expression is Essential During Fracture Repair.

    Science.gov (United States)

    Myers, Timothy J; Longobardi, Lara; Willcockson, Helen; Temple, Joseph D; Tagliafierro, Lidia; Ye, Ping; Li, Tieshi; Esposito, Alessandra; Moats-Staats, Billie M; Spagnoli, Anna

    2015-11-01

    The cellular and humoral responses that orchestrate fracture healing are still elusive. Here we report that bone morphogenic protein 2 (BMP2)-dependent fracture healing occurs through a tight control of chemokine C-X-C motif-ligand-12 (CXCL12) cellular, spatial, and temporal expression. We found that the fracture repair process elicited an early site-specific response of CXCL12(+)-BMP2(+) endosteal cells and osteocytes that was not present in unfractured bones and gradually decreased as healing progressed. Absence of a full complement of BMP2 in mesenchyme osteoprogenitors (BMP2(cKO/+)) prevented healing and led to a dysregulated temporal and cellular upregulation of CXCL12 expression associated with a deranged angiogenic response. Healing was rescued when BMP2(cKO/+) mice were systemically treated with AMD3100, an antagonist of CXCR4 and agonist for CXCR7 both receptors for CXCL12. We further found that mesenchymal stromal cells (MSCs), capable of delivering BMP2 at the endosteal site, restored fracture healing when transplanted into BMP2(cKO/+) mice by rectifying the CXCL12 expression pattern. Our in vitro studies showed that in isolated endosteal cells, BMP2, while inducing osteoblastic differentiation, stimulated expression of pericyte markers that was coupled with a decrease in CXCL12. Furthermore, in isolated BMP2(cKO/cKO) endosteal cells, high expression levels of CXCL12 inhibited osteoblastic differentiation that was restored by AMD3100 treatment or coculture with BMP2-expressing MSCs that led to an upregulation of pericyte markers while decreasing platelet endothelial cell adhesion molecule (PECAM). Taken together, our studies show that following fracture, a CXCL12(+)-BMP2(+) perivascular cell population is recruited along the endosteum, then a timely increase of BMP2 leads to downregulation of CXCL12 that is essential to determine the fate of the CXCL12(+)-BMP2(+) to osteogenesis while departing their supportive role to angiogenesis. Our findings have far

  15. BMP signaling protects telencephalic fate by repressing eye identity and its Cxcr4-dependent morphogenesis.

    Science.gov (United States)

    Bielen, Holger; Houart, Corinne

    2012-10-16

    Depletion of Wnt signaling is a major requirement for the induction of the anterior prosencephalon. However, the molecular events driving the differential regionalization of this area into eye-field and telencephalon fates are still unknown. Here we show that the BMP pathway is active in the anterior neural ectoderm during late blastula to early gastrula stage in zebrafish. Bmp2b mutants and mosaic loss-of-function experiments reveal that BMP acts as a repressor of eye-field fate through inhibition of its key transcription factor Rx3, thereby protecting the future telencephalon from acquiring eye identity. This BMP-driven mechanism initiates the establishment of the telencephalon prior to the involvement of Wnt antagonists from the anterior neural border. Furthermore, we demonstrate that Rx3 and BMP are respectively required to maintain and restrict the chemokine receptor cxcr4a, which in turn contributes to the morphogenetic separation of eye-field and telencephalic cells during early neurulation.

  16. Mapping the Interaction Anatomy of BmP02 on Kv1.3 Channel

    Science.gov (United States)

    Wu, B.; Wu, B. F.; Feng, Y. J.; Tao, J.; Ji, Y. H.

    2016-07-01

    The potassium channel Kv 1.3 plays a vital part in the activation of T lymphocytes and is an attractive pharmacological target for autoimmune diseases. BmP02, a 28-residue peptide isolated from Chinese scorpion (Buthus martensi Karsch) venom, is a potent and selective Kv1.3 channel blocker. However, the mechanism through which BmP02 recognizes and inhibits the Kv1.3 channel is still unclear. In the present study, a complex molecular model of Kv1.3-BmP02 was developed by docking analysis and molecular dynamics simulations. From these simulations, it appears the large β-turn (residues 10–16) of BmP02 might be the binding interface with Kv 1.3. These results were confirmed by scanning alanine mutagenesis of BmP02, which identified His9, Lys11 and Lys13, which lie within BmP02’s β-turn, as key residues for interacting with Kv1.3. Based on these results and molecular modeling, two negatively charged residues of Kv1.3, D421 and D422, located in turret region, were predicted to act as the binding site for BmP02. Mutation of these residues reduced sensitivity of Kv 1.3 to BmP02 inhibition, suggesting that electrostatic interactions play a crucial role in Kv1.3-BmP02 interaction. This study revealed the molecular basis of Kv 1.3 recognition by BmP02 venom, and provides a novel interaction model for Kv channel-specific blocker complex, which may help guide future drug-design for Kv1.3-related channelopathies.

  17. Bmp7 functions via a polarity mechanism to promote cloacal septation.

    Directory of Open Access Journals (Sweden)

    Kun Xu

    Full Text Available BACKGROUND: During normal development in human and other placental mammals, the embryonic cloacal cavity separates along the axial longitudinal plane to give rise to the urethral system, ventrally, and the rectum, dorsally. Defects in cloacal development are very common and present clinically as a rectourethral fistula in about 1 in 5,000 live human births. Yet, the cellular mechanisms of cloacal septation remain poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We previously detected Bone morphogenetic protein 7 (Bmp7 expression in the urorectal mesenchyme (URM, and have shown that loss of Bmp7 function results in the arrest of cloacal septation. Here, we present evidence that cloacal partitioning is driven by Bmp7 signaling in the cloacal endoderm. We performed TUNEL and immunofluorescent analysis on cloacal sections from Bmp7 null and control littermate embryos. We found that loss of Bmp7 results in a dramatic decrease in the endoderm survival and a delay in differentiation. We used immunological methods to show that Bmp7 functions by activating the c-Jun N-terminal kinase (JNK pathway. We carried out confocal and 3D imaging analysis of mitotic chromosome bundles to show that during normal septation cells in the cloacal endoderm divide predominantly in the apical-basal direction. Loss of Bmp7/JNK signaling results in randomization of mitotic angles in the cloacal endoderm. We also conducted immunohistochemical analysis of human fetal sections to show that BMP/phospho-SMAD and JNK pathways function in the human cloacal region similar as in the mouse. CONCLUSION/SIGNIFICANCE: Our results strongly indicate that Bmp7/JNK signaling regulates remodeling of the cloacal endoderm resulting in a topological separation of the urinary and digestive systems. Our study points to the importance of Bmp and JNK signaling in cloacal development and rectourethral malformations.

  18. Identification of the gene encoding BmpB, a 30 kDa outer envelope lipoprotein of Brachyspira (Serpulina) hyodysenteriae, and immunogenicity of recombinant BmpB in mice and pigs.

    Science.gov (United States)

    Lee, B J; La, T; Mikosza, A S; Hampson, D J

    2000-10-01

    A gene encoding a 30kDa outer envelope protein of the intestinal spirochaete Brachyspira (Serpulina) hyodysenteriae, was cloned and expressed in Escherichia coli strain XLOLR. Five phagemids containing DNA inserts encoding the protein were established and one clone (pSHA) was sequenced. An 816bp hypothetical open reading frame (ORF) was identified, with a potential ribosome binding site (AGGAG), and putative -10 (TATAAT) and -35 (TTGAAA) promoter regions upstream from the ATG start of the ORF. A 12bp inverted repeat sequence, possibly serving as a transcription terminator, was identified downstream from the TAA stop codon. Analysis of the amino acid sequence identified a 19 residue hydrophobic signal peptide, incorporating a potential signal peptidase cleavage site and membrane lipoprotein lipid attachment site. Further analysis of the amino acid usage of this lipoprotein, designated BmpB, showed its possible outer membrane localisation. Comparison of the gene encoding the lipoprotein, bmpB, with GenBank nucleotide sequences showed that it has homology with the gene (plp3) encoding Plp3, an outer membrane lipoprotein of Pasteurella haemolytica (54% identity in 735bp). Comparison of the deduced amino acid sequence with the SWISS-PROT amino acid database revealed greatest homology with the outer membrane lipoproteins (Plp1, 2, 3) of P. haemolytica (34% identity in 242 aa, 37% identity in 250 aa, and 39% identity in 272 aa, respectively), and lipoproteins (rcsF and lipoprotein-28) of E. coli (40% identity in 267 aa and 36% identity in 263 aa, respectively). Three of the recombinant E. coli clones (pSHA, pSHD, and pSHE) were formalinised and used to immunise mice. A bacterin preparation of one recombinant E. coli clone (pSHA) was used to immunise pigs. Sera from these mice and pigs recognised the 30kDa lipoprotein in outer membrane preparations of B. hyodysenteriae, indicating the immunogenicity of recombinant BmpB. Sera from pigs naturally infected with B

  19. The techno-economic potential of renewable energy through the anaerobic digestion of microalgae.

    Science.gov (United States)

    Zamalloa, Carlos; Vulsteke, Elien; Albrecht, Johan; Verstraete, Willy

    2011-01-01

    The potential of microalgae as feedstock for methane production is evaluated from a process technical and economic point of view. Production of mixed culture algae in raceway ponds on non-agricultural sites, such as landfills, was identified as a preferred approach. The potential of straightforward bio-methanation, which includes pre-concentration of microalgae and utilization of a high rate anaerobic reactor was examined based on the premises of achievable up-concentration from 0.2-0.6 kg m(-3) to 20-60 kg dry matter (DM) m(-3) and an effective bio-methanation of the concentrate at a loading rate of 20 kg DM m(-3) d(-1). The costs of biomass available for bio-methanation under such conditions were calculated to be in the range of €86-€124 ton(-1) DM. The levelized cost of energy by means of the process line "algae biomass--biogas--total energy module" would be in the order of €0.170-0.087 kWh(-1), taking into account a carbon credit of about €30 ton(-1) CO2(eq).

  20. BMP signaling and microtubule organization regulate synaptic strength.

    Science.gov (United States)

    Ball, R W; Peled, E S; Guerrero, G; Isacoff, E Y

    2015-04-16

    The strength of synaptic transmission between a neuron and multiple postsynaptic partners can vary considerably. We have studied synaptic heterogeneity using the glutamatergic Drosophila neuromuscular junction (NMJ), which contains multiple synaptic connections of varying strengths between a motor axon and muscle fiber. In larval NMJs, there is a gradient of synaptic transmission from weak proximal to strong distal boutons. We imaged synaptic transmission with the postsynaptically targeted fluorescent calcium sensor SynapCam, to investigate the molecular pathways that determine synaptic strength and set up this gradient. We discovered that mutations in the Bone Morphogenetic Protein (BMP) signaling pathway disrupt production of strong distal boutons. We find that strong connections contain unbundled microtubules in the boutons, suggesting a role for microtubule organization in transmission strength. The spastin mutation, which disorganizes microtubules, disrupted the transmission gradient, supporting this interpretation. We propose that the BMP pathway, shown previously to function in the homeostatic regulation of synaptic growth, also boosts synaptic transmission in a spatially selective manner that depends on the microtubule system.

  1. Comparison of large-scale preparation of recombinant human BMP-4 and BMP-2 mature peptide expressed in E.coli%大肠杆菌表达的重组人BMP-2和hBMP-4成熟肽大规模制备方法的比较

    Institute of Scientific and Technical Information of China (English)

    王涛; 陈苏民; 陈南春; 赵伟钦; 张晓楠

    2006-01-01

    目的:大规模制备人骨形成蛋白成熟肽(hBMP-m):hBMP-4m和hBMP-2m.方法:两种工程菌株分别含有能够高表达hBMP-4m和hBMP-2m的质粒,分别导入15 L NBS发酵罐中进行恒溶氧高密度发酵和诱导表达,离心收集菌体,悬浮所收集的菌体,裂菌,洗涤4次.预先取少量样品进行探索实验后,全部包涵体分别用8 mol/L尿素缓冲液溶解,上Sepharose SP-FF阳离子柱.结果:发酵菌液A600 nm值分别为28.8和26.3.SOS-PAGE电泳后吸光度扫描表明hBMP-4m占细菌总蛋白量的40.0%,hBMP-2m占细菌总蛋白量的47.2%.洗涤4次后的包涵体中hBMP-4m占蛋白量的82.9%,hBMP-2m占蛋白量的84.5%.上Sepharose SP-FF阳离子柱后,分别收集0.35 mol/L NaCl和0.20 mol/L NaCl洗脱部分,获得纯度为96%的hBMP-4m及纯度为95%的hBMP-2m.其收获量分别为1.30 g/L发酵液和1.25 g/L发酵液;收得率分别为34.33%和34.81%.结论:大规模制备hBMP-4m和hBMP-2m时,使用相同的发酵程序及相近的纯化方法,都能够得到较好的收得率、较高的收获量和纯度.

  2. Genetic Variants of BMP2 and Their Association with the Risk of Non-Syndromic Tooth Agenesis

    Science.gov (United States)

    Wang, Yuting; Gu, Ning; Ma, Lan; Xu, Min; Ma, Junqing; Zhang, Weibing; Pan, Yongchu; Wang, Lin

    2016-01-01

    Non-syndromic tooth agenesis (or non-syndromic congenitally missing tooth) is one of the most common congenital defects in humans affecting the craniofacial function and appearance. Single nucleotide polymorphisms (SNPs) have been associated with an individual’s susceptibility to these anomalies. The aim of the present study was therefore to investigate the roles of the potentially functional SNPs of BMP2 in the occurrence of tooth agenesis. Overall, four potentially functional SNPs of BMP2 (rs15705, rs235768, rs235769 and rs3178250) were selected, and their associations with the susceptibility of tooth agenesis were evaluated in a case-control study of 335 non-syndromic tooth agenesis cases and 444 healthy controls. The SNPs rs15705 and rs3178250 were found to be associated with an individual’s risk of tooth agenesis (P = 0.046 and P = 0.039, respectively). Both SNPs showed an increased risk of mandibular incisor agenesis (rs15705, AA/AC vs. CC = 1.58, 95% CI = [1.06–2.34], P = 0.024; rs3178250, TT/TC vs. CC = 1.60, 95% CI = [1.08–2.37], P = 0.020). Bioinformatics analysis indicated that these two SNPs located at the 3’-untranslated region (3’-UTR) of BMP2 might alter the binding ability of miR-1273d and miR-4639-5p, respectively, which was confirmed by luciferase activity assays in the 293A and COS7 cell lines (P < 0.001 in 293A and P < 0.01 in COS7 for miR-1273d; and P < 0.001 in both cells for miR-4639-5p). Furthermore, BMP2 mRNA expression decreased after transfecting either miR-1273d or miR-4639-5p into these two cell lines (P < 0.01 in 293A and P < 0.001 in COS7 for miR-1273d, and P < 0.01 in both cell lines for miR-4639-5p). Taken together, our findings indicate that rs15705 and rs317250 are associated with the susceptibility of non-syndromic tooth agenesis by possibly affecting miRNAs and mRNA interaction. PMID:27362534

  3. Genetic Variants of BMP2 and Their Association with the Risk of Non-Syndromic Tooth Agenesis.

    Directory of Open Access Journals (Sweden)

    Yun Lu

    Full Text Available Non-syndromic tooth agenesis (or non-syndromic congenitally missing tooth is one of the most common congenital defects in humans affecting the craniofacial function and appearance. Single nucleotide polymorphisms (SNPs have been associated with an individual's susceptibility to these anomalies. The aim of the present study was therefore to investigate the roles of the potentially functional SNPs of BMP2 in the occurrence of tooth agenesis. Overall, four potentially functional SNPs of BMP2 (rs15705, rs235768, rs235769 and rs3178250 were selected, and their associations with the susceptibility of tooth agenesis were evaluated in a case-control study of 335 non-syndromic tooth agenesis cases and 444 healthy controls. The SNPs rs15705 and rs3178250 were found to be associated with an individual's risk of tooth agenesis (P = 0.046 and P = 0.039, respectively. Both SNPs showed an increased risk of mandibular incisor agenesis (rs15705, AA/AC vs. CC = 1.58, 95% CI = [1.06-2.34], P = 0.024; rs3178250, TT/TC vs. CC = 1.60, 95% CI = [1.08-2.37], P = 0.020. Bioinformatics analysis indicated that these two SNPs located at the 3'-untranslated region (3'-UTR of BMP2 might alter the binding ability of miR-1273d and miR-4639-5p, respectively, which was confirmed by luciferase activity assays in the 293A and COS7 cell lines (P < 0.001 in 293A and P < 0.01 in COS7 for miR-1273d; and P < 0.001 in both cells for miR-4639-5p. Furthermore, BMP2 mRNA expression decreased after transfecting either miR-1273d or miR-4639-5p into these two cell lines (P < 0.01 in 293A and P < 0.001 in COS7 for miR-1273d, and P < 0.01 in both cell lines for miR-4639-5p. Taken together, our findings indicate that rs15705 and rs317250 are associated with the susceptibility of non-syndromic tooth agenesis by possibly affecting miRNAs and mRNA interaction.

  4. BMP2/7异源二聚体调控CIZ的表达与自身活性的关系%Relationship Between the Bioactivity of BMP2/7 Heterodimers and Its Regulation of CIZ Expression

    Institute of Scientific and Technical Information of China (English)

    潘秋辉; 杨松海; 董群伟; 孙奋勇

    2007-01-01

    BMP2/7异源二聚体的活性显著高于BMP2同源二聚体,但其机制并不清楚.采用哺乳动物细胞表达的BMP2/7异源二聚体处理成骨细胞MC3T3-E1,细胞化学染色发现BMP2/7的活性显著高于BMP2,报告载体p3GC2-LUX检测发现BMP2/7能够明显上调BMP/Smad通路的活性(P<0.05).但在成骨细胞中过表达CIZ(casinteracting zinc finger protein),能够显著抑制BMP2/7上调ALP与Osteocalcin的作用,并阻断BMP2/7对BMP/Smad通路的激活.同时发现BMP蛋白能够上调CIZ的表达,但BMP2/7的作用明显低于BMP2同源二聚体.可以认为BMP2/7能够诱导CIZ的表达,但由于作用较弱,所以对自身活性的反馈抑制作用也较弱,这可能是BMP2/7有着较强生物活性的关键所在.

  5. Post-hypoxic and ischemic neuroprotection of BMP-7 in the cerebral cortex and caudate-putamen tissue of rat.

    Science.gov (United States)

    Luan, Liju; Yang, Xiaomei; Zhou, Changman; Wang, Ke; Qin, Lihua

    2015-03-01

    Previous reports have indicated that exogenous bone morphogenetic protein-7 (BMP-7) has a neuroprotective effect after cerebral ischemia injury and promotes motor function recovery, but the appropriate BMP-7 concentration and time course are unclear. Here, we assessed endogenous BMP-7 expression in hypoxia and ischemia-damaged brain tissues and investigated the effects of different BMP-7 concentrations in pre- and post-hypoxic primary rat neurons. The results showed that BMP-7 expression was significantly higher in the ischemic hemisphere. The expressions of BMP-7 and caspase-3 were localized in the cytoplasm of the primary cerebral cortical and caudate-putamen neurons 24h after hypoxia/reoxygenation. After BMP-7 treatment, the number of caspase-3 positive neurons began to decrease with increasing BMP-7 concentrations up to 80ng/ml, but not beyond. Although the numbers of caspase-3-positive neurons between pre- and post-hypoxia/reoxygenation were not significantly different, more dendrites were observed in the groups treated prior to hypoxia/reoxygenation. These results suggest that increased BMP-7 expression can be induced in the cerebral cortex and caudate-putamen both in vivo and in vitro in hypoxic-ischemic states. The neuroprotective mechanism of BMP-7 may include apoptosis suppression, and its effect was enhanced from 40 to 80ng/ml. Pre-hypoxic BMP-7 treatment may be useful to stimulate dendrite sprouting in non-injured neurons.

  6. A Bmp/Admp regulatory circuit controls maintenance and regeneration of dorsal-ventral polarity in planarians.

    Science.gov (United States)

    Gaviño, Michael A; Reddien, Peter W

    2011-02-22

    Animal embryos have diverse anatomy and vary greatly in size. It is therefore remarkable that a common signaling pathway, BMP signaling, controls development of the dorsoventral (DV) axis throughout the Bilateria. In vertebrates, spatially opposed expression of the BMP family proteins Bmp4 and Admp (antidorsalizing morphogenetic protein) can promote restoration of DV pattern following tissue removal. bmp4 orthologs have been identified in all three groups of the Bilateria (deuterostomes, ecdysozoans, and lophotrochozoans). By contrast, the absence of admp orthologs in ecdysozoans such as Drosophila and C. elegans has suggested that a regulatory circuit of oppositely expressed bmp4 and admp genes represents a deuterostome-specific innovation. Here we describe the existence of spatially opposed bmp and admp expression in a protostome. An admp ortholog (Smed-admp) is expressed ventrally and laterally in adult Schmidtea mediterranea planarians, opposing the dorsal-pole expression of Smed-bmp4. Smed-admp is required for regeneration following parasagittal amputation. Furthermore, Smed-admp promotes Smed-bmp4 expression and Smed-bmp4 inhibits Smed-admp expression, generating a regulatory circuit that buffers against perturbations of Bmp signaling. These results suggest that a Bmp/Admp regulatory circuit is a central feature of the Bilateria, used broadly for the establishment, maintenance, and regeneration of the DV axis.

  7. Designer Nodal/BMP2 Chimeras Mimic Nodal Signaling, Promote Chondrogenesis, and Reveal a BMP2-like Structure

    Science.gov (United States)

    Esquivies, Luis; Blackler, Alissa; Peran, Macarena; Rodriguez-Esteban, Concepcion; Izpisua Belmonte, Juan Carlos; Booker, Evan; Gray, Peter C.; Ahn, Chihoon; Kwiatkowski, Witek; Choe, Senyon

    2014-01-01

    Nodal, a member of the TGF-β superfamily, plays an important role in vertebrate and invertebrate early development. The biochemical study of Nodal and its signaling pathway has been a challenge, mainly because of difficulties in producing the protein in sufficient quantities. We have developed a library of stable, chemically refoldable Nodal/BMP2 chimeric ligands (NB2 library). Three chimeras, named NB250, NB260, and NB264, show Nodal-like signaling properties including dependence on the co-receptor Cripto and activation of the Smad2 pathway. NB250, like Nodal, alters heart looping during the establishment of embryonic left-right asymmetry, and both NB250 and NB260, as well as Nodal, induce chondrogenic differentiation of human adipose-derived stem cells. This Nodal-induced differentiation is shown to be more efficient than BPM2-induced differentiation. Interestingly, the crystal structure of NB250 shows a backbone scaffold similar to that of BMP2. Our results show that these chimeric ligands may have therapeutic implications in cartilage injuries. PMID:24311780

  8. Human BMP sequences can confer normal dorsal-ventral patterning in the Drosophila embryo.

    Science.gov (United States)

    Padgett, R W; Wozney, J M; Gelbart, W M

    1993-04-01

    The type beta transforming growth factor family is composed of a series of processed, secreted growth factors, several of which have been implicated in important regulatory roles in cell determination, inductive interactions, and tissue differentiation. Among these factors, the sequence of the DPP protein from Drosophila is most similar to two of the vertebrate bone morphogenetic proteins, BMP2 and BMP4. Here we report that the human BMP4 ligand sequences can function in lieu of DPP in Drosophila embryos. We introduced the ligand region from human BMP4 into a genomic fragment of the dpp gene in place of the Drosophila ligand sequences and recovered transgenic flies by P-element transformation. We find that this chimeric dpp-BMP4 transgene can completely rescue the embryonic dorsal-ventral patterning defect of null dpp mutant genotypes. We infer that the chimeric DPP-BMP4 protein can be processed properly and, by analogy with the action of other family members, can activate the endogenous DPP receptor to carry out the events necessary for dorsal-ventral patterning. Our evidence suggests that the DPP-BMP4 signal transduction pathway has been functionally conserved for at least 600 million years.

  9. BMP signaling mediates effects of exercise on hippocampal neurogenesis and cognition in mice.

    Directory of Open Access Journals (Sweden)

    Kevin T Gobeske

    Full Text Available Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.

  10. BMP signaling mediates stem/progenitor cell-induced retina regeneration.

    Science.gov (United States)

    Haynes, Tracy; Gutierrez, Christian; Aycinena, Juan-Carlos; Tsonis, Panagiotis A; Del Rio-Tsonis, Katia

    2007-12-18

    We identified a mechanism whereby retina regeneration in the embryonic chick can be induced by the contribution of stem/progenitor cells. We show that bone morphogenetic protein (BMP) signaling is sufficient and necessary to induce retina regeneration and that its action can be divided into two phases. By 3 days after postretinectomy (d PR), the BMP pathway directs proliferation and regeneration through the activation of Smad (canonical BMP pathway) and the up-regulation of FGF signaling by the MAPK pathway. By 7d PR, it induces apoptosis by activating p38 (a noncanonical BMP pathway) and down-regulating FGF signaling (by both MAPK and AKT pathways). Apoptosis at this later stage can be prevented, and BMP-induced regeneration can be further induced by inhibition of p38. These results unravel a mechanism for stem/progenitor cell-mediated retina regeneration, where BMP activation establishes a cross-talk with the FGF pathway and selectively activates the canonical and noncanonical BMP pathways. Retina stem/progenitor cells exist in other species, including humans. Thus, our findings provide insights on how retinal stem cells can be activated for possible regenerative therapies.

  11. Effect of rhBMP-2 Immobilized Anorganic Bovine Bone Matrix on Bone Regeneration

    Directory of Open Access Journals (Sweden)

    Jung-Bo Huh

    2015-07-01

    Full Text Available Anorganic bovine bone matrix (Bio-Oss® has been used for a long time for bone graft regeneration, but has poor osteoinductive capability. The use of recombinant human bone morphogenetic protein-2 (rhBMP-2 has been suggested to overcome this limitation of Bio-Oss®. In the present study, heparin-mediated rhBMP-2 was combined with Bio-Oss® in animal experiments to investigate bone formation performance; heparin was used to control rhBMP-2 release. Two calvarial defects (8 mm diameter were formed in a white rabbit model and then implanted or not (controls with Bio-Oss® or BMP-2/Bio-Oss®. The Bio-Oss® and BMP-2/Bio-Oss® groups had significantly greater new bone areas (expressed as percentages of augmented areas than the non-implanted controls at four and eight weeks after surgery, and the BMP-2/Bio-Oss® group (16.50 ± 2.87 (n = 6 had significantly greater new bone areas than the Bio-Oss® group (9.43 ± 3.73 (n = 6 at four weeks. These findings suggest that rhBMP-2 treated heparinized Bio-Oss® markedly enhances bone regeneration.

  12. Specification of osteoblast cell fate by canonical Wnt signaling requires Bmp2.

    Science.gov (United States)

    Salazar, Valerie S; Ohte, Satoshi; Capelo, Luciane P; Gamer, Laura; Rosen, Vicki

    2016-12-01

    Enhanced BMP or canonical Wnt (cWnt) signaling are therapeutic strategies employed to enhance bone formation and fracture repair, but the mechanisms each pathway utilizes to specify cell fate of bone-forming osteoblasts remain poorly understood. Among all BMPs expressed in bone, we find that singular deficiency of Bmp2 blocks the ability of cWnt signaling to specify osteoblasts from limb bud or bone marrow progenitors. When exposed to cWnts, Bmp2-deficient cells fail to progress through the Runx2/Osx1 checkpoint and thus do not upregulate multiple genes controlling mineral metabolism in osteoblasts. Cells lacking Bmp2 after induction of Osx1 differentiate normally in response to cWnts, suggesting that pre-Osx1(+) osteoprogenitors are an essential source and a target of BMP2. Our analysis furthermore reveals Grainyhead-like 3 (Grhl3) as a transcription factor in the osteoblast gene regulatory network induced during bone development and bone repair, which acts upstream of Osx1 in a BMP2-dependent manner. The Runx2/Osx1 transition therefore receives crucial regulatory inputs from BMP2 that are not compensated for by cWnt signaling, and this is mediated at least in part by induction and activation of Grhl3.

  13. Chondrocyte BMP2 signaling plays an essential role in bone fracture healing.

    Science.gov (United States)

    Mi, Meng; Jin, Hongting; Wang, Baoli; Yukata, Kiminori; Sheu, Tzong-Jen; Ke, Qiao Han; Tong, Peijian; Im, Hee-Jeong; Xiao, Guozhi; Chen, Di

    2013-01-10

    The specific role of endogenous Bmp2 gene in chondrocytes and in osteoblasts in fracture healing was investigated by generation and analysis of chondrocyte- and osteoblast-specific Bmp2 conditional knockout (cKO) mice. The unilateral open transverse tibial fractures were created in these Bmp2 cKO mice. Bone fracture callus samples were collected and analyzed by X-ray, micro-CT, histology analyses, biomechanical testing and gene expression assays. The results demonstrated that the lack of Bmp2 expression in chondrocytes leads to a prolonged cartilage callus formation and a delayed osteogenesis initiation and progression into mineralization phase with lower biomechanical properties. In contrast, when the Bmp2 gene was deleted in osteoblasts, the mice showed no significant difference in the fracture healing process compared to control mice. These findings suggest that endogenous BMP2 expression in chondrocytes may play an essential role in cartilage callus maturation at an early stage of fracture healing. Our studies may provide important information for clinical application of BMP2.

  14. Identification of BMP2 as an epigenetically silenced growth inhibitor in rhabdomyosarcoma.

    Science.gov (United States)

    Wolf, Sebastian; Hagl, Beate; Kappler, Roland

    2014-05-01

    Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma of infancy and although therapy has improved over the years, mortality is still fairly high. The establishment of new treatments has been hampered by the limited knowledge of the molecular mechanisms driving development of RMS. One characteristic of cancer cells is aberrant DNA methylation, which could lead to silencing of tumor suppressor genes. However, only a few epigenetically silenced genes have been described in RMS so far. We performed an expression profiling analysis of three RMS cell lines that were treated with the demethylating agent 5'-aza-2'-deoxycytidine (5-Aza‑dC) facilitating re-expression of epigenetically silenced genes. This treatment induced the gene BMP2 (bone morphogenetic protein 2) throughout all cell lines. Detailed methylation analysis of CpG sites in the BMP2 promoter region by bisulfite sequencing and methylation-specific PCR revealed that a high degree of DNA methylation is causatively associated with the suppression of BMP2 in RMS cells. Consequently, treatment of the RMS cell lines with 5-Aza-dC resulted in DNA demethylation of the BMP2 promoter, most prominently in alveolar RMS. Supplementation of recombinant human BMP2 (rhBMP2) led to a reduced viability of RMS cells. Altogether, these findings suggest that suppression of BMP2 by epigenetic silencing may play a critical role in the genesis of RMS, thereby providing a rationale for the development of a new treatment strategy for RMS.

  15. Endocardial to myocardial notch-wnt-bmp axis regulates early heart valve development.

    Directory of Open Access Journals (Sweden)

    Yidong Wang

    Full Text Available Endocardial to mesenchymal transformation (EMT is a fundamental cellular process required for heart valve formation. Notch, Wnt and Bmp pathways are known to regulate this process. To further address how these pathways coordinate in the process, we specifically disrupted Notch1 or Jagged1 in the endocardium of mouse embryonic hearts and showed that Jagged1-Notch1 signaling in the endocardium is essential for EMT and early valvular cushion formation. qPCR and RNA in situ hybridization assays reveal that endocardial Jagged1-Notch1 signaling regulates Wnt4 expression in the atrioventricular canal (AVC endocardium and Bmp2 in the AVC myocardium. Whole embryo cultures treated with Wnt4 or Wnt inhibitory factor 1 (Wif1 show that Bmp2 expression in the AVC myocardium is dependent on Wnt activity; Wnt4 also reinstates Bmp2 expression in the AVC myocardium of endocardial Notch1 null embryos. Furthermore, while both Wnt4 and Bmp2 rescue the defective EMT resulting from Notch inhibition, Wnt4 requires Bmp for its action. These results demonstrate that Jagged1-Notch1 signaling in endocardial cells induces the expression of Wnt4, which subsequently acts as a paracrine factor to upregulate Bmp2 expression in the adjacent AVC myocardium to signal EMT.

  16. Low dose BMP-2 treatment for bone repair using a PEGylated fibrinogen hydrogel matrix.

    Science.gov (United States)

    Ben-David, Dror; Srouji, Samer; Shapira-Schweitzer, Keren; Kossover, Olga; Ivanir, Eran; Kuhn, Gisela; Müller, Ralph; Seliktar, Dror; Livne, Erella

    2013-04-01

    Bone repair strategies utilizing resorbable biomaterial implants aim to stimulate endogenous cells in order to gradually replace the implant with functional repair tissue. These biomaterials should therefore be biodegradable, osteoconductive, osteoinductive, and maintain their integrity until the newly formed host tissue can contribute proper function. In recent years there has been impressive clinical outcomes for this strategy when using osteoconductive hydrogel biomaterials in combination with osteoinductive growth factors such as human recombinant bone morphogenic protein (hrBMP-2). However, the success of hrBMP-2 treatments is not without risks if the factor is delivered too rapidly and at very high doses because of a suboptimal biomaterial. Therefore, the aim of this study was to evaluate the use of a PEGylated fibrinogen (PF) provisional matrix as a delivery system for low-dose hrBMP-2 treatment in a critical size maxillofacial bone defect model. PF is a semi-synthetic hydrogel material that can regulate the release of physiological doses of hrBMP-2 based on its controllable physical properties and biodegradation. hrBMP-2 release from the PF material and hrBMP-2 bioactivity were validated using in vitro assays and a subcutaneous implantation model in rats. Critical size calvarial defects in mice were treated orthotopically with PF containing 8 μg/ml hrBMP-2 to demonstrate the capacity of these bioactive implants to induce enhanced bone formation in as little as 6 weeks. Control defects treated with PF alone or left empty resulted in far less bone formation when compared to the PF/hrBMP-2 treated defects. These results demonstrate the feasibility of using a semi-synthetic biomaterial containing small doses of osteoinductive hrBMP-2 as an effective treatment for maxillofacial bone defects.

  17. BMP15 Prevents Cumulus Cell Apoptosis Through CCL2 and FBN1 in Porcine Ovaries

    Directory of Open Access Journals (Sweden)

    Bo Zhai

    2013-07-01

    Full Text Available Background: Bone morphogenetic protein-15 (BMP15 is a maternal gene necessary for mammalian reproduction. BMP15 expression increased in oocytes accompanied by follicle growth and development. The function and regulation mechanism of BMP15 in porcine cumulus cell apoptosis process is still unclear now. Methods: In this study, flow cytometry (FCM was used to analyze the effects of BMP15 with different concentrations to cumulus cell apoptosis. High-throughput sequencing technology was carried out to screen regulatory genes linked closely with BMP15. In order to confirm the function of (MCP-1/CCL2 and FBN1 in cumulus cell apoptosis, RNA interference (RNAi method was used to inhibit the expression of (MCP-1/CCL2 and FBN1. Apoptosis and proliferation of cumulus cell treated with siRNA transfection technology were measured by FCM, 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide, quantitative real time-PCR (RT-qPCR and western blotting. Results: The results showed that the apoptosis levels of cumulus cell treated by BMP15 decreased significantly in a dose-dependent manner. The expression of related genes protein 1 (MCP-1/CCL2 and fibrillin1 (FBN1 were both regulated by BMP15. After transfection, the proliferation of porcine cumulus cells increased significantly and apoptosis of cumulus cells was prevented while FBN1 was silenced after BMP15 treatment. The proliferation of cumulus cells decreased significantly and apoptosis rate of cumulus cells increased significantly while CCL2 was silenced. Conclusion: The results obtained in this study firstly demonstrated that CCL2 and FBN1 are important regulatory factors of BMP15 in preventing cumulus cell apoptosis in porcine ovaries.

  18. TGF-βand BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease

    Institute of Scientific and Technical Information of China (English)

    Mengrui Wu; Guiqian Chen; and Yi-Ping Li

    2016-01-01

    Transforming growth factor-beta (TGF-β) and bone morphogenic protein (BMP) signaling has fundamental roles in both embryonic skeletal development and postnatal bone homeostasis. TGF-βs and BMPs, acting on a tetrameric receptor complex, transduce signals to both the canonical Smad-dependent signaling pathway (that is, TGF-β/BMP ligands, receptors, and Smads) and the non-canonical-Smad-independent signaling pathway (that is, p38 mitogen-activated protein kinase/p38 MAPK) to regulate mesenchymal stem cell differentiation during skeletal development, bone formation and bone homeostasis. Both the Smad and p38 MAPK signaling pathways converge at transcription factors, for example, Runx2 to promote osteoblast differentiation and chondrocyte differentiation from mesenchymal precursor cells. TGF-βand BMP signaling is controlled by multiple factors, including the ubiquitin–proteasome system, epigenetic factors, and microRNA. Dysregulated TGF-βand BMP signaling result in a number of bone disorders in humans. Knockout or mutation of TGF-βand BMP signaling-related genes in mice leads to bone abnormalities of varying severity, which enable a better understanding of TGF-β/BMP signaling in bone and the signaling networks underlying osteoblast differentiation and bone formation. There is also crosstalk between TGF-β/BMP signaling and several critical cytokines’ signaling pathways (for example, Wnt, Hedgehog, Notch, PTHrP, and FGF) to coordinate osteogenesis, skeletal development, and bone homeostasis. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in osteoblast differentiation, chondrocyte differentiation, skeletal development, cartilage formation, bone formation, bone homeostasis, and related human bone diseases caused by the disruption of TGF-β/BMP signaling.

  19. Transcriptional repression of Bmp2 by p21(Waf1/Cip1) links quiescence to neural stem cell maintenance.

    Science.gov (United States)

    Porlan, Eva; Morante-Redolat, José Manuel; Marqués-Torrejón, María Ángeles; Andreu-Agulló, Celia; Carneiro, Carmen; Gómez-Ibarlucea, Esther; Soto, Atenea; Vidal, Anxo; Ferrón, Sacri R; Fariñas, Isabel

    2013-11-01

    Relative quiescence and self renewal are defining features of adult stem cells, but their potential coordination remains unclear. Subependymal neural stem cells (NSCs) lacking cyclin-dependent kinase (CDK) inhibitor (CKI) 1a (p21) exhibit rapid expansion that is followed by their permanent loss later in life. Here we demonstrate that transcription of the gene encoding bone morphogenetic protein 2 (Bmp2) in NSCs is under the direct negative control of p21 through actions that are independent of CDK. Loss of p21 in NSCs results in increased levels of secreted BMP2, which induce premature terminal differentiation of multipotent NSCs into mature non-neurogenic astrocytes in an autocrine and/or paracrine manner. We also show that the cell-nonautonomous p21-null phenotype is modulated by the Noggin-rich environment of the subependymal niche. The dual function that we describe here provides a physiological example of combined cell-autonomous and cell-nonautonomous functions of p21 with implications in self renewal, linking the relative quiescence of adult stem cells to their longevity and potentiality.

  20. CHARACTERIZATIONS ENERGY AND ENVIRONMENTAL OF THE BIOMETHANATION PILOT APPLIED ON THE ANIMAL DROPPINGS

    Directory of Open Access Journals (Sweden)

    Y. M’Sadak

    2015-07-01

    Full Text Available This study interested in monitoring energy (quantitative and qualitative and environmental performances at various pilot digesters of animal biomass.Main results are:The combined effect of the diet and the substrate on quantitative experimental productivity of gas is in favor of poultry digesters continuously fed. The biogas produced has better potential especially in industry. The environmental evaluation virtually shows a certain interest on the depollution for industrial digester.

  1. Dexamethasone, BMP-2, and 1,25-dihydroxyvitamin D enhance a more differentiated osteoblast phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye; Henriksen, Z; Sørensen, O H;

    2004-01-01

    D), 100 nM Dex, and/or 100 ng/ml BMP-2. The osteoblast phenotype was assessed as alkaline phosphatase (AP) activity/staining, production of osteocalcin and procollagen type 1 (P1NP), parathyroid hormone (PTH)-induced cyclic adenosine mono-phosphate (cAMP) production, and in vitro mineralization. AP...... enhanced in cultures enriched with either BMP-2 or Dex. Cell proliferation was only increased significantly by Dex treatment. In conclusion, the model described produces cells with an osteoblastic phenotype, and both Dex and BMP-2 can be used as osteoblast inducers. However, the two treatments produce...

  2. Role of ID Proteins in BMP4 Inhibition of Profibrotic Effects of TGF-β2 in Human TM Cells

    Science.gov (United States)

    Mody, Avani A.; Wordinger, Robert J.; Clark, Abbot F.

    2017-01-01

    Purpose Increased expression of TGF-β2 in primary open-angle glaucoma (POAG) aqueous humor (AH) and trabecular meshwork (TM) causes deposition of extracellular matrix (ECM) in the TM and elevated IOP. Bone morphogenetic proteins (BMPs) regulate TGF-β2–induced ECM production. The underlying mechanism for BMP4 inhibition of TGF-β2–induced fibrosis remains undetermined. Bone morphogenic protein 4 induces inhibitor of DNA binding proteins (ID1, ID3), which suppress transcription factor activities to regulate gene expression. Our study will determine whether ID1and ID3 proteins are downstream targets of BMP4, which attenuates TGF-β2 induction of ECM proteins in TM cells. Methods Primary human TM cells were treated with BMP4, and ID1 and ID3 mRNA, and protein expression was determined by quantitative PCR (Q-PCR) and Western immunoblotting. Intracellular ID1 and ID3 protein localization was studied by immunocytochemistry. Transformed human TM cells (GTM3 cells) were transfected with ID1 or ID3 expression vectors to determine their potential inhibitory effects on TGF-β2–induced fibronectin and plasminogen activator inhibitor-I (PAI-1) protein expression. Results Basal expression of ID1-3 was detected in primary human TM cells. Bone morphogenic protein 4 significantly induced early expression of ID1 and ID3 mRNA (P < 0.05) and protein in primary TM cells, and a BMP receptor inhibitor blocked this induction. Overexpression of ID1 and ID3 significantly inhibited TGF-β2–induced expression of fibronectin and PAI-1 in TM cells (P < 0.01). Conclusions Bone morphogenic protein 4 induced ID1 and ID3 expression suppresses TGF-β2 profibrotic activity in human TM cells. In the future, targeting specific regulators may control the TGF-β2 profibrotic effects on the TM, leading to disease modifying IOP lowering therapies. PMID:28159972

  3. Forage as co-substrate for biomethanation; Futtergraeser als Kosubstrat fuer die Biomethanisierung

    Energy Technology Data Exchange (ETDEWEB)

    Maehnert, P. [Humboldt Univ. zu Berlin, Landwirtschaftliche-Gaertnerische Fakultaet, Berlin (Germany); Schelle, H. [Abt. Bioverfahrenstechnik, Inst. fuer Agrartechnik Bornim, Potsdam (Germany); Heiermann, M. [Abt. Technikbewertung und Stoffkreislaeufe, Inst. fuer Agrartechnik Bornim, Potsdam (Germany)

    2002-07-01

    Because of the decreasing importance of forage as feed supply for dairy cattle interest is growing in alternative uses of grasslands. An ecological sound option is the fermentation of the material as co-substrates in biogas plants. Eight fresh-cut grass species and their silages were investigated for their methane production potential. The biogas production measured amounts to 0.71-0.86 m{sup 3.}kg{sup -1} ODM after a 28-day period. The according methane values are 0.28-0.46 m{sup 3.}kg{sup -1} ODM. The methane yields seem to be independent neither on species nor on conservation stage. (orig.)

  4. Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential

    Directory of Open Access Journals (Sweden)

    Masako Fujioka-Kobayashi

    2016-11-01

    Full Text Available Hyaluronic acid (HA has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9, one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1 control tissue culture plastic, (2 HA alone, and (3 HA with rhBMP9 (100 ng/mL. Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1 HA may serve as a potential carrier for various growth factors, and (2 rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo.

  5. Hyaluronic Acid Gel-Based Scaffolds as Potential Carrier for Growth Factors: An In Vitro Bioassay on Its Osteogenic Potential

    Science.gov (United States)

    Fujioka-Kobayashi, Masako; Schaller, Benoit; Kobayashi, Eizaburo; Hernandez, Maria; Zhang, Yufeng; Miron, Richard J.

    2016-01-01

    Hyaluronic acid (HA) has been utilized for a variety of regenerative medical procedures due to its widespread presence in connective tissue and perceived biocompatibility. The aim of the present study was to investigate HA in combination with recombinant human bone morphogenetic protein 9 (rhBMP9), one of the most osteogenic growth factors of the BMP family. HA was first combined with rhBMP9 and assessed for the adsorption and release of rhBMP9 over 10 days by ELISA. Thereafter, ST2 pre-osteoblasts were investigated by comparing (1) control tissue culture plastic, (2) HA alone, and (3) HA with rhBMP9 (100 ng/mL). Cellular proliferation was investigated by a MTS assay at one, three and five days and osteoblast differentiation was investigated by alkaline phosphatase (ALP) activity at seven days, alizarin red staining at 14 days and real-time PCR for osteoblast differentiation markers. The results demonstrated that rhBMP9 adsorbed within HA scaffolds and was released over a 10-day period in a controlled manner. While HA and rhBMP9 had little effect on cell proliferation, a marked and pronounced effect was observed for cell differentiation. rhBMP9 significantly induced ALP activity, mRNA levels of collagen1α2, and ALP and osteocalcin (OCN) at three or 14 days. HA also demonstrated some ability to induce osteoblast differentiation by increasing mRNA levels of OCN and increasing alizarin red staining at 14 days. In conclusion, the results from the present study demonstrate that (1) HA may serve as a potential carrier for various growth factors, and (2) rhBMP9 is a potent and promising inducer of osteoblast differentiation. Future animal studies are now necessary to investigate this combination approach in vivo. PMID:27916889

  6. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  7. Structure of neuroblastoma suppressor of tumorigenicity 1 (NBL1): insights for the functional variability across bone morphogenetic protein (BMP) antagonists.

    Science.gov (United States)

    Nolan, Kristof; Kattamuri, Chandramohan; Luedeke, David M; Angerman, Elizabeth B; Rankin, Scott A; Stevens, Mariana L; Zorn, Aaron M; Thompson, Thomas B

    2015-02-20

    Bone morphogenetic proteins (BMPs) are antagonized through the action of numerous extracellular protein antagonists, including members from the differential screening-selected gene aberrative in neuroblastoma (DAN) family. In vivo, misregulation of the balance between BMP signaling and DAN inhibition can lead to numerous disease states, including cancer, kidney nephropathy, and pulmonary arterial hypertension. Despite this importance, very little information is available describing how DAN family proteins effectively inhibit BMP ligands. Furthermore, our understanding for how differences in individual DAN family members arise, including affinity and specificity, remains underdeveloped. Here, we present the structure of the founding member of the DAN family, neuroblastoma suppressor of tumorigenicity 1 (NBL1). Comparing NBL1 to the structure of protein related to Dan and Cerberus (PRDC), a more potent BMP antagonist within the DAN family, a number of differences were identified. Through a mutagenesis-based approach, we were able to correlate the BMP binding epitope in NBL1 with that in PRDC, where introduction of specific PRDC amino acids in NBL1 (A58F and S67Y) correlated with a gain-of-function inhibition toward BMP2 and BMP7, but not GDF5. Although NBL1(S67Y) was able to antagonize BMP7 as effectively as PRDC, NBL1(S67Y) was still 32-fold weaker than PRDC against BMP2. Taken together, this data suggests that alterations in the BMP binding epitope can partially account for differences in the potency of BMP inhibition within the DAN family.

  8. Sustained and promoter dependent bone morphogenetic protein expression by rat mesenchymal stem cells after BMP-2 transgene electrotransfer

    Directory of Open Access Journals (Sweden)

    E Ferreira

    2012-07-01

    Full Text Available Transplantation of mesenchymal stem cells (MSCs with electrotransferred bone morphogenetic protein-2 (BMP-2 transgene is an attractive therapeutic modality for the treatment of large bone defects: it provides both stem cells with the ability to form bone and an effective bone inducer while avoiding viral gene transfer. The objective of the present study was to determine the influence of the promoter driving the human BMP-2 gene on the level and duration of BMP-2 expression after transgene electrotransfer into rat MSCs. Cytomegalovirus, elongation factor-1α, glyceraldehyde 3-phosphate dehydrogenase, and beta-actin promoters resulted in a BMP-2 secretion rate increase of 11-, 78-, 66- and 36-fold over respective controls, respectively. In contrast, the osteocalcin promoter had predictable weak activity in undifferentiated MSCs but induced the strongest BMP-2 secretion rates in osteoblastically-differentiated MSCs. Regardless of the promoter driving the transgene, a plateau of maximal BMP-2 secretion persisted for at least 21 d after the hBMP-2 gene electrotransfer. The present study demonstrates the feasibility of gene electrotransfer for efficient BMP-2 transgene delivery into MSCs and for a three-week sustained BMP-2 expression. It also provides the first in vitro evidence for a safe alternative to viral methods that permit efficient BMP-2 gene delivery and expression in MSCs but raise safety concerns that are critical when considering clinical applications.

  9. Evaluation of collagen/heparin coated TCP/HA granules for long-term delivery of BMP-2.

    Science.gov (United States)

    Hannink, Gerjon; Geutjes, Paul J; Daamen, Willeke F; Buma, Pieter

    2013-02-01

    Bone morphogenetic proteins (BMPs) are the most potent osteoinductive growth factors. However, a delivery system is essential to take advantage of the osteoinductive effect of BMPs. The purpose of this study was to develop a sustained delivery system for recombinant human bone morphogenetic protein-2 (BMP-2). We covalently attached heparin to a cross-linked collagen type I coated tricalciumphosphate/hydroxyapatite (TCP/HA) bone substitute and subsequently loaded it with BMP-2. To systematically evaluate the contribution of each component with respect to the binding and release of BMP-2, six constructs were prepared and characterized: TCP/HA, TCP/HA with collagen (TCP/HACol), and TCP/HA with collagen and heparin (TCP/HAColHep) with and without BMP-2 (B). More BMP-2 bound to the TCP/HAColHep + B (92.9 ± 4.8 ng BMP-2/mg granule) granules as compared to the TCP/HACol + B (69.0 ± 9.6 ng BMP-2/mg granule) and TCP/HA + B granules (62.9 ± 5.4 ng BMP-2/mg granule). No difference in release pattern was found between the TCP/HA + B and TCP/HACol + B granules. Up to day 14, BMP-2 was still bound to the TCP/HAColHep + B granules, whereas most BMP had been released from TCP/HACol + B and TCP/HA + B granules at that time. After 21 days most BMP-2 also had been released from the TCP/HAColHep + B granules. The local and sustained delivery system for BMP-2 developed in this study may be useful as a carrier for BMP-2 and could possibly enhance bone regeneration efficacy for the treatment of large bone defects.

  10. Bmp and Shh signaling mediate the expression of satb2 in the pharyngeal arches.

    Science.gov (United States)

    Sheehan-Rooney, Kelly; Swartz, Mary E; Lovely, C Ben; Dixon, Michael J; Eberhart, Johann K

    2013-01-01

    In human, mutation of the transcription factor SATB2 causes severe defects to the palate and jaw. The expression and sequence of SATB2 is highly conserved across vertebrate species, including zebrafish. We sought to understand the regulation of satb2 using the zebrafish model system. Due to the normal expression domains of satb2, we analyzed satb2 expression in mutants with disrupted Hh signaling or defective ventral patterning. While satb2 expression appears independent of Edn1 signaling, appropriate expression requires Shha, Smo, Smad5 and Hand2 function. Transplantation experiments show that neural crest cells receive both Bmp and Hh signaling to induce satb2 expression. Dorsomorphin- and cyclopamine-mediated inhibition of Bmp and Hh signaling, respectively, suggests that proper satb2 expression requires a relatively earlier Bmp signal and a later Hh signal. We propose that Bmp signaling establishes competence for the neural crest to respond to Hh signaling, thus inducing satb2 expression.

  11. Spatial segregation of BMP/Smad signaling affects osteoblast differentiation in C2C12 cells.

    Directory of Open Access Journals (Sweden)

    Eva Heining

    Full Text Available BACKGROUND: Bone morphogenetic proteins (BMPs are involved in a plethora of cellular processes in embryonic development and adult tissue homeostasis. Signaling specificity is achieved by dynamic processes involving BMP receptor oligomerization and endocytosis. This allows for spatiotemporal control of Smad dependent and non-Smad pathways. In this study, we investigate the spatiotemporal regulation within the BMP-induced Smad transcriptional pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we discriminate between Smad signaling events that are dynamin-dependent (i.e., require an intact endocytic pathway and dynamin-independent. Inhibition of dynamin-dependent endocytosis in fluorescence microscopy and fractionation studies revealed a delay in Smad1/5/8 phosphorylation and nuclear translocation after BMP-2 stimulation of C2C12 cells. Using whole genome microarray and qPCR analysis, we identified two classes of BMP-2 induced genes that are differentially affected by inhibition of endocytosis. Thus, BMP-2 induced gene expression of Id1, Id3, Dlx2 and Hey1 is endocytosis-dependent, whereas BMP-2 induced expression of Id2, Dlx3, Zbtb2 and Krt16 is endocytosis-independent. Furthermore, we demonstrate that short term inhibition of endocytosis interferes with osteoblast differentiation as measured by alkaline phosphatase (ALP production and qPCR analysis of osteoblast marker gene expression. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that dynamin-dependent endocytosis is crucial for the concise spatial activation of the BMP-2 induced signaling cascade. Inhibition of endocytic processes during BMP-2 stimulation leads to altered Smad1/5/8 signaling kinetics and results in differential target gene expression. We show that interfering with the BMP-2 induced transcriptional network by endocytosis inhibition results in an attenuation of osteoblast differentiation. This implies that selective sensitivity of gene expression to endocytosis provides an

  12. BMP2基因重组慢病毒载体质粒的构建及鉴定%Construction and identification of lentiviral vector plasmid recombined by BMP2 gene

    Institute of Scientific and Technical Information of China (English)

    林昭伟; 李奇; 林荔军; 刘云龙; 帅明; 谢小波

    2013-01-01

    目的 构建重组慢病毒载体质粒pLV.EX2d.P/neo-EF1A>BMP-2/T2A/EGFP并进行鉴定.方法 从Genbank获得BMP2基因序列,结合载体上的酶切位点需要,设计上下游引物,通过PCR方法扩增目的 基因片段,利用Gateway技术 BP反应构建pDown-BMP2-T2A-EGFP,并进行阳性克隆测序,应用LR反应把pDown-BMP2-T2A-EGFP重组入慢病毒目的 载体质粒pLV.Des2d.P/neo,进行阳性克隆测序.结果 获得长度为1 191 bp的BMP2目的 基因片段,质粒pLV.EX2d.P/neo-EF1A>BMP2/T2A/EGFP经双酶切后凝胶电泳鉴定正确,测序结果与Genbank报道序列一致.结论 成功构建重组慢病毒载体质粒pLV.EX2d.P/neo-EF1A>BMP2/T2A/EGFP.%Objective To construct and identify a lentiviral vector carrying human BMP2 gene. Methods BMP2 gene was obtained from Genbank directly. Primers were designed according to the BMP2 gene sequences reported in Genbank and the restriction sites of the vector. The BMP2 gene was amplified by polymerase chain reaction(PCR). pDown-BMP2-T2A-EGFP was constructed with the BP reaction of Gateway technology, then positive cloning was sequenced. pDown-BMP2-T2A-EGFP was inserted into destination vector plasmid pLV. Des2d. P/neo with the LR reaction of Gateway technology. The positive cloning was sequenced. Results 1 191 bp BMP2 gene fragment was obtained,pLV. EX2d. P/neo-EFlA>BMP2/T2A/EGFP was identified with double digestion and sequencing, the result was completely in accordance with the BMP2 gene sequences reported in Genbank. Conclusion Recombination lentiviral vector plasmid pLV. EX2d. P/neo-EFlA>BMP2/T2A/EGFP is constructed successfully.

  13. Delivery Systems for Bone Morphogenetic Protein (BMP) for Repair of Battle Incurred Bone Injuries.

    Science.gov (United States)

    1987-11-01

    infections, congenital malformations that fail to heal are eligible for BMP treatment. I (my child/my ward) will be one of 50 patients to be treated with...Fusions in Dogs 6. Craniotomy Defects in Sheep t0 7. Craniotomy Defects in Monkeys 10 8. BMP Delivery System of Bone Matrix Non Collagenous 11 Proteins...effects. The most important and indispensptle substitutes for experiments in human beings are adult mongrel dogs, monkeys, and sheep . Experimental .S

  14. Reactive oxygen species are involved in BMP-induced dendritic growth in cultured rat sympathetic neurons.

    Science.gov (United States)

    Chandrasekaran, Vidya; Lea, Charlotte; Sosa, Jose Carlo; Higgins, Dennis; Lein, Pamela J

    2015-07-01

    Previous studies have shown that bone morphogenetic proteins (BMPs) promote dendritic growth in sympathetic neurons; however, the downstream signaling molecules that mediate the dendrite promoting activity of BMPs are not well characterized. Here we test the hypothesis that reactive oxygen species (ROS)-mediated signaling links BMP receptor activation to dendritic growth. In cultured rat sympathetic neurons, exposure to any of the three mechanistically distinct antioxidants, diphenylene iodinium (DPI), nordihydroguaiaretic acid (NGA) or desferroxamine (DFO), blocked de novo BMP-induced dendritic growth. Addition of DPI to cultures previously induced with BMP to extend dendrites caused dendritic retraction while DFO and NGA prevented further growth of dendrites. The inhibition of the dendrite promoting activity of BMPs by antioxidants was concentration-dependent and occurred without altering axonal growth or neuronal cell survival. Antioxidant treatment did not block BMP activation of SMAD 1,5 as determined by nuclear localization of these SMADs. While BMP treatment did not cause a detectable increase in intracellular ROS in cultured sympathetic neurons as assessed using fluorescent indicator dyes, BMP treatment increased the oxygen consumption rate in cultured sympathetic neurons as determined using the Seahorse XF24 Analyzer, suggesting increased mitochondrial activity. In addition, BMPs upregulated expression of NADPH oxidase 2 (NOX2) and either pharmacological inhibition or siRNA knockdown of NOX2 significantly decreased BMP-7 induced dendritic growth. Collectively, these data support the hypothesis that ROS are involved in the downstream signaling events that mediate BMP7-induced dendritic growth in sympathetic neurons, and suggest that ROS-mediated signaling positively modulates dendritic complexity in peripheral neurons.

  15. BMP7 gene transfer via gold nanoparticles into stroma inhibits corneal fibrosis in vivo.

    Directory of Open Access Journals (Sweden)

    Ashish Tandon

    Full Text Available This study examined the effects of BMP7 gene transfer on corneal wound healing and fibrosis inhibition in vivo using a rabbit model. Corneal haze in rabbits was produced with the excimer laser performing -9 diopters photorefractive keratectomy. BMP7 gene was introduced into rabbit keratocytes by polyethylimine-conjugated gold nanoparticles (PEI2-GNPs transfection solution single 5-minute topical application on the eye. Corneal haze and ocular health in live animals was gauged with stereo- and slit-lamp biomicroscopy. The levels of fibrosis [α-smooth muscle actin (αSMA, F-actin and fibronectin], immune reaction (CD11b and F4/80, keratocyte apoptosis (TUNEL, calcification (alizarin red, vonKossa and osteocalcin, and delivered-BMP7 gene expression in corneal tissues were quantified with immunofluorescence, western blotting and/or real-time PCR. Human corneal fibroblasts (HCF and in vitro experiments were used to characterize the molecular mechanism mediating BMP7's anti-fibrosis effects. PEI2-GNPs showed substantial BMP7 gene delivery into rabbit keratocytes in vivo (2×10(4 gene copies/ug DNA. Localized BMP7 gene therapy showed a significant corneal haze decrease (1.68±0.31 compared to 3.2±0.43 in control corneas; p88%; p<0.0001, and immunoblotting of BMP7-transefected HCFs grown in the presence of TGFβ demonstrated significantly enhanced pSmad-1/5/8 (95%; p<0.001 and Smad6 (53%, p<0.001, and decreased αSMA (78%; p<0.001 protein levels. These results suggest that localized BMP7 gene delivery in rabbit cornea modulates wound healing and inhibits fibrosis in vivo by counter balancing TGFβ1-mediated profibrotic Smad signaling.

  16. Mutational analysis of BMP15 and GDF9 as candidate genes for premature ovarian failure.

    Science.gov (United States)

    Chand, Ashwini L; Ponnampalam, Anna P; Harris, Sarah E; Winship, Ingrid M; Shelling, Andrew N

    2006-10-01

    Mutational screening of the bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) genes in a population with premature ovarian failure (POF) identified no new mutations. However, three single nucleotide polymorphisms in the BMP15 gene, two in the 5' untranslated region (31T>G and 71C>G) and another in exon 1 (387G>A), were found to be common in both POF and control groups.

  17. Fucoidan promotes osteoblast differentiation via JNK- and ERK-dependent BMP2-Smad 1/5/8 signaling in human mesenchymal stem cells.

    Science.gov (United States)

    Kim, Beom Su; Kang, Hyo-Jin; Park, Ji-Yun; Lee, Jun

    2015-01-09

    Fucoidan has attracted attention as a potential drug because of its biological activities, which include osteogenesis. However, the molecular mechanisms involved in the osteogenic activity of fucoidan in human alveolar bone marrow-derived mesenchymal stem cells (hABM-MSCs) remain largely unknown. We investigated the action of fucoidan on osteoblast differentiation in hABM-MSCs and its impact on signaling pathways. Its effect on proliferation was determined using the crystal violet staining assay. Osteoblast differentiation was evaluated based on alkaline phosphatase (ALP) activity and the mRNA expression of multiple osteoblast markers. Calcium accumulation was determined by Alizarin red S staining. We found that fucoidan induced hABM-MSC proliferation. It also significantly increased ALP activity, calcium accumulation and the expression of osteoblast-specific genes, such as ALP, runt-related transcription factor 2, type I collagen-α 1 and osteocalcin. Moreover, fucoidan induced the expression of bone morphogenetic protein 2 (BMP2) and stimulated the activation of extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase by increasing phosphorylation. However, the effect of fucoidan on osteogenic differentiation was inhibited by specific inhibitors of ERK (PD98059) and JNK (SP600125) but not p38 (SB203580). Fucoidan enhanced BMP2 expression and Smad 1/5/8, ERK and JNK phosphorylation. Moreover, the effect of fucoidan on osteoblast differentiation was diminished by BMP2 knockdown. These results indicate that fucoidan induces osteoblast differentiation through BMP2-Smad 1/5/8 signaling by activating ERK and JNK, elucidating the molecular basis of the osteogenic effects of fucoidan in hABM-MSCs.

  18. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    Directory of Open Access Journals (Sweden)

    Adelina A. Hernandez-Hurtado

    2016-01-01

    Full Text Available Adipose-derived mesenchymal stem cells (ADMSCs are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs. This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology.

  19. Implant Composed of Demineralized Bone and Mesenchymal Stem Cells Genetically Modified with AdBMP2/AdBMP7 for the Regeneration of Bone Fractures in Ovis aries

    Science.gov (United States)

    Hernandez-Hurtado, Adelina A.; Lara-Arias, Jorge; Romero-Diaz, Viktor J.; Abrego-Guerra, Adalberto; Vilchez-Cavazos, Jose F.; Elizondo-Riojas, Guillermo; Martinez-Rodriguez, Herminia G.; Espinoza-Juarez, Marcela A.; Mendoza Lemus, Oscar F.

    2016-01-01

    Adipose-derived mesenchymal stem cells (ADMSCs) are inducible to an osteogenic phenotype by the bone morphogenetic proteins (BMPs). This facilitates the generation of implants for bone tissue regeneration. This study evaluated the in vitro osteogenic differentiation of ADMSCs transduced individually and in combination with adenoviral vectors expressing BMP2 and BMP7. Moreover, the effectiveness of the implant containing ADMSCs transduced with the adenoviral vectors AdBMP2/AdBMP7 and embedded in demineralized bone matrix (DBM) was tested in a model of tibial fracture in sheep. This graft was compared to ewes implanted with untransduced ADMSCs embedded in the same matrix and with injured but untreated animals. In vivo results showed accelerated osteogenesis in the group treated with the AdBMP2/AdBMP7 transduced ADMSC graft, which also showed improved restoration of the normal bone morphology. PMID:27818692

  20. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway.

    Science.gov (United States)

    Ren, Xiaoyan; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Tu, Victor; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2015-05-01

    Skeletal regenerative medicine frequently incorporates deliverable growth factors to stimulate osteogenesis. However, the cost and side effects secondary to supraphysiologic dosages of growth factors warrant investigation of alternative methods of stimulating osteogenesis for clinical utilization. In this work, we describe growth factor independent osteogenic induction of human mesenchymal stem cells (hMSCs) on a novel nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG). hMSCs demonstrated elevated osteogenic gene expression and mineralization on MC-GAG with minimal to no effect upon addition of BMP-2 when compared to non-mineralized scaffolds (Col-GAG). To investigate the intracellular pathways responsible for the increase in osteogenesis, we examined the canonical and non-canonical pathways downstream from BMP receptor activation. Constitutive Smad1/5 phosphorylation with nuclear translocation occurred on MC-GAG independent of BMP-2, whereas Smad1/5 phosphorylation depended on BMP-2 stimulation on Col-GAG. When non-canonical BMPR signaling molecules were examined, ERK1/2 phosphorylation was found to be decreased in MC-GAG but elevated in Col-GAG. No differences in Smad2/3 or p38 activation were detected. Collectively, these results demonstrated that MC-GAG scaffolds induce osteogenesis without exogenous BMP-2 addition via endogenous activation of the canonical BMP receptor signaling pathway.

  1. A feed-forward loop coupling extracellular BMP transport and morphogenesis in Drosophila wing.

    Directory of Open Access Journals (Sweden)

    Shinya Matsuda

    2013-03-01

    Full Text Available A variety of extracellular factors regulate morphogenesis during development. However, coordination between extracellular signaling and dynamic morphogenesis is largely unexplored. We address the fundamental question by studying posterior crossvein (PCV development in Drosophila as a model, in which long-range BMP transport from the longitudinal veins plays a critical role during the pupal stages. Here, we show that RhoGAP Crossveinless-C (Cv-C is induced at the PCV primordial cells by BMP signaling and mediates PCV morphogenesis cell-autonomously by inactivating members of the Rho-type small GTPases. Intriguingly, we find that Cv-C is also required non-cell-autonomously for BMP transport into the PCV region, while a long-range BMP transport is guided toward ectopic wing vein regions by loss of the Rho-type small GTPases. We present evidence that low level of ß-integrin accumulation at the basal side of PCV epithelial cells regulated by Cv-C provides an optimal extracellular environment for guiding BMP transport. These data suggest that BMP transport and PCV morphogenesis are tightly coupled. Our study reveals a feed-forward mechanism that coordinates the spatial distribution of extracellular instructive cues and morphogenesis. The coupling mechanism may be widely utilized to achieve precise morphogenesis during development and homeostasis.

  2. Scorpion Toxin, BmP01, Induces Pain by Targeting TRPV1 Channel.

    Science.gov (United States)

    Hakim, Md Abdul; Jiang, Wenbin; Luo, Lei; Li, Bowen; Yang, Shilong; Song, Yuzhu; Lai, Ren

    2015-09-14

    The intense pain induced by scorpion sting is a frequent clinical manifestation. To date, there is no established protocol with significant efficacy to alleviate the pain induced by scorpion envenomation. One of the important reasons is that, little information on pain-inducing compound from scorpion venoms is available. Here, a pain-inducing peptide (BmP01) has been identified and characterized from the venoms of scorpion (Mesobuthus martensii). In an animal model, intraplantar injection of BmP01 in mouse hind paw showed significant acute pain in wild type (WT) mice but not in TRPV1 knock-out (TRPV1 KO) mice during 30 min recording. BmP01 evoked currents in WT dorsal root ganglion (DRG) neurons but had no effect on DRG neurons of TRPV1 KO mice. Furthermore, OPEN ACCESS Toxins 2015, 7 3672 BmP01 evoked currents on TRPV1-expressed HEK293T cells, but not on HEK293T cells without TRPV1. These results suggest that (1) BmP01 is one of the pain-inducing agents in scorpion venoms; and (2) BmP01 induces pain by acting on TRPV1. To our knowledge, this is the first report about a scorpion toxin that produces pain by targeting TRPV1. Identification of a pain-inducing compound may facilitate treating pain induced by scorpion envenomation.

  3. Cell-mediated BMP-2 liberation promotes bone formation in a mechanically unstable implant environment.

    Science.gov (United States)

    Hägi, Tobias T; Wu, Gang; Liu, Yuelian; Hunziker, Ernst B

    2010-05-01

    The flexible alloplastic materials that are used in bone-reconstruction surgery lack the mechanical stability that is necessary for sustained bone formation, even if this process is promoted by the application of an osteogenic agent, such as BMP-2. We hypothesize that if BMP-2 is delivered gradually, in a cell-mediated manner, to the surgical site, then the scaffolding material's lack of mechanical stability becomes a matter of indifference. Flexible discs of Ethisorb were functionalized with BMP-2, which was either adsorbed directly onto the material (rapid release kinetics) or incorporated into a calcium-phosphate coating (slow release kinetics). Unstabilized and titanium-plate-stabilized samples were implanted subcutaneously in rats and retrieved up to 14 days later for a histomorphometric analysis of bone and cartilage volumes. On day 14, the bone volume associated with titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2 was 10-fold higher than that associated with their mechanically unstabilized counterparts. The bone volume associated with discs bearing a coating-incorporated depot of BMP-2 was similar in the mechanically unstabilized and titanium-plate-stabilized groups, and comparable to that associated with the titanium-plate-stabilized discs bearing an adsorbed depot of BMP-2. Hence, if an osteogenic agent is delivered in a cell-mediated manner (via coating degradation), ossification can be promoted even within a mechanically unstable environment.

  4. Regulation of Dense-Core Granule Replenishment by Autocrine BMP Signalling in Drosophila Secondary Cells.

    Science.gov (United States)

    Redhai, Siamak; Hellberg, Josephine E E U; Wainwright, Mark; Perera, Sumeth W; Castellanos, Felix; Kroeger, Benjamin; Gandy, Carina; Leiblich, Aaron; Corrigan, Laura; Hilton, Thomas; Patel, Benjamin; Fan, Shih-Jung; Hamdy, Freddie; Goberdhan, Deborah C I; Wilson, Clive

    2016-10-01

    Regulated secretion by glands and neurons involves release of signalling molecules and enzymes selectively concentrated in dense-core granules (DCGs). Although we understand how many secretagogues stimulate DCG release, how DCG biogenesis is then accelerated to replenish the DCG pool remains poorly characterised. Here we demonstrate that each prostate-like secondary cell (SC) in the paired adult Drosophila melanogaster male accessory glands contains approximately ten large DCGs, which are loaded with the Bone Morphogenetic Protein (BMP) ligand Decapentaplegic (Dpp). These DCGs can be marked in living tissue by a glycophosphatidylinositol (GPI) lipid-anchored form of GFP. In virgin males, BMP signalling is sporadically activated by constitutive DCG secretion. Upon mating, approximately four DCGs are typically released immediately, increasing BMP signalling, primarily via an autocrine mechanism. Using inducible knockdown specifically in adult SCs, we show that secretion requires the Soluble NSF Attachment Protein, SNAP24. Furthermore, mating-dependent BMP signalling not only promotes cell growth, but is also necessary to accelerate biogenesis of new DCGs, restoring DCG number within 24 h. Our analysis therefore reveals an autocrine BMP-mediated feedback mechanism for matching DCG release to replenishment as secretion rates fluctuate, and might explain why in other disease-relevant systems, like pancreatic β-cells, BMP signalling is also implicated in the control of secretion.

  5. Sustained release of BMP-2 in bioprinted alginate for osteogenicity in mice and rats.

    Directory of Open Access Journals (Sweden)

    Michelle T Poldervaart

    Full Text Available The design of bioactive three-dimensional (3D scaffolds is a major focus in bone tissue engineering. Incorporation of growth factors into bioprinted scaffolds offers many new possibilities regarding both biological and architectural properties of the scaffolds. This study investigates whether the sustained release of bone morphogenetic protein 2 (BMP-2 influences osteogenicity of tissue engineered bioprinted constructs. BMP-2 loaded on gelatin microparticles (GMPs was used as a sustained release system, which was dispersed in hydrogel-based constructs and compared to direct inclusion of BMP-2 in alginate or control GMPs. The constructs were supplemented with goat multipotent stromal cells (gMSCs and biphasic calcium phosphate to study osteogenic differentiation and bone formation respectively. BMP-2 release kinetics and bioactivity showed continuous release for three weeks coinciding with osteogenicity. Osteogenic differentiation and bone formation of bioprinted GMP containing constructs were investigated after subcutaneous implantation in mice or rats. BMP-2 significantly increased bone formation, which was not influenced by the release timing. We showed that 3D printing of controlled release particles is feasible and that the released BMP-2 directs osteogenic differentiation in vitro and in vivo.

  6. Effect of a Novel Nonviral Gene Delivery of BMP-2 on Bone Healing

    Directory of Open Access Journals (Sweden)

    P. Schwabe

    2012-01-01

    Full Text Available Background. Gene therapeutic drug delivery approaches have been introduced to improve the efficiency of growth factors at the site of interest. This study investigated the efficacy and safety of a new nonviral copolymer-protected gene vector (COPROG for the stimulation of bone healing. Methods. In vitro, rat osteoblasts were transfected with COPROG + luciferase plasmid or COPROG + hBMP-2 plasmid. In vivo, rat tibial fractures were intramedullary stabilized with uncoated versus COPROG+hBMP-2-plasmid-coated titanium K-wires. The tibiae were prepared for biomechanical and histological analyses at days 28 and 42 and for transfection/safety study at days 2, 4, 7, 28, and 42. Results. In vitro results showed luciferase expression until day 21, and hBMP-2-protein was measured from day 2 – day 10. In vivo, the local application of hBMP-2-plasmid showed a significantly higher maximum load after 42 days compared to that in the control. The histomorphometric analysis revealed a significantly less mineralized periosteal callus area in the BMP-2 group compared to the control at day 28. The rt-PCR showed no systemic biodistribution of luciferase RNA. Conclusion. A positive effect on fracture healing by nonviral BMP-2 plasmid application from COPROG-coated implants could be shown in this study; however, the effect of the vector may be improved with higher plasmid concentrations. Transfection showed no biodistribution to distant organs and was considered to be safe.

  7. Differential expression of a BMP4 reporter allele in anterior fungiform versus posterior circumvallate taste buds of mice

    Directory of Open Access Journals (Sweden)

    Barlow Linda A

    2010-10-01

    Full Text Available Abstract Background Bone Morphogenetic Protein 4 (BMP4 is a diffusible factor which regulates embryonic taste organ development. However, the role of BMP4 in taste buds of adult mice is unknown. We utilized transgenic mice with LacZ under the control of the BMP4 promoter to reveal the expression of BMP4 in the tongues of adult mice. Further we evaluate the pattern of BMP4 expression with that of markers of specific taste bud cell types and cell proliferation to define and compare the cell populations expressing BMP4 in anterior (fungiform papillae and posterior (circumvallate papilla tongue. Results BMP4 is expressed in adult fungiform and circumvallate papillae, i.e., lingual structures composed of non-taste epithelium and taste buds. Unexpectedly, we find both differences and similarities with respect to expression of BMP4-driven ß-galactosidase. In circumvallate papillae, many fusiform cells within taste buds are BMP4-ß-gal positive. Further, a low percentage of BMP4-expressing cells within circumvallate taste buds is immunopositive for markers of each of the three differentiated taste cell types (I, II and III. BMP4-positive intragemmal cells also expressed a putative marker of immature taste cells, Sox2, and consistent with this finding, intragemmal cells expressed BMP4-ß-gal within 24 hours after their final mitosis, as determined by BrdU birthdating. By contrast, in fungiform papillae, BMP4-ß-gal positive cells are never encountered within taste buds. However, in both circumvallate and fungiform papillae, BMP4-ß-gal expressing cells are located in the perigemmal region, comprising basal and edge epithelial cells adjacent to taste buds proper. This region houses the proliferative cell population that gives rise to adult taste cells. However, perigemmal BMP4-ß-gal cells appear mitotically silent in both fungiform and circumvallate taste papillae, as we do not find evidence of their active proliferation using cell cycle immunomarkers

  8. The toxic effects of Tris-(2,3-dibromopropyl)isocyanurate(TBC) on genes expression of bmp2b and bmp4 of zebrafish embryos

    Institute of Scientific and Technical Information of China (English)

    JIA Wan-jun

    2016-01-01

    We exposed zebrafish embryos to Tris-(2,3-dibromopropyl)isocyanurate(TBC)at the concentration of 20ppb, 100ppb, 400ppb, 1000ppb for 120h and 0.1%DMSO was set as the control group. Bmp2b and bmp4 were chosen perform RT-PCR to determine their genes expression level. The results showed that, TBC influenced their genes expression level in some extent and it significantly raised the genes expression level at the concentration of 20ppb.

  9. 民猪BMP2基因的冷诱导研究%Expression of BMP2 in Min Pig during Cold Induced

    Institute of Scientific and Technical Information of China (English)

    张冬杰

    2010-01-01

    以75日龄民猪为试验材料,将骨形成蛋白2(BMP2)基因作为影响民猪抗寒特性的候选基因,对其在低温冷诱导后在民猪肌肉组织内的表达变化情况进行了分析.结果表明:BMP2基因在民猪冷诱导前后表达水平没有显著变化.

  10. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.

    Science.gov (United States)

    Piacentino, Michael L; Chung, Oliver; Ramachandran, Janani; Zuch, Daniel T; Yu, Jia; Conaway, Evan A; Reyna, Arlene E; Bradham, Cynthia A

    2016-04-01

    Skeletal patterning in the sea urchin embryo requires coordinated signaling between the pattern-dictating ectoderm and the skeletogenic primary mesenchyme cells (PMCs); recent studies have begun to uncover the molecular basis for this process. Using an unbiased RNA-Seq-based screen, we have previously identified the TGF-ß superfamily ligand, LvBMP5-8, as a skeletal patterning gene in Lytechinus variegatus embryos. This result is surprising, since both BMP5-8 and BMP2/4 ligands have been implicated in sea urchin dorsal-ventral (DV) and left-right (LR) axis specification. Here, we demonstrate that zygotic LvBMP5-8 is required for normal skeletal patterning on the left side, as well as for normal PMC positioning during gastrulation. Zygotic LvBMP5-8 is required for expression of the left-side marker soxE, suggesting that LvBMP5-8 is required for left-side specification. Interestingly, we also find that LvBMP5-8 knockdown suppresses serotonergic neurogenesis on the left side. While LvBMP5-8 overexpression is sufficient to dorsalize embryos, we find that zygotic LvBMP5-8 is not required for normal DV specification or development. In addition, ectopic LvBMP5-8 does not dorsalize LvBMP2/4 morphant embryos, indicating that, in the absence of BMP2/4, BMP5-8 is insufficient to specify dorsal. Taken together, our data demonstrate that zygotic LvBMP5-8 signaling is essential for left-side specification, and for normal left-side skeletal and neural patterning, but not for DV specification. Thus, while both BMP2/4 and BMP5-8 regulate LR axis specification, BMP2/4 but not zygotic BMP5-8 regulates DV axis specification in sea urchin embryos.

  11. 大鼠pEGFP-C3/BMP-2真核表达载体的构建%Construction of rat pEGFP-C3/BMP-2 recombinant eukaryotic expressing vector

    Institute of Scientific and Technical Information of China (English)

    孙欣; 曾荣; 郭伟韬; 肖启贤; 王斌; 黄云; 林颢

    2012-01-01

    目的 通过克隆大鼠的BMP2基因,构建EGFP-C3/BMP2基因的真核细胞表达载体.方法 把大鼠的基因组DNA通过PCR获得BMP2,克隆构建载体pEGFP/C3-BMP2,并将其转化到大肠杆菌里面,最后进行重组真核表达载体pEGFP-C3-BMP2的构建和鉴定,并可观察其在真核细胞中的表达.结果 以大鼠总DNA为模板扩增出1 200 bp左右的特异性条带,测序结果与Gene-Bank测序结果相比,翻译成的氨基酸序列相同并完全一致,并可在真核细胞中表达.对重组质粒pEGFP-C3/BMP2进行双酶切鉴定并测序,结果也完全一致.结论 为进一步研究利用BMP2基因修饰骨组织工程骨,促进骨折愈合再生提供实验基础.%Objective To construct a recombinant eukaryotic expressing vector pEGFP-C3/BMP-2 by using rat bone morphogenetic protein 2 (BMP-2) gene clone. Methods BMP-2 was amplified with PCR and cloned into pEGFP-C3 vector after sequencing, recombinant eukaryotic expressing vector pEGFP-C3/BMP-2 was constructed and identified by sequencing, the expression of BMP-2 in eukaryotic cells was observed and analyzed. Results The sequencing of BMP-2 gene from the rat complied with the Gene-Bank result and with the same amino acid sequence after translation. The recombinant expressing vector pEGFP-C3/BMP-2 was confirmed by double enzyme digestion and sequencing, the successful expression of BMP-2 in eukaryotic cells was observed. Conclusion For the further study BMP2 genetic modification of bone tissue engineering, and promote the regeneration of fracture healing to provide the basis.

  12. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats.

    Science.gov (United States)

    Su, Yu-Wen; Chung, Rosa; Ruan, Chun-Sheng; Chim, Shek Man; Kuek, Vincent; Dwivedi, Prem P; Hassanshahi, Mohammadhossein; Chen, Ke-Ming; Xie, Yangli; Chen, Lin; Foster, Bruce K; Rosen, Vicki; Zhou, Xin-Fu; Xu, Jiake; Xian, Cory J

    2016-06-01

    Injured growth plate is often repaired by bony tissue causing bone growth defects, for which the mechanisms remain unclear. Because neurotrophins have been implicated in bone fracture repair, here we investigated their potential roles in growth plate bony repair in rats. After a drill-hole injury was made in the tibial growth plate and bone, increased injury site mRNA expression was observed for neurotrophins NGF, BDNF, NT-3, and NT-4 and their Trk receptors. NT-3 and its receptor TrkC showed the highest induction. NT-3 was localized to repairing cells, whereas TrkC was observed in stromal cells, osteoblasts, and blood vessel cells at the injury site. Moreover, systemic NT-3 immunoneutralization reduced bone volume at injury sites and also reduced vascularization at the injured growth plate, whereas recombinant NT-3 treatment promoted bony repair with elevated levels of mRNA for osteogenic markers and bone morphogenetic protein (BMP-2) and increased vascularization and mRNA for vascular endothelial growth factor (VEGF) and endothelial cell marker CD31 at the injured growth plate. When examined in vitro, NT-3 promoted osteogenesis in rat bone marrow stromal cells, induced Erk1/2 and Akt phosphorylation, and enhanced expression of BMPs (particularly BMP-2) and VEGF in the mineralizing cells. It also induced CD31 and VEGF mRNA in rat primary endothelial cell culture. BMP activity appears critical for NT-3 osteogenic effect in vitro because it can be almost completely abrogated by co-addition of the BMP inhibitor noggin. Consistent with its angiogenic effect in vivo, NT-3 promoted angiogenesis in metatarsal bone explants, an effect abolished by co-treatment with anti-VEGF. This study suggests that NT-3 may be an osteogenic and angiogenic factor upstream of BMP-2 and VEGF in bony repair, and further studies are required to investigate whether NT-3 may be a potential target for preventing growth plate faulty bony repair or for promoting bone fracture healing. © 2016

  13. Reduced BMP signaling results in hindlimb fusion with lethal pelvic/urogenital organ aplasia: a new mouse model of sirenomelia.

    Directory of Open Access Journals (Sweden)

    Kentaro Suzuki

    Full Text Available Sirenomelia, also known as mermaid syndrome, is a developmental malformation of the caudal body characterized by leg fusion and associated anomalies of pelvic/urogenital organs including bladder, kidney, rectum and external genitalia. Most affected infants are stillborn, and the few born alive rarely survive beyond the neonatal period. Despite the many clinical studies of sirenomelia in humans, little is known about the pathogenic developmental mechanisms that cause the complex array of phenotypes observed. Here, we provide new evidences that reduced BMP (Bone Morphogenetic Protein signaling disrupts caudal body formation in mice and phenocopies sirenomelia. Bmp4 is strongly expressed in the developing caudal body structures including the peri-cloacal region and hindlimb field. In order to address the function of Bmp4 in caudal body formation, we utilized a conditional Bmp4 mouse allele (Bmp4(flox/flox and the Isl1 (Islet1-Cre mouse line. Isl1-Cre is expressed in the peri-cloacal region and the developing hindimb field. Isl1Cre;Bmp4(flox/flox conditional mutant mice displayed sirenomelia phenotypes including hindlimb fusion and pelvic/urogenital organ dysgenesis. Genetic lineage analyses indicate that Isl1-expressing cells contribute to both the aPCM (anterior Peri-Cloacal Mesenchyme and the hindlimb bud. We show Bmp4 is essential for the aPCM formation independently with Shh signaling. Furthermore, we show Bmp4 is a major BMP ligand for caudal body formation as shown by compound genetic analyses of Bmp4 and Bmp7. Taken together, this study reveals coordinated development of caudal body structures including pelvic/urogenital organs and hindlimb orchestrated by BMP signaling in Isl1-expressing cells. Our study offers new insights into the pathogenesis of sirenomelia.

  14. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells.

    Directory of Open Access Journals (Sweden)

    Sarah H McBride

    Full Text Available The importance of bone morphogenetic protein 2 (BMP2 in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre. Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35% but decreased post-yield displacement (greater than 50% at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.

  15. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells.

    Science.gov (United States)

    McBride, Sarah H; McKenzie, Jennifer A; Bedrick, Bronwyn S; Kuhlmann, Paige; Pasteris, Jill D; Rosen, Vicki; Silva, Matthew J

    2014-01-01

    The importance of bone morphogenetic protein 2 (BMP2) in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre) and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre). Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately) would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35%) but decreased post-yield displacement (greater than 50%) at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.

  16. Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro.

    Science.gov (United States)

    Lysdahl, Helle; Baatrup, Anette; Foldager, Casper Bindzus; Bünger, Cody

    2014-12-01

    Clinical trials using bone morphogenetic protein-2 (BMP2) for bone reconstruction have shown promising results. However, the relatively high concentration needed to be effective raises concerns for efficacy and safety. The aim of this study was to investigate the osteogenic effect of an alternative treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are preconditioned with low concentrations of BMP2 for a short time in vitro. hMSCs in suspension were stimulated for 15 min with 10 and 20 ng/mL of BMP2. After the BMP2 was removed, the cells were seeded and cultured in osteogenic medium. The effects of preconditioning were analyzed with regard to proliferation and expression of osteogenic markers at both gene and protein level. The results were compared to those from cultures with continuous BMP2 stimulation. A significant increase in proliferation was seen with both precondition and continuous stimulation with BMP2, with no difference between the treatments. Preconditioning with BMP2 significantly increased gene expression of RUNX2, COLI, ALP, and OC, and protein levels of COLI and ALP. This was not found with continuous stimulation. The role of preconditioning with BMP2 in osteogenesis was validated by findings of increased gene expression of SMAD1 and an increase in dual phosphorylation of ser 463 and ser 465 in the SMAD 1/5/8 pathway. We concluded that preconditioning hMSCs with BMP2 stimulates osteogenesis: proliferation with matrix secretion and matrix maturation of hMSCs. This implies that preconditioning with BMP2 might be more effective at inducing proliferation and osteogenic differentiation of hMSCs than continuous stimulation. Preconditioning with BMP2 could benefit the clinical application of BMP2 since side effects from high-dose treatments could be avoided.

  17. Induction of chondrogenesis and expression of superficial zone protein (SZP)/lubricin by mesenchymal progenitors in the infrapatellar fat pad of the knee joint treated with TGF-beta1 and BMP-7.

    Science.gov (United States)

    Lee, Sang Yang; Nakagawa, Toshiyuki; Reddi, A Hari

    2008-11-01

    Superficial zone protein (SZP) is a key mediator of boundary lubrication of articular cartilage in joints. In this investigation, we made the unexpected discovery that SZP was expressed in infrapatellar fat pad (IFP) from bovine knee. Quantitative analysis of secreted proteins in the medium of the IFP stromal cells demonstrated a significant stimulation by TGF-beta1 and BMP-7. Real-time PCR analysis revealed the SZP expression was up-regulated by TGF-beta1 and BMP-7. Chondrogenically differentiated IFP progenitor cells were stimulated by TGF-beta1 and BMP-7 to synthesize and secrete SZP. SZP mRNA was significantly up-regulated by chondrogenic induction for 21 days. These findings indicate that the stimulation of SZP expression by TGF-beta and BMP-7 may lead to functional improvement of damaged intraarticular tissues and that IFP progenitor cells may be a potential useful source for inducing superficial zone of articular cartilage by tissue engineering for regeneration of damaged articular cartilage due to osteoarthritis.

  18. The Effects of rhBMP-2 Used for Spinal Fusion on Spinal Cord Pathology After Traumatic Injury

    Science.gov (United States)

    2009-07-29

    et al., 2004). In 2002, the FDA approved the use of the recombinant human BMP-2 (rhBMP-2) for treatment of discogenic pain in the lower lumbar spine...concomitant SCI (Personal communication with COL(R) Kuklo, MD). 7 Spinal column arthrodesis using rhBMP-2 with concomitant SCI As surgical...first 8 hours after injury. Therefore, in a rat model of dorsal hemisection SCI, we performed spinal arthrodesis with or without rhBMP-2 30 minutes post

  19. Expression of BMP-2 in Vascular Endothelial Cells of Recipient May Predict Delayed Graft Function After Renal Transplantation

    Directory of Open Access Journals (Sweden)

    Nikolina Basic-Jukic

    2016-11-01

    Full Text Available Background/Aims: Delayed graft function (DGF is associated with adverse outcomes after renal transplantation. Bone morphogenetic protein-2 (BMP-2 is involved in both endothelial function and immunological events. We compared expression of BMP-2 in epigastric artery of renal transplant recipients with immediate graft function (IGF and DGF. Methods: 79 patients were included in this prospective study. Patients were divided in IGF group (64 patients and DGF group (15 patients. BMP-2 expression in intima media (BMP2m and endothelium (BMP2e of epigastric artery was assessed by immunohistochemistry. Results: Lower intensity of BMP2e staining was recorded in DGF compared to IGF. In DGF patients, 93% had no expression of BMP2e and 7% had 1st grade expression, compared to 45% and 41% in IGF group, respectively (P=0.001 (Pst grade expression. Patients who had BMP2e staining positive had lower odds for DGF (OR 0.059 [0.007, 0.477] and this remained significant even after adjustment for donor and recipient variables, cold ischemia time, and immunological matching (OR 0.038 [0.003, 0.492]. Conclusions: Our results demonstrate that BMP-2 expression in endothelial cells of epigastric arteries may predict development of DGF.

  20. Bmp2 in osteoblasts of periosteum and trabecular bone links bone formation to vascularization and mesenchymal stem cells.

    Science.gov (United States)

    Yang, Wuchen; Guo, Dayong; Harris, Marie A; Cui, Yong; Gluhak-Heinrich, Jelica; Wu, Junjie; Chen, Xiao-Dong; Skinner, Charles; Nyman, Jeffry S; Edwards, James R; Mundy, Gregory R; Lichtler, Alex; Kream, Barbara E; Rowe, David W; Kalajzic, Ivo; David, Val; Quarles, Darryl L; Villareal, Demetri; Scott, Greg; Ray, Manas; Liu, S; Martin, James F; Mishina, Yuji; Harris, Stephen E

    2013-09-15

    We generated a new Bmp2 conditional-knockout allele without a neo cassette that removes the Bmp2 gene from osteoblasts (Bmp2-cKO(ob)) using the 3.6Col1a1-Cre transgenic model. Bones of Bmp2-cKO(ob) mice are thinner, with increased brittleness. Osteoblast activity is reduced as reflected in a reduced bone formation rate and failure to differentiate to a mature mineralizing stage. Bmp2 in osteoblasts also indirectly controls angiogenesis in the periosteum and bone marrow. VegfA production is reduced in Bmp2-cKO(ob) osteoblasts. Deletion of Bmp2 in osteoblasts also leads to defective mesenchymal stem cells (MSCs), which correlates with the reduced microvascular bed in the periosteum and trabecular bones. Expression of several MSC marker genes (α-SMA, CD146 and Angiopoietin-1) in vivo, in vitro CFU assays and deletion of Bmp2 in vitro in α-SMA(+) MSCs support our conclusions. Critical roles of Bmp2 in osteoblasts and MSCs are a vital link between bone formation, vascularization and mesenchymal stem cells.

  1. Interactions between BMP-7 and USAG-1 (uterine sensitization-associated gene-1 regulate supernumerary organ formations.

    Directory of Open Access Journals (Sweden)

    Honoka Kiso

    Full Text Available Bone morphogenetic proteins (BMPs are highly conserved signaling molecules that are part of the transforming growth factor (TGF-beta superfamily, and function in the patterning and morphogenesis of many organs including development of the dentition. The functions of the BMPs are controlled by certain classes of molecules that are recognized as BMP antagonists that inhibit BMP binding to their cognate receptors. In this study we tested the hypothesis that USAG-1 (uterine sensitization-associated gene-1 suppresses deciduous incisors by inhibition of BMP-7 function. We learned that USAG-1 and BMP-7 were expressed within odontogenic epithelium as well as mesenchyme during the late bud and early cap stages of tooth development. USAG-1 is a BMP antagonist, and also modulates Wnt signaling. USAG-1 abrogation rescued apoptotic elimination of odontogenic mesenchymal cells. BMP signaling in the rudimentary maxillary incisor, assessed by expressions of Msx1 and Dlx2 and the phosphorylation of Smad protein, was significantly enhanced. Using explant culture and subsequent subrenal capsule transplantation of E15 USAG-1 mutant maxillary incisor tooth primordia supplemented with BMP-7 demonstrated in USAG-1+/- as well as USAG-1-/- rescue and supernumerary tooth development. Based upon these results, we conclude that USAG-1 functions as an antagonist of BMP-7 in this model system. These results further suggest that the phenotypes of USAG-1 and BMP-7 mutant mice reported provide opportunities for regenerative medicine and dentistry.

  2. Local Application of BMP-2 Specific Plasmids in Fibrin Glue does not Promote Implant Fixation

    Directory of Open Access Journals (Sweden)

    Plank Christan

    2011-07-01

    Full Text Available Abstract Background BMP-2 is known to accelerate fracture healing and might also enhance osseointegration and implant fixation. Application of recombinant BMP-2 has a time-limited effect. Therefore, a gene transfer approach with a steady production of BMP-2 appears to be attractive. The aim of this study was to examine the effect of locally applied BMP-2 plasmids on the bone-implant integration in a non-weight bearing rabbit tibia model using a comparatively new non-viral copolymer-protected gene vector (COPROG. Methods Sixty rabbits were divided into 4 groups. All of them received nailing of both tibiae. The verum group had the nails inserted with the COPROG vector and BMP-2 plasmids using fibrin glue as a carrier. Controls were a group with fibrin glue only and a blank group. After 28 and 56 days, these three groups were sacrificed and one tibia was randomly chosen for biomechanical testing, while the other tibia underwent histomorphometrical examination. In a fourth group, a reporter-gene was incorporated in the fibrin glue instead of the BMP-2 formula to prove that transfection was successful. Results Implant fixation strength was significantly lower after 28 and 56 days in the verum group. Histomorphometry supported the findings after 28 days, showing less bone-implant contact. In the fourth group, successful transfection could be confirmed by detection of the reporter-gene in 20 of 22 tibiae. But, also systemic reporter-gene expression was found in heterotopic locations, showing an undesired spreading of the locally applied gene formula. Conclusion Our results underline the transfecting capability of this vector and support the idea that BMP-2 might diminish osseointegration. Further studies are necessary to specify the exact mechanisms and the systemic effects.

  3. Site Specificity of Cleavage of DSP-PP by BMP1

    Science.gov (United States)

    Yang, Robert T.; Lim, Glendale L.; Yee, Colin T.; Fuller, Robert S.; Ritchie, Helena H.

    2015-01-01

    Bone morphogenic protein 1 (BMP1), a metalloproteinase, is known to cleave a wide variety of extracellular matrix proteins, suggesting that a consensus substrate cleavage amino acid sequence might exist. However, while such a consensus sequence has been proposed based on P4 to P4′ (i.e., the four amino acids flanking either side of the BMP1 cleavage site; P4P3P2P1|P1′P2′P3′P4′) sequence homologies between two BMP1 substrates, dentin matrix protein 1 and dentin sialoprotein phosphophoryn (DSP-PP) (i.e., xMQx | DDP), no direct testing has so far been attempted. Using an Sf9 cell expression system, we have been able to produce large amounts of uncleaved DSP-PP,. Point mutations introduced into this recombinant DSP-PP were then tested for their affects on DSP-PP cleavage by either Sf9 endogenous tolloid-related protein 1 (TLR-1) or by its human homolog, BMP1. Here we have measured DSP-PP cleavage efficiencies after modifications based on P4-P4′ sequence comparisons with dentin matrix protein 1, as well as for prolysyl oxidase and chordin, two other BMP1 substrates. Our results demonstrate that any mutations within or outside of the DSP-PP P4 to P4′ cleavage site can block, impair or accelerate DSP-PP cleavage, and suggest that its BMP1 cleavage site is highly conserved in order to regulate its cleavage efficiency, possibly with additional assistance from its conserved exosites. Thus, BMP1 cleavage cannot be based on a consensus substrate cleavage site. PMID:25158199

  4. Osseointegration of titanium implants by addition of recombinant bone morphogenetic protein 2 (rhBMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Lichtinger, T.K.; Mueller, R.T.; Schuermann, N.; Oldenburg, M. [Essen Univ. (Germany). Dept. of Orthopaedic Surgery; Wiemann, M. [Inst. of Physiology, Univ. of Essen (Germany); Chatzinikolaidou, M.; Jennissen, H.P. [Inst. of Physiological Chemistry, Univ. of Essen (Germany); Rumpf, H.M.

    2001-12-01

    The osseointegration of long-term implants is often incomplete such that gaps remain between the implant surface and the surrounding hard tissue. This study examines the effect of soluble recombinant human bone morphogenic protein 2 (rhBMP-2) on gap healing and osseous integration. The effect of a single, intraoperative application of soluble rhBMP-2 on the formation of new bone around titanium implants was studied. A total of 8 titanium-alloy cylinders (Ti-6Al-4V) with a plasma spray coating (TPS; 400 {mu}m thickness) were implanted into femoral condyles of mature sheep: rhBMP-2 solution (1 {mu}g) was pipetted into the 1 mm wide cleft around 4 implants; 4 further implants served as rhBMP-2-free controls. Two of these controls exhibited an additional calciumphosphate-coating. The cleft around the implants served as testing zone to study the formation of new bone by microradiographical and histological analyses. The follow-up periods were 4 and 9 weeks, respectively. A significant amount of new bone contacting the implants' surface was detected where rhBMP-2-solution had been used: In 50% a circumferential osseoinduction occurred within 4 weeks and a nearly complete osseointegration was observed after 9 weeks. In all cases bone formation was exaggerated and filled the spongiosa with compact bone. Time matched TPS-controls and controls with calciumphosphate coating showed no notable formation of new bone. The results suggest that a single administration of soluble rhBMP-2 into a bone cavity can augment bone formation and also osseointegration of titanium implants. Further investigations based on these findings are necessary to develop long-term implants (e.g. joint replacements) with rhBMP-2-biocoating for humans. (orig.)

  5. Role of BMP2 in differentiation of neural stem cells from anterior subventricular zone into GABAergic neurons%BMP2在SVZa神经干细胞向GABA能神经元分化中的调控作用

    Institute of Scientific and Technical Information of China (English)

    陈锦华; 杨辉; 尹昌林; 张治元; 刘仕勇; 何家全; 高方友

    2007-01-01

    目的 研究BMP2在SVZa神经干细胞向γ-氨基丁酸(GABA)能神经元分化中的调控作用.方法 体外分离培养P0昆明小鼠室管膜下区(SVZa)神经干细胞,纯化传代培养3代后,使用不同浓度BMP2诱导SVZa神经干细胞,采用流式细胞仪检测不同浓度BMP2作用下SVZa神经干细胞分化为GABA能神经元的比例;另外利用活体荧光GFP标记GAD67特异性启动子,动态地研究BMP2在SVZa神经干细胞向GABA能神经元分化中的作用.在此基础之上,采用RT-PCR检测不同浓度BMP2作用下Mash1的表达.结果 不同浓度BMP2作用组分化为GABA能神经元的比例均高于空白对照组,10 ng/ml浓度的BMP2组比例最高;10 ng/ml浓度BMP2组,GAD67-GFP标记阳性细胞数目明显高于对照组;10 ng/ml浓度BMP2组Mash1表达高于其他组.结论 BMP2促进SVZa神经干细胞向GABA能神经元的分化;10 ng/ml浓度的BMP2显著促进Mash1的表达.

  6. BMP2基因转染犬牙髓细胞的实验研究

    Institute of Scientific and Technical Information of China (English)

    冯艳红; 刁志虹; 高毅; 李威

    2011-01-01

    目的 构建骨形态发生蛋白2(bone morphogenetic proteins 2,BMP2)绿色荧光融合蛋白pEGFP-N1-BMP2真核表达质粒,然后再用其在体外转染犬牙髓细胞,探讨BMP2基因转染对牙髓细胞BMP2基因表达的影响,及是否表达BMP2蛋白.方法 构建pEGFP-N1-BMP2真核表达质粒,采用阳离子脂质体转染法将BMP2基因转染体外培养的犬牙髓细胞,检测转染后细胞的BMP2基因表达及蛋白表达情况.结果 成功构建pEGFP-N1-BMP2真核表达质粒,对构建的BMP2真核重组质粒用XhoI、HindIII进行双酶切,其产物进行琼脂糖凝胶电泳后,在1.2kb、4.7kb可见2条特异条带;并进行全基因序列测序,报告100%符合,证明pEGFP-N1-BMP2重组质粒构建成功.转染后的细胞可见BMP2基因表达,细胞免疫组织化学检测转染后的细胞中有BMP2蛋白的表达.结论 pEGFP-N1-BMP2 真核表达质粒转染后的牙髓细胞能够表达BMP2基因,BMP2蛋白表达阳性.

  7. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Science.gov (United States)

    Anderson, Matthew J; Schimmang, Thomas; Lewandoski, Mark

    2016-05-01

    During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM). Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3-BMP signaling axis is

  8. A late role for bmp2b in the morphogenesis of semicircular canal ducts in the zebrafish inner ear.

    Directory of Open Access Journals (Sweden)

    Katherine L Hammond

    Full Text Available The Bone Morphogenetic Protein (BMP genes bmp2 and bmp4 are expressed in highly conserved patterns in the developing vertebrate inner ear. It has, however, proved difficult to elucidate the function of BMPs during ear development as mutations in these genes cause early embryonic lethality. Previous studies using conditional approaches in mouse and chicken have shown that Bmp4 has a role in semicircular canal and crista development, but there is currently no direct evidence for the role of Bmp2 in the developing inner ear.We have used an RNA rescue strategy to test the role of bmp2b in the zebrafish inner ear directly. Injection of bmp2b or smad5 mRNA into homozygous mutant swirl (bmp2b(-/- embryos rescues the early patterning defects in these mutants and the fish survive to adulthood. As injected RNA will only last, at most, for the first few days of embryogenesis, all later development occurs in the absence of bmp2b function. Although rescued swirl adult fish are viable, they have balance defects suggestive of vestibular dysfunction. Analysis of the inner ears of these fish reveals a total absence of semicircular canal ducts, structures involved in the detection of angular motion. All other regions of the ear, including the ampullae and cristae, are present and appear normal. Early stages of otic development in rescued swirl embryos are also normal.Our findings demonstrate a critical late role for bmp2b in the morphogenesis of semicircular canals in the zebrafish inner ear. This is the first demonstration of a developmental role for any gene during post-embryonic stages of otic morphogenesis in the zebrafish. Despite differences in the early stages of semicircular canal formation between zebrafish and amniotes, the role of Bmp2 in semicircular canal duct outgrowth is likely to be conserved between different vertebrate species.

  9. An FGF3-BMP Signaling Axis Regulates Caudal Neural Tube Closure, Neural Crest Specification and Anterior-Posterior Axis Extension.

    Directory of Open Access Journals (Sweden)

    Matthew J Anderson

    2016-05-01

    Full Text Available During vertebrate axis extension, adjacent tissue layers undergo profound morphological changes: within the neuroepithelium, neural tube closure and neural crest formation are occurring, while within the paraxial mesoderm somites are segmenting from the presomitic mesoderm (PSM. Little is known about the signals between these tissues that regulate their coordinated morphogenesis. Here, we analyze the posterior axis truncation of mouse Fgf3 null homozygotes and demonstrate that the earliest role of PSM-derived FGF3 is to regulate BMP signals in the adjacent neuroepithelium. FGF3 loss causes elevated BMP signals leading to increased neuroepithelium proliferation, delay in neural tube closure and premature neural crest specification. We demonstrate that elevated BMP4 depletes PSM progenitors in vitro, phenocopying the Fgf3 mutant, suggesting that excessive BMP signals cause the Fgf3 axis defect. To test this in vivo we increased BMP signaling in Fgf3 mutants by removing one copy of Noggin, which encodes a BMP antagonist. In such mutants, all parameters of the Fgf3 phenotype were exacerbated: neural tube closure delay, premature neural crest specification, and premature axis termination. Conversely, genetically decreasing BMP signaling in Fgf3 mutants, via loss of BMP receptor activity, alleviates morphological defects. Aberrant apoptosis is observed in the Fgf3 mutant tailbud. However, we demonstrate that cell death does not cause the Fgf3 phenotype: blocking apoptosis via deletion of pro-apoptotic genes surprisingly increases all Fgf3 defects including causing spina bifida. We demonstrate that this counterintuitive consequence of blocking apoptosis is caused by the increased survival of BMP-producing cells in the neuroepithelium. Thus, we show that FGF3 in the caudal vertebrate embryo regulates BMP signaling in the neuroepithelium, which in turn regulates neural tube closure, neural crest specification and axis termination. Uncovering this FGF3

  10. Binding Interactions of Keratin-Based Hair Fiber Extract to Gold, Keratin, and BMP-2.

    Directory of Open Access Journals (Sweden)

    Roche C de Guzman

    Full Text Available Hair-derived keratin biomaterials composed mostly of reduced keratin proteins (kerateines have demonstrated their utility as carriers of biologics and drugs for tissue engineering. Electrostatic forces between negatively-charged keratins and biologic macromolecules allow for effective drug retention; attraction to positively-charged growth factors like bone morphogenetic protein 2 (BMP-2 has been used as a strategy for osteoinduction. In this study, the intermolecular surface and bulk interaction properties of kerateines were investigated. Thiol-rich kerateines were chemisorbed onto gold substrates to form an irreversible 2-nm rigid layer for surface plasmon resonance analysis. Kerateine-to-kerateine cohesion was observed in pH-neutral water with an equilibrium dissociation constant (KD of 1.8 × 10(-4 M, indicating that non-coulombic attractive forces (i.e. hydrophobic and van der Waals were at work. The association of BMP-2 to kerateine was found to be greater (KD = 1.1 × 10(-7 M, within the range of specific binding. Addition of salts (phosphate-buffered saline; PBS shortened the Debye length or the electrostatic field influence which weakened the kerateine-BMP-2 binding (KD = 3.2 × 10(-5 M. BMP-2 in bulk kerateine gels provided a limited release in PBS (~ 10% dissociation in 4 weeks, suggesting that electrostatic intermolecular attraction was significant to retain BMP-2 within the keratin matrix. Complete dissociation between kerateine and BMP-2 occurred when the PBS pH was lowered (to 4.5, below the keratin isoelectric point of 5.3. This phenomenon can be attributed to the protonation of keratin at a lower pH, leading to positive-positive repulsion. Therefore, the dynamics of kerateine-BMP-2 binding is highly dependent on pH and salt concentration, as well as on BMP-2 solubility at different pH and molarity. The study findings may contribute to our understanding of the release kinetics of drugs from keratin biomaterials and allow for the

  11. Overexpression of MyrAkt1 in endothelial cells leads to erythropoietin- and BMP4-independent splenic erythropoiesis in mice.

    Directory of Open Access Journals (Sweden)

    Rebekah K O'Donnell

    Full Text Available Under steady state conditions, erythropoiesis occurs in the bone marrow. However, in mice, stress or tissue hypoxia results in increased erythropoiesis in the spleen. There is increasing evidence that the hematopoietic microenvironment, including endothelial cells, plays an important role in regulating erythropoiesis. Here, we show that short-term expression of constitutively active Akt in the endothelium of mice results in non-anemic stress erythropoiesis in the spleen. The initiation of this stress response was independent of erythropoietin and BMP4, and was observed in endothelial myrAkt1 mice reconstituted with wild-type bone marrow. Together, these data suggest that endothelial cell hyperactivation is a potentially novel pathway of inducing red cell production under stress.

  12. Extensive sequence turnover of the signal peptides of members of the GDF/BMP family: exploring their evolutionary landscape

    Directory of Open Access Journals (Sweden)

    Veitia Reiner A

    2009-07-01

    Full Text Available Abstract We show that the predicted signal peptide (SP sequences of the secreted factors GDF9, BMP15 and AMH are well conserved in mammals but dramatic divergence is noticed for more distant orthologs. Interestingly, bioinformatic predictions show that the divergent protein segments do encode SPs. Thus, such SPs have undergone extensive sequence turnover with full preservation of functionality. This can be explained by a pervasive accumulation of neutral and compensatory mutations. An exploration of the potential evolutionary landscape of some SPs is presented. Some of these signal sequences highlight an apparent paradox: they are encoded, by definition, by orthologous DNA segments but they are, given their striking divergence, examples of what can be called functional convergence. Reviewers: This article was reviewed by Fyodor Kondrashov and Eugene V. Koonin.

  13. Review on biogas upgrading technologies for producing biomethane%沼气提纯生物天然气技术研究进展

    Institute of Scientific and Technical Information of China (English)

    郑戈; 张全国

    2013-01-01

      沼气的主要成分是CH4和CO2,将CO2从混合气中分离得到的高纯度甲烷气被称为生物天然气。生物天然气可以直接作为石化天然气的替代燃料。人类对天然气需求量的增加推动了生物天然气技术的发展。该文分析了沼气与天然气特性的差别及沼气提纯后替代天然气的可能性,综述了沼气提纯的方法进展,这些方法包括加压水洗、化学吸收法、变压吸附法(pressure swing adsorption,PSA)、膜分离法、低温分离法和甲烷原位富集等技术,其中加压水洗法和PSA法由于在技术和经济方面的综合优势成为目前商业化利用率最高的两项技术,膜分离技术在降低提纯成本和简化提纯系统方面的性能使其成为具备良好发展前景的技术,甲烷原位富集技术在利用高固含率原料生产生物天然气方面具有优势。该文对中国生物天然气技术的发展能够提供有价值的参考。%Biogas can be upgraded to biomethane, giving more utilization possibilities, such as utilization as autogas, or distant utilization by using the existing natural gas grid. Upgrading of biogas has gained increased attention due to rising oil and natural gas prices and increasing targets for renewable fuel quotes in many countries. This paper analyzes the possibility of the substitution of natural gas by biogas according to the characteristics and components of biogas and natural gas, and reviewed the biogas upgrading technologies including water scrubbing, organic physical scrubbing, chemical scrubbing, pressure swing adsorption (PSA), membrane separation, cryogenic upgrading, and the in situ methane enrichment processes. Among these upgrading technologies, water scrubbing and PSA are the main two processes from the point of view of commercialization, because of their comprehensive advantages in technical and economic aspects. Water scrubbing is a very simple process. In a scrubber, CO2 and H2

  14. Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation.

    Science.gov (United States)

    Demirtaş, T Tolga; Göz, Eda; Karakeçili, Ayşe; Gümüşderelioğlu, Menemşe

    2016-01-01

    Natural microenvironment during bone tissue regeneration involves integration of multiple biological growth factors which regulate mitogenic activities and differentiation to induce bone repair. Among them platelet derived growth factor (PDGF-BB) and bone morphogenic protein-6 (BMP-6) are known to play a prominent role. The aim of this study was to investigate the benefits of combined delivery of PDGF-BB and BMP-6 on proliferation and osteoblastic differentiation of MC3T3-E1 preosteoblastic cells. PDGF-BB and BMP-6 were loaded in gelatin and poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) particles, respectively. The carrier particles were then loaded into 3D chitosan matrix fabricated by freeze drying. The fast release of PDGF-BB during 7 days was accompanied by slower and prolonged release of BMP-6. The premising release of mitogenic factor PDGF-BB resulted in an increased MC3T3-E1 cell population seeded on chitosan scaffolds. Osteogenic markers of RunX2, Col 1, OPN were higher on chitosan scaffolds loaded with growth factors either individually or in combination. However, OCN expression and bone mineral formation were prominent on chitosan scaffolds incorporating PDGF-BB and BMP-6 as a combination.

  15. BMP13 Prevents the Effects of Annular Injury in an Ovine Model

    Directory of Open Access Journals (Sweden)

    Aiqun Wei, Lisa A Williams, Divya Bhargav, Bojiang Shen, Thomas Kishen, Neil Duffy, Ashish D Diwan

    2009-01-01

    Full Text Available Chronic back pain is a global health problem affecting millions of people worldwide and carries significant economic and social morbidities. Intervertebral disc damage and degeneration is a major cause of back pain, characterised by histological and biochemical changes that have been well documented in animal models. Recently there has been intense interest in early intervention in disc degeneration using growth factors or stem cell transplantation, to replenish the diseased tissues. Bone Morphogenetic Proteins (BMPs have been approved for clinical use in augmenting spinal fusions, and may represent candidate molecules for intervertebral disc regeneration. BMP13 has an important role in embryonic development and recent genetic evidence shows a role in the development of the human spine. This study explores the effect of BMP13 on a damaged intervertebral disc in an ovine model of discal degeneration. We found that, when injected at the time of injury, BMP13 reversed or arrested histological changes that occurred in the control discs such as loss of extracellular matrix proteins. In addition, BMP13 injected discs retained greater hydration after 4months, and possessed more cells in the NP. Taken together, BMP13 may be a potent clinical therapeutic agent when used early in the degeneration cascade to promote healthy disc tissue.

  16. BMP2 rescues deficient cell migration in Tgfbr3(-/-) epicardial cells and requires Src kinase.

    Science.gov (United States)

    Allison, Patrick; Espiritu, Daniella; Camenisch, Todd D

    2016-05-03

    During embryogenesis, the epicardium undergoes proliferation, migration, and differentiation into several cardiac cell types which contribute to the coronary vessels. The type III transforming growth factor-β receptor (TGFβR3) is required for epicardial cell invasion and development of coronary vasculature in vivo. Bone Morphogenic Protein-2 (BMP2) is a driver of epicardial cell migration. Utilizing a primary epicardial cell line derived from Tgfbr3(+/+) and Tgfbr3(-/-) mouse embryos, we show that Tgfbr3(-/-) epicardial cells are deficient in BMP2 mRNA expression. Tgfbr3(-/-) epicardial cells are deficient in 2-dimensional migration relative to Tgfbr3(+/+) cells; BMP2 induces cellular migration to Tgfbr3(+/+) levels without affecting proliferation. We further demonstrate that Src kinase activity is required for BMP2 driven Tgfbr3(-/-) migration. BMP2 also requires Src for filamentous actin polymerization in Tgfbr3(-/-) epicardial cells. Taken together, our data identifies a novel pathway in epicardial cell migration required for development of the coronary vessels.

  17. BMP-mediated induction of GATA4/5/6 blocks somitic responsiveness to SHH.

    Science.gov (United States)

    Daoud, Georges; Kempf, Hervé; Kumar, Deepak; Kozhemyakina, Elena; Holowacz, Tamara; Kim, Dae-Won; Ionescu, Andreia; Lassar, Andrew B

    2014-10-01

    The relative timing of SHH and BMP signals controls whether presomitic mesoderm (PSM) cells will adopt either a chondrogenic or lateral plate mesoderm fate. Here we document that SHH-mediated induction of Nkx3.2 maintains the competence of somitic cells to initiate chondrogenesis in response to subsequent BMP signals by repressing BMP-dependent induction of GATA genes. Conversely, administration of BMP signals to PSM or forced expression of GATA family members in chick PSM explants blocks induction of hedgehog-dependent gene expression. We demonstrate that GATA factors can interact with Gli factors and can recruit the transcriptional co-factor FOG1 (ZFPM1) to the regulatory region of the mouse Gli1 gene, repressing the induction of Gli1 by SHH by binding to both GATA and Gli binding sites. Knockdown of FOG1 reverses the ability of GATA factors to repress Gli1 expression. Our findings uncover a novel role for GATA transcription factors as repressors of hedgehog signaling, and document that NKX3.2 maintains the ability of sclerotomal cells to express SHH transcriptional targets in the presence of BMP signals by repressing the induction of Gata4/5/6.

  18. Cooperative inputs of Bmp and Fgf signaling induce tail regeneration in urodele amphibians.

    Science.gov (United States)

    Makanae, Aki; Mitogawa, Kazumasa; Satoh, Akira

    2016-02-01

    Urodele amphibians have remarkable organ regeneration ability. They can regenerate not only limbs but also a tail throughout their life. It has been demonstrated that the regeneration of some organs are governed by the presence of neural tissues. For instance, limb regeneration cannot be induced without nerves. Thus, identifying the nerve factors has been the primary focus in amphibian organ regeneration research. Recently, substitute molecules for nerves in limb regeneration, Bmp and Fgfs, were identified. Cooperative inputs of Bmp and Fgfs can induce limb regeneration in the absence of nerves. In the present study, we investigated whether similar or same regeneration mechanisms control another neural tissue governed organ regeneration, i.e., tail regeneration, in Ambystoma mexicanum. Neural tissues in a tail, which is the spinal cord, could transform wound healing responses into organ regeneration responses, similar to nerves in limb regeneration. Furthermore, the identified regeneration inducer Fgf2+Fgf8+Bmp7 showed similar inductive effects. However, further analysis revealed that the blastema cells induced by Fgf2+Fgf8+Bmp7 could participate in the regeneration of several tissues, but could not organize a patterned tail. Regeneration inductive ability of Fgf2+Fgf8+Bmp7 was confirmed in another urodele, Pleurodeles waltl. These results suggest that the organ regeneration ability in urodele amphibians is controlled by a common mechanism.

  19. Polymorphism in exon2 of BMP15 gene in Iranian sangsari sheep

    Directory of Open Access Journals (Sweden)

    zana pirkhezranian

    2015-04-01

    Full Text Available Fertility rate is an economically important trait in sheep, which is influenced by genetic and environment. So far, three genes have been identified that affects this trait, one of them would be the BMP family, the most famous one is BMP15. Different mutations in the BMP15 gene, increases reproductive performance and growth rate in sheep. The aim of this study was to investigate the genetic and phylogenetic of BMP15 gene sequence in Iranian Sangsari sheep. For this purpose, the blood samples from 20 animal of Damghan station were collected. After DNA extracting, a segment of 222 bp of exon 2 of BMP15 gene was amplified using polymerase chain reaction. Then, all of the PCR products were sequenced. The results showed existence of four haplotypes and three significant mutations of the gene that which one of them was seen for first. In order to determine the genetic distance of Sansari sheep with other animals especially sheep breeds about 103 sequences were taken from Genebank, Then, phylogenetic trees were drawn. Genetic distances and nucleotide differences were calculated. The results showed that goat, cattle and buffalo have minimum genetic distance and monkey, human and mouse have maximum distance with Sangsari sheep and native Hindi and Kashmiri sheep have not any differences with Iranian Sangsari sheep.

  20. Does Recombinant Human Bone Morphogenetic Protein-2 (rhBMP-2) Use in Adult Spinal Deformity (ASD) Increase Complications and Are Complications Associated With Location of rhBMP-2 Use?: A Prospective, Multicenter Study of 279 Consecutive Patients.

    Science.gov (United States)

    Bess, Shay; Line, Breton G; Lafarge, Virginie; Schwab, Frank; Shaffrey, Christopher I; Hart, Robert A; Boachie-Adjei, Oheneba; Akbarnia, Behrooz A; Ames, Christopher P; Burton, Douglas C; Deverin, Vedat; Fu, Kai-Ming G; Gupta, Munish; Hostin, Richard; Kebaish, Khaled; Klineberg, Eric; Mundis, Gregory; O'Brien, Michael; Shelokov, Alexis; Smith, Justin S

    2013-11-18

    Study Design. Multi-center, prospective analysis of consecutive ASD patients.Objective. Evaluate complications associated with rhBMP-2 use in ASDSummary of Background Data. Off-label rhBMP-2 use is common, however under-reporting of rhBMP-2 associated complications has been recently scrutinized.Methods. ASD patients consecutively enrolled into a prospective, multicenter database, were evaluated for type and timing of acute perioperative complications. Inclusion criteria: age ≥ 18 years, ASD, spinal arthrodesis >4 levels, and ≥3 months follow-up. Patients divided into those receiving rhBMP-2 (BMP) or no rhBMP-2 (NOBMP). BMP divided into location of use: posterior (PBMP), interbody (IBMP), and interbody + posterior spine (I+PBMP). Correlations between acute perioperative complications and rhBMP-2 use including total dose, dose/level and location of use were evaluated.Results. 279 patients (mean age 57 years, mean spinal levels fused 12.0, mean follow-up 28.8 months) met inclusion criteria. BMP (n = 172; average posterior dose = 2.5 mg/level, average interbody dose = 5 mg/level) had similar age, smoking history, previous spine surgery, total spinal levels fused, estimated blood loss, and duration of hospital stay as NOBMP (n = 107; p>0.05). BMP had greater Charlson Comorbidity Index (1.9 vs. 1.2), greater scoliosis (43° vs. 38°), longer operative time (488.2 vs. 414.6 minutes), more osteotomies/patient (4.0 vs. 1.6) and greater percentage of anteroposterior fusion (APSF; 20.9% vs. 8.4%) than NOBMP, respectively (p0.05). Multivariate analysis demonstrated small to non-existent correlations between rhBMP-2 use and complications.Conclusions. RhBMP-2 use and location of rhBMP-2 use in ASD surgery, at reported doses, does not increase acute major, neurological or wound complications. Research is needed for higher rhBMP-2 dosing and long-term follow-up.

  1. Stiffness-dependent cellular internalization of matrix-bound BMP-2 and its relation to Smad and non-Smad signaling.

    Science.gov (United States)

    Gilde, Flora; Fourel, Laure; Guillot, Raphael; Pignot-Paintrand, Isabelle; Okada, Takaharu; Fitzpatrick, Vincent; Boudou, Thomas; Albiges-Rizo, Corinne; Picart, Catherine

    2016-12-01

    Surface coatings delivering BMP are a promising approach to render biomaterials osteoinductive. In contrast to soluble BMPs which can interact with their receptors at the dorsal side of the cell, BMPs presented as an insoluble cue physically bound to a biomimetic matrix, called here matrix-bound (bBMP-2), are presented to cells by their ventral side. To date, BMP-2 internalization and signaling studies in cell biology have always been performed by adding soluble (sBMP-2) to cells adhered on cell culture plates or glass slides, which will be considered here as a "reference" condition. However, whether and how matrix-bound BMP-2 can be internalized by cells and its relation to canonical (SMAD) and non-canonical signaling (ALP) remain open questions. In this study, we investigated the uptake and processing of BMP-2 by C2C12 myoblasts. This BMP-2 was presented either embedded in polyelectrolyte multilayer films (matrix-bound presentation) or as soluble form. Using fluorescently labeled BMP-2, we showed that the amount of matrix-bound BMP-2 internalized is dependent on the level of crosslinking of the polyelectrolyte films. Cav-1-mediated internalization is related to both SMAD and ALP signaling, while clathrin-mediated is only related to ALP signaling. BMP-2 internalization was independent of the presentation mode (sBMP-2 versus bBMP-2) for low crosslinked films (soft, EDC10) in striking contrast with high crosslinked (stiff, EDC70) films where internalization was much lower and slower for bBMP-2. As anticipated, internalization of sBMP-2 barely depended on the underlying matrix. Taken together, these results indicate that BMP-2 internalization can be tuned by the underlying matrix and activates downstream BMP-2 signaling, which is key for the effective formation of bone tissue.

  2. Clonning and Sequence Analysis of Partial cDNA in Cattle BMP4 Gene%牛BMP4基因部分cDNA的克隆和序列分析

    Institute of Scientific and Technical Information of China (English)

    王峰; 刘永斌; 荣威恒; 裴永志

    2005-01-01

    参考人和老鼠BMP4基因序列信息,选取保守基因序列设计上下游引物,扩增牛的BMP4基因部分cDNA序列.将该片段重组到载体中,筛选阳性克隆,提取质粒DNA,并进行序列测定,首次获得了牛BMP4基因的部分外显子序列.序列分析比较发现,牛与羊、人、小鼠、大鼠等动物的BMP4基因序列同源性分别为99%、93%、93%、91%.该研究结果反映了BMP4基因在进化过程中是高度保守的.

  3. Germline mutations in BMP9 are not identified in a series of Danish and French patients with hereditary hemorrhagic telangiectasia

    DEFF Research Database (Denmark)

    Tørring, P. M.; Dupuis-Girod, S.; Giraud, S

    2016-01-01

    had a different vascular-anomaly syndrome, the suspicion that BMP9 mutations might cause HHT remained. To evaluate if germline mutations in BMP9 can be identified in HHT patients, we investigated the Danish and the French Lyon cohort of mutation-negative and clinically definite HHT patients. Exons...

  4. BMP4-mediated brown fat-like changes in white adipose tissue alter glucose and energy homeostasis.

    Science.gov (United States)

    Qian, Shu-Wen; Tang, Yan; Li, Xi; Liu, Yuan; Zhang, You-You; Huang, Hai-Yan; Xue, Rui-Dan; Yu, Hao-Yong; Guo, Liang; Gao, Hui-Di; Liu, Yan; Sun, Xia; Li, Yi-Ming; Jia, Wei-Ping; Tang, Qi-Qun

    2013-02-26

    Expression of bone morphogenetic protein 4 (BMP4) in adipocytes of white adipose tissue (WAT) produces "white adipocytes" with characteristics of brown fat and leads to a reduction of adiposity and its metabolic complications. Although BMP4 is known to induce commitment of pluripotent stem cells to the adipocyte lineage by producing cells that possess the characteristics of preadipocytes, its effects on the mature white adipocyte phenotype and function were unknown. Forced expression of a BMP4 transgene in white adipocytes of mice gives rise to reduced WAT mass and white adipocyte size along with an increased number of a white adipocyte cell types with brown adipocyte characteristics comparable to those of beige or brite adipocytes. These changes correlate closely with increased energy expenditure, improved insulin sensitivity, and protection against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology and impaired insulin sensitivity. We identify peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α) as the target of BMP signaling required for these brown fat-like changes in WAT. This effect of BMP4 on WAT appears to extend to human adipose tissue, because the level of expression of BMP4 in WAT correlates inversely with body mass index. These findings provide a genetic and metabolic basis for BMP4's role in altering insulin sensitivity by affecting WAT development.

  5. Retention of in vitro and in vivo BMP-2 bioactivities in sustained delivery vehicles for bone tissue engineering

    NARCIS (Netherlands)

    Kempen, Diederik H. R.; Lu, Lichun; Hefferan, Teresa E.; Creemers, Laura B.; Maran, Avudaiappan; Classic, Kelly L.; Dhert, Wouter J. A.; Yaszemski, Michael J.

    2008-01-01

    In this study, we investigated the in vitro and in vivo biological activities of bone morphogenetic protein 2 (BMP-2) released from four sustained delivery vehicles for bone regeneration. BMP-2 was incorporated into (1) a gelatin hydrogel, (2) poly(lactic-co-glycolic acid) (PLGA) microspheres embedd

  6. BMP4 Cross-talks With Estrogen/ERα Signaling to Regulate Adiposity and Glucose Metabolism in Females

    Directory of Open Access Journals (Sweden)

    Shu-wen Qian

    2016-09-01

    Full Text Available Similar to estrogens, bone morphogenetic protein 4 (BMP4 promotes the accumulation of more metabolically active subcutaneous fat and reduction of visceral fat. However, whether there is a cross-talk between BMP4 and estrogen signaling remained unknown. Herein, we found that BMP4 deficiency in white adipose tissue (WAT increased the estrogen receptor α (ERα level and its signaling, which prevented adult female mice from developing high fat diet (HFD-induced obesity and insulin resistance; estrogens depletion up regulated BMP4 expression to overcome overt adiposity and impaired insulin sensitivity with aging, and failure of BMP4 regulation due to genetic knockout led to more fat gain in aged female mice. This mutual regulation between BMP4 and estrogen/ERα signaling may also happen in adipose tissue of women, since the BMP4 level significantly increased after menopause, and was inversely correlated with body mass index (BMI. These findings suggest a counterbalance between BMP4 and estrogen/ERα signaling in the regulation of adiposity and relative metabolism in females.

  7. Transcription factor CP2 is involved in activating mBMP4 in mouse mesenchymal stem cells.

    Science.gov (United States)

    Kang, Ho Chul; Chae, Ji Hyung; Kim, Beom Sue; Han, Su Youne; Kim, Sung-Hyun; Auh, Chung-Kyoon; Yang, Sung-Il; Kim, Chul Geun

    2004-06-30

    CP2 is a member of a family of transcription factors that regulate genes involved in events from early development to terminal differentiation. In an effort to understand how it selects its target genes we carried out a database search, and located several CP2 binding motifs in the promoter region of bone morphogenetic protein-4 (BMP4). BMP4 is a key regulator of cell fate and body patterning throughout development. For the CP2 binding motifs in BMP4 promoter region to be relevant in vivo, CP2 and BMP4 should be expressed together. We found that CP2b and CP2c, two potent transcriptional activators, are expressed in a manner similar to BMP4 during osteoblast differentiation of C3H10T1/2 cells. In in vitro assays, the CP2 proteins bound to two CP2 binding motifs (-715 to -676 and -147 to -118) in the BMP4 promoter, and luciferase reporter assays indicated that this binding was essential for transcription of BMP4 during osteoblast differentiation. Taken together, our data indicate that CP2b and CP2c play important roles during bone development by activating BMP4 transcription.

  8. Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin.

    Science.gov (United States)

    Ohta, Kunimasa; Lupo, Giuseppe; Kuriyama, Sei; Keynes, Roger; Holt, Christine E; Harris, William A; Tanaka, Hideaki; Ohnuma, Shin-ichi

    2004-09-01

    During chick gastrulation, inhibition of BMP signaling is required for primitive streak formation and induction of Hensen's node. We have identified a unique secreted protein, Tsukushi (TSK), which belongs to the Small Leucine-Rich Proteoglycan (SLRP) family and is expressed in the primitive streak and Hensen's node. Grafts of cells expressing TSK in combination with the middle primitive streak induce an ectopic Hensen's node, while electroporation of TSK siRNA inhibits induction of the node. In Xenopus embryos, TSK can block BMP function and induce a secondary dorsal axis, while it can dorsalize ventral mesoderm and induce neural tissue in embryonic explants. Biochemical analysis shows that TSK binds directly to both BMP and chordin and forms a ternary complex with them. These observations indicate that TSK is an essential dorsalizing factor involved in the induction of Hensen's node.

  9. Circadian period integrates network information through activation of the BMP signaling pathway.

    Directory of Open Access Journals (Sweden)

    Esteban J Beckwith

    2013-12-01

    Full Text Available Living organisms use biological clocks to maintain their internal temporal order and anticipate daily environmental changes. In Drosophila, circadian regulation of locomotor behavior is controlled by ∼150 neurons; among them, neurons expressing the PIGMENT DISPERSING FACTOR (PDF set the period of locomotor behavior under free-running conditions. To date, it remains unclear how individual circadian clusters integrate their activity to assemble a distinctive behavioral output. Here we show that the BONE MORPHOGENETIC PROTEIN (BMP signaling pathway plays a crucial role in setting the circadian period in PDF neurons in the adult brain. Acute deregulation of BMP signaling causes period lengthening through regulation of dClock transcription, providing evidence for a novel function of this pathway in the adult brain. We propose that coherence in the circadian network arises from integration in PDF neurons of both the pace of the cell-autonomous molecular clock and information derived from circadian-relevant neurons through release of BMP ligands.

  10. Establishment of Immortalized BMP2/4 Double Knock-Out Osteoblastic Cells Is Essential for Study of Osteoblast Growth, Differentiation, and Osteogenesis.

    Science.gov (United States)

    Wu, Li-An; Wang, Feng; Donly, Kevin J; Baker, Andrew; Wan, Chunyan; Luo, Daoshu; MacDougall, Mary; Chen, Shuo

    2016-06-01

    Bone morphogenetic proteins 2 and 4 (BMP2/4) are essential for osteoblast differentiation and osteogenesis. Generation of a BMP2/4 dual knock-out ((ko/ko)) osteoblastic cell line is a valuable asset for studying effects of BMP2/4 on skeletal development. In this study, our goal was to create immortalized mouse deleted BMP2/4 osteoblasts by infecting adenoviruses with Cre recombinase and green fluorescent protein genes into immortalized murine floxed BMP2/4 osteoblasts. Transduced BMP2/4(ko/ko) cells were verified by green immunofluorescence and PCR. BMP2/4(ko/ko) osteoblasts exhibited small size, slow cell proliferation rate and cell growth was arrested in G1 and G2 phases. Expression of bone-relate genes was reduced in the BMP2/4(ko/ko) cells, resulting in delay of cell differentiation and mineralization. Importantly, extracellular matrix remodeling was impaired in the BMP2/4(ko/ko) osteoblasts as reflected by decreased Mmp-2 and Mmp-9 expressions. Cell differentiation and mineralization were rescued by exogenous BMP2 and/or BMP4. Therefore, we for the first time described establishment of an immortalized deleted BMP2/4 osteoblast line useful for study of mechanisms in regulating osteoblast lineages.

  11. Inducible chondrocyte-specific overexpression of BMP2 in young mice results in severe aggravation of osteophyte formation in experimental OA without altering cartilage damage

    NARCIS (Netherlands)

    Davidson, E.N.; Vitters, E.L.; Bennink, M.B.; Lent, P.L. van; Caam, A.P. van; Blom, A.B.; Berg, W.B. van den; Loo, F.A.J. van de; Kraan, P.M. van der

    2015-01-01

    OBJECTIVES: In osteoarthritis (OA) chondrocytes surrounding lesions express elevated bone morphogenetic protein 2 (BMP2) levels. To investigate the functional consequence of chondrocyte-specific BMP2 expression, we made a collagen type II dependent, doxycycline (dox)-inducible BMP2 transgenic mouse

  12. Low-dose rhBMP2/7 heterodimer to reconstruct peri-implant bone defects: a micro-CT evaluation

    NARCIS (Netherlands)

    Wang, J.; Zheng, Y.; Zhao, J.; Liu, T.; Gao, L.; Gu, Z.; Wu, G.

    2012-01-01

    Objectives To delineate the dynamic micro-architectures of bone induced by low-dose bone morphogenetic protein (BMP)-2/7 heterodimer in peri-implant bone defects compared to BMP2 and BMP7 homodimer. Material and Methods Peri-implant bone defects (8 mm in diameter, 4 mm in depth) were created surroun

  13. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Directory of Open Access Journals (Sweden)

    Gerhard Sengle

    2015-06-01

    Full Text Available Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that

  14. Neural retina identity is specified by lens-derived BMP signals.

    Science.gov (United States)

    Pandit, Tanushree; Jidigam, Vijay K; Patthey, Cedric; Gunhaga, Lena

    2015-05-15

    The eye has served as a classical model to study cell specification and tissue induction for over a century. Nevertheless, the molecular mechanisms that regulate the induction and maintenance of eye-field cells, and the specification of neural retina cells are poorly understood. Moreover, within the developing anterior forebrain, how prospective eye and telencephalic cells are differentially specified is not well defined. In the present study, we have analyzed these issues by manipulating signaling pathways in intact chick embryo and explant assays. Our results provide evidence that at blastula stages, BMP signals inhibit the acquisition of eye-field character, but from neural tube/optic vesicle stages, BMP signals from the lens are crucial for the maintenance of eye-field character, inhibition of dorsal telencephalic cell identity and specification of neural retina cells. Subsequently, our results provide evidence that a Rax2-positive eye-field state is not sufficient for the progress to a neural retina identity, but requires BMP signals. In addition, our results argue against any essential role of Wnt or FGF signals during the specification of neural retina cells, but provide evidence that Wnt signals together with BMP activity are sufficient to induce cells of retinal pigment epithelial character. We conclude that BMP activity emanating from the lens ectoderm maintains eye-field identity, inhibits telencephalic character and induces neural retina cells. Our findings link the requirement of the lens ectoderm for neural retina specification with the molecular mechanism by which cells in the forebrain become specified as neural retina by BMP activity.

  15. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    Science.gov (United States)

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F; Charbonneau, Noe L; Smaldone, Silvia; Carlson, Eric J; Ramirez, Francesco; Keene, Douglas R; Sakai, Lynn Y

    2015-06-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  16. Deficiency of retinaldehyde dehydrogenase 1 induces BMP2 and increases bone mass in vivo.

    Directory of Open Access Journals (Sweden)

    Shriram Nallamshetty

    Full Text Available The effects of retinoids, the structural derivatives of vitamin A (retinol, on post-natal peak bone density acquisition and skeletal remodeling are complex and compartment specific. Emerging data indicates that retinoids, such as all trans retinoic acid (ATRA and its precursor all trans retinaldehyde (Rald, exhibit distinct and divergent transcriptional effects in metabolism. Despite these observations, the role of enzymes that control retinoid metabolism in bone remains undefined. In this study, we examined the skeletal phenotype of mice deficient in retinaldehyde dehydrogenase 1 (Aldh1a1, the enzyme responsible for converting Rald to ATRA in adult animals. Bone densitometry and micro-computed tomography (µCT demonstrated that Aldh1a1-deficient (Aldh1a1(-/- female mice had higher trabecular and cortical bone mass compared to age and sex-matched control C57Bl/6 wild type (WT mice at multiple time points. Histomorphometry confirmed increased cortical bone thickness and demonstrated significantly higher bone marrow adiposity in Aldh1a1(-/- mice. In serum assays, Aldh1a1(-/- mice also had higher serum IGF-1 levels. In vitro, primary Aldh1a1(-/- mesenchymal stem cells (MSCs expressed significantly higher levels of bone morphogenetic protein 2 (BMP2 and demonstrated enhanced osteoblastogenesis and adipogenesis versus WT MSCs. BMP2 was also expressed at higher levels in the femurs and tibias of Aldh1a1(-/- mice with accompanying induction of BMP2-regulated responses, including expression of Runx2 and alkaline phosphatase, and Smad phosphorylation. In vitro, Rald, which accumulates in Aldh1a1(-/- mice, potently induced BMP2 in WT MSCs in a retinoic acid receptor (RAR-dependent manner, suggesting that Rald is involved in the BMP2 increases seen in Aldh1a1 deficiency in vivo. Collectively, these data implicate Aldh1a1 as a novel determinant of cortical bone density and marrow adiposity in the skeleton in vivo through modulation of BMP signaling.

  17. Local expression and role of BMP-2/4 in injured spinal cord.

    Science.gov (United States)

    Cui, Z S; Zhao, P; Jia, C X; Liu, H J; Qi, R; Cui, J W; Cui, J H; Peng, Q; Lin, B; Rao, Y J

    2015-08-07

    We investigated local changes in BMP-2/4 expression in rat spinal cords 1 week following injury to study the damage effects of BMP-2/4 in spinal cord injury (SCI). Sprague Dawley rats (45, 4 months old) were randomized into three groups comprising 15 rats each: a SHAM group, an SCI without noggin group (SCIO), and an SCI with noggin group (SCID). The SCIO and SCID groups were subjected to spinal cord hemisection, and motor activity was assessed using the BBB score. Expression of BMP-2/4 in each injured spinal cord section was examined by hematoxylin and eosin staining, immunohistochemistry, and western blot. There were no significant differences in BBB scores among the three groups (P > 0.05). Following hemisection, the BBB score in the SHAM group was significantly higher than in the other two groups on the 1st day after modeling (P 0.05). Seven days after modeling, the BBB score in the SHAM group was significantly higher than in the other two groups (P < 0.05), and the BBB score in the SCID group was obviously higher than in the SCIO group (P < 0.05). The expression of BMP-2/4 was highest in the SCIO group and lowest in the SHAM group (P < 0.05). SCI can cause severe impairment of motor activity in rats. Seven days after SCI, the local expression of BMP-2/4 had obviously increased; noggin can effectively inhibit the expression of BMP-2/4 and reduce impairment.

  18. Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure

    Directory of Open Access Journals (Sweden)

    Nusinowitz Steven

    2001-11-01

    Full Text Available Abstract Background Glaucoma is a blinding disease usually associated with high intraocular pressure (IOP. In some families, abnormal anterior segment development contributes to glaucoma. The genes causing anterior segment dysgenesis and glaucoma in most of these families are not identified and the affected developmental processes are poorly understood. Bone morphogenetic proteins (BMPs participate in various developmental processes. We tested the importance of Bmp4 gene dosage for ocular development and developmental glaucoma. Results Bmp4+/- mice have anterior segment abnormalities including malformed, absent or blocked trabecular meshwork and Schlemm's canal drainage structures. Mice with severe drainage structure abnormalities, over 80% or more of their angle's extent, have elevated IOP. The penetrance and severity of abnormalities is strongly influenced by genetic background, being most severe on the C57BL/6J background and absent on some other backgrounds. On the C57BL/6J background there is also persistence of the hyaloid vasculature, diminished numbers of inner retinal cells, and absence of the optic nerve. Conclusions We demonstrate that heterozygous deficiency of BMP4 results in anterior segment dysgenesis and elevated IOP. The abnormalities are similar to those in human patients with developmental glaucoma. Thus, BMP4 is a strong candidate to contribute to Axenfeld-Rieger anomaly and other developmental conditions associated with human glaucoma. BMP4 also participates in posterior segment development and wild-type levels are usually critical for optic nerve development on the C57BL/6J background. Bmp4+/- mice are useful for studying various components of ocular development, and may allow identification of strain specific modifiers affecting a variety of ocular phenotypes.

  19. BMP7 transfection induces in-vitro osteogenic differentiation of dental pulp mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Ka Po John Yau

    2013-01-01

    Full Text Available Objective: To assess whether in-vitro osteogenic differentiation of human dental pulp mesenchymal stem cells can be induced by transient transfection with the gene encoding human bone morphogenic protein 7 (BMP7. Materials and Methods: A mesenchymal stem cell population was isolated from the dental pulp of two extracted permanent premolars, expanded and characterized. The human BMP7 gene, as a recombinant pcDNA3.1/V5-His-TOPO-BMP7 plasmid, was transfected into the cells. Three negative controls were used: No plasmid, empty vector, and an unrelated vector encoding green fluorescent protein. After the interval of 24 and 48 h, mRNA levels of alkaline phosphatase and osteocalcin as markers of in-vitro osteogenic differentiation were measured by real-time polymerase chain reaction and standardized against β-actin mRNA levels. Results: The level of alkaline phosphatase mRNA was significantly higher for the BMP7 group than for all three negative controls 48 h after transfection (706.9 vs. 11.24 for untransfected cells, 78.05 for empty vector, and 73.10 for green fluorescent protein vector. The level of osteocalcin mRNA was significantly higher for the BMP7 group than for all three negative controls 24 h after transfection (1.0, however, decreased after another 24 h. Conclusions: In-vitro osteoblastic differentiation of human dental pulp mesenchymal stem cells, as indicated by expression of alkaline phosphatase and osteocalcin, can be induced by transient transfection with the BMP7 gene.

  20. Report of a newly indentified patient with mutations in BMP1 and underlying pathogenetic aspects

    DEFF Research Database (Denmark)

    Valencia, María; Caparrós-Martin, Jose A; Sirerol-Piquer, María Salomé;

    2014-01-01

    Osteogenesis imperfecta is a genetic condition characterized by bone fragility and recurrent fractures, which in the large majority of patients are caused by defects in the production of type I collagen. Mutations in the gene encoding bone morphogenetic protein 1 (BMP1, also known as procollagen C......-endopeptidase) have been associated with osteogenesis imperfecta in two sib pairs. In this report, we describe an additional patient with osteogenesis imperfecta with normal bone density and a recurrent, homozygous c.34G>C mutation in BMP1. Western blot analysis of dermal fibroblasts from this patient showed...

  1. EXPRESSION OF rhBMP-7 GENE IN TRANSDUCED BONE MARROW DERIVED STROMAL CELLS

    Institute of Scientific and Technical Information of China (English)

    段德宇; 杜靖远; 王洪; 刘勇; 郭晓东

    2002-01-01

    Objective. To explore the possibility of expression of exogenous gene in transduced bone marrow derived stromal cells(BMSCs). Methods. The marker gene , pbLacZ, was transferred into cultured BMSCs and the expression of transduced gene by X-gal staining was examined. Then plasmid pcDNA3-rhBMP7 was delivered to cultured BMSCs. Through immunohistochemical staining and RT-PCR assay, the expression of rhBMP7 gene was detected. Results. The exogenous gene could be expressed efficiently in transduced BMSCs. Conculsion. The present study provided a theoretical basis to gene therapy on the problems of bone and cartilage tissue.

  2. Perlecan domain 1 recombinant proteoglycan augments BMP-2 activity and osteogenesis

    Directory of Open Access Journals (Sweden)

    DeCarlo Arthur A

    2012-09-01

    Full Text Available Abstract Background Many growth factors, such as bone morphogenetic protein (BMP-2, have been shown to interact with polymers of sulfated disacharrides known as heparan sulfate (HS glycosaminoglycans (GAGs, which are found on matrix and cell-surface proteoglycans throughout the body. HS GAGs, and some more highly sulfated forms of chondroitin sulfate (CS, regulate cell function by serving as co-factors, or co-receptors, in GF interactions with their receptors, and HS or CS GAGs have been shown to be necessary for inducing signaling and GF activity, even in the osteogenic lineage. Unlike recombinant proteins, however, HS and CS GAGs are quite heterogenous due, in large part, to post-translational addition, then removal, of sulfate groups to various positions along the GAG polymer. We have, therefore, investigated whether it would be feasible to deliver a DNA pro-drug to generate a soluble HS/CS proteoglycan in situ that would augment the activity of growth-factors, including BMP-2, in vivo. Results Utilizing a purified recombinant human perlecan domain 1 (rhPln.D1 expressed from HEK 293 cells with HS and CS GAGs, tight binding and dose-enhancement of rhBMP-2 activity was demonstrated in vitro. In vitro, the expressed rhPln.D1 was characterized by modification with sulfated HS and CS GAGs. Dose-enhancement of rhBMP-2 by a pln.D1 expression plasmid delivered together as a lyophilized single-phase on a particulate tricalcium phosphate scaffold for 6 or more weeks generated up to 9 fold more bone volume de novo on the maxillary ridge in a rat model than in control sites without the pln.D1 plasmid. Using a significantly lower BMP-2 dose, this combination provided more than 5 times as much maxillary ridge augmentation and greater density than rhBMP-2 delivered on a collagen sponge (InFuse™. Conclusions A recombinant HS/CS PG interacted strongly and functionally with BMP-2 in binding and cell-based assays, and, in vivo, the pln.247 expression plasmid

  3. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  4. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

    Science.gov (United States)

    Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D’Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Maria Larocca, Luigi; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis. PMID:25919028

  5. BMP-2 up-regulates PTEN expression and induces apoptosis of pulmonary artery smooth muscle cells under hypoxia.

    Directory of Open Access Journals (Sweden)

    Weifeng Pi

    Full Text Available AIM: To investigate the role of bone morphogenetic protein 2 (BMP-2 in regulation of phosphatase and tensin homologue deleted on chromosome ten (PTEN and apoptosis of pulmonary artery smooth muscle cells (PASMCs under hypoxia. METHODS: Normal human PASMCs were cultured in growth medium (GM and treated with BMP-2 from 5-80 ng/ml under hypoxia (5% CO(2+94% N(2+1% O(2 for 72 hours. Gene expression of PTEN, AKT-1 and AKT-2 were determined by quantitative RT-PCR (QRT-PCR. Protein expression levels of PTEN, AKT and phosph-AKT (pAKT were determined. Apoptosis of PASMCs were determined by measuring activities of caspases-3, -8 and -9. siRNA-smad-4, bpV(HOpic (PTEN inhibitor and GW9662 (PPARγ antagonist were used to determine the signalling pathways. RESULTS: Proliferation of PASMCs showed dose dependence of BMP-2, the lowest proliferation rate was achieved at 60 ng/ml concentration under hypoxia (82.2±2.8%. BMP-2 increased PTEN gene expression level, while AKT-1 and AKT-2 did not change. Consistently, the PTEN protein expression also showed dose dependence of BMP-2. AKT activity significantly reduced in BMP-2 treated PASMCs. Increased activities of caspase-3, -8 and -9 of PASMCs were found after cultured with BMP-2. PTEN expression remained unchanged when Smad-4 expression was inhibited by siRNA-Smad-4. bpV(HOpic and GW9662 (PPARγ inhibitor inhibited PTEN protein expression and recovered PASMCs proliferation rate. CONCLUSION: BMP-2 increased PTEN expression under hypoxia in a dose dependent pattern. BMP-2 reduced AKT activity and increased caspase activity of PASMCs under hypoxia. The increased PTEN expression may be mediated through PPARγ signalling pathway, instead of BMP/Smad signalling pathway.

  6. 前列腺癌患者血清OPG、BMP-7和PSA的变化及其临床意义%Changes and clinical significance of serum OPG, BMP-7 and PSA in patients with prostatic cancer

    Institute of Scientific and Technical Information of China (English)

    卜劲松

    2013-01-01

    Objective:To explore the change and clinical significance of osteoprotegerin (OPG), bone morphoge-netic protein(BMP-7) and prostate specific antigen (PSA) in patients with prostatic cancer. Methods; Serum levels of OPG, BMP - 7 and PSA were measured with ELISA in 65 cases of patients with prostatic cancer, and 65 healthy subjects as controls. Results: Serum OPG, BMP - 7 and PSA were higher in prostatic cancer group than those in NC group, and serum OPG, BMP - 7 in osseous metastasis group than those in group without osseous metastasis ; With the Gleason classification increase, serum OPG, BMP - 7 and PSA levels elevated. Conclusion: Serum OPG, BMP - 7 and PSA have close relations with prostatic cancer, and participated in the origin and development of the prostatic cancer, which may be the good index for diagnosing osseous metastasis of prostate cancer.%目的:探讨血清骨保护素(OPG),骨形态发生蛋白-7(BMP-7)和前列腺特有抗原(PSA)水平在前列腺癌(PCa)患者中的变化及其临床意义.方法:选取PCa患者65例和同期健康体检者65例,采用ELISA法测定血清OPG、BMP-7和PSA水平.结果:前列腺癌组血清OPG、BMP-7和PSA水平较正常对照组明显升高,且前列腺癌骨转移组OPG、BMP-7水平高于无骨转移组;随着Gleason分级升高,OPG、BMP-7和PSA表达量均有升高趋势.结论:血清OPG、BMP-7和PSA与PCa关系密切,参与了PCa的发生和发展,血清OPG、BMP-7可能为诊断前列腺癌骨转移的良好指标.

  7. Construction and Identification of PIRES-BMP2-TGFβ3 Bicistronic Eukayotic Expression Vector%双基因真核表达载体pIRES-BMP2-TGFβ3的构建与鉴定

    Institute of Scientific and Technical Information of China (English)

    马小松; 王英振; 王昌耀; 刘金钊

    2011-01-01

    Objective: To construct a bicistronic eukayotic expression vector pIRES-BMP2-TGF. Methods: The BMP2 gene was obtained from pGEMT/BMP2 plasmid by PCR. And it was inserted into bicistronic eukaryotic expression plasmid vector pIRES. The TGFP 3 was extracted from human embryonal tissue by RT-PCR, then the gene was inserted into the plasmid pIRES-BMP2. The inserted target genes in the plasmid were detected by restriction enzyme digestion and nucleotide sequencing. Results: The direction and sequences of the new bicistronic eukaryotic expression vector pIRES-BMP2-TGFβ3 were correct. Conclusion: The bicistronic eukaryotic expression vector was successfully constructed.%目的:构建与鉴定骨形态发生蛋白BMP2和转化生长因子TGFβ3双基因真核表达载体pIRES-BMP2-TGFβ3.方法:首先,用PCR方法从质粒pGEMT/BMP2中扩增出BMP2基因全长,并将其连入双基因真核表达载体pIRES,得到质粒pIRES-BMP2,其次,从人胚胎组织提取总RNA,反转录成cDNA,以反转录的cDNA为模板,PCR扩增出TGFβ3基因全长,将TGFβ3基因连入质粒pIRES-BMP2;用酶切的方法筛选出阳性重组质粒,并进行测序鉴定.结果:酶切鏊定证明已将BMP2和TGFβ3两个基因连入载体中,测序结果完全正确.结论:成功构建PIRES-BMP2/TGFβ3双基因真核表达载体.

  8. Heterodimeric BMP-2/7 antagonizes the inhibition of all-trans retinoic acid and promotes the osteoblastogenesis.

    Directory of Open Access Journals (Sweden)

    Wenjuan Bi

    Full Text Available OBJECTIVES: Hypervitaminosis A and alcoholism can result in a low mineral density and compromised regenerative capacity of bone, thus delaying implant osteointegration. The inhibitory effect of all-trans retinoic acid on osteoblastogenesis is considered to be one of the mechanisms. We hypothesized that heterodimeric bone morphogenetic protein-2/7 could antagonize all-trans retinoic acid and enhance osteoblastogenesis, with an aim to accelerate and enhance bone regeneration and implant osteointegration. MATERIALS AND METHODS: We applied 5 ng/ml or 50 ng/ml bone morphogenetic protein-2/7 to restore the osteoblastogenesis of pre-osteoblasts (MC3T3-E1 cell line that was inhibited by 1 µM all-trans retinoic acid. We evaluated the efficacy by assessing cell numbers (proliferation, alkaline phosphatase activity (a marker for early differentiation, osteocalcin (a marker for late differentiation, calcium deposition (a marker for final mineralization and the expression of osteoblastogenic genes (such as Runx2, Collagen Ia, alkaline phosphatase and osteocalcin at different time points. RESULTS: All-trans retinoic acid significantly inhibited the expression of all the tested osteoblastogenic genes and proteins except alkaline phosphatase activity. In the presence of ATRA, 50 ng/ml bone morphogenetic protein-2/7 not only completely restored but also significantly enhanced all the osteoblastogenic genes and proteins. On the 28(th day, mineralization was completely inhibited by all-trans retinoic acid. In contrast, 50 ng/ml BMP-2/7 could antagonize ATRA and significantly enhance the mineralization about 2.5 folds in comparison with the control treatment (no ATRA, no BMP2/7. CONCLUSIONS: Heterodimeric bone morphogenetic protein-2/7 bears a promising application potential to significantly promote bone regeneration and implant osteointegration for the patients with hypervitaminosis A and alcoholism.

  9. Study on the bio-methane yield and microbial community structure in enzyme enhanced anaerobic co-digestion of cow manure and corn straw.

    Science.gov (United States)

    Wang, Xuemei; Li, Zifu; Zhou, Xiaoqin; Wang, Qiqi; Wu, Yanga; Saino, Mayiani; Bai, Xue

    2016-11-01

    The use of enzymes to improve anaerobic co-digestion (AcoD) of cow manure and corn straw was explored in this study, including cellulase pretreatment and direct additions of amylase and protease. The effects of enzymes on microbial community structure were investigated though PCR-DGGE method. Results showed that AcoD with amylase achieved the highest methane yield of 377.63ml·CH4/g·VS, which was an increase of 110.79%. The methane increment consumed the amylase of 4.18×10(-5)g/ml·CH4. Enzymes mainly affected the bacteria in the hydrolysis stage rather than the bacteria in the hydrogenesis and acetogenesis stage and the archaea in the methanogenesis stage. However, the experimental results demonstrated that enzymes had no negative influence on microbial communities; the predominant microbial communities were similar. Therefore, AcoD with amylase was an effective way to improve the bio-methane yield of cow manure and corn straw.

  10. Co-generation of biohydrogen and biomethane through two-stage batch co-fermentation of macro- and micro-algal biomass.

    Science.gov (United States)

    Ding, Lingkan; Cheng, Jun; Xia, Ao; Jacob, Amita; Voelklein, Markus; Murphy, Jerry D

    2016-10-01

    Aquatic micro-algae can be used as feedstocks for gaseous biofuel production via biological fermentation. However, micro-algae usually have low C/N ratios, which are not advantageous for fermentation. In this study, carbon-rich macro-algae (Laminaria digitata) mixed with nitrogen-rich micro-algae (Chlorella pyrenoidosa and Nannochloropsis oceanica) were used to maintain a suitable C/N ratio of 20 for a two-stage process combining hydrogen and methane fermentation. Co-fermentation of L. digitata and micro-algae facilitated hydrolysis and acidogenesis, resulting in hydrogen yields of 94.5-97.0mL/gVS; these values were 15.5-18.5% higher than mono-fermentation using L. digitata. Through the second stage of methane co-fermentation, a large portion of energy remaining in the hydrogenogenic effluents was recovered in the form of biomethane. The two-stage batch co-fermentation markedly increased the energy conversion efficiencies (ECEs) from 4.6-6.6% during the hydrogen fermentation to 57.0-70.9% in the combined hydrogen and methane production.

  11. 颌骨牙骨质化纤维瘤中BMP-2的表达及其意义%The expression of BMP-2 in cementifying fibroma of the jaw and its clinical significance

    Institute of Scientific and Technical Information of China (English)

    黄宏杰; 平飞云; 彭加萍

    2006-01-01

    目的观察颌骨牙骨质化纤维瘤(cementifying fibroma,CF)中骨形成蛋白-2(BMP-2)的表达,探讨其与牙骨质小体及牙骨质样物质形成的关系.方法采用原位杂交和免疫组化方法对10例CF标本进行BMP-2mRNA和BMP-2蛋白的检测.结果 10例CF标本中,9例有BMP-2mRNA表达,7例有BMP-2蛋白表达,阳性信号位于牙骨质小体及牙骨质样物质周围环绕的短梭形细胞,以及瘤样增生的纤维组织中的多数纤维母细胞和部分纤维细胞胞质中,未钙化的牙骨质基质也有BMP-2蛋白表达.结论 BMP-2在CF中的表达可能与牙骨质小体及牙骨质样物质的形成有关.

  12. BMP2 Mediates Decorin-induced Vascular Smooth Muscle Cell Calcification%BMP2参与Decorin诱导的血管平滑肌细胞钙化

    Institute of Scientific and Technical Information of China (English)

    颜建云; 周芹; 陈燕玲; 宋艳; 陆立鹤

    2014-01-01

    [目的]阐明BMP2是否参与了Decorin诱导的血管平滑肌细胞(VSMC)钙化.[方法]本研究采用人血管平滑肌细胞钙化体外模型,用腺病毒载体过表达Decorin,检测骨相关蛋白BMP2、Msx2、Osterix的表达和细胞钙化程度.观察抑制或增加BMP2信号对Decorin诱导的血管平滑肌细胞钙化和Msx2、Osterix表达的影响.[结果]Decorin能促进人血管平滑肌细胞钙化,同时上调BMP2、Msx2、Osterix的表达水平.抑制BMP2能减轻Decorin诱导的细胞钙化,而增加BMP2加速Decorin诱导的细胞钙化.[结论]Decofin通过调节BMP2促进人血管平滑肌细胞钙化.

  13. CTLA4Ig depresses immune response of exogenous BMP2 transgenic MSC transplantation%CTLA4Ig抑制BMP2基因转染的MSCs诱导的免疫应答

    Institute of Scientific and Technical Information of China (English)

    张晓玲; 张超; 汤亭亭; 楼觉人; 戴尅戎

    2007-01-01

    目的 通过腺病毒介导人细胞毒T淋巴细胞相关抗原4免疫球蛋白(CTLA4Ig)及人骨形态发生蛋白2(BMP2)在骨髓间充质干细胞(MSCs)中的表达,探讨CTLA4Ig对BMP2转染的异基因MSCs诱导的免疫应答的抑制作用.方法 以CTLA4Ig和BMP2重组腺病毒转染MSCs.ELISA法检测包装的病毒感染MSCs后,CTLA4Ig及BMP2蛋白的表达;观察CTLA4Ig对混合淋巴细胞反应(MLR)的抑制作用.结果 腺病毒载体介导CTLA4Ig和BMP2体外感染的MSCs能够分泌CTLA4Ig及BMP2蛋白,且CTLA4Ig融合蛋白可以有效抑制AdBMP2基因转染的MSCs的刺激作用.结论 给予CTLA4Ig腺病毒进行基因治疗可有效的抑制AdBMP2转染的异基因MSCs引起的免疫应答,诱导MSCs移植耐受;为BMP2基因修饰的同种异体间的MSCs移植提供了实验依据.

  14. Wnt/β-catenin regulates the activity of Epiprofin/Sp6, SHH, FGF and BMP to coordinate the stages of odontogenesis

    Directory of Open Access Journals (Sweden)

    Maitane eAurrekoetxea

    2016-03-01

    Full Text Available Background: We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO, a specific inhibitor of GSK-3 activity. Results: Overactivatingthe Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh, Epiprofin (Epfn and Fibroblast growth factor8 (Fgf8, which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4, Fibroblast growth factor10 (Fgf10, Muscle segment homeobox 1 (Msx-1, Bone Morphogenetic protein 4 (Bmp4 and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1 were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. Conclusions: We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.

  15. Biodegradable chitosan nanoparticle coatings on titanium for the delivery of BMP-2.

    Science.gov (United States)

    Poth, Nils; Seiffart, Virginia; Gross, Gerhard; Menzel, Henning; Dempwolf, Wibke

    2015-01-08

    A simple method for the functionalization of a common implant material (Ti6Al4V) with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP) nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2), using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  16. cDNA library Table: BmP [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available BmP NA Qingsong-Haoyue whole body pupal stage mixed pHelix Site_1 Hind II M13 Forwa...rd DN236876-DN237878, DN591076-DN591089,DN985172-DN985373,DY230449-DY231514 EST[number] whole pupae body but for the skin ...

  17. Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2

    Directory of Open Access Journals (Sweden)

    Nils Poth

    2015-01-01

    Full Text Available A simple method for the functionalization of a common implant material (Ti6Al4V with biodegradable, drug loaded chitosan-tripolyphosphate (CS-TPP nanoparticles is developed in order to enhance the osseointegration of endoprostheses after revision operations. The chitosan used has a tailored degree of acetylation which allows for a fast biodegradation by lysozyme. The degradability of chitosan is proven via viscometry. Characteristics and degradation of nanoparticles formed with TPP are analyzed using dynamic light scattering. The particle degradation via lysozyme displays a decrease in particle diameter of 40% after 4 days. Drug loading and release is investigated for the nanoparticles with bone morphogenetic protein 2 (BMP-2, using ELISA and the BRE luciferase test for quantification and bioactivity evaluation. Furthermore, nanoparticle coatings on titanium substrates are created via spray-coating and analyzed by ellipsometry, scanning electron microscopy and X-ray photoelectron spectroscopy. Drug loaded nanoparticle coatings with biologically active BMP-2 are obtained in vitro within this work. Additionally, an in vivo study in mice indicates the dose dependent induction of ectopic bone growth through CS-TPP-BMP-2 nanoparticles. These results show that biodegradable CS-TPP coatings can be utilized to present biologically active BMP-2 on common implant materials like Ti6Al4V.

  18. BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells Ex Vivo

    Directory of Open Access Journals (Sweden)

    Mihaela Crisan

    2016-03-01

    Full Text Available Hematopoietic stem cells (HSC, the self-renewing cells of the adult blood differentiation hierarchy, are generated during embryonic stages. The first HSCs are produced in the aorta-gonad-mesonephros (AGM region of the embryo through endothelial to a hematopoietic transition. BMP4 and Hedgehog affect their production and expansion, but it is unknown whether they act to affect the same HSCs. In this study using the BRE GFP reporter mouse strain that identifies BMP/Smad-activated cells, we find that the AGM harbors two types of adult-repopulating HSCs upon explant culture: One type is BMP-activated and the other is a non-BMP-activated HSC type that is indirectly controlled by Hedgehog signaling through the VEGF pathway. Transcriptomic analyses demonstrate that the two HSC types express distinct but overlapping genetic programs. These results revealing the bifurcation in HSC types at early embryonic stages in the AGM explant model suggest that their development is dependent upon the signaling molecules in the microenvironment.

  19. Gremlin-2 is a BMP antagonist that is regulated by the circadian clock

    Science.gov (United States)

    Yeung, Ching-Yan Chloé; Gossan, Nicole; Lu, Yinhui; Hughes, Alun; Hensman, James J.; Bayer, Monika L.; Kjær, Michael; Kadler, Karl E.; Meng, Qing-Jun

    2014-01-01

    Tendons are prominent members of the family of fibrous connective tissues (FCTs), which collectively are the most abundant tissues in vertebrates and have crucial roles in transmitting mechanical force and linking organs. Tendon diseases are among the most common arthropathy disorders; thus knowledge of tendon gene regulation is essential for a complete understanding of FCT biology. Here we show autonomous circadian rhythms in mouse tendon and primary human tenocytes, controlled by an intrinsic molecular circadian clock. Time-series microarrays identified the first circadian transcriptome of murine tendon, revealing that 4.6% of the transcripts (745 genes) are expressed in a circadian manner. One of these genes was Grem2, which oscillated in antiphase to BMP signaling. Moreover, recombinant human Gremlin-2 blocked BMP2-induced phosphorylation of Smad1/5 and osteogenic differentiation of human tenocytes in vitro. We observed dampened Grem2 expression, deregulated BMP signaling, and spontaneously calcifying tendons in young CLOCKΔ19 arrhythmic mice and aged wild-type mice. Thus, disruption of circadian control, through mutations or aging, of Grem2/BMP signaling becomes a new focus for the study of calcific tendinopathy, which affects 1-in-5 people over the age of 50 years. PMID:24897937

  20. In Search of Biomarkers for Idiopathic Scoliosis: Leptin and BMP4 Functional Polymorphisms

    Directory of Open Access Journals (Sweden)

    Svetla Nikolova

    2015-01-01

    Full Text Available Idiopathic scoliosis (IS is the most common spinal disorder in children and adolescents. The current consensus on IS maintains that it has a multifactorial etiology with genetic predisposition factors. In the present study the association of two functional polymorphisms of leptin (rs7799039 and BMP4 (rs4898820 with susceptibility to IS and curve severity was investigated in a Bulgarian population sample. The molecular detection of the genotypes was performed by amplification followed by restriction technology. The statistical analysis was performed by Pearson’s chi-squared test. This case-control study revealed no statistically significant association between the functional polymorphisms of leptin and BMP4 and susceptibility to IS or curve progression (p>0.05. On the basis of these results the examined polymorphic variants of leptin and BMP4 could not be considered as genetic variants with predisposition effect or as risk factors for the progression of the curve. In addition, these results do not exclude a synergistic effect of the promoter polymorphisms of leptin and BMP4 in the etiology and pathogenesis of IS. The identification of molecular markers for IS could be useful for early detection and prognosis of the risk for a rapid progression of the curve. That would permit early stage treatment of the patient with the least invasive procedures.

  1. Signaling cross-talk between TGF-β/BMP and other path-ways

    Institute of Scientific and Technical Information of China (English)

    Xing Guo; Xiao-Fan Wang

    2009-01-01

    Transforming growth factor-beta(TGF-β)/bone morphogenic protein(BMP)signaling is involved in the vast majority of cellular processes and is fundamentally important during the entire life of alI metazoans.Deregulation of TGF-β/BMP activity almost invariably leads to developmental defects and/or diseases.including cancer.The proper functioning of the TGF-β/BMP pathway depends on its constitutive and extensive communication with other signaling pathways,leading to synergistic or antagonistic effects and eventually desirable biological outcomes.The nature of such signaling cross-talk iS overwhelmingly complex and highly context-dependent.Here we review the difierent modes of cross-talk between TGF-β/BMP and the signaling pathways of Mitogen-activated protein kinase,phosphatidyIinositoI-3 kinase/Akt,Wnt,Hedgehog,Notch,and the interleukin/interferon-gamma/tumor necrosis factor-alpha cytokines,with an emphasis on the underlying molecular mechanisms.

  2. Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Lingling Feng

    2016-05-01

    Full Text Available Sorely missing from the “toolkit” for directed differentiation of stem/progenitor cells are agonists of the BMP-signaling pathway. Using a high-throughput chemical screen, we discovered that PD407824, a checkpoint kinase 1 (CHK1 inhibitor, increases the sensitivity of cells to sub-threshold amounts of BMP4. We show utility of the compound in the directed differentiation of human embryonic stem cells toward mesoderm or cytotrophoblast stem cells. Blocking CHK1 activity using pharmacological compounds or CHK1 knockout using single guide RNA (sgRNA confirmed that CHK1 inhibition increases the sensitivity to BMP4 treatment. Additional mechanistic studies indicate that CHK1 inhibition depletes p21 levels, thereby activating CDK8/9, which then phosphorylates the SMAD2/3 linker region, leading to decreased levels of SMAD2/3 protein and enhanced levels of nuclear SMAD1. This study provides insight into mechanisms controlling the BMP/transforming growth factor beta (TGF-β signaling pathways and a useful pharmacological reagent for directed differentiation of stem cells.

  3. YAP stabilizes SMAD1 and promotes BMP2-induced neocortical astrocytic differentiation.

    Science.gov (United States)

    Huang, Zhihui; Hu, Jinxia; Pan, Jinxiu; Wang, Ying; Hu, Guoqing; Zhou, Jiliang; Mei, Lin; Xiong, Wen-Cheng

    2016-07-01

    ‪YAP (yes-associated protein), a key transcriptional co-factor that is negatively regulated by the Hippo pathway, is crucial for the development and size control of multiple organs, including the liver. However, its role in the brain remains unclear. Here, we provide evidence for YAP regulation of mouse neocortical astrocytic differentiation and proliferation. YAP was undetectable in neurons, but selectively expressed in neural stem cells (NSCs) and astrocytes. YAP in NSCs was required for neocortical astrocytic differentiation, with no apparent role in self-renewal or neural differentiation. However, YAP in astrocytes was necessary for astrocytic proliferation. Yap (Yap1) knockout, Yap(nestin) conditional knockout and Yap(GFAP) conditional knockout mice displayed fewer neocortical astrocytes and impaired astrocytic proliferation and, consequently, death of neocortical neurons. Mechanistically, YAP was activated by BMP2, and the active/nuclear YAP was crucial for BMP2 induction and stabilization of SMAD1 and astrocytic differentiation. Expression of SMAD1 in YAP-deficient NSCs partially rescued the astrocytic differentiation deficit in response to BMP2. Taken together, these results identify a novel function of YAP in neocortical astrocytic differentiation and proliferation, and reveal a BMP2-YAP-SMAD1 pathway underlying astrocytic differentiation in the developing mouse neocortex.

  4. Experimental Research on Ectopic Osteogenesis of BMP2-derived Peptide P24 Combined with PLGA Copolymers

    Institute of Scientific and Technical Information of China (English)

    DUAN Zhixia; ZHENG Qixin; GUO Xiaodong; YUAN Quan; CHEN Shunguang

    2007-01-01

    To experimentally evaluate the ectopic osteogenetic capacity of synthesized BMP2-derived peptide P24 combined with poly lactic-co-glycolic acid (PLGA), Wistar rats were divided into two groups: group A, in which BMP2-derived peptide P24/PLGA complex was implanted,and group B which received simple PLGA implant. The complex was respectively implanted into the back muscles of rats. Samples were taken the 1 st, 4 th, 8 th, and the 12 th week after the implantation.Their bone formation was detected by X-ray examination, and tissue response was histologically observed. Western blotting was used for the detection of the expression of collagen Ⅰ (Col- Ⅰ ) and osteopontin (OPN). There was acute inflammation in the tissue around both types of implants at early stage. The cartilage was found around implant areas 4 weeks after the implantation of BMP2-derived peptide p24/PLGA complex, 8 weeks after the implantation, osteoblasts were found, and 12 weeks after the implantation, typical trabecular bone structure was observed. In group B, after 12 weeks, no osteoblasts were found. It is concluded that PLGA is an ideal scaffold material for bone tissue engineering. BMP2-derived peptide can start endochondral ossification and is more effective in inducing ectopic osteogenesis.

  5. Nanotubes Functionalized with BMP2 Knuckle Peptide Improve the Osseointegration of Titanium Implants in Rabbits.

    Science.gov (United States)

    Ma, Yuanping; Zhang, Zhenting; Liu, Yiran; Li, Hongyi; Wang, Na; Liu, Wenwen; Li, Wenjun; Jin, Lingling; Wang, Jinshu; Chen, Su

    2015-02-01

    To determine the effects of surface modification on implant osseointegration in vivo, we first immobilized polydopamine onto 70-nm diameter TiO2 nanotubes as an intermediate layer, and then conjugated a 21 amino acid peptide sequence (the so-called "knuckle peptide") of bone morphogenetic protein-2 (BMP-2) onto the nanotubes created by electrochemical anodization. We inserted these implants into the tibiae of rabbits and measured the gene expression and bone formation around them. The successful fabrication of BMP-2 knuckle peptide was confirmed by contact angle measurement, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The histological features and the amount of bone fluorescence around the implants on non-decalcified sections were investigated at 3, 5, 8, and 12 weeks after implantation using traditional light and fluorescence microscopy, and the gene expression of alkaline phosphatase, osterix, collagen-I, and tartrate-resistant acid phosphatase was examined by real-time PCR at 1, 2, 3, 4, and 5 weeks after implantation. The results demonstrated a significant increase in bone-implant contact, quantity of fluorescence, and gene expression levels of the bone attached to implants with immobilized BMP-2 knuckle peptide compared with the other two control groups. In conclusion, the surface functionalization of TiO2 nanotubes with BMP-2 knuckle peptide was beneficial for osseointegration and this approach could be further developed to improve Ti-based implants for various applications.

  6. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction.

    Science.gov (United States)

    Steventon, Ben; Araya, Claudio; Linker, Claudia; Kuriyama, Sei; Mayor, Roberto

    2009-03-01

    The neural crest is induced by a combination of secreted signals. Although previous models of neural crest induction have proposed a step-wise activation of these signals, the actual spatial and temporal requirement has not been analysed. Through analysing the role of the mesoderm we show for the first time that specification of neural crest requires two temporally and chemically different steps: first, an induction at the gastrula stage dependent on signals arising from the dorsolateral mesoderm; and second, a maintenance step at the neurula stage dependent on signals from tissues adjacent to the neural crest. By performing tissue recombination experiments and using specific inhibitors of different inductive signals, we show that the first inductive step requires Wnt activation and BMP inhibition, whereas the later maintenance step requires activation of both pathways. This change in BMP necessity from BMP inhibition at gastrula to BMP activation at neurula stages is further supported by the dynamic expression of BMP4 and its antagonists, and is confirmed by direct measurements of BMP activity in the neural crest cells. The differential requirements of BMP activity allow us to propose an explanation for apparently discrepant results between chick and frog experiments. The demonstration that Wnt signals are required for neural crest induction by mesoderm solves an additional long-standing controversy. Finally, our results emphasise the importance of considering the order of exposure to signals during an inductive event.

  7. Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro

    DEFF Research Database (Denmark)

    Lysdahl, Helle; Baatrup, Anette; Foldager, Casper Bindzus;

    2014-01-01

    treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are preconditioned with low concentrations of BMP2 for a short time in vitro. hMSCs in suspension were stimulated for 15 min with 10 and 20 ng/mL of BMP2. After the BMP2 was removed, the cells were seeded and cultured...... in osteogenesis was validated by findings of increased gene expression of SMAD1 and an increase in dual phosphorylation of ser 463 and ser 465 in the SMAD 1/5/8 pathway. We concluded that preconditioning hMSCs with BMP2 stimulates osteogenesis: proliferation with matrix secretion and matrix maturation of h......MSCs. This implies that preconditioning with BMP2 might be more effective at inducing proliferation and osteogenic differentiation of hMSCs than continuous stimulation. Preconditioning with BMP2 could benefit the clinical application of BMP2 since side effects from high-dose treatments could be avoided....

  8. BMP Sustains Embryonic Stem Cell Self-Renewal through Distinct Functions of Different Krüppel-like Factors

    Directory of Open Access Journals (Sweden)

    Masato Morikawa

    2016-01-01

    Full Text Available Bone morphogenetic protein (BMP signaling exerts paradoxical roles in pluripotent stem cells (PSCs; it sustains self-renewal of mouse embryonic stem cells (ESCs, while it induces differentiation in other PSCs, including human ESCs. Here, we revisit the roles of BMP-4 using mouse ESCs (mESCs in naive and primed states. SMAD1 and SMAD5, which transduce BMP signals, recognize enhancer regions together with KLF4 and KLF5 in naive mESCs. KLF4 physically interacts with SMAD1 and suppresses its activity. Consistently, a subpopulation of cells with active BMP-SMAD can be ablated without disturbing the naive state of the culture. Moreover, Smad1/5 double-knockout mESCs stay in the naive state, indicating that the BMP-SMAD pathway is dispensable for it. In contrast, the MEK5-ERK5 pathway mediates BMP-4-induced self-renewal of mESCs by inducing Klf2, a critical factor for the ground state pluripotency. Our study illustrates that BMP exerts its self-renewing effect through distinct functions of different Krüppel-like factors.

  9. Lung remodeling in a mouse model of asthma involves a balance between TGF-β1 and BMP-7.

    Directory of Open Access Journals (Sweden)

    Camila Leindecker Stumm

    Full Text Available A key event in chronic allergic asthma is the TGF-β-induced activation of fibroblasts into α-SMA-positive myofibroblasts which synthesize type-I collagen. In the present study we investigated the effect of the anti-fibrotic molecule BMP-7 in asthma. Balb/c mice were immunized i.p. with ovalbumin in alum and challenged every 2 days with ovalbumin aerosol (two or six challenges for acute and chronic protocols, respectively. The lung was evaluated for: α-SMA and type-I collagen by immunohistochemistry; BMP-7 and TGF- β1 gene expression by qRT-PCR; type-I collagen and Smads 2 and 3 by immunoblotting; mucus by PSA staining. Type-I collagen around bronchi, α-SMA, mucus secretion, TGF- β1 and BMP-7 gene expression were all increased in asthma. The TGF- β1/BMP-7 ratio was higher in the chronic group and correlated with higher levels of collagen. Fibroblasts isolated from asthmatic and healthy lungs produced type-I collagen upon stimulation with TGF- β1 via phosphorylation of Smad-2, Smad-3. Pre-treatment of the fibroblasts with BMP-7 reduced collagen production and Smads phosphorylation. Intranasal treatment of asthmatic mice with recombinant BMP-7 during the immunization protocol reduced lung inflammation and type I collagen deposition. These results suggest a protective role for BMP-7 in lung allergic inflammation, opposing the pro-fibrotic effects of TGF- β1.

  10. Nanoparticulate Mineralized Collagen Scaffolds and BMP-9 Induce a Long-Term Bone Cartilage Construct in Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Ren, Xiaoyan; Weisgerber, Daniel W; Bischoff, David; Lewis, Michael S; Reid, Russell R; He, Tong-Chuan; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-07-01

    Engineering the osteochondral junction requires fabrication of a microenvironment that supports both osteogenesis and chondrogenesis. Multiphasic scaffold strategies utilizing a combination of soluble factors and extracellular matrix components are ideally suited for such applications. In this work, the contribution of an osteogenic nanoparticulate mineralized glycosaminoglycan scaffold (MC-GAG) and a dually chondrogenic and osteogenic growth factor, BMP-9, in the differentiation of primary human mesenchymal stem cells (hMSCs) is evaluated. Although 2D cultures demonstrate alkaline phosphatase activity and mineralization of hMSCs induced by BMP-9, MC-GAG scaffolds do not demonstrate significant differences in the collagen I expression, osteopontin expression, or mineralization. Instead, BMP-9 increases expression of collagen II, Sox9, aggrecan (ACAN), and cartilage oligomeric protein. However, the hypertrophic chondrocyte marker, collagen X, is not elevated with BMP-9 treatment. In addition, histologic analyses demonstrate that while BMP-9 does not increase mineralization, BMP-9 treatment results in an increase of sulfated glycosaminoglycans. Thus, the combination of BMP-9 and MC-GAG stimulates chondrocytic and osteogenic differentiation of hMSCs.

  11. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.

    Science.gov (United States)

    Amirian, Jhaleh; Linh, Nguyen Thuy Ba; Min, Young Ki; Lee, Byong-Taek

    2015-05-01

    A composite scaffold of gelatin (Gel)-pectin (Pec)-biphasic calcium phosphate (BCP) was fabricated for the successful delivery of growth factors. Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) were coated on the Gel-Pec-BCP surface to investigate of effect of them on bone healing. Surface morphology was investigated by scanning electron microscopy, and BCP dispersion in the hydrogel scaffolds was measured by energy dispersive X-ray spectroscopy. The results obtained from Fourier transform infrared spectroscopy showed that BMP-2 and VEGF were successfully coated on Gel-Pec-BCP hydrogel scaffolds. MC3T3-E1 preosteoblasts were cultivated on the scaffolds to investigate the effect of BMP-2 and VEGF on cell viability and proliferation. VEGF and BMP-2 loaded on Gel-Pec-BCP scaffold facilitated increased cell spreading and proliferation compared to Gel-Pec-BCP scaffolds. In vivo, bone formation was examined using rat models. Bone formation was observed in Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds within 4 weeks, and was greatest with Gel-Pec-BCP/BMP-2 scaffolds. In vitro and in vivo results suggest that Gel-Pec-BCP/BMP-2 and Gel-Pec-BCP/VEGF scaffolds could enhance bone regeneration.

  12. Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation.

    Science.gov (United States)

    Yasmin, Nighat; Bauer, Thomas; Modak, Madhura; Wagner, Karin; Schuster, Christopher; Köffel, Rene; Seyerl, Maria; Stöckl, Johannes; Elbe-Bürger, Adelheid; Graf, Daniel; Strobl, Herbert

    2013-11-18

    Human Langerhans cell (LC) precursors populate the epidermis early during prenatal development and thereafter undergo massive proliferation. The prototypic antiproliferative cytokine TGF-β1 is required for LC differentiation from human CD34(+) hematopoietic progenitor cells and blood monocytes in vitro. Similarly, TGF-β1 deficiency results in LC loss in vivo. However, immunohistology studies revealed that human LC niches in early prenatal epidermis and adult basal (germinal) keratinocyte layers lack detectable TGF-β1. Here we demonstrated that these LC niches express high levels of bone morphogenetic protein 7 (BMP7) and that Bmp7-deficient mice exhibit substantially diminished LC numbers, with the remaining cells appearing less dendritic. BMP7 induces LC differentiation and proliferation by activating the BMP type-I receptor ALK3 in the absence of canonical TGF-β1-ALK5 signaling. Conversely, TGF-β1-induced in vitro LC differentiation is mediated via ALK3; however, co-induction of ALK5 diminished TGF-β1-driven LC generation. Therefore, selective ALK3 signaling by BMP7 promotes high LC yields. Within epidermis, BMP7 shows an inverse expression pattern relative to TGF-β1, the latter induced in suprabasal layers and up-regulated in outer layers. We observed that TGF-β1 inhibits microbial activation of BMP7-generated LCs. Therefore, TGF-β1 in suprabasal/outer epidermal layers might inhibit LC activation, resulting in LC network maintenance.

  13. Induction of chronic pancreatitis by pancreatic duct ligation activates BMP2, apelin, and PTHrP expression in mice.

    Science.gov (United States)

    Rastellini, Cristiana; Han, Song; Bhatia, Vandanajay; Cao, Yanna; Liu, Ka; Gao, Xuxia; Ko, Tien C; Greeley, George H; Falzon, Miriam

    2015-10-01

    Chronic pancreatitis (CP) is a devastating disease with no treatments. Experimental models have been developed to reproduce the parenchyma and inflammatory responses typical of human CP. For the present study, one objective was to assess and compare the effects of pancreatic duct ligation (PDL) to those of repetitive cerulein (Cer)-induced CP in mice on pancreatic production of bone morphogenetic protein-2 (BMP2), apelin, and parathyroid hormone-related protein (PTHrP). A second objective was to determine the extent of cross talk among pancreatic BMP2, apelin, and PTHrP signaling systems. We focused on BMP2, apelin, and PTHrP since these factors regulate the inflammation-fibrosis cascade during pancreatitis. Findings showed that PDL- and Cer-induced CP resulted in significant elevations in expression and peptide/protein levels of pancreatic BMP2, apelin, and PTHrP. In vivo mouse and in vitro pancreatic cell culture experiments demonstrated that BMP2 stimulated pancreatic apelin expression whereas apelin expression was inhibited by PTHrP exposure. Apelin or BMP2 exposure inhibited PTHrP expression, and PTHrP stimulated upregulation of gremlin, an endogenous inhibitor of BMP2 activity. Transforming growth factor-β (TGF-β) stimulated PTHrP expression. Together, findings demonstrated that PDL- and Cer-induced CP resulted in increased production of the pancreatic BMP2, apelin, and PTHrP signaling systems and that significant cross talk occurred among pancreatic BMP2, apelin, and PTHrP. These results together with previous findings imply that these factors interact via a pancreatic network to regulate the inflammation-fibrosis cascade during CP. More importantly, this network communicated with TGF-β, a key effector of pancreatic pathophysiology. This novel network may be amenable to pharmacologic manipulations during CP in humans.

  14. Effects of BMP2 and VEGF165 on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells.

    Science.gov (United States)

    Lin, Zhaowei; Wang, Jiang-Sheng; Lin, Lijun; Zhang, Jingwen; Liu, Yunlong; Shuai, Ming; Li, Qi

    2014-03-01

    Bone marrow-derived mesenchymal stem cells (MSCs) are dominant seed cell sources for bone regeneration. Bone morphogenetic proteins (BMPs) initiate cartilage and bone formation in a sequential cascade. Vascular endothelial growth factor (VEGF) is an essential coordinator of extracellular matrix remodeling, angiogenesis and bone formation. In the present study, the effects of the vascular endothelial growth factor 165 (VEGF165) and bone morphogenetic protein 2 (BMP2) genes on bone regeneration were investigated by the lentivirus-mediated cotransfection of the two genes into rat bone marrow-derived MSCs. The successful co-expression of the two genes in the MSCs was confirmed using quantitative polymerase chain reaction (qPCR) and western blot analysis. The results of alizarin red and alkaline phosphatase (ALP) staining at 14 days subsequent to transfection showed that the area of staining in cells transfected with BMP2 alone was higher than that in cells transfected with BMP2 and VEGF165 or untransfected control cells, while the BMP2 + VEGF165 group showed significantly more staining than the untransfected control. This indicated that BMP2 alone exhibited a stronger effect in bone regeneration than BMP2 in combination with VEGF165. Similarly, in inducing culture medium, the ALP activity of the BMP2 + VEGF165 group was notably suppressed compared with that of the BMP2 group. The overexpression of VEGF165 inhibited BMP2-induced MSC differentiation and osteogenesis in vitro. Whether or not local VEGF gene therapy is likely to affect bone regeneration in vivo requires further investigation.

  15. Effect of growth factors (BMP-4/7 & bFGF on proliferation & osteogenic differentiation of bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Shaohui Yuan

    2013-01-01

    Full Text Available Background & objectives: BMP (bone morphogenetic protein-4/7 and bFGF (basic fibroblast growth factor significantly promote the osteogenic activity and the proliferation of rabbit BMSCs (bone marrow stromal cells, respectively. However, their synergistic effects on the proliferation and the differentiation of BMSCs remain unclear. In the present study, the effects of bFGF and BMP-4/7 were investigated on the proliferation and the differentiation of rat BMSCs in vitro. Methods: BMSCs were isolated from New Zealand white rabbits and cultured to the third passage. The samples were divided into five groups according to the material implanted: (A 80 ng/ml BMP-4/7; (B 80 ng/ml bFGF; (C 30 ng/ml BMP-4/7 and 30 ng/ml bFGF; (D 50 ng/ml BMP-4/7 and 50 ng/ml bFGF; and (E 80 ng/ml BMP-4/7 and 80 ng/ml bFGF. Cell proliferation was analyzed using methyl thiazolyl tetrazolium (MTT assay. Alkaline phosphatase activity and osteocalcin (OC dynamics were also measured. Results: BMP-4/7 alone significantly (P<0.05 promoted the proliferation of BMSCs. At the same time, it also promoted or inhibited the osteogenic differentiation of BMSCs. The synergistic effects of BMP-4/7 and bFGF significantly promoted both the proliferation and the osteogenic differentiation of BMSCs. The treatment of the synergistic effects was dose and time dependent. Interpretation & conclusions: A rational combination of BMP-4/7 and bFGF can promote the proliferation and the osteogenic differentiation of BMSCs. In addition, the synergistic functions are effective.

  16. Crosstalk of FGF-2 and BMP-2 in Osteoblastic Differentiation of Cranial Suture Cells%FGF-2与BMP-2在颅缝细胞成骨分化中的相互作用

    Institute of Scientific and Technical Information of China (English)

    姜陶然; 曹德君

    2015-01-01

    目的:探讨碱性成纤维生长因子2(FGF-2)与骨形成蛋白2(BMP-2)在颅缝细胞成骨分化中的相互作用及其机制。方法获取新生SD大鼠颅骨矢状缝及冠状缝处颅缝细胞,在培养体系中添加FGF-2,观察BMP-2表达情况。同时在培养体系中添加FGF-2及BMP-2,ALP染色、矿化染色、qPCR检测成骨标志物,观察颅缝细胞成骨分化情况。添加BMP-2抑制剂Noggin后,观察颅缝细胞成骨分化的转归。结果 FGF-2可促进BMP-2在颅缝细胞中的表达,呈浓度依赖性及时间依赖性;两者同时作用颅缝细胞可促进其晚期成骨分化,抑制其早期成骨分化。 Noggin阻断BMP-2信号通道后,FGF-2及FGF-2+BMP-2促进颅缝细胞晚期成骨分化作用均减弱。结论 BMP-2是FGF-2调控颅缝细胞晚期成骨分化不可或缺的下游因子。%Objective To explore the interaction of FGF-2 and BMP-2 in osteoblastic differentiation of calvarial suture cells. Methods Neonatal calvarial suture cells of SD rat were harvested. FGF-2 was added into cell cultures and BMP-2 expression in cranial suture cells was observed. Meanwhile, FGF-2 and BMP-2 were both added into cell cultures and the osteoblastic differentiation of cranial suture cells was observed by ALP staining, mineralized nodule staining and qPCR. Then Noggin was added to observe the changes of cells’ osteoblastic differentiation. Results BMP-2 expression increased in a time-dependent manner after the cells treated with FGF-2 and increased in a dose-dependent manner up to 50 ng/ml FGF-2, after which BMP-2 expression reached a plateau;After FGF-2 and BMP-2 co-stimulation, the expression of early marker of osteoblast differentiation (COL-1) was decreased while the expression of late markers (ALP, OC and BSP) were increased to accelerate mineralization. The natural BMP antagonist Noggin inhibited the expression of FGF2-induced OC and BSP by 1.40-fold and 1.41-fold respectively, and inhibited the

  17. Establishment of Immortalized Mouse Bmp2 Knock-Out Dental Papilla Mesenchymal Cells Necessary for Study of Odontoblastic Differentiation and Odontogenesis.

    Science.gov (United States)

    Wu, Lian; Wang, Feng; Donly, Kevin J; Wan, Chunyan; Luo, Daoshu; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-11-01

    Bmp2 is essential for dentin formation. Bmp2 cKO mice exhibited similar phenotype to dentinogenesis imperfecta, showing dental pulp exposure, hypomineralized dentin, and delayed odontoblast differentiation. As it is relatively difficult to obtain lot of primary Bmp2 cKO dental papilla mesenchymal cells and to maintain a long-term culture of these primary cells, availability of immortalized deleted Bmp2 dental papilla mesenchymal cells is critical for studying the underlying mechanism of Bmp2 signal in odontogenesis. In this study, our goal was to generate an immortalized deleted Bmp2 dental papilla mesenchymal (iBmp2(ko/ko)dp) cell line by introducing Cre recombinase and green fluorescent protein (GFP) into the immortalized mouse floxed Bmp2 dental papilla mesenchymal (iBmp2(fx/fx)dp) cells. iBmp2(ko/ko)dp cells were confirmed by GFP and PCR. The deleted Bmp2 cells exhibited slow cell proliferation rate and cell growth was arrested in G2 phase. Expression of tooth-related marker genes and cell differentiation were decreased in the deleted cells. Importantly, extracellular matrix remodeling was impaired in the iBmp2(ko/ko)dp cells as reflected by the decreased Mmp-9 expression. In addition, with exogenous Bmp2 induction, these cell differentiation and mineralization were rescued as well as extracellular matrix remodeling was enhanced. Therefore, we for the first time described establishment of iBmp(ko/ko) cells that are useful for study of mechanisms in regulating dental papilla mesenchymal cell lineages.

  18. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Science.gov (United States)

    Claros, Silvia; Rico-Llanos, Gustavo A.; Becerra, José; Andrades, José A.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo. PMID:24968268

  19. A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Silvia Claros

    2014-06-01

    Full Text Available Transforming growth factor-beta (TGF-β is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS for 10 days in the presence of rhTGF (recombinant human TGF-β1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein-2 for 4 h. During the last 2 days, dexamethasone and β-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-β1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.

  20. BMP4 and LGL1 are Down Regulated in an Ovine Model of Congenital Diaphragmatic Hernia

    Directory of Open Access Journals (Sweden)

    Heather eEmmerton-Coughlin

    2014-11-01

    Full Text Available Background/Purpose: The molecular pathophysiology of lung hypoplasia in congenital diaphragmatic hernia (CDH remains poorly understood. The Wnt signaling pathway and downstream targets, such as bone morphogenetic proteins (BMP 4 and other factors such as late gestation lung protein 1 (LGL1, are essential to normal lung development. Nitrofen-induced hypoplastic CDH rodent lungs demonstrate down regulation of the Wnt pathway including BMP4 and reduced LGL1 expression. The aim of the current study was to examine the molecular pathophysiology associated with a surgically induced CDH in an ovine model. Methods: Left thoracotomy was performed at 80 days in 14 fetal sheep; CDH was created in 7 experimental animals. Lungs were harvested at 136 days (term=145d. Lung weight and mean terminal bronchiole density (MTBD were measured to determine the degree of pulmonary hypoplasia. Quantitative real time PCR was undertaken to analyze Wnt2, Wnt7b, BMP4 and LGL1 mRNA expression. Results: Total lung weight was decreased while MTBD was increased in the CDH group (p<0.05, confirming pulmonary hypoplasia. BMP4 and LGL1 mRNA was significantly reduced in CDH lungs (p<0.05. Wnt2 mRNA was decreased, although not significantly (p<0.06. Conclusions: For the first time, down regulation of BMP4 and Lgl1 are reported in an ovine CDH model. In contrast to other animal models, these changes are persistent to near term. These findings suggest that mechanical compression from herniated viscera may play a more important role in causing pulmonary hypoplasia in CDH, rather than a primary defect in lung organogenesis.

  1. BMP receptor signaling is required for postnatal maintenance of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Ryan B Rountree

    2004-11-01

    Full Text Available Articular cartilage plays an essential role in health and mobility, but is frequently damaged or lost in millions of people that develop arthritis. The molecular mechanisms that create and maintain this thin layer of cartilage that covers the surface of bones in joint regions are poorly understood, in part because tools to manipulate gene expression specifically in this tissue have not been available. Here we use regulatory information from the mouse Gdf5 gene (a bone morphogenetic protein [BMP] family member to develop new mouse lines that can be used to either activate or inactivate genes specifically in developing joints. Expression of Cre recombinase from Gdf5 bacterial artificial chromosome clones leads to specific activation or inactivation of floxed target genes in developing joints, including early joint interzones, adult articular cartilage, and the joint capsule. We have used this system to test the role of BMP receptor signaling in joint development. Mice with null mutations in Bmpr1a are known to die early in embryogenesis with multiple defects. However, combining a floxed Bmpr1a allele with the Gdf5-Cre driver bypasses this embryonic lethality, and leads to birth and postnatal development of mice missing the Bmpr1a gene in articular regions. Most joints in the body form normally in the absence of Bmpr1a receptor function. However, articular cartilage within the joints gradually wears away in receptor-deficient mice after birth in a process resembling human osteoarthritis. Gdf5-Cre mice provide a general system that can be used to test the role of genes in articular regions. BMP receptor signaling is required not only for early development and creation of multiple tissues, but also for ongoing maintenance of articular cartilage after birth. Genetic variation in the strength of BMP receptor signaling may be an important risk factor in human osteoarthritis, and treatments that mimic or augment BMP receptor signaling should be

  2. PARM-1 promotes cardiomyogenic differentiation through regulating the BMP/Smad signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Naohiko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Takahashi, Tomosaburo, E-mail: ttaka@koto.kpu-m.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ogata, Takehiro; Adachi, Atsuo; Imoto-Tsubakimoto, Hiroko [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Ueyama, Tomomi, E-mail: toueyama-circ@umin.ac.jp [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan); Matsubara, Hiroaki [Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566 (Japan)

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer PARM-1 expression is induced during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 expression precedes Nkx2.5 and Tbx5 during cardiomyogenesis. Black-Right-Pointing-Pointer PARM-1 activates BMP/Smad signaling. Black-Right-Pointing-Pointer PARM-1 enhances cardiac specification, resulting in promoted cardiomyogenesis. -- Abstract: PARM-1, prostatic androgen repressed message-1, is an endoplasmic reticulum (ER) molecule that is involved in ER stress-induced apoptosis in cardiomyocytes. In this study, we assessed whether PARM-1 plays a role in the differentiation of stem cells into cardiomyocytes. While PARM-1 was not expressed in undifferentiated P19CL6 embryonic carcinoma cells, PARM-1 expression was induced during cardiomyogenic differentiation. This expression followed expression of mesodermal markers, and preceded expression of cardiac transcription factors. PARM-1 overexpression did not alter the expression of undifferentiated markers and the proliferative property in undifferentiated P19CL6 cells. Expression of cardiac transcription factors during cardiomyogenesis was markedly enhanced by overexpression of PARM-1, while expression of mesodermal markers was not altered, suggesting that PARM-1 is involved in the differentiation from the mesodermal lineage to cardiomyocytes. Furthermore, overexpression of PARM-1 induced BMP2 mRNA expression in undifferentiated P19CL6 cells and enhanced both BMP2 and BMP4 mRNA expression in the early phase of cardiomyogenesis. PARM-1 overexpression also enhanced phosphorylation of Smads1/5/8. Thus, PARM-1 plays an important role in the cardiomyogenic differentiation of P19CL6 cells through regulating BMP/Smad signaling pathways, demonstrating a novel role of PARM-1 in the cardiomyogenic differentiation of stem cells.

  3. Embryonic hair follicle fate change by augmented beta-catenin through Shh and Bmp signaling.

    Science.gov (United States)

    Suzuki, Kentaro; Yamaguchi, Yuji; Villacorte, Mylah; Mihara, Kenichiro; Akiyama, Masashi; Shimizu, Hiroshi; Taketo, Makoto M; Nakagata, Naomi; Tsukiyama, Tadasuke; Yamaguchi, Terry P; Birchmeier, Walter; Kato, Shigeaki; Yamada, Gen

    2009-02-01

    beta-catenin signaling is one of the key factors regulating the fate of hair follicles (HFs). To elucidate the regulatory mechanism of embryonic HF fate determination during epidermal development/differentiation, we analyzed conditional mutant mice with keratinocytes expressing constitutively active beta-catenin (K5-Cre Catnb(ex3)fl/+). The mutant mice developed scaly skin with a thickened epidermis and showed impaired epidermal stratification. The hair shaft keratins were broadly expressed in the epidermis but there was no expression of the terminal differentiation markers K1 and loricrin. Hair placode markers (Bmp2 and Shh) and follicular dermal condensate markers (noggin, patched 1 and Pdgfra) were expressed throughout the epidermis and the upper dermis, respectively. These results indicate that the embryonic epidermal keratinocytes have switched extensively to the HF fate. A series of genetic studies demonstrated that the epidermal switching to HF fate was suppressed by introducing the conditional mutation K5-Cre Catnb(ex3)fl/+Shhfl/- (with additional mutation of Shh signaling) or K5-Cre Catnb(ex3)fl/+BmprIAfl/fl (with additional mutation of Bmp signaling). These results demonstrate that Wnt/beta-catenin signaling relayed through Shh and Bmp signals is the principal regulatory mechanism underlying the HF cell fate change. Assessment of Bmp2 promoter activities suggested a putative regulation by beta-catenin signaling relayed by Shh signaling towards Bmp2. We also found that Shh protein expression was increased and expanded in the epidermis of K5-Cre Catnb(ex3)fl/+BmprIAfl/fl mice. These results indicate the presence of growth factor signal cross-talk involving beta-catenin signaling, which regulates the HF fate.

  4. Efficient retina formation requires suppression of both Activin and BMP signaling pathways in pluripotent cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Wong

    2015-03-01

    Full Text Available Retina formation requires the correct spatiotemporal patterning of key regulatory factors. While it is known that repression of several signaling pathways lead to specification of retinal fates, addition of only Noggin, a known BMP antagonist, can convert pluripotent Xenopus laevis animal cap cells to functional retinal cells. The aim of this study is to determine the intracellular molecular events that occur during this conversion. Surprisingly, blocking BMP signaling alone failed to mimic Noggin treatment. Overexpressing Noggin in pluripotent cells resulted in a concentration-dependent suppression of both Smad1 and Smad2 phosphorylation, which act downstream of BMP and Activin signaling, respectively. This caused a decrease in downstream targets: endothelial marker, xk81, and mesodermal marker, xbra. We treated pluripotent cells with dominant-negative receptors or the chemical inhibitors, dorsomorphin and SB431542, which each target either the BMP or Activin signaling pathway. We det