WorldWideScience

Sample records for biomembrane mimetic polymer

  1. Effects of anchored flexible polymers on mechanical properties of model biomembranes

    CERN Document Server

    Wu, Hao; 10.1063/1.4794653

    2013-01-01

    We have studied biomembranes with grafted polymer chains using a coarse-grained membrane simulation, where a meshless membrane model is combined with polymer chains. We focus on the polymer-induced entropic effects on mechanical properties of membranes. The spontaneous curvature and bending rigidity of the membranes increase with increasing polymer density. Our simulation results agree with the previous theoretical predictions.

  2. Molecular modeling in confined polymer and biomembrane systems

    Directory of Open Access Journals (Sweden)

    Jayeeta Ghosh

    2009-07-01

    Full Text Available The computational study of soft materials under confinement for bio- and nanotechnology still poses significantchallenges but has come a long way in the last decade. It is possible to realistically model and understand the fundamentalmechanisms which are at play if soft materials are confined to nanometer dimensions. Here, we present several recentexamples of such studies. Thin polymer films are abundantly used as friction modifiers or steric stabilizers. We show howsystematic modeling can shed light on the interplay between entropic and energetic interactions. Thin glassy films arecritical for the success of nanolithography. For that we have to understand the effect of confinement on the glass transitionbehavior in order to guarantee the stability and integrity of the lithographic masks. Simulations aim to understand the fundamental differences in the densities of states of glass formers in bulk and under confinement. With the advent of bionanotechnology the structure and phase behavior of lipid membranes as models for cellular membranes at the nano scale length is of importance due to implications in understanding the role of the lipids in biochemical membrane processes.

  3. Modeling biomembranes.

    Energy Technology Data Exchange (ETDEWEB)

    Plimpton, Steven James; Heffernan, Julieanne; Sasaki, Darryl Yoshio; Frischknecht, Amalie Lucile; Stevens, Mark Jackson; Frink, Laura J. Douglas

    2005-11-01

    Understanding the properties and behavior of biomembranes is fundamental to many biological processes and technologies. Microdomains in biomembranes or ''lipid rafts'' are now known to be an integral part of cell signaling, vesicle formation, fusion processes, protein trafficking, and viral and toxin infection processes. Understanding how microdomains form, how they depend on membrane constituents, and how they act not only has biological implications, but also will impact Sandia's effort in development of membranes that structurally adapt to their environment in a controlled manner. To provide such understanding, we created physically-based models of biomembranes. Molecular dynamics (MD) simulations and classical density functional theory (DFT) calculations using these models were applied to phenomena such as microdomain formation, membrane fusion, pattern formation, and protein insertion. Because lipid dynamics and self-organization in membranes occur on length and time scales beyond atomistic MD, we used coarse-grained models of double tail lipid molecules that spontaneously self-assemble into bilayers. DFT provided equilibrium information on membrane structure. Experimental work was performed to further help elucidate the fundamental membrane organization principles.

  4. PREFACE: Biomembranes

    Science.gov (United States)

    Templer, Richard

    2006-07-01

    In the early 1980s Goran Lindblom and Ake Wieslander, and then Sol Gruner, independently suggested that stored stresses in biological membranes had a regulatory effect on the biological activity of proteins that interacted with the membrane. Interestingly, the evidence for this came from biological observation in the case of Lindblom and Wieslander, and physical in the case of Gruner. The work that has subsequently grown from these seeds has continued to flourish in the multidisciplinary soil that lies between physics, chemistry, biochemistry and cell biology, and in this collection of work we have exemplars of where the progeny of these early ideas have flourished. The papers contain both review, opinion and recent research on biomembranes and span physical measurement of simplified model systems, theory and computational modelling of biomembranes from atomistic to continuum, and the measurement and modelling of the interaction between membrane and protein with specific regard to how protein behaviour is modulated by the membrane. Over the last decade it has become increasingly evident that the biological membrane is more than a simple partitioner of cellular space. It interacts with its surroundings in elegant and surprising ways and is an integral part of the cell's machinery for controlling biochemical dynamics. As life scientists uncover and describe more of the membrane machinery it is becoming increasingly clear that our underlying understanding of membrane behaviour and the application of new tools to measure phenomena that are currently only qualitatively understood will be critical to our ability to understand how the complex molecular machinery at the cell membrane works. I believe that this is a significant and intriguing challenge for the community of physical scientists and this collection of articles is a window onto the science that lies ahead.

  5. Study on Mimetic Peroxidase and Molecular Recognition of Phenols With Inclusion Complex of *Ironporphyrin Immobilized by β-CD Polymer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    β-Cyclodextrin (β-CD) and its cross-linke d polymer (β-CDP) were known as the mimetic models.Metalloporphyrin had been widely used in the enzymatic method of analysis and molecular recognition. In present work, it was investigation that supramolecular recognition for halogenated phenols, three cresols,three nitrophenols and three aminophenols, served respectively as the substrate of the mimetic receptor,iron-5,10,15,20-tetrakis (sulforphenyl)-21H, 23H-porphine (FeTPPS) or FeTPPS-ββ-CDP. Supramolecular complex, FeTPPS-β-CDP with tunction of mult i-recognition and induced-fit, was a advanced kind of mimetic peroxidase; Methyl phenol or polyphenol was the substitute of chlorophenic acid, while aminophenols and other phenols were suggested not to be utilized to enzymatic assay of H2O2. Being a mimetic enzyme mimicking the space structure of overall proteinase, beaimed by immobilized mimetic enzyme with a large number of β-CD interior cavities, chlorophenol was identified optimal substrate in the system tested.

  6. Molecularly imprinted polymer diffraction grating as label-free optical bio(mimetic)sensor.

    Science.gov (United States)

    Barrios, C A; Zhenhe, C; Navarro-Villoslada, F; López-Romero, D; Moreno-Bondi, M C

    2011-01-15

    Micropatterned molecularly imprinted polymer (MIP) transmissive 2D diffraction gratings (DGs) are fabricated and evaluated as label-free antibiotic bio(mimetic)sensors. Polymeric gratings are prepared by using microtransfer molding based on SiO(2)/Si molds. The morphology of the MIP gratings is studied by optical and atomic force microscopes. MIP 2D-DGs exhibit 2D optical diffraction patterns, and measurement of changes in diffraction efficiency is used as sensor response. The refractive index of the micropatterned MIP material was estimated, via solvent index matching experiments, to be 1.486. Immersion of a MIP 2D-DG in different solutions of target-antibiotic enrofloxacin leads to significant variations in diffraction efficiency, demonstrating target-molecule detection. On the other hand, no significant response is observed for both control experiments: MIP grating exposed to a non-retained analyte and an equivalent non-imprinted polymer grating exposed to the target analyte, showing highly specific antibiotic label-free optical recognition.

  7. Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis

    Science.gov (United States)

    He, Bing; Yuan, Lan; Dai, Wenbing; Gao, Wei; Zhang, Hua; Wang, Xueqing; Fang, Weigang; Zhang, Qiang

    2016-03-01

    Nowadays, concern about the use of nanotechnology for biomedical application is unprecedentedly increasing. In fact, nanosystems applied for various potential clinical uses always have to cross the primary biological barrier consisting of epithelial cells. However, little is really known currently in terms of the influence of the dynamic bio-adhesion of nanosystems on bio-membranes as well as on endocytosis and transcytosis. This was investigated here using polymer nanoparticles (PNs) and MDCK epithelial cells as the models. Firstly, the adhesion of PNs on cell membranes was found to be time-dependent with a shift of both location and dispersion pattern, from the lateral adhesion of mainly mono-dispersed PNs initially to the apical coverage of the PN aggregate later. Then, it was interesting to observe in this study that the dynamic bio-adhesion of PNs only affected their endocytosis but not their transcytosis. It was important to find that the endocytosis of PNs was not a constant process. A GM1 dependent CDE (caveolae dependent endocytosis) pathway was dominant in the preliminary stage, followed by the co-existence of a CME (clathrin-mediated endocytosis) pathway for the PN aggregate at a later stage, in accordance with the adhesion features of PNs, suggesting the modification of PN adhesion patterns on the endocytosis pathways. Next, the PN adhesion was noticed to affect the structure of cell junctions, via altering the extra- and intra-cellular calcium levels, leading to the enhanced paracellular transport of small molecules, but not favorably enough for the obviously increased passing of PNs themselves. Finally, FRAP and other techniques all demonstrated the obvious impact of PN adhesion on the membrane confirmation, independent of the adhesion location and time, which might lower the threshold for the internalization of PNs, even their aggregates. Generally, these findings confirm that the transport pathway mechanism of PNs through epithelial cells is rather

  8. Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers.

    Science.gov (United States)

    Zhu, Baolei; Jasinski, Nils; Benitez, Alejandro; Noack, Manuel; Park, Daesung; Goldmann, Anja S; Barner-Kowollik, Christopher; Walther, Andreas

    2015-07-20

    Designing the reversible interactions of biopolymers remains a grand challenge for an integral mimicry of mechanically superior biological composites. Yet, they are the key to synergistic combinations of stiffness and toughness by providing sacrificial bonds with hidden length scales. To address this challenge, dynamic polymers were designed with low glass-transition temperature T(g) and bonded by quadruple hydrogen-bonding motifs, and subsequently assembled with high-aspect-ratio synthetic nanoclays to generate nacre-mimetic films. The high dynamics and self-healing of the polymers render transparent films with a near-perfectly aligned structure. Varying the polymer composition allows molecular control over the mechanical properties up to very stiff and very strong films (E≈45 GPa, σ(UTS)≈270 MPa). Stable crack propagation and multiple toughening mechanisms occur in situations of balanced dynamics, enabling synergistic combinations of stiffness and toughness. Excellent gas barrier properties complement the multifunctional property profile.

  9. Conformational assembly and biological properties of collagen mimetic peptides and their thermally responsive polymer conjugates

    Science.gov (United States)

    Krishna, Ohm Divyam

    2011-12-01

    Collagens are one of the most abundant proteins found in body tissues and organs, endowing structural integrity, mechanical strength, and multiple biological functions. Destabilized collagen inside human body leads to various degenerative diseases (ex. osteoarthritis) and ageing. This has continued to motivate the design of synthetic peptides and bio-synthetic polypeptides to closely mimic the native collagens in terms of triple helix structure and stability, potential for higher order assembly, and biological properties. However, the widespread application of de novo collagens has been limited in part by the need for hydroxylated proline in the formation of stable triple helical structures. To address this continued need, a hydroxyproline-free, thermally stable collagen-mimetic peptide (CLP-Cys) was rationally designed via the incorporation of electrostatically stabilized amino acid triplets. CLP-Cys was synthesized via solid phase peptide synthesis. The formation and stability of the triple helical structure were indicated via circular dichroism (CD) experiments and confirmed via differential scanning calorimetry (DSC) results. CLP-Cys also self-assembled into nano-rods and micro-fibrils, as evidenced via a combination of dynamic light scattering and transmission electron microscopy. Given the high thermal stability and its propensity for higher-order assembly, CLP-Cys was further functionalized at both the ends with a thermally responsive polymer, poly(diethylene glycol methyl ether methacrylate), (PDEGMEMA) to synthesize a biohybrid triblock copolymer. The CD results indicated that the triple helical form is retained, the thermal unfolding is sustained and helix to coil transition is reversible in the triblock hybrid context. The LCST of PDEGMEMA homopolymer (26 °C) is increased (to 35 °C) upon conjugation to the hydrophilic collagen peptide domain. Further, a combination of static light scattering, Cryo-SEM, TEM and confocal microscopy elucidated that the

  10. Vibrational Spectroscopy of Biomembranes

    Science.gov (United States)

    Schultz, Zachary D.; Levin, Ira W.

    2011-07-01

    Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.

  11. Spontaneous Packaging and Hypothermic Storage of Mammalian Cells with a Cell-Membrane-Mimetic Polymer Hydrogel in a Microchip.

    Science.gov (United States)

    Xu, Yan; Mawatari, Kazuma; Konno, Tomohiro; Kitamori, Takehiko; Ishihara, Kazuhiko

    2015-10-21

    Currently, continuous culture/passage and cryopreservation are two major, well-established methods to provide cultivated mammalian cells for experiments in laboratories. Due to the lack of flexibility, however, both laboratory-oriented methods are unable to meet the need for rapidly growing cell-based applications, which require cell supply in a variety of occasions outside of laboratories. Herein, we report spontaneous packaging and hypothermic storage of mammalian cells under refrigerated (4 °C) and ambient conditions (25 °C) using a cell-membrane-mimetic methacryloyloxyethyl phosphorylcholine (MPC) polymer hydrogel incorporated within a glass microchip. Its capability for hypothermic storage of cells was comparatively evaluated over 16 days. The results reveal that the cytocompatible MPC polymer hydrogel, in combination with the microchip structure, enabled hypothermic storage of cells with quite high viability, high intracellular esterase activity, maintained cell membrane integrity, and small morphological change for more than 1 week at 4 °C and at least 4 days at 25 °C. Furthermore, the stored cells could be released from the hydrogel and exhibited the ability to adhere to a surface and achieve confluence under standard cell culture conditions. Both hypothermic storage conditions are ordinary flexible conditions which can be easily established in places outside of laboratories. Therefore, cell packaging and storage using the hydrogel incorporated within the microchip would be a promising miniature and portable solution for flexible supply and delivery of small amounts of cells from bench to bedside.

  12. Engineering Molecular Recognition with Bio-mimetic Polymers on Single Walled Carbon Nanotubes.

    Science.gov (United States)

    Del Bonis-O'Donnell, Jackson T; Beyene, Abraham; Chio, Linda; Demirer, Gözde; Yang, Darwin; Landry, Markita P

    2017-01-10

    Semiconducting single-wall carbon nanotubes (SWNTs) are a class of optically active nanomaterial that fluoresce in the near infrared, coinciding with the optical window where biological samples are most transparent. Here, we outline techniques to adsorb amphiphilic polymers and polynucleic acids onto the surface of SWNTs to engineer their corona phases and create novel molecular sensors for small molecules and proteins. These functionalized SWNT sensors are both biocompatible and stable. Polymers are adsorbed onto the nanotube surface either by direct sonication of SWNTs and polymer or by suspending SWNTs using a surfactant followed by dialysis with polymer. The fluorescence emission, stability, and response of these sensors to target analytes are confirmed using absorbance and near-infrared fluorescence spectroscopy. Furthermore, we demonstrate surface immobilization of the sensors onto glass slides to enable single-molecule fluorescence microscopy to characterize polymer adsorption and analyte binding kinetics.

  13. Mimetic Learning

    Directory of Open Access Journals (Sweden)

    Christoph Wulf

    2008-03-01

    Full Text Available Mimetic learning, learning by imitation, constitutes one of the most important forms of learning. Mimetic learning does not, however, just denote mere imitation or copying: Rather, it is a process by which the act of relating to other persons and worlds in a mimetic way leads to an en-hancement of one’s own world view, action, and behaviour. Mimetic learning is productive; it is related to the body, and it establishes a connection between the individual and the world as well as other persons; it creates practical knowledge, which is what makes it constitutive of social, artistic, and practical action. Mimetic learning is cultural learning, and as such it is crucial to teaching and education (Wulf, 2004; 2005.

  14. Surface Immobilization of pH-Responsive Polymer Brushes on Mesoporous Silica Nanoparticles by Enzyme Mimetic Catalytic ATRP for Controlled Cargo Release

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2016-08-01

    Full Text Available Peroxidase mimetic catalytic atom transfer radical polymerization (ATRP was first used to install tertiary amine-functionalized polymer brushes on the surface of mesoporous silica nanoparticles (MSNs in a facile and highly efficient manner. Poly(N,N-dimethylaminoethyl methacrylate (PDMAEMA brushes-grafted MSNs were fabricated by biocompatible deuterohemin-β-Ala-His-Thr-Val-Glu-Lys (DhHP-6-catalyzed surface-initiated ATRP (SI-ATRP. The resulting organic–inorganic hybrid nanocarriers were fully characterized by Fourier transform-infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, X-ray photoelectron spectroscopy (XPS, powder X-ray diffraction (XRD, SEM, TEM, Elemental analysis, Zeta-potential, and N2 adsorption–desorption isotherms, which demonstrated the successful coating of pH-responsive polymers on the MSN surface. Rhodamine 6G (Rh6G dyes were further loaded within the mesopores of this nanocarrier, and the release of Rh6G out of MSNs in a controlled fashion was achieved upon lowing the solution pH. The electrostatic repulsion of positively-charged tertiary ammonium of PDMAEMAs in acidic environments induced the stretching out of polymer brushes on MSN surfaces, thus opening the gates to allow cargo diffusion out of the mesopores of MSNs.

  15. Nanodomains in biomembranes with recycling

    CERN Document Server

    Berger, Mareike; Destainville, Nicolas

    2016-01-01

    Cell membranes are out of thermodynamic equilibrium notably because of membrane recycling, i.e. active exchange of material with the cytosol. We propose an analytically tractable model of biomembrane predicting the effects of recycling on the size of protein nanodomains. It includes a short-range attraction between proteins and a weaker long-range repulsion which ensures the existence of so-called cluster phases at equilibrium, where monomeric proteins coexist with finite-size domains. Our main finding is that when taking recycling into account, the typical cluster size increases logarithmically with the recycling rate. Using physically realistic model parameters, the predicted two-fold increase due to recycling in living cells is very likely experimentally measurable with the help of super-resolution microscopy.

  16. Alleviation of capsular formations on silicone implants in rats using biomembrane-mimicking coatings.

    Science.gov (United States)

    Park, Ji Ung; Ham, Jiyeon; Kim, Sukwha; Seo, Ji-Hun; Kim, Sang-Hyon; Lee, Seonju; Min, Hye Jeong; Choi, Sunghyun; Choi, Ra Mi; Kim, Heejin; Oh, Sohee; Hur, Ji An; Choi, Tae Hyun; Lee, Yan

    2014-10-01

    Despite their popular use in breast augmentation and reconstruction surgeries, the limited biocompatibility of silicone implants can induce severe side effects, including capsular contracture - an excessive foreign body reaction that forms a tight and hard fibrous capsule around the implant. This study examines the effects of using biomembrane-mimicking surface coatings to prevent capsular formations on silicone implants. The covalently attached biomembrane-mimicking polymer, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), prevented nonspecific protein adsorption and fibroblast adhesion on the silicone surface. More importantly, in vivo capsule formations around PMPC-grafted silicone implants in rats were significantly thinner and exhibited lower collagen densities and more regular collagen alignments than bare silicone implants. The observed decrease in α-smooth muscle actin also supported the alleviation of capsular formations by the biomembrane-mimicking coating. Decreases in inflammation-related cells, myeloperoxidase and transforming growth factor-β resulted in reduced inflammation in the capsular tissue. The biomembrane-mimicking coatings used on these silicone implants demonstrate great potential for preventing capsular contracture and developing biocompatible materials for various biomedical applications.

  17. Thioridazine – tracking its interaction with biomembranes

    DEFF Research Database (Denmark)

    Brier, Søren Bo; Kristiansen, Jette; Kallipolitis, Birgitte

    2014-01-01

    Multi-resistant bacteria may be re-sensitized towards antibiotic drugs by a group of compounds termed Phenothiazines1. The mechanism of re-sensitization is uncertain, however, the wide range of effects caused by phenothiazines suggests that the unspecific physical interaction with a biomembrane may...

  18. Applying a potential across a biomembrane

    DEFF Research Database (Denmark)

    Ambjörnsson, Tobias; Lomholt, Michael A; Hansen, Per Lyngs

    2007-01-01

    We investigate the effect on biomembrane mechanical properties due to the presence an external potential for a nonconductive incompressible membrane surrounded by different electrolytes. By solving the Debye-Hückel and Laplace equations for the electrostatic potential and using the relevant stres...

  19. Element-specific density profiles in interacting biomembrane models

    Science.gov (United States)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg; Gochev, Georgi

    2017-03-01

    Surface interactions involving biomembranes, such as cell–cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure–distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces.

  20. Mimetic discretization methods

    CERN Document Server

    Castillo, Jose E

    2013-01-01

    To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and

  1. Unimodular-Mimetic Cosmology

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to solve the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology, of the perfect fluid with constant equation of state cosmology, of the Type IV singular cosmology and of the $R^2$ inflation cosmology. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, the graceful exit from inflation problem might exist, we provide a qualita...

  2. Protein-mediated surface structuring in biomembranes

    Directory of Open Access Journals (Sweden)

    Maggio B.

    2005-01-01

    Full Text Available The lipids and proteins of biomembranes exhibit highly dissimilar conformations, geometrical shapes, amphipathicity, and thermodynamic properties which constrain their two-dimensional molecular packing, electrostatics, and interaction preferences. This causes inevitable development of large local tensions that frequently relax into phase or compositional immiscibility along lateral and transverse planes of the membrane. On the other hand, these effects constitute the very codes that mediate molecular and structural changes determining and controlling the possibilities for enzymatic activity, apposition and recombination in biomembranes. The presence of proteins constitutes a major perturbing factor for the membrane sculpturing both in terms of its surface topography and dynamics. We will focus on some results from our group within this context and summarize some recent evidence for the active involvement of extrinsic (myelin basic protein, integral (Folch-Lees proteolipid protein and amphitropic (c-Fos and c-Jun proteins, as well as a membrane-active amphitropic phosphohydrolytic enzyme (neutral sphingomyelinase, in the process of lateral segregation and dynamics of phase domains, sculpturing of the surface topography, and the bi-directional modulation of the membrane biochemical reactivity.

  3. Unimodular-mimetic cosmology

    Science.gov (United States)

    Nojiri, S.; Odintsov, S. D.; Oikonomou, V. K.

    2016-06-01

    We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein-Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity.

  4. Introductory lecture: basic quantities in model biomembranes.

    Science.gov (United States)

    Nagle, John F

    2013-01-01

    One of the many aspects of membrane biophysics dealt with in this Faraday Discussion regards the material moduli that describe energies at a supramolecular level. This introductory lecture first critically reviews differences in reported numerical values of the bending modulus K(C), which is a central property for the biologically important flexibility of membranes. It is speculated that there may be a reason that the shape analysis method tends to give larger values of K(C) than the micromechanical manipulation method or the more recent X-ray method that agree very well with each other. Another theme of membrane biophysics is the use of simulations to provide exquisite detail of structures and processes. This lecture critically reviews the application of atomic level simulations to the quantitative structure of simple single component lipid bilayers and diagnostics are introduced to evaluate simulations. Another theme of this Faraday Discussion was lateral heterogeneity in biomembranes with many different lipids. Coarse grained simulations and analytical theories promise to synergistically enhance experimental studies when their interaction parameters are tuned to agree with experimental data, such as the slopes of experimental tie lines in ternary phase diagrams. Finally, attention is called to contributions that add relevant biological molecules to bilayers and to contributions that study the exciting shape changes and different non-bilayer structures with different lipids.

  5. Fc-fusion mimetics

    OpenAIRE

    2016-01-01

    The Fc-fusion mimetic RpR 2 was prepared by disulfide bridging conjugation using a PEG in the place of the Fc. RpR 2 displayed higher affinity for VEGF than aflibercept caused primarily by a slower dissociation rate, which can prolong a drug at its site of action. RpRs have considerable potential for development as stable, organ specific therapeutics.

  6. Dynamics of Biomembranes: Effect of the Bulk Fluid

    KAUST Repository

    Bonito, A.

    2011-01-01

    We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. © EDP Sciences, 2011.

  7. Bio-Mimetic Sensors Based on Molecularly Imprinted Membranes

    Directory of Open Access Journals (Sweden)

    Catia Algieri

    2014-07-01

    Full Text Available An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. By means of this technology, selective molecular recognition sites are introduced in a polymer, thus conferring it bio-mimetic properties. The potential applications of these systems include affinity separations, medical diagnostics, drug delivery, catalysis, etc. Recently, bio-sensing systems using molecularly imprinted membranes, a special form of imprinted polymers, have received the attention of scientists in various fields. In these systems imprinted membranes are used as bio-mimetic recognition elements which are integrated with a transducer component. The direct and rapid determination of an interaction between the recognition element and the target analyte (template was an encouraging factor for the development of such systems as alternatives to traditional bio-assay methods. Due to their high stability, sensitivity and specificity, bio-mimetic sensors-based membranes are used for environmental, food, and clinical uses. This review deals with the development of molecularly imprinted polymers and their different preparation methods. Referring to the last decades, the application of these membranes as bio-mimetic sensor devices will be also reported.

  8. Three dimensional nano-assemblies of noble metal nanoparticle-infinite coordination polymers as specific oxidase mimetics for degradation of methylene blue without adding any cosubstrate.

    Science.gov (United States)

    Wang, Lihua; Zeng, Yi; Shen, Aiguo; Zhou, Xiaodong; Hu, Jiming

    2015-02-07

    Novel three-dimensional (3D) nano-assemblies of noble metal nanoparticle (NP)-infinite coordination polymers (ICPs) are conveniently fabricated through the infiltration of HAuCl4 into hollow Au@Ag@ICPs core-shell nanostructures and its replacement reaction with Au@Ag NPs. The present 3D nano-assemblies exhibit highly efficient and specific intrinsic oxidase-like activity even without adding any cosubstrate.

  9. Biomembrane interactions reveal the mechanism of action of surface-immobilized host defense IDR-1010 peptide.

    Science.gov (United States)

    Gao, Guangzheng; Cheng, John T J; Kindrachuk, Jason; Hancock, Robert E W; Straus, Suzana K; Kizhakkedathu, Jayachandran N

    2012-02-24

    Dissecting the mechanism of action of surface-tethered antimicrobial and immunomodulatory peptides is critical to the design of optimized anti-infection coatings on biomedical devices. To address this, we compared the biomembrane interactions of host defense peptide IDR-1010cys (1) in free form, (2) as a soluble polymer conjugate, and (3) with one end tethered to a solid support with model bacterial and mammalian lipid membranes. Our results show that IDR-1010cys in all three distinct forms interacted with bacterial and mammalian lipid vesicles, but the extent of the interactions as monitored by the induction of secondary structure varied. The enhanced interaction of surface-tethered peptides is well correlated with their very good antimicrobial activities. Our results demonstrate that there may be a difference in the mechanism of action of surface-tethered versus free IDR-1010cys.

  10. Biomembrane Frontiers Nanostructures, Models, and the Design of Life

    CERN Document Server

    Faller, Roland; Risbud, Subhash H; Jue, Thomas

    2009-01-01

    HANDBOOK OF MODERN BIOPHYSICS Series Editor Thomas Jue, PhD Handbook of Modern Biophysics brings current biophysics topics into focus, so that biology, medical, engineering, mathematics, and physical-science students or researchers can learn fundamental concepts and the application of new techniques in addressing biomedical challenges. Chapters explicate the conceptual framework of the physics formalism and illustrate the biomedical applications. With the addition of problem sets, guides to further study, and references, the interested reader can continue to explore independently the ideas presented. Volume II: Biomembrane Frontiers: Nanostructures, Models, and the Design of Life Editors: Roland Faller, PhD, Thomas Jue, PhD, Marjorie L. Longo, PhD, and Subhash H. Risbud, PhD In Biomembrane Frontiers: Nanostructures, Models, and the Design of Life, prominent researchers have established a foundation for the study of biophysics related to the following topics: Perspectives: Complexes in Liquids, 1900–2008 Mol...

  11. Cylindrical solutions in mimetic gravity

    Energy Technology Data Exchange (ETDEWEB)

    Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay [Eurasian National University, Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Astana (Kazakhstan); Raza, Muhammad [COMSATS Institute of Information Technology, Department of Mathematics, Sahiwal (Pakistan)

    2016-06-15

    This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant. (orig.)

  12. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    NARCIS (Netherlands)

    Andrade, T.A.M.; Iyer, A.; Das, P.K.; Foss, N.T.; Garcia, S.B.; Coutinho-Netto, J.; Jordão-Jr., A.A.; Frade, M.A.C.

    2011-01-01

    The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham) using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB

  13. Ferroelectric active models of ion channels in biomembranes.

    Science.gov (United States)

    Bystrov, V S; Lakhno, V D; Molchanov, M

    1994-06-21

    Ferroactive models of ion channels in the theory of biological membranes are presented. The main equations are derived and their possible solutions are shown. The estimates of some experimentally measured parameters are given. Possible physical consequences of the suggested models are listed and the possibility of their experimental finding is discussed. The functioning of the biomembrane's ion channel is qualitatively described on the basis of the suggested ferroactive models. The main directions and prospects for development of the ferroactive approach to the theory of biological membranes and their structures are indicated.

  14. Evaluation of the biocompatibility of a new biomembrane

    Directory of Open Access Journals (Sweden)

    Fatima Mrue

    2004-06-01

    Full Text Available Biocompatibility has been considered one of the most important items to validate a biomaterial for its application in human organisms. The present work evaluates the biocompatibility of a new biomembrane using in vivo assay in different animal species. The experiments to evaluate the cellular reaction were carried out through the implantation of the material into the subcutaneous tissue of animals and the results showed a good reaction of the host tissue without any signal of fibrosis or rejection. The cell adhesion experiments were done by means of the measure of the DNA content on the material surface after its implantation into the subcutaneous tissue of animals and the results showed a growing number of DNA that was proportional to the time of implantation. The healing process was evaluated using a dermal ulcer model and the results showed a good tissue repair resembling a physiologic process. The overall results presented here lead to the conclusion that this new biomembrane is a biocompatible material but more research must be done, as it is a new material desired for medical use.

  15. Membrane protein synthesis in cell-free systems: from bio-mimetic systems to bio-membranes.

    Science.gov (United States)

    Sachse, Rita; Dondapati, Srujan K; Fenz, Susanne F; Schmidt, Thomas; Kubick, Stefan

    2014-08-25

    When taking up the gauntlet of studying membrane protein functionality, scientists are provided with a plethora of advantages, which can be exploited for the synthesis of these difficult-to-express proteins by utilizing cell-free protein synthesis systems. Due to their hydrophobicity, membrane proteins have exceptional demands regarding their environment to ensure correct functionality. Thus, the challenge is to find the appropriate hydrophobic support that facilitates proper membrane protein folding. So far, various modes of membrane protein synthesis have been presented. Here, we summarize current state-of-the-art methodologies of membrane protein synthesis in biomimetic-supported systems. The correct folding and functionality of membrane proteins depend in many cases on their integration into a lipid bilayer and subsequent posttranslational modification. We highlight cell-free systems utilizing the advantages of biological membranes.

  16. FABRICATION AND BIOCOMPATIBILITY OF CELL OUTER MEMBRANE MIMETIC SURFACES

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Zong; Yong-kuan Gong

    2011-01-01

    The surface design used for improving biocompatibility is one of the most important issues for the fabrication of medical devices. For mimicking the ideal surface structure of cell outer membrane, a large number of polymers bearing phosphorylcholine (PC) groups have been employed to modify the surfaces of biomaterials and medical devices. It has been demonstrated that the biocompatibility of the modified materials whose surface is required to interact with a living organism has been obviously improved by introducing PC groups. In this review, the fabrication strategies of cell outer membrane mimetic surfaces and their resulted biocompatibilities were summarized.

  17. Influence of bio-membrane on current characteristics induced by ambient ELF magnetic field for spherical tissue model

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Noriyuki [Kyushu University, Kasuga (Japan). Graduate School of Engineering Sciences; Tarao, Hiroo; Isaka, Katsuo [University of Tokushima (Japan). Faculty of Engineering

    1999-07-01

    Based on the experimental works using rats and chicken eggs, possible influences of the bio-membrane on the electric field and resultant current induced by the exposure to ambient ELF magnetic field, have been pointed out. Existence of the bio-membrane is, however, rarely implemented in conventional procedures of the induced current examination. The present contribution presents results of the analytical examination on how the thickness and electric conductivity of the bio-membrane affect the induced current profiles, indicating the significant role of the bio-membrane on the exact evaluation of the induced current characteristics. (author)

  18. NCAM Mimetic Peptides: An Update

    DEFF Research Database (Denmark)

    Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    pharmacological tools interfering with NCAM functions. Recent progress in our understanding of the structural basis of NCAM-mediated cell adhesion and signaling has allowed a structure-based design of NCAM mimetic peptides. Using this approach a number of peptides termed P2, P1-B, P-3-DE and P-3-G, whose...... sequences contain one or several NCAM homophilic binding sites involved in NCAM binding to itself, have been identified. By means of NMR titration analysis and molecular modeling a number of peptides derived from NCAM and targeting NCAM heterophilic ligands such as the fibroblast growth factor receptor...... in vitro and in vivo, making them attractive pharmacological tools suitable for drug development for the treatment of neurodegenerative disorders and impaired memory....

  19. Electrochemical screening of biomembrane-active compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Mohamadi, Shahrzad, E-mail: cmsm@leeds.ac.uk; Tate, Daniel J.; Vakurov, Alexander; Nelson, Andrew

    2014-02-01

    Graphical abstract: - Highlights: • Analytical technology application with improvement allowing for on-line high-throughput water toxin screening is presented. • Compound classes of related structure and shape interact with DOPC coated Pt/Hg with a class specific response. • Predecessor membrane system proved as fragile, complex and for environmental application incompatible. - Abstract: Interactions of biomembrane-active compounds with phospholipid monolayers on microfabricated Pt/Hg electrodes in an on-line high throughput flow system are demonstrated by recording capacitance current peak changes as rapid cyclic voltammograms (RCV). Detection limits of the compounds’ effects on the layer have been estimated from the data. Compounds studied include steroids, polycyclic aromatic hydrocarbons, tricyclic antidepressants and tricyclic phenothiazines. The results show that the extent and type of interaction depends on the—(a) presence and number of aromatic rings and substituents, (b) presence and composition of side chains and, (c) molecular shape. Interaction is only indirectly related to compound hydrophobicity. For a selection of tricyclic antidepressants and tricyclic phenothiazines the detection limit in water is related to their therapeutic normal threshold. The sensing assay has been tested in the presence of humic acid as a potential interferent and in a tap water matrix. The system can be applied to the screening of putative hazardous substances and pharmaceuticals allowing for early detection thereof in the water supply. The measurements are made in real time which means that potentially toxic compounds are detected rapidly within <10 min per assay. This technology will contribute greatly to environment safety and health.

  20. Transfer kinetics from colloidal drug carriers and liposomes to biomembrane models: DSC studies

    Directory of Open Access Journals (Sweden)

    Maria Grazia Sarpietro

    2011-01-01

    Full Text Available The release of bioactive molecules by different delivery systems has been studied. We have proposed a protocol that takes into account a system that is able to carry out the uptake of a bioactive molecule released during the time, resembling an in vivo-like system, and for this reason we have used biomembrane models represented by multi-lamellar and unilamellar vesicles. The bioactive molecule loaded delivery system has been put in contact with the biomembrane model and the release has been evaluated, to consider the effect of the bioactive molecule on the biomembrane model thermotropic behavior, and to compare the results with those obtained when a pure drug interacts with the biomembrane model. The differential scanning calorimetry technique has been employed. Depending on the delivery system used, our research permits to evaluate the effect of different parameters on the bioactive molecule release, such as pH, drug loading degree, delivery system swelling, crosslinking agent, degree of cross-linking, and delivery system side chains.

  1. Cosmological perturbations in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro; Sushkov, Sergey V

    2015-01-01

    We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.

  2. Cosmological perturbations in mimetic Horndeski gravity

    CERN Document Server

    Arroja, Frederico; Karmakar, Purnendu; Matarrese, Sabino

    2016-01-01

    We study linear scalar perturbations around a flat FLRW background in mimetic Horndeski gravity. In the absence of matter, we show that the Newtonian potential satisfies a second-order differential equation with no spatial derivatives. This implies that the sound speed for scalar perturbations is exactly zero on this background. We also show that in mimetic $G^3$ theories the sound speed is equally zero. We obtain the equation of motion for the comoving curvature perturbation (first order differential equation) and solve it to find that the comoving curvature perturbation is constant on all scales in mimetic Horndeski gravity. We find solutions for the Newtonian potential evolution equation in two simple models. Finally we show that the sound speed is zero on all backgrounds and therefore the system does not have any wave-like scalar degrees of freedom.

  3. Mimetic desire and scapegoat mechanism in sport

    Directory of Open Access Journals (Sweden)

    Jernej Pisk

    2012-12-01

    Full Text Available BACKGROUND: The most fundamental question about sport is what is sport, what is its origin and its essence? Because sport is connected with the human being (there is no sport without human beings different anthropological visions of human being result in different understandings of sport. OBJECTIVE: The objective of this paper is to present and explain an anthropological vision of the human being and society as was developed by René Girard. In his view mimetic desire and the scapegoat mechanism have a central role in any culture, religion or other secular institutions. The explanatory power of his theory is presented when it is applied to the world of sport. METHODS: Our methodology is philosophical, involving conceptual analysis and the application of the outcomes to sport. RESULTS: In the paper we show that mimetic desire can be recognized as one of the important origins of recreational and competitive sports. When people recognize what other people are able to do or accomplish in sport this invokes the mimetic desire as a result of which motivation for sport and competiveness can arise. But mimetic rivalry leads to an unstable situation. Therefore a second element is needed: Scapegoating in sport is presented as a mean to preserve the good reputation of sport, to keep peace in sport as well as in society as a whole. Finally, the attempt to overcome mimetic desire and scapegoating in sport is presented and the question if this is worth trying at all is opened. CONCLUSIONS: The theories of mimetic desire and scapegoat mechanism have great explanatory power when they are applied to the field of sport. They could reveal us some hidden motives and forces which drive athletes and sport as a whole. Moreover, they exceed the world of sport and reveal the influence of sport on the whole of society.

  4. Computational studies of biomembrane systems: Theoretical considerations, simulation models, and applications

    CERN Document Server

    Deserno, Markus; Paulsen, Harald; Peter, Christine; Schmid, Friederike

    2014-01-01

    This chapter summarizes several approaches combining theory, simulation and experiment that aim for a better understanding of phenomena in lipid bilayers and membrane protein systems, covering topics such as lipid rafts, membrane mediated interactions, attraction between transmembrane proteins, and aggregation in biomembranes leading to large superstructures such as the light harvesting complex of green plants. After a general overview of theoretical considerations and continuum theory of lipid membranes we introduce different options for simulations of biomembrane systems, addressing questions such as: What can be learned from generic models? When is it expedient to go beyond them? And what are the merits and challenges for systematic coarse graining and quasi-atomistic coarse grained models that ensure a certain chemical specificity?

  5. Diclofenac Potassium Transdermal Patches Using Natural Rubber Latex Biomembranes as Carrier

    Directory of Open Access Journals (Sweden)

    Natan Roberto de Barros

    2015-01-01

    Full Text Available The aim of this study was to design a compound transdermal patch containing diclofenac potassium (Dic-K using natural rubber latex (NRL biomembrane. The NRL from Hevea brasiliensis is easily manipulated and low cost and presents high mechanical resistance. It is a biocompatible material which can stimulate natural angiogenesis and is capable of adhering cells on its surface. Recent researches have used the NRL for Transdermal Drug Delivery Systems (TDDSs. Dic-K is used for the treatment of rheumatoid arthritis and osteoarthritis and pain relief for postoperative and posttraumatic cases, as well as inflammation and edema. Results showed that the biomembrane can release Dic-K for up to 216 hours. The kinetics of the Dic-K release could be fitted with double exponential function. X-ray diffraction and Fourier Transform Infrared (FTIR spectroscopy show some interaction by hydrogen bound. The results indicated the potential of the compound patch.

  6. The decreasing of corn root biomembrane penetration for acetochlor with vermicompost amendment

    Science.gov (United States)

    Sytnyk, Svitlana; Wiche, Oliver

    2016-04-01

    One of the topical environmental security issues is management and control of anthropogenic (artificially synthesized) chemical agents usage and utilization. Protection systems development against toxic effects of herbicides should be based on studies of biological indication mechanisms for identification of stressors effect in organisms. Lipid degradation is non-specific reaction to exogenous chemical agents effects. Therefore it is important to study responses of lipid components depending on the stressor type. We studied physiological and biochemical characteristics of lipid metabolism under action of herbicides of chloracetamide group. Corn at different stages of ontogenesis was used as testing object during model laboratory and microfield experiments. Cattle manure treated with earth worms Essenia Foetida was used as compost fertilizer to add to chain: chernozem (black soil) -corn system. It was found several acetochlor actions as following: -decreasing of sterols, phospholipids, phosphatidylcholines and phosphatidylethanolamines content; -increasing pool of available fatty acids and phosphatidic acids associated with intensification of hydrolysis processes; -lypase activity stimulation under effect of stressor in low concentrations; -lypase activity inhibition under effect of high stressor level; -decreasing of polyenoic free fatty acids indicating biomembrane degradation; -accumulation of phospholipids degradation products (phosphatidic acids); -decreasing of high-molecular compounds (phosphatidylcholin and phosphatidylinositol) concentrations; -change in the index of unsaturated and saturated free fatty acids ratio in biomembranes structure; It was established that incorporation of vermicompost in dose 0.4 kg/m2 in black soil lead to corn roots biomembrane restoration. It was fixed the decreasing roots biomembrane penetration for acetochlor in trial with vermicompost. Second compost substances antidote effect is the soil microorganism's activation

  7. Interaction of α-Hexylcinnamaldehyde with a Biomembrane Model: A Possible MDR Reversal Mechanism.

    Science.gov (United States)

    Sarpietro, Maria Grazia; Di Sotto, Antonella; Accolla, Maria Lorena; Castelli, Francesco

    2015-05-22

    The ability of the naturally derived compound α-hexylcinnamaldehyde (1) to interact with biomembranes and to modulate their permeability has been investigated as a strategy to reverse multidrug resistance (MDR) in cancer cells. Dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLVs) were used as biomembrane models, and differential scanning calorimetry was applied to measure the effect of 1 on the thermotropic behavior of DMPC MLVs. The effect of an aqueous medium or a lipid carrier on the uptake of 1 by the biomembrane was also characterized. Furthermore, taking into account that MDR is strictly regulated by redox signaling, the pro-oxidant and/or antioxidant effects of 1 were evaluated by the crocin-bleaching assay, in both hydrophilic and lipophilic environments. Compound 1 was uniformly distributed in the phospholipid bilayers and deeply interacted with DMPC MLVs, intercalating among the phospholipid acyl chains and thus decreasing their cooperativity. The lipophilic medium allowed the absorption of 1 into the phospholipid membrane. In the crocin-bleaching assay, the substance produced no pro-oxidant effects in both hydrophilic and lipophilic environments; conversely, a significant inhibition of AAPH-induced oxidation was exerted in hydrophilic medium. These results suggest a possible role of 1 as a chemopreventive and chemosensitizing agent for fighting cancer.

  8. Oestrogene mimetic isoflavones’ pharmacokinetics and pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Anca Dragomirescu,

    2008-12-01

    Full Text Available Genisteine is the most abundant and the most studied estrogen-mimetic izoflavone. It's chemical formula is 4',5,7 – trihidroxyisoflavone. It has also estrogen-modulated properties by its binding ability to the beta type estrogen receptor. Genisteine presents the following farmacodinamic effects: antiaterogen effect, prevention of estrogen-dependent cancers, especially breast cancer, prevention of skin aging body, osteoprogen effect, prevention of osteoporosis at the menopauses women. Despite all these real benefits, there are also many adverse effects, registered both in humans and animals. Thus, the sheep feeding with some Fabaceae species, containing estrogen-mimetic isoflavones were stopped their reproductive function(isoflavones acted as an oral contraceptive. In humans, phytoestroges influence is still under evaluation, being suspected effects such as cerebral involution - via abusive apoptosis - or disturbance in hormonal status, in male children. All these are added to already known allergies, caused by soy proteins.

  9. Collagen Mimetic Peptides: Progress Towards Functional Applications

    OpenAIRE

    Yu, S. Michael; Li, Yang; Kim, Daniel

    2011-01-01

    Traditionally, collagen mimetic peptides (CMPs) have been used for elucidating the structure of the collagen triple helix and the factors responsible for its stabilization. The wealth of fundamental knowledge on collagen structure and cell-extracellular matrix (ECM) interactions accumulated over the past decades has led to a recent burst of research exploring the potential of CMPs to recreate the higher order assembly and biological function of natural collagens for biomedical applications. A...

  10. A note on a mimetic scalar-tensor cosmological model

    Energy Technology Data Exchange (ETDEWEB)

    Rabochaya, Yevgeniya; Zerbini, Sergio [Universita di Trento, Dipartimento di Fisica, Povo, Trento (Italy); TIFPA-INFN, Povo, Trento (Italy)

    2016-02-15

    A specific Hordenski scalar-gravity mimetic model is investigated within a FLWR space-time. The mimetic scalar field is implemented via a Lagrangian multiplier, and it is shown that the model has equations of motion formally similar to the original simpler mimetic matter model of Chamseddine-Mukhanov-Vikman. Several exact solutions describing inflation, bounces, and future-time singularities are presented and discussed. (orig.)

  11. NEC violation in mimetic cosmology revisited

    Directory of Open Access Journals (Sweden)

    Anna Ijjas

    2016-09-01

    Full Text Available In the context of Einstein gravity, if the null energy condition (NEC is satisfied, the energy density in expanding space–times always decreases while in contracting space–times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples. Most interestingly, the source of the instability is always the Einstein–Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  12. NEC violation in mimetic cosmology revisited

    Science.gov (United States)

    Ijjas, Anna; Ripley, Justin; Steinhardt, Paul J.

    2016-09-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this letter, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. We also show that mimetic cosmology can be understood as a singular limit of known, well-behaved theories involving higher-derivative kinetic terms and discuss ways of removing the instability.

  13. Progress of Mimetic Enzymes and Their Applications in Chemical Sensors.

    Science.gov (United States)

    Yang, Bin; Li, Jianping; Deng, Huan; Zhang, Lianming

    2016-11-01

    The need to develop innovative and reformative approaches to synthesize chemical sensors has increased in recent years because of demands for selectivity, stability, and reproducibility. Mimetic enzymes provide an efficient and convenient method for chemical sensors. This review summarizes the application of mimetic enzymes in chemical sensors. Mimetic enzymes can be classified into five categories: hydrolases, oxidoreductases, transferases, isomerases, and induced enzymes. Potential and recent applications of mimetic enzymes in chemical sensors are reviewed in detail, and the outlook of profound development has been illustrated.

  14. BIOMIMETIC SURFACE PREPARATION OF INERT POLYMER FILMS VIA GRAFTING LONG MONOALKYL CHAIN PHOSPHATIDYLCHOLINE

    Institute of Scientific and Technical Information of China (English)

    Peng-jun Wan; Dong-sheng Tan; Zheng-sheng Li; Xiao-qing Zhang; Jie-hua Li; Hong Tan

    2012-01-01

    To explore construction of novel mimicking biomembrane on biomaterials surfaces,a new polymerizable phosphatidylcholine containing a long monoalkyl chain ended with acryl group (AASOPC) was designed and synthesized,which was easily derived from the terminal amino group of 9-(2-amino-ethylcarbamoyl)-nonyl-l-phosphatidyl-choline (ASOPC) reacting with acryloyl chloride.The obtained AASOPC was grafted on poly(ethylene terephthalate) (PET) via surface-initiated atom-transfer radical polymerization (SI-ATRP) to form mimicking biomembrane.These modified surface structures of PET were investigated using water contact angle (WAC),X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM).The results indicated that the new mimicking phosphatidylcholine biomembrane could be prepared on inert polymer surfaces by using the acryloyl phosphatidylcholine (AASOPC) via surface-initiated atom transfer radical polymerization (SI-ATRP).

  15. Finite Element Approximation for the Dynamics of Fluidic Two-Phase Biomembranes

    CERN Document Server

    Barrett, John W; Nürnberg, Robert

    2016-01-01

    Biomembranes and vesicles consisting of multiple phases can attain a multitude of shapes, undergoing complex shape transitions. We study a Cahn--Hilliard model on an evolving hypersurface coupled to Navier--Stokes equations on the surface and in the surrounding medium to model these phenomena. The evolution is driven by a curvature energy, modelling the elasticity of the membrane, and by a Cahn--Hilliard type energy, modelling line energy effects. A stable semidiscrete finite element approximation is introduced and, with the help of a fully discrete method, several phenomena occurring for two-phase membranes are computed.

  16. Integral Theorems Based on a New Gradient Operator Derived from Biomembranes (Part ⅠⅡ): Fundamentals

    Institute of Scientific and Technical Information of China (English)

    YIN Yajun

    2005-01-01

    A new gradient operator was derived in recent studies of topological structures and shape transitions in biomembranes. Because this operator has widespread potential uses in mechanics, physics, and biology, the operator's general mathematical characteristics should be investigated. This paper explores the integral characteristics of the operator. The second divergence and the differential properties of the operator are used to demonstrate new integral transformations for vector and scalar fields on curved surfaces, such as the second divergence theorem, the second gradient theorem, the second curl theorem, and the second circulation theorem. These new theorems provide a mathematical basis for the use of this operator in many disciplines.

  17. From neutron stars to quark stars in mimetic gravity

    Science.gov (United States)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  18. Disformal transformations, veiled General Relativity and Mimetic Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Deruelle, Nathalie [APC, CNRS-Université Paris 7, 75205 Paris CEDEX 13 (France); Rua, Josephine, E-mail: deruelle@ihes.fr, E-mail: rua@cbpf.br [Instituto de Cosmologia, Relatividade e Astrofísica—ICRA/CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro (Brazil)

    2014-09-01

    In this Note we show that Einstein's equations for gravity are generically invariant under ''disformations''. We also show that the particular subclass when this is not true yields the equations of motion of ''Mimetic Gravity''. Finally we give the ''mimetic'' generalization of the Schwarzschild solution.

  19. SuperMimic – Fitting peptide mimetics into protein structures

    Directory of Open Access Journals (Sweden)

    Schmidt Ulrike

    2006-01-01

    Full Text Available Abstract Background Various experimental techniques yield peptides that are biologically active but have unfavourable pharmacological properties. The design of structurally similar organic compounds, i.e. peptide mimetics, is a challenging field in medicinal chemistry. Results SuperMimic identifies compounds that mimic parts of a protein, or positions in proteins that are suitable for inserting mimetics. The application provides libraries that contain peptidomimetic building blocks on the one hand and protein structures on the other. The search for promising peptidomimetic linkers for a given peptide is based on the superposition of the peptide with several conformers of the mimetic. New synthetic elements or proteins can be imported and used for searching. Conclusion We present a graphical user interface for finding peptide mimetics that can be inserted into a protein or for fitting small molecules into a protein. Using SuperMimic, promising locations in proteins for the insertion of mimetics can be found quickly and conveniently.

  20. SuperMimic – Fitting peptide mimetics into protein structures

    Science.gov (United States)

    Goede, Andrean; Michalsky, Elke; Schmidt, Ulrike; Preissner, Robert

    2006-01-01

    Background Various experimental techniques yield peptides that are biologically active but have unfavourable pharmacological properties. The design of structurally similar organic compounds, i.e. peptide mimetics, is a challenging field in medicinal chemistry. Results SuperMimic identifies compounds that mimic parts of a protein, or positions in proteins that are suitable for inserting mimetics. The application provides libraries that contain peptidomimetic building blocks on the one hand and protein structures on the other. The search for promising peptidomimetic linkers for a given peptide is based on the superposition of the peptide with several conformers of the mimetic. New synthetic elements or proteins can be imported and used for searching. Conclusion We present a graphical user interface for finding peptide mimetics that can be inserted into a protein or for fitting small molecules into a protein. Using SuperMimic, promising locations in proteins for the insertion of mimetics can be found quickly and conveniently. PMID:16403211

  1. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan, E-mail: hls01@mail.aub.edu [Physics Department, American University of Beirut, Beirut (Lebanon)

    2016-01-11

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0-i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB’s fluctuation.

  2. A cosmological solution to mimetic dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Saadi, Hassan [American University of Beirut, Physics Department, Beirut (Lebanon)

    2016-01-15

    In this paper, a cosmological solution to Mimetic Dark Matter (MDM) for an exponential potential is provided. Then a solution for the 0 - i perturbed Einstein differential equation of MDM is obtained based on an exponential potential that satisfies inflation for some initial conditions. Another general potential is suggested that incorporates inflation too. Then quantum perturbations are included. The constants in the model can be tuned to be in agreement with the fluctuation amplitude of the cosmic microwave background (CMB) radiation. Finally, the spectral index is calculated for the suggested potentials. Moreover, MDM is shown to be a viable model to produce dark matter, inflation, and CMB's fluctuation. (orig.)

  3. Curativo de biomembrana vegetal e hipersensibilidade Natural-biomembrane dressing and hypersensitivity

    Directory of Open Access Journals (Sweden)

    Marco Andrey Cipriani Frade

    2011-10-01

    Full Text Available FUNDAMENTOS: A biomembrana vegetal do látex da seringueira Hevea brasiliensis tem sido usada como curativo para úlceras cutâneas. OBJETIVOS: Avaliar a segurança da biomembrana vegetal como curativo em relação à hipersensibilidade ao látex. MÉTODOS: Foram selecionados pacientes com úlceras cutâneas constituindo-se os grupos: controle - baixa exposição profissional ao látex (n=17; alta exposição profissional (n=14; ulcerados em uso da biomembrana vegetal (n=13; ulcerados-controle sem uso da biomembrana vegetal (n=14 e casos novos (n=9, submetidos à avaliação pré e após 3 meses de uso da biomembrana vegetal. Todos foram submetidos à avaliação clínico-epidemiológica quanto à hipersensibilidade ao látex e IgE específica (UniCap®, e os grupos controle e controle exposto ao látex ao "patch test". RESULTADOS: A história de hipersensibilidade foi positiva em 64,7% dos pacientes do grupo-controle, 71,4% do controle exposto ao látex, 61,5% dos ulcerados em uso da biomembrana vegetal, 35,7% dos ulcerados-controle, e apenas 22,2% no grupo casos novos. Ao teste de contato dos grupos controle e controle exposto ao látex, apenas um indivíduo do grupo C (baixo contato apresentou eritema na primeira leitura, negativando-se na segunda. A média de contato com látex no grupo-controle exposto ao látex foi de 3,42 horas/dia. No ensaio fluoroimunoenzimático, a grande maioria dos soros foi classificada como zero (variação 0 a 6. Nenhum soro recebeu classificação acima de 2, não sendo considerada classificação significante para hipersensibilidade (classificação > 4. CONCLUSÃO: A biomembrana vegetal mostrou-se segura como curativo, pois não induziu reações de hipersensibilidade entre os voluntários submetidos ao "patch test", nem entre os usuários da biomembrana vegetal, como demonstrado clinica e imunologicamente pela dosagem de IgE.BACKGROUND: The natural biomembrane of latex extracted from Hevea brasiliensis has

  4. Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: liposomes and monolayers.

    Science.gov (United States)

    Serro, A P; Galante, R; Kozica, A; Paradiso, P; da Silva, A M P S Gonçalves; Luzyanin, K V; Fernandes, A C; Saramago, B

    2014-04-01

    Different types of lipid bilayers/monolayers have been used to simulate the cellular membranes in the investigation of the interactions between drugs and cells. However, to our knowledge, very few studies focused on the influence of the chosen membrane model upon the obtained results. The main objective of this work is to understand how do the nature and immobilization state of the biomembrane models influence the action of the local anaesthetic tetracaine (TTC) upon the lipid membranes. The interaction of TTC with different biomembrane models of dimyristoylphosphatidylcholine (DMPC) with and without cholesterol (CHOL) was investigated through several techniques. A quartz crystal microbalance with dissipation (QCM-D) was used to study the effect on immobilized liposomes, while phosphorus nuclear magnetic resonance ((31)P-NMR) and differential scanning calorimetry (DSC) were applied to liposomes in suspension. The effect of TTC on Langmuir monolayers of lipids was also investigated through surface pressure-area measurements at the air-water interface. The general conclusion was that TTC has a fluidizing effect on the lipid membranes and, above certain concentrations, induces membrane swelling or even solubilization. However, different models led to variable responses to the TTC action. The intensity of the disordering effect caused by TTC increased in the following order: supported liposomes

  5. NEC violation in mimetic cosmology revisited

    CERN Document Server

    Ijjas, Anna; Steinhardt, Paul J

    2016-01-01

    In the context of Einstein gravity, if the null energy condition (NEC) is satisfied, the energy density in expanding space-times always decreases while in contracting space-times the energy density grows and the universe eventually collapses into a singularity. In particular, no non-singular bounce is possible. It is, though, an open question if this energy condition can be violated in a controlled way, i.e., without introducing pathologies, such as unstable negative-energy states or an imaginary speed of sound. In this paper, we will re-examine the claim that the recently proposed mimetic scenario can violate the NEC without pathologies. We show that mimetic cosmology is prone to gradient instabilities even in cases when the NEC is satisfied (except for trivial examples). Most interestingly, the source of the instability is always the Einstein-Hilbert term in the action. The matter stress-energy component does not contribute spatial gradient terms but instead makes the problematic curvature modes dynamical. ...

  6. The testosterone mimetic properties of icariin

    Institute of Scientific and Technical Information of China (English)

    Zhen-Bao Zhang; Qing-Tao Yang

    2006-01-01

    Aim: To evaluate the testosterone mimetic properties of icariin. Methods: Forty-eight healthy male Sprague-Dawley rats at the age of 15 months were randomly divided into four groups with 12 rats each: the control group (C), the model group (M), the icariin group (ICA) and the testosterone group (T). The reproductive system was damaged by cyclogroup for 7 consecutive days, respectively. The levels of serum testosterone, luteinizing hormone (LH), follicle stimulating hormone (FSH), serum bone Gla-protein (BGP) and tartrate-resistant acid phosphatase activity in serum (StrACP) were determined. The histological changes of the testis and the penis were observed by microscope with hematoxylin-eosin (HE) staining and terminal deoxynucleotidyl transferase biotin-dUTP-X nick end labeling (TUNEL),respectively. Results: (1) Icariin improved the condition of reproductive organs and increased the circulating levels of testosterone. (2) Icariin treatment also improved the steady-state serum BGP and might have promoted bone formation. At the same time, it decreased the serum levels of StrACP and might have reduced the bone resorption. (3)Icarrin suppressed the extent of apoptosis of penile cavernosal smooth muscle cells. Conclusion: Icariin has testosterone mimetic properties and has therapeutic potential in the management of hypoandrogenism.

  7. The Mimetic Principle in the Underground Economy

    Directory of Open Access Journals (Sweden)

    Cristina Voicu

    2009-08-01

    Full Text Available There has been in the recent years an increased preoccupation at international level for the research of the mechanism of development of the underground economy. The numerous vain attempts to measure the dimension of the underground economy persuaded us to embark on a qualitative research of this economic phenomenon. In our investigation on the roots of the underground economy we drew very close to the psychological and sociological aspects of the phenomenon itself. The process of humanizing that has at its origin components of the mimetic principle, like acquisitive mimesis, prompt us to ponder over J.M. Keynes’ words: „The avoidance of taxes is the only intellectual ambition that one feels rewarded for.”

  8. {sup 57}Fe Moessbauer probe of spin crossover thin films on a bio-membrane

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anil D.; Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences (Belgium)

    2012-03-15

    An illustrious complex [Fe(ptz){sub 6}](BF{sub 4}){sub 2} (ptz = 1-propyl-tetrazole) (1) which was produced in the form of submicron crystals and thin film on Allium cepa membrane was probed by {sup 57}Fe Mossbauer spectroscopy in order to follow its intrinsic spin crossover. In addition to a weak signal that corresponds to neat SCO compound significant amount of other iron compounds are found that could have morphed from 1 due to specific host-guest interaction on the lipid-bilayer of bio-membrane. Further complimentary information about biogenic role of membrane, was obtained from variable temperature Mossbauer spectroscopy on a {approx}5% enriched [{sup 57}Fe(H{sub 2}O){sub 6}](BF{sub 4}){sub 2} salt on this membrane.

  9. 57 Fe Mössbauer probe of spin crossover thin films on a bio-membrane

    Science.gov (United States)

    Naik, Anil D.; Garcia, Yann

    2012-03-01

    An illustrious complex [Fe(ptz)6](BF4)2 (ptz = 1-propyl-tetrazole) ( 1) which was produced in the form of submicron crystals and thin film on Allium cepa membrane was probed by 57Fe Mossbauer spectroscopy in order to follow its intrinsic spin crossover. In addition to a weak signal that corresponds to neat SCO compound significant amount of other iron compounds are found that could have morphed from 1 due to specific host-guest interaction on the lipid-bilayer of bio-membrane. Further complimentary information about biogenic role of membrane, was obtained from variable temperature Mossbauer spectroscopy on a ~5% enriched [57Fe(H2O)6](BF4)2 salt on this membrane.

  10. Modelling Meso-Scale Diffusion Processes in Stochastic Fluid Bio-Membranes

    CERN Document Server

    Rafii-Tabar, H

    1999-01-01

    The space-time dynamics of rigid inhomogeneities (inclusions) free to move in a randomly fluctuating fluid bio-membrane is derived and numerically simulated as a function of the membrane shape changes. Both vertically placed (embedded) inclusions and horizontally placed (surface) inclusions are considered. The energetics of the membrane, as a two-dimensional (2D) meso-scale continuum sheet, is described by the Canham-Helfrich Hamiltonian, with the membrane height function treated as a stochastic process. The diffusion parameter of this process acts as the link coupling the membrane shape fluctuations to the kinematics of the inclusions. The latter is described via Ito stochastic differential equation. In addition to stochastic forces, the inclusions also experience membrane-induced deterministic forces. Our aim is to simulate the diffusion-driven aggregation of inclusions and show how the external inclusions arrive at the sites of the embedded inclusions. The model has potential use in such emerging fields as...

  11. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Casuso, I [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Fumagalli, L [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Samitier, J [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain); Padros, E [Unitat de BiofIsica, Departamento de BioquImica i de Biologia Molecular, Facultat de Medicina i Centre d' Estudis en BiofIsica, Universitat Autonoma de Barcelona, Barcelona (Spain); Reggiani, L [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Akimov, V [CNR-INFM National Nanotechnology Laboratory, Dipartimento di Ingegneria dell' Innovazione, Universita di Lecce, Lecce (Italy); Gomila, G [Department Electronica, Universitat de Barcelona and Laboratori de Nanobioenginyeria-IBEC, Parc CientIfic de Barcelona, Barcelona (Spain)

    2007-11-21

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general.

  12. Interactions of a Tetrazine Derivative with Biomembrane Constituents: A Langmuir Monolayer Study.

    Science.gov (United States)

    Nakahara, Hiromichi; Hagimori, Masayori; Mukai, Takahiro; Shibata, Osamu

    2016-07-05

    Tetrazine (Tz) is expected to be used for bioimaging and as an analytical reagent. It is known to react very fast with trans-cyclooctene under water in organic chemistry. Here, to understand the interaction between Tz and biomembrane constituents, we first investigated the interfacial behavior of a newly synthesized Tz derivative comprising a C18-saturated hydrocarbon chain (rTz-C18) using a Langmuir monolayer spread at the air-water interface. Surface pressure (π)-molecular area (A) and surface potential (ΔV)-A isotherms were measured for monolayers of rTz-C18 and biomembrane constituents such as dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl sphingomyelin (PSM), and cholesterol (Ch). The lateral interaction between rTz-C18 and the lipids was thermodynamically elucidated from the excess Gibbs free energy of mixing and two-dimensional phase diagram. The binary monolayers except for the Ch system indicated high miscibility or affinity. In particular, rTz-C18 was found to interact more strongly with DPPE, which is a major constituent of the inner surface of cell membranes. The phase behavior and morphology upon monolayer compression were investigated by using Brewster angle microscopy (BAM), fluorescence microscopy (FM), and atomic force microscopy (AFM). The BAM and FM images of the DPPC/rTz-C18, DPPG/rTz-C18, and PSM/rTz-C18 systems exhibited a coexistence state of two different liquid-condensed domains derived mainly from monolayers of phospholipids and phospholipids-rTz-C18. From these morphological observations, it is worthy to note that rTz-C18 is possible to interact with a limited amount of the lipids except for DPPE.

  13. Action of the multifunctional peptide BP100 on native biomembranes examined by solid-state NMR

    Energy Technology Data Exchange (ETDEWEB)

    Misiewicz, Julia [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany); Afonin, Sergii; Grage, Stephan L.; Berg, Jonas van den; Strandberg, Erik; Wadhwani, Parvesh [Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2) (Germany); Ulrich, Anne S., E-mail: anne.ulrich@kit.edu [Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (Germany)

    2015-04-15

    Membrane composition is a key factor that regulates the destructive activity of antimicrobial peptides and the non-leaky permeation of cell penetrating peptides in vivo. Hence, the choice of model membrane is a crucial aspect in NMR studies and should reflect the biological situation as closely as possible. Here, we explore the structure and dynamics of the short multifunctional peptide BP100 using a multinuclear solid-state NMR approach. The membrane alignment and mobility of this 11 amino acid peptide was studied in various synthetic lipid bilayers with different net charge, fluidity, and thickness, as well as in native biomembranes harvested from prokaryotic and eukaryotic cells. {sup 19}F-NMR provided the high sensitivity and lack of natural abundance background that are necessary to observe a labelled peptide even in protoplast membranes from Micrococcus luteus and in erythrocyte ghosts. Six selectively {sup 19}F-labeled BP100 analogues gave remarkably similar spectra in all of the macroscopically oriented membrane systems, which were studied under quasi-native conditions of ambient temperature and full hydration. This similarity suggests that BP100 has the same surface-bound helical structure and high mobility in the different biomembranes and model membranes alike, independent of charge, thickness or cholesterol content of the system. {sup 31}P-NMR spectra of the phospholipid components did not indicate any bilayer perturbation, so the formation of toroidal wormholes or micellarization can be excluded as a mechanism of its antimicrobial or cell penetrating action. However, {sup 2}H-NMR analysis of the acyl chain order parameter profiles showed that BP100 leads to considerable membrane thinning and thereby local destabilization.

  14. The inflammatory stimulus of a natural latex biomembrane improves healing in mice

    Directory of Open Access Journals (Sweden)

    T.A.M. Andrade

    2011-10-01

    Full Text Available The aim of the present study was to compare healing obtained with biomembranes with the natural healing process (sham using biochemical and immunohistological assays. C57BL/6 mice were divided into 4 groups of 15 mice each and received different subcutaneous implants: natural latex biomembrane (NLB, denatured latex (DL, expanded polytetrafluorethylene (ePTFE, or sham. On the 2nd, 7th, and 14th days post-treatment, 5 mice per group were sacrificed and biopsied for the following measurements: oxidative stress based on malondialdehyde (MDA, myeloperoxidase (MPO and hydrogen peroxide by the method of ferrous oxidation-xylenol orange (FOX, as well as glutathione and total proteins; histological evaluation to enumerate inflammatory cells, fibroblasts, blood vessels, and collagen, and immunohistochemical staining for inducible nitric oxide synthase, interleukin-1β, vascular endothelial growth factor (VEGF, and transforming growth factor-β1 (TGF-β1. On day 2 post-treatment, NLB stimulated a dense inflammatory infiltrate mainly consisting of polymorphonuclear cells, as indicated by increased MPO (P < 0.05, but oxidative stress due to MDA was not observed until the 7th day (P < 0.05. The number of blood vessels was greater in NLB (P < 0.05 and DL (P < 0.05 mice compared to sham animals on day 14. NLB induced fibroplasia by day 14 (P < 0.05 with low expression of TGF-β1 and collagenesis. Thus, NLB significantly induced the inflammatory phase of healing mediated by oxidative stress, which appeared to influence the subsequent phases such as angiogenesis (with low expression of VEGF and fibroplasia (independent of TGF-β1 without influencing collagenesis.

  15. The mimetic finite difference method for elliptic problems

    CERN Document Server

    Veiga, Lourenço Beirão; Manzini, Gianmarco

    2014-01-01

    This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.

  16. Promises and Challenges of Smac Mimetics as Cancer Therapeutics.

    Science.gov (United States)

    Fulda, Simone

    2015-11-15

    Inhibitor of Apoptosis (IAP) proteins block programmed cell death and are expressed at high levels in various human cancers, thus making them attractive targets for cancer drug development. Second mitochondrial activator of caspases (Smac) mimetics are small-molecule inhibitors that mimic Smac, an endogenous antagonist of IAP proteins. Preclinical studies have shown that Smac mimetics can directly trigger cancer cell death or, even more importantly, sensitize tumor cells for various cytotoxic therapies, including conventional chemotherapy, radiotherapy, or novel agents. Currently, several Smac mimetics are under evaluation in early clinical trials as monotherapy or in rational combinations (i.e., GDC-0917/CUDC-427, LCL161, AT-406/Debio1143, HGS1029, and TL32711/birinapant). This review discusses the promise as well as some challenges at the translational interface of exploiting Smac mimetics as cancer therapeutics.

  17. Aspartate and glutamate mimetic structures in biologically active compounds.

    Science.gov (United States)

    Stefanic, Peter; Dolenc, Marija Sollner

    2004-04-01

    Glutamate and aspartate are frequently recognized as key structural elements for the biological activity of natural peptides and synthetic compounds. The acidic side-chain functionality of both the amino acids provides the basis for the ionic interaction and subsequent molecular recognition by specific receptor sites that results in the regulation of physiological or pathophysiological processes in the organism. In the development of new biologically active compounds that possess the ability to modulate these processes, compounds offering the same type of interactions are being designed. Thus, using a peptidomimetic design approach, glutamate and aspartate mimetics are incorporated into the structure of final biologically active compounds. This review covers different bioisosteric replacements of carboxylic acid alone, as well as mimetics of the whole amino acid structure. Amino acid analogs presented include those with different distances between anionic moieties, and analogs with additional functional groups that result in conformational restriction or alternative interaction sites. The article also provides an overview of different cyclic structures, including various cycloalkane, bicyclic and heterocyclic analogs, that lead to conformational restriction. Higher di- and tripeptide mimetics in which carboxylic acid functionality is incorporated into larger molecules are also reviewed. In addition to the mimetic structures presented, emphasis in this article is placed on their steric and electronic properties. These mimetics constitute a useful pool of fragments in the design of new biologically active compounds, particularly in the field of RGD mimetics and excitatory amino acid agonists and antagonists.

  18. From neutron stars to quark stars in mimetic gravity

    CERN Document Server

    Astashenok, A V

    2015-01-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with Lagrange multiplier constraint are presented. We discuss the effect of mimetic scalar aiming to describe dark matter on mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of mimetic scalar in the center of star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. {Such ambiguity allows to explain some observational facts better than in standard General Relativity}. The case of two mimetic potentials namely $V(\\phi)\\sim A\\phi^{-2}$ and $V(\\phi)\\sim Ae^{B\\phi^{2}}$ is considered in detail. The relative deviation of maximal moment of inertia is approximately twice larger than the relative deviation of maximal stellar mass. We also briefly discuss the mimetic $f(R)$ gravity. In the case of $f(R)=R+aR^2$ mimetic gravity it is expected that increase of maximal mass and maximal moment of iner...

  19. Calorimetry and Langmuir-Blodgett studies on the interaction of a lipophilic prodrug of LHRH with biomembrane models.

    Science.gov (United States)

    Sarpietro, Maria G; Accolla, Maria L; Santoro, Nancy; Mansfeld, Friederike M; Pignatello, Rosario; Toth, Istvan; Castelli, Francesco

    2014-05-01

    The interaction between an amphiphilic luteinizing hormone-releasing hormone (LHRH) prodrug that incorporated a lipoamino acid moiety (C12-LAA) with biological membrane models that consisted of multilamellar liposomes (MLVs) and phospholipid monolayers, was studied using Differential Scanning Calorimetry (DSC) and Langmuir-Blodgett film techniques. The effect of the prodrug C12[Q1]LHRH on the lipid layers was compared with the results obtained with the pure precursors, LHRH and C12-LAA. Conjugation of LHRH with a LAA promoiety showed to improve the peptide interaction with biomembrane models. Basing on the calorimetric findings, the LAA moiety aided the transfer of the prodrug from an aqueous solution to the biomembrane model.

  20. Highly stable and self-repairing membrane-mimetic 2D nanomaterials assembled from lipid-like peptoids

    Science.gov (United States)

    Jin, Haibao; Jiao, Fang; Daily, Michael D.; Chen, Yulin; Yan, Feng; Ding, Yan-Huai; Zhang, Xin; Robertson, Ellen J.; Baer, Marcel D.; Chen, Chun-Long

    2016-07-01

    An ability to develop sequence-defined synthetic polymers that both mimic lipid amphiphilicity for self-assembly of highly stable membrane-mimetic 2D nanomaterials and exhibit protein-like functionality would revolutionize the development of biomimetic membranes. Here we report the assembly of lipid-like peptoids into highly stable, crystalline, free-standing and self-repairing membrane-mimetic 2D nanomaterials through a facile crystallization process. Both experimental and molecular dynamics simulation results show that peptoids assemble into membranes through an anisotropic formation process. We further demonstrated the use of peptoid membranes as a robust platform to incorporate and pattern functional objects through large side-chain diversity and/or co-crystallization approaches. Similar to lipid membranes, peptoid membranes exhibit changes in thickness upon exposure to external stimuli; they can coat surfaces in single layers and self-repair. We anticipate that this new class of membrane-mimetic 2D nanomaterials will provide a robust matrix for development of biomimetic membranes tailored to specific applications.

  1. Effects of nonionic surfactant lauryl alcohol ethoxylated on stratum corneum alternative model biomembranes evaluated by biophysical techniques

    OpenAIRE

    Baby, André R.; Lacerda, Áurea C. L.; Prestes, Paula S.; Velasco, María Valéria R.; Kawano, Yoshio; Kaneko,Telma Mary

    2011-01-01

    The influence of the nonionic surfactant lauryl alcohol ethoxylate with 12 moles ethylene oxide (LAE-12OE) was evaluated on the Stratum corneum model biomembrane (SCMM) of shed snake skin (Bothrops jararaca and Spilotes pullatus) through the biophysical techniques Fourier transform Raman spectroscopy (FT-Raman) and Fourier transform infrared photoacoustic spectroscopy (PAS-FTIR). The surfactant was used in aqueous solutions above and below the critical micelle concentration (cmc), 50.0 and 0....

  2. Use of a latex biomembrane for bladder augmentation in a rabbit model: biocompatibility, clinical and histological outcomes

    Directory of Open Access Journals (Sweden)

    Andre L. A. Domingos

    2009-04-01

    Full Text Available PURPOSE: To investigate histological features and biocompatibility of a latex biomembrane for bladder augmentation using a rabbit model. MATERIAL AND METHODS: After a partial cystectomy, a patch of a non-vulcanized latex biomembrane (2x4 cm was sewn to the bladder with 5/0 monofilament polydioxanone sulfate in a watertight manner. Groups of 5 animals were sacrificed at 15, 45 and 90 days after surgery and the bladder was removed. The 5-µm preparations obtained from grafted area and normal bladder were stained with hematoxylin-eosin. Immunohistochemical staining was performed with a primary antibody against alpha-actin to assess muscle regeneration. RESULTS: No death, urinary leakage or graft extrusion occurred in any group. All bladders showed a spherical shape. Macroscopically, after 90 days, the latex biomembrane was not identifiable and the patch was indistinguishable from normal bladder. A bladder stone was found in one animal (6.6%. On the 90th day, histology revealed continuity of transitional epithelium of host bladder tissue on the patch area. At this time, the muscle layers were well organized in a similar fashion to native bladder muscle layers. The inflammatory process was higher on grafted areas when compared to controls: 15 days - p < 0.0001, 45 days - p < 0.001, and 90 days - p < 0.01. The anti alpha-actin immunoexpression peaked at 45 days, when the graft was observed covered by muscle cells. CONCLUSION: The latex biomembrane is biocompatible and can be used in models for bladder augmentation in rabbits. It promotes epithelium and muscle regeneration without urinary leakage.

  3. Dispersal of mimetic seeds of three species of Ormosia (Leguminosae)

    Science.gov (United States)

    Foster, M.S.; DeLay, L.S.

    1998-01-01

    Seeds with 'imitation arils' appear wholly or partially covered by pulp or aril but actually carry no fleshy material. The mimetic seed hypothesis to explain this phenomenon proposes a parasitic relationship in which birds are deceived into dispersing seeds that resemble bird-dispersed fruits, without receiving a nutrient reward. The hard-seed for grit hypothesis proposes a mutualistic relationship in which large, terrestrial birds swallow the exceptionally hard 'mimetic' seeds as grit for grinding the softer seeds on which they feed. They defecate, dispersing the seeds, and abrade the seed surface, enhancing germination. Any fruit mimicry is incidental. Fruiting trees of Ormosia spp. (Leguminosae: Papilionoideae) were observed to ascertain mechanisms of seed dispersal and the role of seemingly mimetic characteristics of the seeds in that dispersal. Seed predation and seed germination were also examined. Ormosia isthamensis and O. macrocalyx (but not O. bopiensis) deceived arboreally-foraging frugivorous birds into taking their mimetic seeds, although rates of seed dispersal were low. These results are consistent with the mimetic seed hypothesis. On the other hand, the rates of disappearance of seeds from the ground under the Ormosia trees, hardness of the seeds, and enhancement of germination with the abrasion of the seed coat are all consistent with the hard-seed for grit hypothesis.

  4. Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane.

    Science.gov (United States)

    Ramos, Márcio V; de Alencar, Nylane Maria N; de Oliveira, Raquel S B; Freitas, Lyara B N; Aragão, Karoline S; de Andrade, Thiago Antônio M; Frade, Marco Andrey C; Brito, Gerly Anne C; de Figueiredo, Ingrid Samantha T

    2016-07-01

    In a previous study, we performed the chemical characterization of a polyvinyl alcohol (PVA) membrane supplemented with latex proteins (LP) displaying wound healing activity, and its efficacy as a delivery system was demonstrated. Here, we report on aspects of the mechanism underlying the performance of the PVA-latex protein biomembrane on wound healing. LP-PVA, but not PVA, induced more intense leukocyte (neutrophil) migration and mast cell degranulation during the inflammatory phase of the cicatricial process. Likewise, LP-PVA induced an increase in key markers and mediators of the inflammatory response (myeloperoxidase activity, nitric oxide, TNF, and IL-1β). These results demonstrated that LP-PVA significantly accelerates the early phase of the inflammatory process by upregulating cytokine release. This remarkable effect improves the subsequent phases of the healing process. The polyvinyl alcohol membrane was fully absorbed as an inert support while LP was shown to be active. It is therefore concluded that the LP-PVA is a suitable bioresource for biomedical engineering.

  5. Structure of biomembrane-on-silicon hybrids derived from X-ray reflectometry

    Energy Technology Data Exchange (ETDEWEB)

    Birkholz, M. [IHP, Im Technologiepark 25, D-15236 Frankfurt (Germany)]. E-mail: birkholz@ihp-microelectronics.com; Zaumseil, P. [IHP, Im Technologiepark 25, D-15236 Frankfurt (Germany); Kittler, M. [IHP, Im Technologiepark 25, D-15236 Frankfurt (Germany); Wallat, I. [Fachbereich Physik, FU Berlin, Arnimallee 14, D-14195 Berlin (Germany); Heyn, M.P. [Fachbereich Physik, FU Berlin, Arnimallee 14, D-14195 Berlin (Germany)

    2006-10-15

    The organic-inorganic interface and its proper structural adjustment are of central importance for the fabrication of hybrid material systems from biomolecules and semiconductors. Such material hybrids are currently under development for several advanced applications, in particular for biomolecular sensing. An investigation of biomolecular immobilization on semiconductor surfaces by X-ray reflectometry (XRR) will be presented. Complete biomembrane patches of purple membrane (PM) from Halobacterium salinarum were immobilized on oxidized and nitrided silicon wafers. A covalent immobilization protocol based on 3-aminopropyltriethoxysilane (APTS) and glutaric dialdehyde (GD) was applied for cross-linking the biomolecules to the semiconductor surface. XRR could be shown to yield the relevant morphological parameters of biomolecular monolayers such as layer thickness, interface roughness and coverage. Synchrotron radiation was not required, but a laboratory rotating anode set-up was sufficient to study the prepared stacking of organic monolayers. According to the measurement and analysis of XRR patterns both cross-linking layers APTS and GD are required for bonding purple membrane patches to SiO{sub 2}/Si, whereas GD alone suffices for cross-linking to Si{sub 3}N{sub 4}/Si. This distinct behavior offers a pathway for nanopatterning of biomolecules on Si surfaces by selective passivation.

  6. Fluctuation pressure on a bio-membrane confined within a parabolic potential well

    Institute of Scientific and Technical Information of China (English)

    L. B. Freund

    2012-01-01

    A compliant bio-membrane with a nominally flat reference configuration is prone to random transverse deflections when placed in water,due primarily to the Brownian motion of the water molecules.On the average,these fluctuations result in a state of thermodynamic equilibrium between the entropic energy of the water and the total free energy of the membrane.When the membrane is in close proximity to a parallel surface,that surface restricts the fluctuations of the membrane which,in turn,results in an increase in its free energy.The amount of that increase depends on the degree of confinement,and the resulting gradient in free energy with degree of confinement implies the existence of a confining pressure.In the present study,we assume that the confinement is in the form of a continuous parabolic potential well resisting fluctuation.Analysis leads to a closed form expression for the mean pressure resulting from this confinement,and the results are discussed within the broader context of results in this area.In particular,the results provide insights into the roles of membrane stiffness,number of degrees of freedom in the model of the membrane and other system parameters.

  7. Challenge for spectroscopic tomography of biomembrane using imaging type two-dimensional Fourier spectroscopy

    Science.gov (United States)

    Qi, Wei; Ishimaru, Ichiro

    2010-02-01

    We propose an image-producing Fourier spectroscopic technology that enables two-dimensional spectroscopic images to be obtained within the focusing plane alone. This technology incorporates auto-correlational phase-shift interferometry that uses only object light generated by the bright points that optically make up the object. We are currently involved in studies of non-invasive technologies used to measure blood components such as glucose and lipids, which are measured for use in daily living. Previous studies have investigated non-invasive technologies that measure blood glucose levels by utilizing near-infrared light that permeates the skin well. It has been confirmed that subtle changes in the concentration of a glucose solution, a sample used to measure the glucose level, can be measured by analyzing the spectroscopic characteristics of near-infrared light; however, when applied to a biomembrane, technology such as this is incapable of precisely measuring the glucose level because light diffusion within the skin disturbs the measurement. Our proposed technology enables two-dimensional spectroscopy to a limited depth below the skin covered by the measurement. Specifically, our technology concentrates only on the vascular territory near the skin surface, which is only minimally affected by light diffusion, as discussed previously; the spectroscopic characteristics of this territory are obtained and the glucose level can be measured with good sensitivity. In this paper we propose an image-producing Fourier spectroscopy method that is used as the measuring technology in producing a three-dimensional spectroscopic image.

  8. Accessible protocol for practice classroom about physical and chemical factors that affect the biomembranes integrity

    Directory of Open Access Journals (Sweden)

    Thiago Barros Galvão

    2012-12-01

    Full Text Available The aim of the current work is to review a protocol used in practical classes to demonstrate some factors that affect biomembrane integrity. Sugar-beet fragments were utilized as the experimental model as membrane damage could be visualized by leakage of betacyanins, hydrophilic pigments accumulated in the cell vacuoles. The tests were carried out as discrete experiments utilizing physical agents and chemical products present in the student daily routine. To test the effect of temperature, sugar-beet fragments were submitted to heat, cold or both at different times of exposition. When chemical products were tested, sugar-beet fragments were exposed to organic solvents (common alcohol and acetone or polar and amphipathic substances (disinfectant, detergent, hydrogen peroxide, and sodium hypochlorite. The obtained results were discussed in terms of the capacity of the physical and chemical factors to cause membrane damage. The review of this protocol using reagents that are present in the student daily routine were able to demonstrate clearly the effect of the different tested factors, allowing the utilization of this practical class under limited conditions.

  9. BSA-boronic acid conjugate as lectin mimetics.

    Science.gov (United States)

    Narla, Satya Nandana; Pinnamaneni, Poornima; Nie, Huan; Li, Yu; Sun, Xue-Long

    2014-01-10

    We report bovine serum albumin (BSA)-boronic acid (BA) conjugates as lectin mimetics and their glyco-capturing capacity. The BSA-BA conjugates were synthesized by amidation of carboxylic acid groups in BSA with aminophenyl boronic acid in the presence of EDC, and were characterized by Alizarin Red S (ARS) assay and SDS-PAGE gel. The BSA-BA conjugates were immobilized onto maleimide-functionalized silica beads and their sugar capturing capacity and specificity were confirmed by ARS displacement assay. Further, surface plasmon resonance (SPR) analysis of the glyco-capturing activity of the BSA-BA conjugates was conducted by immobilizing BSA-BA onto SPR gold chip. Overall, we demonstrated a BSA-BA-based lectin mimetics for glyco-capturing applications. These lectin mimetics are expected to provide an important tool for glycomics and biosensor research and applications.

  10. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    Science.gov (United States)

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.

  11. Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics

    Directory of Open Access Journals (Sweden)

    Ogbonna Udochi

    2009-09-01

    Full Text Available Abstract Background Determination of lipophilicity as a tool for predicting pharmacokinetic molecular behavior is limited by the predictive power of available experimental models of the biomembrane. There is current interest, therefore, in models that accurately simulate the biomembrane structure and function. A novel bio-device; a lipid thin film, was engineered as an alternative approach to the previous use of hydrocarbon thin films in biomembrane modeling. Results Retention behavior of four structurally diverse model compounds; 4-amino-3,5-dinitrobenzoic acid (ADBA, naproxen (NPX, nabumetone (NBT and halofantrine (HF, representing 4 broad classes of varying molecular polarities and aqueous solubility behavior, was investigated on the lipid film, liquid paraffin, and octadecylsilane layers. Computational, thermodynamic and image analysis confirms the peculiar amphiphilic configuration of the lipid film. Effect of solute-type, layer-type and variables interactions on retention behavior was delineated by 2-way analysis of variance (ANOVA and quantitative structure property relationships (QSPR. Validation of the lipid film was implemented by statistical correlation of a unique chromatographic metric with Log P (octanol/water and several calculated molecular descriptors of bulk and solubility properties. Conclusion The lipid film signifies a biomimetic artificial biological interface capable of both hydrophobic and specific electrostatic interactions. It captures the hydrophilic-lipophilic balance (HLB in the determination of lipophilicity of molecules unlike the pure hydrocarbon film of the prior art. The potentials and performance of the bio-device gives the promise of its utility as a predictive analytic tool for early-stage drug discovery science.

  12. Tunable elastin-mimetic multiblock hybrid copolymers for biomedical applications

    Science.gov (United States)

    Grieshaber, Sarah Elizabeth

    Elastin-mimetic hybrid polymers (EMHPs) have been developed to capture the multiblock molecular architecture of tropoelastin, allowing tunability in chemical, structural, biological, and mechanical properties. Multiblock EMHPs containing flexible synthetic segments were first synthesized via step growth polymerization of diazido-poly(ethylene glycol) (PEG) and alkyne-terminated AKA3KA (K = lysine, A = alanine) (AK2) peptide employing copper (I)-catalyzed alkyne-azide cycloaddition reaction (CuAAC, or orthogonal click chemistry). Covalent crosslinking of the EMHPs with hexamethylene diisocyanate (HMDI) through the lysine residues in the peptide domain afforded an elastomeric hydrogel (xEMHP) with a compressive modulus of 0.12 +/- 0.018 MPa when hydrated. xEMHPs exhibited minimal cytotoxicity to primary porcine vocal fold fibroblasts. The modular nature of the synthesis allowed facile adjustment of the peptide sequence to modulate the structural and the biological properties of EMHPs. Thus, EMHPs containing integrin-binding peptides were constructed using di-azido-PEG and an alkyne-terminated AK2 peptide with a terminal, integrin-binding GRGDSP domain via the step growth click coupling reaction. Hydrogels formed by covalent crosslinking of the RGD-containing EMHPs had a compressive modulus of 1.06 +/- 0.1MPa when hydrated. Neonatal human dermal fibroblasts (NHDFs) were able to adhere to the hydrogels within 1 h, and to spread and develop F-actin filaments 24 h post seeding. NHDF proliferation was only observed on hydrogels containing RGD domains, demonstrating the importance of integrin engagement for cell growth and the potential use of these EMHPs as tissue engineering scaffolds. The tunability of the EMHP system was further investigated by development of self-assembling, pH-responsive multiblock polymers composed of alternating domains of poly(acrylic acid) (PAA) and a peptide derived from the hydrophobic domains of elastin with the sequence (VPGVG)2 (VG2). The

  13. Phospholipid bilayer-perturbing properties underlying lysis induced by pH-sensitive cationic lysine-based surfactants in biomembranes.

    Science.gov (United States)

    Nogueira, Daniele Rubert; Mitjans, Montserrat; Busquets, M Antonia; Pérez, Lourdes; Vinardell, M Pilar

    2012-08-14

    Amino acid-based surfactants constitute an important class of natural surface-active biomolecules with an unpredictable number of industrial applications. To gain a better mechanistic understanding of surfactant-induced membrane destabilization, we assessed the phospholipid bilayer-perturbing properties of new cationic lysine-based surfactants. We used erythrocytes as biomembrane models to study the hemolytic activity of surfactants and their effects on cells' osmotic resistance and morphology, as well as on membrane fluidity and membrane protein profile with varying pH. The antihemolytic capacity of amphiphiles correlated negatively with the length of the alkyl chain. Anisotropy measurements showed that the pH-sensitive surfactants, with the positive charge on the α-amino group of lysine, significantly increased membrane fluidity at acidic conditions. SDS-PAGE analysis revealed that surfactants induced significant degradation of membrane proteins in hypo-osmotic medium and at pH 5.4. By scanning electron microscopy examinations, we corroborated the interaction of surfactants with lipid bilayer. We found that varying the surfactant chemical structure is a way to modulate the positioning of the molecule inside bilayer and, thus, the overall effect on the membrane. Our work showed that pH-sensitive lysine-based surfactants significantly disturb the lipid bilayer of biomembranes especially at acidic conditions, which suggests that these compounds are promising as a new class of multifunctional bioactive excipients for active intracellular drug delivery.

  14. Synthesis and characterization of an elastin-mimetic amphiphilic block copolymer protein

    Science.gov (United States)

    Lee, Terrence Anita-Talley

    2000-10-01

    The overall goal in material science is to be able to control the molecular architecture of a material and thus its end properties. There is no method that offers greater control than the biological synthesis of proteins. From the DNA sequence to the final synthesized protein, the entire process is finitely controlled. This present work describes methods developed and used to synthesize protein polymers by manipulating this process. From the initial DNA sequence chosen, the end properties that the protein polymer will have are dictated. An amphiphilic diblock copolymer was designed based on environmentally responsive elastin-mimetic peptide sequences [(Val/Ile)-Pro-Gly-Xaa-Gly] (Xaa = Ala or Glu for the hydrophilic block, Val or Phe for the hydrophobic block) and synthesized using a genetic engineering approach. Differential scanning calorimetry measurements in aqueous solution revealed that reversible hydrophobic folding and assembly of the copolymer occurs above the inverse temperature transition, Tt, of the hydrophobic block. This process results in the formation of 50 nm protein-based micellar aggregates, which were characterized by electron microscopy and temperature-dependent dynamic light scattering techniques. The distribution of micellar aggregates can be altered reproducibly through variation of environmental conditions including pH and temperature. The uniform and defined macromolecular architecture of this protein copolymer permits greater control over the physical properties of the micelles, which therefore may facilitate applications in controlled release of small molecules.

  15. Mimetic Discretization of Vector-valued Diffusion Problems

    DEFF Research Database (Denmark)

    Olesen, Kennet

    of vector- and covector-valued differential forms. Special considerations are taken to maintain the intrinsic nature of the operators. Several solutions to relevant 2D problems are shown to document the preserving nature of the method and the attractive convergence rates obtained when using spectral......In this thesis a mimetic discretization method on quadrilaterals is presented with an emphasis on diffusion dominated problems containing second order tensors. Such problems are among others found in structural and fluid dynamical problems. The expansion of the variables is done through orthogonal...... polynomials. The word mimetic means to imitate something and in the present context it means that the physical nature of the problem should be replicated in the numerical setup of the discretization method. A physical problem can often be divided into conservation and constitutive relations. The conservation...

  16. Dark Energy Oscillations in Mimetic $F(R)$ Gravity

    CERN Document Server

    Odintsov, S D

    2016-01-01

    In this paper we address the problem of dark energy oscillations in the context of mimetic $F(R)$ gravity with potential. The issue of dark energy oscillations can be a problem in some models of ordinary $F(R)$ gravity and a remedy that can make the oscillations milder is to introduce additional modifications in the functional form of the $F(R)$ gravity. As we demonstrate the power-law modifications are not necessary in the mimetic $F(R)$ case, and by appropriately choosing the mimetic potential and the Lagrange multiplier, it is possible to make the oscillations almost to vanish at the end of the matter domination era and during the late-time acceleration era. We examine the behavior of the dark energy equation of state parameter and of the total effective equation of state parameter as functions of the redshift and we compare the resulting picture with the ordinary $F(R)$ gravity case. As we also show, the present day values of the dark energy equation of state parameter and of the total effective equation ...

  17. Exosome mimetics: a novel class of drug delivery systems.

    Science.gov (United States)

    Kooijmans, Sander A A; Vader, Pieter; van Dommelen, Susan M; van Solinge, Wouter W; Schiffelers, Raymond M

    2012-01-01

    The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.

  18. BH3 mimetics activate multiple pro-autophagic pathways.

    Science.gov (United States)

    Malik, S A; Orhon, I; Morselli, E; Criollo, A; Shen, S; Mariño, G; BenYounes, A; Bénit, P; Rustin, P; Maiuri, M C; Kroemer, G

    2011-09-15

    The BH3 mimetic ABT737 induces autophagy by competitively disrupting the inhibitory interaction between the BH3 domain of Beclin 1 and the anti-apoptotic proteins Bcl-2 and Bcl-X(L), thereby stimulating the Beclin 1-dependent allosteric activation of the pro-autophagic lipid kinase VPS34. Here, we examined whether ABT737 stimulates other pro-autophagic signal-transduction pathways. ABT737 caused the activating phosphorylation of AMP-dependent kinase (AMPK) and of the AMPK substrate acetyl CoA carboxylase, the activating phosphorylation of several subunits of the inhibitor of NF-κB (IκB) kinase (IKK) and the hyperphosphorylation of the IKK substrate IκB, inhibition of the activity of mammalian target of rapamycin (mTOR) and consequent dephosphorylation of the mTOR substrate S6 kinase. In addition, ABT737 treatment dephosphorylates (and hence likewise inhibits) p53, glycogen synthase kinase-3 and Akt. All these effects were shared by ABT737 and another structurally unrelated BH3 mimetic, HA14-1. Functional experiments revealed that pharmacological or genetic inhibition of IKK, Sirtuin and the p53-depleting ubiquitin ligase MDM2 prevented ABT737-induced autophagy. These results point to unexpected and pleiotropic pro-autophagic effects of BH3 mimetics involving the modulation of multiple signalling pathways.

  19. Reproductive isolation related to mimetic divergence in the poison frog Ranitomeya imitator

    DEFF Research Database (Denmark)

    Twomey, Evan; Vestergaard, Jacob Schack; Summers, Kyle

    2014-01-01

    study the Peruvian poison frog Ranitomeya imitator, a species that has undergone a mimetic radiation into four distinct morphs. Using a combination of colour–pattern analysis, landscape genetics and mate-choice experiments, we show that a mimetic shift in R. imitator is associated with a narrow...

  20. A mimetic tissue model for the quantification of drug distributions by MALDI imaging mass spectrometry.

    Science.gov (United States)

    Groseclose, M Reid; Castellino, Stephen

    2013-11-05

    The full potential of imaging mass spectrometry (IMS) as a tool in drug development will not be realized until reliable quantitative information can be integrated with the molecular distributions. Here we report a novel method for the quantification of drugs in tissue sections using matrix-assisted laser desorption/ionization (MALDI) IMS. This method uses a mimetic tissue model consisting of a set of tissue homogenates spiked with a range of different drug concentrations that have been frozen into a polymer support mold. The goal of this model is to mimic a dosed tissue in its effects on analyte extraction and ion suppression. Parallel preparation and analysis of sections from the tissue model and the dosed tissues allow for the quantification of a drug's distribution. Here we detail the steps involved in constructing the model and provide proof of concept data to highlight the potential of this approach. Several figures of merit are evaluated including linearity of response, variability, and section-to-section reproducibility. Finally, the tissue model is used to quantify two different drugs, lapatinib and nevirapine, in dosed tissues from nonclinical species and the results are compared with those generated by LC-MS quantification.

  1. Exosome mimetics: a novel class of drug delivery systems

    Directory of Open Access Journals (Sweden)

    Kooijmans SAA

    2012-03-01

    Full Text Available Sander AA Kooijmans, Pieter Vader, Susan M van Dommelen, Wouter W van Solinge, Raymond M SchiffelersDepartment of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The NetherlandsAbstract: The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.Keywords: exosomes, extracellular vesicles, liposomes, drug delivery systems

  2. Thrombopoietin mimetic agents in the management of immune thrombocytopenic purpura.

    Science.gov (United States)

    Newland, Adrian

    2007-10-01

    Thrombopoietin (TPO) is a potent endogenous cytokine and the principal regulator of platelet production. Advances in the understanding of the structure of TPO enabled development of the first generation of thrombopoietic growth factors, recombinant human thrombopoietin (rhTPO) and pegylated human recombinant megakaryocyte growth and development factor (PEG-rHuMGDF). Clinical results showed that these agents were effective in promoting increases in platelet counts in a variety of thrombocytopenic disorders. However, clinical development was halted when studies demonstrated risk for autoantibody formation with cross-reactivity to endogenous TPO. A second generation of thrombopoietic growth factors, including TPO peptide and nonpeptide mimetics and TPO agonist antibodies, utilizing different mechanisms from recombinant growth factors to promote platelet production, are currently in development. The TPO peptide mimetic AMG 531 and the nonpeptide mimetic eltrombopag are in advanced clinical trials and have both resulted in dose-dependent increases in platelets in healthy subjects and in significant increases in platelets in patients with chronic immune thrombocytopenic purpura (ITP). Clinical trials are also being conducted to examine the efficacy and safety of eltrombopag to treat thrombocytopenia in hepatitis C virus (HCV)-infected individuals. These agents appear to be well tolerated and the formation of autoantibodies appears to be limited to first-generation growth factors. Increases in marrow reticulin have been demonstrated with some growth factors, but this appears to be a reversible phenomenon and is not associated with formation of collagen fibrosis. There appears to be no increased incidence of thrombotic events in patients who achieve high platelet counts with growth factor treatments, and although occasional thrombotic events have been reported, their association to the treatment is uncertain. While there is evidence that activation of signaling pathways

  3. Mimetic Finite Differences for Flow in Fractures from Microseismic Data

    KAUST Repository

    Al-Hinai, Omar

    2015-01-01

    We present a method for porous media flow in the presence of complex fracture networks. The approach uses the Mimetic Finite Difference method (MFD) and takes advantage of MFD\\'s ability to solve over a general set of polyhedral cells. This flexibility is used to mesh fracture intersections in two and three-dimensional settings without creating small cells at the intersection point. We also demonstrate how to use general polyhedra for embedding fracture boundaries in the reservoir domain. The target application is representing fracture networks inferred from microseismic analysis.

  4. Carbohydrate Mimetic Peptides for Pan Anti-Tumor Responses

    Directory of Open Access Journals (Sweden)

    Thomas eKieber-Emmons

    2014-06-01

    Full Text Available Molecular mimicry is fundamental to biology which transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience in bringing a tumor-associated carbohydrate mimetic peptide to the clinic. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor associated carbohydrate antigens and the notion of reverse engineering to develop carbohydrate mimetic peptides in vaccine design strategies to induce responses to pan-glycan antigens expressed on cancer cells.

  5. Insulino-mimetic and anti-diabetic effects of zinc.

    Science.gov (United States)

    Vardatsikos, George; Pandey, Nihar R; Srivastava, Ashok K

    2013-03-01

    While it has long been known that zinc (Zn) is crucial for the proper growth and maintenance of normal biological functions, Zn has also been shown to exert insulin-mimetic and anti-diabetic effects. These insulin-like properties have been demonstrated in isolated cells, tissues, and different animal models of type 1 and type 2 diabetes. Zn treatment has been found to improve carbohydrate and lipid metabolism in rodent models of diabetes. In isolated cells, it enhances glucose transport, glycogen and lipid synthesis, and inhibits gluconeogenesis and lipolysis. The molecular mechanism responsible for the insulin-like effects of Zn compounds involves the activation of several key components of the insulin signaling pathways, which include the extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol 3-kinase (PI3-K)/protein kinase B/Akt (PKB/Akt) pathways. However, the precise molecular mechanisms by which Zn triggers the activation of these pathways remain to be clarified. In this review, we provide a brief history of zinc, and an overview of its insulin-mimetic and anti-diabetic effects, as well as the potential mechanisms by which zinc exerts these effects.

  6. The mimetic repertoire of the spotted bowerbird Ptilonorhynchus maculatus

    Science.gov (United States)

    Kelley, Laura A.; Healy, Susan D.

    2011-06-01

    Although vocal mimicry in songbirds is well documented, little is known about the function of such mimicry. One possibility is that the mimic produces the vocalisations of predatory or aggressive species to deter potential predators or competitors. Alternatively, these sounds may be learned in error as a result of their acoustic properties such as structural simplicity. We determined the mimetic repertoires of a population of male spotted bowerbirds Ptilonorhynchus maculatus, a species that mimics predatory and aggressive species. Although male mimetic repertoires contained an overabundance of vocalisations produced by species that were generally aggressive, there was also a marked prevalence of mimicry of sounds that are associated with alarm such as predator calls, alarm calls and mobbing calls, irrespective of whether the species being mimicked was aggressive or not. We propose that it may be the alarming context in which these sounds are first heard that may lead both to their acquisition and to their later reproduction. We suggest that enhanced learning capability during acute stress may explain vocal mimicry in many species that mimic sounds associated with alarm.

  7. Design, preparation, and application of ordered porous polymer materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingquan, E-mail: qqliu@hnust.edu.cn; Tang, Zhe; Ou, Baoli; Liu, Lihua; Zhou, Zhihua, E-mail: zhou7381@126.com; Shen, Shaohua; Duan, Yinxiang

    2014-04-01

    Ordered porous polymer (OPP) materials have extensively application prospects in the field of separation and purification, biomembrane, solid supports for sensors catalysts, scaffolds for tissue engineering, photonic band gap materials owing to ordered pore arrays, uniform and tunable pore size, high specific surface area, great adsorption capacity, and light weight. The present paper reviewed the preparation techniques of OPP materials like breath figures, hard template, and soft template. Finally, the applications of OPP materials in the field of separation, sensors, and biomedicine are introduced, respectively. - Highlights: • Breath figures involve polymer casting under moist ambience. • Hard template employs monodisperse colloidal spheres as a template. • Soft template utilizes the etched block in copolymers as template.

  8. Mimetic Gravity: A Review of Recent Developments and Applications to Cosmology and Astrophysics

    Directory of Open Access Journals (Sweden)

    Lorenzo Sebastiani

    2017-01-01

    Full Text Available Mimetic gravity is a Weyl-symmetric extension of General Relativity, related to the latter by a singular disformal transformation, wherein the appearance of a dust-like perfect fluid can mimic cold dark matter at a cosmological level. Within this framework, it is possible to provide a unified geometrical explanation for dark matter, the late-time acceleration, and inflation, making it a very attractive theory. In this review, we summarize the main aspects of mimetic gravity, as well as extensions of the minimal formulation of the model. We devote particular focus to the reconstruction technique, which allows the realization of any desired expansionary history of the universe by an accurate choice of potential or other functions defined within the theory (as in the case of mimetic f(R gravity. We briefly discuss cosmological perturbation theory within mimetic gravity. As a case study within which we apply the concepts previously discussed, we study a mimetic Hořava-like theory, of which we explore solutions and cosmological perturbations in detail. Finally, we conclude the review by discussing static spherically symmetric solutions within mimetic gravity and apply our findings to the problem of galactic rotation curves. Our review provides an introduction to mimetic gravity, as well as a concise but self-contained summary of recent findings, progress, open questions, and outlooks on future research directions.

  9. The vegetal biomembrane in the healing of chronic venous ulcers Biomembrana vegetal na cicatrização de úlceras venosas crônicas

    Directory of Open Access Journals (Sweden)

    Marco Andrey Cipriani Frade

    2012-02-01

    Full Text Available BACKGROUND: The vegetal biomembrane has been used to treat cutaneous ulcers. OBJECTIVES: To assess the role of the vegetal biomembrane on the chronic venous ulcers treatment compared to treatment with collagenase cream. METHODS: Fourteen patients were selected to be treated with vegetal biomembrane and 7 with Fibrase®(CONTROL, followed clinically and photographically by the Wound Healing Index by ImageJ during 120 days and biopsied on the 1st and 30th days for histological examination. RESULTS: The vegetal biomembrane was better in promoting healing of the ulcers, especially on the inflammatory phase, confirmed by abundant exudation and wound debridement than the CONTROL group, on the 30th day. There was a greater tendency to angiogenesis followed by re-epithelialization with highest wound healing index on the 90th and 120th days. CONCLUSION: A combined analysis of clinical and histopathological findings suggests that the vegetal biomembrane acted as a factor inducing wound healing, especially on the inflammatory phase, confirmed by abundant exudation of the lesions promoting the transformation of the microenvironment of the chronic venous ulcers, and also stimulating angiogenesis and subsequent re-epithelialization.FUNDAMENTOS: A biomembrana vegetal tem sido usada para tratamento de úlceras cutâneas. OBJETIVOS: Avaliar a ação da biomembrana vegetal no tratamento de úlceras venosas crônicas, comparando-a ao tratamento à base de colagenase. MÉTODOS: Foram selecionados 14 pacientes tratados com biomembrana vegetal e sete com Fibrase® (grupo controle, acompanhados clínico-fotograficamente pelo índice de cicatrização das úlceras (ICU por 120 dias, por meio do software ImageJ, e biopsiados no primeiro e 30º dias para estudo histopatológico. RESULTADOS: A biomembrana vegetal foi superior em relação ao controle na cicatrização das úlceras no 30º dia, especialmente na fase inflamatória, confirmada pela exsudação abundante e

  10. Amelioration of oxidative stress in bio-membranes and macromolecules by non-toxic dye from Morinda tinctoria (Roxb.) roots.

    Science.gov (United States)

    Bhakta, Dipita; Siva, Ramamoorthy

    2012-06-01

    Plant dyes have been in use for coloring and varied purposes since prehistoric times. A red dye found in the roots of plants belonging to genus Morinda is a well recognized coloring ingredient. The dye fraction obtained from the methanolic extract of the roots of Morinda tinctoria was explored for its role in attenuating damages caused by H(2)O(2)-induced oxidative stress. The antioxidant potential of the dye fraction was assessed through DPPH radical scavenging, deoxyribose degradation and inhibition of lipid peroxidation in mice liver. It was subsequently screened for its efficiency in extenuating damage incurred to biomembrane (using erythrocytes and their ghost membranes) and macromolecules (pBR322 DNA, lipids and proteins) from exposure to hydrogen peroxide. In addition, the non-toxic nature of the dye was supported by the histological evaluation conducted on the tissue sections from the major organs of Swiss Albino mice as well as effect on Hep3B cell line (human hepatic carcinoma). The LC-MS confirms the dye fraction to be morindone. Our study strongly suggests that morindone present in the root extracts of M. tinctoria, in addition to being a colorant, definitely holds promise in the pharmaceutical industry.

  11. Disruption of Saccharomyces cerevisiae by Plantaricin 149 and investigation of its mechanism of action with biomembrane model systems.

    Science.gov (United States)

    Lopes, José Luiz S; Nobre, Thatyane M; Siano, Alvaro; Humpola, Verónica; Bossolan, Nelma R S; Zaniquelli, Maria E D; Tonarelli, Georgina; Beltramini, Leila M

    2009-10-01

    The action of a synthetic antimicrobial peptide analog of Plantaricin 149 (Pln149a) against Saccharomyces cerevisiae and its interaction with biomembrane model systems were investigated. Pln149a was shown to inhibit S. cerevisiae growth by more than 80% in YPD medium, causing morphological changes in the yeast wall and remaining active and resistant to the yeast proteases even after 24 h of incubation. Different membrane model systems and carbohydrates were employed to better describe the Pln149a interaction with cellular components using circular dichroism and fluorescence spectroscopies, adsorption kinetics and surface elasticity in Langmuir monolayers. These assays showed that Pln149a does not interact with either mono/polysaccharides or zwitterionic LUVs, but is strongly adsorbed to and incorporated into negatively charged surfaces, causing a conformational change in its secondary structure from random-coil to helix upon adsorption. From the concurrent analysis of Pln149a adsorption kinetics and dilatational surface elasticity data, we determined that 2.5 muM is the critical concentration at which Pln149a will disrupt a negative DPPG monolayer. Furthermore, Pln149a exhibited a carpet-like mechanism of action, in which the peptide initially binds to the membrane, covering its surface and acquiring a helical structure that remains associated to the negatively charged phospholipids. After this electrostatic interaction, another peptide region causes a strain in the membrane, promoting its disruption.

  12. New diketone based vanadium complexes as insulin mimetics.

    Science.gov (United States)

    Sheela, A; Roopan, S Mohana; Vijayaraghavan, R

    2008-10-01

    Since 1985, when Heyliger et al. first reported the in vivo insulin mimetic activity of oral vanadate, extensive studies exploring vanadium chemistry, including the synthesis of novel complexes and their biological effects both in vitro and in vivo have been pursued. Such complexes have emerged as possible potential agents for diabetes therapy. Among the several existing compounds, diketone based vanadium complexes have been chosen for the current study. Two new complexes namely bisdimethylmalonatooxovanadium(IV) and bisdiethylmalonatooxovanadium(IV) have been synthesized and characterized by UV-visible, FTIR and mass spectral studies. The antidiabetic activity of the complexes was proved by animal study. The results show that the above complexes have comparable antidiabetic potential with respect to the standard drug as well as with bisacetylacetonatooxovanadium(IV) which has been studied earlier by Reul et al.

  13. Genes controlling mimetic colour pattern variation in butterflies.

    Science.gov (United States)

    Nadeau, Nicola J

    2016-10-01

    Butterfly wing patterns are made up of arrays of coloured scales. There are two genera in which within-species variation in wing patterning is common and has been investigated at the molecular level, Heliconius and Papilio. Both of these species have mimetic relationships with other butterfly species that increase their protection from predators. Heliconius have a 'tool-kit' of five genetic loci that control colour pattern, three of which have been identified at the gene level, and which have been repeatedly used to modify colour pattern by different species in the genus. By contrast, the three Papilio species that have been investigated each have different genetic mechanisms controlling their polymorphic wing patterns.

  14. Ancient homology underlies adaptive mimetic diversity across butterflies

    Science.gov (United States)

    Gallant, Jason R.; Imhoff, Vance E.; Martin, Arnaud; Savage, Wesley K.; Chamberlain, Nicola L.; Pote, Ben L.; Peterson, Chelsea; Smith, Gabriella E.; Evans, Benjamin; Reed, Robert D.; Kronforst, Marcus R.; Mullen, Sean P.

    2014-01-01

    Convergent evolution provides a rare, natural experiment with which to test the predictability of adaptation at the molecular level. Little is known about the molecular basis of convergence over macro-evolutionary timescales. Here we use a combination of positional cloning, population genomic resequencing, association mapping and developmental data to demonstrate that positionally orthologous nucleotide variants in the upstream region of the same gene, WntA, are responsible for parallel mimetic variation in two butterfly lineages that diverged >65 million years ago. Furthermore, characterization of spatial patterns of WntA expression during development suggests that alternative regulatory mechanisms underlie wing pattern variation in each system. Taken together, our results reveal a strikingly predictable molecular basis for phenotypic convergence over deep evolutionary time. PMID:25198507

  15. Mimetic Methods for Lagrangian Relaxation of Magnetic Fields

    CERN Document Server

    Candelaresi, Simon; Hornig, Gunnar

    2014-01-01

    We present a new code that performs a relaxation of a magnetic field towards a force-free state (Beltrami field) using a Lagrangian numerical scheme. Beltrami fields are of interest for the dynamics of many technical and astrophysical plasmas as they are the lowest energy states that the magnetic field can reach. The numerical method strictly preserves the magnetic flux and the topology of magnetic field lines. In contrast to other implementations we use mimetic operators for the spatial derivatives in order to improve accuracy for high distortions of the grid. Compared with schemes using direct derivatives we find that the final state of the simulation approximates a force-free state with a significantly higher accuracy. We implement the scheme in a code which runs on graphical processing units (GPU), which leads to an enhanced computing speed compared to previous relaxation codes.

  16. Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers

    Science.gov (United States)

    Rexeisen, Emilie Lynn

    Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone. Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human

  17. Fluorescence Spectra and Enzymatic Property of Hemoglobin as Mimetic Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Li De-jia; Li Hai-cheng; Zou Guo-lin

    2003-01-01

    Intrinsic fluorescence emission maxima of hemoglobin(Hb) was investigated in relation to peroxidase property of Hb. The peroxidase activity of Hb was based on its catalytic activity for oxidation of o-phenylenediamine by hydrogen peroxide. Hb was treated in the condition (temperature,ethanol and salt) that tetramer-dimer equilibrium of Hb is shifted to the dimer state and its fluorescence spectrum was measured. When Hb treated in temperature (60-70 ℃ ), ethanol concentration (60 %-70 % ) and NaCl concentration (2.5-3.0 mol/L), the fluorescence emission maxima of Hb shifted towards red wavelength and its activity decreased quickly.Experimental results revealed that the activity and stability of Hb as mimetic peroxidase was closely relative to the hydrophobic environment of active center of Hb, and when Hb (FeⅡ) converted into met Hb (FeⅢ ), its activity was 1. 6times as much as that of Hb.

  18. Fluorescence Spectra and Enzymatic Property of Hemoglobin as Mimetic Peroxidase

    Institute of Scientific and Technical Information of China (English)

    LiDe-jia; LiHai-cheng; ZouGuo-lin

    2003-01-01

    Intrinsic fluorescence emission maxima of hemo-lobin(Hb) was investigated in relation to peroxidase property of Hb. The peroxidase activity of Hb was based on its catalytic activity for oxidation of o-phenylenediamine by hydrogen peroxide. Hb was treated in the condition (temperature,ethanol and salt) that tetramer-dimer equilibrium of Hb is shifted to the dimer state and its fluorescence spectrum was measured. When Hb treated in temperature (60-70 ℃), ethanol concentration (60%-70%) and NaCl concentration (2. 5-3.0 mol/L), the fluorescence emission maxima of Hb shifted towards red wavelength and its activity decreased quickly.Experimental results revealed that the activity and stability of Hb as mimetic peroxidase was closely relative to the hydrophobic environment of active center of Hb, and when Hb (FeⅡ) converted into met Hb (FeⅢ ), its activity was 1. 6 times as much as that of Hb.

  19. A Novel Bio-mimetic Wireless Micro Robot for Endoscope

    Institute of Scientific and Technical Information of China (English)

    YE Dong-dong; YAN Guo-zheng; WANG Kua-dong; MA Guan-ying

    2008-01-01

    A novel bio-mimetic wireless micro robot for endoscope is developed. Its autonomous manner is earthworm-like and driven by linear actuators based on DC motor. It is different from the conventional micro robot endoscope that wireless module is used for communicating and power transfer. The fabricated micro robot system is detailedly described, including structure, micro robot locomotion principle, communication control module and wireless power transfer module. The experimental results show that the driving force of the lineaar actuator can reach to 2.55 N and supplying power is up to 480 mW DC power for receiving coil in the proposed system, which all fulfill the need of the micro robot system. The micro robot can creep reliably in the large intestine of pig and other contact environments.

  20. Polymer films

    Science.gov (United States)

    Granick, Steve; Sukhishvili, Svetlana A.

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  1. Characterization of polymer-supported native membranes by X-ray and neutron reflectivity

    Energy Technology Data Exchange (ETDEWEB)

    Rossetti, Fernanda; Schneck, Emanuel; Kaufmann, Stefan; Tutus, Murat; Tanaka, Motomu [Biophysical Chemistry Laboratory II, University of Heidelberg (Germany); Konovalev, Oleg [European Synchrotron Radiation Facility, Grenoble (France); Fragneto, Giovanna [Institut Laue Langevin, Grenoble (France)

    2008-07-01

    Polymer-supported artificial and/or native membranes attract increasing interest as planar models of cell membranes. Immuno-fluorescence labeling experiments have demonstrated that native cells and microsomes can be spread on polymer 'cushions' based on ultrathin films of regenerated cellulose. However, structures of such 'two-dimensional biological membranes' on the molecular level are still unknown. This poster will present a quantitative study-performed by X-ray and neutron reflectivity measurements at the solid-liquid interface-of structures of bio-membranes on cellulose cushions that mimic the extracellular matrix (ECM). The films are prepared by Langmuir-Blodgett transfer, so that the thickness can be controlled within nm accuracy in the range of 5-50 nm. It will be shown that the deposition of several types of natural bio-membrane extracts (sarcoplasmic reticulum membranes, human erythrocyte ghosts, HeLa cell membrane extracts) results in a clear change in the global shape of the reflectivity curves for cellulose supports of different thickness. The observed changes coincide with the formation of homogeneous polymer-supported lipid membranes over a macroscopically large area.

  2. Structure of ristocetin A in complex with a bacterial cell-wall mimetic

    OpenAIRE

    Nahoum, Virginie; Spector, Sherri; Loll, Patrick J.

    2009-01-01

    The crystal structure of the complex between ristocetin A and the cell-wall peptide mimetic N-acetyl-lysine-d-alanine-d-alanine has been solved. Structural details explaining the anticooperativity of the antibiotic have been identified.

  3. A non-linear constrained optimization technique for the mimetic finite difference method

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Svyatskiy, Daniil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bertolazzi, Enrico [Univ. of Trento (Italy); Frego, Marco [Univ. of Trento (Italy)

    2014-09-30

    This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.

  4. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  5. How sound symbolism is processed in the brain: a study on Japanese mimetic words.

    Science.gov (United States)

    Kanero, Junko; Imai, Mutsumi; Okuda, Jiro; Okada, Hiroyuki; Matsuda, Tetsuya

    2014-01-01

    Sound symbolism is the systematic and non-arbitrary link between word and meaning. Although a number of behavioral studies demonstrate that both children and adults are universally sensitive to sound symbolism in mimetic words, the neural mechanisms underlying this phenomenon have not yet been extensively investigated. The present study used functional magnetic resonance imaging to investigate how Japanese mimetic words are processed in the brain. In Experiment 1, we compared processing for motion mimetic words with that for non-sound symbolic motion verbs and adverbs. Mimetic words uniquely activated the right posterior superior temporal sulcus (STS). In Experiment 2, we further examined the generalizability of the findings from Experiment 1 by testing another domain: shape mimetics. Our results show that the right posterior STS was active when subjects processed both motion and shape mimetic words, thus suggesting that this area may be the primary structure for processing sound symbolism. Increased activity in the right posterior STS may also reflect how sound symbolic words function as both linguistic and non-linguistic iconic symbols.

  6. Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution

    Science.gov (United States)

    Kreeft, Jasper; Gerritsma, Marc

    2013-05-01

    In this paper we apply the recently developed mimetic discretization method to the mixed formulation of the Stokes problem in terms of vorticity, velocity and pressure. The mimetic discretization presented in this paper and in Kreeft et al. [51] is a higher-order method for curvilinear quadrilaterals and hexahedrals. Fundamental is the underlying structure of oriented geometric objects, the relation between these objects through the boundary operator and how this defines the exterior derivative, representing the grad, curl and div, through the generalized Stokes theorem. The mimetic method presented here uses the language of differential k-forms with k-cochains as their discrete counterpart, and the relations between them in terms of the mimetic operators: reduction, reconstruction and projection. The reconstruction consists of the recently developed mimetic spectral interpolation functions. The most important result of the mimetic framework is the commutation between differentiation at the continuous level with that on the finite dimensional and discrete level. As a result operators like gradient, curl and divergence are discretized exactly. For Stokes flow, this implies a pointwise divergence-free solution. This is confirmed using a set of test cases on both Cartesian and curvilinear meshes. It will be shown that the method converges optimally for all admissible boundary conditions.

  7. Preparation, property of the complex of carboxymethyl chitosan grafted copolymer with iodine and application of it in cervical antibacterial biomembrane

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Yang, Yumin; Liao, Qingping [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Yang, Wei [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Ma, Wanfeng [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Zhao, Jian [Department of Gynaecology and Obstetrics, The First Hospital of Peking University, Beijing 100034 (China); Zheng, Xionggao [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Yang, Yang [Zhejiang Sanchuang Biological Technology Co., Ltd., Jiaxing, Zhejiang Province 314031 (China); Chen, Rui [Department of Gynaecology and Obstetrics, The First Hospital of Peking University, Beijing 100034 (China)

    2016-10-01

    Cervical erosion is one of the common diseases of women. The loop electrosurgical excisional procedure (LEEP) has been used widely in the treatment of the cervical diseases. However, there are no effective wound dressings for the postoperative care to protect the wound area from further infection, leading to increased secretion and longer healing time. Iodine is a widely used inorganic antibacterial agent with many advantages. However, the carrier for stable iodine complex antibacterial agents is lack. In the present study, a novel iodine carrier, Carboxymethyl chitosan-g-(poly(sodium acrylate)-co-polyvinylpyrrolidone) (CMCTS-g-(PAANa-co-PVP), was prepared by graft copolymerization of sodium acrylate (AANa) and N-vinylpyrrolidone (NVP) to a carboxymethyl chitosan (CMCTS) skeleton. The obtained structure could combine prominent property of poly(sodium acrylate) (PAANa) anionic polyelectrolyte segment and good complex property of polyvinylpyrrolidone (PVP) segment to iodine. The bioactivity of CMCTS could also be kept. The properties of the complex, CMCTS-g-(PAANa-co-PVP)-I{sub 2}, were studied. The in vitro experiment shows that it has broad-spectrum bactericidal effects to virus, fungus, gram-positive bacteria and gram-negative bacteria. A CMCTS-g-(PAANa-co-PVP)-I{sub 2} complex contained cervical antibacterial biomembrane (CABM) was prepared. The iodine release from the CABM is pH-dependent. The clinic trial results indicate that CABM has better treatment effectiveness than the conventional treatment in the postoperative care of the LEEP operation. - Highlights: • The multifunctional iodine complexing carrier CMCTS-g-(PAANa-co-PVP) was prepared. • CMCTS-g-(PAANa-co-PVP)-I{sub 2} with high antibacterial property and bio-safety was studied. • By compositing it with CMCTS and gelatin further, CABM with multifunction was deduced. • The releasing properties of the activated iodine from CABM showed pH sensitivity. • CABM showed good treating effect for

  8. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity

    Directory of Open Access Journals (Sweden)

    V. K. Oikonomou

    2016-05-01

    Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.

  9. Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking.

    Science.gov (United States)

    Ma, Lang; Cheng, Chong; He, Chao; Nie, Chuanxiong; Deng, Jie; Sun, Shudong; Zhao, Changsheng

    2015-12-01

    In this work, we designed a robust and heparin-mimetic hydrogel thin film coating via combined layer-by-layer (LbL) self-assembly and mussel-inspired post-cross-linking. Dopamine-grafted heparin-like/-mimetic polymers (DA-g-HepLP) with abundant carboxylic and sulfonic groups were synthesized by the conjugation of adhesive molecule, DA, which exhibited substrate-independent adhesive affinity to various solid surfaces because of the formation of irreversible covalent bonds. The hydrogel thin film coated substrates were prepared by a three-step reaction: First, the substrates were coated with DA-g-HepLP to generate negatively charged surfaces. Then, multilayers were obtained via LbL coating of chitosan and the DA-g-HepLP. Finally, the noncovalent multilayers were oxidatively cross-linked by NaIO4. Surface ATR-FTIR and XPS spectra confirmed the successful fabrication of the hydrogel thin film coatings onto membrane substrates; SEM images revealed that the substrate-independent coatings owned 3D porous morphology. The soaking tests in highly alkaline, acid, and concentrated salt solutions indicated that the cross-linked hydrogel thin film coatings owned high chemical resistance. In comparison, the soaking tests in physiological solution indicated that the cross-linked hydrogel coatings owned excellent long-term stability. The live/dead cell staining and morphology observations of the adhered cells revealed that the heparin-mimetic hydrogel thin film coated substrates had low cell toxicity and high promotion ability for cell proliferation. Furthermore, systematic in vitro investigations of protein adsorption, platelet adhesion, blood clotting, and blood-related complement activation confirmed that the hydrogel film coated substrates showed excellent hemocompatibility. Both the results of inhibition zone and bactericidal activity indicated that the gentamycin sulfate loaded hydrogel thin films had significant inhibition capability toward both Escherichia coli and

  10. Reaction kinetics and targeting to cellular glutathione S-transferase of the glutathione peroxidase mimetic PhSeZnCl and its D,L-polylactide microparticle formulation.

    Science.gov (United States)

    Bartolini, D; Piroddi, M; Tidei, C; Giovagnoli, S; Pietrella, D; Manevich, Y; Tew, K D; Giustarini, D; Rossi, R; Townsend, D M; Santi, C; Galli, F

    2015-01-01

    Catalytic properties and cellular effects of the glutathione peroxidase (GPx)-mimetic compound PhSeZnCl or its d,l-lactide polymer microencapsulation form (M-PhSeZnCl) were investigated and compared with the prototypical Se-organic compounds ebselen and diselenide (PhSe)2. PhSeZnCl was confirmed to catalyze the ping-pong reaction of GPx with higher Vmax than ebselen and (PhSe)2, but the catalytic efficiency calculated for the cosubstrates glutathione (GSH) and H2O2, and particularly the high reactivity against thiols (lowest KM for GSH in the series of test molecules), suggested poor biological applicability of PhSeZnCl as a GPx mimetic. Cytotoxicity of PhSeZnCl was demonstrated in various cancer cell lines via increased reactive oxygen species (ROS) generation, depletion of intracellular thiols, and induction of apoptosis. Experiments carried out in GSH S-transferase P (GSTP)-overexpressing K562 human erythroleukemia cells and in GSTP1-1-knockout murine embryonic fibroblasts (MEFs) demonstrated that this cytosolic enzyme represents a preferential target of the redox disturbances produced by this Se-compound with a key role in controlling H2O2 generation and the perturbation of stress/survival kinase signaling. Microencapsulation was adopted as a strategy to control the thiol reactivity and oxidative stress effects of PhSeZnCl, then assessing applications alternative to anticancer. The uptake of this "depowered" GPx-mimetic formulation, which occurred through an endocytosis-like mechanism, resulted in a marked reduction of cytotoxicity. In MCF-7 cells transfected with different allelic variants of GSTP, M-PhSeZnCl lowered the burst of cellular ROS induced by the exposure to extracellular H2O2, and the extent of this effect changed between the GSTP variants. Microencapsulation is a straightforward strategy to mitigate the toxicity of thiol-reactive Se-organic drugs that enhanced the antioxidant and cellular protective effects of PhSeZnCl. A mechanistic linkage of

  11. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    Science.gov (United States)

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  12. Basal Lamina Mimetic Nanofibrous Peptide Networks for Skeletal Myogenesis

    Science.gov (United States)

    Yasa, I. Ceren; Gunduz, Nuray; Kilinc, Murat; Guler, Mustafa O.; Tekinay, Ayse B.

    2015-11-01

    Extracellular matrix (ECM) is crucial for the coordination and regulation of cell adhesion, recruitment, differentiation and death. Therefore, equilibrium between cell-cell and cell-matrix interactions and matrix-associated signals are important for the normal functioning of cells, as well as for regeneration. In this work, we describe importance of adhesive signals for myoblast cells’ growth and differentiation by generating a novel ECM mimetic peptide nanofiber scaffold system. We show that not only structure but also composition of bioactive signals are important for cell adhesion, growth and differentiation by mimicking the compositional and structural properties of native skeletal muscle basal lamina. We conjugated laminin-derived integrin binding peptide sequence, “IKVAV”, and fibronectin-derived well known adhesive sequence, “RGD”, into peptide nanostructures to provide adhesive and myogenic cues on a nanofibrous morphology. The myogenic and adhesive signals exhibited a synergistic effect on model myoblasts, C2C12 cells. Our results showed that self-assembled peptide nanofibers presenting laminin derived epitopes support adhesion, growth and proliferation of the cells and significantly promote the expression of skeletal muscle-specific marker genes. The functional peptide nanofibers used in this study present a biocompatible and biodegradable microenvironment, which is capable of supporting the growth and differentiation of C2C12 myoblasts into myotubes.

  13. Carbohydrate-Mimetic Peptides for Pan Anti-Tumor Responses

    Science.gov (United States)

    Kieber-Emmons, Thomas; Saha, Somdutta; Pashov, Anastas; Monzavi-Karbassi, Behjatolah; Murali, Ramachandran

    2014-01-01

    Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate–peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells. PMID:25071769

  14. SOCS1 Mimetic Peptide Suppresses Chronic Intraocular Inflammatory Disease (Uveitis

    Directory of Open Access Journals (Sweden)

    Chang He

    2016-01-01

    Full Text Available Uveitis is a potentially sight-threatening disease characterized by repeated cycles of remission and recurrent inflammation. The JAK/STAT pathway regulates the differentiation of pathogenic Th1 and Th17 cells that mediate uveitis. A SOCS1 mimetic peptide (SOCS1-KIR that inhibits JAK2/STAT1 pathways has recently been shown to suppress experimental autoimmune uveitis (EAU. However, it is not clear whether SOCS1-KIR ameliorated uveitis by targeting JAK/STAT pathways of pathogenic lymphocytes or via inhibition of macrophages and antigen-presenting cells that also enter the retina during EAU. To further investigate mechanisms that mediate SOCS1-KIR effects and evaluate the efficacy of SOCS1-KIR as an investigational drug for chronic uveitis, we induced EAU in rats by adoptive transfer of uveitogenic T-cells and monitored disease progression and severity by slit-lamp microscopy, histology, and optical coherence tomography. Topical administration of SOCS1-KIR ameliorated acute and chronic posterior uveitis by inhibiting Th17 cells and the recruitment of inflammatory cells into retina while promoting expansion of IL-10-producing Tregs. We further show that SOCS1-KIR conferred protection of resident retinal cells that play critical role in vision from cytotoxic effects of inflammatory cytokines by downregulating proapoptotic genes. Thus, SOCS1-KIR suppresses uveitis and confers neuroprotective effects and might be exploited as a noninvasive treatment for chronic uveitis.

  15. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  16. From Dalek half balls to Daft Punk helmets: Mimetic fandom and the crafting of replicas

    Directory of Open Access Journals (Sweden)

    Matt Hills

    2014-06-01

    Full Text Available Mimetic fandom is a surprisingly understudied mode of (culturally masculinized fan activity in which fans research and craft replica props. Mimetic fandom can be considered as (inauthentic and (immaterial, combining noncommercial status with grassroots marketing or brand reinforcement as well as fusing an emphasis on material artifacts with Web 2.0 collective intelligence. Simply analyzing mimetic fandom as part of fannish material culture fails to adequately assess the nonmaterial aspects of this collaborative creativity. Two fan cultures are taken as case studies: Dalek building groups and Daft Punk helmet constructors. These diverse cases indicate that mimetic fandom has a presence and significance that moves across media fandoms and is not restricted to the science fiction, fantasy, and horror followings with which it is most often associated. Mimetic fandom may be theorized as an oscillatory activity that confuses binaries and constructions of (academic/fan authenticity. This fan practice desires and pursues a kind of ontological bridging or unity—from text to reality—that is either absent or less dominant in many other fan activities such as cosplay, screen-used prop collecting, and geographical pilgrimage. Fan studies may benefit from reassessing the place of mimesis, especially in order to theorize fan practices that are less clearly transformative in character.

  17. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qianhui [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Li, Hongqi, E-mail: hongqili@dhu.edu.cn [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Xian, Chunying; Yang, Yihang [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Song, Yanxi [School of Environmental Science and Technology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Cong, Peihong [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2015-07-30

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  18. Prey from the eyes of predators: Color discriminability of aposematic and mimetic butterflies from an avian visual perspective.

    Science.gov (United States)

    Su, Shiyu; Lim, Matthew; Kunte, Krushnamegh

    2015-11-01

    Predation exerts strong selection on mimetic butterfly wing color patterns, which also serve other functions such as sexual selection. Therefore, specific selection pressures may affect the sexes and signal components differentially. We tested three predictions about the evolution of mimetic resemblance by comparing wing coloration of aposematic butterflies and their Batesian mimics: (a) females gain greater mimetic advantage than males and therefore are better mimics, (b) due to intersexual genetic correlations, sexually monomorphic mimics are better mimics than female-limited mimics, and (c) mimetic resemblance is better on the dorsal wing surface that is visible to predators in flight. Using a physiological model of avian color vision, we quantified mimetic resemblance from predators' perspective, which showed that female butterflies were better mimics than males. Mimetic resemblance in female-limited mimics was comparable to that in sexually monomorphic mimics, suggesting that intersexual genetic correlations did not constrain adaptive response to selection for female-limited mimicry. Mimetic resemblance on the ventral wing surface was better than that on the dorsal wing surface, implying stronger natural and sexual selection on ventral and dorsal surfaces, respectively. These results suggest that mimetic resemblance in butterfly mimicry rings has evolved under various selective pressures acting in a sex- and wing surface-specific manner.

  19. Connexin mimetic peptides fail to inhibit vascular conducted calcium responses in renal arterioles

    DEFF Research Database (Denmark)

    Sørensen, Charlotte Mehlin; Salomonsson, Max; Braunstein, Thomas Hartig;

    2008-01-01

    of mimetic peptides directed against one or more connexins. Preglomerular resistance vessels were microdissected from kidneys of Sprague-Dawley rats and loaded with fura 2. The vessels were stimulated locally by applying electrical current through a micropipette, and the conducted calcium response...... was measured 500 mum from the site of stimulation. Application of connexin mimetic peptides directed against Cx40, 37/43, 45, or a cocktail with equimolar amounts of each, did not inhibit the propagated response, whereas the nonselective gap junction uncoupler carbenoxolone completely abolished the propagated...... mimetic peptides directed against Cx40, 37/43, or 45. Further studies are needed to determine whether conducted vasoconstriction is mediated via previously undescribed pathways....

  20. Dendritic DNA-porphyrin as mimetic enzyme for amplified fluorescent detection of DNA.

    Science.gov (United States)

    Xu, Nan; Lei, Jianping; Wang, Quanbo; Yang, Qianhui; Ju, Huangxian

    2016-04-01

    In this work, a novel dendritic DNA-porphyrin superstructure was designed as mimetic enzyme for the amplified fluorescent detection of DNA. The dendritic DNA superstructure was in situ assembled with three auxiliary DNAs via hybridization chain reaction. With groove interaction between iron porphyrin (FeTMPyP) and double-stranded DNA, the dendritic DNA superstructure is capable to gather abundant FeTMPyP molecules to form dendritic DNA-FeTMPyP mimetic enzyme. Using tyramine as a substrate, the dendritic DNA-FeTMPyP demonstrated excellent peroxidase-like catalytic oxidation of tyramine into fluorescent dityramine in the presence of H2O2. Based on an amplified fluorescence signal, a signal on strategy is proposed for DNA detection with high sensitivity, good specificity and practicability. The assembly of porphyrin with dendritic DNA not only provided the new avenue to construct mimetic enzyme but also established label-free sensing platform for a wide range of analytes.

  1. The two faces of mimetic Horndeski gravity: disformal transformations and Lagrange multiplier

    CERN Document Server

    Arroja, Frederico; Karmakar, Purnendu; Matarrese, Sabino

    2015-01-01

    We show that very general scalar-tensor theories of gravity (including, e.g., Horndeski models) are generically invariant under disformal transformations. However there is a special subset, when the transformation is not invertible, that yields new equations of motion which are a generalization of the so-called "mimetic" dark matter theory recently introduced by Chamsedinne and Mukhanov. These new equations of motion can also be derived from an action containing an additional Lagrange multiplier field. The general mimetic scalar-tensor theory has the same number of derivatives in the equations of motion as the original scalar-tensor theory. As an application we show that the simplest mimetic scalar-tensor model is able to mimic the cosmological background of a flat FLRW model with an irrotational barotropic perfect fluid with any constant equation of state.

  2. Erythropoietin and thrombopoietin mimetics: Natural alternatives to erythrocyte and platelet disorders.

    Science.gov (United States)

    Gutti, Usha; Pasupuleti, Satya Ratan; Sahu, Itishri; Kotipalli, Aneesh; Undi, Ram Babu; Kandi, Ravinder; Venakata Saladi, Raja Gopal; Gutti, Ravi Kumar

    2016-12-01

    Erythropoietin (EPO) and thrombopoietin (TPO) plays a major role in the regulation of hematopoietic development. Though, blood transfusion was the most widely used method to treat low blood count, over the years with advancements in recombinant technology and drug designing, the EPO and TPO mimetics are dominating the therapeutics industry. On the other hand, the recombinant human EPO and TPO are associated either with reduced half-life or immune reactions. The restoration of alternate medicine in recent years has the hope to overcome limitations associated with recombinant technology, to treat various disorder including blood diseases, with low to no side effects. The work in recent years on plant derived mimetics suggests a paradigm shift in the way diseases are treated. Here, we are providing a comprehensive review on the EPO and TPO recombinant counterparts and synthetic mimetics studied till date with a focus on the need for more natural alternatives.

  3. An overview on antidiabetic medicinal plants having insulin mimetic property

    Directory of Open Access Journals (Sweden)

    DK Patel

    2012-04-01

    Full Text Available Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3-O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  4. An overview on antidiabetic medicinal plants having insulin mimetic property

    Science.gov (United States)

    Patel, DK; Prasad, SK; Kumar, R; Hemalatha, S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles. PMID:23569923

  5. An overview on antidiabetic medicinal plants having insulin mimetic property

    Institute of Scientific and Technical Information of China (English)

    Patel DK; Prasad SK; Kumar R; Hemalatha S

    2012-01-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world’s population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  6. Cerebral Response to Peripheral Challenge with a Viral Mimetic

    Science.gov (United States)

    Konat, Gregory

    2015-01-01

    It has been well established that peripheral inflammation resulting from microbial infections profoundly alters brain function. This review focuses on experimental systems that model cerebral effects of peripheral viral challenge. The most common models employ the induction of the acute phase response (APR) via intraperitoneal injection of a viral mimetic, polyinosinic-polycytidylic acid (PIC). The ensuing transient surge of blood-borne inflammatory mediators induces a “mirror” inflammatory response in the brain characterized by the upregulated expression of a plethora of genes encoding cytokines, chemokines and other inflammatory/stress proteins. These inflammatory mediators modify the activity of neuronal networks leading to a constellation of behavioral traits collectively categorized as the sickness behavior. Sickness behavior is an important protective response of the host that has evolved to enhance survival and limit the spread of infections within a population. However, a growing body of clinical data indicates that the activation of inflammatory pathways in the brain may constitute a serious comorbidity factor for neuropathological conditions. Such comorbidity has been demonstrated using the PIC paradigm in experimental models of Alzheimer's disease, prion disease and seizures. Also, prenatal or perinatal PIC challenge has been shown to disrupt normal cerebral development of the offspring resulting in phenotypes consistent with neuropsychiatric disorders, such as schizophrenia and autism. Remarkably, recent studies indicate that mild peripheral PIC challenge may be neuroprotective in stroke. Altogether, the PIC challenge paradigm represents a unique heuristic model to elucidate the immune-to-brain communication pathways and to explore preventive strategies for neuropathological disorders. PMID:26526143

  7. An overview on antidiabetic medicinal plants having insulin mimetic property.

    Science.gov (United States)

    Patel, D K; Prasad, S K; Kumar, R; Hemalatha, S

    2012-04-01

    Diabetes mellitus is one of the common metabolic disorders acquiring around 2.8% of the world's population and is anticipated to cross 5.4% by the year 2025. Since long back herbal medicines have been the highly esteemed source of medicine therefore, they have become a growing part of modern, high-tech medicine. In view of the above aspects the present review provides profiles of plants (65 species) with hypoglycaemic properties, available through literature source from various database with proper categorization according to the parts used, mode of reduction in blood glucose (insulinomimetic or insulin secretagogues activity) and active phytoconstituents having insulin mimetics activity. From the review it was suggested that, plant showing hypoglycemic potential mainly belongs to the family Leguminoseae, Lamiaceae, Liliaceae, Cucurbitaceae, Asteraceae, Moraceae, Rosaceae and Araliaceae. The most active plants are Allium sativum, Gymnema sylvestre, Citrullus colocynthis, Trigonella foenum greacum, Momordica charantia and Ficus bengalensis. The review describes some new bioactive drugs and isolated compounds from plants such as roseoside, epigallocatechin gallate, beta-pyrazol-1-ylalanine, cinchonain Ib, leucocyandin 3-O-beta-d-galactosyl cellobioside, leucopelargonidin-3- O-alpha-L rhamnoside, glycyrrhetinic acid, dehydrotrametenolic acid, strictinin, isostrictinin, pedunculagin, epicatechin and christinin-A showing significant insulinomimetic and antidiabetic activity with more efficacy than conventional hypoglycaemic agents. Thus, from the review majorly, the antidiabetic activity of medicinal plants is attributed to the presence of polyphenols, flavonoids, terpenoids, coumarins and other constituents which show reduction in blood glucose levels. The review also discusses the management aspect of diabetes mellitus using these plants and their active principles.

  8. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology.

    Science.gov (United States)

    Robinson, John A

    2013-03-01

    This review highlights the growing importance of protein epitope mimetics in the discovery of new biologically active molecules and their potential applications in drug and vaccine research. The focus is on folded β-hairpin mimetics, which are designed to mimic β-hairpin motifs in biologically important peptides and proteins. An ever-growing number of protein crystal structures reveal how β-hairpin motifs often play key roles in protein-protein and protein-nucleic acid interactions. This review illustrates how using protein structures as a starting point for small-molecule mimetic design can provide novel ligands as protein-protein interaction inhibitors, as protease inhibitors, and as ligands for chemokine receptors and folded RNA targets, as well as novel antibiotics to combat the growing health threat posed by the emergence of antibiotic-resistant bacteria. The β-hairpin antibiotics are shown to target a β-barrel outer membrane protein (LptD) in Pseudomonas sp., which is essential for the biogenesis of the outer cell membrane. Another exciting prospect is that protein epitope mimetics will be of increasing importance in synthetic vaccine design, in the emerging field of structural vaccinology. Crystal structures of protective antibodies bound to their pathogen-derived epitopes provide an ideal starting point for the design of synthetic epitope mimetics. The mimetics can be delivered to the immune system in a highly immunogenic format on the surface of synthetic virus-like particles. The scientific challenges in molecular design remain great, but the potential significance of success in this area is even greater.

  9. Synthesis of new enantiopure poly(hydroxyaminooxepanes as building blocks for multivalent carbohydrate mimetics

    Directory of Open Access Journals (Sweden)

    Léa Bouché

    2014-01-01

    Full Text Available New compounds with carbohydrate-similar structure (carbohydrate mimetics are presented in this article. Starting from enantiopure nitrones and lithiated TMSE-allene we prepared three 1,2-oxazine derivatives which underwent a highly stereoselective Lewis acid-induced rearrangement to give bicyclic products in good yield. Subsequent reductive transformations delivered a library of new poly(hydroxyaminooxepane derivatives. The crucial final palladium-catalyzed hydrogenolysis of the 1,2-oxazine moiety was optimized resulting in a reasonably efficient approach to a series of new seven-membered carbohydrate mimetics.

  10. Biodegradable Polymers

    Directory of Open Access Journals (Sweden)

    Isabelle Vroman

    2009-04-01

    Full Text Available Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources or from biological resources (renewable resources. In general natural polymers offer fewer advantages than synthetic polymers. The following review presents an overview of the different biodegradable polymers that are currently being used and their properties, as well as new developments in their synthesis and applications.

  11. Polymer electronics

    CERN Document Server

    Hsin-Fei, Meng

    2013-01-01

    Polymer semiconductor is the only semiconductor that can be processed in solution. Electronics made by these flexible materials have many advantages such as large-area solution process, low cost, and high performance. Researchers and companies are increasingly dedicating time and money in polymer electronics. This book focuses on the fundamental materials and device physics of polymer electronics. It describes polymer light-emitting diodes, polymer field-effect transistors, organic vertical transistors, polymer solar cells, and many applications based on polymer electronics. The book also disc

  12. A small molecule glycosaminoglycan mimetic blocks Plasmodium invasion of the mosquito midgut.

    Directory of Open Access Journals (Sweden)

    Derrick K Mathias

    Full Text Available Malaria transmission-blocking (T-B interventions are essential for malaria elimination. Small molecules that inhibit the Plasmodium ookinete-to-oocyst transition in the midgut of Anopheles mosquitoes, thereby blocking sporogony, represent one approach to achieving this goal. Chondroitin sulfate glycosaminoglycans (CS-GAGs on the Anopheles gambiae midgut surface are putative ligands for Plasmodium falciparum ookinetes. We hypothesized that our synthetic polysulfonated polymer, VS1, acting as a decoy molecular mimetic of midgut CS-GAGs confers malaria T-B activity. In our study, VS1 repeatedly reduced midgut oocyst development by as much as 99% (P<0.0001 in mosquitoes fed with P. falciparum and Plasmodium berghei. Through direct-binding assays, we observed that VS1 bound to two critical ookinete micronemal proteins, each containing at least one von Willebrand factor A (vWA domain: (i circumsporozoite protein and thrombospondin-related anonymous protein-related protein (CTRP and (ii vWA domain-related protein (WARP. By immunofluorescence microscopy, we observed that VS1 stains permeabilized P. falciparum and P. berghei ookinetes but does not stain P. berghei CTRP knockouts or transgenic parasites lacking the vWA domains of CTRP while retaining the thrombospondin repeat region. We produced structural homology models of the first vWA domain of CTRP and identified, as expected, putative GAG-binding sites on CTRP that align closely with those predicted for the human vWA A1 domain and the Toxoplasma gondii MIC2 adhesin. Importantly, the models also identified patches of electropositive residues that may extend CTRP's GAG-binding motif and thus potentiate VS1 binding. Our molecule binds to a critical, conserved ookinete protein, CTRP, and exhibits potent malaria T-B activity. This study lays the framework for a high-throughput screen of existing libraries of safe compounds to identify those with potent T-B activity. We envision that such compounds when

  13. Development of electrospun bone-mimetic matrices for bone regenerative applications

    Science.gov (United States)

    Phipps, Matthew Christopher

    Although bone has a dramatic capacity for regeneration, certain injuries and procedures present defects that are unable to heal properly, requiring surgical intervention to induce and support osteoregeneration. Our research group has hypothesized that the development of a biodegradable material that mimics the natural composition and architecture of bone extracellular matrix has the potential to provide therapeutic benefit to these patients. Utilizing a process known as electrospinning, our lab has developed a bone-mimetic matrix (BMM) consisting of composite nanofibers of the mechanically sta-ble polymer polycaprolactone (PCL), and the natural bone matrix molecules type-I colla-gen and hydroxyapatite nanocrystals (HA). We herein show that BMMs supported great-er adhesion, proliferation, and integrin activation of mesenchymal stem cells (MSCs), the multipotent bone-progenitor cells within bone marrow and the periosteum, in comparison to electrospun PCL alone. These cellular responses, which are essential early steps in the process of bone regeneration, highlight the benefits of presenting cells with natural bone molecules. Subsequently, evaluation of new bone formation in a rat cortical tibia defect showed that BMMs are highly osteoconductive. However, these studies also revealed the inability of endogenous cells to migrate within electrospun matrices due to the inherently small pore sizes. To address this limitation, which will negatively impact the rate of scaf-fold-to-bone turnover and inhibit vascularization, sacrificial fibers were added to the ma-trix. The removal of these fibers after fabrication resulted in BMMs with larger pores, leading to increased infiltration of MSCs and endogenous bone cells. Lastly, we evaluat-ed the potential of our matrices to stimulate the recruitment of MSCs, a vital step in bone healing, through the sustained delivery of platelet derived growth factor-BB (PDGF-BB). BMMs were found to adsorb and subsequently release greater

  14. Self-Healing Composite of Thermoset Polymer and Programmed Super Contraction Fibers

    Science.gov (United States)

    Li, Guoqiang (Inventor); Meng, Harper (Inventor)

    2016-01-01

    A composition comprising thermoset polymer, shape memory polymer to facilitate macro scale damage closure, and a thermoplastic polymer for molecular scale healing is disclosed; the composition has the ability to resolve structural defects by a bio-mimetic close-then heal process. In use, the shape memory polymer serves to bring surfaces of a structural defect into approximation, whereafter use of the thermoplastic polymer for molecular scale healing allowed for movement of the thermoplastic polymer into the defect and thus obtain molecular scale healing. The thermoplastic can be fibers, particles or spheres which are used by heating to a level at or above the thermoplastic's melting point, then cooling of the composition below the melting temperature of the thermoplastic. Compositions of the invention have the ability to not only close macroscopic defects, but also to do so repeatedly even if another wound/damage occurs in a previously healed/repaired area.

  15. On polarization in biomembranes

    DEFF Research Database (Denmark)

    Zecchi, Karis Amata

    close to physiological conditions, making these effects biologically relevant. In this work, we consider the case of asymmetric membranes which can display spontaneous polarization in the absence of a field. Close to the phase transition, we find that the membrane displays piezoelectric, flexoelectric...... and thermoelectric behaviour. In particular, the membrane capacitance is a nonlinear function of the applied voltage. Furthermore, in the presence of spontaneous polarization, our thermodynamical description is able to explain the outward rectified current-voltage relationship measured on synthetic lipid bilayers....... Due to the nonlinear dependence of the membrane capacitance and conductance on voltage and the presence of spontaneous polarization, the traditional equivalent circuit of the membrane is not an accurate description in physiological conditions. An updated equivalent circuit of the lipid bilayer is here...

  16. Student-Driven Design of Peptide Mimetics: Microwave-Assisted Synthesis of Peptoid Oligomers

    Science.gov (United States)

    Pohl, Nicola L. B.; Kirshenbaum, Kent; Yoo, Barney; Schulz, Nathan; Zea, Corbin J.; Streff, Jennifer M.; Schwarz, Kimberly L.

    2011-01-01

    An experiment for the undergraduate organic laboratory is described in which peptide mimetic oligomers called "peptoids" are built stepwise on a solid-phase resin. Students employ two modern strategies to facilitate rapid multistep syntheses: solid-phase techniques to obviate the need for intermediate purifications and microwave irradiation to…

  17. A Case of Mimetic Isomorphism: A Short-Cut to Increasing Loyalty to Academia

    Science.gov (United States)

    Orkodashvili, Mariam

    2008-01-01

    The paper discusses the process of shortening career path to leadership positions in academia that could serve as an example of mimetic isomorphism, where university tries to apply business-like quick result-oriented strategies. This strategy incentivizes young faculty to stay in universities and keep loyalty to academia. This process could also…

  18. Incretin mimetics: a novel therapeutic option for patients with type 2 diabetes - a review

    DEFF Research Database (Denmark)

    Hansen, Katrine Bilberg; Vilsbøll, Tina; Knop, Filip K

    2010-01-01

    factors such as weight loss, decrease in blood pressure and changes in lipid profile. Current clinical data on the two available incretin mimetics, exenatide and liraglutide, are evaluated in this review, focusing on pharmacology, efficacy, safety and tolerability. The review is built on a systematic PubMed...

  19. New mimetic peptides inhibitors of ABeta aggregation. Molecular guidance for rational drug design

    NARCIS (Netherlands)

    Barrera Guisasola, E.E.; Andujar, S.; Hubin, E.; Broersen, K.; Kraan, Y.M.; Mendez, L.; Delpiccolo, C.M.L.; Masman, M.F.; Rodriguez, A.M.; Enriz, R.D.

    2015-01-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence an

  20. New mimetic peptides inhibitors of Aβ aggregation. Molecular guidance for rational drug design

    NARCIS (Netherlands)

    Barrera Guisasola, E.E.; Andujar, S.; Hubin, E.; Broersen, K.; Kraan, Y.M.; Mendez, L.; Delpiccolo, C.M.L.; Masman, M.F.; Rodriguez, A.M.; Enriz, R.D.

    2015-01-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence an

  1. Application of Mn(Ⅱ) as a Mimetic Enzyme of Horseradish Peroxidase

    Institute of Scientific and Technical Information of China (English)

    Ai Xia HAN; Li Hong NIU; Rui CHANG; Fu Shi ZHANG

    2005-01-01

    In this study, Mn( Ⅱ ) as a mimetic enzyme of horseradish peroxidase (HRP) was applied to the determination of hydrogen peroxide (H2O2). The method introduced in this paper is based on Mn(Ⅱ)'s catalytic effect on the oxidation of 4-aminoantipyrine(4-AAP) with modified Trinder's reagent N-ethyl-N-(2-hydroxy-3-sulfopropyl)-3, 5-dimethoxyaniline(DAOS) by H2O2.By coupling this mimetic catalytic reaction with the catalytic reaction of glucose oxidase (GOD),glucose can be detected. Under optimum conditions, the calibration graphs for the determination of H2O2 and glucose are in the range of 1.0×10-3-1.0×10-1 mol/L and 1.0×10-3-14×10-3 mol/L respectively. The detection limit is 5.9×10-4 mol/L for H2O2 and is 9.2×10-4 mol/L for glucose.The feasibility of Mn ( Ⅱ ) as a HRP mimetic enzyme in practical clinical analysis has been proven in the determination of glucose in human serum. So far, Mn ( Ⅱ ) is the simplest and the most inexpensive mimetic enzyme.

  2. Aspects of late-time evolution in mimetic F(R) gravity

    Science.gov (United States)

    Oikonomou, V. K.

    2016-09-01

    We demonstrate how to describe in an unified way early and late-time acceleration in the context of mimetic F(R) gravity. As we show, an exponential F(R) gravity model has appealing features, with regard to unification and we perform an analysis of the late-time evolution. The resulting picture is interesting since in the mimetic case, certain pathologies of some ordinary F(R) models are remedied in a consistent way, owing to the presence of the mimetic potential and the Lagrange multiplier. We quantify the late-time evolution analysis by studying the scaled dark energy density, the dark energy equation of state and the total effective equation of state, and as we show the late-time evolution is crucially affected by the functional form of the F(R) gravity. It is intriguing that the most appealing case corresponds to the exponential F(R) gravity which unifies late- and early-time acceleration. Finally, we study the behavior of the effective gravitational constant and the growth factor, and as we show, significant differences between the mimetic and ordinary F(R) exponential model are spotted in the growth factor.

  3. Mimetic Divergence and the Speciation Continuum in the Mimic Poison Frog Ranitomeya imitator

    DEFF Research Database (Denmark)

    Twomey, Evan; Vestergaard, Jacob Schack; Venegas, Pablo J.

    2016-01-01

    While divergent ecological adaptation can drive speciation, understanding the factors that facilitate or constrain this process remains a major goal in speciation research. Here, we study two mimetic transition zones in the poison frog Ranitomeya imitator, a species that has undergone a Mullerian...

  4. Fucoidan-Mimetic Glycopolymers : Synthesis and Biomedical Applications

    OpenAIRE

    Tengdelius, Mattias

    2016-01-01

    The marine polysaccharide fucoidan has demonstrated several interesting biological properties, for instance being antiviral, anticoagulant, anti-inflammatory, anticancer, and platelet activating. Many of these properties are desirable for various biomedical applications. Yet, there are few reports on fucoidan being used in such applications. The reasons for this are primarily the heterogeneity and low structural reproducibility of fucoidan. This thesis describes the synthesis of polymers with...

  5. Uso experimental da biomembrana de látex na reconstrução conjuntival Experimental use of latex biomembrane in conjunctival reconstruction

    Directory of Open Access Journals (Sweden)

    Erika Christina Canarim M. de Pinho

    2004-02-01

    Full Text Available INTRODUÇÃO: A biomembrana de látex natural foi utilizada com sucesso nas reconstruções do esôfago, da parede abdominal e do pericárdio de animais, em que puderam ser comprovadas a biocompatibilidade e a capacidade de favorecimento do reparo tecidual desse material. No homem, ela já está sendo testada como material indutor de neoformação tecidual, tendo sido aplicada em pacientes com úlceras crônicas de membros inferiores e meringoplastias. OBJETIVO: Verificar o efeito da biomembrana de látex no processo de reparo da conjuntiva ocular. MÉTODOS: Promoveu-se a retirada de retângulos da conjuntiva nasal superior, de ambos os olhos, de 15 coelhos neo-zelandeses adultos. Nos olhos direitos, foram implantadas biomembranas de látex com suturas contínuas presas às bordas das lesões cirúrgicas. Nos esquerdos, foram deixadas as escleras nuas. Para as análises histológicas, sacrificaram-se os animais com cinco, sete, catorze, vinte e um e vinte e oito dias. Os olhos de um coelho, não submetido a qualquer procedimento, foram usados como controle histológico. RESULTADOS: Considerando o período total de estudo, o grupo com biomembrana de látex apresentou cicatrização satisfatória em maior número de olhos do que o grupo com esclera nua (p=0,06. O número de vasos perilímbicos também foi significativamente maior nos casos com implante de biomembrana do que nos olhos sem biomembrana (p=0,0284. A freqüência de infecções foi idêntica nos dois grupos. CONCLUSÃO: Tal como o descrito na literatura para outros tecidos, a biomembrana de látex natural também parece favorecer a cicatrização conjuntival e a neoangiogênese. Se esses resultados se repetirem nos humanos, a biomembrana poderá se converter num promissor recurso terapêutico de reconstrução da conjuntiva ocular, particularmente nos casos em que a revascularização tecidual seja importante.INTRODUCTION: The biomembrane of natural latex is believed to promote

  6. Social variables exert selective pressures in the evolution and form of primate mimetic musculature.

    Science.gov (United States)

    Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome

    2016-04-01

    Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might

  7. PHOTOREFRACTIVE POLYMERS

    NARCIS (Netherlands)

    Morichere, D; Malliaras, G.G; Krasnikov, V.V.; Bolink, H.J; Hadziioannou, G

    1995-01-01

    The use of polymers as photorefractive materials offers many advantages : flexibility in synthesis, doping, processing and low cost. The required functionalities responsible for photorefractivity, namely charge generation, transport, trapping and linear electrooptic effect are given in the polymer w

  8. Polymer Brushes

    NARCIS (Netherlands)

    Vos, de W.M.; Kleijn, J.M.; Keizer, de A.; Cosgrove, T.; Cohen Stuart, M.A.

    2010-01-01

    A polymer brush can be defined as a dense array of polymers end-attached to an interface that stretch out into the surrounding medium. Polymer brushes have been investigated for the past 30 years and have shown to be an extremely useful tool to control interfacial properties. This review is intended

  9. Soft hydrogel materials from elastomeric gluten-mimetic proteins

    Science.gov (United States)

    Bagheri, Mehran; Scott, Shane; Wan, Fan; Dick, Scott; Harden, James; Biomolecular Assemblies Team

    2014-03-01

    Elastomeric proteins are ubiquitous in both animal and plant tissues, where they are responsible for the elastic response and mechanical resilience of tissues. In addition to fundamental interest in the molecular origins of their elastic behaviour, this class of proteins has great potential for use in biomaterial applications. The structural and elastomeric properties of these proteins are thought to be controlled by a subtle balance between hydrophobic interactions and entropic effects, and in many cases their characteristic properties can be recapitulated by multi-block protein polymers formed from repeats of short, characteristic polypeptide motifs. We have developed biomimetic multi-block protein polymers based on variants of several elastomeric gluten consensus sequences. These proteins include constituents designed to maximize their solubility in aqueous solution and minimize the formation of extended secondary structure. Thus, they are examples of elastic intrinsically disordered proteins. In addition, the proteins have distributed tyrosine residues which allow for inter-molecular crosslinking to form hydrogel networks. In this talk, we present experimental and simulation studies of the molecular and materials properties of these proteins and their assemblies.

  10. Photochemical solar energy conversion utilizing semiconductors localized in membrane-mimetic systems. Performance report, April 1, 1989--August 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, J.H.

    1991-08-31

    Extending the frontiers of colloidal photochemistry and colloidal electrochemistry to solar photochemistry research had been the main objective of this research. More specific objectives of this proposal include the examination of semiconductor-particle-mediated photoelectron transfer and photoelectric effects in different membrane mimetic systems. Emphasis had been placed on developing bilayer lipid membranes and Langmuir-Blodgett films as new membrane-mimetic systems, as well as on the characterization and utilization of these systems.

  11. Viable Mimetic Completion of Unified Inflation-Dark Energy Evolution in Modified Gravity

    CERN Document Server

    Nojiri, S; Oikonomou, V K

    2016-01-01

    In this paper, we demonstrate that a unified description of early and late-time acceleration is possible in the context of mimetic $F(R)$ gravity. We study the inflationary era in detail and demonstrate that it can be realized even in mimetic $F(R)$ gravity where traditional $F(R)$ gravity fails to describe the inflation. By using standard methods we calculated the spectral index of primordial curvature perturbations and the scalar-to-tensor ratio. We use two $F(R)$ gravity models and as it turns out, for both the models under study the observational indices are compatible with both the latest Planck and the BICEP2/Keck array data. Finally, the graceful exit from inflation is guaranteed by the existence of growing curvature perturbations when the slow-roll era ends.

  12. A new tool in peptide engineering: a photoswitchable stilbene-type beta-hairpin mimetic.

    Science.gov (United States)

    Erdélyi, Máté; Karlén, Anders; Gogoll, Adolf

    2005-12-23

    Peptide secondary structure mimetics are important tools in medicinal chemistry, as they provide analogues of endogenous peptides with new physicochemical and pharmacological properties. The development, synthesis, photochemical investigation, and conformational analysis of a stilbene-type beta-hairpin mimetic capable of light-triggered conformational changes have been achieved. In addition to standard spectroscopic techniques (nuclear Overhauser effects, amide temperature coefficients, circular dichroism spectroscopy), the applicability of self-diffusion measurements (longitudinal eddy current delay pulsed-field gradient spin echo (LED-PGSE) NMR technique) in conformational studies of oligopeptides is demonstrated. The title compound shows photoisomerization of the stilbene chromophore, resulting in a change in solution conformation between an unfolded structure and a folded beta-hairpin.

  13. Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

    Directory of Open Access Journals (Sweden)

    Vadim D. Romanenko

    2013-05-01

    Full Text Available Methylidynetrisphosphonates are representatives of geminal polyphosphonates bearing three phosphonate (PO3H2 groups at the bridged carbon atom. Like well-known methylenebisphosphonates (BPs, they are characterized by a P–C–P backbone structure and are chemically stable mimetics of the endogenous metabolites, i.e., inorganic pyrophosphates (PPi. Because of its analogy to PPi and an ability to chelate metal ions, the 1,1,1-trisphosphonate structure is of great potential as a C1 building block for the design of phosphate mimetics. The purpose of this review is to present a concise summary of the state of the art in trisphosphonate chemistry with particular emphasis on the synthesis, structure, reactions, and potential medicinal applications of these compounds.

  14. Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids

    Energy Technology Data Exchange (ETDEWEB)

    Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory

    2012-07-19

    A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.

  15. A mimetic spectral element solver for the Grad-Shafranov equation

    CERN Document Server

    Palha, Artur; Felici, Federico

    2015-01-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators ($\

  16. Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic Acid Oxidation

    OpenAIRE

    Long-Long Wang; Xiao-Lu Cao; Ya-Jun Wang; Qiao-Xia Li

    2015-01-01

    The newly proposed mimetic underpotential deposition (MUPD) technique was extended to modify Pd surfaces with Sb through immersing a Pd film electrode or dispersing Pd/C powder in a Sb(III)-containing solution blended with ascorbic acid (AA). The introduction of AA shifts down the open circuit potential of Pd substrate available to achieve suitable Sb modification. The electrocatalytic activity and long-term stability towards HCOOH electrooxidation of the Sb modified Pd surfaces (film elect...

  17. Apolipoprotein Mimetic Peptides: A New Approach for the Treatment of Asthma

    Directory of Open Access Journals (Sweden)

    Xianglan eYao

    2012-03-01

    Full Text Available New treatments are needed for severe asthmatics to improve disease control and avoid severe toxicities associated with oral corticosteroids. We have used a murine model of house dust mite (HDM-induced asthma to identify steroid-unresponsive genes that might represent targets for new therapeutic approaches for severe asthma. This strategy identified apolipoprotein E as a steroid-unresponsive gene with increased mRNA expression in the lungs of HDM-challenged mice. Furthermore, apolipoprotein E functioned as an endogenous negative regulator of airway hyperreactivity and goblet cell hyperplasia in experimental HDM-induced asthma. The ability of apolipoprotein E, which is expressed by lung macrophages, to attenuate AHR and goblet cell hyperplasia is mediated by low density lipoprotein (LDL receptors expressed by airway epithelial cells. Consistent with this, administration of an apolipoprotein E mimetic peptide, corresponding to amino acids 130 to 149 of the LDL receptor-binding domain of the holo-apoE protein, significantly reduced AHR and goblet cell hyperplasia in HDM-challenged apoE-/- mice. These findings identified the apolipoprotein E - LDL receptor pathway as a new druggable target for asthma that can be activated by administration of apoE mimetic peptides. Similarly, apolipoprotein A-I may have therapeutic potential in asthma based upon its anti-inflammatory, anti-oxidative and anti-fibrotic properties. Furthermore, administration of apolipoprotein A-I mimetic peptides has attenuated airway inflammation, airway remodeling and airway hyperreactivity in murine models of experimental asthma. Thus, site-directed delivery of inhaled apolipoprotein E or apolipoprotein A-I mimetic peptides may represent novel treatment approaches that can be developed for asthma, including severe disease.

  18. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    OpenAIRE

    Thomas Kieber-Emmons; Anastas Pashov; Behjatolah Monzavi-Karbassi; Fariba Jousheghany; Cecile Artaud; Leah Hennings

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- an...

  19. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells.

    Science.gov (United States)

    Shah, Manisha H; Liu, Guei-Sheung; Thompson, Erik W; Dusting, Gregory J; Peshavariya, Hitesh M

    2015-04-01

    Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.

  20. STAR POLYMERS

    OpenAIRE

    Ch. von Ferber; Yu.Holovatch

    2002-01-01

    It is our great pleasure to present a collection of papers devoted to theoretical, numerical, and experimental studies in the field of star polymers. Since its introduction in the early 80-ies, this field has attracted increasing interest and has become an important part of contemporary polymer physics. While research papers in this field appear regularly in different physical and chemical journals, the present collection is an attempt to join together the studies of star polymers showing the...

  1. Glycosaminoglycan mimetic improves enrichment and cell functions of human endothelial progenitor cell colonies.

    Science.gov (United States)

    Chevalier, Fabien; Lavergne, Mélanie; Negroni, Elisa; Ferratge, Ségolène; Carpentier, Gilles; Gilbert-Sirieix, Marie; Siñeriz, Fernando; Uzan, Georges; Albanese, Patricia

    2014-05-01

    Human circulating endothelial progenitor cells isolated from peripheral blood generate in culture cells with features of endothelial cells named late-outgrowth endothelial colony-forming cells (ECFC). In adult blood, ECFC display a constant quantitative and qualitative decline during life span. Even after expansion, it is difficult to reach the cell dose required for cell therapy of vascular diseases, thus limiting the clinical use of these cells. Glycosaminoglycans (GAG) are components from the extracellular matrix (ECM) that are able to interact and potentiate heparin binding growth factor (HBGF) activities. According to these relevant biological properties of GAG, we designed a GAG mimetic having the capacity to increase the yield of ECFC production from blood and to improve functionality of their endothelial outgrowth. We demonstrate that the addition of [OTR(4131)] mimetic during the isolation process of ECFC from Cord Blood induces a 3 fold increase in the number of colonies. Moreover, addition of [OTR(4131)] to cell culture media improves adhesion, proliferation, migration and self-renewal of ECFC. We provide evidence showing that GAG mimetics may have great interest for cell therapy applied to vascular regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of ECFC.

  2. From antidepressant drugs to beta-mimetics: preclinical insights on potential new treatments for neuropathic pain.

    Science.gov (United States)

    Barrot, Michel; Yalcin, Ipek; Choucair-Jaafar, Nada; Benbouzid, Malika; Freund-Mercier, Marie-José

    2009-11-01

    The market for pain treatment is a major segment of nervous system pathologies. Despite this dynamism, the management of some pain conditions remains a clinical challenge. Neuropathic pain arises as a direct consequence of a lesion or disease affecting the somatosensory system. It is generally a chronic and disabling condition which is difficult to treat. Antidepressant drugs are recommended as one of the first line treatments, but they display noticeable side effects and are not effective on all patients. Using a murine model of neuropathy, we demonstrated that the stimulation of beta2-adrenergic receptors (beta2-AR) is not only necessary for antidepressant drugs to exert their antiallodynic action but that it is in fact sufficient to alleviate neuropathic allodynia. Chronic, but not acute, treatment with beta-mimetics such as terbutaline, salbutamol, fenoterol, salmeterol, ritodrine, isoprenaline (isoproterenol), metaproterenol (orciprenaline), procaterol, formoterol, clenbuterol or bambuterol, relieves allodynia. Agonists of beta2-ARs, and more generally any molecule stimulating beta2-ARs such as beta-mimetics, are thus proposed as potential new treatments for neuropathic pain. Clinical studies are now in preparation to confirm this potential in patients with neuropathic pain. This article reviews the findings leading to propose beta-mimetics for neuropathic pain treatment and other recent patents on the topic.

  3. Aspects of Late-time Evolution in Mimetic $F(R)$ Gravity

    CERN Document Server

    Oikonomou, V K

    2016-01-01

    We demonstrate how to describe in an unified way early and late-time acceleration in the context of mimetic $F(R)$ gravity. As we show, an exponential $F(R)$ gravity model has appealing features, with regard to unification, and we perform an analysis of the late-time evolution. The resulting picture is interesting since in the mimetic case, certain pathologies of some ordinary $F(R)$ models are remedied in a consistent way, owing to the presence of the mimetic potential and the Lagrange multiplier. We quantify the late-time evolution analysis by studying the scaled dark energy density, the dark energy equation of state and the total effective equation of state, and as we show the late-time evolution is crucially affected by the functional form of the $F(R)$ gravity. It is intriguing that the most appealing case corresponds to the exponential $F(R)$ gravity which unifies late and early-time acceleration. Finally, we study the behavior of the effective gravitational constant and the growth factor, and as we sho...

  4. SOD mimetic activity and antiproliferative properties of a novel tetra nuclear copper (II) complex.

    Science.gov (United States)

    Weintraub, Sagiv; Moskovitz, Yoni; Fleker, Ohad; Levy, Ariel R; Meir, Aviv; Ruthstein, Sharon; Benisvy, Laurent; Gruzman, Arie

    2015-12-01

    The search for novel anticancer therapeutic agents is an urgent and important issue in medicinal chemistry. Here, we report on the biological activity of the copper-based bioinorganic complex Cu4 (2,4-di-tert-butyl-6-(1H-imidazo- [1, 10] phenanthrolin-2-yl)phenol)4]·10 CH3CN (2), which was tested in rat L6 myotubes, mouse NSC-34 motor neurone-like cells, and HepG-2 human liver carcinoma. Upon 96 h incubation, 2 exhibited a significant cytotoxic effect on all three types of cells via activation of two cell death mechanisms (apoptosis and necrosis). Complex 2 exhibited better potency and efficacy than the canonical cytotoxic drug cisplatin. Moreover, during shorter incubations, complex 2 demonstrated a significant SOD mimetic activity, and it was more effective and more potent than the well-known SOD mimetic TEMPOL. In addition, complex 2 was able to interact with DNA and, cleave DNA in the presence of sodium ascorbate. This study shows the potential of using polynuclear redox active compounds for developing novel anticancer drugs through SOD-mimetic redox pathways.

  5. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste.

    Science.gov (United States)

    Banerjee, Pradipta; Madhu, S; Chandra Babu, N K; Shanthi, C

    2015-04-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10mM of CaCl2, 5mM of Na2HPO4, 100mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal-protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth.

  6. Role of phosphate on stability and catalase mimetic activity of cerium oxide nanoparticles.

    Science.gov (United States)

    Singh, Ragini; Singh, Sanjay

    2015-08-01

    Cerium oxide nanoparticles (CeNPs) have been recently shown to scavenge reactive oxygen and nitrogen species (ROS and RNS) in different experimental model systems. CeNPs (3+) and CeNPs (4+) have been shown to exhibit superoxide dismutase (SOD) and catalase mimetic activity, respectively. Due to their nanoscale dimension, CeNPs are expected to interact with the components of biologically relevant buffers and medium, which could alter their catalytic properties. We have demonstrated earlier that CeNPs (3+) interact with phosphate and lose the SOD activity. However, very little is known about the interaction of CeNPs (4+) with the phosphate and other anions, predominantly present in biological buffers and their effects on the catalase mimetic-activity of these nanoparticles. In this study, we report that catalase mimetic-activity of CeNPs (4+) is resistant to the phosphate anions, pH changes and composition of cell culture media. Given the abundance of phosphate anions in the biological system, it is likely that internalized CeNPs would be influenced by cytoplasmic and nucleoplasmic concentration of phosphate.

  7. Interactions of Bio-Inspired Membranes with Peptides and Peptide-Mimetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Michael Sebastiano

    2015-08-01

    Full Text Available Via Dissipative Particle Dynamics (DPD and implicit solvent coarse-grained (CG Molecular Dynamics (MD we examine the interaction of an amphiphilic cell-penetrating peptide PMLKE and its synthetic counterpart with a bio-inspired membrane. We use the DPD technique to investigate the interaction of peptide-mimetic nanoparticles, or nanopins, with a three-component membrane. The CG MD approach is used to investigate the interaction of a cell-penetrating peptide PMLKE with single-component membrane. We observe the spontaneous binding and subsequent insertion of peptide and nanopin in the membrane by using CG MD and DPD approaches, respectively. In addition, we find that the insertion of peptide and nanopins is mainly driven by the favorable enthalpic interactions between the hydrophobic components of the peptide, or nanopin, and the membrane. Our study provides insights into the mechanism underlying the interactions of amphiphilic peptide and peptide-mimetic nanoparticles with a membrane. The result of this study can be used to guide the functional integration of peptide and peptide-mimetic nanoparticles with a cell membrane.

  8. AGN 191976: a novel thromboxane A2-mimetic with ocular hypotensive properties.

    Science.gov (United States)

    Krauss, A H; Woodward, D F; Chen, J; Gibson, L L; Lai, R K; Protzman, C E; Shan, T; Williams, L S; Gac, T S; Burk, R M

    1995-01-01

    The possible subdivision of thromboxane A2-sensitive (TP) receptors is currently a controversial subject. We report herein on a novel thromboxane A2 mimetic, AGN 191976, which has almost identical pharmacological activity to the well-characterized prostaglandin H2/thromboxane A2 (PGH2/TxA2) mimetic U-46619, but its effects on intraocular pressure are quite distinct from U-46619. Prostanoid receptor activity was determined in vitro using different smooth muscle assays and platelets. Intraocular pressure was measured tonometrically in ocular normotensive Beagle dogs and Cynomolgus monkeys. Conjunctival microvascular permeability was determined in guinea pigs. Despite closely resembling U-46619 as a potent and selective TP receptor agonist, AGN 191976 was a potent ocular hypotensive in dogs and monkeys whereas U-46619 did not lower IOP in either species. The ocular hypotensive effect of AGN 191976 in dogs was attenuated by pretreatment with the TP receptor antagonist SQ 29548. Thus, the ocular hypotensive effects of AGN 191976 are consistent with TP receptor stimulation. Both TxA2-mimetics caused plasma leakage in the guinea pig conjunctiva. The disparate activities of U-46619 and AGN 191976 in our studies suggest the existence of heterogeneous populations of TP-receptors in the eye.

  9. Activity of potent and selective host defense peptide mimetics in mouse models of oral candidiasis.

    Science.gov (United States)

    Ryan, Lisa K; Freeman, Katie B; Masso-Silva, Jorge A; Falkovsky, Klaudia; Aloyouny, Ashwag; Markowitz, Kenneth; Hise, Amy G; Fatahzadeh, Mahnaz; Scott, Richard W; Diamond, Gill

    2014-07-01

    There is a strong need for new broadly active antifungal agents for the treatment of oral candidiasis that not only are active against many species of Candida, including drug-resistant strains, but also evade microbial countermeasures which may lead to resistance. Host defense peptides (HDPs) can provide a foundation for the development of such agents. Toward this end, we have developed fully synthetic, small-molecule, nonpeptide mimetics of the HDPs that improve safety and other pharmaceutical properties. Here we describe the identification of several HDP mimetics that are broadly active against C. albicans and other species of Candida, rapidly fungicidal, and active against yeast and hyphal cultures and that exhibit low cytotoxicity for mammalian cells. Importantly, specificity for Candida over commensal bacteria was also evident, thereby minimizing potential damage to the endogenous microbiome which otherwise could favor fungal overgrowth. Three compounds were tested as topical agents in two different mouse models of oral candidiasis and were found to be highly active. Following single-dose administrations, total Candida burdens in tongues of infected animals were reduced up to three logs. These studies highlight the potential of HDP mimetics as a new tool in the antifungal arsenal for the treatment of oral candidiasis.

  10. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  11. Improved surface bioactivity of stainless steel substrates using osteocalcin mimetic peptide

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, Samaneh [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of); Naderi-Manesh, Hossein, E-mail: naderman@modares.ac.ir [Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Vali, Hojatollah [Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7 (Canada); Faghihi, Shahab, E-mail: sfaghihi@nigeb.ac.ir [Tissue Engineering and Biomaterials Division, National Institute of Genetic Engineering and Biotechnology, Tehran 14965/161 (Iran, Islamic Republic of)

    2014-02-14

    Although stainless steel has a good biocompatibility for most clinical cases, the higher tissue response (bone bonding property) is required in orthopedic field. In this study, to improve bone-bonding ability of stainless steel substrates, a specific sequence of osteocalcin mimetic peptide is used as bioactive coating material to biochemically modify the surface of metallic samples. This sequence consists of thirteen amino acids present in the first helix of osteocalcin is synthesized in amidic form and physically adsorbed on the surface of 316LS (316 low carbon surgical grade) stainless steel substrates. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to characterize the surface of peptide coated and uncoated substrates. The bioactivity and bone bonding ability of coated and uncoated substrates are assessed by level of hydroxyapatite formation, using transmission electron microscopy (TEM), energy-dispersive x-ray (EDS), and scanning electron microscopy (SEM). The pre-osteoblast cell attachment and proliferation are also evaluated by MTT assay. The results show that the surface of coated sample is homogenously covered by the peptide and display a rougher surface relative to uncoated sample. TEM images reveal the formation of plate-like hydroxyapatite crystals in the presence of the peptide and an amorphous calcium phosphate phase without the peptide. Pre-osteoblast cells proliferation is significantly higher on the surface of peptide coated substrate, while cell attachment remains unaffected by the peptide coatings. Pre-osteoblast cells also demonstrate a higher degree of spreading on the surface of coated sample. It is believed that osteocalcin mimetic peptide improve surface bioactivity and promote hydroxyapatite crystal formation may lead to increased mineralization and bone formation on the surface of metallic biomedical devices. - Graphical abstract: A peptide sequence located in the first helix of OC is selected based on its

  12. Polymers & People

    Science.gov (United States)

    Lentz, Linda; Robinson, Thomas; Martin, Elizabeth; Miller, Mary; Ashburn, Norma

    2004-01-01

    Each Tuesday during the fall of 2002, teams of high school students from three South Carolina counties conducted a four-hour polymer institute for their peers. In less than two months, over 300 students visited the Charleston County Public Library in Charleston, South Carolina, to explore DNA, nylon, rubber, gluep, and other polymers. Teams of…

  13. Better Living through Chemistry: Caloric Restriction (CR) and CR Mimetics Alter Genome Function to Promote Increased Health and Lifespan

    Science.gov (United States)

    Gillespie, Zoe E.; Pickering, Joshua; Eskiw, Christopher H.

    2016-01-01

    Caloric restriction (CR), defined as decreased nutrient intake without causing malnutrition, has been documented to increase both health and lifespan across numerous organisms, including humans. Many drugs and other compounds naturally occurring in our diet (nutraceuticals) have been postulated to act as mimetics of caloric restriction, leading to a wave of research investigating the efficacy of these compounds in preventing age-related diseases and promoting healthier, longer lifespans. Although well studied at the biochemical level, there are still many unanswered questions about how CR and CR mimetics impact genome function and structure. Here we discuss how genome function and structure are influenced by CR and potential CR mimetics, including changes in gene expression profiles and epigenetic modifications and their potential to identify the genetic fountain of youth. PMID:27588026

  14. Organometallic Polymers.

    Science.gov (United States)

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  15. Bio-mimetic mineralization potential of collagen hydrolysate obtained from chromium tanned leather waste

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Pradipta; Madhu, S. [School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Chandra Babu, N.K. [Tannery Division, CSIR-Central Leather Research Institute, Chennai 600 020, Tamil Nadu (India); Shanthi, C., E-mail: cshanthi@vit.ac.in [School of Bio Science and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India)

    2015-04-01

    Hydroxyapatite (HA) ceramics serve as an alternative to autogenous-free bone grafting by virtue of their excellent biocompatibility. However, chemically synthesized HA lacks the strong load-bearing capacity as required by bone. The bio-mimetic growth of HA crystals on collagen surface provides a feasible solution for synthesizing bone substitutes with the desired properties. This study deals with the utilization of the collagen hydrolysate recovered from leather waste as a substrate for promoting HA crystal growth. Bio-mimetic growth of HA was induced by subjecting the hydrolysate to various mineralization conditions. Parameters that would have a direct effect on crystal growth were varied to determine the optimal conditions necessary. Maximum mineralization was achieved with a combination of 10 mM of CaCl{sub 2}, 5 mM of Na{sub 2}HPO{sub 4}, 100 mM of NaCl and 0.575% glutaraldehyde at a pH of 7.4. The metal–protein interactions leading to formation of HA were identified through Fourier-transform infrared (FTIR) spectroscopy and x-ray diffraction (XRD) studies. The crystal dimensions were determined to be in the nanoscale range by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The size and crystallinity of bio-mimetically grown HA indicate that hydrolysate from leather waste can be used as an ideal alternative substrate for bone growth. - Highlights: • Collagen hydrolysate, extracted from leather industry waste is subjected to biomineralization. • Optimal conditions required for HA growth are identified. • FTIR studies reveal higher Ca−COO{sup −} and low C−N stretch with higher HA formation. • AFM and SEM studies reveal nanometer ranged HA crystals.

  16. Incretin mimetics: a novel therapeutic option for patients with type 2 diabetes – a review

    Directory of Open Access Journals (Sweden)

    Katrine B Hansen

    2010-05-01

    Full Text Available Katrine B Hansen1, Tina Vilsbøll2, Filip K Knop21Department of Clinical Physiology, Glostrup Hospital, University of Copenhagen, Denmark; 2Diabetes Research Division, Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, DenmarkAbstract: Type 2 diabetes mellitus is a metabolic disease associated with low quality of life and early death. The goal in diabetes treatment is to prevent these outcomes by tight glycemic control and minimizing vascular risk factors. So far, even intensified combination regimen with the traditional antidiabetes agents have failed to obtain these goals. Incretin mimetics are a new class of antidiabetes drugs which involve modulation of the incretin system. They bind to and activate glucagon-like peptide-1 (GLP-1 receptors on pancreatic beta-cells following which insulin secretion and synthesis are initiated. Since the compounds have no insulinotropic activity at lower glucose concentrations the risk of hypoglycemia – a well-known shortcoming of existing antidiabetes treatments – is low. Additionally, incretin mimetics have been shown to be associated with beneficial effects on cardiovascular risk factors such as weight loss, decrease in blood pressure and changes in lipid profile. Current clinical data on the two available incretin mimetics, exenatide and liraglutide, are evaluated in this review, focusing on pharmacology, efficacy, safety and tolerability. The review is built on a systematic PubMed and Medline search for publications with the key words GLP-1 receptor agonist, exenatide, liraglutide and type 2 diabetes mellitus up to January 2009.Keywords: glucagon-like peptide-1 (GLP-1, exenatide, liraglutide, type 2 diabetes

  17. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    Science.gov (United States)

    Kuzmina, Alona; Vaknin, Karin; Gdalevsky, Garik; Vyazmensky, Maria; Marks, Robert S; Taube, Ran; Engel, Stanislav

    2015-01-01

    Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env) gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4) mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  18. Functional Mimetics of the HIV-1 CCR5 Co-Receptor Displayed on the Surface of Magnetic Liposomes.

    Directory of Open Access Journals (Sweden)

    Alona Kuzmina

    Full Text Available Chemokine G protein coupled receptors, principally CCR5 or CXCR4, function as co-receptors for HIV-1 entry into CD4+ T cells. Initial binding of the viral envelope glycoprotein (Env gp120 subunit to the host CD4 receptor induces a cascade of structural conformational changes that lead to the formation of a high-affinity co-receptor-binding site on gp120. Interaction between gp120 and the co-receptor leads to the exposure of epitopes on the viral gp41 that mediates fusion between viral and cell membranes. Soluble CD4 (sCD4 mimetics can act as an activation-based inhibitor of HIV-1 entry in vitro, as it induces similar structural changes in gp120, leading to increased virus infectivity in the short term but to virus Env inactivation in the long term. Despite promising clinical implications, sCD4 displays low efficiency in vivo, and in multiple HIV strains, it does not inhibit viral infection. This has been attributed to the slow kinetics of the sCD4-induced HIV Env inactivation and to the failure to obtain sufficient sCD4 mimetic levels in the serum. Here we present uniquely structured CCR5 co-receptor mimetics. We hypothesized that such mimetics will enhance sCD4-induced HIV Env inactivation and inhibition of HIV entry. Co-receptor mimetics were derived from CCR5 gp120-binding epitopes and functionalized with a palmitoyl group, which mediated their display on the surface of lipid-coated magnetic beads. CCR5-peptidoliposome mimetics bound to soluble gp120 and inhibited HIV-1 infectivity in a sCD4-dependent manner. We concluded that CCR5-peptidoliposomes increase the efficiency of sCD4 to inhibit HIV infection by acting as bait for sCD4-primed virus, catalyzing the premature discharge of its fusion potential.

  19. Inflation in f(R,φ)-theories and mimetic gravity scenario

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Sebastiani, L. [Eurasian National University, Department of General and Theoretical Physics and Eurasian Center for Theoretical Physics, Astana (Kazakhstan); Vagnozzi, S. [University of Copenhagen, Niels Bohr International Academy and Discovery Center, Niels Bohr Institute, Copenhagen Oe (Denmark); Nordita, KTH Royal Institute of Technology and Stockholm University, Stockholm (Sweden); Stockholm University, AlbaNova, Department of Physics, The Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-09-15

    We investigate inflation within f(R,φ)-theories, where a dynamical scalar field is coupled to gravity. A class of models which can support early-time acceleration with the emerging of an effective cosmological constant at high curvature is studied. The dynamics of the field allow for exit from inflation leading to the correct amount of inflation in agreement with cosmological data. Furthermore, the spectral index and tensor-to-scalar ratio of the models are carefully analyzed. A generalization of the theory to incorporate dark matter in the context of mimetic gravity, and further extensions of the latter, are also discussed. (orig.)

  20. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Laboratory

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  1. Discovery of HIV fusion inhibitors targeting gp41 using a comprehensive α-helix mimetic library

    Science.gov (United States)

    Whitby, Landon R.; Boyle, Kristopher E.; Cai, Lifeng; Yu, Xiaoqian; Gochin, Miriam; Boger, Dale L.

    2012-01-01

    The evaluation of a comprehensive α-helix mimetic library for binding the gp41 NHR hydrophobic pocket recognizing an intramolecular CHR α-helix provided a detailed depiction of structural features required for binding and led to the discovery of small molecule inhibitors (Ki 0.6–1.3 µM) that not only match or exceed the potency of those disclosed over the past decade, but that also exhibit effective activity in a cell–cell fusion assay (IC50 5–8 µM). PMID:22424973

  2. Inflation in $f(R,\\phi)$-theories and mimetic gravity scenario

    CERN Document Server

    Myrzakulov, R; Vagnozzi, S

    2015-01-01

    We investigate inflation within $f(R,\\phi)$-theories, where a dynamical scalar field is coupled to gravity. A class of models which can support early-time acceleration with the emerging of an effective cosmological constant at high curvature is studied. The dynamics of the field allow for exit from inflation leading to the correct amount of inflation in agreement with cosmological data. Furthermore, the spectral index and tensor-to-scalar ratio of the models are carefully analyzed. A generalization of the theory to incorporate dark matter in the context of mimetic gravity, and further extensions of the latter, are also discussed.

  3. Mimetic discretization of the Abelian Chern-Simons theory and link invariants

    CERN Document Server

    Di Bartolo, Cayetano; Leal, Lorenzo

    2012-01-01

    A mimetic discretization of the Abelian Chern-Simons theory is presented. The study relies on the formulation of a theory of differential forms in the lattice, including a consistent definition of the Hodge duality operation. Explicit expressions for the Gauss Linking Number in the lattice, which correspond to their continuum counterparts are given. A discussion of the discretization of metric structures in the space of transverse vector densities is presented. The study of these metrics could serve to obtain explicit formulae for knot an link invariants in the lattice.

  4. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    Energy Technology Data Exchange (ETDEWEB)

    Iaroshenko, Oleksandr [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  5. Unified description of dark energy and dark matter in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro

    2016-01-01

    The existence of dark matter and dark energy in cosmology is implied by various observations, however, they are still unclear because they have not been directly detected. In this Letter, an unified model of dark energy and dark matter that can explain the evolution history of the Universe later than inflationary era, the time evolution of the growth rate function of the matter density contrast, the flat rotation curves of the spiral galaxies, and the gravitational experiments in the solar system is proposed in mimetic matter model.

  6. Aerodynamic Bio-Mimetics of Gliding Dragonflies for Ultra-Light Flying Robot

    Directory of Open Access Journals (Sweden)

    Akira Obata

    2014-05-01

    Full Text Available A detailed investigation including a low-speed flow study is presented on the development of ultra-light dragonfly mimetic flying robots with a focus on the dragonfly’s remarkable gliding capability. It is revealed that the dragonfly’s corrugated wing structure and cruciform configuration provide superior flying characteristics for fixed wing robots in low Reynolds number flight. It was also found that the dragonfly configuration has additional merit in its compatibility with propellers or high lift devices. This combination with such classic aero-engineering makes possible robots with broader flight envelope than conventional fixed-wing flying robots.

  7. Cluster Based Hybrid Niche Mimetic and Genetic Algorithm for Text Document Categorization

    Directory of Open Access Journals (Sweden)

    A. K. Santra

    2011-09-01

    Full Text Available An efficient cluster based hybrid niche mimetic and genetic algorithm for text document categorization to improve the retrieval rate of relevant document fetching is addressed. The proposal minimizes the processing of structuring the document with better feature selection using hybrid algorithm. In addition restructuring of feature words to associated documents gets reduced, in turn increases document clustering rate. The performance of the proposed work is measured in terms of cluster objects accuracy, term weight, term frequency and inverse document frequency. Experimental results demonstrate that it achieves very good performance on both feature selection and text document categorization, compared to other classifier methods.

  8. Toward quartz and cristobalite: spontaneous resolution, structures, and characterization of chiral silica-mimetic silver(I)-organic materials.

    Science.gov (United States)

    Luo, Tzuoo-Tsair; Liu, Yen-Hsiang; Chan, Chun-Chieh; Huang, Sheng-Ming; Chang, Bor-Chen; Lu, Yi-Long; Lee, Gene-Hsiang; Peng, Shih-Ming; Wang, Ju-Chun; Lu, Kuang-Lieh

    2007-11-26

    An alpha-quartz-mimetic chiral coordination network of [Ag(L1)(CF3SO3)]n (L1=5,5'-bipyrimidine), after treatment with PF6- anions, undergoes a solution-state structural transformation toward [Ag(L1)(PF6)]n with a cristobalite-mimetic chiral structures. This structural transformation is accompanied by substantial enhancement in the fluorescent intensity and in the second-harmonic-generation response. The results also demonstrate an effective design strategy based on the spontaneous resolution route for the preparation of chiral architectures.

  9. Functional and pharmacological characterization of a VEGF mimetic peptide on reparative angiogenesis.

    Science.gov (United States)

    Finetti, Federica; Basile, Anna; Capasso, Domenica; Di Gaetano, Sonia; Di Stasi, Rossella; Pascale, Maria; Turco, Caterina Maria; Ziche, Marina; Morbidelli, Lucia; D'Andrea, Luca Domenico

    2012-08-01

    Vascular endothelial growth factor (VEGF) is the main regulator of physiological and pathological angiogenesis. Low molecular weight molecules able to stimulate angiogenesis have interesting medical application for example in regenerative medicine, but at present none has reached the clinic. We reported that a VEGF mimetic helical peptide, QK, designed on the VEGF helix sequence 17-25, is able to bind and activate the VEGF receptors, producing angiogenesis. In this study we evaluate the pharmacological properties of peptide QK with the aim to propose it as a VEGF-mimetic drug to be employed in reparative angiogenesis. We show that the peptide QK is able to recapitulate all the biological activities of VEGF in vivo and on endothelial cells. In experiments evaluating sprouting from aortic ring and vessel formation in an in vivo angiogenesis model, the peptide QK showed biological effects comparable with VEGF. At endothelial level, the peptide up-regulates VEGF receptor expression, activates intracellular pathways depending on VEGFR2, and consistently it induces endothelial cell proliferation, survival and migration. When added to angiogenic factors (VEGF and/or FGF-2), QK produces an improved biological action, which resulted in reduced apoptosis and accelerated in vitro wound healing. The VEGF-like activity of the short peptide QK, characterized by lower cost of production and easier handling compared to the native glycoprotein, suggests that it is an attractive candidate to be further developed for application in therapeutic angiogenesis.

  10. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Berirao, L [DIPARTMENTO DI MATERMATICA

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.

  11. Methods and Experimental Protocols to Design a Simulated Bio-Mimetic Quadruped Robot

    Directory of Open Access Journals (Sweden)

    Hadi El Daou

    2013-05-01

    Full Text Available This paper presents a bio‐mimetic approach to design and simulate a tortoise‐like virtual robot. This study takes a multidisciplinary approach: from in vivo and in vitro experiments on animals, data are collected and used to design, control and simulate a bio‐mimetic virtual robot using MD ADAMS platform. From the in vitro experiments, the geometrical and inertial properties of body limbs are measured, and a model of tortoise kinematics is derived. From the in vivo experiments the contact forces between each limb and the ground are measured. The contributions of hind and forelimbs in the generation of propelling and braking forces are studied. The motion of the joints between limb segments are recorded and used to solve the inverse kinematics problem. A virtual model of a tortoise‐like robot is built; it is a linkage of 15 rigid bodies articulated by 22 degrees of freedom. This model is referred to as TATOR II. It has the inertial and geometrical properties measured during the in vitro experiments. TATOR II motion is achieved using a Proportional‐Derivative controller copying the joint angle trajectories calculated from the in vivo experiments.

  12. Copper Complexes of Nicotinic-Aromatic Carboxylic Acids as Superoxide Dismutase Mimetics

    Directory of Open Access Journals (Sweden)

    Virapong Prachayasittikul

    2008-12-01

    Full Text Available Nicotinic acid (also known as vitamin B3 is a dietary element essential for physiological and antihyperlipidemic functions. This study reports the synthesis of novel mixed ligand complexes of copper with nicotinic and other select carboxylic acids (phthalic, salicylic and anthranilic acids. The tested copper complexes exhibited superoxide dismutase (SOD mimetic activity and antimicrobial activity against Bacillus subtilis ATCC 6633, with a minimum inhibition concentration of 256 μg/mL. Copper complex of nicotinic-phthalic acids (CuNA/Ph was the most potent with a SOD mimetic activity of IC50 34.42 μM. The SOD activities were observed to correlate well with the theoretical parameters as calculated using density functional theory (DFT at the B3LYP/LANL2DZ level of theory. Interestingly, the SOD activity of the copper complex CuNA/Ph was positively correlated with the electron affinity (EA value. The two quantum chemical parameters, highest occupied molecular orbital (HOMO and lowest unoccupied molecular orbital (LUMO, were shown to be appropriate for understanding the mechanism of the metal complexes as their calculated energies show good correlation with the SOD activity. Moreover, copper complex with the highest SOD activity were shown to possess the lowest HOMO energy. These findings demonstrate a great potential for the development of value-added metallovitamin-based therapeutics.

  13. Small molecule mimetics of an HIV-1 gp41 fusion intermediate as vaccine leads.

    Science.gov (United States)

    Caulfield, Michael J; Dudkin, Vadim Y; Ottinger, Elizabeth A; Getty, Krista L; Zuck, Paul D; Kaufhold, Robin M; Hepler, Robert W; McGaughey, Georgia B; Citron, Michael; Hrin, Renee C; Wang, Ying-Jie; Miller, Michael D; Joyce, Joseph G

    2010-12-24

    We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1. We exploited the antigen-binding property of D5 to select complementary small molecules using a high throughput screen of a diverse chemical collection. The resulting small molecule leads were rendered immunogenic by linking them to a carrier protein and were shown to elicit N-heptad repeat-binding antibodies in a fraction of immunized mice. Plasma from HIV-1-infected subjects shown previously to contain broadly neutralizing antibodies was found to contain antibodies capable of binding to haptens represented in the benzylpiperidine leads identified as a result of the high throughput screen, further validating these molecules as vaccine leads. Our results suggest a new paradigm for vaccine discovery using a medicinal chemistry approach to identify lead molecules that, when optimized, could become vaccine candidates for infectious diseases that have been refractory to conventional vaccine development.

  14. BH3 Mimetics Reactivate Autophagic Cell Death in Anoxia-Resistant Malignant Glioma Cells

    Directory of Open Access Journals (Sweden)

    Holger Hetschko

    2008-08-01

    Full Text Available Here, we investigated the specific roles of Bcl-2 family members in anoxia tolerance of malignant glioma. Flow cytometry analysis of cell death in 17 glioma cell lines revealed drastic differences in their sensitivity to oxygen withdrawal (<0.1% O2. Cell death correlated with mitochondrial depolarization, cytochrome C release, and translocation of green fluorescent protein (GFP-tagged light chain 3 to autophagosomes but occurred in the absence of caspase activation or phosphatidylserine exposure. In both sensitive and tolerant glioma cell lines, anoxia caused a significant up-regulation of BH3-only genes previously implicated in mediating anoxic cell death in other cell types (BNIP3, NIX, PUMA, and Noxa. In contrast, we detected a strong correlation between anoxia resistance and high expression levels of antiapoptotic Bcl-2 family proteins Bcl-xL, Bcl-2, and Mcl-1 that function to neutralize the proapoptotic activity of BH3-only proteins. Importantly, inhibition of both Bcl-2 and Bcl-xL with the small-molecule BH3 mimetics HA14-1 and BH3I-2′ and by RNA interference reactivated anoxia-induced autophagic cell death in previously resistant glioma cells. Our data suggest that endogenous BH3-only protein induction may not be able to compensate for the high expression of antiapoptotic Bcl-2 family proteins in anoxia-resistant astrocytomas. They also support the conjecture that BH3 mimetics may represent an exciting new approach for the treatment of malignant glioma.

  15. Catalytic mechanism of Cu(p-OTs)2/ethanolamine as mimetic enzyme

    Institute of Scientific and Technical Information of China (English)

    宋继国; 沈培康

    2004-01-01

    The electrochemical behaviors of various copper salts complexes coordinated with equal molar ethanolamine were studied, and those of Cu(p-OTs)2 and Cu(p-OTs)2/ethanolamine(1:1) complex in CH3OH or DMF were characterized. The results show that the reduction of Cu( Ⅱ ) in Cu(p-OTs)2 is via one two-electron step mechanism both in CH3 OH and DMF. The reduction mechanism transforms to two one-electron steps in the case of Cu (p-OTs)2/ethanolamine(1:1) in DMF. However, it does not change in CH3 OH. All the Cu( Ⅱ )/ethanolamine(1:1) with the electrochemical reactions are through two one-electron steps, and can act as mimetic enzyme to oxidize 1, 1'-bi-2-naphthol. The Cu( Ⅱ )/ethanolamine(1:1) with electrochemical reactions through one two-electron step could not act as mimetic enzyme. It is concluded that the transformation between centre Cu( Ⅱ ) and Cu( Ⅰ ) is the crucial condition for the catalytic activity of copper-amine complex.

  16. Polymer inflation

    CERN Document Server

    Hassan, Syed Moeez; Seahra, Sanjeev S

    2014-01-01

    We consider the semi-classical dynamics of a free massive scalar field in a homogeneous and isotropic cosmological spacetime. The scalar field is quantized using the polymer quantization method assuming that it is described by a gaussian coherent state. For quadratic potentials, the semi-classical equations of motion yield a universe that has an early "polymer inflation" phase which is generic and almost exactly de Sitter, followed by a epoch of slow-roll inflation. We compute polymer corrections to the slow roll formalism, and discuss the probability of inflation in this model using a physical Hamiltonian arising from time gauge fixing. These results show the extent to which a quantum gravity motivated quantization method affects early universe dynamics.

  17. Antimocrobial Polymer

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, William F. (Utica, OH); Huang, Zhi-Heng (Walnut Creek, CA); Wright, Stacy C. (Columbus, GA)

    2005-09-06

    A polymeric composition having antimicrobial properties and a process for rendering the surface of a substrate antimicrobial are disclosed. The composition comprises a crosslinked chemical combination of (i) a polymer having amino group-containing side chains along a backbone forming the polymer, (ii) an antimicrobial agent selected from quaternary ammonium compounds, gentian violet compounds, substituted or unsubstituted phenols, biguanide compounds, iodine compounds, and mixtures thereof, and (iii) a crosslinking agent containing functional groups capable of reacting with the amino groups. In one embodiment, the polymer is a polyamide formed from a maleic anhydride or maleic acid ester monomer and alkylamines thereby producing a polyamide having amino substituted alkyl chains on one side of the polyamide backbone; the crosslinking agent is a phosphine having the general formula (A)3P wherein A is hydroxyalkyl; and the antimicrobial agent is chlorhexidine, dimethylchlorophenol, cetyl pyridinium chloride, gentian violet, triclosan, thymol, iodine, and mixtures thereof.

  18. Polymer electronics

    CERN Document Server

    Geoghegan, Mark

    2013-01-01

    Polymer electronics is the science behind many important new developments in technology, such as the flexible electronic display (e-ink) and many new developments in transistor technology. Solar cells, light-emitting diodes, and transistors are all areas where plastic electronics is likely to, or is already having, a serious impact on our daily lives. With polymer transistors and light-emitting diodes now being commercialised, there is a clear need for a pedagogic text thatdiscusses the subject in a clear and concise fashion suitable for senior undergraduate and graduate students. The content

  19. Design and modular parallel synthesis of a MCR derived α-helix mimetic protein-protein interaction inhibitor scaffold

    NARCIS (Netherlands)

    Antuch, Walfrido; Menon, Sanjay; Chen, Quin-Zene; Lu, Yingchun; Sakamuri, Sukumar; Beck, Barbara; Schauer-Vukašinović, Vesna; Agarwal, Seema; Hess, Sibylle; Dömling, Alexander

    2006-01-01

    A terphenyl α-helix mimetic scaffold recognized to be capable of disrupting protein-protein interactions was structurally morphed into an easily amenable and versatile multicomponent reaction (MCR) backbone. The design, modular in-parallel library synthesis, initial cell based biological data, and p

  20. Eltrombopag, a thrombopoietin mimetic, crosses the blood-brain barrier and impairs iron-dependent hippocampal neuron dendrite development.

    Science.gov (United States)

    Bastian, T W; Duck, K A; Michalopoulos, G C; Chen, M J; Liu, Z-J; Connor, J R; Lanier, L M; Sola-Visner, M C; Georgieff, M K

    2017-03-01

    Essentials Potential neurodevelopmental side effects of thrombopoietin mimetics need to be considered. The effects of eltrombopag (ELT) on neuronal iron status and dendrite development were assessed. ELT crosses the blood-brain barrier and causes iron deficiency in developing neurons. ELT blunts dendrite maturation, indicating a need for more safety studies before neonatal use.

  1. Bcl-xL-inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets.

    Science.gov (United States)

    Schoenwaelder, Simone M; Jarman, Kate E; Gardiner, Elizabeth E; Hua, My; Qiao, Jianlin; White, Michael J; Josefsson, Emma C; Alwis, Imala; Ono, Akiko; Willcox, Abbey; Andrews, Robert K; Mason, Kylie D; Salem, Hatem H; Huang, David C S; Kile, Benjamin T; Roberts, Andrew W; Jackson, Shaun P

    2011-08-11

    BH3 mimetics are a new class of proapo-ptotic anticancer agents that have shown considerable promise in preclinical animal models and early-stage human trials. These agents act by inhibiting the pro-survival function of one or more Bcl-2-related proteins. Agents that inhibit Bcl-x(L) induce rapid platelet death that leads to thrombocytopenia; however, their impact on the function of residual circulating platelets remains unclear. In this study, we demonstrate that the BH3 mimetics, ABT-737 or ABT-263, induce a time- and dose-dependent decrease in platelet adhesive function that correlates with ectodomain shedding of the major platelet adhesion receptors, glycoprotein Ibα and glycoprotein VI, and functional down-regulation of integrin α(IIb)β(3). Analysis of platelets from mice treated with higher doses of BH3 mimetics revealed the presence of a subpopulation of circulating platelets undergoing cell death that have impaired activation responses to soluble agonists. Functional analysis of platelets by intravital microscopy revealed a time-dependent defect in platelet aggregation at sites of vascular injury that correlated with an increase in tail bleeding time. Overall, these studies demonstrate that Bcl-x(L)-inhibitory BH3 mimetics not only induce thrombocytopenia but also a transient thrombocytopathy that can undermine the hemostatic function of platelets.

  2. Efficacy and safety of canagliflozin when used in conjunction with incretin-mimetic therapy in patients with type 2 diabetes

    NARCIS (Netherlands)

    Fulcher, G.; Matthews, D. R.; Perkovic, V.; de Zeeuw, D.; Mahaffey, K. W.; Mathieu, C.; Woo, V.; Wysham, C.; Capuano, G.; Desai, M.; Shaw, W.; Vercruysse, F.; Meininger, G.; Neal, B.

    2016-01-01

    Aims: To assess the efficacy and safety of canagliflozin, a sodium glucose co-transporter 2 (SGLT2) inhibitor, in patients with type 2 diabetes enrolled in the CANagliflozin cardioVascular Assessment Study (CANVAS) who were on an incretin mimetic [dipeptidyl peptidase-4 (DPP-4) inhibitor or glucagon

  3. Biomimetic sensor based on molecularly imprinted polymer with nitroreductase-like activity for metronidazole detection.

    Science.gov (United States)

    Gu, Yue; Yan, Xiaoyi; Li, Cong; Zheng, Bo; Li, Yaru; Liu, Weilu; Zhang, Zhiquan; Yang, Ming

    2016-03-15

    The utility of molecularly imprinted polymer (MIP) as electrochemical sensor often suffers from its limited catalytic efficiency. Here, we proposed an alternative approach by combining the concept of MIP with the use of mimetic enzyme. A metronidazole imprinted polymer with nitroreductase-like activity was successfully achieved via an electrochemical method, where melamine served two purposes: functional monomer of MIP and component of mimetic enzyme. During the imprinting process, the redox-active center, which is responsible for catalysis, was introduced into the imprinted cavities. Accordingly, the imprinted polymer, having both catalysis centers and recognition sites, exhibited enhanced electrocatalytic activity and selectivity. The sensing performances of this metronidazole imprinted biomimetic sensor were evaluated in detail. Results revealed that the response to metronidazole was linear in the concentration range of 0.5-1000 μM, and the detection limit was 0.12 μM (S/N=3). In addition, we applied the proposed sensor to detect metronidazole in an injection solution and the results implied its feasibility for practical application.

  4. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed.

  5. Polymer physics

    CERN Document Server

    Gedde, Ulf W

    1999-01-01

    This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in t...

  6. Triple Effect of Mimetic Peptides Interfering with Neural Cell Adhesion Molecule Homophilic Cis Interactions

    DEFF Research Database (Denmark)

    Li, S. Z.; Kolkova, Kateryna; Rudenko, Olga;

    2005-01-01

    The neural cell adhesion molecule (NCAM) is pivotal in neural development, regeneration, and learning. Here we characterize two peptides, termed P1-B and P2, derived from the homophilic binding sites in the first two N-terminal immunoglobulin (Ig) modules of NCAM, with regard to their effects...... on neurite extension and adhesion. To evaluate how interference of these mimetic peptides with NCAM homophilic interactions in cis influences NCAM binding in trans, we employed a coculture system in which PC12-E2 cells were grown on monolayers of fibroblasts with or without NCAM expression and the rate...... of neurite outgrowth subsequently was analyzed. P2, but not P1-B, induced neurite outgrowth in the absence of NCAM binding in trans. When PC12-E2 cells were grown on monolayers of NCAM-expressing fibroblasts, the effect of both P1-B and P2 on neurite outgrowth was dependent on peptide concentrations. P1-B...

  7. Sb Surface Modification of Pd by Mimetic Underpotential Deposition for Formic Acid Oxidation

    Directory of Open Access Journals (Sweden)

    Long-Long Wang

    2015-07-01

    Full Text Available The newly proposed mimetic underpotential deposition (MUPD technique was extended to modify Pd surfaces with Sb through immersing a Pd film electrode or dispersing Pd/C powder in a Sb(III-containing solution blended with ascorbic acid (AA. The introduction of AA shifts down the open circuit potential of Pd substrate available to achieve suitable Sb modification. The electrocatalytic activity and long-term stability towards HCOOH electrooxidation of the Sb modified Pd surfaces (film electrode or powder catalyst by MUPD is superior than that of unmodified Pd and Sb modified Pd surfaces by conventional UPD method. The enhancement of electrocatalytic performance is due to the third body effect and electronic effect, as well as bi-functional mechanism induced by Sb modification which result in increased resistance against CO poisoning.

  8. The mimetic finite difference method for the Landau-Lifshitz equation

    Science.gov (United States)

    Kim, Eugenia; Lipnikov, Konstantin

    2017-01-01

    The Landau-Lifshitz equation describes the dynamics of the magnetization inside ferromagnetic materials. This equation is highly nonlinear and has a non-convex constraint (the magnitude of the magnetization is constant) which poses interesting challenges in developing numerical methods. We develop and analyze explicit and implicit mimetic finite difference schemes for this equation. These schemes work on general polytopal meshes which provide enormous flexibility to model magnetic devices with various shapes. A projection on the unit sphere is used to preserve the magnitude of the magnetization. We also provide a proof that shows the exchange energy is decreasing in certain conditions. The developed schemes are tested on general meshes that include distorted and randomized meshes. The numerical experiments include a test proposed by the National Institute of Standard and Technology and a test showing formation of domain wall structures in a thin film.

  9. Digital scenography and the mimetic aporia of Richard Wagner's Ring Cycle

    Directory of Open Access Journals (Sweden)

    Jason R. D’Aoust

    2015-12-01

    Full Text Available This article explores the visual friction between the concealment of technology and the need to stage mimetic scenes in Richard Wagner's Der Ring des Nibelungen. The article relies on the critical reception of the Wagnerian Gesamtkunstwerk in musicology, as well as in media, performance, and theatre studies. Drawing on productions and commentaries critical of the iconic Gesamtkunstwerk's attempted retrieval of a lost natural state, the article examines correlations between phantasmagoria, special effects, movement detection technology, and the interactive devices of multimedia and digital scenography. These correlations are framed within a theoretical methodology of historical discourse and media archaeologies. Three specific productions of the Ring are discussed, namely the inaugural and centenary productions at the Bayreuth Festspielhaus, as well as Robert Lepage's production for the Metropolitan Opera of New York in 2010–2012.

  10. A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL

    DEFF Research Database (Denmark)

    Downer, Eric J; Cowley, Thelma R; Lyons, Anthony;

    2010-01-01

    as a novel anti-inflammatory agent. Administration of FGL to aged rats attenuated the increased expression of markers of activated microglia, the increase in pro-inflammatory interleukin-1beta (IL-1beta) and the impairment in long-term potentiation (LTP). We report that the age-related increase in microglial......Age-related cognitive deficits in hippocampus are correlated with neuroinflammatory changes, typified by increased pro-inflammatory cytokine production and microglial activation. We provide evidence that the neural cell adhesion molecule (NCAM)-derived mimetic peptide, FG loop (FGL), acts...... CD200 in vitro. We provide evidence that the increase in CD200 is reliant on IL-4-induced extracellular signal-regulated kinase (ERK) signal transduction. These findings provide the first evidence of a role for FGL as an anti-inflammatory agent and identify a mechanism by which FGL controls...

  11. Targeting p38 or MK2 Enhances the Anti-Leukemic Activity of Smac-Mimetics.

    Science.gov (United States)

    Lalaoui, Najoua; Hänggi, Kay; Brumatti, Gabriela; Chau, Diep; Nguyen, Nhu-Y N; Vasilikos, Lazaros; Spilgies, Lisanne M; Heckmann, Denise A; Ma, Chunyan; Ghisi, Margherita; Salmon, Jessica M; Matthews, Geoffrey M; de Valle, Elisha; Moujalled, Donia M; Menon, Manoj B; Spall, Sukhdeep Kaur; Glaser, Stefan P; Richmond, Jennifer; Lock, Richard B; Condon, Stephen M; Gugasyan, Raffi; Gaestel, Matthias; Guthridge, Mark; Johnstone, Ricky W; Munoz, Lenka; Wei, Andrew; Ekert, Paul G; Vaux, David L; Wong, W Wei-Lynn; Silke, John

    2016-02-01

    Birinapant is a smac-mimetic (SM) in clinical trials for treating cancer. SM antagonize inhibitor of apoptosis (IAP) proteins and simultaneously induce tumor necrosis factor (TNF) secretion to render cancers sensitive to TNF-induced killing. To enhance SM efficacy, we screened kinase inhibitors for their ability to increase TNF production of SM-treated cells. We showed that p38 inhibitors increased TNF induced by SM. Unexpectedly, even though p38 is required for Toll-like receptors to induce TNF, loss of p38 or its downstream kinase MK2 increased induction of TNF by SM. Hence, we show that the p38/MK2 axis can inhibit or promote TNF production, depending on the stimulus. Importantly, clinical p38 inhibitors overcame resistance of primary acute myeloid leukemia to birinapant.

  12. Probing the Catalytic Charge-Relay System in Alanine Racemase with Genetically Encoded Histidine Mimetics.

    Science.gov (United States)

    Sharma, Vangmayee; Wang, Yane-Shih; Liu, Wenshe R

    2016-12-16

    Histidine is a unique amino acid with an imidazole side chain in which both of the nitrogen atoms are capable of serving as a proton donor and proton acceptor in hydrogen bonding interactions. In order to probe the functional role of histidine involved in hydrogen bonding networks, fine-tuning the hydrogen bonding potential of the imidazole side chain is required but not feasible through traditional mutagenesis methods. Here, we show that two close mimetics of histidine, 3-methyl-histidine and thiazole alanine, can be genetically encoded using engineered pyrrolysine incorporation machinery. Replacement of the three histidine residues predicted to be involved in an extended charge-relay system in alanine racemase with 3-methyl-histidine or thiazole alanine shows a dramatic loss in the enzyme's catalytic efficiency, implying the role of this extended charge-relay system in activating the active site residue Y265, a general acid/base catalyst in the enzyme.

  13. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    Directory of Open Access Journals (Sweden)

    Vasileios A Stamelos

    Full Text Available Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that

  14. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Liese, Juliane; Abhari, Behnaz Ahangarian; Fulda, Simone

    2015-08-28

    Chemotherapy resistance of hepatocellular carcinoma (HCC) is still a major unsolved problem highlighting the need to develop novel therapeutic strategies. Here, we identify a novel synergistic induction of cell death by the combination of the Smac mimetic BV6, which antagonizes Inhibitor of apoptosis (IAP) proteins, and the triterpenoid oleanolic acid (OA) in human HCC cells. Importantly, BV6 and OA also cooperate to suppress long-term clonogenic survival as well as tumor growth in a preclinical in vivo model of HCC underscoring the clinical relevance of our findings. In contrast, BV6/OA cotreatment does not exert cytotoxic effects against normal primary hepatocytes, pointing to some tumor selectivity. Mechanistic studies show that BV6/OA cotreatment leads to DNA fragmentation and caspase-3 cleavage, while supply of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) revealed a cell type-dependent requirement of caspases for BV6/OA-induced cell death. The receptor interacting protein (RIP)1 kinase Inhibitor Necrostatin-1 (Nec-1) or genetic knockdown of RIP1 fails to rescue BV6/OA-mediated cell death, indicating that BV6/OA cotreatment does not primarily engage necroptotic cell death. Notably, the addition of several reactive oxygen species (ROS) scavengers significantly decreases BV6/OA-triggered cell death, indicating that ROS production contributes to BV6/OA-induced cell death. In conclusion, cotreatment of Smac mimetic and OA represents a novel approach for the induction of cell death in HCC and implicates further studies.

  15. Metabolic effects of the incretin mimetic exenatide in the treatment of type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Catherine A Schnabel

    2006-03-01

    Full Text Available Catherine A Schnabel, Matthew Wintle, Orville KoltermanAmylin Pharmaceuticals, Inc, 9360 Towne Centre Drive, Suite 110, San Diego, CA 92121, USAAbstract: Interventional studies have demonstrated the impact of hyperglycemia on the development of vascular complications associated with type 2 diabetes, which underscores the importance of safely lowering glucose to as near-normal as possible. Among the current challenges to reducing the risk of vascular disease associated with diabetes is the management of body weight in a predominantly overweight patient population, and in which weight gain is likely with many current therapies. Exenatide is the first in a new class of agents termed incretin mimetics, which replicate several glucoregulatory effects of the endogenous incretin hormone, glucagon-like peptide-1 (GLP-1. Currently approved in the US as an injectable adjunct to metformin and/or sulfonylurea therapy, exenatide improves glycemic control through multiple mechanisms of action including: glucose-dependent enhancement of insulin secretion that potentially reduces the risk of hypoglycemia compared with insulin secretagogues; restoration of first-phase insulin secretion typically deficient in patients with type 2 diabetes; suppression of inappropriately elevated glucagon secretion to reduce postprandial hepatic output; and slowing the rate of gastric emptying to regulate glucose appearance into the circulation. Clinical trials in patients with type 2 diabetes treated with subcutaneous exenatide twice daily demonstrated sustained improvements in glycemic control, evidenced by reductions in postprandial and fasting glycemia and glycosylated hemoglobin (HbA1c levels. Notably, improvements in glycemic control with exenatide were coupled with progressive reductions in body weight, which represents a distinct therapeutic benefit for patients with type 2 diabetes. Acute effects of exenatide on beta-cell responsiveness along with significant reductions

  16. Inhibition of Salmonella enterica biofilm formation using small-molecule adenosine mimetics.

    Science.gov (United States)

    Koopman, Jacob A; Marshall, Joanna M; Bhatiya, Aditi; Eguale, Tadesse; Kwiek, Jesse J; Gunn, John S

    2015-01-01

    Biofilms have been widely implicated in chronic infections and environmental persistence of Salmonella enterica, facilitating enhanced colonization of surfaces and increasing the ability of the bacteria to be transmitted to new hosts. Salmonella enterica serovar Typhi biofilm formation on gallstones from humans and mice enhances gallbladder colonization and bacterial shedding, while Salmonella enterica serovar Typhimurium biofilms facilitate long-term persistence in a number of environments important to food, medical, and farming industries. Salmonella regulates expression of many virulence- and biofilm-related processes using kinase-driven pathways. Kinases play pivotal roles in phosphorylation and energy transfer in cellular processes and possess an ATP-binding pocket required for their functions. Many other cellular proteins also require ATP for their activity. Here we test the hypothesis that pharmacological interference with ATP-requiring enzymes utilizing adenosine mimetic compounds would decrease or inhibit bacterial biofilm formation. Through the screening of a 3,000-member ATP mimetic library, we identified a single compound (compound 7955004) capable of significantly reducing biofilm formation by S. Typhimurium and S. Typhi. The compound was not bactericidal or bacteriostatic toward S. Typhimurium or cytotoxic to mammalian cells. An ATP-Sepharose affinity matrix technique was used to discover potential protein-binding targets of the compound and identified GroEL and DeoD. Compound 7955004 was screened against other known biofilm-forming bacterial species and was found to potently inhibit biofilms of Acinetobacter baumannii as well. The identification of a lead compound with biofilm-inhibiting capabilities toward Salmonella provides a potential new avenue of therapeutic intervention against Salmonella biofilm formation, with applicability to biofilms of other bacterial pathogens.

  17. Covariant Hořava-like and mimetic Horndeski gravity: cosmological solutions and perturbations

    Science.gov (United States)

    Cognola, Guido; Myrzakulov, Ratbay; Sebastiani, Lorenzo; Vagnozzi, Sunny; Zerbini, Sergio

    2016-11-01

    We consider a variant of the Nojiri–Odintsov covariant Hořava-like gravitational model, where diffeomorphism invariance is broken dynamically via a non-standard coupling to a perfect fluid. The theory allows one to address some of the potential instability problems present in Hořava–Lifshitz gravity due to explicit diffeomorphism invariance breaking. The fluid is instead constructed from a scalar field constrained by a Lagrange multiplier. In fact, the Lagrange multiplier construction allows for an extension of the Hořava-like model to include the scalar field of mimetic gravity, an extension which we thoroughly explore. By adding a potential for the scalar field, we show how one can reproduce a number of interesting cosmological scenarios. We then turn to the study of perturbations around a flat FLRW background, showing that the fluid in question behaves as an irrotational fluid, with zero sound speed. To address this problem, we consider a modified version of the theory, adding higher derivative terms in a way which brings us beyond the Horndeski framework. We compute the sound speed in this modified higher order mimetic Hořava-like model and show that it is non-zero, which means that perturbations therein can be sensibly defined. Caveats to our analysis, as well as comparisons to projectable Hořava–Lifshitz gravity, are also discussed. In conclusion, we present a theory of gravity which preserves diffeomorphism invariance at the level of the action but breaks it dynamically in the UV, reduces to General Relativity (GR) in the IR, allows the realization of a number of interesting cosmological scenarios, is well defined when considering perturbations around a flat FLRW background, and features cosmological dark matter emerging as an integration constant.

  18. Apolipoprotein A-I and A-I mimetic peptides: a role in atherosclerosis

    Directory of Open Access Journals (Sweden)

    Getz GS

    2011-06-01

    Full Text Available Godfrey S Getz, Catherine A ReardonThe University of Chicago, Department of Pathology, Chicago, IL, USAAbstract: Cardiovascular disease remains a major cause of morbidity and mortality in the westernized world. Atherosclerosis is the underlying cause of most cardiovascular diseases. Atherosclerosis is a slowly evolving chronic inflammatory disorder involving the intima of large and medium sized arteries that is initiated in response to high plasma lipid levels, especially LDL. Cells of both the innate and adaptive immunity are involved in this chronic inflammation. Although high plasma LDL levels are a major contributor to most stages of the evolution of atherosclerosis, HDL and its major protein apoA-I possess properties that attenuate and may even reverse atherosclerosis. Two major functions are the ability to induce the efflux of cholesterol from cells, particularly lipid-loaded macrophages, in the artery wall for transfer to the liver, a process referred to as reverse cholesterol transport, and the ability to attenuate the pro-inflammatory properties of LDL. The removal of cellular cholesterol from lipid-loaded macrophages may also be anti-inflammatory. One of the most promising therapies to enhance the anti-atherogenic, anti-inflammatory properties of HDL is apoA-I mimetic peptides. Several of these peptides have been shown to promote cellular cholesterol efflux, attenuate the production of pro-inflammatory cytokines by macrophages, and to attenuate the pro-inflammatory properties of LDL. This latter effect may be related to their high affinity for oxidized lipids present in LDL. This review discusses the functional properties of the peptides and their effect on experimental atherosclerosis and the results of initial clinical studies in humans.Keywords: apoA-I, mimetic peptides, HDL, anti-inflammatory, atherosclerosis

  19. Smac Mimetic Bypasses Apoptosis Resistance in FADD- or Caspase-8-Deficient Cells by Priming for Tumor Necrosis Factor α-Induced Necroptosis

    Directory of Open Access Journals (Sweden)

    Bram Laukens

    2011-10-01

    Full Text Available Searching for new strategies to bypass apoptosis resistance, we investigated the potential of the Smac mimetic BV6 in Jurkat leukemia cells deficient in key molecules of the death receptor pathway. Here, we demonstrate for the first time that Smac mimetic primes apoptosis-resistant, FADD- or caspase-8-deficient leukemia cells for TNFα-induced necroptosis in a synergistic manner. In contrast to TNFα, Smac mimetic significantly enhances CD95-induced apoptosis in wild-type but not in FADD-deficient cells. Interestingly, Smac mimetic- and TNFα-mediated cell death occurs without characteristic features of apoptosis (i.e., caspase activation, DNA fragmentation in FADD-deficient cells. By comparison, Smac mimetic and TNFα trigger activation of caspase-8, -9, and -3 and DNA fragmentation in wild-type cells. Consistently, the caspase inhibitor zVAD.fmk fails to block Smac mimetic- and TNFα-triggered cell death in FADD- or caspase-8-deficient cells, while it confers protection in wild-type cells. By comparison, necrostatin-1, an RIP1 kinase inhibitor, abolishes Smac mimetic- and TNFα-induced cell death in FADD- or caspase-8-deficient. Thus, Smac mimetic enhances TNFα-induced cell death in leukemia cells via two distinct pathways in a context-dependent manner: it primes apoptosis-resistant cells lacking FADD or caspase-8 to TNFα-induced, RIP1-dependent and caspase-independent necroptosis, whereas it sensitizes apoptosis-proficient cells to TNFα-mediated, caspase-dependent apoptosis. These findings have important implications for the therapeutic exploitation of necroptosis as an alternative cell death program to overcome apoptosis resistance.

  20. Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

    Science.gov (United States)

    2012-07-27

    Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88...Maryland, United States of America Abstract Staphylococcal enterotoxin B (SEB) exposure triggers an exaggerated pro-inflammatory cytokine response...Therapeutic Inhibition of Pro-Inflammatory Signaling and Toxicity to Staphylococcal Enterotoxin B by a Synthetic Dimeric BB-Loop Mimetic of MyD88

  1. Polymer/Solvent and Polymer/Polymer Interaction Studies

    Science.gov (United States)

    1980-09-01

    DCM and ATS are completely miscible. The sorption data described 1 2Jones, E. G., Pedrick , D. L., and Benadum, P. A., Polymer Characteri- zation Using...Encyclopedia of Polymer Science and Technology, Vol. 11, Wiley-Interscience, N.Y. (1969), p. 447. 12. Jones, E.G., Pedrick , D.L., and Benadum, P.A., Polymer

  2. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  3. Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells.

    Science.gov (United States)

    Panayotopoulou, Effrosini G; Müller, Anna-Katharina; Börries, Melanie; Busch, Hauke; Hu, Guohong; Lev, Sima

    2017-02-06

    Standard chemotherapy is the only systemic treatment for triple-negative breast cancer (TNBC), and despite the good initial response, resistance remains a major therapeutic obstacle. Here, we employed a High-Throughput Screen to identify targeted therapies that overcome chemoresistance in TNBC. We applied short-term paclitaxel treatment and screened 320 small-molecule inhibitors of known targets to identify drugs that preferentially and efficiently target paclitaxel-treated TNBC cells. Among these compounds the SMAC mimetics (BV6, Birinapant) and BH3-mimetics (ABT-737/263) were recognized as potent targeted therapy for multiple paclitaxel-residual TNBC cell lines. However, acquired paclitaxel resistance through repeated paclitaxel pulses result in desensitization to BV6, but not to ABT-263, suggesting that short- and long-term paclitaxel resistance are mediated by distinct mechanisms. Gene expression profiling of paclitaxel-residual, -resistant and naïve MDA-MB-231 cells demonstrated that paclitaxel-residual, as opposed to -resistant cells, were characterized by an apoptotic signature, with downregulation of anti-apoptotic genes (BCL2, BIRC5), induction of apoptosis inducers (IL24, PDCD4), and enrichment of TNFα/NF-κB pathway, including upregulation of TNFSF15, coupled with cell-cycle arrest. BIRC5 and FOXM1 downregulation and IL24 induction was also evident in breast cancer patient datasets following taxane treatment. Exposure of naïve or paclitaxel-resistant cells to supernatants of paclitaxel-residual cells sensitized them to BV6, and treatment with TNFα enhanced BV6 potency, suggesting that sensitization to BV6 is mediated, at least partially, by secreted factor(s). Our results suggest that administration of SMAC or BH3 mimetics following short-term paclitaxel treatment could be an effective therapeutic strategy for TNBC, while only BH3-mimetics could effectively overcome long-term paclitaxel resistance.

  4. Ionization behavior of amino lipids for siRNA delivery: determination of ionization constants, SAR, and the impact of lipid pKa on cationic lipid-biomembrane interactions.

    Science.gov (United States)

    Zhang, Jingtao; Fan, Haihong; Levorse, Dorothy A; Crocker, Louis S

    2011-03-01

    Ionizable amino lipids are being pursued as an important class of materials for delivering small interfering RNA (siRNA) therapeutics, and research is being conducted to elucidate the structure-activity relationships (SAR) of these lipids. The pK(a) of cationic lipid headgroups is one of the critical physiochemical properties of interest due to the strong impact of lipid ionization on the assembly and performance of these lipids. This research focused on developing approaches that permit the rapid determination of the relevant pK(a) of the ionizable amino lipids. Two distinct approaches were investigated: (1) potentiometric titration of amino lipids dissolved in neutral surfactant micelles; and (2) pH-dependent partitioning of a fluorescent dye to cationic liposomes formulated from amino lipids. Using the approaches developed here, the pK(a) values of cationic lipids with distinct headgroups were measured and found to be significantly lower than calculated values. It was also found that lipid-lipid interaction has a strong impact on the pK(a) values of lipids. Lysis of model biomembranes by cationic lipids was used to evaluate the impact of lipid pK(a) on the interaction between cationic lipids and cell membranes. It was found that cationic lipid-biomembrane interaction depends strongly on lipid pK(a) and solution pH, and this interaction is much stronger when amino lipids are highly charged. The presence of an optimal pK(a) range of ionizable amino lipids for siRNA delivery was suggested based on these results. The pK(a) methods reported here can be used to support the SAR screen of cationic lipids for siRNA delivery, and the information revealed through studying the impact of pK(a) on the interaction between cationic lipids and cell membranes will contribute significantly to the design of more efficient siRNA delivery vehicles.

  5. SMAC Mimetic BV6 Induces Cell Death in Monocytes and Maturation of Monocyte-Derived Dendritic Cells

    Science.gov (United States)

    Holtz, Philipp; Kapp, Markus; Grigoleit, Götz Ulrich; Schmuck, Carsten; Wajant, Harald; Siegmund, Daniela

    2011-01-01

    Background Compounds mimicking the inhibitory effect of SMAC / DIABLO on X-linked inhibitor of apoptosis (XIAP) have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFκB system and TNF signaling. In view of the overwhelming importance of the NFκB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. Principal Findings BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFκB pathway, but it also diminished the stronger NFκB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. Significance The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies. PMID:21738708

  6. SMAC mimetic BV6 induces cell death in monocytes and maturation of monocyte-derived dendritic cells.

    Directory of Open Access Journals (Sweden)

    Nicole Müller-Sienerth

    Full Text Available BACKGROUND: Compounds mimicking the inhibitory effect of SMAC/DIABLO on X-linked inhibitor of apoptosis (XIAP have been developed with the aim to achieve sensitization for apoptosis of tumor cells resistant due to deregulated XIAP expression. It turned out that SMAC mimetics also have complex effects on the NFκB system and TNF signaling. In view of the overwhelming importance of the NFκB transcription factors in the immune system, we analyzed here the effects of the SMAC mimetic BV6 on immune cells. PRINCIPAL FINDINGS: BV6 induced apoptotic and necrotic cell death in monocytes while T-cells, dendritic cells and macrophages were largely protected against BV6-induced cell death. In immature dendritic cells BV6 treatment resulted in moderate activation of the classical NFκB pathway, but it also diminished the stronger NFκB-inducing effect of TNF and CD40L. Despite its inhibitory effect on TNF- and CD40L signaling, BV6 was able to trigger maturation of immature DCs as indicated by upregulation of CD83, CD86 and IL12. SIGNIFICANCE: The demonstrated effects of SMAC mimetics on immune cells may complicate the development of tumor therapeutic concepts based on these compounds but also arise the possibility to exploit them for the development of immune stimulatory therapies.

  7. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice.

    Science.gov (United States)

    Pan, H-C; Shen, Y-Q; Loers, G; Jakovcevski, I; Schachner, M

    2014-09-26

    In a previous study, we have shown that the small organic compound tegaserod, a drug approved for clinical application in an unrelated condition, is a mimic of the regeneration-beneficial glycan polysialic acid (PSA) in a mouse model of femoral nerve injury. Several independent observations have shown positive effects of PSA and its mimetic peptides in different paradigms of injury of the central and peripheral mammalian nervous systems. Since small organic compounds generally have advantages over metabolically rapidly degraded glycans and the proteolytically vulnerable mimetic peptides, a screen for a small PSA mimetic compound was successfully carried out, and the identified molecule proved to be beneficial in neurite outgrowth in vitro, independent of its originally described function as a 5-HT4 receptor agonist. In the present study, a mouse spinal cord compression device was used to elicit severe compression injury. We show that tegaserod promotes hindlimb motor function at 6 weeks after spinal cord injury compared to the control group receiving vehicle only. Immunohistology of the spinal cord rostral and caudal to the lesion site showed increased numbers of neurons, and a reduced area and intensity of glial fibrillary acidic protein immunoreactivity. Quantification of regrowth/sprouting of axons immunoreactive for tyrosine hydroxylase and serotonin showed increased axonal density rostral and caudal to the injury site in the ventral horns of mice treated with tegaserod. The combined observations suggest that tegaserod has the potential for treatment of spinal cord injuries in higher vertebrates.

  8. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA.

    Science.gov (United States)

    Subramanian, Aishwarya; Andronache, Adrian; Li, Yao-Cheng; Wade, Mark

    2016-03-29

    BH3 mimetic compounds induce tumor cell death through targeted inhibition of anti-apoptotic BCL2 proteins. Resistance to one such compound, ABT-737, is due to increased levels of anti-apoptotic MCL1. Using chemical and genetic approaches, we show that resistance to ABT-737 is abrogated by inhibition of the mitochondrial RING E3 ligase, MARCH5. Mechanistically, this is due to increased expression of pro-apoptotic BCL2 family member, NOXA, and is associated with MARCH5 regulation of MCL1 ubiquitylation and stability in a NOXA-dependent manner. MARCH5 expression contributed to an 8-gene signature that correlates with sensitivity to the preclinical BH3 mimetic, navitoclax. Furthermore, we observed a synthetic lethal interaction between MCL1 and MARCH5 in MCL1-dependent breast cancer cells. Our data uncover a novel level at which the BCL2 family is regulated; furthermore, they suggest targeting MARCH5-dependent signaling will be an effective strategy for treatment of BH3 mimetic-resistant tumors, even in the presence of high MCL1.

  9. Collagen-binding VEGF mimetic peptide: Structure, matrix interaction, and endothelial cell activation

    Science.gov (United States)

    Chan, Tania R.

    Long term survival of artificial tissue constructs depends greatly on proper vascularization. In nature, differentiation of endothelial cells and formation of vasculature are directed by dynamic spatio-temporal cues in the extracellular matrix that are difficult to reproduce in vitro. In this dissertation, we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF), which can be used to encode spatially controlled angiogenic signals in collagen-based scaffolds. The peptide, QKCMP, contains a collagen mimetic domain (CMP) that binds to type I collagen by a unique triple helix hybridization mechanism and a VEGF mimetic domain (QK) with pro-angiogenic activity. We demonstrate QKCMP's ability to hybridize with native and heat denatured collagens through a series of binding studies on collagen and gelatin substrates. Circular dichroism experiments show that the peptide retains the triple helical structure vital for collagen binding, and surface plasmon resonance study confirms the molecular interaction between the peptide and collagen strands. Cell culture studies demonstrate QKCMP's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show that the peptide can be used to spatially modify collagen-based substrates to promote localized endothelial cell activation and network formation. To probe the biological events that govern these angiogenic cellular responses, we investigated the cell signaling pathways activated by collagen-bound QKCMP and determined short and long-term endothelial cell response profiles for p38, ERK1/2, and Akt signal transduction cascades. Finally, we present our efforts to translate the peptide's in vitro bioactivity to an in vivo burn injury animal model. When implanted at the wound site, QKCMP functionalized biodegradable hydrogels induce enhanced neovascularization in the granulation tissue. The results show QKCMP

  10. Polymer based interfaces as bioinspired 'smart skins'.

    Science.gov (United States)

    De Rossi, Danilo; Carpi, Federico; Scilingo, Enzo Pasquale

    2005-11-30

    This work reports on already achieved results and ongoing research on the development of complex interfaces between humans and external environment, based on organic synthetic materials and used as smart 'artificial skins'. They are conceived as wearable and flexible systems with multifunctional characteristics. Their features are designed to mimic or augment a broad-spectrum of properties shown by biological skins of humans and/or animals. The discussion is here limited to those properties whose mimicry/augmentation is achievable with currently available technologies based on polymers and oligomers. Such properties include tactile sensing, thermal sensing/regulation, environmental energy harvesting, chromatic mimetism, ultra-violet protection, adhesion and surface mediation of mobility. Accordingly, bioinspired devices and structures, proposed as suitable functional analogous of natural architectures, are analysed. They consist of organic piezoelectric sensors, thermoelectric and pyroelectric sensors and generators, photoelectric generators, thermal and ultra-violet protection systems, electro-, photo- and thermo-chromic devices, as well as structures for improved adhesion and reduced fluid-dynamic friction.

  11. The mimetic transition: a simulation study of the evolution of learning by imitation.

    Science.gov (United States)

    Higgs, P G

    2000-07-07

    Culturally transmitted ideas or memes must have had a large effect on the survival and fecundity of early humans. Those with better techniques of obtaining food and making tools, clothing and shelters would have had a substantial advantage. It has been proposed that memes can explain why our species has an unusually large brain and high cognitive ability: the brain evolved because of selection for the ability to imitate. This article presents an evolutionary model of a population in which culturally transmitted memes can have both positive and negative effects on the fitness of individuals. It is found that genes for increased imitative ability are selectively favoured. The model predicts that imitative ability increases slowly until a mimetic transition occurs where memes become able to spread like an epidemic. At this point there is a dramatic increase in the imitative ability, the number of memes known per individual and the mean fitness of the population. Selection for increased imitative ability is able to overcome substantial selection against increased brain size in some cases.

  12. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design.

    Science.gov (United States)

    Barrera Guisasola, Exequiel E; Andujar, Sebastián A; Hubin, Ellen; Broersen, Kerensa; Kraan, Ivonne M; Méndez, Luciana; Delpiccolo, Carina M L; Masman, Marcelo F; Rodríguez, Ana M; Enriz, Ricardo D

    2015-05-01

    A new series of mimetic peptides possessing a significant Aβ aggregation modulating effect was reported here. These compounds were obtained based on a molecular modelling study which allowed us to perform a structural-based virtual selection. Monitoring Aβ aggregation by thioflavin T fluorescence and transmission electron microscopy revealed that fibril formation was significantly decreased upon prolonged incubation in presence of the active compounds. Dot blot analysis suggested a decrease of soluble oligomers strongly associated with cognitive decline in Alzheimer's disease. For the molecular dynamics simulations, we used an Aβ42 pentameric model where the compounds were docked using a blind docking technique. To analyze the dynamic behaviour of the complexes, extensive molecular dynamics simulations were carried out in explicit water. We also measured parameters or descriptors that allowed us to quantify the effect of these compounds as potential inhibitors of Aβ aggregation. Thus, significant alterations in the structure of our Aβ42 protofibril model were identified. Among others we observed the destruction of the regular helical twist, the loss of a stabilizing salt bridge and the loss of a stabilizing hydrophobic interaction in the β1 region. Our results may be helpful in the structural identification and understanding of the minimum structural requirements for these molecules and might provide a guide in the design of new aggregation modulating ligands.

  13. Species limits in polymorphic mimetic Eniclases net-winged beetles from New Guinean mountains (Coleoptera, Lycidae).

    Science.gov (United States)

    Bocek, Matej; Bocak, Ladislav

    2016-01-01

    Species delimitation was compared in a group of closely related lineages of aposematically colored Eniclases (Coleoptera, Lycidae) using morphology, genetic distances, and Bayesian implementation of the Poisson Tree Processes model. A high diversity of net-winged beetles was found in previously unsampled regions of New Guinea and ten new species are described: Eniclases bicolor sp. n., Eniclases bokondinensis sp. n., Eniclases brancuccii sp. n., Eniclases elelimensis sp. n., Eniclases infuscatus sp. n., Eniclases niger sp. n., Eniclases pseudoapertus sp. n., Eniclases pseudoluteolus sp. n., Eniclases tikapurensis sp. n., and Eniclases variabilis sp. n. Different levels of genetic and morphological diversification were identified in various sister-species pairs. As a result, both morphological and molecular analyses are used to delimit species. Sister-species with uncorrected pairwise genetic divergence as low as 0.45% were morphologically distinct not only in color pattern, but also in the relative size of eyes. Conversely, differences in color pattern regardless of their magnitude did not necessarily indicate genetic distance and intraspecific mimicry polymorphism was common. Additionally, genetic divergence without morphological differentiation was detected in one sister-species pair. Low dispersal propensity, diverse mimicry patterns, and mimetic polymorphism resulted in complex diversification of Eniclases and uncertain species delimitation in recently diversified lineages.

  14. [Study of collagen mimetic peptide's triple-helix structure and its thermostability by circular dichroism].

    Science.gov (United States)

    Zhang, Zhi-Bao; Wang, Jing-Jie; Chen, Hui-Juan; Xiong, Qing-Qing; Liu, Ling-Rong; Zhang, Qi-Qing

    2014-04-01

    In the present study, the authors explore the triple-helix conformation and thermal stability of collagen mimetic peptides (CMPs) as a function of peptide sequence and/or chain length by circular dichroism(CD). Five CMPs were designed and synthetized varying the number of POG triplets or incorporating an integrin alpha2beta1 binding motif Gly-Phe-Hyp-Gly-Glu-Arg (GFOGER). CD spectroscopy from 260 to 190 nm was recorded to confirm the existence of triple-helix conformation at room temperature, while thermal melting and thermal annealing of triple-helix (thermal unfolding and refolding of triple-helix, respectively) was characterized by monitoring ellipticity at 225 nm as a function of temperature. The results demonstrated that all the CMPs adopted triple-helix conformation, and the thermal stability of the CMPs was enhanced with increasing the number of POG triplets. In contrast to natural collagen, the thermal denaturation processes of CMPs were reversible, i. e. the triple-helix unfolded upon heating while refolded upon cooling. Meanwhile, the phenomenon of "hysteresis" was observed by comparing melting and thermal curves. These findings add new insights to the mechanisms of collagen and CMPs assembly, as well as provide an alternative approach to the fabrication of artificial collagen-likes biomaterials.

  15. A mimetic spectral element solver for the Grad-Shafranov equation

    Science.gov (United States)

    Palha, A.; Koren, B.; Felici, F.

    2016-07-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators (∇, ∇×, ∇ṡ) can be represented exactly and metric and all approximation errors are present in the constitutive relations. The result of this formulation is an arbitrary order method even on highly curved meshes. Additionally, the integral of the toroidal current Jϕ is exactly equal to the boundary integral of the poloidal field over the plasma boundary. This property can play an important role in the coupling between equilibrium and transport solvers. The proposed solver is tested on a varied set of plasma cross sections (smooth and with an X-point) and also for a wide range of pressure and toroidal magnetic flux profiles. Equilibria accurate up to machine precision are obtained. Optimal algebraic convergence rates of order p + 1 and geometric convergence rates are shown for Soloviev solutions (including high Shafranov shifts), field-reversed configuration (FRC) solutions and spheromak analytical solutions. The robustness of the method is demonstrated for non-linear test cases, in particular on an equilibrium solution with a pressure pedestal.

  16. Revisiting catechol derivatives as robust chromogenic hydrogen donors working in alkaline media for peroxidase mimetics.

    Science.gov (United States)

    Drozd, Marcin; Pietrzak, Mariusz; Pytlos, Jakub; Malinowska, Elżbieta

    2016-12-15

    Colloidal noble metal-based nanoparticles are able to catalyze oxidation of chromogenic substrates by H2O2, similarly to peroxidases, even in basic media. However, lack of robust chromogens, which work in high pH impedes their real applications. Herein we demonstrate the applicability of selected catechol derivatives: bromopyrogallol red (BPR) and pyrogallol (PG) as chromogenic substrates for peroxidase-like activity assays, which are capable of working over wide range of pH, covering also basic values. Hyperbranched polyglycidol-stabilized gold nanoparticles (HBPG@AuNPs) were used as model enzyme mimetics. Efficiency of several methods of improving stability of substrates in alkaline media by means of selective suppression of their autoxidation by molecular oxygen was evaluated. In a framework of presented studies the impact of borate anion, applied as complexing agent for PG and BPR, on their stability and reactivity towards oxidation mediated by catalytic AuNPs was investigated. The key role of high concentration of hydrogen peroxide in elimination of non-catalytic oxidation of PG and improvement of optical properties of BPR in alkaline media containing borate was underlined. Described methods of peroxidase-like activity characterization with the use of BPR and PG can become universal tools for characterization of nanozymes, which gain various applications, among others, they are used as catalytic labels in bioassays and biosensors.

  17. Activity of antimicrobial peptide mimetics in the oral cavity: I. Activity against biofilms of Candida albicans.

    Science.gov (United States)

    Hua, J; Yamarthy, R; Felsenstein, S; Scott, R W; Markowitz, K; Diamond, G

    2010-12-01

    Naturally occurring antimicrobial peptides hold promise as therapeutic agents against oral pathogens such as Candida albicans but numerous difficulties have slowed their development. Synthetic, non-peptidic analogs that mimic the properties of these peptides have many advantages and exhibit potent, selective antimicrobial activity. Several series of mimetics (with molecular weight oral Candida strains as a proof-of-principle for their antifungal properties. One phenylalkyne and several arylamide compounds with reduced mammalian cytotoxicities were found to be active against C. albicans. These compounds demonstrated rapid fungicidal activity in liquid culture even in the presence of saliva, and demonstrated synergy with standard antifungal agents. When assayed against biofilms grown on denture acrylic, the compounds exhibited potent fungicidal activity as measured by metabolic and fluorescent viability assays. Repeated passages in sub-minimum inhibitory concentration levels did not lead to resistant Candida, in contrast to fluconazole. Our results demonstrate the proof-of principle for the use of these compounds as anti-Candida agents, and their further testing is warranted as novel anti-Candida therapies.

  18. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    Science.gov (United States)

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  19. Partial complementarity of the mimetic yellow bar phenotype in Heliconius butterflies.

    Directory of Open Access Journals (Sweden)

    Luana S Maroja

    Full Text Available Heliconius butterflies are an excellent system for understanding the genetic basis of phenotypic change. Here we document surprising diversity in the genetic control of a common phenotype. Two disjunct H. erato populations have each recruited the Cr and/or Sd loci that control similar yellow hindwing patterns, but the alleles involved partially complement one another indicating either multiple origins for the patterning alleles or developmental drift in genetic control of similar patterns. We show that in these H. erato populations cr and sd are epistatically interacting and that the parental origin of alleles can explain phenotypes of backcross individuals. In contrast, mimetic H. melpomene populations with identical phenotypes (H. m. rosina and H. m. amaryllis do not show genetic complementation (F(1s and F(2s are phenotypically identical to parentals. Finally, we report hybrid female inviability in H. m. melpomene × H. m. rosina crosses (previously only female infertility had been reported and presence of standing genetic variation for alternative color alleles at the Yb locus in true breeding H. melpomene melpomene populations (expressed when in a different genomic background that could be an important source of variation for the evolution of novel phenotypes or a result of developmental drift. Although recent work has emphasized the simple genetic control of wing pattern in Heliconius, we show there is underlying complexity in the allelic variation and epistatic interactions between major patterning loci.

  20. Population genomics of parallel hybrid zones in the mimetic butterflies, H. melpomene and H. erato

    Science.gov (United States)

    Ruiz, Mayté; Salazar, Patricio; Counterman, Brian; Medina, Jose Alejandro; Ortiz-Zuazaga, Humberto; Morrison, Anna; Papa, Riccardo

    2014-01-01

    Hybrid zones can be valuable tools for studying evolution and identifying genomic regions responsible for adaptive divergence and underlying phenotypic variation. Hybrid zones between subspecies of Heliconius butterflies can be very narrow and are maintained by strong selection acting on color pattern. The comimetic species, H. erato and H. melpomene, have parallel hybrid zones in which both species undergo a change from one color pattern form to another. We use restriction-associated DNA sequencing to obtain several thousand genome-wide sequence markers and use these to analyze patterns of population divergence across two pairs of parallel hybrid zones in Peru and Ecuador. We compare two approaches for analysis of this type of data—alignment to a reference genome and de novo assembly—and find that alignment gives the best results for species both closely (H. melpomene) and distantly (H. erato, ∼15% divergent) related to the reference sequence. Our results confirm that the color pattern controlling loci account for the majority of divergent regions across the genome, but we also detect other divergent regions apparently unlinked to color pattern differences. We also use association mapping to identify previously unmapped color pattern loci, in particular the Ro locus. Finally, we identify a new cryptic population of H. timareta in Ecuador, which occurs at relatively low altitude and is mimetic with H. melpomene malleti. PMID:24823669

  1. Interfacial Cavity Filling To Optimize CD4-Mimetic Miniprotein Interactions with HIV-1 Surface Glycoprotein

    Energy Technology Data Exchange (ETDEWEB)

    Morellato-Castillo, Laurence; Acharya, Priyamvada; Combes, Olivier; Michiels, Johan; Descours, Anne; Ramos, Oscar H.P.; Yang, Yongping; Vanham, Guido; Ariën, Kevin K.; Kwong, Peter D.; Martin, Loïc; Kessler, Pascal [ITM-Antwerp; (CEA-CNRS); (NIH)

    2013-08-05

    Ligand affinities can be optimized by interfacial cavity filling. A hollow (Phe43 cavity) between HIV-1 surface glycoprotein (gp120) and cluster of differentiation 4 (CD4) receptor extends beyond residue phenylalanine 43 of CD4 and cannot be fully accessed by natural amino acids. To increase HIV-1 gp120 affinity for a family of CD4-mimetic miniproteins (miniCD4s), we targeted the gp120 Phe43 cavity with 11 non-natural phenylalanine derivatives, introduced into a miniCD4 named M48 (1). The best derivative, named M48U12 (13), bound HIV-1 YU2 gp120 with 8 pM affinity and showed potent HIV-1 neutralization. It contained a methylcyclohexyl derivative of 4-aminophenylalanine, and its cocrystal structure with gp120 revealed the cyclohexane ring buried within the gp120 hydrophobic core but able to assume multiple orientations in the binding pocket, and the aniline nitrogen potentially providing a focus for further improvement. Altogether, the results provide a framework for filling the interfacial Phe43 cavity to enhance miniCD4 affinity.

  2. Bcl-2/MDM2 Dual Inhibitors Based on Universal Pyramid-Like α-Helical Mimetics.

    Science.gov (United States)

    Wang, Ziqian; Song, Ting; Feng, Yingang; Guo, Zongwei; Fan, Yudan; Xu, Wenjie; Liu, Lu; Wang, Anhui; Zhang, Zhichao

    2016-04-14

    No α-helical mimetic that exhibits Bcl-2/MDM2 dual inhibition has been rationally designed due to the different helicities of the α-helixes at their binding interfaces. Herein, we extracted a one-turn α-helix-mimicking ortho-triarene unit from o-phenylene foldamers. Linking benzamide substrates with a rotatable C-N bond, we constructed a novel semirigid pyramid-like scaffold that could support its two-turn α-helix mimicry without aromatic stacking interactions and could adopt the different dihedral angles of the key residues of p53 and BH3-only peptides. On the basis of this universal scaffold, a series of substituent groups were installed to capture the key residues of both p53TAD and BimBH3 and balance the differences of the bulks between them. Identified by FP, ITC, and NMR spectroscopy, a compound 6e (zq-1) that directly binds to Mcl-1, Bcl-2, and MDM2 with balanced submicromolar affinities was obtained. Cell-based experiments demonstrated its antitumor ability through Bcl-2/MDM2 dual inhibition simultaneously.

  3. Dipeptide Mimetic of the Brain-derived Neurotrophic Factor Prevents Impairments of Neurogenesis in Stressed Mice.

    Science.gov (United States)

    Gudasheva, T A; Povarnina, P Yu; Seredenin, S B

    2017-02-01

    Brain-derived neurotrophic factor (BDNF) plays the central role in the mechanisms of regulation of neurogenesis and neuroplasticity. Impairment of these mechanisms is considered as one of the main etiological factors of depression. Dimeric dipeptide mimetic of BDNF loop 4 bis-(N-monosuccinyl-l-seryl-l-lysine) hexamethylenediamide (GSB-106) was synthesized at the V. V. Zakusov Research Institute of Pharmacology. In vivo experiments revealed significant antidepressant properties of GSB-106 in doses of 0.1-10 mg/kg (intraperitoneally and orally). Effects of GSB-106 on hippocampal neurogenesis were studied in mice subjected to chronic predator stress. Proliferative activity in the subgranular zone of the dental gyrus was assessed immunohistochemically by Ki-67 expression (a marker of dividing cells). It was found that GSB-106 (10 mg/kg, intraperitoneally, 5 days) completely prevents neurogenesis disturbances in stressed mice. These findings suggest that GSB-106 is a promising candidate for the development of antidepressant agents with BDNF-like mechanism of action.

  4. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  5. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease.

    Science.gov (United States)

    Zhang, Qixiong; Tao, Hui; Lin, Yongyao; Hu, Ying; An, Huijie; Zhang, Dinglin; Feng, Shibin; Hu, Houyuan; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2016-10-01

    Oxidative stress, resulting from excessive generation of reactive oxygen species (ROS), plays a pivotal role in the initiation and progression of inflammatory bowel disease (IBD). To develop an efficacious and safe nanotherapy against IBD, we designed and developed a superoxide dismutase/catalase mimetic nanomedicine comprising a hydrogen peroxide-eliminating nanomatrix and a free radical scavenger Tempol (Tpl). To this end, an oxidation-responsive β-cyclodextrin material (OxbCD) was synthesized, and a Tpl-loaded OxbCD nanoparticle (Tpl/OxbCD NP) was produced. Hydrolysis of OxbCD NP could be triggered by hydrogen peroxide, leading to on-demand release of loaded Tpl molecules from Tpl/OxbCD NP. OxbCD NP was able to efficiently accumulate in the inflamed colon in mice, thereby dramatically reducing nonspecific distribution after oral delivery. In three mouse colitis models, oral administration of Tpl/OxbCD NP notably mitigated manifestations relevant to colitis, and significantly suppressed expression of proinflammatory mediators, with the efficacy superior over free Tpl or a control nanomedicine based on poly(lactide-co-glycolide) (PLGA). Accordingly, by scavenging multiple components of ROS, Tpl/OxbCD NP may effectively reduce ulcerative colitis in mice, and it can be intensively developed as a translational nanomedicine for the management of IBD and other inflammatory diseases.

  6. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview.

    Science.gov (United States)

    Garg, Bhaskar; Bisht, Tanuja; Ling, Yong-Chien

    2015-08-04

    "Artificial enzymes", a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high substrate affinity and specificity under relatively mild conditions and thus offer a wide range of practical applications in many areas of science. The increasing understanding of general principles as well as intrinsic drawbacks such as low operational stability, high cost, difficulty in purification and storage, and sensitivity of catalytic activity towards atmospheric conditions of peroxidases has triggered a dynamic field in nanotechnology, biochemical, and material science that aims at joining the better of three worlds by combining the concept adapted from nature with the processability of catalytically active graphene-based nanomaterials (G-NMs) as excellent peroxidase mimetic catalysts. This comprehensive review discusses an up-to-date synthesis, kinetics, mechanisms, and biosensing applications of a variety of G-NMs that have been explored as promising catalysts to mimic natural peroxidases.

  7. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Directory of Open Access Journals (Sweden)

    Thomas Kieber-Emmons

    2011-11-01

    Full Text Available Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs. To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I, and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  8. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Science.gov (United States)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses. PMID:24213131

  9. Characterization of the insertase BamA in three different membrane mimetics by solution NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morgado, Leonor; Zeth, Kornelius; Burmann, Björn M.; Maier, Timm; Hiller, Sebastian, E-mail: sebastian.hiller@unibas.ch [University of Basel, Biozentrum (Switzerland)

    2015-04-15

    The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC{sub 7}PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.

  10. Mimetic finite difference method for the stokes problem on polygonal meshes

    Energy Technology Data Exchange (ETDEWEB)

    Lipnikov, K [Los Alamos National Laboratory; Beirao Da Veiga, L [DIPARTIMENTO DI MATE; Gyrya, V [PENNSYLVANIA STATE UNIV; Manzini, G [ISTIUTO DI MATEMATICA

    2009-01-01

    Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.

  11. Graphene-Based Nanomaterials as Efficient Peroxidase Mimetic Catalysts for Biosensing Applications: An Overview

    Directory of Open Access Journals (Sweden)

    Bhaskar Garg

    2015-08-01

    Full Text Available “Artificial enzymes”, a term coined by Breslow for enzyme mimics is an exciting and promising branch of biomimetic chemistry aiming to imitate the general and essential principles of natural enzymes using a variety of alternative materials including heterogeneous catalysts. Peroxidase enzymes represent a large family of oxidoreductases that typically catalyze biological reactions with high substrate affinity and specificity under relatively mild conditions and thus offer a wide range of practical applications in many areas of science. The increasing understanding of general principles as well as intrinsic drawbacks such as low operational stability, high cost, difficulty in purification and storage, and sensitivity of catalytic activity towards atmospheric conditions of peroxidases has triggered a dynamic field in nanotechnology, biochemical, and material science that aims at joining the better of three worlds by combining the concept adapted from nature with the processability of catalytically active graphene-based nanomaterials (G-NMs as excellent peroxidase mimetic catalysts. This comprehensive review discusses an up-to-date synthesis, kinetics, mechanisms, and biosensing applications of a variety of G-NMs that have been explored as promising catalysts to mimic natural peroxidases.

  12. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model.

    Science.gov (United States)

    Qi, Yifei; Cheng, Xi; Lee, Jumin; Vermaas, Josh V; Pogorelov, Taras V; Tajkhorshid, Emad; Park, Soohyung; Klauda, Jeffery B; Im, Wonpil

    2015-11-17

    Slow diffusion of the lipids in conventional all-atom simulations of membrane systems makes it difficult to sample large rearrangements of lipids and protein-lipid interactions. Recently, Tajkhorshid and co-workers developed the highly mobile membrane-mimetic (HMMM) model with accelerated lipid motion by replacing the lipid tails with small organic molecules. The HMMM model provides accelerated lipid diffusion by one to two orders of magnitude, and is particularly useful in studying membrane-protein associations. However, building an HMMM simulation system is not easy, as it requires sophisticated treatment of the lipid tails. In this study, we have developed CHARMM-GUI HMMM Builder (http://www.charmm-gui.org/input/hmmm) to provide users with ready-to-go input files for simulating HMMM membrane systems with/without proteins. Various lipid-only and protein-lipid systems are simulated to validate the qualities of the systems generated by HMMM Builder with focus on the basic properties and advantages of the HMMM model. HMMM Builder supports all lipid types available in CHARMM-GUI and also provides a module to convert back and forth between an HMMM membrane and a full-length membrane. We expect HMMM Builder to be a useful tool in studying membrane systems with enhanced lipid diffusion.

  13. Iron(Ⅱ) tetrasulfophthalocyanine mimetic enzymatic synthesis of conducting polyaniline in micellar system

    Institute of Scientific and Technical Information of China (English)

    HU Xing; LIU Hui; ZOU Guo-lin

    2009-01-01

    Iron(Ⅱ) tetrasulfophthalocyanine (FeTSPc), as a novel mimetic enzyme of peroxidase, was used in the synthesis of a conducting polyaniline (PANI)/sodium dodecylsulfate (SDS) complex in SDS aqueous micellar solutions. The effects of pH, concentrations of aniline, SDS and H_2O_2, and reaction time on polymerization of aniline were studied in this case as shown by UV-Vis absorption spectroscopy. The results show that a wide range of pH (0.5-4.0) is required to produce the conducting PANI, and the optimal pH is 1.0 in SDS micelle. The optimal concentrations of aniline, SDS and H_2O_2 in feed, and reaction time in this case for the production of conducting PANI are respectively 10 mmol/L, 10 mmol/L, 25 mmol/L, and 15 h. FT-IR spectrum, elemental analysis, conductivity, cyclic voltammetry and thermogravimetric analysis confirm the thermal stability and electroactive form of PANI.

  14. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    Directory of Open Access Journals (Sweden)

    Yue-Yue Zhou

    Full Text Available D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs, reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  15. SOCS1 mimetics and antagonists: a complementary approach to positive and negative regulation of immune function

    Directory of Open Access Journals (Sweden)

    Chulbul M. Ahmed

    2015-04-01

    Full Text Available Suppressors of cytokine signaling (SOCS are inducible intracellular proteins that play essential regulatory roles in both immune and non-immune function. Of the eight known members, SOCS1 and SOCS3 in conjunction with regulatory T cells play key roles in regulation of the immune system. Molecular tools such as gene transfections and siRNA have played a major role in our functional understanding of the SOCS proteins where a key functional domain of 12 amino acid residues called the kinase inhibitory region (KIR has been identified on SOCS1 and SOCS3. KIR plays a key role in inhibition of the JAK2 tyrosine kinase which in turn plays a key role in cytokine signaling. A peptide corresponding to KIR (SOCS1-KIR bound to the activation loop of JAK2 and inhibited tyrosine phosphorylation of STAT1α transcription factor by JAK2. Cell internalized SOCS1-KIR is a potent therapeutic in the experimental allergic encephalomyelitis (EAE mouse model of multiple sclerosis and showed promise in a psoriasis model and a model of diabetes associated cardiovascular disease. By contrast, a peptide, pJAK2(1001-1013, that corresponds to the activation loop of JAK2 is a SOCS1 antagonist. The antagonist enhanced innate and adaptive immune response against a broad range of viruses including herpes simplex virus, vaccinia virus, and an EMC picornavirus. SOCS mimetics and antagonists are thus potential therapeutics for negative and positive regulation of the immune system.

  16. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  17. Design and synthesis of collagen mimetic peptide derivatives for studying triple helix assembly and collagen mimetic peptide-collagen binding interaction

    Science.gov (United States)

    Mo, Xiao

    2008-10-01

    Collagen is the principal tensile clement of the extra-cellular matrix in mammals and is the basic scaffold for cells and tissues. Collagen molecules are comprised of homo-trimeric helices (e.g. collagen type II and type III), ABB type hetero-trimeric helices (e.g. collagen type I, type IV, and type V), or ABC type hetero-trimeric helices (e.g. type V). Mimicry of collagen structures can help elucidate collagen triple helical conformation and provide insights into making novel collagen-like biomaterials. Our group previously reported a new physical collagen modification method, which was based on non-covalent interaction between collagen mimetic peptide (CMP: -(Pro-Hyp-Gly) x-) and natural collagen. We hypothesized that CMP binds to collagen through a process involving both strand invasion and triple helix assembly. The aim of this dissertation is to study structural formation and stability of collagen triple helix, and to investigate CMP-collagen binding interactions using two types of CMP derivatives: covalently templated CMP trimer and CMP-nanoparticle conjugates. We demonstrated that covalently templated ABB type CMP hetero-trimers could be prepared by a versatile synthetic strategy involving both solid phase and solution peptide coupling. Our thermal melting studies showed that the templated CMP hetero-trimers formed collagen-like triple helices and their folding kinetics correlated with the amino acid compositions of the individual CMP strands. We also studied the thermal melting behavior and folding kinetics of a templated hetero-trimer complex comprised of CMP and a peptide derived from collagen. This synthetic strategy can be readily extended to synthesize other ABB type hetero-trimers to investigate their local melting behavior and biological activity. We also prepared colloidally stable CMP functionalized gold nanoparticles (Au-CMPs) as a TEM marker for investigating the CMP-collagen interaction. Au-CMP showed preferential binding to collagen fiber's gap

  18. Polymer nanocomposites: polymer and particle dynamics

    KAUST Repository

    Kim, Daniel

    2012-01-01

    Polymer nanocomposites containing nanoparticles smaller than the random coil size of their host polymer chains are known to exhibit unique properties, such as lower viscosity and glass transition temperature relative to the neat polymer melt. It has been hypothesized that these unusual properties result from fast diffusion of the nanostructures in the host polymer, which facilitates polymer chain relaxation by constraint release and other processes. In this study, the effects of addition of sterically stabilized inorganic nanoparticles to entangled cis-1,4-polyisoprene and polydimethylsiloxane on the overall rheology of nanocomposites are discussed. In addition, insights about the relaxation of the host polymer chains and transport properties of nanoparticles in entangled polymer nanocomposites are presented. The nanoparticles are found to act as effective plasticizers for their entangled linear hosts, and below a critical, chemistry and molecular-weight dependent particle volume fraction, lead to reduced viscosity, glass transition temperature, number of entanglements, and polymer relaxation time. We also find that the particle motions in the polymer host are hyperdiffusive and at the nanoparticle length scale, the polymer host acts like a simple, ideal fluid and the composites\\' viscosity rises with increasing particle concentration. © 2012 The Royal Society of Chemistry.

  19. An investigation of the mimetic enzyme activity of two-dimensional Pd-based nanostructures

    Science.gov (United States)

    Wei, Jingping; Chen, Xiaolan; Shi, Saige; Mo, Shiguang; Zheng, Nanfeng

    2015-11-01

    In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis.In this work, we investigated the mimetic enzyme activity of two-dimensional (2D) Pd-based nanostructures (e.g. Pd nanosheets, Pd@Au and Pd@Pt nanoplates) and found that they possess intrinsic peroxidase-, oxidase- and catalase-like activities. These nanostructures were able to activate hydrogen peroxide or dissolved oxygen for catalyzing the oxidation of organic substrates, and decompose hydrogen peroxide to generate oxygen. More systematic investigations revealed that the peroxidase-like activities of these Pd-based nanomaterials were highly structure- and composition-dependent. Among them, Pd@Pt nanoplates displayed the highest peroxidase-like activity. Based on these findings, Pd-based nanostructures were applied for the colorimetric detection of H2O2 and glucose, and also the electro-catalytic reduction of H2O2. This work offers a promising prospect for the application of 2D noble metal nanostructures in biocatalysis. Electronic supplementary information (ESI) available: TEM images, EDX and dispersion stability of Pd-based nanomaterials

  20. MOLECULAR IMPRINTED POLYMERS--Novel Polymer Adsorbents

    Institute of Scientific and Technical Information of China (English)

    LI Haitao; XU Mancai; SHI Zuoqing; HE Binglin

    2001-01-01

    Molecular imprinted polymers (MIPs) are novel functional polymer materials and known as specific adsorbents for the template molecules. These novel functional polymers have promised potential applications in racemic resolution, sensor, chromatography, adsorptive separation and other fields. This review exhibits the approach for preparing MIPs, the features of MIPs obtained by different routes and the characteristics of adsorptive separations with MIPs. The molecular recognition mechanism and the idea of the present possibilities and limitations of molecular imprinting polymerization are discussed as well.

  1. Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Aaron A.; Liu, Wei; Chun, Eugene; Katritch, Vsevolod; Wu, Huixian; Vardy, Eyal; Huang, Xi-Ping; Trapella, Claudio; Guerrini, Remo; Calo, Girolamo; Roth, Bryan L.; Cherezov, Vadim; Stevens, Raymond C. (Ferrara); (Scripps); (UNC)

    2012-07-11

    Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the 'classical' opioid receptors, {delta}, {kappa} and {mu} ({delta}-OR, {kappa}-OR and {mu}-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes ({approx}60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand-receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors {kappa} (ref. 5) and {mu} (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP-compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.

  2. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure

    Directory of Open Access Journals (Sweden)

    Phillip eUribe

    2015-01-01

    Full Text Available Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 µM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity.

  3. An ultrasensitive and universal photoelectrochemical immunoassay based on enzyme mimetics enhanced signal amplification.

    Science.gov (United States)

    Wang, Guang-Li; Shu, Jun-Xian; Dong, Yu-Ming; Wu, Xiu-Ming; Li, Zai-Jun

    2015-04-15

    An ultrasensitive photoelectrochemical (PEC) immunoassay based on signal amplification by enzyme mimetics was fabricated for the detection of mouse IgG (as a model protein). The PEC immunosensor was constructed by a layer-by-layer assembly of poly (diallyldimethylammonium chloride) (PDDA), CdS quantum dots (QDs), primary antibody (Ab1, polyclonal goat antimouse IgG), and the antigen (Ag, mouse IgG) on an indium-tin oxide (ITO) electrode. Then, the secondary antibody (Ab2, polyclonal goat antimouse IgG) combined to a bio-bar-coded Pt nanoparticle(NP)-G-quadruplex/hemin probe was used for signal amplification. The bio-bar-coded Pt NP-G-quadruplex/hemin probe could catalyze the oxidation of hydroquinone (HQ) using H2O2 as an oxidant, demonstrating its intrinsic enzyme-like activity. High sensitivity for the target Ag was achieved by using the bio-bar-coded probe as signal amplifier due to its high catalytic activity, a competitive nonproductive absorption of hemin and the steric hindrance caused by the polymeric oxidation products of HQ. For most important, the oxidation product of HQ acted as an efficient electron acceptor of the illuminated CdS QDs. The target Ag could be detected from 0.01pg/mL to 1.0ng/mL with a low detection limit of 6.0fg/mL. The as-obtained immunosensor exhibited high sensitivity, good stability and acceptable reproducibility. This method might be attractive for clinical and biomedical applications.

  4. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Science.gov (United States)

    Audet, Gerald N; Fulks, Daniel; Stricker, Janelle C; Olfert, I Mark

    2013-01-01

    Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1), a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510), which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose) were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA), 11% decrease in the plantaris (PLT), and a 35% decrease in the soleus (SOL). ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF) in both the GA (-140%) and SOL (-62%); however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  5. Chronic delivery of a thrombospondin-1 mimetic decreases skeletal muscle capillarity in mice.

    Directory of Open Access Journals (Sweden)

    Gerald N Audet

    Full Text Available Angiogenesis is an essential process for normal skeletal muscle function. There is a growing body of evidence suggesting that thrombospondin-1 (TSP-1, a potent antiangiogenic protein in tumorigenesis, is an important regulator of both physiological and pathological skeletal muscle angiogenesis. We tested the hypothesis that chronic exposure to a TSP-1 mimetic (ABT-510, which targets the CD36 TSP-1 receptor, would decrease skeletal muscle capillarity as well as alter the balance between positive and negative angiogenic proteins under basal conditions. Osmotic minipumps with either ABT-510 or vehicle (5% dextrose were implanted subcutaneously in the subscapular region of C57/BL6 mice for 14 days. When compared to the vehicle treated mice, the ABT-510 group had a 20% decrease in capillarity in the superficial region of the gastrocnemius (GA, 11% decrease in the plantaris (PLT, and a 35% decrease in the soleus (SOL. ABT-510 also decreased muscle protein expression of vascular endothelial growth factor (VEGF in both the GA (-140% and SOL (-62%; however there was no change in VEGF in the PLT. Serum VEGF was not altered in ABT-510 treated animals. Endogenous TSP-1 protein expression in all muscles remained unaltered. Tunnel staining revealed no difference in muscle apoptosis between ABT-510 and vehicle treated groups. These data provide evidence that the anti-angiogenic effects of TSP-1 are mediated, at least in part, via the CD36 receptor. It also suggests that under physiologic conditions the TSP-1/CD36 axis plays a role in regulating basal skeletal muscle microvessel density.

  6. A bio-mimetic zinc/tau protein as an artificial catalase.

    Science.gov (United States)

    Asadollahi, Kazem; Jasemi, Neda Sadat Kazemein; Riazi, Gholam Hossein; Katuli, Fatemeh Hedayati; Yazdani, Fahimeh; Sartipnia, Nasrin; Moosavi, Mohammad Amin; Rahimi, Arash; Falahati, Mojtaba

    2016-11-01

    In this study, the catalase-like activity of monomeric tau protein was reported in the presence of of zinc (Zn(II)) ions at low pH value. Monomeric tau protein contains two SH groups that are a target of disulfide bond formation. However these SH groups are able to interact with Zn(II) ion at pH 7.2 which creates a thiol bond as a mimetic model of chloroperoxidase active site which performs catalase like activity at low pH. Zn(II)/tau protein complex decomposed H2O2 with a high rate (Vm) as well as an efficient turn oven number (kcat) at pH 3. This remarkable catalase like activity is may be attributed to the conformational reorientation of protein at low pH. Circular dichroism (CD) studies did not demonstrate any secondary structural changes of tau protein after addition of Zn(II) ions at pH 7.2. In addition, tau protein shows identical CD bands at pH 7.2 and 3. Moreover, fluorescence quenching of tau by Zn(II) at pH 7.2 was initiated by complex formation rather than by dynamic collision. A significant red shift (6nm) was observed in the emission maximum of the fluorescence spectra when the protein was dissolved at pH 3 compared to pH 7.2. This conformational change can provide information regarding the rearrangements of the protein structure and exposure of Cys-Zn(II) group to the solvent which induces easy access of active site to H2O2 molecules and corresponding enhanced catalytic activity of Zn(II)/tau protein complex. This study introduces tau protein as a bio-inspired high performing scaffold for transition metal encapsulation and introducing an engineered apoprotein-induced biomimetic enzyme.

  7. Dramatic nano-fluidic properties of carbon nanotube membranes as a platform for protein channel mimetics

    Science.gov (United States)

    Hinds, Bruce

    2013-03-01

    Carbon nanotubes have three key attributes that make them of great interest for novel membrane applications: 1) atomically flat graphite surface allows for ideal fluid slip boundary conditions and extremely fast flow rates 2) the cutting process to open CNTs inherently places functional chemistry at CNT core entrance for chemical selectivity and 3) CNT are electrically conductive allowing for electrochemical reactions and application of electric fields gradients at CNT tips. Pressure driven flux of a variety of solvents (H2O, hexane, decane ethanol, methanol) are 4-5 orders of magnitude higher than conventional Newtonian flow [Nature 2005, 438, 44] due to atomically flat graphite planes inducing nearly ideal slip conditions. However this is eliminated with selective chemical functionalization [ACS Nano 2011 5(5) 3867-3877] needed to give chemical selectivity. These unique properties allow us to explore the hypothesis of producing ``Gatekeeper'' membranes that mimic natural protein channels to actively pump through rapid nm-scale channels. With anionic tip functionality strong electroosmotic flow is induced by unimpeded cation flow with similar 10,000 fold enhancements [Nature Nano 2012 7(2) 133-39]. With enhanced power efficiency, carbon nanotube membranes were employed as the active element of a switchable transdermal drug delivery device that can facilitate more effective treatments of drug abuse and addiction. Recently methods to deposit Pt monolayers on CNT surface have been developed making for highly efficient catalytic platforms. Discussed are other applications of CNT protein channel mimetics, for large area robust engineering platforms, including water purification, flow battery energy storage, and biochemical/biomass separations. DOE EPSCoR (DE-FG02-07ER46375) and DARPA, W911NF-09-1-0267

  8. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex.

    Science.gov (United States)

    Saxena, Krishna; Schieborr, Ulrich; Anderka, Oliver; Duchardt-Ferner, Elke; Elshorst, Bettina; Gande, Santosh Lakshmi; Janzon, Julia; Kudlinzki, Denis; Sreeramulu, Sridhar; Dreyer, Matthias K; Wendt, K Ulrich; Herbert, Corentin; Duchaussoy, Philippe; Bianciotto, Marc; Driguez, Pierre-Alexandre; Lassalle, Gilbert; Savi, Pierre; Mohammadi, Moosa; Bono, Françoise; Schwalbe, Harald

    2010-08-20

    Fibroblast growth factor (FGF) signaling regulates mammalian development and metabolism, and its dysregulation is implicated in many inherited and acquired diseases, including cancer. Heparan sulfate glycosaminoglycans (HSGAGs) are essential for FGF signaling as they promote FGF.FGF receptor (FGFR) binding and dimerization. Using novel organic synthesis protocols to prepare homogeneously sulfated heparin mimetics (HM), including hexasaccharide (HM(6)), octasaccharide (HM(8)), and decasaccharide (HM(10)), we tested the ability of these HM to support FGF1 and FGF2 signaling through FGFR4. Biological assays show that both HM(8) and HM(10) are significantly more potent than HM(6) in promoting FGF2-mediated FGFR4 signaling. In contrast, all three HM have comparable activity in promoting FGF1.FGFR4 signaling. To understand the molecular basis for these differential activities in FGF1/2.FGFR4 signaling, we used NMR spectroscopy, isothermal titration calorimetry, and size-exclusion chromatography to characterize binding interactions of FGF1/2 with the isolated Ig-domain 2 (D2) of FGFR4 in the presence of HM, and binary interactions of FGFs and D2 with HM. Our data confirm the existence of both a secondary FGF1.FGFR4 interaction site and a direct FGFR4.FGFR4 interaction site thus supporting the formation of the symmetric mode of FGF.FGFR dimerization in solution. Moreover, our results show that the observed higher activity of HM(8) relative to HM(6) in stimulating FGF2.FGFR4 signaling correlates with the higher affinity of HM(8) to bind and dimerize FGF2. Notably FGF2.HM(8) exhibits pronounced positive binding cooperativity. Based on our findings we propose a refined symmetric FGF.FGFR dimerization model, which incorporates the differential ability of HM to dimerize FGFs.

  9. Stable Incretin Mimetics Counter Rapid Deterioration of Bone Quality in Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Bouvard, Béatrice; Flatt, Peter R; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2015-12-01

    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.

  10. The effect of superoxide dismutase mimetic and catalase on the quality of postthawed goat semen.

    Science.gov (United States)

    Shafiei, Mojtaba; Forouzanfar, Mohsen; Hosseini, Sayyed Morteza; Esfahani, Mohammad Hossein Nasr

    2015-05-01

    Manganese(III) meso-tetrakis(N-ethylpyridinium-2-yl)porphyrin chloride (MnTE) is a cell-permeable superoxide dismutase mimetic agent which can convert superoxide to hydrogen peroxide (H2O2). Supplementation of MnTE to a commercial semen extender can protect sperm from superoxide but not H2O2. Therefore, we proposed that addition of catalase (0.0, 200, or 400 IU/mL) in combination with MnTE (0.1 μM) may further improve the cryopreservation efficiency of goat semen in commercially optimized freezing media such as Andromed. Therefore, ejaculates were obtained from three adult bucks twice a week during the breeding season and diluted with Andromed supplemented with or without MnTE and catalase and were frozen in liquid nitrogen. Sperm parameters and reactive oxygen species contents were evaluated 2 hours after dilution (before freezing) and after freezing/thawing. The results revealed that all the treatments significantly (P ≤ 0.05) improved sperm motility, viability, and membrane integrity after freezing and reduced reactive oxygen species content compared with the control group, but maximum improvement was obtained in MnTE + 400 IU/mL catalase. In addition, supplementation with these antioxidants significantly (P ≤ 0.05) increases the cleavage rate after IVF. In conclusion, the results of present study suggest that addition of antioxidant MnTE or catalase to commercial optimized media, such as Andromed, improves total motility, membrane integrity, and viability of goat semen samples after thawing. But the degree of improvement for these parameters significantly (P ≤ 0.05) higher when MnTE and catalase were simultaneously added to the cryopreservation media.

  11. An apoA-I mimetic peptide increases LCAT activity in mice through increasing HDL concentration

    Directory of Open Access Journals (Sweden)

    Xun Chen, Charlotte Burton, Xuelei Song, Lesley Mcnamara, Annunziata Langella, Simona Cianetti, Ching H. Chang, Jun Wang

    2009-01-01

    Full Text Available Lecithin cholesterol acyltransferase (LCAT plays a key role in the reverse cholesterol transport (RCT process by converting cholesterol to cholesteryl ester to form mature HDL particles, which in turn deliver cholesterol back to the liver for excretion and catabolism. HDL levels in human plasma are negatively correlated with cardiovascular risk and HDL functions are believed to be more important in atheroprotection. This study investigates whether and how D-4F, an apolipoprotein A-I (apoA-I mimetic peptide, influences LCAT activity in the completion of the RCT process. We demonstrated that the apparent rate constant value of the LCAT enzyme reaction gives a measure of LCAT activity and determined the effects of free metals and a reducing agent on LCAT activity, showing an inhibition hierarchy of Zn2+>Mg2+>Ca2+ and no inhibition with β-mercaptoethanol up to 10 mM. We reconstituted nano-disc particles using apoA-I or D-4F with phospholipids. These particles elicited good activity in vitro in the stimulation of cholesterol efflux from macrophages through the ATP-binding cassette transporter A1 (ABCA1. With these particles we studied the LCAT activity and demonstrated that D-4F did not activate LCAT in vitro. Furthermore, we have done in vivo experiments with apoE-null mice and demonstrated that D-4F (20 mg/kg body weight, once daily subcutaneously increased LCAT activity and HDL level as well as apoA-I concentration at 72 hours post initial dosing. Finally, we have established a correlation between HDL concentration and LCAT activity in the D-4F treated mice.

  12. Mimetic Muscles in a Despotic Macaque (Macaca mulatta) Differ from Those in a Closely Related Tolerant Macaque (M. nigra).

    Science.gov (United States)

    Burrows, Anne M; Waller, Bridget M; Micheletta, Jérôme

    2016-10-01

    Facial displays (or expressions) are a primary means of visual communication among conspecifics in many mammalian orders. Macaques are an ideal model among primates for investigating the co-evolution of facial musculature, facial displays, and social group size/behavior under the umbrella of "ecomorphology". While all macaque species share some social behaviors, dietary, and ecological parameters, they display a range of social dominance styles from despotic to tolerant. A previous study found a larger repertoire of facial displays in tolerant macaque species relative to despotic species. The present study was designed to further explore this finding by comparing the gross morphological features of mimetic muscles between the Sulawesi macaque (Macaca nigra), a tolerant species, and the rhesus macaque (M. mulatta), a despotic species. Five adult M. nigra heads were dissected and mimetic musculature was compared to those from M. mulatta. Results showed that there was general similarity in muscle presence/absence between the species as well as muscle form except for musculature around the external ear. M. mulatta had more musculature around the external ear than M. nigra. In addition, M. nigra lacked a zygomaticus minor while M. mulatta is reported to have one. These morphological differences match behavioral observations documenting a limited range of ear movements used by M. nigra during facial displays. Future studies focusing on a wider phylogenetic range of macaques with varying dominance styles may further elucidate the roles of phylogeny, ecology, and social variables in the evolution of mimetic muscles within Macaca Anat Rec, 299:1317-1324, 2016. © 2016 Wiley Periodicals, Inc.

  13. Inhibition of PI3K/BMX Cell Survival Pathway Sensitizes to BH3 Mimetics in SCLC.

    Science.gov (United States)

    Potter, Danielle S; Galvin, Melanie; Brown, Stewart; Lallo, Alice; Hodgkinson, Cassandra L; Blackhall, Fiona; Morrow, Christopher J; Dive, Caroline

    2016-06-01

    Most small cell lung cancer (SCLC) patients are initially responsive to cytotoxic chemotherapy, but almost all undergo fatal relapse with progressive disease, highlighting an urgent need for improved therapies and better patient outcomes in this disease. The proapoptotic BH3 mimetic ABT-737 that targets BCL-2 family proteins demonstrated good single-agent efficacy in preclinical SCLC models. However, so far clinical trials of the BH3 mimetic Navitoclax have been disappointing. We previously demonstrated that inhibition of a PI3K/BMX cell survival signaling pathway sensitized colorectal cancer cells to ABT-737. Here, we show that SCLC cell lines, which express high levels of BMX, become sensitized to ABT-737 upon inhibition of PI3K in vitro, and this is dependent on inhibition of the PI3K-BMX-AKT/mTOR signaling pathway. Consistent with these cell line data, when combined with Navitoclax, PI3K inhibition suppressed tumor growth in both an established SCLC xenograft model and in a newly established circulating tumor cell-derived explant (CDX) model generated from a blood sample obtained at presentation from a chemorefractory SCLC patient. These data show for the first time that a PI3K/BMX signaling pathway plays a role in SCLC cell survival and that a BH3 mimetic plus PI3K inhibition causes prolonged tumor regression in a chemorefractory SCLC patient-derived model in vivo These data add to a body of evidence that this combination should move toward the clinic. Mol Cancer Ther; 15(6); 1248-60. ©2016 AACR.

  14. Human Melanoma Cells under Endoplasmic Reticulum Stress Are More Susceptible to Apoptosis Induced by the BH3 Mimetic Obatoclax

    Directory of Open Access Journals (Sweden)

    Chen Chen Jiang

    2009-09-01

    Full Text Available Past studies have shown that melanoma cells have largely adapted to endoplasmic reticulum (ER stress, and this is associated with up-regulation of the antiapoptotic proteins Bcl-2 and Mcl-1. In this report, we show that the BH3 mimetic obatoclax potently overcomes resistance of melanoma cells to apoptosis induced by ER stress. Obatoclax, as a single agent at nanomolar concentrations, was relatively ineffective in the induction of apoptosis in melanoma cells, but treatment with obatoclax at these concentrations in combination with the ER stress inducer tunicamycin (TM or thapsigargin markedly enhanced apoptotic cell death. This was primarily because of the inhibition of Mcl-1 by obatoclax, in that cotreatment with TM and another BH3 mimetic ABT737, which does not antagonize Mcl-1, caused only minimal increases in apoptosis. Moreover, overexpression of Mcl-1 inhibited apoptosis to greater degrees than overexpression of Bcl-2. In addition to direct inhibition of Mcl-1 by obatoclax, the combination of obatoclax and TM caused strong up-regulation of the BH3-only protein Noxa. Small RNA interference knockdown of Noxa partially inhibited apoptosis induced by cotreatment with obatoclax and TM. Similarly, knockdown of Bak also blocked induction of apoptosis by the compounds. The Mcl-1/Bak interaction seemed to be disrupted more efficiently in melanoma cells cotreated with obatoclax and TM. Taken together, these results identify obatoclax as a potent agent that overcomes resistance of melanoma cells to ER stress-induced apoptosis and seem to have important implications in the use of BH3 mimetics in the treatment of melanoma.

  15. Polymer Functionalized Nanoparticles in Polymer Nanocomposites

    Science.gov (United States)

    Jayaraman, Arthi

    2013-03-01

    Significant interest has grown around the ability to control spatial arrangement of nanoparticles in a polymer nanocomposite to engineer materials with target properties. Past work has shown that one could achieve controlled assembly of nanoparticles in the polymer matrix by functionalizing nanoparticle surfaces with homopolymers. This talk will focus on our recent work using Polymer Reference Interaction Site Model (PRISM) theory and Monte Carlo simulations and GPU-based molecular dynamics simulations to specifically understand how heterogeneity in the polymer functionalization in the form of a) copolymers with varying monomer chemistry and monomer sequence, and b) polydispersity in homopolymer grafts can tune effective interactions between functionalized nanoparticles, and the assembly of functionalized nanoparticles.

  16. Conducting polymer materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2003-01-01

    Full Text Available Conducting polymers represent a very interesting group of polymer materials Investigation of the synthesis, structure and properties of these materials has been the subject of considerable research efforts in the last twenty years. A short presentating of newer results obtained by investigating of the synthesis, structure and properties of two basic groups of conducting polymers: a conducting polymers the conductivity of which is the result of their molecular structure, and b conducting polymer composites (EPC, is given in this paper. The applications and future development of this group of polymer materials is also discussed.

  17. The CNTF-derived peptide mimetic Cintrofin attenuates spatial-learning deficits in a rat post-status epilepticus model

    DEFF Research Database (Denmark)

    Russmann, Vera; Seeger, Natalie; Zellinger, Christina

    2013-01-01

    Ciliary neurotrophic growth factor is considered a potential therapeutic agent for central nervous system diseases. We report first in vivo data of the ciliary neurotrophic growth factor peptide mimetic Cintrofin in a rat post-status epilepticus model. Cintrofin prevented long-term alterations...... in the number of doublecortin-positive neuronal progenitor cells and attenuated the persistence of basal dendrites. In contrast, Cintrofin did neither affect acute status epilepticus-associated alterations in hippocampal cell proliferation and neurogenesis nor reveal any relevant effect on seizure activity...

  18. [Investigation of neuroprotective activity of apolipoprotein E peptide mimetic Cog1410 in transgenic lines of Drosophila melanogaster].

    Science.gov (United States)

    Latypova, E M; Timoshenko, S I; Kislik, G A; Vitek, M; Shvartsman, A L; Sarantseva, S V

    2014-01-01

    The neuroprotective activity of apolipoprotein E (apoE) peptide mimetic Cog1410, containing amino acid sequence of the receptor-binding domain apoE, has been investigated in transgenic lines of Drosophila melanogaster expressing human APP and beta-secretase. Expression of two transgenes caused neuropathological processes attributed to Alzheimer's disease: neurodegeneration, cognitive abnormality and amyloid deposits formation in brain. It was shown that Cog 1410 reduces neurodegeneration in brain of transgenic flies and improves cognitive functions (odor recognition). These data suggest that Cog1410 is a potential neuroprotector that can be used in AD treatment.

  19. Design and Synthesis of Paromomycin Related Heterocyclic Aminogly coside Mimetics Based on the Mass Spectroscopy RNA Binding Assay

    Institute of Scientific and Technical Information of China (English)

    DING Yi-Li

    2003-01-01

    @@ Aminoglycoside antibiotics are known to interact with a variety of RNA molecules, including ribosomal RNA, and the hammerhead ribozyme. These low molecular weight antibiotics have also been found to block the binding of HIV-1 Rev protein to its viral RNA recognition site, thereby inhibiting the production of the virus. But due to their toxicity, poor bioavailability, cellular penetration, and instability, they can not be used as an inhibitory drug direct ly. Therefore, it is highly desirable to synthesize aminoglycoside mimetics, which may be less toxic and more active than original aminoglycosides.

  20. Study on distribution of terminal branches of the facial nerve in mimetic muscles (orbicularis oculi muscle and orbicularis oris muscle).

    Science.gov (United States)

    Mitsukawa, Nobuyuki; Moriyama, Hiroshi; Shiozawa, Kei; Satoh, Kaneshige

    2014-01-01

    There have been many anatomical reports to date regarding the course of the facial nerve to the mimetic muscles. However, reports are relatively scarce on the detailed distribution of the terminal branches of the facial nerve to the mimetic muscles. In this study, we performed detailed examination of the terminal facial nerve branches to the mimetic muscles, particularly the branches terminating in the orbicularis oculi muscle and orbicularis oris muscle. Examination was performed on 25 Japanese adult autopsy cases, involving 25 hemifaces. The mean age was 87.4 years (range, 60-102 years). There were 12 men and 13 women (12 left hemifaces and 13 right hemifaces). In each case, the facial nerve was exposed through a preauricular skin incision. The main trunk of the facial nerve was dissected from the stylomastoid foramen. A microscope was used to dissect the terminal branches to the periphery and observe them. The course and distribution were examined for all terminal branches of the facial nerve. However, focus was placed on the course and distribution of the zygomatic branch, buccal branch, and mandibular branch to the orbicularis oculi muscle and orbicularis oris muscle. The temporal branch was distributed to the orbicularis oculi muscle in all cases and the marginal mandibular branch was distributed to the orbicularis oris muscle in all cases. The zygomatic branch was distributed to the orbicularis oculi muscle in all cases, but it was also distributed to the orbicularis oris muscle in 10 of 25 cases. The buccal branch was not distributed to the orbicularis oris muscle in 3 of 25 cases, and it was distributed to the orbicularis oculi muscle in 8 cases. There was no significant difference in the variations. The orbicularis oculi muscle and orbicularis oris muscle perform particularly important movements among the facial mimetic muscles. According to textbooks, the temporal branch and zygomatic branch innervate the orbicularis oculi muscle, and the buccal branch

  1. A mimetic finite difference method for two-phase flow models with dynamic capillary pressure and hysteresis

    CERN Document Server

    Zhang, Hong

    2016-01-01

    Saturation overshoot and pressure overshoot are studied by incorporating dynamic capillary pressure, capillary pressure hysteresis and hysteretic dynamic coefficient with a traditional fractional flow equation. Using the method of lines, the discretizations are constructed by applying Castillo-Grone's mimetic operators in the space direction and explicit trapezoidal integrator in the time direction. Convergence tests and conservation property of the schemes are presented. Computed profiles capture both the saturation overshoot and pressure overshoot phenomena. Comparisons between numerical results and experiments illustrate the effectiveness and different features of the models.

  2. Application of elastin-mimetic recombinant proteins in chemotherapeutics delivery, cellular engineering, and regenerative medicine.

    Science.gov (United States)

    Jeon, Won Bae

    2013-01-01

    With the remarkable increase in the fields of biomedical engineering and regenerative medicine, biomaterial design has become an indispensable approach for developing the biocompatible carriers for drug or gene cargo and extracellular matrix (ECM) for cell survival, proliferation and differentiation. Native ECM materials derived from animal tissues were believed to be the best choices for tissue engineering. However, possible pathogen contamination by cellular remnants from foreign animal tissues is an unavoidable issue that has limited the use of native ECM for human benefit. Some synthetic polymers have been used as alternative materials for manufacturing native ECM because of the biodegradability and ease of large-scale production of the polymers. However, the inherent polydispersity of the polymers causes batch-to-batch variation in polymer composition and possible cytotoxic interactions between chemical matrices and neighboring cells or tissues have not yet been fully resolved. Elastin-like proteins (ELPs) are genetically engineered biopolymers modeled after the naturally occurring tropoelastin and have emerged as promising materials for biomedical applications because they are biocompatible, non-immunogenic and biodegradable, and their composition, mechanical stiffness and even fate within the cell can be controlled at the gene level. This commentary highlights the recent progresses in the development of the ELP-based recombinant proteins that are being increasingly used for the delivery of chemotherapeutics and to provide a cell-friendly ECM environment.

  3. Polymer composites containing nanotubes

    Science.gov (United States)

    Bley, Richard A. (Inventor)

    2008-01-01

    The present invention relates to polymer composite materials containing carbon nanotubes, particularly to those containing singled-walled nanotubes. The invention provides a polymer composite comprising one or more base polymers, one or more functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers and carbon nanotubes. The invention also relates to functionalized m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers, particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having side chain functionalization, and more particularly to m-phenylenevinylene-2,5-disubstituted-p-phenylenevinylene polymers having olefin side chains and alkyl epoxy side chains. The invention further relates to methods of making polymer composites comprising carbon nanotubes.

  4. Polymer Fluid Dynamics.

    Science.gov (United States)

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  5. Dendritic polyurea polymers.

    Science.gov (United States)

    Tuerp, David; Bruchmann, Bernd

    2015-01-01

    Dendritic polymers, subsuming dendrimers as well as hyperbranched or highly branched polymers are well established in the field of polymer chemistry. This review article focuses on urea based dendritic polymers and summarizes their synthetic routes through both isocyanate and isocyanate-free processes. Furthermore, this article highlights applications where dendritic polyureas show their specific chemical and physical potential. For these purposes scientific publications as well as patent literature are investigated to generate a comprehensive overview on this topic.

  6. Engineered Protein Polymers

    Science.gov (United States)

    2010-05-31

    of each pure polymer, we plan to combine the various polymer solutions in different ratios to tune the composition and physico-chemical properties...protein materials as vehicles for storage and delivery of small molecules. Each protein polymer under concentrations for particle formation ( vida

  7. Comparison of CR36, a new heparan mimetic, and pentosan polysulfate in the treatment of prion diseases.

    Science.gov (United States)

    Larramendy-Gozalo, Claire; Barret, Agnès; Daudigeos, Estelle; Mathieu, Emilie; Antonangeli, Lucie; Riffet, Cécile; Petit, Emmanuel; Papy-Garcia, Dulce; Barritault, Denis; Brown, Paul; Deslys, Jean-Philippe

    2007-03-01

    Sulfated polyanions, including pentosan polysulfate (PPS) and heparan mimetics, number among the most effective drugs that have been used in experimental models of prion disease and are presumed to act in competition with endogenous heparan sulfate proteoglycans as co-receptors for prion protein (PrP) on the cell surface. PPS has been shown to prolong the survival of animals after intracerebral perfusion and is in limited use for the experimental treatment of human transmissible spongiform encephalopathies (TSEs). Here, PPS is compared with CR36, a new heparan mimetic. Ex vivo, CR36 was more efficient than PPS in reducing PrPres in scrapie-infected cell cultures and showed long-lasting activity. In vivo, CR36 showed none of the acute toxicity observed with PPS and reduced PrPres accumulation in spleens, but had only a marginal effect on the survival time of mice infected with bovine spongiform encephalopathy. In contrast, mice treated with PPS that survived the initial toxic mortality had no detectable PrPres in the spleens and lived 185 days longer than controls (+55%). These results show, once again, that anti-TSE drugs cannot be encouraged for human therapeutic trials solely on the basis of in vitro or ex vivo observations, but must first be subjected to in vivo animal studies.

  8. Potential of Peptides as Inhibitors and Mimotopes: Selection of Carbohydrate-Mimetic Peptides from Phage Display Libraries

    Directory of Open Access Journals (Sweden)

    Teruhiko Matsubara

    2012-01-01

    Full Text Available Glycoconjugates play various roles in biological processes. In particular, oligosaccharides on the surface of animal cells are involved in virus infection and cell-cell communication. Inhibitors of carbohydrate-protein interactions are potential antiviral drugs. Several anti-influenza drugs such as oseltamivir and zanamivir are derivatives of sialic acid, which inhibits neuraminidase. However, it is very difficult to prepare a diverse range of sugar derivatives by chemical synthesis or by the isolation of natural products. In addition, the pathogenic capsular polysaccharides of bacteria are carbohydrate antigens, for which a safe and efficacious method of vaccination is required. Phage-display technology has been improved to enable the identification of peptides that bind to carbohydrate-binding proteins, such as lectins and antibodies, from a large repertoire of peptide sequences. These peptides are known as “carbohydrate-mimetic peptides (CMPs” because they mimic carbohydrate structures. Compared to carbohydrate derivatives, it is easy to prepare mono- and multivalent peptides and then to modify them to create various derivatives. Such mimetic peptides are available as peptide inhibitors of carbohydrate-protein interactions and peptide mimotopes that are conjugated with adjuvant for vaccination.

  9. Influence of Block Copolymerization on the Antifreeze Protein Mimetic Ice Recrystallization Inhibition Activity of Poly(vinyl alcohol).

    Science.gov (United States)

    Congdon, Thomas R; Notman, Rebecca; Gibson, Matthew I

    2016-09-12

    Antifreeze (glyco) proteins are produced by many cold-acclimatized species to enable them to survive subzero temperatures. These proteins have multiple macroscopic effects on ice crystal growth which makes them appealing for low-temperature applications-from cellular cryopreservation to food storage. Poly(vinyl alcohol) has remarkable ice recrystallization inhibition activity, but its mode of action is uncertain as is the extent at which it can be incorporated into other high-order structures. Here the synthesis and characterization of well-defined block copolymers containing poly(vinyl alcohol) and poly(vinylpyrrolidone) by RAFT/MADIX polymerization is reported, as new antifreeze protein mimetics. The effect of adding a large second hydrophilic block is studied across a range of compositions, and it is found to be a passive component in ice recrystallization inhibition assays, enabling retention of all activity. In the extreme case, a block copolymer with only 10% poly(vinyl alcohol) was found to retain all activity, where statistical copolymers of PVA lose all activity with very minor changes to composition. These findings present a new method to increase the complexity of antifreeze protein mimetic materials, while retaining activity, and also to help understand the underlying mechanisms of action.

  10. Encoding physico-chemical cues in synthetic hydrogels by triple helix assembly of collagen mimetic peptides

    Science.gov (United States)

    Stahl, Patrick

    The ECM is a complex natural system evolved to promote proliferation and differentiation of cells during tissue development. In order to create synthetic biomaterials for studying cell-scaffold interactions and ultimately for engineering tissues, scientists strive to recapitulate many characteristics of ECM by developing hydrogels that contain mechanical cues and biochemical signals such as adhesion moieties and cell growth factors. While synthetic hydrogels bypass limitations of naturally-derived materials (e.g. transfer of pathogens), nature provides inspiration to enhance the functionality of synthetic hydrogels through biomimetic approaches. The collagen triple helix is the basis for the supramolecular structure of collagen in the ECM, and its adaptation in collagen mimetic peptides (CMPs) has provided hybridization mechanisms that can be employed in the formation and functionalization of synthetic hydrogels. The aim of this dissertation is to develop novel poly(ethylene glycol) (PEG)-based hydrogels that employ CMP triple helix assembly as a non-covalent yet target-specific tool to encode physical and chemical cues into the hydrogel with spatial control. We demonstrate that multi-arm PEG functionalized with CMPs form hydrogels supported by physical crosslinks mediated by CMP triple helix. Particle tracking microrheology shows that these physical crosslinks are sensitive to temperature as well as addition of exogenous CMPs that can disrupt crosslinks by competing for triple helix formation. This physical crosslink disruption enables the modulation of bulk hydrogel elasticity and the introduction of local stiffness gradients in PEG-CMP hydrogels. We also present photopolymerized PEG diacrylate (PEGDA) hydrogels displaying CMPs that can be further conjugated to CMPs with bioactive moieties via triple helix hybridization. Encoding these hydrogels with cell-adhesive CMPs induces cell spreading and proliferation. We further demonstrate generation of gradients and

  11. Bio-Mimetics of Disaster Anticipation—Learning Experience and Key-Challenges

    Directory of Open Access Journals (Sweden)

    Helmut Tributsch

    2013-03-01

    Full Text Available Anomalies in animal behavior and meteorological phenomena before major earthquakes have been reported throughout history. Bio-mimetics or bionics aims at learning disaster anticipation from animals. Since modern science is reluctant to address this problem an effort has been made to track down the knowledge available to ancient natural philosophers. Starting with an archaeologically documented human sacrifice around 1700 B.C. during the Minoan civilization immediately before a large earthquake, which killed the participants, earthquake prediction knowledge throughout antiquity is evaluated. Major practical experience with this phenomenon has been gained from a Chinese earthquake prediction initiative nearly half a century ago. Some quakes, like that of Haicheng, were recognized in advance. However, the destructive Tangshan earthquake was not predicted, which was interpreted as an inherent failure of prediction based on animal phenomena. This is contradicted on the basis of reliable Chinese documentation provided by the responsible earthquake study commission. The Tangshan earthquake was preceded by more than 2,000 reported animal anomalies, some of which were of very dramatic nature. They are discussed here. Any physical phenomenon, which may cause animal unrest, must involve energy turnover before the main earthquake event. The final product, however, of any energy turnover is heat. Satellite based infrared measurements have indeed identified significant thermal anomalies before major earthquakes. One of these cases, occurring during the 2001 Bhuj earthquake in Gujarat, India, is analyzed together with parallel animal anomalies observed in the Gir national park. It is suggested that the time window is identical and that both phenomena have the same geophysical origin. It therefore remains to be demonstrated that energy can be released locally before major earthquake events. It is shown that by considering appropriate geophysical feedback

  12. Mechanisms of Neuroblastoma Cell Growth Inhibition by CARP-1 Functional Mimetics

    Science.gov (United States)

    Muthu, Magesh; Cheriyan, Vino T.; Munie, Sara; Levi, Edi; Frank, John; Ashour, Abdelkader E.; Singh, Mandip; Rishi, Arun K.

    2014-01-01

    Neuroblastomas (NBs) are a clinically heterogeneous group of extra cranial pediatric tumors. Patients with high-risk, metastatic NBs have a long-term survival rate of below 40%, and are often resistant to current therapeutic modalities. Due to toxic side effects associated with radiation and chemotherapies, development of new agents is warranted to overcome resistance and effectively treat this disease in clinic. CARP-1 functional mimetics (CFMs) are an emerging class of small molecule compounds that inhibit growth of diverse cancer cell types. Here we investigated NB inhibitory potential of CFMs and the molecular mechanisms involved. CFM-1, -4, and -5 inhibited NB cell growth, in vitro, independent of their p53 and MYCN status. CFM-4 and -5 induced apoptosis in NB cells in part by activating pro-apoptotic stress-activated kinases (SAPKs) p38 and JNK, stimulating CARP-1 expression and cleavage of PARP1, while promoting loss of the oncogenes C and N-myc as well as mitotic cyclin B1. Treatments of NB cells with CFM-4 or -5 also resulted in loss of Inhibitory κB (IκB) α and β proteins. Micro-RNA profiling revealed upregulation of XIAP-targeting miR513a-3p in CFM-4-treated NB, mesothelioma, and breast cancer cells. Moreover, exposure of NB and breast cancer cells to CFM-4 or -5 resulted in diminished expression of anti-apoptotic XIAP1, cIAP1, and Survivin proteins. Expression of anti-miR513a-5p or miR513a-5p mimic, however, interfered with or enhanced, respectively, the breast cancer cell growth inhibition by CFM-4. CFMs also impacted biological properties of the NB cells by blocking their abilities to migrate, form colonies in suspension, and invade through the matrix-coated membranes. Our studies indicate anti-NB properties of CFM-4 and 5, and suggest that these CFMs and/or their future analogs have potential as anti-NB agents. PMID:25033461

  13. Calorie restriction mimetics: can you have your cake and eat it, too?

    Science.gov (United States)

    Ingram, Donald K; Roth, George S

    2015-03-01

    Strong consensus exists regarding the most robust environmental intervention for attenuating aging processes and increasing healthspan and lifespan: calorie restriction (CR). Over several decades, this paradigm has been replicated in numerous nonhuman models, and has been expanded over the last decade to formal, controlled human studies of CR. Given that long-term CR can create heavy challenges to compliance in human diets, the concept of a calorie restriction mimetic (CRM) has emerged as an active research area within gerontology. In past presentations on this subject, we have proposed that a CRM is a compound that mimics metabolic, hormonal, and physiological effects of CR, activates stress response pathways observed in CR and enhances stress protection, produces CR-like effects on longevity, reduces age-related disease, and maintains more youthful function, all without significantly reducing food intake, at least initially. Over 16 years ago, we proposed that glycolytic inhibition could be an effective strategy for developing CRM. The main argument here is that inhibiting energy utilization as far upstream as possible provides the highest chance of generating a broad spectrum of CR-like effects when compared to targeting a singular molecular target downstream. As an initial candidate CRM, 2-deoxyglucose, a known anti-glycolytic, was shown to produce a remarkable phenotype of CR, but further investigation found that this compound produced cardiotoxicity in rats at the doses we had been using. There remains interest in 2DG as a CRM but at lower doses. Beyond the proposal of 2DG as a candidate CRM, the field has grown steadily with many investigators proposing other strategies, including novel anti-glycolytics. Within the realm of upstream targeting at the level of the digestive system, research has included bariatric surgery, inhibitors of fat digestion/absorption, and inhibitors of carbohydrate digestion. Research focused on downstream sites has included insulin

  14. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity.

    Directory of Open Access Journals (Sweden)

    Osamu Kakinohana

    Full Text Available BACKGROUND: Loss of GABA-mediated pre-synaptic inhibition after spinal injury plays a key role in the progressive increase in spinal reflexes and the appearance of spasticity. Clinical studies show that the use of baclofen (GABA(B receptor agonist, while effective in modulating spasticity is associated with major side effects such as general sedation and progressive tolerance development. The goal of the present study was to assess if a combined therapy composed of spinal segment-specific upregulation of GAD65 (glutamate decarboxylase gene once combined with systemic treatment with tiagabine (GABA uptake inhibitor will lead to an antispasticity effect and whether such an effect will only be present in GAD65 gene over-expressing spinal segments. METHODS/PRINCIPAL FINDINGS: Adult Sprague-Dawley (SD rats were exposed to transient spinal ischemia (10 min to induce muscle spasticity. Animals then received lumbar injection of HIV1-CMV-GAD65 lentivirus (LVs targeting ventral α-motoneuronal pools. At 2-3 weeks after lentivirus delivery animals were treated systemically with tiagabine (4, 10, 20 or 40 mg/kg or vehicle and the degree of spasticity response measured. In a separate experiment the expression of GAD65 gene after spinal parenchymal delivery of GAD65-lentivirus in naive minipigs was studied. Spastic SD rats receiving spinal injections of the GAD65 gene and treated with systemic tiagabine showed potent and tiagabine-dose-dependent alleviation of spasticity. Neither treatment alone (i.e., GAD65-LVs injection only or tiagabine treatment only had any significant antispasticity effect nor had any detectable side effect. Measured antispasticity effect correlated with increase in spinal parenchymal GABA synthesis and was restricted to spinal segments overexpressing GAD65 gene. CONCLUSIONS/SIGNIFICANCE: These data show that treatment with orally bioavailable GABA-mimetic drugs if combined with spinal-segment-specific GAD65 gene overexpression can

  15. An updated review on cancer risk associated with incretin mimetics and enhancers.

    Science.gov (United States)

    Tseng, Chin-Hsiao; Lee, Kuo-Yang; Tseng, Farn-Hsuan

    2015-01-01

    Incretin-based therapies, including the use of incretin mimetics of glucagon-like peptide-1 receptor (GLP-1R) agonists and incretin enhancers of dipeptidyl-peptidase 4 (DPP-4) inhibitors, are widely used by clinicians for glucose lowering in patients with type 2 diabetes mellitus. These agents have benefits of a lower risk of hypoglycemia, being neutral for body weight for DPP-4 inhibitors and having a potential for weight reduction with GLP-1R agonists. They may also have a neutral or beneficial cardiovascular effect. Despite these benefits, an increased risk of cancer (especially pancreatic cancer and thyroid cancer) associated with incretin-based therapies has been reported. In this article, we reviewed related literature of experimental animal and observational human studies, clinical trials, and meta-analyses published until December 15, 2014. Current studies suggested a probable role of GLP-1R activation on the development of pancreatic cancer and thyroid cancer in rodents, but such an effect in humans is not remarkable due to the lower or lack of expression of GLP-1R on human pancreatic ductal cells and thyroid tissues. Findings in human studies are controversial and inconclusive. In the analyses of the US Food and Drug Administration adverse events reporting system, a significantly higher risk of pancreatic cancer was observed for GLP-1R agonists and DPP-4 inhibitors, but a significantly higher risk of thyroid cancer was only observed for GLP-1R agonists. Such a higher risk of pancreatic cancer or thyroid cancer could not be similarly demonstrated in other human observational studies or analyses of data from clinical trials. With regards to cancers other than pancreatic cancer and thyroid cancer, available studies supported a neutral association in humans. Some preliminary studies even suggested a potentially beneficial effect on the development of other cancers with the use of incretins. Based on current evidence, continuous monitoring of the cancer issues

  16. Fire-safe polymers and polymer composites

    Science.gov (United States)

    Zhang, Huiqing

    The intrinsic relationships between polymer structure, composition and fire behavior have been explored to develop new fire-safe polymeric materials. Different experimental techniques, especially three milligram-scale methods---pyrolysis-combustion flow calorimetry (PCFC), simultaneous thermal analysis (STA) and pyrolysis GC/MS---have been combined to fully characterize the thermal decomposition and flammability of polymers and polymer composites. Thermal stability, mass loss rate, char yield and properties of decomposition volatiles were found to be the most important parameters in determining polymer flammability. Most polymers decompose by either an unzipping or a random chain scission mechanism with an endothermic decomposition of 100--900 J/g. Aromatic or heteroaromatic rings, conjugated double or triple bonds and heteroatoms such as halogens, N, O, S, P and Si are the basic structural units for fire-resistant polymers. The flammability of polymers can also be successfully estimated by combining pyrolysis GC/MS results or chemical structures with TGA results. The thermal decomposition and flammability of two groups of inherently fire-resistant polymers---poly(hydroxyamide) (PHA) and its derivatives, and bisphenol C (BPC II) polyarylates---have been systematically studied. PHA and most of its derivatives have extremely low heat release rates and very high char yields upon combustion. PHA and its halogen derivatives can completely cyclize into quasi-polybenzoxazole (PBO) structures at low temperatures. However, the methoxy and phosphate derivatives show a very different behavior during decomposition and combustion. Molecular modeling shows that the formation of an enol intermediate is the rate-determining step in the thermal cyclization of PHA. BPC II-polyarylate is another extremely flame-resistant polymer. It can be used as an efficient flame-retardant agent in copolymers and blends. From PCFC results, the total heat of combustion of these copolymers or blends

  17. Nanoporous polymer electrolyte

    Science.gov (United States)

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  18. Polymer friction Molecular Dynamics

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N.; Persson, Bo N. J.

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force....

  19. Effect of fat level on the perception of five flavor chemicals in ice cream with or without fat mimetics by using a descriptive test.

    Science.gov (United States)

    Liou, B K; Grün, I U

    2007-10-01

    Fat mimetics are commonly used in the manufacture of low-fat and fat-free ice creams. However, the use of fat mimetics affects flavor and texture characteristics of ice cream, which results in decreased overall acceptability by consumers. The initial objective of this study was to investigate the release behavior of 5 strawberry flavor compounds in ice creams with Simplesse((R)), Litesse((R)), and Litesse((R))/Simplesse((R)) mixes using descriptive analysis. Fat mimetics and flavor formulation significantly influenced the perception of Furaneoltrade mark (cooked sugar flavor), alpha-ionone (violet flavor), and gamma-undecalactone (peach flavor), but there was no interaction between ice cream type and flavor formulation for the 3 flavors. Furaneol and ethyl-3-methyl-3-phenylglycidate (candy flavor) were perceived more strongly in full-fat ice cream, while cis-3-hexen-1-ol (grassy flavor), alpha-ionone, and gamma-undecalactone were perceived more strongly in low-fat ice cream. Ice creams with Simplesse and full-fat ice cream had similar sensory characteristics, while ice creams with Litesse were similar to low-fat ice creams in flavor characteristics, and ice creams with Litesse/Simplesse mixes were closer in flavor profile to low-fat ice cream but had similar texture properties to those of full-fat ice cream. Simplesse was found to be a better fat mimetic for duplicating the flavor profiles and mouthfeel of full-fat ice cream.

  20. Smac mimetic induces cell death in a large proportion of primary acute myeloid leukemia samples, which correlates with defined molecular markers

    Science.gov (United States)

    Lueck, Sonja C.; Russ, Annika C.; Botzenhardt, Ursula; Schlenk, Richard F.; Zobel, Kerry; Deshayes, Kurt; Vucic, Domagoj; Döhner, Hartmut; Döhner, Konstanze

    2016-01-01

    Apoptosis is deregulated in most, if not all, cancers, including hematological malignancies. Smac mimetics that antagonize Inhibitor of Apoptosis (IAP) proteins have so far largely been investigated in acute myeloid leukemia (AML) cell lines; however, little is yet known on the therapeutic potential of Smac mimetics in primary AML samples. In this study, we therefore investigated the antileukemic activity of the Smac mimetic BV6 in diagnostic samples of 67 adult AML patients and correlated the response to clinical, cytogenetic and molecular markers and gene expression profiles. Treatment with cytarabine (ara-C) was used as a standard chemotherapeutic agent. Interestingly, about half (51%) of primary AML samples are sensitive to BV6 and 21% intermediate responsive, while 28% are resistant. Notably, 69% of ara-C-resistant samples show a good to fair response to BV6. Furthermore, combination treatment with ara-C and BV6 exerts additive effects in most samples. Whole-genome gene expression profiling identifies cell death, TNFR1 and NF-κB signaling among the top pathways that are activated by BV6 in BV6-sensitive, but not in BV6-resistant cases. Furthermore, sensitivity of primary AML blasts to BV6 correlates with significantly elevated expression levels of TNF and lower levels of XIAP in diagnostic samples, as well as with NPM1 mutation. In a large set of primary AML samples, these data provide novel insights into factors regulating Smac mimetic response in AML and have important implications for the development of Smac mimetic-based therapies and related diagnostics in AML. PMID:27385100

  1. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    D Richter; R Biehl; M Monkenbush; B Hoffmann; R Merkel

    2008-10-01

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement. In the second part we relate to some new developments concerning the measurement of large-scale internal dynamics of proteins by neutron spin echo.

  2. Star-Branched Polymers (Star Polymers)

    KAUST Repository

    Hirao, Akira

    2015-09-01

    The synthesis of well-defined regular and asymmetric mixed arm (hereinafter miktoarm) star-branched polymers by the living anionic polymerization is reviewed in this chapter. In particular, much attention is being devoted to the synthetic development of miktoarm star polymers since 2000. At the present time, the almost all types of multiarmed and multicomponent miktoarm star polymers have become feasible by using recently developed iterative strategy. For example, the following well-defined stars have been successfully synthesized: 3-arm ABC, 4-arm ABCD, 5-arm ABCDE, 6-arm ABCDEF, 7-arm ABCDEFG, 6-arm ABC, 9-arm ABC, 12-arm ABC, 13-arm ABCD, 9-arm AB, 17-arm AB, 33-arm AB, 7-arm ABC, 15-arm ABCD, and 31-arm ABCDE miktoarm star polymers, most of which are quite new and difficult to synthesize by the end of the 1990s. Several new specialty functional star polymers composed of vinyl polymer segments and rigid rodlike poly(acetylene) arms, helical polypeptide, or helical poly(hexyl isocyanate) arms are introduced.

  3. CO2 -Responsive polymers.

    Science.gov (United States)

    Lin, Shaojian; Theato, Patrick

    2013-07-25

    This Review focuses on the recent progress in the area of CO2 -responsive polymers and provides detailed descriptions of these existing examples. CO2 -responsive polymers can be categorized into three types based on their CO2 -responsive groups: amidine, amine, and carboxyl groups. Compared with traditional temperature, pH, or light stimuli-responsive polymers, CO2 -responsive polymers provide the advantage to use CO2 as a "green" trigger as well as to capture CO2 directly from air. In addition, the current challenges of CO2 -responsive polymers are discussed and the different solution methods are compared. Noteworthy, CO2 -responsive polymers are considered to have a prosperous future in various scientific areas.

  4. The 'Ethereal' nature of TLR4 agonism and antagonism in the AGP class of lipid A mimetics.

    Science.gov (United States)

    Bazin, Hélène G; Murray, Tim J; Bowen, William S; Mozaffarian, Afsaneh; Fling, Steven P; Bess, Laura S; Livesay, Mark T; Arnold, Jeffrey S; Johnson, Craig L; Ryter, Kendal T; Cluff, Christopher W; Evans, Jay T; Johnson, David A

    2008-10-15

    To overcome the chemical and metabolic instability of the secondary fatty acyl residues in the AGP class of lipid A mimetics, the secondary ether lipid analogs of the potent TLR4 agonist CRX-527 (2) and TLR4 antagonist CRX-526 (3) were synthesized and evaluated along with their ester counterparts for agonist/antagonist activity in both in vitro and in vivo models. Like CRX-527, the secondary ether lipid 4 showed potent agonist activity in both murine and human models. Ether lipid 5, on the other hand, showed potent TLR4 antagonist activity similar to CRX-526 in human cell assays, but did not display any antagonist activity in murine models and, in fact, was weakly agonistic. Glycolipids 2, 4, and 5 were synthesized via a new highly convergent method utilizing a common advanced intermediate strategy. A new method for preparing (R)-3-alkyloxytetradecanoic acids, a key component of ether lipids 4 and 5, is also described.

  5. Detection of Hg2+ based on the selective inhibition of peroxidase mimetic activity of BSA-Au clusters.

    Science.gov (United States)

    Zhu, Rui; Zhou, Yan; Wang, Xi-Liang; Liang, Li-Ping; Long, Yi-Juan; Wang, Qin-Long; Zhang, Hai-Jie; Huang, Xiao-Xiao; Zheng, Hu-Zhi

    2013-12-15

    It was found that Hg(2+) can inhibit the peroxidase mimetic activity of bovine serum albumin (BSA) protected Au clusters (BSA-Au) due to the specific interaction between Hg(2+) and Au(+) existed onto the surface of BSA-Au clusters. By coupling with 3, 3', 5, 5'-tetramethylbenzidine (TMB)-H2O2 chromogenic reaction, a novel method for Hg(2+) detection was developed based on the inhibiting effect of Hg(2+) on BSA-Au clusters peroxidase-like activity. This method exhibited high selectivity and sensitivity. As low as 3 nM (0.6 ppb, 3σ) Hg(2+) could be detected with a linear range from 10 nM (2 ppb) to 10 µM (2 ppm) and this method was successfully applied for the determination of total mercury content in skin lightening products.

  6. TREN (Tris(2-aminoethyl)amine): an effective scaffold for the assembly of triple helical collagen mimetic structures.

    Science.gov (United States)

    Kwak, Juliann; De Capua, Antonia; Locardi, Elsa; Goodman, Murray

    2002-11-27

    A new scaffold, TREN-(suc-OH)(3) where TREN is tris(2-aminoethyl)amine and suc is the succinic acid spacers, was incorporated to assemble triple helices composed of Gly-Nleu-Pro sequences (Nleu denotes N-isobutylglycine). Extensive biophysical studies which include denaturation studies, CD and NMR spectroscopy, and molecular modeling demonstrated that TREN-[suc-(Gly-Nleu-Pro)(n)-NH(2)](3) (n = 5 and 6) form stable triple helical structures in solution. A comparative analysis of TREN-assembled and KTA-assembled collagen mimetics (KTA denotes Kemp triacid, 1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid) indicates that the flexibility of the TREN scaffold is superior to the KTA scaffold in inducing triple helicity. This effect most likely arises from the flexibility of the TREN scaffold which allows the three peptide chains to adjust their register for a tighter triple helical packing.

  7. TREATMENT OF DIABETES MELLITUS IN A GOLDEN LION TAMARIN (LEONTOPITHECUS ROSALIA) WITH THE GLUCAGON-LIKE PEPTIDE-1 MIMETIC EXENATIDE.

    Science.gov (United States)

    Johnson, James G; Langan, Jennifer N; Gilor, Chen

    2016-09-01

    An 8-yr-old male golden lion tamarin ( Leontopithecus rosalia ) was diagnosed with diabetes mellitus based on hyperglycemia and persistent glycosuria. Initial treatment consisted of the oral antihyperglycemic medications glipizide and metformin that resulted in decreased blood glucose concentrations; however, marked glycosuria persisted. Insufficient improvement on oral antihyperglycemic therapy and poor feasibility of daily subcutaneous insulin therapy led to an investigation into an alternative therapy with extended-release exenatide, a glucagon-like peptide-1 (GLP-1) mimetic, at a dosage of 0.13 mg/kg subcutaneously once per month. Following treatment with exenatide, the persistent glycosuria resolved, the animal maintained normal blood glucose concentrations, and had lower serum fructosamine concentrations compared to pretreatment levels. Based on these findings, extended-release exenatide could be considered as a therapeutic option in nonhuman primates with diabetes mellitus that do not respond to oral antihyperglycemics and in which daily subcutaneous insulin is not feasible.

  8. Plasminogen activator inhibitor-1 fused with erythropoietin (EPO) mimetic peptide (EMP) enhances the EPO activity of EMP.

    Science.gov (United States)

    Kuai, L; Wu, C; Qiu, Q; Zhang, J; Zhou, A; Wang, S; Zhang, H; Song, Q; Liao, S; Han, Y; Liu, J; Ma, Z

    2000-08-01

    Erythropoietin (EPO) mimetic peptide (EMP) encoding sequence was inserted into the gene of plasminogen activator inhibitor-1 (PAI-1) between Ala348 and Pro349 (P2'-P3'), generating a novel gene, PAI-1/EMP (PMP). This was cloned into pET32a expression vector, fused with TrxA peptide in the vector, and a 63-kDa protein was expressed in inclusion bodies with an expression level >50%. The TrxA/PMP protein was purified by Ni-NTA-agarose metal-ligand affinity chromatography to a purity >90%, showing a single, silver-stained band on SDS-PAGE. Using a reticulocyte counting assay, the EPO activity of PMP was determined to be 5,000 IU/mg, 2,500-fold that of EMP.

  9. Synthesis of multivalent carbohydrate mimetics with aminopolyol end groups and their evaluation as L-selectin inhibitors

    Directory of Open Access Journals (Sweden)

    Joana Salta

    2015-05-01

    Full Text Available In this article a series of divalent and trivalent carbohydrate mimetics on the basis of an enantiopure aminopyran and of serinol is described. These aminopolyols are connected by amide bonds to carboxylic acid derived spacer units either by Schotten–Baumann acylation or by coupling employing HATU as reagent. The O-sulfation employing the SO3·DMF complex was optimized. It was crucial to follow this process by 700 MHz 1H NMR spectroscopy to ensure full conversion and to use a refined neutralization and purification protocol. Many of the compounds could not be tested as L-selectin inhibitor by SPR due to their insolubility in water, nevertheless, a divalent and a trivalent amide showed surprisingly good activities with IC50 values in the low micromolar range.

  10. Triclosan antimicrobial polymers

    OpenAIRE

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are ...

  11. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  12. Thermally conductive polymers

    Science.gov (United States)

    Byrd, N. R.; Jenkins, R. K.; Lister, J. L. (Inventor)

    1971-01-01

    A thermally conductive polymer is provided having physical and chemical properties suited to use as a medium for potting electrical components. The polymer is prepared from hydroquinone, phenol, and formaldehyde, by conventional procedures employed for the preparation of phenol-formaldehyde resins. While the proportions of the monomers can be varied, a preferred polymer is formed from the monomers in a 1:1:2.4 molar or ratio of hydroquinone:phenol:formaldehyde.

  13. 磷脂形状对生物膜自组织结构的影响%Influence of Lipids′Shape on the Self-organizing Structures of Biomembrane

    Institute of Scientific and Technical Information of China (English)

    周玲

    2013-01-01

    Self-consistent field theory is used to investigate the influence of lipids′shape on the self-organizing struc-tures of two-transmembrane protein-containing lipid biomembrane. Each lipid is composed of a hydrophobic tail and a hydrophilic head, which can be regard as a Gaussian chain grafted by a hydrophilic head. By minimizing the free energy of the system, the equilibrious configuration of the system can be obtained. The results show well-known nor-mal structures when the lipid′s shape is cylindrical with a symmetrical head and tail, and hole structures when lipid′s shape is conical with a relatively large head. With the increasing distance between two transmembrane proteins, the biomembrane forms two pores, three pores and four pores in turn. With varying hydrophobic degree of the transmem-brane proteins and the volume ratio of the lipid′s head and tail, the phase diagram of the structures is constructed. The findings have an important significance in understanding the interactions between proteins and lipid membranes, mem-brane fusion and fission and the formation of lipid rafts.%  采用聚合物自洽场理论研究了构成生物膜的磷脂分子的形状对含有2个跨膜蛋白的生物膜自组织结构的影响。每个磷脂分子由一条疏水的尾巴和亲水的头构成,可以看作一根接有亲水头的高分子链。由系统自由能求极小,可以得到系统的平衡态构型。结果发现,当磷脂分子具有头尾对称的柱状形状时,生物膜形成的是人们熟知的通常形态;而当磷脂分子头部比较大、整体形成锥形结构时,生物膜可以形成孔洞结构。随着2个跨膜蛋白之间距离的增加,生物膜会依次形成两孔洞、三孔洞和四孔洞。通过改变跨膜蛋白不同的疏水程度和磷脂分子头尾的体积比,构造出了生物膜结构形态的相图。这一发现对于理解蛋白质-磷脂膜的相互作用、生物膜的融合分裂以及脂质筏

  14. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules.

    Science.gov (United States)

    Wang, Ying; Zhu, Yingjing; Binyam, Atsebeha; Liu, Misha; Wu, Yinan; Li, Fengting

    2016-12-15

    A label-free sensing strategy based on the enzyme-mimicking activity of MOF was demonstrated for colorimetric detection of biomolecules. Firstly obvious blue color was observed due to the high efficiency of peroxidase-like catalytic activity of Fe-MIL-88A (an ion-based MOF material) toward 3,3',5,5'-tetramethylbenzidine (TMB). Then in the presence of target biomolecule and corresponding aptamer, the mimetic activity of Fe-MIL-88A can be strongly inhibited and used directly to realize the colorimetric detection. On the basis of the interesting findings, we designed a straightforward, label-free and sensitive colorimetric method for biomolecule detection by using the enzyme mimetic property of MOF coupling with molecular recognition element. Compared with the existed publications, our work breaks the routine way by setting up an inorganic-organic MOF-aptamer hybrid platform for colorimetric determination of biomolecules, expanding the targets scope from H2O2 or glucose to biomolecules. As a proof of concept, thrombin and thrombin aptamer was used as a model analyte. The limit of detection of 10nM can be achieved with naked eyes and ultrahigh selectivity of thrombin toward numerous interfering substances with 10-fold concentration was demonstrated significantly. Of note, the method was further applied for the detection of thrombin in human serum samples, showing the results in agreement with those values obtained in an immobilization buffer by the colorimetric method. This inorganic-organic MOF-aptamer sensing strategy may in principle be universally applicable for the detection of a range of environmental or biomedical molecules of interests.

  15. TDP6, a brain-derived neurotrophic factor-based trkB peptide mimetic, promotes oligodendrocyte myelination.

    Science.gov (United States)

    Wong, Agnes W; Giuffrida, Lauren; Wood, Rhiannon; Peckham, Haley; Gonsalvez, David; Murray, Simon S; Hughes, Richard A; Xiao, Junhua

    2014-11-01

    Brain-derived neurotrophic factor (BDNF) plays critical roles in the development and maintenance of the central (CNS) and peripheral nervous systems (PNS). BDNF exerts its biological effects via tropomyosin-related kinase B (TrkB) and the p75 neurotrophin receptor (p75NTR). We have recently identified that BDNF promotes CNS myelination via oligodendroglial TrkB receptors. In order to selectively target TrkB to promote CNS myelination, we have used a putative TrkB agonist, a small multicyclic peptide (tricyclic dimeric peptide 6, TDP6) previously described by us that structurally mimics a region of BDNF that binds TrkB. We confirmed that TDP6 acts as a TrkB agonist as it provoked autophosphorylation of TrkB and its downstream signalling effector extracellular related-kinase 1 and 2 (Erk1/2) in primary oligodendrocytes. Using an in vitro myelination assay, we show that TDP6 significantly promotes myelination by oligodendrocytes in vitro, as evidenced by enhanced myelin protein expression and an increased number of myelinated axonal segments. In contrast, a second, structurally distinct BDNF mimetic (cyclo-dPAKKR) that targets p75NTR had no effect upon oligodendrocyte myelination in vitro, despite the fact that cyclo-dPAKKR is a very effective promoter of peripheral (Schwann cell) myelination. The selectivity of TDP6 was further verified by using TrkB-deficient oligodendrocytes, in which TDP6 failed to promote myelination, indicating that the pro-myelinating effect of TDP6 is oligodendroglial TrkB-dependent. Together, our results demonstrate that TDP6 is a novel BDNF mimetic that promotes oligodendrocyte myelination in vitro via targeting TrkB.

  16. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-12-03

    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  17. Protection against the synaptic targeting and toxicity of Alzheimer's-associated Aβ oligomers by insulin mimetic chiro-inositols.

    Science.gov (United States)

    Pitt, Jason; Thorner, Michael; Brautigan, David; Larner, Joseph; Klein, William L

    2013-01-01

    Alzheimer's disease (AD) is a progressive dementia that correlates highly with synapse loss. This loss appears due to the synaptic accumulation of toxic Aβ oligomers (ADDLs), which damages synapse structure and function. Although it has been reported that oligomer binding and toxicity can be prevented by stimulation of neuronal insulin signaling with PPARγ agonists, these agonists have problematic side effects. We therefore investigated the therapeutic potential of chiro-inositols, insulin-sensitizing compounds safe for human consumption. Chiro-inositols have been studied extensively for treatment of diseases associated with peripheral insulin resistance, but their insulin mimetic function in memory-relevant central nervous system (CNS) cells is unknown. Here we demonstrate that mature cultures of hippocampal neurons respond to d-chiro-inositol (DCI), pinitol (3-O-methyl DCI), and the inositol glycan INS-2 (pinitol β-1-4 galactosamine) with increased phosphorylation in key upstream components in the insulin-signaling pathway (insulin receptor, insulin receptor substrate-1, and Akt). Consistent with insulin stimulation, DCI treatment promotes rapid withdrawal of dendritic insulin receptors. With respect to neuroprotection, DCI greatly enhances the ability of insulin to prevent ADDL-induced synapse damage (EC(50) of 90 nM). The mechanism comprises inhibition of oligomer binding at synapses and requires insulin/IGF signaling. DCI showed no effects on Aβ oligomerization. We propose that inositol glycans and DCI, a compound already established as safe for human consumption, have potential as AD therapeutics by protecting CNS synapses against Aβ oligomers through their insulin mimetic activity.

  18. Characterisation of polymers, 1

    CERN Document Server

    Crompton, Roy

    2008-01-01

    This essential guide to Polymer Characterisation is a complete compendium of methodologies that have evolved for the determination of the chemical composition of polymers. This 478-page book gives an up-to-date and thorough exposition of the state-of-the-art theories and availability of instrumentation needed to effect chemical and physical analysis of polymers. This is supported by approximately 1200 references. Volume 1 covers the methodology used for the determination of metals, non-metals and organic functional groups in polymers, and for the determination of the ratio in which different m

  19. Biopolymers Versus Synthetic Polymers

    Directory of Open Access Journals (Sweden)

    Florentina Adriana Cziple

    2008-10-01

    Full Text Available This paper present an overview of important synthetic and natural polymers with emphasis on polymer structure, the chemistry of polymer formation. an introduction to polymer characterization. The biodegradation process can take place aerobically and anaerobically with or without the presence of light. These factors allow for biodegradation even in landfill conditions which are normally inconducive to any degradation. The sheeting used to make these packages differs significantly from other “degradable plastics” in the market as it does not attempt to replace the current popular materials but instead enhances them by rendering them biodegradable.

  20. Triclosan antimicrobial polymers

    Directory of Open Access Journals (Sweden)

    Richard C. Petersen

    2016-03-01

    Full Text Available Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers

  1. Triclosan antimicrobial polymers

    Science.gov (United States)

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  2. Nature of interactions between PEO-PPO-PEO triblock copolymers and lipid membranes: (I) effect of polymer hydrophobicity on its ability to protect liposomes from peroxidation.

    Science.gov (United States)

    Wang, Jia-Yu; Marks, Jeremy; Lee, Ka Yee C

    2012-09-10

    PEO-PPO-PEO triblock copolymers have opposing effects on lipid membrane integrity: they can behave either as membrane sealants or as membrane permeabilizers. To gain insights into their biomembrane activities, the fundamental interactions between a series of PEO-based polymers and phospholipid vesicles were investigated. Specifically, the effect of copolymer hydrophobicity on its ability to prevent liposomes from peroxidation was evaluated, and partitioning free energy and coefficient involved in the interactions were derived. Our results show that the high degree of hydrophilicity is a key feature of the copolymers that can effectively protect liposomes from peroxidation and the protective effect of the copolymers stems from their adsorption at the membrane surface without penetrating into the bilayer core. The origin of this protective effect induced by polymer absorption is attributed to the retardation of membrane hydration dynamics, which is further illustrated in the accompanying study on dynamic nuclear polarization (DNP)-derived hydration dynamics (Cheng, C.-Y.; Wang, J.-Y.; Kausik, R.; Lee, K. Y. C.; Han S. Biomacromolecules, 2012, DOI: 10.1021/bm300848c).

  3. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  4. Melons are branched polymers

    CERN Document Server

    Gurau, Razvan

    2013-01-01

    Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

  5. Polymer Electronics, Quo Vadis?

    NARCIS (Netherlands)

    Chiechi, Ryan C.; Hummelen, Jan C.

    2012-01-01

    At the heart of polymer electronics lies more than three decades of research into conjugated polymers. The future of these materials is intimately tied to the development of organic photovoltaic (OPV) devices that can compete with traditional, inorganic devices in efficiency and cost. In addition to

  6. Stiff Quantum Polymers

    OpenAIRE

    Kleinert, H

    2007-01-01

    At ultralow temperatures, polymers exhibit quantum behavior, which is calculated here for the second and fourth moments of the end-to-end distribution in the large-stiffness regime. The result should be measurable for polymers in wide optical traps.

  7. Tunable Optical Polymer Systems

    Science.gov (United States)

    2007-11-02

    outperforms almost all other organic polymer systems reported thus far, the introduction of the first multiple color LBL electrochrome , and development...thin films outperform previously reported LBL assembled films and approach integration capability for a number of electrochromic , sensing and...Zacharia, N; Hammond, P. T. “ Electrochromism of LBL assembled thin polymer films containing metal oxide nanoparticles,” American Chemical Society

  8. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  9. Polymers in Waveguide Packaging

    Institute of Scientific and Technical Information of China (English)

    Zhiyi Zhang; G. Z.Xiao; Jiaren Liu; C. P. Grover

    2003-01-01

    Polymers were successfully used in the packaging of waveguide-based photonic components in the area of fiber-to-waveguide coupling, waveguide die attachment, strain relief, and waveguide encapsulation. The application results of these polymers were described in this paper.

  10. Potent inhibition of human immunodeficiency virus by MDL 101028, a novel sulphonic acid polymer.

    Science.gov (United States)

    Taylor, D L; Brennan, T M; Bridges, C G; Mullins, M J; Tyms, A S; Jackson, R; Cardin, A D

    1995-10-01

    MDL 101028, a novel biphenyl disulphonic acid urea co-polymer was designed and synthesised as a heparin mimetic. This low molecular weight polymer showed potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication in a number of host-cell/virus systems, including primary clinical isolates of the virus cultured in human peripheral blood mononuclear cells (PBMCs). When compared with the heterogeneous polysulphated molecules, heparin and dextran sulphate, this chemically defined compound showed equivalent antiviral activity with 50% inhibitory concentrations (IC50s) in the range 0.27-3.0 micrograms/ml in the host-cell/virus systems tested. MDL 101028 also inhibited the replication of HIV type 2 and the simian immunodeficiency virus (SIV), as well as HIV-1 variants resistant to reverse transcriptase inhibitors. Virus growth was blocked when exposure of T-lymphocytes to MDL 101028 was restricted to the virus absorption stage, or even in whole blood conditions. MDL 101028 did not irreversibly inactivate virions, and in contrast to heparin, did not inhibit the attachment of radiolabelled HIV-1 to CD4+ T-cells. MDL 101028 blocked HIV-induced cell-to-cell fusion and this activity appears to explain the mechanism of its antiviral action. The antiviral evaluation of discrete oligomer molecules of MDL 101028 showed that a polymer chain length of six repeating units had optimal potency. The lack of anticoagulant properties and significant antiviral activity in whole blood may allow the development of MDL 101028 as a treatment of HIV infections.

  11. Polymer electrolyte reviews. 1

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, J.R.; Vincent, C.A.

    1987-01-01

    The development of polymer electrolytes which have potential applications in battery technology has resulted in an escalation of research into the synthesis of new macromolecular supports and the mechanisms of ionic transport within the solid matrix. Investigation of the properties of polymer electrolytes has brought together polymer chemists and electrochemists, and the understanding of the solubility and transport of electrolytes in organic polymers is now developing from this pooled experience. This book deals with experimental, theoretical and applied aspects of solid solutions of electrolytes used in coordinating polymer matrices. Attention is focused on the synthesis and properties of these new materials, the mechanisms of conduction processes and practical applications, especially with regard to battery technology.

  12. Polymer wear evaluation

    DEFF Research Database (Denmark)

    Lagerbon, Mikkel; Sivebæk, Ion Marius

    2012-01-01

    the safety of the patients. Prediction of the wear of polymers is complicated by the low thermal conductivity of this kind of material. It implies that any acceleration of testing conditions by increased contact pressure and/or sliding velocity will make the polymer fail due to exaggerated heat buildup......Polymer wear plays an increasing role in manufacturing of machine parts for e.g. medical devices. Some of these have an expected lifetime of five to eight years during which very little wear of the components is acceptable. Too much wear compromises the dosage accuracy of the device and thereby....... This is not the kind of wear observed in medical devices. In the present work a method was developed capable of evaluating the wear progression in polymer-polymer contacts. The configuration of the setup is injection moulded specimens consisting of an upper part having a toroid shape and a lower flat part. The sliding...

  13. On the Translation of Onomatopoeia and Mimetic Words from Japanese to Chinese%小议日语拟声拟态词的汉译

    Institute of Scientific and Technical Information of China (English)

    张新

    2011-01-01

    日语具有丰富的拟声拟态词。拟声拟态词用于生动地描摹事物的声音和形态,弥补了日语形容词数量较少的缺陷,在日语中出现的频率很高,数量上也远远高于汉语的拟声词。由于这个特点,在对它们进行汉译时,就会产生无法与汉语一一对应的问题。本文以高慧勤和叶渭渠的《伊豆的舞女》的中译本为例,探讨拟声拟态词汉译的方法。%Japanese has a large number of onomatopoeia and mimetic words.These words are used to vividly describe the sounds and shapes of various things,and they makes up the defect of small amount of Japanese adjectives.The occurrence frequency of onomatopoeia and mimetic words in Japanese is very high,and the number of them is far bigger than the ones in Chinese.Therefore,it is difficult to exactly translate Japanese onomatopoeia and mimetic words to Chinese.Taking the Chinese versions of The Izu Dancer translated by Gao Huiqin and Ye Weiqu for example,this article discusses the methods of translating Japanese onomatopoeia and mimetic words into Chinese.

  14. Connexin 43 mimetic peptide Gap27 reveals potential differences in the role of Cx43 in wound repair between diabetic and non-diabetic cells

    OpenAIRE

    Pollok, Simone; Pfeiffer, Ann-Catherine; Lobmann, Ralf; Wright, Catherine S; Moll, Ingrid; Martin, Patricia E M; Johanna M Brandner

    2010-01-01

    Abstract During early wound healing (WH) events Connexin 43 (Cx43) is down-regulated at wound margins. In chronic wound margins, including diabetic wounds, Cx43 expression is enhanced suggesting that down-regulation is important for WH. We previously reported that the Cx43 mimetic peptide Gap27 blocks Cx43 mediated intercellular communication and promotes skin cell migration of infant cells in vitro. In the present work we further investigated the molecular mechanism of Gap27 action and its t...

  15. A recombinant mimetics of the HIV-1 gp41 prehairpin fusion intermediate fused with human IgG Fc fragment elicits neutralizing antibody response in the vaccinated mice

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Zhi; Pan, Chungen; Lu, Hong; Shui, Yuan [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); Li, Lin [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Xiaojuan; Xu, Xueqing; Liu, Shuwen [School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China); Jiang, Shibo, E-mail: sjiang@nybloodcenter.org [Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065 (United States); School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515 (China)

    2010-07-30

    Research highlights: {yields} One recombinant mimetics of gp41 prehairpin fusion intermediate (PFI) consisting of gp41 N46 sequence, foldon and IgG Fc, designated N46FdFc, was expressed. {yields} N46FdFc-induced antibodies in mice that neutralized HIV-1 infection, inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. {yields} These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines. -- Abstract: HIV-1 gp41 prehairpin fusion intermediate (PFI) composed of three N-terminal heptad repeats (NHR) plays a crucial role in viral fusion and entry and represents an attractive target for anti-HIV therapeutics (e.g., enfuvirtide) and vaccines. In present study, we constructed and expressed two recombinant gp41 PFI mimetics, designated N46Fd and N46FdFc. N46Fd consists of N46 (residues 536-581) in gp41 NHR and foldon (Fd), a trimerization motif. N46FdFc is composed of N46Fd fused with human IgG Fc fragment as an immunoenhancer. We immunized mice with N46 peptide, N46Fd and N46FdFc, respectively, and found that only N46FdFc elicited neutralizing antibody response in mice against infection by HIV-1 strains IIIB (clade B, X4), 92US657 (clade B, R5), and 94UG103 (clade A, X4R5). Anti-N46FdFc antibodies inhibited PIE7 binding to PFI, blocked gp41 six-helix bundle formation, and suppressed HIV-1 mediated cell-cell fusion. These findings provide an important clue for developing recombinant gp41 PFI mimetics-based HIV vaccines.

  16. The BH3-mimetic ABT-737 targets the apoptotic machinery in cholangiocarcinoma cell lines resulting in synergistic interactions with zoledronic acid

    OpenAIRE

    ROMANI, ANTONELLO A.; Desenzani, Silvia; Morganti, Marina M.; Baroni, Maria Cristina; Borghetti, Angelo F.; Soliani, Paolo

    2010-01-01

    Abstract Purpose In TFK-1 and EGI-1 cholangiocarcinoma cell lines, zoledronic acid (ZOL) determines an S-phase block without apoptosis. Here, we investigated the occurrence of apoptosis stigmata when ZOL is associated to the BH3-mimetic ABT-737. Methods In EGI-1 and TFK-1 cholangiocarcinoma cell lines untreated or treated with ABT-737 alone or in combination with ZOL, the pro-survival protein?s pattern (BC...

  17. Ion implantation in polymers

    Science.gov (United States)

    Wintersgill, M. C.

    1984-02-01

    An introductory overview will be given of the effects of ion implantation on polymers, and certain areas will be examined in more detail. Radiation effects in general and ion implantation in particular, in the field of polymers, present a number of contrasts with those in ionic crystals, the most obvious difference being that the chemical effects of both the implanted species and the energy transfer to the host may profoundly change the nature of the target material. Common effects include crosslinking and scission of polymer chains, gas evolution, double bond formation and the formation of additional free radicals. Research has spanned the chemical processes involved, including polymerization reactions achievable only with the use of radiation, to applied research dealing both with the effects of radiation on polymers already in commercial use and the tailoring of new materials to specific applications. Polymers are commonly divided into two groups, in describing their behavior under irradiation. Group I includes materials which form crosslinks between molecules, whereas Group II materials tend to degrade. In basic research, interest has centered on Group I materials and of these polyethylene has been studied most intensively. Applied materials research has investigated a variety of polymers, particularly those used in cable insulation, and those utilized in ion beam lithography of etch masks. Currently there is also great interest in enhancing the conducting properties of polymers, and these uses would tend to involve the doping capabilities of ion implantation, rather than the energy deposition.

  18. Polymer Science Pilot Program

    Science.gov (United States)

    Maier, Mary L.

    1996-07-01

    Natural polymers such as cellulose, proteins, and DNA have been part of earth's store of chemicals long before chemists existed. However, polymers synthesized by chemists first appeared on this planet only sixty years ago. A veritable explosion of materials first known as plastics, later polymers, followed. Today polymers, natural and synthetic, are everywhere, and it is appropriate to include an introduction to polymers in the education of future scientists. The Polymer Science Pilot Program consists of a sequence of experiences with polymers, designed to focus upon the ways in which these materials resemble and/or compare with nonpolymers in physical properties, versatility, and function. The modular format makes it possible for educators to select specific sections of the program for integration into other college chemistry courses. The team learning aspect of he program can also be recommended to educators who select a specific module. When this program was presented at a Middle Atlantic Regional Meeting of the American Chemical Society, some attendees were concerned about the limited number of participants as compared with the seemingly large number of college instructors. It was explained that the concentrated format of the four day program necessitates this instructor-to-student ratio; one class consisting of eighteen participants was tried and it was found that some aspects of the program, especially the research paper preparation, were not as thoroughly moderated.

  19. A novel BH3 mimetic efficiently induces apoptosis in melanoma cells through direct binding to anti-apoptotic Bcl-2 family proteins, including phosphorylated Mcl-1.

    Science.gov (United States)

    Liu, Yubo; Xie, Mingzhou; Song, Ting; Sheng, Hongkun; Yu, Xiaoyan; Zhang, Zhichao

    2015-03-01

    The Bcl-2 family modulates sensitivity to chemotherapy in many cancers, including melanoma, in which the RAS/BRAF/MEK/ERK pathway is constitutively activated. Mcl-1, a major anti-apoptotic protein in the Bcl-2 family, is extensively expressed in melanoma and contributes to melanoma's well-documented chemoresistance. Here, we provide the first evidence that Mcl-1 phosphorylation at T163 by ERK1/2 and JNK is associated with the resistance of melanoma cell lines to the existing BH3 mimetics gossypol, S1 and ABT-737, and a novel anti-apoptotic mechanism of phosphorylated Mcl-1 (pMcl-1) is revealed. pMcl-1 antagonized the known BH3 mimetics by sequestering pro-apoptotic proteins that were released from Bcl-2/Mcl-1. Furthermore, an anthraquinone BH3 mimetic, compound 6, was identified to be the first small molecule to that induces endogenous apoptosis in melanoma cells by directly binding Bcl-2, Mcl-1, and pMcl-1 and disrupting the heterodimers of these proteins. Although compound 6 induced upregulation of the pro-apoptotic protein Noxa, its apoptotic induction was independent of Noxa. These data reveal the promising therapeutic potential of targeting pMcl-1 to treat melanoma. Compound 6 is therefore a potent drug that targets pMcl-1 in melanoma.

  20. 鞋靴仿生设计思维与方法的研究%Research on the Idea and Method of Footwear Bio-mimetic Design

    Institute of Scientific and Technical Information of China (English)

    赵坚; 赵强; 周海燕

    2013-01-01

    On the basis of research on the thought and method for footwear bio-mimetic design was carried out,the bionic footwear design process was divided into four steps which were observation,analysis,refactoring and design.Taking butterfly as prototype,the specific methods for footwear bio-mimetic design was explored from shape,pattern,texture and color,so as the application space ofbio-mimetic design thinking and method were presented.%通过对鞋靴仿生设计思维方法的研究,将鞋靴仿生设计过程分为观察、分析、重构、设计四个步骤.以蝴蝶为仿生原型,从色彩、形态、图案、肌理四方面,探讨了鞋靴仿生设计的具体方法,以期拓展鞋靴仿生设计思维和方法的应用空间.

  1. Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels.

    Science.gov (United States)

    Huang, Bo-Wen; Miyazawa, Masaki; Tsuji, Yoshiaki

    2014-12-01

    Cobalt chloride has been used as a hypoxia mimetic because it stabilizes hypoxia inducible factor-1α (HIF1-α) and activates gene transcription through a hypoxia responsive element (HRE). However, differences between hypoxia and hypoxia mimetic cobalt chloride in gene regulation remain elusive. Expression of ferritin, the major iron storage protein, is regulated at the transcriptional and posttranscriptional levels through DNA and RNA regulatory elements. Here we demonstrate that hypoxia and cobalt chloride regulate ferritin heavy chain (ferritin H) expression by two distinct mechanisms. Both hypoxia and cobalt chloride increased HIF1-α but a putative HRE in the human ferritin H gene was not activated. Instead, cobalt chloride but not hypoxia activated ferritin H transcription through an antioxidant responsive element (ARE), to which Nrf2 was recruited. Intriguingly, cobalt chloride downregulated ferritin H protein expression while it upregulated other ARE-regulated antioxidant genes in K562 cells. Further characterization demonstrated that cobalt chloride increased interaction between iron regulatory proteins (IRP1 and IRP2) and iron responsive element (IRE) in the 5'UTR of ferritin H mRNA, resulting in translational block of the accumulated ferritin H mRNA. In contrast, hypoxia had marginal effect on ferritin H transcription but increased its translation through decreased IRP1-IRE interaction. These results suggest that hypoxia and hypoxia mimetic cobalt chloride employ distinct regulatory mechanisms through the interplay between DNA and mRNA elements at the transcriptional and post-transcriptional levels.

  2. 针灸治疗面肌痉挛的临床研究进展%The Clinical Research Process of Acupuncture for Mimetic Convulsion

    Institute of Scientific and Technical Information of China (English)

    卢建兰; 张芸

    2015-01-01

    In recent years, the clinical research of acupuncture for mimetic convulsion has been greatly developed. By computer retrieving the VIP full text database, we had got the Chinese literatures about treating mimetic convulsion by acupuncture from 2000 to 2015, and through simply sum-marized these literatures found that the treatment of acupuncture for mimetic convulsion was effective, but was still lack of the support by a large number of repeatable, controlled, randomized evidences.%近年来,针刺治疗面肌痉挛的临床研究取得了较大进展,本文通过对维普期刊全文数据库的计算机检索,获得了2000~2015年有关针灸治疗面肌痉挛的中文文献,并对其进行简单归纳、总结,发现针灸治疗面肌痉挛疗效肯定,但尚缺乏大量重复、对照、随机的证据支持。

  3. EPOR-Based Purification and Analysis of Erythropoietin Mimetic Peptides from Human Urine by Cys-Specific Cleavage and LC/MS/MS

    Science.gov (United States)

    Vogel, Matthias; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2015-09-01

    The development of a new class of erythropoietin mimetic agents (EMA) for treating anemic conditions has been initiated with the discovery of oligopeptides capable of dimerizing the erythropoietin (EPO) receptor and thus stimulating erythropoiesis. The most promising amino acid sequences have been mounted on various different polymeric structures or carrier molecules to obtain highly active EPO-like drugs exhibiting beneficial and desirable pharmacokinetic profiles. Concomitant with creating new therapeutic options, erythropoietin mimetic peptide (EMP)-based drug candidates represent means to artificially enhance endurance performance and necessitate coverage by sports drug testing methods. Therefore, the aim of the present study was to develop a strategy for the comprehensive detection of EMPs in doping controls, which can be used complementary to existing protocols. Three model EMPs were used to provide proof-of-concept data. Following EPO receptor-facilitated purification of target analytes from human urine, the common presence of the cysteine-flanked core structure of EMPs was exploited to generate diagnostic peptides with the aid of a nonenzymatic cleavage procedure. Sensitive detection was accomplished by targeted-SIM/data-dependent MS2 analysis. Method characterization was conducted for the EMP-based drug peginesatide concerning specificity, linearity, precision, recovery, stability, ion suppression/enhancement, and limit of detection (LOD, 0.25 ng/mL). Additionally, first data for the identification of the erythropoietin mimetic peptides EMP1 and BB68 were generated, demonstrating the multi-analyte testing capability of the presented approach.

  4. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  5. Development of Silicate Polymers

    DEFF Research Database (Denmark)

    Søgaard, Erik Gydesen; Simonsen, Morten Enggrob

      The development of inorganic polymers is a new promising technology that may be used in many applications. The syntheses of inorganic polymers are normally carried out either by mixing an amorphous material for example silicium dioxide with a mineral base or dissolving metal oxids or metal...... hydroxide in acid and increase pH to saturation of the metal hydroxide. It is assumed that the syntheses of the inorganic polymer are carried out through polymerisation of oligomers (dimer, trimer) which provide the actual unit structures of the three dimensional macromolecular structure. In this work...

  6. Soluble porphyrin polymers

    Science.gov (United States)

    Gust, Jr., John Devens; Liddell, Paul Anthony

    2015-07-07

    Porphyrin polymers of Structure 1, where n is an integer (e.g., 1, 2, 3, 4, 5, or greater) ##STR00001## are synthesized by the method shown in FIGS. 2A and 2B. The porphyrin polymers of Structure 1 are soluble in organic solvents such as 2-MeTHF and the like, and can be synthesized in bulk (i.e., in processes other than electropolymerization). These porphyrin polymers have long excited state lifetimes, making the material suitable as an organic semiconductor for organic electronic devices including transistors and memories, as well as solar cells, sensors, light-emitting devices, and other opto-electronic devices.

  7. Polymer artificial muscles

    Directory of Open Access Journals (Sweden)

    Tissaphern Mirfakhrai

    2007-04-01

    Full Text Available The various types of natural muscle are incredible material systems that enable the production of large deformations by repetitive molecular motions. Polymer artificial muscle technologies are being developed that produce similar strains and higher stresses using electrostatic forces, electrostriction, ion insertion, and molecular conformational changes. Materials used include elastomers, conducting polymers, ionically conducting polymers, and carbon nanotubes. The mechanisms, performance, and remaining challenges associated with these technologies are described. Initial applications are being developed, but further work by the materials community should help make these technologies applicable in a wide range of devices where muscle-like motion is desirable.

  8. Targeted delivery of a model immunomodulator to the lymphatic system: comparison of alkyl ester versus triglyceride mimetic lipid prodrug strategies.

    Science.gov (United States)

    Han, Sifei; Quach, Tim; Hu, Luojuan; Wahab, Anisa; Charman, William N; Stella, Valentino J; Trevaskis, Natalie L; Simpson, Jamie S; Porter, Christopher J H

    2014-03-10

    A lipophilic prodrug approach has been used to promote the delivery of a model immunomodulator, mycophenolic acid (MPA), to the lymphatic system after oral administration. Lymphatic transport was employed to facilitate enhanced drug uptake into lymphocytes, as recent studies demonstrate that targeted drug delivery to lymph resident lymphocytes may enhance immunomodulatory effects. Two classes of lymph-directing prodrugs were synthesised. Alkyl chain derivatives (octyl mycophenolate, MPA-C8E; octadecyl mycophenolate, MPA-C18E; and octadecyl mycophenolamide, MPA-C18AM), to promote passive partitioning into lipids in lymphatic transport pathways, and a triglyceride mimetic prodrug (1,3-dipalmitoyl-2-mycophenoloyl glycerol, 2-MPA-TG) to facilitate metabolic integration into triglyceride deacylation-reacylation pathways. Lymphatic transport, lymphocyte uptake and plasma pharmacokinetics were assessed in mesenteric lymph and carotid artery cannulated rats following intraduodenal infusion of lipid-based formulations containing MPA or MPA prodrugs. Patterns of prodrug hydrolysis in rat digestive fluid, and cellular re-esterification in vivo, were evaluated to examine the mechanisms responsible for lymphatic transport. Poor enzyme stability and low absorption appeared to limit lymphatic transport of the alkyl derivatives, although two of the three alkyl chain prodrugs - MPA-C18AM (6-fold) and MPA-C18E (13-fold) still increased lymphatic drug transport when compared to MPA. In contrast, 2-MPA-TG markedly increased lymphatic drug transport (80-fold) and drug concentrations in lymphocytes (103-fold), and this was achieved via biochemical incorporation into triglyceride deacylation-reacylation pathways. The prodrug was hydrolysed rapidly to 2-mycophenoloyl glycerol (2-MPA-MG) in the presence of rat digestive fluid, and 2-MPA-MG was subsequently re-esterified in the enterocyte with oleic acid (most likely originating from the co-administered formulation) prior to accessing the

  9. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes.

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2013-01-21

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer 'smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  10. Mussel-mimetic self-healing polyaspartamide derivative gel via boron-catechol interactions

    Directory of Open Access Journals (Sweden)

    B. Wang

    2015-09-01

    Full Text Available The catechol group from catechol of 3,4-dihydroxyphenethylamine (DOP, dopamine has the ability to interact with metal ions to form non-covalent bonds in polymer chains. In this study, a novel kind of mussel-inspired copolymer, dopamine-conjugated poly(hydroxyethyl aspartamide, polyAspAm(DOP/EA, was synthesized and its interaction with boric acid (H3BO3 to form a cross-linked gel via boron-catechol coordinative binding was investigated. The copolymer was designed to contain a pH responsive adhesive catechol group, which reversibly underwent gelation through the metalcatechol binding, as proved by UV-Vis spectroscopy. When the pH is increased from acidic conditions to a specified pH (pH > 9, the B(OH3 is considered to have a functionality of two to bind catechols, leading to bis-complexes. In addition, the reversibility of the boron-catechol bonds provides self-healing characteristics to the polyAspAm gels. The rheological results showed that boron-catechol coordination could lead to quick and full recovery after the fracture of a gel specimen. This novel pH-responsive and self-healing gel system has potential in various applications including smart hydrogels, medical adhesives, and sealants.

  11. Activity and Mechanism of Antimicrobial Peptide-Mimetic Amphiphilic Polymethacrylate Derivatives

    Directory of Open Access Journals (Sweden)

    Kenichi Kuroda

    2011-09-01

    Full Text Available Cationic amphiphilic polymethacrylate derivatives (PMAs have shown potential as a novel class of synthetic antimicrobials. A panel of PMAs with varied ratios of hydrophobic and cationic side chains were synthesized and tested for antimicrobial activity and mechanism of action. The PMAs are shown to be active against a panel of pathogenic bacteria, including a drug-resistant Staphylococcus aureus, compared to the natural antimicrobial peptide magainin which did not display any activity against the same strain. The selected PMAs with 47–63% of methyl groups in the side chains showed minimum inhibitory concentrations of ≤2–31 µg/mL, but cause only minimal harm to human red blood cells. The PMAs also exhibit rapid bactericidal kinetics. Culturing Escherichia coli in the presence of the PMAs did not exhibit any potential to develop resistance against the PMAs. The antibacterial activities of PMAs against E. coli and S. aureus were slightly reduced in the presence of physiological salts. The activity of PMAs showed bactericidal effects against E. coli and S. aureus in both exponential and stationary growth phases. These results demonstrate that PMAs are a new antimicrobial platform with no observed development of resistance in bacteria. In addition, the PMAs permeabilized the E. coli outer membrane at polymer concentrations lower than their MIC values, but they did not show any effect on the bacterial inner membrane. This indicates that mechanisms other than membrane permeabilization may be the primary factors determining their antimicrobial activity.

  12. Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes

    Science.gov (United States)

    Hu, Shihao; Xia, Zhenhai; Dai, Liming

    2012-12-01

    Geckos can run freely on vertical walls and even ceilings. Recent studies have discovered that gecko's extraordinary climbing ability comes from a remarkable design of nature with nanoscale beta-keratin elastic hairs on their feet and toes, which collectively generate sufficiently strong van der Waals force to hold the animal onto an opposing surface while at the same time disengaging at will. Vertically aligned carbon nanotube (VA-CNT) arrays, resembling gecko's adhesive foot hairs with additional superior mechanical, chemical and electrical properties, have been demonstrated to be a promising candidate for advanced fibrillar dry adhesives. The VA-CNT arrays with tailor-made hierarchical structures can be patterned and/or transferred onto various flexible substrates, including responsive polymers. This, together with recent advances in nanofabrication techniques, could offer `smart' dry adhesives for various potential applications, even where traditional adhesives cannot be used. A detailed understanding of the underlying mechanisms governing the material properties and adhesion performances is critical to the design and fabrication of gecko inspired CNT dry adhesives of practical significance. In this feature article, we present an overview of recent progress in both fundamental and applied frontiers for the development of CNT-based adhesives by summarizing important studies in this exciting field, including our own work.

  13. BH3-mimetics- and cisplatin-induced cell death proceeds through different pathways depending on the availability of death-related cellular components.

    Directory of Open Access Journals (Sweden)

    Vicente Andreu-Fernández

    Full Text Available BACKGROUND: Owing to their important function in regulating cell death, pharmacological inhibition of Bcl-2 proteins by dubbed BH3-mimetics is a promising strategy for apoptosis induction or sensitization to chemotherapy. However, the role of Apaf-1, the main protein constituent of the apoptosome, in the process has yet not been analyzed. Furthermore as new chemotherapeutics develop, the possible chemotherapy-induced toxicity to rapidly dividing normal cells, especially sensitive differentiated cells, has to be considered. Such undesirable effects would probably be ameliorated by selectively and locally inhibiting apoptosis in defined sensitive cells. METHODOLOGY AND PRINCIPAL FINDINGS: Mouse embryonic fibroblasts (MEFS from Apaf-1 knock out mouse (MEFS KO Apaf-1 and Bax/Bak double KO (MEFS KO Bax/Bak, MEFS from wild-type mouse (MEFS wt and human cervix adenocarcinoma (HeLa cells were used to comparatively investigate the signaling cell death-induced pathways of BH3-mimetics, like ABT737 and GX15-070, with DNA damage-inducing agent cisplatin (cis-diammineplatinum(II dichloride, CDDP. The study was performed in the absence or presence of apoptosis inhibitors namely, caspase inhibitors or apoptosome inhibitors. BH3-mimetic ABT737 required of Apaf-1 to exert its apoptosis-inducing effect. In contrast, BH3-mimetic GX15-070 and DNA damage-inducing CDDP induced cell death in the absence of both Bax/Bak and Apaf-1. GX15-070 induced autophagy-based cell death in all the cell lines analyzed. MEFS wt cells were protected from the cytotoxic effects of ABT737 and CDDP by chemical inhibition of the apoptosome through QM31, but not by using general caspase inhibitors. CONCLUSIONS: BH3-mimetic ABT737 not only requires Bax/Bak to exert its apoptosis-inducing effect, but also Apaf-1, while GX15-070 and CDDP induce different modalities of cell death in the absence of Bax/Bak or Apaf-1. Inclusion of specific Apaf-1 inhibitors in topical and well

  14. Shape-memory polymers

    Directory of Open Access Journals (Sweden)

    Marc Behl

    2007-04-01

    Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.

  15. Rheology of Supramolecular Polymers

    DEFF Research Database (Denmark)

    Shabbir, Aamir

    efficient processes or biomedical areas. Design and development of supramolecular polymers using ionic, hydrogen bonding or transition metal complexes with tailored properties requires deep understanding of dynamics both in linear and non-linear deformations. While linear rheology is important to understand...... the dynamics under equilibrium conditions, extensional rheology is relevant during the processing or in the usage of polymers utilizing supramolecular associations for example, acrylic based pressure sensitive adhesives are subjected to extensional deformations during the peeling where strain hardening......) hydrogen bonding polymers, and (b) ionic bonding polymers (hereafter termed as ionomers). We study linear and non-linear rheology fora model system of entangled pure poly(n-butyl acrylate), PnBA, homopolymer andfour poly(acrylic acid), PnBA-PAA, copolymers with varying AA side groups synthesizedvia...

  16. Polymer semiconductor crystals

    Directory of Open Access Journals (Sweden)

    Jung Ah Lim

    2010-05-01

    Full Text Available One of the long-standing challenges in the field of polymer semiconductors is to figure out how long interpenetrating and entangled polymer chains self-assemble into single crystals from the solution phase or melt. The ability to produce these crystalline solids has fascinated scientists from a broad range of backgrounds including physicists, chemists, and engineers. Scientists are still on the hunt for determining the mechanism of crystallization in these information-rich materials. Understanding the theory and concept of crystallization of polymer semiconductors will undoubtedly transform this area from an art to an area that will host a bandwagon of scientists and engineers. In this article we describe the basic concept of crystallization and highlight some of the advances in polymer crystallization from crystals to nanocrystalline fibers.

  17. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  18. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  19. THERMOCHROMIC POLYMER MATERIALS

    Institute of Scientific and Technical Information of China (English)

    A.Seeboth; A.Klukowska; R.Ruhmann; D.L(o)tzsch

    2007-01-01

    Thermochromic polymers will play an extremely important role in the next future.The physical background of thermochromism and the state of development of thermochromic polymers based on light absorption effects are reported.In detail.the interactions between the polymer matrix and the thermochromic composite-composed of leuco or indicator dyes-are discussed on a molecular level.Thermochromic hydrogels with extremely high transparency,an outstanding switching behavior from colorless to colored or between different colors is presented.Preparation of thermosetting and thermoplastic polymers,including the resulting optical,and,for the first time,the mechanical properties are discussed in relation to matrix tuned high-resistant microcapsules.

  20. Active Polymer Gel Actuators

    OpenAIRE

    Shuji Hashimoto; Ryo Yoshida; Yusuke Hara; Shingo Maeda

    2010-01-01

    Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of he...

  1. Polymer optical motherboard technology

    Science.gov (United States)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  2. Polymer-Based Therapeutics

    OpenAIRE

    Liu, Shuang; Maheshwari, Ronak; Kiick, Kristi L.

    2009-01-01

    Polymeric materials have been applied in therapeutic applications, such as drug delivery and tissue regeneration, for decades owing to their biocompatibility and suitable mechanical properties. In addition, select polymer–drug conjugates have been used as bioactive pharmaceuticals owing to their increased drug efficacy, solubility, and target specificity compared with small-molecule drugs. Increased synthetic control of polymer properties has permitted the production of polymer assemblies for...

  3. Branched Polymer Revisited

    CERN Document Server

    Aoki, H; Kawai, H; Kitazawa, Y; Aoki, Hajime; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa

    2000-01-01

    We show that correlation functions for branched polymers correspond to those for $\\phi^3$ theory with a single mass insertion, not those for the $\\phi^3$ theory themselves, as has been widely believed. In particular, the two-point function behaves as 1/p^4, not as 1/p^2. This behavior is consistent with the fact that the Hausdorff dimension of the branched polymer is four.

  4. Voltammetry of conducting polymers

    OpenAIRE

    Gulaboski, Rubin

    2014-01-01

    The search for new materials for enhancing electrical conductivity of various materials is one of the most active research areas today. Conducting polymers represent a unique class of organic materials that have been used in many applications such as bioelectronics, sensors, corrosion protection, electrocatalysis, and energy storage devices. Application of the conductive polymers in electrochemistry is almost inevitable in order to get better features of the voltammetric systems ...

  5. Transferases in Polymer Chemistry

    Science.gov (United States)

    van der Vlist, Jeroen; Loos, Katja

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic polymer chemistry, various transferases are used to synthesize polymers in vitro. This chapter reviews some of these approaches, such as the enzymatic polymerization of polyesters, polysaccharides, and polyisoprene.

  6. Nanoimprinted polymer solar cell.

    Science.gov (United States)

    Yang, Yi; Mielczarek, Kamil; Aryal, Mukti; Zakhidov, Anvar; Hu, Walter

    2012-04-24

    Among the various organic photovoltaic devices, the conjugated polymer/fullerene approach has drawn the most research interest. The performance of these types of solar cells is greatly determined by the nanoscale morphology of the two components (donor/acceptor) and the molecular orientation/crystallinity in the photoactive layer. A vertically bicontinuous and interdigitized heterojunction between donor and acceptor has been regarded as one of the ideal structures to enable both efficient charge separation and transport. Synergistic control of polymer orientation in the nanostructured heterojunction is also critical to improve the performance of polymer solar cells. Nanoimprint lithography has emerged as a new approach to simultaneously control both the heterojunction morphology and polymer chains in organic photovoltaics. Currently, in the area of nanoimprinted polymer solar cells, much progress has been achieved in the fabrication of nanostructured morphology, control of molecular orientation/crystallinity, deposition of acceptor materials, patterned electrodes, understanding of structure-property correlations, and device performance. This review article summarizes the recent studies on nanoimprinted polymer solar cells and discusses the outstanding challenges and opportunities for future work.

  7. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  8. Conductivity behaviour of polymer gel electrolytes: Role of polymer

    Indian Academy of Sciences (India)

    S S Sekhon

    2003-04-01

    Polymer is an important constituent of polymer gel electrolytes along with salt and solvent. The salt provides ions for conduction and the solvent helps in the dissolution of the salt and also provides the medium for ion conduction. Although the polymer added provides mechanical stability to the electrolytes yet its effect on the conductivity behaviour of gel electrolytes as well as the interaction of polymer with salt and solvent has not been conclusively established. The conductivity of lithium ion conducting polymer gel electrolytes decreases with the addition of polymer whereas in the case of proton conducting polymer gel electrolytes an increase in conductivity has been observed with polymer addition. This has been explained to be due to the role of polymer in increasing viscosity and carrier concentration in these gel electrolytes.

  9. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats.

    Directory of Open Access Journals (Sweden)

    Syed Faraz Kazim

    Full Text Available Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF small peptide mimetic, Peptide 6 (P6, which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.

  10. Effect of Resveratrol as Caloric Restriction Mimetic and Environmental Enrichment on Neurobehavioural Responses in Young Healthy Mice

    Directory of Open Access Journals (Sweden)

    Mustapha Shehu Muhammad

    2014-01-01

    Full Text Available Caloric restriction and environmental enrichment have been separately reported to possess health benefits such as improvement in motor and cognitive functions. Resveratrol, a natural polyphenolic compound, has been reported to be caloric restriction mimetic. This study therefore aims to investigate the potential benefit of the combination of resveratrol as CR and EE on learning and memory, motor coordination, and motor endurance in young healthy mice. Fifty mice of both sexes were randomly divided into five groups of 10 animals each: group I animals received carboxymethylcellulose (CMC orally per kg/day (control, group II animals were maintained on every other day feeding, group III animals received resveratrol 50 mg/kg, suspended in 10 g/L of (CMC orally per kg/day, group IV animals received CMC and were kept in an enriched environment, and group V animals received resveratrol 50 mg/kg and were kept in EE. The treatment lasted for four weeks. On days 26, 27, and 28 of the study period, the animals were subjected to neurobehavioural evaluation. The results obtained showed that there was no significant change (P>0.05 in neurobehavioural responses in all the groups when compared to the control which indicates that 50 mg/kg of resveratrol administration and EE have no significant effects on neurobehavioural responses in young healthy mice over a period of four weeks.

  11. Treatment with a BH3 mimetic overcomes the resistance of latency III EBV (+) cells to p53-mediated apoptosis.

    Science.gov (United States)

    Pujals, A; Renouf, B; Robert, A; Chelouah, S; Hollville, E; Wiels, J

    2011-07-28

    P53 inactivation is often observed in Burkitt's lymphoma (BL) cells due to mutations in the p53 gene or overexpression of its negative regulator, murine double minute-2 (MDM2). This event is now considered an essential part of the oncogenic process. Epstein-Barr virus (EBV) is strongly associated with BL and is a cofactor in its development. We previously showed that nutlin-3, an antagonist of MDM2, activates the p53 pathway in BL cell lines harboring wild-type p53. However, nutlin-3 strongly induced apoptosis in EBV (-) or latency I EBV (+) cells, whereas latency III EBV (+) cells were much more resistant. We show here that this resistance to apoptosis is also observed in latency III EBV (+) lymphoblastoid cell lines. We also show that, in latency III EBV (+) cells, B-cell lymphona 2 (Bcl-2) is selectively overproduced and interacts with Bcl-2-associated X protein (Bax), preventing its activation. The treatment of these cells with the Bcl-2-homology domain 3 mimetic ABT-737 disrupts Bax/Bcl-2 interaction and allows Bax activation by nutlin-3. Furthermore, treatment with these two compounds strongly induces apoptosis. Thus, a combination of Mdm2 and Bcl-2 inhibitors might be a useful anti-cancer strategy for diseases linked to EBV infection.

  12. Insulin Mimetic Effects of Zinc Compounds%锌化合物的拟胰岛素活性

    Institute of Scientific and Technical Information of China (English)

    胡代娣; 周荫庄; 屠淑洁

    2006-01-01

      Zinc compounds have insulinomimetic activity. Zinc compounds has been proposed as candidates for treating of diabetes mellitus, because it has been found to have relatively high insulin-mimetic properties and it is thought to be less toxic than other metal elements. The design and application of the synthesis of the zinc complexes have received considerable attention during the last decade. The research progress on the studies of its biological activities and structure-activity relationship in this field have been introduced in this paper.%  锌化合物具有拟胰岛素活性。鉴于锌化合物的生物兼容性好、价态稳定及体内、外作用明显等特点,故有望研制出高效低毒的用于治疗糖尿病候选药物。目前该领域新化合物的合成、结构表征及构效关系的研究甚为活跃,对多种不同配位模式锌配合物相关性质的研究已取得可喜成果。本文介绍了近年来该领域的研究进展。

  13. Furoxans (1,2,5-Oxadiazole-N-Oxides) as Novel NO Mimetic Neuroprotective and Procognitive Agents

    Energy Technology Data Exchange (ETDEWEB)

    Schiefer, Isaac T.; VandeVrede, Lawren; Fa; , Mauro; Arancio, Ottavio; Thatcher, Gregory R.J. (Columbia); (UIC)

    2012-08-31

    Furoxans (1,2,5-oxadiazole-N-oxides) are thiol-bioactivated NO-mimetics that have not hitherto been studied in the CNS. Incorporation of varied substituents adjacent to the furoxan ring system led to modulation of reactivity toward bioactivation, studied by HPLC-MS/MS analysis of reaction products. Attenuated reactivity unmasked the cytoprotective actions of NO in contrast to the cytotoxic actions of higher NO fluxes reported previously for furoxans. Neuroprotection was observed in primary neuronal cell cultures following oxygen glucose deprivation (OGD). Neuroprotective activity was observed to correlate with thiol-dependent bioactivation to produce NO{sub 2}{sup -}, but not with depletion of free thiol itself. Neuroprotection was abrogated upon cotreatment with a sGC inhibitor, ODQ, thus supporting activation of the NO/sGC/CREB signaling cascade by furoxans. Long-term potentiation (LTP), essential for learning and memory, has been shown to be potentiated by NO signaling, therefore, a peptidomimetic furoxan was tested in hippocampal slices treated with oligomeric amyloid-{beta} peptide (A{beta}) and was shown to restore synaptic function. The novel observation of furoxan activity of potential therapeutic use in the CNS warrants further studies.

  14. Induction of micronuclei by a new non-peptidic mimetic farnesyltransferase inhibitor RPR-115135: role of gene mutations.

    Science.gov (United States)

    Ottoboni, C; Crippa, A; Falugi, C; Russo, P

    2001-09-01

    To investigate the relationship between oncogene activation and induction of micronuclei by a new non-peptidic mimetic farnesyltransferase inhibitor, RPR-115135, two isogenic cell lines, human colon cancer line HCT-116, which harbors a K-ras mutation, and spontaneously immortalized human breast epithelial cell line MCF-10A, were utilized. HCT-116 cells were transfected with an empty control pCMV vector (clone CMV-2) or with a dominant negative mutated p53 transgene (clone Mu-p53-2) to disrupt p53 function. In both clones RPR-115135 induced a significant increase in the frequency of micronucleation at concentrations that did not affect cell membrane integrity. RPR-115135 produced a significant increase in the ratio of CREST+ to CREST- micronuclei. MCF-10A cells were stably transfected with either c-Ha-ras or c-erbB-2 or both H-ras + c-erbB-2. No induction of micronuclei was observed. No induction of micronuclei was reported in human lymphocytes and in primary spinal cells obtained from 7-day chick embryos. In conclusion, RPR-115135 acts as an aneugenic agent in a complex manner, dependent upon the complement of mutations in cell regulatory genes in tumour cells and this activity may be independent of ras genotype.

  15. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-02-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  16. Sera from children with autism induce autistic features which can be rescued with a CNTF small peptide mimetic in rats.

    Science.gov (United States)

    Kazim, Syed Faraz; Cardenas-Aguayo, Maria Del Carmen; Arif, Mohammad; Blanchard, Julie; Fayyaz, Fatima; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-01-01

    Autism is a neurodevelopmental disorder characterized clinically by impairments in social interaction and verbal and non-verbal communication skills as well as restricted interests and repetitive behavior. It has been hypothesized that altered brain environment including an imbalance in neurotrophic support during early development contributes to the pathophysiology of autism. Here we report that sera from children with autism which exhibited abnormal levels of various neurotrophic factors induced cell death and oxidative stress in mouse primary cultured cortical neurons. The effects of sera from autistic children were rescued by pre-treatment with a ciliary neurotrophic factor (CNTF) small peptide mimetic, Peptide 6 (P6), which was previously shown to exert its neuroprotective effect by modulating CNTF/JAK/STAT pathway and LIF signaling and by enhancing brain derived neurotrophic factor (BDNF) expression. Similar neurotoxic effects and neuroinflammation were observed in young Wistar rats injected intracerebroventricularly with autism sera within hours after birth. The autism sera injected rats demonstrated developmental delay and deficits in social communication, interaction, and novelty. Both the neurobiological changes and the behavioral autistic phenotype were ameliorated by P6 treatment. These findings implicate the involvement of neurotrophic imbalance during early brain development in the pathophysiology of autism and a proof of principle of P6 as a potential therapeutic strategy for autism.

  17. Ochre Bathing of the Bearded Vulture: A Bio-Mimetic Model for Early Humans towards Smell Prevention and Health

    Directory of Open Access Journals (Sweden)

    Helmut Tributsch

    2016-01-01

    Full Text Available Since primordial times, vultures have been competing with man for animal carcasses. One of these vultures, the once widespread bearded vulture ( Gypaetus barbatus , has the habit of bathing its polluted feathers and skin in red iron oxide - ochre - tainted water puddles. Why? Primitive man may have tried to find out and may have discovered its advantages. Red ochre, which has accompanied human rituals and everyday life for more than 100,000 years, is not just a simple red paint for decoration or a symbol for blood. As modern experiments demonstrate, it is active in sunlight producing aggressive chemical species. They can kill viruses and bacteria and convert smelly organic substances into volatile neutral carbon dioxide gas. In this way, ochre can in sunlight sterilize and clean the skin to provide health and comfort and make it scentless, a definitive advantage for nomadic meat hunters. This research thus also demonstrates a sanitary reason for the vulture’s habit of bathing in red ochre mud. Prehistoric people have therefore included ochre use into their rituals, especially into those in relation to birth and death. Significant ritual impulses during evolution of man may thus have developed bio-mimetically, inspired from the habits of a vulture. It is discussed how this health strategy could be developed to a modern standard helping to fight antibiotics-resistant bacteria in hospitals.

  18. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.

    Science.gov (United States)

    Wu, Hsiao-Mei; Lin, Ying-Hsiu; Yen, Tzu-Chi; Hsieh, Chia-Lung

    2016-01-01

    Lipid rafts are membrane nanodomains that facilitate important cell functions. Despite recent advances in identifying the biological significance of rafts, nature and regulation mechanism of rafts are largely unknown due to the difficulty of resolving dynamic molecular interaction of rafts at the nanoscale. Here, we investigate organization and single-molecule dynamics of rafts by monitoring lateral diffusion of single molecules in raft-containing reconstituted membranes supported on mica substrates. Using high-speed interferometric scattering (iSCAT) optical microscopy and small gold nanoparticles as labels, motion of single lipids is recorded via single-particle tracking (SPT) with nanometer spatial precision and microsecond temporal resolution. Processes of single molecules partitioning into and escaping from the raft-mimetic liquid-ordered (Lo) domains are directly visualized in a continuous manner with unprecedented clarity. Importantly, we observe subdiffusion of saturated lipids in the Lo domain in microsecond timescale, indicating the nanoscopic heterogeneous molecular arrangement of the Lo domain. Further analysis of the diffusion trajectory shows the presence of nano-subdomains of the Lo phase, as small as 10 nm, which transiently trap the lipids. Our results provide the first experimental evidence of non-uniform molecular organization of the Lo phase, giving a new view of how rafts recruit and confine molecules in cell membranes.

  19. Superoxide dismutase/catalase mimetic EUK-134 prevents diaphragm muscle weakness in monocrotalin-induced pulmonary hypertension

    Science.gov (United States)

    Tatebayashi, Daisuke; Lee, Jaesik; Westerblad, Håkan; Lanner, Johanna T.

    2017-01-01

    Patients with pulmonary hypertension (PH) suffer from inspiratory insufficiency, which has been associated with intrinsic contractile dysfunction in diaphragm muscle. Here, we examined the role of redox stress in PH-induced diaphragm weakness by using the novel antioxidant, EUK-134. Male Wistar rats were randomly divided into control (CNT), CNT + EUK-134 (CNT + EUK), monocrotaline-induced PH (PH), and PH + EUK groups. PH was induced by a single intraperitoneal injection of monocrotaline (60 mg/kg body weight). EUK-134 (3 mg/kg body weight/day), a cell permeable mimetic of superoxide dismutase (SOD) and catalase, was daily intraperitoneally administered starting one day after induction of PH. After four weeks, diaphragm muscles were excised for mechanical and biochemical analyses. There was a decrease in specific tetanic force in diaphragm bundles from the PH group, which was accompanied by increases in: protein expression of NADPH oxidase 2/gp91phox, SOD2, and catalase; 3-nitrotyrosine content and aggregation of actin; glutathione oxidation. Treatment with EUK-134 prevented the force decrease and the actin modifications in PH diaphragm bundles. These data show that redox stress plays a pivotal role in PH-induced diaphragm weakness. Thus, antioxidant treatment can be a promising strategy for PH patients with inspiratory failure. PMID:28152009

  20. A synthetic superoxide dismutase/catalase mimetic EUK-207 mitigates radiation dermatitis and promotes wound healing in irradiated rat skin.

    Science.gov (United States)

    Doctrow, Susan R; Lopez, Argelia; Schock, Ashley M; Duncan, Nathan E; Jourdan, Megan M; Olasz, Edit B; Moulder, John E; Fish, Brian L; Mäder, Marylou; Lazar, Jozef; Lazarova, Zelmira

    2013-04-01

    In the event of a radionuclear attack or nuclear accident, the skin would be the first barrier exposed to radiation, though skin injury can progress over days to years following exposure. Chronic oxidative stress has been implicated as being a potential contributor to the progression of delayed radiation-induced injury to skin and other organs. To examine the causative role of oxidative stress in delayed radiation-induced skin injury, including impaired wound healing, we tested a synthetic superoxide dismutase (SOD)/catalase mimetic, EUK-207, in a rat model of combined skin irradiation and wound injury. Administered systemically, beginning 48 hours after irradiation, EUK-207 mitigated radiation dermatitis, suppressed indicators of tissue oxidative stress, and enhanced wound healing. Evaluation of gene expression in irradiated skin at 30 days after exposure revealed a significant upregulation of several key genes involved in detoxication of reactive oxygen and nitrogen species. This gene expression pattern was primarily reversed by EUK-207 therapy. These results demonstrate that oxidative stress has a critical role in the progression of radiation-induced skin injury, and that the injury can be mitigated by appropriate antioxidant compounds administered 48 hours after exposure.

  1. Light-switched inhibitors of protein tyrosine phosphatase PTP1B based on phosphonocarbonyl phenylalanine as photoactive phosphotyrosine mimetic.

    Science.gov (United States)

    Wagner, Stefan; Schütz, Anja; Rademann, Jörg

    2015-06-15

    Phosphopeptide mimetics containing the 4-phosphonocarbonyl phenylalanine (pcF) as a photo-active phosphotyrosine isoster are developed as potent, light-switchable inhibitors of the protein tyrosine phosphatase PTP1B. The photo-active inhibitors 6-10 are derived from phosphopeptide substrates and are prepared from the suitably protected pcF building block 12 by Fmoc-based solid phase peptide synthesis. All pcF-containing peptides are moderate inhibitors of PTP1B with KI values between 10 and 50μM. Irradiation of the inhibitors at 365nm in the presence of the protein PTP1B amplify the inhibitory activity of pcF-peptides up to 120-fold, switching the KI values of the best inhibitors to the sub-micromolar range. Photo-activation of the inhibitors results in the formation of triplet intermediates of the benzoylphosphonate moiety, which deactivate PTP1B following an oxidative radical mechanism. Deactivation of PTP1B proceeds without covalent crosslinking of the protein target with the photo-switched inhibitors and can be reverted by subsequent addition of reducing agent dithiothreitol (DTT).

  2. East Coalinga polymer project: polymer comparisons. [California

    Energy Technology Data Exchange (ETDEWEB)

    Snell, G.

    1976-01-01

    Shell Oil Co. conducted a series of injection and filtration tests in the E. Colainga field, California, to determine the injection characteristics of biopolymer and polyacrylamides. The choice of Xanflood biopolymer was made in order to evaluate the relative merits of polymer flooding and waterflooding in the Temblor Zone II reservoir. Conclusions to the field injection tests were (1) Xanflood biopolymers maintain their mobility properties during these tests; (2) it is possible to remove unhydrated Xanflood biopolymer or unhydrated biopolymer and bacterial debris with DE Filtration without significant loss in biopolymer viscosity; (3) the introduction of an optimum level of shear in the biopolymer mixing process increases the mobility control available for a given concentration of polymer; (4) currently available commercial biopolymers cause well-bore impairment so that effective filtration of the polymer solution is required to maintain injectivity; (5) at test injection rates (33 bpd/ft), polyacrylamide loses most of its mobility control by shear degradation at the injection well perforations; (6) polyacrylamide can be delivered to the sand face without severe loss of viscosity; and (7) polyacrylamide will not impair the formation. (12 refs.)

  3. Precursor polymer compositions comprising polybenzimidazole

    Energy Technology Data Exchange (ETDEWEB)

    Klaehn, John R.; Peterson, Eric S.; Orme, Christopher J.

    2015-07-14

    Stable, high performance polymer compositions including polybenzimidazole (PBI) and a melamine-formaldehyde polymer, such as methylated, poly(melamine-co-formaldehyde), for forming structures such as films, fibers and bulky structures. The polymer compositions may be formed by combining polybenzimidazole with the melamine-formaldehyde polymer to form a precursor. The polybenzimidazole may be reacted and/or intertwined with the melamine-formaldehyde polymer to form the polymer composition. For example, a stable, free-standing film having a thickness of, for example, between about 5 .mu.m and about 30 .mu.m may be formed from the polymer composition. Such films may be used as gas separation membranes and may be submerged into water for extended periods without crazing and cracking. The polymer composition may also be used as a coating on substrates, such as metal and ceramics, or may be used for spinning fibers. Precursors for forming such polymer compositions are also disclosed.

  4. Ion channel mimetic membranes and silica nanotubes prepared from porous aluminum oxide templates

    Science.gov (United States)

    Mitchell, David Tanner

    Chapter 1 provides background information on the template synthesis of nanomaterials. The template synthesis method is examined with special attention to the use of membranes containing monodisperse cylindrical pores as templates. Several examples of the utility of template-synthesized nanomaterials are given. The production of one type of template membrane, nanopore alumina, is reviewed. Reviews of sol-gel and silane chemistry are also provided. In Chapter 2, a sol-gel template synthesis process is used to produce silica nanotubes within the pores of alumina templates. The nanotubes can be modified using a variety of chemistries, typically via a silanization process. Because the nanotubes are formed in a template, the interior and exterior surface can be modified independently. Modified nanotubes can be used for drug detoxification or as extractants for the removal of metal ions. The nanotube surface can also be biotinylated, which causes binding to avidinated surfaces. Composite microtubes of silica and various polymers are also prepared. Additionally, Au nanowires are shown to assemble with colloidal Au particles using dithiols as linkers. Chapter 3 describes the attachment of proteins onto template-synthesized silica nanotubes. The proteins are covalently linked via an aldehyde silane bridge that binds to pendant primary amino moieties on the protein. Protein-modified nanotubes function as highly specific extractants. Avidin-modified nanotubes extract biotin-coated Au nanoparticles from solution with high extraction efficiency. Immunoprotein-modified nanotubes extract the corresponding antibody from solution with high specificity. Antibody-modified nanotubes extract one enantiomer from a racemic mix. Enzymes, including drug detoxification enzymes, were also attached to the nanotubes and were shown to retain their catalytic activity. Immunoproteins on the outside of nanotubes can be used to direct nanotube binding, creating specific labeling agents. Chapter 4

  5. Jamming of Semiflexible Polymers

    Science.gov (United States)

    Hoy, Robert S.

    2017-02-01

    We study jamming in model freely rotating polymers as a function of chain length N and bond angle θ0. The volume fraction at jamming ϕJ(θ0) is minimal for rigid-rodlike chains (θ0=0 ), and increases monotonically with increasing θ0≤π /2 . In contrast to flexible polymers, marginally jammed states of freely rotating polymers are highly hypostatic, even when bond and angle constraints are accounted for. Large-aspect-ratio (small θ0) chains behave comparably to stiff fibers: resistance to large-scale bending plays a major role in their jamming phenomenology. Low-aspect-ratio (large θ0) chains behave more like flexible polymers, but still jam at much lower densities due to the presence of frozen-in three-body correlations corresponding to the fixed bond angles. Long-chain systems jam at lower ϕ and are more hypostatic at jamming than short-chain systems. Implications of these findings for polymer solidification are discussed.

  6. Modelling polymer draft gears

    Science.gov (United States)

    Wu, Qing; Yang, Xiangjian; Cole, Colin; Luo, Shihui

    2016-09-01

    This paper developed a new and simple approach to model polymer draft gears. Two types of polymer draft gears were modelled and compared with experimental data. Impact characteristics, in-train characteristics and frequency responses of these polymer draft gears were studied and compared with those of a friction draft gear. The impact simulations show that polymer draft gears can withstand higher impact speeds than the friction draft gear. Longitudinal train dynamics simulations show that polymer draft gears have significantly longer deflections than friction draft gears in normal train operations. The maximum draft gear working velocities are lower than 0.2 m/s, which are significantly lower than the impact velocities during shunting operations. Draft gears' in-train characteristics are similar to their static characteristics but are very different from their impact characteristics; this conclusion has also been reached from frequency response simulations. An analysis of gangway bridge plate failures was also conducted and it was found that they were caused by coupler angling behaviour and long draft gear deflections.

  7. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  8. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin....... Curiously, the therapeutic window of ribavirin was vastly improved in several of these polymers suggesting altered pharmacodynamics. The applicability of liver-targeting sugar moieties is likewise tested in a similarly methodical approach. The same technique of synthesis was applied with zidovudine to make...

  9. Nanostructured silicate polymer concrete

    Directory of Open Access Journals (Sweden)

    Figovskiy Oleg L'vovich

    2014-03-01

    Full Text Available It has been known that acid-resistant concretes on the liquid glass basis have high porosity (up to 18~20 %, low strength and insufficient water resistance. Significant increasing of silicate matrix strength and density was carried out by incorporation of special liquid organic alkali-soluble silicate additives, which block superficial pores and reduce concrete shrinkage deformation. It was demonstrated that introduction of tetrafurfuryloxisilane additive sharply increases strength, durability and shock resistance of silicate polymer concrete in aggressive media. The experiments showed, that the strength and density of silicate polymer concrete increase in case of decreasing liquid glass content. The authors obtained optimal content of silicate polymer concrete, which possesses increased strength, durability, density and crack-resistance. Diffusive permeability of concrete and its chemical resistance has been investigated in various corroding media.

  10. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  11. Polymer Photovoltaic Cells

    Institute of Scientific and Technical Information of China (English)

    Jianhui Hou; Chunhe Yang; Erjun Zhou; Chang He; Zhan'ao Tan; Youjun He; Yongfang Li

    2005-01-01

    @@ 1Introduction Polymer photovoltaic cells (PPVCs) have attracted much attention recently because of its easy fabrication, low cost and possibility to make flexible devices[1]. PPVC is composed of a conjugated polymer/C60blend layer (photosensitive layer) sandwiched between a transparent ITO electrode and a metal electrode.When a light through ITO electrode irradiates on the photosensitive layer, the photons with appropriate energy will be absorbed by the conjugated polymer (CP) and excitons (electron-hole pair) are produced. The excitons move to the interface of CP/C60 where the electrons transfer to the LUMO of C60 and holes leave on the HOMO of the CP. The separated electrons migrate through the C60 network to and are collected by the metal electrode, and the holes migrate through the CP network to and are collected by the ITO electrode, so that the photocurrent and photovoltage are attained.

  12. 'Stuffed' conducting polymers

    DEFF Research Database (Denmark)

    Winther-Jensen, Bjørn; Chen, Jun; West, Keld

    2005-01-01

    Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid. In the pres......Conducting polymers (CP) obtained by oxidative polymerization using iron(III) salts shrink when Fe(II) and the excess counter ions are washed out after polymerization. This phenomenon can be used to incorporate active molecules into the CP matrix via their addition to the wash liquid....... In the present work we demonstrate this principle on three different CP's: polypyrrole (PPy), poly-terthiophene (PTTh) and poly(3,4-ethylenedioxy thiophene) (PEDT), using ferrocene as a model molecule to be trapped in the polymer films. (c) 2005 Elsevier Ltd. All rights reserved....

  13. Active Polymer Gel Actuators

    Directory of Open Access Journals (Sweden)

    Shuji Hashimoto

    2010-01-01

    Full Text Available Many kinds of stimuli-responsive polymer and gels have been developed and applied to biomimetic actuators or artificial muscles. Electroactive polymers that change shape when stimulated electrically seem to be particularly promising. In all cases, however, the mechanical motion is driven by external stimuli, for example, reversing the direction of electric field. On the other hand, many living organisms can generate an autonomous motion without external driving stimuli like self-beating of heart muscles. Here we show a novel biomimetic gel actuator that can walk spontaneously with a wormlike motion without switching of external stimuli. The self-oscillating motion is produced by dissipating chemical energy of oscillating reaction. Although the gel is completely composed of synthetic polymer, it shows autonomous motion as if it were alive.

  14. Glycoalkaloids selectively permeabilize cholesterol containing biomembranes.

    NARCIS (Netherlands)

    Keukens, E.A.J.; Vrije, de T.; Jansen, L.A.M.; Boer, de H.; Janssen, M.; Kroon, de A.I.P.M.; Jongen, W.M.F.; Kruijff, de B.

    1996-01-01

    The effects of the glycoalkaloids α-solanine, α-chaconine and α-tomatine on different cell types were studied in order to investigate the membrane action of these compounds. Hemolysis of erythrocytes was compared to 6-carboxyfluorescein leakage from both ghosts and erythrocyte lipid vesicles, wherea

  15. The Electrical and Dynamical Properties of Biomembranes

    DEFF Research Database (Denmark)

    Mosgaard, Lars Dalskov

    into account the coupling between thermodynamical uctuations and the available heat reservoir. The next step is to combine the knowledge on lipid membranes subjected to an electrical eld with the knowledge on their relaxation behavior and use our understanding to attempt to re-evaluate the results of common......-dimensional layers are literally vital for the cell, as membranes work as catalysts for some of the main chemical reactions involved in cell survival and homeostasis and govern all communication between a cell and its surroundings. The focus of the work presented in this thesis is to understand how...... the physical properties of lipid membranes relate to the behavior and functional properties of biological membranes, with special attention to the role of biological membranes in nerve signal propagation. We start by exploring the properties of polar lipid membranes in order to tackle the problem...

  16. Tools for characterizing biomembranes : final LDRD report.

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Todd Michael; Stevens, Mark; Holland, Gregory P.; McIntyre, Sarah K.

    2007-10-01

    A suite of experimental nuclear magnetic resonance (NMR) spectroscopy tools were developed to investigate lipid structure and dynamics in model membrane systems. By utilizing both multinuclear and multidimensional NMR experiments a range of different intra- and inter-molecular contacts were probed within the membranes. Examples on pure single component lipid membranes and on the canonical raft forming mixture of DOPC/SM/Chol are presented. A unique gel phase pretransition in SM was also identified and characterized using these NMR techniques. In addition molecular dynamics into the hydrogen bonding network unique to sphingomyelin containing membranes were evaluated as a function of temperature, and are discussed.

  17. Response of biomembrane domains to external stimuli

    Science.gov (United States)

    Urbancic, Iztok

    To enrich our knowledge about membrane domains, new measurement techniques with extended spatial and temporal windows are being vigorously developed by combining various approaches. Following such efforts of the scientific community, we set up fluorescence microspectroscopy (FMS), bridging two well established methods: fluorescence microscopy, which enables imaging of the samples with spatial resolution down to 200 nm, and fluorescence spectroscopy that provides molecular information of the environment at nanometer and nanosecond scale. The combined method therefore allows us to localize this type of information with the precision suitable for studying various cellular structures. Faced with weak available fluorescence signals, we have put considerable efforts into optimization of measurement processes and analysis of the data. By introducing a novel acquisition scheme and by fitting the data with a mathematical model, we preserved the spectral resolution, characteristic for spectroscopic measurements of bulk samples, also at microscopic level. We have at the same time overcome the effects of photobleaching, which had previously considerably distorted the measured spectral lineshape of photosensitive dyes and consequently hindered the reliability of FMS. Our new approach has therefore greatly extended the range of applicable environmentally sensitive probes, which can now be designed to better accommodate the needs of each particular experiment. Moreover, photobleaching of fluorescence signal can now even be exploited to obtain new valuable information about molecular environment of the probes, as bleaching rates of certain probes also depend on physical and chemical properties of the local surroundings. In this manner we increased the number of available spatially localized spectral parameters, which becomes invaluable when investigating complex biological systems that can only be adequately characterized by several independent variables. Applying the developed method FMS to several model membrane systems as well as to living cells, we showed that we can reliably detect the differences in lipid phases and membrane domains upon changes of temperature or biochemical composition. A 1--3 nm spectral shift of probes NBD and Laurdan due to different local polarity was sufficient to clearly distinguish individual vesicles in gel, liquid ordered, or liquid disordered lipid phase that had been prepared from different lipid mixtures. The results were corroborated by observations of phase transition of individual liposomes from gel to liquid disordered phase upon controlled heating of the sample by a heating slide or by a focused infrared laser beam of optical tweezers. The spectral and spatial resolution of FMS were preserved also when observing more complex biological samples, such as mixtures of liposomes and cells, showing that our results were not affected by signals of autofluorescence and growth medium, which often obstruct other fluorescence measurements. The robustness of the method allowed us to identify the delivery mechanism of a cancerostatic drug into human breast cancer cells by lipid nanoparticles. Small spectral shifts of an environment-sensitive dye revealed that the membranes of drug-carrying liposomes fuse with the membranes of cancer cells, delivering the therapeutic substance into the target. Our findings pave the way towards new biomedical approaches for more efficient treatment of the gravest maladies of our time. Furthermore, we upgraded FMS by analyzing the polarization of emitted fluorescence, which is related to the orientational order of dyes' dipoles in the membrane and therefore also to molecular conformations of the probes. The combination of spectral and polarized detection enabled us to provide the first direct experimental evidence that some of the most widely used environment-sensitive membrane probes -- NBD-labelled phospholipids -- undertake various conformations that coexist at distances below optical spatial resolution. Developing a mathematical model, we additionally characterized these conformations and determined their relative portions. We found that they are greatly affected by high concentration of cholesterol, which forces the probes into a different conformation due to its rigid planar chemical structure that favors tight packing of neighboring molecules. (Abstract shortened by UMI.)

  18. Flexoelectricity in PZT Nanoribbons and Biomembranes

    Science.gov (United States)

    2015-01-09

    Princeton on several projects. We studied the electromechanical response of neuronal cells, energy harvesting using pyro-para-electricity and a new way of...producing PZT nanoribbons for energy harvesters . (a) Papers published in peer-reviewed journals (N/A for none) Enter List of papers submitted or...scholarships or fellowships for further studies in science, mathematics, engineering or technology fields: Student Metrics This section only applies to

  19. Electromechanical properties of biomembranes and nerves

    Science.gov (United States)

    Heimburg, T.; Blicher, A.; Mosgaard, L. D.; Zecchi, K.

    2014-12-01

    Lipid membranes are insulators and capacitors, which can be charged by an external electric field. This phenomenon plays an important role in the field of electrophysiology, for instance when describing nerve pulse conduction. Membranes are also made of polar molecules meaning that they contain molecules with permanent electrical dipole moments. Therefore, the properties of membranes are subject to changes in trans-membrane voltage. Vice versa, mechanical forces on membranes lead to changes in the membrane potential. Associated effects are flexoelectricity, piezoelectricity, and electrostriction. Lipid membranes can melt from an ordered to a disordered state. Due to the change of membrane dimensions associated with lipid membrane melting, electrical properties are linked to the melting transition. Melting of the membrane can induce changes in trans-membrane potential, and application of voltage can lead to a shift of the melting transition. Further, close to transitions membranes are very susceptible to piezoelectric phenomena. We discuss these phenomena in relation with the occurrence of lipid ion channels. Close to melting transitions, lipid membranes display step-wise ion conduction events, which are indistinguishable from protein ion channels. These channels display a voltage-dependent open probability. One finds asymmetric current-voltage relations of the pure membrane very similar to those found for various protein channels. This asymmetry falsely has been considered a criterion to distinguish lipid channels from protein channels. However, we show that the asymmetry can arise from the electromechanical properties of the lipid membrane itself. Finally, we discuss electromechanical behavior in connection with the electromechanical theory of nerve pulse transduction. It has been found experimentally that nerve pulses are related to changes in nerve thickness. Thus, during the nerve pulse a solitary mechanical pulse travels along the nerve. Due to electromechanical coupling it is unavoidable that this pulse generates a trans-membrane voltage. In the past, we have proposed that this electromechanical pulse is the origin of the action potential in nerves.

  20. Polymer Chemistry in High School.

    Science.gov (United States)

    Stucki, Roger

    1984-01-01

    Discusses why polymer chemistry should be added to the general chemistry curriculum and what topics are appropriate (listing traditional with related polymer topics). Also discusses when and how these topics should be taught. (JN)

  1. Composite solid polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Formato, Richard M. (Shrewsbury, MA); Kovar, Robert F. (Wrentham, MA); Osenar, Paul (Watertown, MA); Landrau, Nelson (Marlborough, MA); Rubin, Leslie S. (Newton, MA)

    2001-06-19

    The present invention relates to composite solid polymer electrolyte membranes (SPEMs) which include a porous polymer substrate interpenetrated with an ion-conducting material. SPEMs of the present invention are useful in electrochemical applications, including fuel cells and electrodialysis.

  2. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...

  3. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  4. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  5. Delocalization in polymer models

    CERN Document Server

    Jitomirskaya, S Yu; Stolz, G

    2003-01-01

    A polymer model is a one-dimensional Schroedinger operator composed of two finite building blocks. If the two associated transfer matrices commute, the corresponding energy is called critical. Such critical energies appear in physical models, an example being the widely studied random dimer model. Although the random models are known to have pure-point spectrum with exponentially localized eigenstates for almost every configuration of the polymers, the spreading of an initially localized wave packet is here proven to be at least diffusive for every configuration.

  6. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  7. Electrically Conducting Polymers.

    Science.gov (United States)

    1983-04-07

    polypyrrole, the oxidized polythiophene is also unstable in air. A rather different class of conducting polymers lies outside the scope of this review but...AD-A129 488 ELECTRICALLY CONDUCTING POLYNERS(U) IBM RESEARCH LAB / SAN JOSE CA W D GILL ET RL. 97 APR 83 TR-B UNCLASSIFIED F/G 7/3 N I Ihhhhhhhhhhhhl...00 Contract N00014-80-C-0779 Technical Report No. 8 *Electrically Conducting Polymers by W. D. Gill, T. C. Clarke, and G. B. Street Prepared for

  8. Nanoparticles from Renewable Polymers

    Science.gov (United States)

    Wurm, Frederik; Weiss, Clemens

    2014-07-01

    The use of polymers from natural resources can bring many benefits for novel polymeric nanoparticle systems. Such polymers have a variety of beneficial properties such as biodegradability and biocompatibility, they are readily available on large scale and at low cost. As the amount of fossil fuels decrease, their application becomes more interesting even if characterization is in many cases more challenging due to structural complexity, either by broad distribution of their molecular weights polysaccharides, polyesters, lignin) or by complex structure (proteins, lignin). This review summarizes different sources and methods for the preparation of biopolymer-based nanoparticle systems for various applications.

  9. Polymers at cryogenic temperatures

    CERN Document Server

    Fu, Shao-Yun

    2013-01-01

    Kalia and Fu's novel monograph covers cryogenic treatment, properties and applications of cryo-treated polymer materials. Written by numerous international experts, the twelve chapters in this book offer the reader a comprehensive picture of the latest findings and developments, as well as an outlook on the field. Cryogenic technology has seen remarkable progress in the past few years and especially cryogenic properties of polymers are attracting attention through new breakthroughs in space, superconducting, magnetic and electronic techniques. This book is a valuable resource for researchers, educators, engineers and graduate students in the field and at technical institutions.

  10. Molecular determinants of Smac mimetic induced degradation of cIAP1 and cIAP2.

    Science.gov (United States)

    Darding, M; Feltham, R; Tenev, T; Bianchi, K; Benetatos, C; Silke, J; Meier, P

    2011-08-01

    The inhibitors of apoptosis (IAP) proteins cIAP1 and cIAP2 have recently emerged as key ubiquitin-E3 ligases regulating innate immunity and cell survival. Much of our knowledge of these IAPs stems from studies using pharmacological inhibitors of IAPs, dubbed Smac mimetics (SMs). Although SMs stimulate auto-ubiquitylation and degradation of cIAPs, little is known about the molecular determinants through which SMs activate the E3 activities of cIAPs. In this study, we find that SM-induced rapid degradation of cIAPs requires binding to tumour necrosis factor (TNF) receptor-associated factor 2 (TRAF2). Moreover, our data reveal an unexpected difference between cIAP1 and cIAP2. Although SM-induced degradation of cIAP1 does not require cIAP2, degradation of cIAP2 critically depends on the presence of cIAP1. In addition, degradation of cIAP2 also requires the ability of the cIAP2 RING finger to dimerise and to bind to E2s. This has important implications because SM-mediated degradation of cIAP1 causes non-canonical activation of NF-κB, which results in the induction of cIAP2 gene expression. In the absence of cIAP1, de novo synthesised cIAP2 is resistant to the SM and suppresses TNFα killing. Furthermore, the cIAP2-MALT1 oncogene, which lacks cIAP2's RING, is resistant to SM treatment. The identification of mechanisms through which cancer cells resist SM treatment will help to improve combination therapies aimed at enhancing treatment response.

  11. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    Science.gov (United States)

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-03

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs.

  12. MLN2238 synergizes BH3 mimetic ABT-263 in castration-resistant prostate cancer cells by induction of NOXA.

    Science.gov (United States)

    Wei, Xinghua; Zhou, Ping; Lin, Xuanting; Lin, Yurong; Wu, Sifeng; Diao, Pengfei; Xie, Haiqing; Xie, Keji; Tang, Ping

    2014-10-01

    Patients undergoing androgen blockade therapy develop castration-resistant prostate cancer (CRPC), which is associated with Bcl-2 upregulation and results in disease progression and death. In recent years, promising therapeutic agents, such as the BH3-only mimetic ABT-263 and proteasome inhibitors, have been developed and widely evaluated against a broad spectrum of cancer types, including prostate cancer, alone or in combination with other chemotherapeutic agents. In this study, the antitumor efficacy of ABT-263 and MLN2238 were evaluated as single agents and in combination in four CRPC cell lines: PC3, C4-2B, C4-2, and DU145. The viability of the treated cells and markers of apoptosis were assayed. Protein-protein interactions were analyzed by co-immunoprecipitation in drug-treated cells. Lentivirus-mediated short hairpin RNA was used to knockdown Bax, Mcl-1, and NOXA expressions. We found that ABT-263 and MLN2238 alone exhibited a mild cytotoxicity, and in combination, they elicited a synergistic cytotoxic effect in CRPC cells. The cell apoptosis induced by the combination drug treatment was evidenced by enhanced caspase-3 and Poly (ADP-ribose) polymerase (PARP) cleavage, and annexin-V-positive staining was significantly depleted by Bax knockdown. MLN2238 treatment upregulated NOXA and Mcl-1 expression, leading NOXA/Mcl-1 complexes to disassociate Bak from its complexes with Mcl-1 and enhancing ABT263-triggered Bax activation. NOXA knockdown by short hairpin RNA significantly attenuated the cytotoxicity of ABT-263 and MLN2238 co-administration. In conclusion, MLN2238 and ABT-263 synergistically triggered apoptosis in CRPC cells by upregulating NOXA and activating Bax, indicating a promising therapeutic strategy for the treatment of CRPC.

  13. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  14. In vitro permeation and disposition of niacinamide in silicone and porcine skin of skin barrier-mimetic formulations.

    Science.gov (United States)

    Haque, Tasnuva; Lane, Majella E; Sil, Bruno C; Crowther, Jonathan M; Moore, David J

    2017-03-30

    Niacinamide (NIA) is an amide form of vitamin B3 which is used in cosmetic formulations to improve various skin conditions and it has also been shown to increase stratum corneum thickness following repeated application. In this study, three doses (5, 20 and 50μL per cm(2)) of two NIA containing oil-in-water skin barrier-mimetic formulations were evaluated in silicone membrane and porcine ear skin and compared with a commercial control formulation. Permeation studies were conducted over 24h in Franz cells and at the end of the experiment membranes were washed and niacinamide was extracted. For the three doses, retention or deposition of NIA was generally higher in porcine skin compared with silicone membrane, consistent with the hydrophilic nature of the active. Despite the control containing a higher amount of active, comparable amounts of NIA were deposited in skin for all formulations for all doses; total skin absorption values (permeation and retention) of NIA were also comparable across all formulations. For infinite (50μL) and finite (5μL) doses the absolute permeation of NIA from the control formulation was significantly higher in porcine skin compared with both test formulations. This likely reflects differences in formulation components and/or presence of skin penetration enhancers in the formulations. Higher permeation for the 50 and 20μL dose was also evident in porcine skin compared with silicone membrane but the opposite is the case for the finite dose. The findings point to the critical importance of dose and occlusion when evaluating topical formulations in vitro and also the likelihood of exaggerated effects of excipients on permeation at infinite and pseudo-finite dose applications.

  15. Effects of transmembrane potential and pH gradient on the cytochrome c-promoted fusion of mitochondrial mimetic membranes.

    Science.gov (United States)

    Kawai, Cintia; Pessoto, Felipe S; Graves, Catharine V; Carmona-Ribeiro, Ana Maria; Nantes, Iseli L

    2013-08-01

    The present study investigated the effects of ΔΨ and ΔpH (pH gradient) on the interaction of cytochrome c with a mitochondrial mimetic membrane composed of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and cardiolipin (CL) leading to vesicle fusion. ΔpH generated by lowered bulk pH (pH(out)) of PCPECL liposomes, with an internal pH (pH(in)) of 8.0, favored vesicle fusion with a titration sigmoidal profile (pK(a) ~ 6.9). Conversely, ΔpH generated by enhanced pH(in) of PCPECL at a pH(out) of 6.0 favored the fusion of vesicles with a linear profile. We did not observe a significant amount of liposome fusion when ΔpH was generated by lowered pH(in) at a pH(out) of 8.0. At bulk acidic pH, ΔΨ generated by Na⁺ gradient also favored cyt c-promoted vesicle fusion. At acidic and alkaline pH(out), the presence of ΔpH and ΔΨ did not affect cytochrome c binding affinity measured by pyrene quenching. Therefore, cytochrome c-mediated PC/PE/CL vesicle fusion is dependent of ionization of the protein site L (acidic pH) and the presence of transmembrane potential. The effect of transmembrane potential is probably related to the generation of defects on the lipid bilayer. These results are consistent with previous reports showing that cytochrome c release prior to the dissipation of the ΔΨ(M) blocks inner mitochondrial membrane fusion during apoptosis.

  16. Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.

    Science.gov (United States)

    Cejas, Mabel A; Kinney, William A; Chen, Cailin; Vinter, Jeremy G; Almond, Harold R; Balss, Karin M; Maryanoff, Cynthia A; Schmidt, Ute; Breslav, Michael; Mahan, Andrew; Lacy, Eilyn; Maryanoff, Bruce E

    2008-06-24

    Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b > 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.

  17. A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Igor Kraev

    Full Text Available The key roles played by the neural cell adhesion molecule (NCAM in plasticity and cognition underscore this membrane protein as a relevant target to develop cognitive-enhancing drugs. However, NCAM is a structurally and functionally complex molecule with multiple domains engaged in a variety of actions, which raise the question as to which NCAM fragment should be targeted. Synthetic NCAM mimetic peptides that mimic NCAM sequences relevant to specific interactions allow identification of the most promising targets within NCAM. Recently, a decapeptide ligand of NCAM--plannexin, which mimics a homophilic trans-binding site in Ig2 and binds to Ig3--was developed as a tool for studying NCAM's trans-interactions. In this study, we investigated plannexin's ability to affect neural plasticity and memory formation. We found that plannexin facilitates neurite outgrowth in primary hippocampal neuronal cultures and improves spatial learning in rats, both under basal conditions and under conditions involving a deficit in a key plasticity-promoting posttranslational modification of NCAM, its polysialylation. We also found that plannexin enhances excitatory synaptic transmission in hippocampal area CA1, where it also increases the number of mushroom spines and the synaptic expression of the AMPAR subunits GluA1 and GluA2. Altogether, these findings provide compelling evidence that plannexin is an important facilitator of synaptic functional, structural and molecular plasticity in the hippocampal CA1 region, highlighting the fragment in NCAM's Ig3 module where plannexin binds as a novel target for the development of cognition-enhancing drugs.

  18. Allosteric activation of protein phosphatase 2C by D-chiro-inositol-galactosamine, a putative mediator mimetic of insulin action.

    Science.gov (United States)

    Brautigan, D L; Brown, M; Grindrod, S; Chinigo, G; Kruszewski, A; Lukasik, S M; Bushweller, J H; Horal, M; Keller, S; Tamura, S; Heimark, D B; Price, J; Larner, A N; Larner, J

    2005-08-23

    Insulin-stimulated glucose disposal in skeletal muscle proceeds predominantly through a nonoxidative pathway with glycogen synthase as a rate-limiting enzyme, yet the mechanisms for insulin activation of glycogen synthase are not understood despite years of investigation. Isolation of putative insulin second messengers from beef liver yielded a pseudo-disaccharide consisting of pinitol (3-O-methyl-d-chiro-inositol) beta-1,4 linked to galactosamine chelated with Mn(2+) (called INS2). Here we show that chemically synthesized INS2 has biological activity that significantly enhances insulin reduction of hyperglycemia in streptozotocin diabetic rats. We used computer modeling to dock INS2 onto the known three-dimensional crystal structure of protein phosphatase 2C (PP2C). Modeling and FlexX/CScore energy minimization predicted a unique favorable site on PP2C for INS2 in a surface cleft adjacent to the catalytic center. Binding of INS2 is predicted to involve formation of multiple H-bonds, including one with residue Asp163. Wild-type PP2C activity assayed with a phosphopeptide substrate was potently stimulated in a dose-dependent manner by INS2. In contrast, the D163A mutant of PP2C was not activated by INS2. The D163A mutant and wild-type PP2C in the absence of INS2 had the same Mn(2+)-dependent phosphatase activity with p-nitrophenyl phosphate as a substrate, showing that this mutation did not disrupt the catalytic site. We propose that INS2 allosterically activates PP2C, fulfilling the role of a putative mediator mimetic of insulin signaling to promote protein dephosphorylation and metabolic responses.

  19. Structure and orientation of bovine lactoferrampin in the mimetic bacterial membrane as revealed by solid-state NMR and molecular dynamics simulation.

    Science.gov (United States)

    Tsutsumi, Atsushi; Javkhlantugs, Namsrai; Kira, Atsushi; Umeyama, Masako; Kawamura, Izuru; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2012-10-17

    Bovine lactoferrampin (LFampinB) is a newly discovered antimicrobial peptide found in the N1-domain of bovine lactoferrin (268-284), and consists of 17 amino-acid residues. It is important to determine the orientation and structure of LFampinB in bacterial membranes to reveal the antimicrobial mechanism. We therefore performed (13)C and (31)P NMR, (13)C-(31)P rotational echo double resonance (REDOR), potassium ion-selective electrode, and quartz-crystal microbalance measurements for LFampinB with mimetic bacterial membrane and molecular-dynamics simulation in acidic membrane. (31)P NMR results indicated that LFampinB caused a defect in mimetic bacterial membranes. Ion-selective electrode measurements showed that ion leakage occurred for the mimetic bacterial membrane containing cardiolipin. Quartz-crystal microbalance measurements revealed that LFampinB had greater affinity to acidic phospholipids than that to neutral phospholipids. (13)C DD-MAS and static NMR spectra showed that LFampinB formed an α-helix in the N-terminus region and tilted 45° to the bilayer normal. REDOR dephasing patterns between carbonyl carbon nucleus in LFampinB and phosphorus nuclei in lipid phosphate groups were measured by (13)C-(31)P REDOR and the results revealed that LFampinB is located in the interfacial region of the membrane. Molecular-dynamics simulation showed the tilt angle to be 42° and the rotation angle to be 92.5° for Leu(3), which are in excellent agreement with the experimental values.

  20. Age-related decrease in the mitochondrial sirtuin deacetylase Sirt3 expression associated with ROS accumulation in the auditory cortex of the mimetic aging rat model.

    Directory of Open Access Journals (Sweden)

    Lingling Zeng

    Full Text Available Age-related dysfunction of the central auditory system, also known as central presbycusis, can affect speech perception and sound localization. Understanding the pathogenesis of central presbycusis will help to develop novel approaches to prevent or treat this disease. In this study, the mechanisms of central presbycusis were investigated using a mimetic aging rat model induced by chronic injection of D-galactose (D-Gal. We showed that malondialdehyde (MDA levels were increased and manganese superoxide dismutase (SOD2 activity was reduced in the auditory cortex in natural aging and D-Gal-induced mimetic aging rats. Furthermore, mitochondrial DNA (mtDNA 4834 bp deletion, abnormal ultrastructure and cell apoptosis in the auditory cortex were also found in natural aging and D-Gal mimetic aging rats. Sirt3, a mitochondrial NAD+-dependent deacetylase, has been shown to play a crucial role in controlling cellular reactive oxygen species (ROS homeostasis. However, the role of Sirt3 in the pathogenesis of age-related central auditory cortex deterioration is still unclear. Here, we showed that decreased Sirt3 expression might be associated with increased SOD2 acetylation, which negatively regulates SOD2 activity. Oxidative stress accumulation was likely the result of low SOD2 activity and a decline in ROS clearance. Our findings indicate that Sirt3 might play an essential role, via the mediation of SOD2, in central presbycusis and that manipulation of Sirt3 expression might provide a new approach to combat aging and oxidative stress-related diseases.

  1. The apolipoprotein-AI mimetic peptide L4F at a modest dose does not attenuate weight gain, inflammation, or atherosclerosis in LDLR-null mice.

    Directory of Open Access Journals (Sweden)

    Michelle M Averill

    Full Text Available High density lipoprotein (HDL cholesterol levels are inversely related to cardiovascular disease risk and associated with a reduced risk of type 2 diabetes. Apolipoprotein A-I (apoA-I; major HDL protein mimetics have been reported to reduce atherosclerosis and decrease adiposity. This study investigated the effect of L4F mimetic peptide and apoA-I overexpression on weight gain, insulin resistance, and atherosclerosis in an LDL receptor deficient (Ldlr-/- model fed a high fat high sucrose with cholesterol (HFHSC diet.Studies in differentiated 3T3-L1 adipocytes tested whether L4F could inhibit palmitate-induced adipocyte inflammation. In vivo studies used male Ldlr-/- mice fed a HFHSC diet for 12 weeks and were injected daily with L4F (100 µg/mouse subcutaneously during the last 8 weeks. Wild-type and apoA-I overexpressing Ldlr-/- mice were fed HFHSC diet for 16 weeks.Neither L4F administration nor apoA-I overexpression affected weight gain, total plasma cholesterol or triglycerides in our studies. While pre-treatment of 3T3-L1 adipocytes with either L4F or HDL abolished palmitate-induced cytokine expression in vitro, L4F treatment did not affect circulating or adipose tissue inflammatory markers in vivo. Neither L4F administration nor apoA-I overexpression affected glucose tolerance. ApoA-I overexpression significantly reduced atherosclerotic lesion size, yet L4F treatment did not affect atherosclerosis.Our results suggest that neither L4F (100 µg/day/mouse nor apoA-I overexpression affects adiposity or insulin resistance in this model. We also were unable to confirm a reduction in atherosclerosis with L4F in our particular model. Further studies on the effect of apoA-I mimetics on atherosclerosis and insulin resistance in a variety of dietary contexts are warranted.

  2. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  3. Polymer-solvent molecular compounds

    CERN Document Server

    Guenet, Jean-Michel

    2010-01-01

    Crystallisable polymers represent a large share of the polymers used for manufacturing a wide variety of objects, and consequently have received continuous attention from scientists these past 60 years. Molecular compounds from crystallisable polymers, particularly from synthetic polymers, are receiving growing interest due to their potential application in the making of new materials such as multiporous membranes capable of capturing large particles as well as small pollutant molecules. The present book gives a detailed description of these promising systems. The first chapter

  4. Age-related decline of the cytochrome c oxidase subunit expression in the auditory cortex of the mimetic aging rat model associated with the common deletion.

    Science.gov (United States)

    Zhong, Yi; Hu, Yujuan; Peng, Wei; Sun, Yu; Yang, Yang; Zhao, Xueyan; Huang, Xiang; Zhang, Honglian; Kong, Weijia

    2012-12-01

    The age-related deterioration in the central auditory system is well known to impair the abilities of sound localization and speech perception. However, the mechanisms involved in the age-related central auditory deficiency remain unclear. Previous studies have demonstrated that mitochondrial DNA (mtDNA) deletions accumulated with age in the auditory system. Also, a cytochrome c oxidase (CcO) deficiency has been proposed to be a causal factor in the age-related decline in mitochondrial respiratory activity. This study was designed to explore the changes of CcO activity and to investigate the possible relationship between the mtDNA common deletion (CD) and CcO activity as well as the mRNA expression of CcO subunits in the auditory cortex of D-galactose (D-gal)-induced mimetic aging rats at different ages. Moreover, we explored whether peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM) were involved in the changes of nuclear- and mitochondrial-encoded CcO subunits in the auditory cortex during aging. Our data demonstrated that d-gal-induced mimetic aging rats exhibited an accelerated accumulation of the CD and a gradual decline in the CcO activity in the auditory cortex during the aging process. The reduction in the CcO activity was correlated with the level of CD load in the auditory cortex. The mRNA expression of CcO subunit III was reduced significantly with age in the d-gal-induced mimetic aging rats. In contrast, the decline in the mRNA expression of subunits I and IV was relatively minor. Additionally, significant increases in the mRNA and protein levels of PGC-1α, NRF-1 and TFAM were observed in the auditory cortex of D-gal-induced mimetic aging rats with aging. These findings suggested that the accelerated accumulation of the CD in the auditory cortex may induce a substantial decline in CcO subunit III and lead to a significant decline in the Cc

  5. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    Science.gov (United States)

    Palha, A.; Gerritsma, M.

    2017-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured triangular grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular triangular grids.

  6. A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations

    CERN Document Server

    Palha, Artur

    2016-01-01

    In this work we present a mimetic spectral element discretization for the 2D incompressible Navier-Stokes equations that in the limit of vanishing dissipation exactly preserves mass, kinetic energy, enstrophy and total vorticity on unstructured grids. The essential ingredients to achieve this are: (i) a velocity-vorticity formulation in rotational form, (ii) a sequence of function spaces capable of exactly satisfying the divergence free nature of the velocity field, and (iii) a conserving time integrator. Proofs for the exact discrete conservation properties are presented together with numerical test cases on highly irregular grids.

  7. Structure-activity relationship of benzodiazepine derivatives as LXXLL peptide mimetics that inhibit the interaction of vitamin D receptor with coactivators.

    Science.gov (United States)

    Mita, Yusuke; Dodo, Kosuke; Noguchi-Yachide, Tomomi; Hashimoto, Yuichi; Ishikawa, Minoru

    2013-02-15

    Suppression of vitamin D receptor (VDR)-mediated transcription is expected to be of therapeutic value in Paget's disease of bone. It is known that interaction between VDR and coactivators is necessary for VDR transactivation, and the interaction occurs when VDR recognizes an LXXLL peptide motif of coactivators. We previously reported that benzodiazepine derivatives designed as LXXLL peptide mimetics inhibited the interaction of VDR and coactivators, and reduced VDR transcription. Here, we investigated the structure-activity relationship of 7- and 8-substituted benzodiazepine derivatives, and established that the amino group at the 8-position is critical for the inhibitory activity.

  8. Adsorption theory for polydisperse polymers.

    NARCIS (Netherlands)

    Roefs, S.P.F.M.; Scheutjens, J.M.H.M.; Leermakers, F.A.M.

    1994-01-01

    Most polymers are polydisperse. We extend the self-consistent field polymer adsorption theory due to Scheutjens and Fleer to account for an arbitrary polymer molecular weight distribution with a cutoff chain length Nmax. In this paper, the treatment is restricted to homopolymers. For this case a ver

  9. Dynamics of Polaron at Polymer/Polymer Interface

    Institute of Scientific and Technical Information of China (English)

    DI Bing; MENG Yan; AN Zhong; LI You-Cheng

    2008-01-01

    The migration of a polaron at polymer/polymer interface is believed to be of fundamental importance for the transport and light-emitting properties of conjugated polymer-based light emitting diodes.Based on the onedimensional tight-binding Su-Schrieffer-Heeger(SSH)model,we have investigated polaron dynamics in a onedimensional polymer/polymer system by using a nonadiabatic evolution method.In particular,we focus on how a polaron migrates through the conjugated polymer/polymer interface in the presence of external electric field.The results show that the migration of polaron at the interface depends sensitively on the hopping integrals,the potential barrier induced by the energy mismatch,and the strength of applied electric field which increases the polaron kinetic energy.

  10. Primordial polymer perturbations

    Energy Technology Data Exchange (ETDEWEB)

    Seahra, Sanjeev S.; Husain, Viqar [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3 (Canada); Brown, Iain A. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Hossain, Golam Mortuza, E-mail: sseahra@unb.ca, E-mail: ibrown@astro.uio.no, E-mail: ghossain@iiserkol.ac.in, E-mail: vhusain@unb.ca [Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, P.O. Krishi Viswavidyalaya, Nadia 741 252, WB (India)

    2012-10-01

    We study the generation of primordial fluctuations in pure de Sitter inflation where the quantum scalar field dynamics are governed by polymer (not Schroedinger) quantization. This quantization scheme is related to, but distinct from, the structures employed in Loop Quantum Gravity; and it modifies standard results above a polymer energy scale M{sub *}. We recover the scale invariant Harrison Zel'dovich spectrum for modes that have wavelengths bigger than M{sub *}{sup −1} at the start of inflation. The primordial spectrum for modes with initial wavelengths smaller than M{sub *}{sup −1} exhibits oscillations superimposed on the standard result. The amplitude of these oscillations is proportional to the ratio of the inflationary Hubble parameter H to the polymer energy scale. For reasonable choices of M{sub *}, we find that polymer effects are likely unobservable in CMB angular power spectra due to cosmic variance uncertainty, but future probes of baryon acoustic oscillations may be able to directly constrain the ratio H/M{sub *}.

  11. Glass Fibre Reinforced Polymers

    NARCIS (Netherlands)

    Nikolaou, N.; Karagianni, L.; Sarakiniatti, M.V.

    2014-01-01

    This "designers' manual" is made during the TIDO-course AR0533 Innovation & Sustainability. Fibre reinforced polymers (FRPs) have been used in many applications over the years, from new construction to retrofitting. They are lightweight, no-corrosive, exhibit high specific strength and specific sti

  12. Semi-metallic polymers

    DEFF Research Database (Denmark)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui

    2014-01-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report th...... a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.......Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report...... that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being...

  13. Segmented conjugated polymers

    Indian Academy of Sciences (India)

    G Padmanaban; S Ramakrishnan

    2003-08-01

    Segmented conjugated polymers, wherein the conjugation is randomly truncated by varying lengths of non-conjugated segments, form an interesting class of polymers as they not only represent systems of varying stiffness, but also ones where the backbone can be construed as being made up of chromophores of varying excitation energies. The latter feature, especially when the chromophores are fluorescent, like in MEHPPV, makes these systems particularly interesting from the photophysics point of view. Segmented MEHPPV- samples, where x represents the mole fraction of conjugated segments, were prepared by a novel approach that utilizes a suitable precursor wherein selective elimination of one of the two eliminatable groups is affected; the uneliminated units serve as conjugation truncations. Control of the composition x of the precursor therefore permits one to prepare segmented MEHPPV- samples with varying levels of conjugation (elimination). Using fluorescence spectroscopy, we have seen that even in single isolated polymer chains, energy migration from the shorter (higher energy) chromophores to longer (lower energy) ones occurs – the extent of which depends on the level of conjugation. Further, by varying the solvent composition, it is seen that the extent of energy transfer and the formation of poorly emissive inter-chromophore excitons are greatly enhanced with increasing amounts of non-solvent. A typical S-shaped curve represents the variation of emission yields as a function of composition suggestive of a cooperative collapse of the polymer coil, reminiscent of conformational transitions seen in biological macromolecules.

  14. Cyclic polymers from alkynes

    Science.gov (United States)

    Roland, Christopher D.; Li, Hong; Abboud, Khalil A.; Wagener, Kenneth B.; Veige, Adam S.

    2016-08-01

    Cyclic polymers have dramatically different physical properties compared with those of their equivalent linear counterparts. However, the exploration of cyclic polymers is limited because of the inherent challenges associated with their synthesis. Conjugated linear polyacetylenes are important materials for electrical conductivity, paramagnetic susceptibility, optical nonlinearity, photoconductivity, gas permeability, liquid crystallinity and chain helicity. However, their cyclic analogues are unknown, and therefore the ability to examine how a cyclic topology influences their properties is currently not possible. We have solved this challenge and now report a tungsten catalyst supported by a tetraanionic pincer ligand that can rapidly polymerize alkynes to form conjugated macrocycles in high yield. The catalyst works by tethering the ends of the polymer to the metal centre to overcome the inherent entropic penalty of cyclization. Gel-permeation chromatography, dynamic and static light scattering, viscometry and chemical tests are all consistent with theoretical predictions and provide unambiguous confirmation of a cyclic topology. Access to a wide variety of new cyclic polymers is now possible by simply choosing the appropriate alkyne monomer.

  15. Conformational properties of polymers

    Indian Academy of Sciences (India)

    A R Singh; D Giri; S Kumar

    2008-08-01

    We discuss exact enumeration technique and its application to polymers and biopolymers. Using this method one can obtain phase diagram in thermodynamic limit. The method works quite well in describing the outcomes of single molecule force spectroscopy results where finite size effects play a crucial role.

  16. Transferases in Polymer Chemistry

    NARCIS (Netherlands)

    van der Vlist, Jeroen; Loos, Katja; Palmans, ARA; Heise, A

    2010-01-01

    Transferases are enzymes that catalyze reactions in which a group is transferred from one compound to another. This makes these enzymes ideal catalysts for polymerization reactions. In nature, transferases are responsible for the synthesis of many important natural macromolecules. In synthetic polym

  17. Ion Implantation of Polymers

    DEFF Research Database (Denmark)

    Popok, Vladimir

    2012-01-01

    are discussed. Related to that, the effects of radiothermolysis, degassing and carbonisation are considered. Specificity of depth distributions of implanted into polymers impurities is analysed and the case of high-fluence implantation is emphasised. Within rather broad topic of ion bombardment, the focus...

  18. Frictional properties of confined polymers

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, Vladimir N; Persson, Bo N J

    2008-01-01

    We present molecular dynamics friction calculations for confined hydrocarbon solids with molecular lengths from 20 to 1400 carbon atoms. Two cases are considered: a) polymer sliding against a hard substrate, and b) polymer sliding on polymer. In the first setup the shear stresses are relatively...... independent of molecular length. For polymer sliding on polymer the friction is significantly larger, and dependent on the molecular chain length. In both cases, the shear stresses are proportional to the squeezing pressure and finite at zero load, indicating an adhesional contribution to the friction force...

  19. Gel polymer electrolytes for batteries

    Science.gov (United States)

    Balsara, Nitash Pervez; Eitouni, Hany Basam; Gur, Ilan; Singh, Mohit; Hudson, William

    2014-11-18

    Nanostructured gel polymer electrolytes that have both high ionic conductivity and high mechanical strength are disclosed. The electrolytes have at least two domains--one domain contains an ionically-conductive gel polymer and the other domain contains a rigid polymer that provides structure for the electrolyte. The domains are formed by block copolymers. The first block provides a polymer matrix that may or may not be conductive on by itself, but that can soak up a liquid electrolyte, thereby making a gel. An exemplary nanostructured gel polymer electrolyte has an ionic conductivity of at least 1.times.10.sup.-4 S cm.sup.-1 at 25.degree. C.

  20. POLYMER ELECTROLYTE MEMBRANE FUEL CELLS

    DEFF Research Database (Denmark)

    2001-01-01

    A method for preparing polybenzimidazole or polybenzimidazole blend membranes and fabricating gas diffusion electrodes and membrane-electrode assemblies is provided for a high temperature polymer electrolyte membrane fuel cell. Blend polymer electrolyte membranes based on PBI and various...... thermoplastic polymers for high temperature polymer electrolyte fuel cells have also been developed. Miscible blends are used for solution casting of polymer membranes (solid electrolytes). High conductivity and enhanced mechanical strength were obtained for the blend polymer solid electrolytes...... electrolyte membrane by hot-press. The fuel cell can operate at temperatures up to at least 200 °C with hydrogen-rich fuel containing high ratios of carbon monoxide such as 3 vol% carbon monoxide or more, compared to the carbon monoxide tolerance of 10-20 ppm level for Nafion$m(3)-based polymer electrolyte...

  1. Adsorption and flocculation by polymers and polymer mixtures.

    Science.gov (United States)

    Gregory, John; Barany, Sandor

    2011-11-14

    Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including 'electrostatic patch' attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of 'site blocking'.

  2. Inhibition of bacterial DD-peptidases (penicillin-binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids.

    Science.gov (United States)

    Dzhekieva, Liudmila; Kumar, Ish; Pratt, R F

    2012-04-03

    The DD-peptidases or penicillin-binding proteins (PBPs) catalyze the final steps of bacterial peptidoglycan biosynthesis and are inhibited by the β-lactam antibiotics. There is at present a question of whether the active site structure and activity of these enzymes is the same in the solubilized (truncated) DD-peptidase constructs employed in crystallographic and kinetics studies as in membrane-bound holoenzymes. Recent experiments with peptidoglycan-mimetic boronic acids have suggested that these transition state analogue-generating inhibitors may be able to induce reactive conformations of these enzymes and thus inhibit strongly. We have now, therefore, measured the dissociation constants of peptidoglycan-mimetic boronic acids from Escherichia coli and Bacillus subtilis PBPs in membrane preparations and, in the former case, in vivo, by means of competition experiments with the fluorescent penicillin Bocillin Fl. The experiments showed that the boronic acids bound measurably (K(i) DD-peptidase inhibitors are more or less effective in vivo than in homogeneous solution.

  3. Methanol extract ofDesmodium gangeticumDC root mimetic post-conditioning effect in isolated perfused rat heart by stimulating muscarinic receptors

    Institute of Scientific and Technical Information of China (English)

    Gino A Kurian; Jose Paddikkala

    2012-01-01

    Objective:To evaluate pharmacological mimetic action of herbal extractDesmodium gangeticum (DG) roots on ischemia reperfusion injury.Methods:With the help of Langendroff perfusion technique, ischemic post condition (POC) mimetic action of DG methanol root extract was evaluated and compared by using standard drugs that acts as muscarinic receptor agonist and antagonist, namely acetylcholine (Ach) and atropine (Atr) respectively in an isolated rat heart. Results:The physiological parameters like left ventricular developed pressure, end diastolic pressure and working index of isolated rat heart showed significant recovery in DG root extract administrated rat heart, similar to the recovery by POC. Kymogram results showed muscarinic receptor agonist like action for DG methanol root extract, confirmed in rat heart by muscarnic receptor agonist (acetylcholine) and anatoginst (atropine). Administration of DG root extract prior to reperfusion showed better antioxidant status in myocardial tissue homogenate and mitochondrial, complemented by the levels of cardiac specific marker proteins in myocardial tissue and perfusate. Even though DG methanol root extract mimics its action similar to that of Ach, the myocardial protection mediated by the extract was superior to Ach, due to the presence of antioxidants in the crude extract.Conclusions: DG methanol root extract provides myocardial protection towards IRI by stimulating muscarinic receptors.

  4. Reduced expression of Connexin26 and its DNA promoter hypermethylation in the inner ear of mimetic aging rats induced by d-galactose.

    Science.gov (United States)

    Wu, Xia; Wang, Yanjun; Sun, Yu; Chen, Sen; Zhang, Shuai; Shen, Ling; Huang, Xiang; Lin, Xi; Kong, Weijia

    2014-09-26

    Connexin26 (Cx26), one of the major protein subunits forming gap junctions (GJs), is important in maintaining homeostasis in the inner ear and normal hearing. Cx26 mutation is one of the most common causes for inherited nonsyndromic deafness, but the relationship between Cx26 and presbycusis is unknown. Our study aimed at exploring the expression and the aberrant methylation of the promoter region of Cx26 gene in the cochlea of inner ear mimetic aging rats. We applied a mimetic aging of inner ear rat model with mtDNA common deletion by d-gal injection for 8weeks. Real-time RT-PCR and Western blot of rat inner ear tissue indicated that the Cx26 expression decreased in the d-gal group. Further bisulfite sequencing analysis revealed that the methylation status of the promoter region of Cx26 gene in the d-gal group was higher than that in control group. These results indicated that the decrease of Cx26 expression might contribute to the development of presbycusis and the hypermethylation of promoter region of GJB2 might be associated with the Cx26 downregulation.

  5. Morphometric comparisons of plant-mimetic juvenile fish associated with plant debris observed in the coastal subtropical waters around Kuchierabu-jima Island, southern Japan

    Science.gov (United States)

    2016-01-01

    The general morphological shape of plant-resembling fish and plant parts were compared using a geometric morphometrics approach. Three plant-mimetic fish species, Lobotes surinamensis (Lobotidae), Platax orbicularis (Ephippidae) and Canthidermis maculata (Balistidae), were compared during their early developmental stages with accompanying plant debris (i.e., leaves of several taxa) in the coastal subtropical waters around Kuchierabu-jima Island, closely facing the Kuroshio Current. The degree of similarity shared between the plant parts and co-occurring fish species was quantified, however fish remained morphologically distinct from their plant models. Such similarities were corroborated by analysis of covariance and linear discriminant analysis, in which relative body areas of fish were strongly related to plant models. Our results strengthen the paradigm that morphological clues can lead to ecological evidence to allow predictions of behavioural and habitat choice by mimetic fish, according to the degree of similarity shared with their respective models. The resemblance to plant parts detected in the three fish species may provide fitness advantages via convergent evolutionary effects. PMID:27547571

  6. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4+ T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Jonathan Richard

    2016-01-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes a progressive depletion of CD4+ T cells. Despite its importance for HIV-1 pathogenesis, the precise mechanisms underlying CD4+ T-cell depletion remain incompletely understood. Here we make the surprising observation that antibody-dependent cell-mediated cytotoxicity (ADCC mediates the death of uninfected bystander CD4+ T cells in cultures of HIV-1-infected cells. While HIV-1-infected cells are protected from ADCC by the action of the viral Vpu and Nef proteins, uninfected bystander CD4+T cells bind gp120 shed from productively infected cells and are efficiently recognized by ADCC-mediating antibodies. Thus, gp120 shedding represents a viral mechanism to divert ADCC responses towards uninfected bystander CD4+ T cells. Importantly, CD4-mimetic molecules redirect ADCC responses from uninfected bystander cells to HIV-1-infected cells; therefore, CD4-mimetic compounds might have therapeutic utility in new strategies aimed at specifically eliminating HIV-1-infected cells.

  7. Identification of antiviral mimetic peptides with interferon α-2b-like activity from a random peptide library using a novel functional biopanning method

    Institute of Scientific and Technical Information of China (English)

    Qi ZHANG; Gang BAI; Jia-qi CHEN; Wang TIAN; Yu CAO; Peng-wei PAN; Chao WANG

    2008-01-01

    Aim: To screen for interferon (IFN) α-2b mimetic peptides with antiviral activity. Methods: Selecting IFN receptor-binding peptides from a phage-display heptapeptide library using a novel functional biopanning method. This method was developed to identify peptides with activity against vesicular stomatitis virus (VSV) inducing cytopathic effects on WISH cells. Results: Sixteen positive clones were obtained after 3 rounds of functional selection. Ten clones were picked from these positive clones according to the results of phage ELISA and were sequenced. The amino acid sequences homologous to IFNα-2b were defined by residues AB loop 31-37, BC loop 68-74, C helix 93-99, CD loop 106-112, D helix 115-121, DE loop 132-138, and E helix 143-161. Two of the peptides, designated clones T3 and T9, aligned with the IFNAR2-binding domains (AB loop and E helix), were synthe-sized and designated as IR-7 and KP-7, respectively. Both KP-7 and IR-7 were found to compete with GFP/IFNtα-2b for receptor binding and mimicked the antivi-ral activity of IFNα-2b cooperatively. Conclusion: Two IFNα-2b mimetic peptides with antiviral activity were derived from a phage-display heptapeptide library using a novel functional selection method.

  8. [small beta]-Turn mimetic-based stabilizers of protein-protein interactions for the study of the non-canonical roles of leucyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Kim, Chanwoo; Jung, Jinjoo; Thanh Tung, Truong;

    2016-01-01

    in the nutrient-dependent mTORC1 signalling pathway. Western blot analysis of phosphorylated S6K1 as well as FRET-based imaging confirmed that 5c3,9 stabilizes the direct interaction between LRS and RagD and activates mTORC1 in live cells under leucine-deprived conditions. Thus, 5c3,9 can be used as a new......For the systematic perturbation of protein-protein interactions, we designed and synthesized tetra-substituted hexahydro-4H-pyrazino[2,1-c][1,2,4]triazine-4,7(6H)-diones as [small beta]-turn mimetics. We then devised a new synthetic route to obtain [small beta]-turn mimetic scaffolds via tandem N......-acyliminium cyclization and constructed a 162-member library of tetra-substituted pyrazinotriazinediones with an average purity of 90% using a solid-phase parallel synthesis platform. Each library member was subjected to ELISA-based modulator screening for the LRS-RagD interaction, which plays a pivotal role...

  9. A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal–icosahedral and cubed-sphere grids

    Directory of Open Access Journals (Sweden)

    J. Thuburn

    2014-05-01

    Full Text Available A new algorithm is presented for the solution of the shallow water equations on quasi-uniform spherical grids. It combines a mimetic finite volume spatial discretization with a Crank–Nicolson time discretization of fast waves and an accurate and conservative forward-in-time advection scheme for mass and potential vorticity (PV. The algorithm is implemented and tested on two families of grids: hexagonal–icosahedral Voronoi grids, and modified equiangular cubed-sphere grids. Results of a variety of tests are presented, including convergence of the discrete scalar Laplacian and Coriolis operators, advection, solid body rotation, flow over an isolated mountain, and a barotropically unstable jet. The results confirm a number of desirable properties for which the scheme was designed: exact mass conservation, very good available energy and potential enstrophy conservation, consistent mass, PV and tracer transport, and good preservation of balance including vanishing ∇ × ∇, steady geostrophic modes, and accurate PV advection. The scheme is stable for large wave Courant numbers and advective Courant numbers up to about 1. In the most idealized tests the overall accuracy of the scheme appears to be limited by the accuracy of the Coriolis and other mimetic spatial operators, particularly on the cubed-sphere grid. On the hexagonal grid there is no evidence for damaging effects of computational Rossby modes, despite attempts to force them explicitly.

  10. Significant in vivo anti-inflammatory activity of Pytren4Q-Mn a superoxide dismutase 2 (SOD2 mimetic scorpiand-like Mn (II complex.

    Directory of Open Access Journals (Sweden)

    Carolina Serena

    Full Text Available The clinical use of purified SOD enzymes has strong limitations due to their large molecular size, high production cost and immunogenicity. These limitations could be compensated by using instead synthetic SOD mimetic compounds of low molecular weight.We have recently reported that two SOD mimetic compounds, the Mn(II complexes of the polyamines Pytren2Q and Pytren4Q, displayed high antioxidant activity in bacteria and yeast. Since frequently molecules with antioxidant properties or free-radical scavengers also have anti-inflammatory properties we have assessed the anti-inflammatory potential of Pytren2Q and Pytren4Q Mn(II complexes, in cultured macrophages and in a murine model of inflammation, by measuring the degree of protection they could provide against the cellular injury produced by lipopolisacharide, a bacterial endotoxin.In this report we show that the Mn(II complex of Pytren4Q but not that of Pytren2Q effectively protected human cultured THP-1 macrophages and whole mice from the inflammatory effects produced by LPS. These results obtained with two molecules that are isomers highlight the importance of gathering experimental data from animal models of disease in assessing the potential of candidate molecules.The effective anti-inflammatory activity of the Mn(II complex of Pytren4Q in addition to its low toxicity, water solubility and ease of production would suggest it is worth taking into consideration for future pharmacological studies.

  11. Influence of different spacer arms on Mimetic Ligand™ A2P and B14 membranes for human IgG purification.

    Science.gov (United States)

    Boi, Cristiana; Dimartino, Simone; Hofer, Stefan; Horak, Jeannie; Williams, Sharon; Sarti, Giulio C; Lindner, Wolfgang

    2011-06-01

    Microporous membranes are an attractive alternative to circumvent the typical drawbacks associated to bead-based chromatography. In particular, the present work intends to evaluate different affinity membranes for antibody capture, to be used as an alternative to Protein A resins. To this aim, two Mimetic Ligands™ A2P and B14, were coupled onto different epoxide and azide group activated membrane supports using different spacer arms and immobilization chemistries. The spacer chemistries investigated were 1,2-diaminoethane (2LP), 3,6-dioxa-1,8-octanedithiol (DES) and [1,2,3] triazole (TRZ). These new mimetic membrane materials were investigated by static and by dynamic binding capacity studies, using pure polyclonal human immunoglobulin G (IgG) solutions as well as a real cell culture supernatant containing monoclonal IgG(1). The best results were obtained by combining the new B14 ligand with a TRZ-spacer and an improved Epoxy 2 membrane support material. The new B14-TRZ-Epoxy 2 membrane adsorbent provided binding capacities of approximately 3.1mg/mL, besides (i) a good selectivity towards IgG, (ii) high IgG recoveries of above 90%, (iii) a high Pluronic-F68 tolerance and (iv) no B14-ligand leakage under harsh cleaning-in-place conditions (0.6M sodium hydroxide). Furthermore, foreseeable improvements in binding capacity will promote the implementation of membrane adsorbers in antibody manufacturing.

  12. Highly stable hexacoordinated nonoxidovanadium(IV) complexes of sterically constrained ligands: syntheses, structure, and study of antiproliferative and insulin mimetic activity.

    Science.gov (United States)

    Dash, Subhashree P; Pasayat, Sagarika; Bhakat, Saswati; Roy, Satabdi; Dinda, Rupam; Tiekink, Edward R T; Mukhopadhyay, Subhadip; Bhutia, Sujit K; Hardikar, Manasi R; Joshi, Bimba N; Patil, Yogesh P; Nethaji, M

    2013-12-16

    Three highly stable, hexacoordinated nonoxidovanadium(IV), V(IV)(L)2, complexes (1-3) have been isolated and structurally characterized with tridentate aroylhydrazonates containing ONO donor atoms. All the complexes are stable in the open air in the solid state as well as in solution, a phenomenon rarely observed in nonoxidovanadium(IV) complexes. The complexes have good solubility in organic solvents, permitting electrochemical and various spectroscopic investigations. The existence of nonoxidovanadium(IV) complexes was confirmed by elemental analysis, ESI mass spectroscopy, cyclic voltammetry, EPR, and magnetic susceptibility measurements. X-ray crystallography showed the N3O3 donor set to define a trigonal prismatic geometry in each case. All the complexes show in vitro insulin mimetic activity against insulin responsive L6 myoblast cells, with complex 3 being the most potent, which is comparable to insulin at the complex concentration of 4 μM, while the others have moderate insulin mimetic activity. In addition, the in vitro antiproliferative activity of complexes 1-3 against the HeLa cell line was assayed. The cytotoxicity of the complexes is affected by the various functional groups attached to the bezoylhydrazone derivative and 2 showed considerable antiproliferative activity compared to the most commonly used chemotherapeutic drugs.

  13. Design, Synthesis, and Validation of a β-Turn Mimetic Library Targeting Protein–Protein and Peptide–Receptor Interactions

    Science.gov (United States)

    Whitby, Landon R.; Ando, Yoshio; Setola, Vincent; Vogt, Peter K.; Roth, Bryan L.; Boger, Dale L.

    2011-01-01

    The design and synthesis of a β-turn mimetic library as a key component of a small molecule library targeting the major recognition motifs involved in protein–protein interactions is described. Analysis of a geometric characterization of 10,245 β-turns in the protein data bank (PDB) suggested that trans-pyrrolidine-3,4-dicarboxamide could serve as an effective and synthetically accessible library template. This was confirmed by initially screening select compounds against a series of peptide-activated GPCRs that recognize a β-turn structure in their endogenous ligands. This validation study was highlighted by identification of both nonbasic and basic small molecules with high affinities (Ki = 390 nM and 23 nM, respectively) for the κ-opioid receptor (KOR). Consistent with the screening capabilities of collaborators and following the design validation, the complete library was assembled as 210 mixtures of 20 compounds, providing a total of 4,200 compounds designed to mimic all possible permutations of 3 of the 4 residues in a naturally occurring β-turn. Unique to the design and because of the C2 symmetry of the template, a typical 20 × 20 × 20-mix (8,000 compounds prepared as 400 mixtures of 20 compounds) needed to represent 20 variations in the side chains of three amino acid residues reduces to a 210 × 20-mix, thereby simplifying the library synthesis and subsequent screening. The library was prepared using a solution-phase synthetic protocol with liquid–liquid or liquid–solid extractions for purification and conducted on a scale that insures its long-term availability for screening campaigns. Screening the library against the human opioid receptors (KOR, MOR, and DOR) identified not only the activity of library members expected to mimic the opioid receptor peptide ligands, but also additional side chain combinations that provided enhanced receptor binding selectivities (>100-fold) and affinities (as low as Ki = 80 nM for KOR). A key insight to

  14. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  15. EGFR-targeted TRAIL and a Smac mimetic synergize to overcome apoptosis resistance in KRAS mutant colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Yvonne Möller

    Full Text Available TRAIL is a death receptor ligand that induces cell death preferentially in tumor cells. Recombinant soluble TRAIL, however, performs poorly as an anti-cancer therapeutic because oligomerization is required for potent biological activity. We previously generated a diabody format of tumor-targeted TRAIL termed Db(αEGFR-scTRAIL, comprising single-stranded TRAIL molecules (scTRAIL and the variable domains of a humanized variant of the EGFR blocking antibody Cetuximab. Here we define the bioactivity of Db(αEGFR-scTRAIL with regard to both EGFR inhibition and TRAIL receptor activation in 3D cultures of Caco-2 colorectal cancer cells, which express wild-type K-Ras. Compared with conventional 2D cultures, Caco-2 cells displayed strongly enhanced sensitivity toward Db(αEGFR-scTRAIL in these 3D cultures. We show that the antibody moiety of Db(αEGFR-scTRAIL not only efficiently competed with ligand-induced EGFR function, but also determined the apoptotic response by specifically directing Db(αEGFR-scTRAIL to EGFR-positive cells. To address how aberrantly activated K-Ras, which leads to Cetuximab resistance, affects Db(αEGFR-scTRAIL sensitivity, we generated stable Caco-2tet cells inducibly expressing oncogenic K-Ras(G12V. In the presence of doxycycline, these cells showed increased resistance to Db(αEGFR-scTRAIL, associated with the elevated expression of the anti-apoptotic proteins cIAP2, Bcl-xL and FlipS. Co-treatment of cells with the Smac mimetic SM83 restored the Db(αEGFR-scTRAIL-induced apoptotic response. Importantly, this synergy between Db(αEGFR-scTRAIL and SM83 also translated to 3D cultures of oncogenic K-Ras expressing HCT-116 and LoVo colorectal cancer cells. Our findings thus support the notion that Db(αEGFR-scTRAIL therapy in combination with apoptosis-sensitizing agents may be promising for the treatment of EGFR-positive colorectal cancers, independently of their KRAS status.

  16. Photogenerating work from polymers

    Directory of Open Access Journals (Sweden)

    Hilmar Koerner

    2008-07-01

    Full Text Available The ability to control the creation of mechanical work remotely, with high speed and spatial precision, over long distances, offers many intriguing possibilities. Recent developments in photoresponsive polymers and nanocomposite concepts are at the heart of these future devices. Whether driving direct conformational changes, initiating reversible chemical reactions to release stored strain, or converting a photon to a local temperature increase, combinations of photoactive units, nanoparticles, ordered mesophases, and polymeric networks are providing an expansive array of photoresponsive polymer options for mechanical devices. Framing the typically geometry-specific observations into an applied engineering vocabulary will ultimately define the role of these materials in future actuator applications, ranging from microfluidic valves in medical devices to optically controlled mirrors in displays.

  17. How do polymers degrade?

    Science.gov (United States)

    Lyu, Suping

    2011-03-01

    Materials derived from agricultural products such as cellulose, starch, polylactide, etc. are more sustainable and environmentally benign than those derived from petroleum. However, applications of these polymers are limited by their processing properties, chemical and thermal stabilities. For example, polyethylene terephthalate fabrics last for many years under normal use conditions, but polylactide fabrics cannot due to chemical degradation. There are two primary mechanisms through which these polymers degrade: via hydrolysis and via oxidation. Both of these two mechanisms are related to combined factors such as monomer chemistry, chain configuration, chain mobility, crystallinity, and permeation to water and oxygen, and product geometry. In this talk, we will discuss how these materials degrade and how the degradation depends on these factors under application conditions. Both experimental studies and mathematical modeling will be presented.

  18. Semiconducting polymers: the Third Generation.

    Science.gov (United States)

    Heeger, Alan J

    2010-07-01

    There has been remarkable progress in the science and technology of semiconducting polymers during the past decade. The field has evolved from the early work on polyacetylene (the First Generation material) to a proper focus on soluble and processible polymers and co-polymers. The soluble poly(alkylthiophenes) and the soluble PPVs are perhaps the most important examples of the Second Generation of semiconducting polymers. Third Generation semiconducting polymers have more complex molecular structures with more atoms in the repeat unit. Important examples include the highly ordered and crystalline PDTTT and the ever-growing class of donor-acceptor co-polymers that has emerged in the past few years. Examples of the latter include the bithiophene-acceptor co-polymers pioneered by Konarka and the polycarbazole-acceptor co-polymers pioneered by Leclerc and colleagues. In this tutorial review, I will summarize progress in the basic physics, the materials science, the device science and the device performance with emphasis on the following recent studies of Third Generation semiconducting polymers: stable semiconducting polymers; self-assembly of bulk heterojunction (BHJ) materials by spontaneous phase separation; bulk heterojunction solar cells with internal quantum efficiency approaching 100%; high detectivity photodetectors fabricated from BHJ materials.

  19. Electrochemical polymer electrolyte membranes

    CERN Document Server

    Fang, Jianhua; Wilkinson, David P

    2015-01-01

    Electrochemical Polymer Electrolyte Membranes covers PEMs from fundamentals to applications, describing their structure, properties, characterization, synthesis, and use in electrochemical energy storage and solar energy conversion technologies. Featuring chapters authored by leading experts from academia and industry, this authoritative text: Discusses cutting-edge methodologies in PEM material selection and fabricationPoints out important challenges in developing PEMs and recommends mitigation strategies to improve PEM performanceAnalyzes the cur

  20. Conducting Thermoset Polymers.

    Science.gov (United States)

    2007-11-02

    polymers conducting. The acetylene-terminated Schiff base and acetylene-terminated polythiophene monomers were first cured, then doped with iodine... Schiff base thermoset was implanted with high energy argon ions using a commercial ion implanter. Electron spin resonance, photoluminescence, and...photoabsorption data suggest that polarons can form in the doped and undoped forms of the acetylene-terminated Schiff base and polythiophene thermoset

  1. Dynamics of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, U. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Energieverfahrenstechnik

    1996-11-01

    Neutron scattering from amorphous polymers allows to switch from incoherent to coherent scattering in the same substance. The power of the tool for the study of the picosecond dynamics of disordered matter is illustrated for polybutadiene, polycarbonate and polystyrene. The results suggest a mixture of sound waves and localized modes, strongly interacting with each other, in the picosecond range. (author) 8 figs., tabs., 39 refs.

  2. Advanced Polymer Network Structures

    Science.gov (United States)

    2016-02-01

    Std. Z39.18 Approved for public release; distribution is unlimited. iii Contents List of Figures iv List of Tables v 1. Introduction 1 2...unlimited. v black and blue lines correspond to the single network composed of the first (system 10) and second networks (system 11), respectively...aggregation also contributes significantly to the tensile behavior, where the H- and comb - polymers with long spikes have a considerably higher

  3. Photogenerating work from polymers

    OpenAIRE

    Hilmar Koerner; White, Timothy J.; Nelson V. Tabiryan; Timothy J. Bunning; Vaia, Richard A.

    2008-01-01

    The ability to control the creation of mechanical work remotely, with high speed and spatial precision, over long distances, offers many intriguing possibilities. Recent developments in photoresponsive polymers and nanocomposite concepts are at the heart of these future devices. Whether driving direct conformational changes, initiating reversible chemical reactions to release stored strain, or converting a photon to a local temperature increase, combinations of photoactive units, nanoparticle...

  4. CLASSIFICATION OF BIODEGRADABLE POLYMERS

    Directory of Open Access Journals (Sweden)

    I. I. Karpunin

    2015-01-01

    Full Text Available The executed investigations have made it possible to ascertain that a morphological structure of starch granules mainly determine technological peculiarities of starch isolation from raw material, its modification and its later use. Morphological structure of starch granules primarily depends on type of plant starch-containing raw material which has been used for its isolation. Class of raw material exerts a strong impact on the shape and size of the granules. Linear “light” amylose chains and “heavy” amylopectin branch chains form a starch granule ultrastructure. X-ray research has proved that starch granules are characterized by presence of interlacing amorphous and crystalline regions. In this case polymer orientation using stretching of the obtained end product influences on its physical and mechanical  indices which are increasing due to polymer orientation. For the purpose of packaging orientation of polymer films can solve such important problems as significant improvement of operational properties, creation of  thermosetting film materials, improvement of qualitative indices of the recycled film.Results of the conducted research have proved the fact that it is necessary to make changes in technology in order to increase biological degradability of the recycled packaging made from polymers and improve physical and mechanical indices. In this regard film production technology presupposes usage of such substances as stark and others which are characterized by rather large presence of branch chains of molecules and interlacing amorphous and crystalline regions. Such approach makes it possible to obtain after-use package which is strong and quickly degradable by micro-organisms.

  5. Polymer Stretching by Turbulence

    CERN Document Server

    Chertkov, M

    2000-01-01

    The stretching of a polymer chain by a large scale chaotic flow is considered. The steady state which emerges as a balance of the turbulent stretching and anharmonic resistance of the chain is quantitatively described, i.e. the dependency on the flow parameters (Lyapunov exponent statistics) and the chain characteristics (the number of beads and the inter-bead elastic potential) is made explicit. Implications for the drag reduction theory are discussed.

  6. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  7. Conjugated Polymer Solar Cells

    Science.gov (United States)

    2006-05-01

    oxygen since their EPR and conductivity data indicated the presence of unpaired charges. On the other hand, intramolecular CT complexes have recently...been reported for polythiophene [2], where weak CT occurs from a polymer unit cell to the covalently bonded acceptor molecule. Nevertheless, it was...intracavity optical doubler (532 nm), diode lasers (670, 810 nm) and light emitting diodes (490, 630 nm). Measurements were conducted for pump intensity 0.1

  8. Synthesis of Energetic Polymers.

    Science.gov (United States)

    1981-10-15

    50 system is a flowable oil at room temperature. The 75/25 mol% BAMO/THF is comparable in melting point to PEG 4000 (mp 550C). Although THF is a...conversion whereas THF reached a steady state of 85% after 38 hours. Based on the amount of monomers remaining, the final polymer composition was...elastomeric binders for use in propellant and explosive compositions . The copolymerization of 3,3-bis(azidomethyl) oxetane (BAMO) with tetrahydrofuran

  9. Solution Processing - Rodlike Polymers

    Science.gov (United States)

    1979-08-01

    side it necessary and identify by block number) Para-ordered Polymers High Modulus Fibers and Films Polybenzobisoxazoles Polybenzobisthiazoles 20...considerations important in solution processing are considered, with special emphasis on the dry-jet wet spinning process used to form fibers . Pertinent...Company, Summit, N.J. iii TABLE OF CONTENTS 1. INTRODUCTION ................ .......................... .. 1 2. REMARKS ON DRY-JET WET SPUN FIBER

  10. Scratch behaviors in polymers

    Science.gov (United States)

    Xiang, Chen

    2000-10-01

    As part of a large effort toward the fundamental understanding of scratch behaviors in polymeric materials, studies were carried out on a broad range of polymers, with an emphasis on automotive thermoplastic olefins (TPOs). Two types of scratch tests were performed in this research, i.e., Ford constant load and instrumented progressive load scratch tests. A scratch model proposed by Hamilton and Goodman was applied to understand the fundamental mechanics of the scratch process. Several characterization techniques were used to investigate the scratch damage mechanisms in polymers. Both testing results and the scratch model analysis indicate that certain rigidity in polymers is essential to give good scratch resistance. Fundamental understanding of the scratching process in terms of basic material characteristics such as Young's modulus, yield stress, tensile strength, friction coefficient, scratch hardness, penetration recovery and fracture toughness are discussed. Scratch damage investigation, on both surface and subsurface, shows that shear yielding is the main cause of the plastics flow scratch pattern, while tensile tear on the surface and shear induced fracture on the subsurface are the main damage mechanisms in the fracture scratch pattern. This study explains why automotive TPOs are susceptible to scratch under the current scratch test practiced in automotive industry. Shear deformation and fracture behavior in model TPOs are also studied using the Iosipescu shear test. Iosipescu shear deformation in terms of shear stress-strain curves of model TPOs is obtained experimentally. Shear fracture process and damage mechanisms in TPOs are also demonstrated and revealed. Further studies on the scratch damage in TPOs based on the roles of additives and fillers in the scratch behavior are addressed. The effects of phase morphology and toughening mechanisms on scratch behavior in TPOs are also discussed. This research has resulted in an increased understanding of the

  11. Knots in polymers

    Indian Academy of Sciences (India)

    Yacov Kantov

    2005-06-01

    Knots and topological entanglements play an important role in the statistical mechanics of polymers. While topological entanglement is a global property, it is possible to study the size of a knotted region both numerically and analytically. It can be shown that long-range repulsive interactions, as well as entropy favor small knots in dilute systems. However, in dense systems and at the -point in two dimensions the uncontracted knot configuration is the most likely.

  12. Sedimentation of Knotted Polymers

    CERN Document Server

    Piili, Joonas; Kaski, Kimmo; Linna, Riku

    2012-01-01

    We investigate the sedimentation of knotted polymers by means of the stochastic rotation dynamics, a molecular dynamics algorithm which takes hydrodynamics fully into account. We show that the sedimentation coefficient s, related to the terminal velocity of the knotted polymers, increases linearly with the average crossing number n_c of the corresponding ideal knot. To the best of our knowledge, this provides the first direct computational confirmation of this relation, postulated on the basis of experiments in "The effect of ionic conditions on the conformations of supercoiled DNA. I. sedimentation analysis" by Rybenkov et al., for the case of sedimentation. Such a relation was previously shown to hold with simulations for knot electrophoresis. We also show that there is an accurate linear dependence of s on the inverse of the radius of gyration R_g^-1, more specifically with the inverse of the R_g component that is perpendicular to the direction along which the polymer sediments. Intriguingly, the linear de...

  13. Frustrated polymer crystal structures

    Science.gov (United States)

    Lotz, B.; Strasbourg, 67083

    1997-03-01

    Several crystal structures or polymorphs of chiral or achiral polymers and biopolymers with three fold conformation of the helix have been found to conform to a common and -with one exception(Puterman, M. et al, J. Pol. Sci., Pol. Phys. Ed., 15, 805 (1977))- hitherto unsuspected packing scheme. The trigonal unit-cell contains three isochiral helices; the azimuthal setting of one helix differs significantly from that of the other two, leading to a so-called frustrated packing scheme, in which the environment of conformationally identical helices differs. Two variants of the frustrated scheme are analyzed. Similarities with frustrated two dimensional magnetic systems are underlined. Various examples of frustration in polymer crystallography are illustrated via the elucidation or reinterpretation of crystal phases or polymorphs of polyolefins, polyesters, cellulose derivatives and polypeptides. Structural manifestations (including AFM evidence) and morphological consequences of frustration are presented, which help diagnose the existence of this original packing of polymers.(Work done with L. Cartier, D. Dorset, S. Kopp, T. Okihara, M. Schumacher, W. Stocker.)

  14. Semi-metallic polymers

    Science.gov (United States)

    Bubnova, Olga; Khan, Zia Ullah; Wang, Hui; Braun, Slawomir; Evans, Drew R.; Fabretto, Manrico; Hojati-Talemi, Pejman; Dagnelund, Daniel; Arlin, Jean-Baptiste; Geerts, Yves H.; Desbief, Simon; Breiby, Dag W.; Andreasen, Jens W.; Lazzaroni, Roberto; Chen, Weimin M.; Zozoulenko, Igor; Fahlman, Mats; Murphy, Peter J.; Berggren, Magnus; Crispin, Xavier

    2014-02-01

    Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.

  15. Hyperbranched Polymer-Based Electrolyte for Lithium Polymer Batteries

    Institute of Scientific and Technical Information of China (English)

    Takahito Itoh

    2005-01-01

    @@ 1Introduction Solid polymer electrolytes have attracted much attention as electrolyte materials for all solid-state recharge able lithium batteries, and poly ( ethylene oxide) ( PEO)-based polymer electrolytes are among the most intensively studied systems[1-3]. Hyperbranched polymers have unique properties such as completely amorphous, highly soluble in common organic solvent and processible because of the highly branched nature[4,5].

  16. Interaction of GABA-mimetics with the taurine transporter (TauT, Slc6a6) in hyperosmotic treated caco-2, LLC-PK1 and rat renal SKPT cells

    DEFF Research Database (Denmark)

    Rasmussen, Rune Nørgaard; Lagunas, Candela; Plum, Jakob Munk;

    2016-01-01

    The aim of the present study was to investigate if basic GABA-mimetics interact with the taurine transporter (TauT, Slc6a6), and to find a suitable cell based model that is robust towards extracellular changes in osmolality during uptake studies. Taurine uptake was measured in human Caco-2 cells...

  17. Dynamic Polymer Brush at Polymer/Water Interface

    Science.gov (United States)

    Yokoyama, Hideaki; Inoue, Kazuma; Ito, Kohzo; Inutsuka, Manabu; Tanaka, Keiji; Yamada, Norifumi

    2015-03-01

    A layer of polymer chains tethered by one end to a surface is called polymer brush and known to show various unique properties such as anti-fouling. The surface segregation phenomena of copolymers with surface-active blocks should be useful for preparing such a brush layer in spontaneous process. We report hydrophilic polymer brushes formed at the interface between water and polymer by the segregation of amphiphilic diblock copolymers blended in a crosslinked rubbery matrix and call it ``dynamic polymer brush.'' In this system, the hydrophilic block with high surface energy avoids air surface, but segregates to cover the interface between hydrophobic elastomer and water. The structures of the brush layers at D2O/polymer interfaces were measured by neutron reflectivity. The dynamic polymer brush layer surprisingly reached 75% of the contour length of the chain and 2.7 chains/nm2. The brush density was surprisingly comparable to the polymer brush fabricated by the ``grafting-from'' method. We will discuss the dependence of the brush structure on molecular weight and block fraction of amphiphilic block copolymers. Such a surprisingly thick and dense polymer brush were induced by the large enthalpy gain of hydration of hydrophilic block.

  18. Polymer crowding and shape distributions in polymer-nanoparticle mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Wei Kang; Denton, Alan R., E-mail: alan.denton@ndsu.edu [Department of Physics, North Dakota State University, Fargo, North Dakota 58108-6050 (United States)

    2014-09-21

    Macromolecular crowding can influence polymer shapes, which is important for understanding the thermodynamic stability of polymer solutions and the structure and function of biopolymers (proteins, RNA, DNA) under confinement. We explore the influence of nanoparticle crowding on polymer shapes via Monte Carlo simulations and free-volume theory of a coarse-grained model of polymer-nanoparticle mixtures. Exploiting the geometry of random walks, we model polymer coils as effective penetrable ellipsoids, whose shapes fluctuate according to the probability distributions of the eigenvalues of the gyration tensor. Accounting for the entropic cost of a nanoparticle penetrating a larger polymer coil, we compute the crowding-induced shift in the shape distributions, radius of gyration, and asphericity of ideal polymers in a theta solvent. With increased nanoparticle crowding, we find that polymers become more compact (smaller, more spherical), in agreement with predictions of free-volume theory. Our approach can be easily extended to nonideal polymers in good solvents and used to model conformations of biopolymers in crowded environments.

  19. Antifreeze (glyco)protein mimetic behavior of poly(vinyl alcohol): detailed structure ice recrystallization inhibition activity study.

    Science.gov (United States)

    Congdon, Thomas; Notman, Rebecca; Gibson, Matthew I

    2013-05-13

    This manuscript reports a detailed study on the ability of poly(vinyl alcohol) to act as a biomimetic surrogate for antifreeze(glyco)proteins, with a focus on the specific property of ice-recrystallization inhibition (IRI). Despite over 40 years of study, the underlying mechanisms that govern the action of biological antifreezes are still poorly understood, which is in part due to their limited availability and challenging synthesis. Poly(vinyl alcohol) (PVA) has been shown to display remarkable ice recrystallization inhibition activity despite its major structural differences to native antifreeze proteins. Here, controlled radical polymerization is used to synthesize well-defined PVA, which has enabled us to obtain the first quantitative structure-activity relationships, to probe the role of molecular weight and comonomers on IRI activity. Crucially, it was found that IRI activity is "switched on" when the polymer chain length increases from 10 and 20 repeat units. Substitution of the polymer side chains with hydrophilic or hydrophobic units was found to diminish activity. Hydrophobic modifications to the backbone were slightly more tolerated than side chain modifications, which implies an unbroken sequence of hydroxyl units is necessary for activity. These results highlight that, although hydrophobic domains are key components of IRI activity, the random inclusion of addition hydrophobic units does not guarantee an increase in activity and that the actual polymer conformation is important.

  20. Dynamics of Polymer Chains.

    Science.gov (United States)

    Hong, Tzay-Ming

    A major objective of this research is to establish at a more fundamental level some of the qualitative or semi-quantitative treatments in use at the present time, such as the Doi-Edwards tube picture, the switch from non -ideal to ideal behavior, and dynamical aspects of the reptation model. The main topics are: (I) An attempt was made to determine the order of magnitude of the elastic time interval of a viscoelastic polymer melt, defining it as the reciprocal of the average rate at which the total entanglement (clockwise plus anticlockwise) passes through zero due to thermal agitation. We calculated the case of a free chain winding about a straight rod both in friction-independent regime and in high friction regime. (II) By successively coarse -graining and rescaling the monomer-monomer interaction (using a modified Wilson recursion formula) we found that the interaction is driven to a very strong but short-ranged one. This verifies the observation that polymers in dilute solutions tend to curl up and behave like hard spheres. (III) We studied the case of chemical equilibrium of i-mers with their nucleating monomers and on the basis of a Flory-Huggins -type mean field theory find that in the dilute limit the swelling of the i-mers takes on the traditional N ^{3over5} law only for sufficiently small monomer chemical potential. When that potential is large enough, then, assuming a Flory law of chain propagation, the law seems to become N^{1over3 }. This is distinct from the problem of changeover from dilute to semidilute polymer system, which we also studied by imposing total polymer density as a constraint equation. (IV) Another item examined concerns the form of the space curve that a very long polymer must assume in order to minimize its free energy (we found that a family of helices with a definite functional relation between pitch and radius renders the free energy stationary). Because a chain is a one-dimensional object, this does not mean that helical shapes