WorldWideScience

Sample records for biomedically relevant chemical

  1. Biomedically relevant chemical and physical properties of coal combustion products.

    OpenAIRE

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of...

  2. Searching Biomedical Text: Towards Maximum Relevant Results

    OpenAIRE

    Galde, Ola; Sevaldsen, John Harald

    2006-01-01

    The amount of biomedical information available to users today is large and increasing. The ability to precisely retrieve desired information is vital in order to utilize available knowledge. In this work we investigated how to improve the relevance of biomedical search results. Using the Lucene Java API we applied a series of information retrieval techniques to search in biomedical data. The techniques ranged from basic stemming and stop-word removal to more advanced methods like user relevan...

  3. Bovine tuberculosis research: Immune mechanisms relevant to biomedical applications

    Science.gov (United States)

    Pioneer studies on infectious disease and immunology by Jenner, Pasteur, Koch, Von Behring, Nocard, Roux, and Ehrlich forged a path for the dual-purpose with dual benefit approach, clearly demonstrating the relevance of veterinary studies for biomedical applications. Tuberculosis (TB), primarily due...

  4. The relevance of brain evolution for the biomedical sciences

    OpenAIRE

    Smulders, Tom V.

    2008-01-01

    Most biomedical neuroscientists realize the importance of the study of brain evolution to help them understand the differences and similarities between their animal model of choice and the human brains in which they are ultimately interested. Many think of evolution as a linear process, going from simpler brains, as those of rats, to more complex ones, as those of humans. However, in reality, every extant species' brain has undergone as long a period of evolution as has the human brain, and e...

  5. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  6. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  7. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    International Nuclear Information System (INIS)

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: ► Effect of common sterilization methods on three kinds of plasma polymers is studied. ► Physical, chemical and bioresponsive properties of plasma polymers are analyzed. ► Changes induced by sterilization depend strongly on type of the plasma polymer.

  8. Incorporating domain knowledge in chemical and biomedical named entity recognition with word representations

    OpenAIRE

    Munkhdalai, Tsendsuren; Li, Meijing; Batsuren, Khuyagbaatar; Park, Hyeon Ah; Choi, Nak Hyeon; Ryu, Keun Ho

    2015-01-01

    Background Chemical and biomedical Named Entity Recognition (NER) is an essential prerequisite task before effective text mining can begin for biochemical-text data. Exploiting unlabeled text data to leverage system performance has been an active and challenging research topic in text mining due to the recent growth in the amount of biomedical literature. We present a semi-supervised learning method that efficiently exploits unlabeled data in order to incorporate domain knowledge into a named...

  9. Chemicals and chemoreceptors: ecologically relevant signals driving behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Ana eDepetris-Chauvin

    2015-04-01

    Full Text Available Insects encounter a vast repertoire of chemicals in their natural environment, which can signal positive stimuli like the presence of a food source, a potential mate, or a suitable oviposition site as well as negative stimuli such as competitors, predators, or toxic substances reflecting danger. The presence of specialized chemoreceptors like taste and olfactory receptors allow animals to detect chemicals at short and long distances and accordingly, trigger proper behaviors towards these stimuli. Since the first description of olfactory and taste receptors in Drosophila fifteen years ago, our knowledge on the identity, properties, and function of specific chemoreceptors has increased exponentially. In the last years, multidisciplinary approaches combining genetic tools with electrophysiological techniques, behavioral recording, evolutionary analysis, and chemical ecology studies are shedding light on our understanding on the ecological relevance of specific chemoreceptors for the survival of Drosophila in their natural environment. In this review we discuss the current knowledge on chemoreceptors of both the olfactory and taste systems of the fruitfly. We focus on the relevance of particular receptors for the detection of ecologically relevant cues such as pheromones, food sources, and toxic compounds, and we comment on the behavioral changes that the detection of these chemicals induce in the fly. In particular, we give an updated outlook of the chemical communication displayed during one of the most important behaviors for fly survival, the courtship behavior. Finally, the ecological relevance of specific chemicals can vary depending on the niche occupied by the individual. In that regard, in this review we also highlight the contrast between adult and larval systems and we propose that these differences could reflect distinctive requirements depending on the change of ecological niche occupied by Drosophila along its life cycle.

  10. Peptide protected gold clusters: chemical synthesis and biomedical applications

    Science.gov (United States)

    Yuan, Qing; Wang, Yaling; Zhao, Lina; Liu, Ru; Gao, Fuping; Gao, Liang; Gao, Xueyun

    2016-06-01

    Bridging the gap between atoms and nanoparticles, noble metal clusters with atomic precision continue to attract considerable attention due to their important applications in catalysis, energy transformation, biosensing and biomedicine. Greatly different to common chemical synthesis, a one-step biomimetic synthesis of peptide-conjugated metal clusters has been developed to meet the demand of emerging bioapplications. Under mild conditions, multifunctional peptides containing metal capturing, reactive and targeting groups are rationally designed and elaborately synthesized to fabricate atomically precise peptide protected metal clusters. Among them, peptide-protected Au Cs (peptide-Au Cs) possess a great deal of exceptional advantages such as nanometer dimensions, high photostability, good biocompatibility, accurate chemical formula and specific protein targeting capacity. In this review article, we focus on the recent advances in potential theranostic fields by introducing the rising progress of peptide-Au Cs for biological imaging, biological analysis and therapeutic applications. The interactions between Au Cs and biological systems as well as potential mechanisms are also our concerned theme. We expect that the rapidly growing interest in Au Cs-based theranostic applications will attract broader concerns across various disciplines.

  11. Semiconductor device-based sensors for gas, chemical, and biomedical applications

    CERN Document Server

    Ren, Fan

    2011-01-01

    Sales of U.S. chemical sensors represent the largest segment of the multi-billion-dollar global sensor market, which includes instruments for chemical detection in gases and liquids, biosensors, and medical sensors. Although silicon-based devices have dominated the field, they are limited by their general inability to operate in harsh environments faced with factors such as high temperature and pressure. Exploring how and why these instruments have become a major player, Semiconductor Device-Based Sensors for Gas, Chemical, and Biomedical Applications presents the latest research, including or

  12. LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications

    International Nuclear Information System (INIS)

    In the field of biomedical application, many publications report on non-thermal plasma jet potentialities for cell behaviour modifications in cancer treatment, wound healing or sterilization. However most previous plasma jet characterizations were performed when jets expend freely in air. Only recently has the influence of the targeted surface been properly considered. In this work, modifications induced by various types of targets, mimicking the biological samples, in the plasma propagation and production of hydroxyl radicals are evidenced through time-resolved intensified charge-coupled device imaging and laser-induced fluorescence (LIF) measurements. A LIF model, also specifically dedicated to estimate air and water penetration inside the jet, is used and proves to be well adapted to characterize the plasma jet under biomedical application conditions. It is shown that the plasma produced by the plasma gun counter-propagates after impinging the surface which, for the same operating parameters, leads to an increase of almost one order of magnitude in the maximum OH density (from ∼2 × 1013 cm−3 for open-air propagation to ∼1 × 1014 cm−3 for a grounded metal target). The nature of the target, especially its electrical conductivity, as well as gas flow rate and voltage amplitude are playing a key role in the production of hydroxyl radicals. The strong interplay between gas flow dynamics and plasma propagation is here confirmed by air and water distribution measurements. The need for a multi-diagnostic approach, as well as great care in setting up the in situ characterization of plasma jets, is here emphasized. Special attention must not only be paid to voltage amplitude and gas flow rate but also to the nature, humidity and conductivity of the target. (paper)

  13. Generation of silver standard concept annotations from biomedical texts with special relevance to phenotypes.

    Directory of Open Access Journals (Sweden)

    Anika Oellrich

    Full Text Available Electronic health records and scientific articles possess differing linguistic characteristics that may impact the performance of natural language processing tools developed for one or the other. In this paper, we investigate the performance of four extant concept recognition tools: the clinical Text Analysis and Knowledge Extraction System (cTAKES, the National Center for Biomedical Ontology (NCBO Annotator, the Biomedical Concept Annotation System (BeCAS and MetaMap. Each of the four concept recognition systems is applied to four different corpora: the i2b2 corpus of clinical documents, a PubMed corpus of Medline abstracts, a clinical trails corpus and the ShARe/CLEF corpus. In addition, we assess the individual system performances with respect to one gold standard annotation set, available for the ShARe/CLEF corpus. Furthermore, we built a silver standard annotation set from the individual systems' output and assess the quality as well as the contribution of individual systems to the quality of the silver standard. Our results demonstrate that mainly the NCBO annotator and cTAKES contribute to the silver standard corpora (F1-measures in the range of 21% to 74% and their quality (best F1-measure of 33%, independent from the type of text investigated. While BeCAS and MetaMap can contribute to the precision of silver standard annotations (precision of up to 42%, the F1-measure drops when combined with NCBO Annotator and cTAKES due to a low recall. In conclusion, the performances of individual systems need to be improved independently from the text types, and the leveraging strategies to best take advantage of individual systems' annotations need to be revised. The textual content of the PubMed corpus, accession numbers for the clinical trials corpus, and assigned annotations of the four concept recognition systems as well as the generated silver standard annotation sets are available from http://purl.org/phenotype/resources. The textual content

  14. Generation of silver standard concept annotations from biomedical texts with special relevance to phenotypes.

    Science.gov (United States)

    Oellrich, Anika; Collier, Nigel; Smedley, Damian; Groza, Tudor

    2015-01-01

    Electronic health records and scientific articles possess differing linguistic characteristics that may impact the performance of natural language processing tools developed for one or the other. In this paper, we investigate the performance of four extant concept recognition tools: the clinical Text Analysis and Knowledge Extraction System (cTAKES), the National Center for Biomedical Ontology (NCBO) Annotator, the Biomedical Concept Annotation System (BeCAS) and MetaMap. Each of the four concept recognition systems is applied to four different corpora: the i2b2 corpus of clinical documents, a PubMed corpus of Medline abstracts, a clinical trails corpus and the ShARe/CLEF corpus. In addition, we assess the individual system performances with respect to one gold standard annotation set, available for the ShARe/CLEF corpus. Furthermore, we built a silver standard annotation set from the individual systems' output and assess the quality as well as the contribution of individual systems to the quality of the silver standard. Our results demonstrate that mainly the NCBO annotator and cTAKES contribute to the silver standard corpora (F1-measures in the range of 21% to 74%) and their quality (best F1-measure of 33%), independent from the type of text investigated. While BeCAS and MetaMap can contribute to the precision of silver standard annotations (precision of up to 42%), the F1-measure drops when combined with NCBO Annotator and cTAKES due to a low recall. In conclusion, the performances of individual systems need to be improved independently from the text types, and the leveraging strategies to best take advantage of individual systems' annotations need to be revised. The textual content of the PubMed corpus, accession numbers for the clinical trials corpus, and assigned annotations of the four concept recognition systems as well as the generated silver standard annotation sets are available from http://purl.org/phenotype/resources. The textual content of the Sh

  15. Setup of a Biomedical Facility to Study Physiologically Relevant Flow-Structure Interactions

    Science.gov (United States)

    Mehdi, Faraz; Sheng, Jian

    2013-11-01

    The design and implementation of a closed loop biomedical facility to study arterial flows is presented. The facility has a test section of 25 inches, and is capable of generating both steady and pulsatile flows via a centrifugal and a dual piston pump respectively. The Reynolds and Womersley numbers occurring in major blood vessels can be matched. The working fluid is a solution of NaI that allows refractive index matching with both rigid glass and compliant polymer models to facilitate tomographic PIV and holographic PIV. The combination of these two techniques allows us to study both large scale flow features as well as flows very close to the wall. The polymer models can be made with different modulus of elasticity and can be pre-stressed using a 5-axis stage. Radially asymmetric patches can also be pre-fabricated and incorporated in the tube during the manufacturing process to simulate plaque formation in arteries. These tubes are doped with tracer particles allowing for the measurement of wall deformation. Preliminary flow data over rigid and compliant walls is presented. One of the aims of this study is to characterize the changes in flow as the compliancy of blood vessels change due to age or disease, and explore the fluid interactions with an evolving surface boundary.

  16. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  17. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Paladini, F., E-mail: federica.paladini@unisalento.it [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy); Picca, R.A.; Sportelli, M.C.; Cioffi, N. [Department of Chemistry, University of Bari “Aldo Moro”, Via Orabona 4, 70126 Bari (Italy); Sannino, A.; Pollini, M. [Department of Engineering for Innovation, University of Salento, Via per Monteroni, 73100 Lecce (Italy)

    2015-07-01

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag{sub 2}O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed.

  18. Surface chemical and biological characterization of flax fabrics modified with silver nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications and wound healing. This work aims to investigate the surface chemical composition and biological properties of silver nanoparticle-modified flax substrates. Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution, by means of a large-scale apparatus. The silver-coated materials were characterized through X-ray Photoelectron Spectroscopy (XPS), to assess the surface elemental composition of the coatings, and the chemical speciation of both the substrate and the antibacterial nanophases. A detailed investigation of XPS high resolution regions outlined that silver is mainly present on nanophases' surface as Ag2O. Scanning electron microscopy and energy dispersive X-ray spectroscopy were also carried out, in order to visualize the distribution of silver particles on the fibers. The materials were also characterized from a biological point of view in terms of antibacterial capability and cytotoxicity. Agar diffusion tests and bacterial enumeration tests were performed on Gram positive and Gram negative bacteria, namely Staphylococcus aureus and Escherichia coli. In vitro cytotoxicity tests were performed through the extract method on murine fibroblasts in order to verify if the presence of the silver coating affected the cellular viability and proliferation. Durability of the coating was also assessed, thus confirming the successful scaling up of the process, which will be therefore available for large-scale production. - Highlights: • Silver nanophases are increasingly used as effective antibacterial agent for biomedical applications. • Silver coatings were deposited on textiles through the in situ photo-reduction of a silver solution. • Flax fabrics were characterized from a biological and surface chemical point of view. • Scaling up of the process was confirmed

  19. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    International Nuclear Information System (INIS)

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed

  20. Degradation of hazardous chemicals in liquid radioactive wastes from biomedical research using a mixed microbial population

    Energy Technology Data Exchange (ETDEWEB)

    Wolfram, J.H.; Radtke, M.; Wey, J.E.; Rogers, R.D. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Rau, E.H. [National Inst. of Health, Bethesda, MD (United States). Div. of Safety

    1997-10-01

    As the costs associated with treatment of mixed wastes by conventional methods increase, new technologies will be investigated as alternatives. This study examines the potential of using a selected mixed population of microorganisms to treat hazardous chemical compounds in liquid low level radioactive wastes from biomedical research procedures. Microorganisms were isolated from various waste samples and enriched against compounds known to occur in the wastes. Individual isolates were tested for their ability to degrade methanol, ethanol, phenol, toluene, phthalates, acetonitrile, chloroform, and trichloroacetic acid. Following these tests, the organisms were combined in a media with a mixture of the different compounds. Three compounds: methanol, acetonitrile, and pseudocumene, were combined at 500 microliter/liter each. Degradation of each compound was shown to occur (75% or greater) under batch conditions with the mixed population. Actual wastes were tested by adding an aliquot to the media, determining the biomass increase, and monitoring the disappearance of the compounds. The compounds in actual waste were degraded, but at different rates than the batch cultures that did not have waste added. The potential of using bioprocessing methods for treating mixed wastes from biomedical research is discussed.

  1. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Hoi-Ying N.; Martin, Michael C.; McKinney, Wayne R.

    2002-07-25

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins.

  2. Tracking chemical changes in a live cell: Biomedical applications of SR-FTIR spectromicroscopy

    International Nuclear Information System (INIS)

    Synchrotron radiation-based Fourier transform infrared (SR-FTIR) spectromicroscopy is a newly emerging bioanalytical and imaging tool. This unique technique provides mid-infrared (IR) spectra, hence chemical information, with high signal-to-noise at spatial resolutions as fine as 3 to 10 microns. Thus it enables researchers to locate, identify, and track specific chemical events within an individual living mammalian cell. Mid-IR photons are too low in energy (0.05 - 0.5 eV) to either break bonds or to cause ionization. In this review, we show that the synchrotron IR beam has no detectable effects on the short- and long-term viability, reproductive integrity, cell-cycle progression, and mitochondrial metabolism in living human cells, and produces only minimal sample heating (< 0.5 degrees C). We will then present several examples demonstrating the application potentials of SR-FTIR spectromicroscopy in biomedical research. These will include monitoring living cells progressing through the cell cycle, including death, and cells reacting to dilute concentrations of toxins

  3. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  4. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  5. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    Science.gov (United States)

    Kattnig, Daniel R.; Evans, Emrys W.; Déjean, Victoire; Dodson, Charlotte A.; Wallace, Mark I.; MacKenzie, Stuart R.; Timmel, Christiane R.; Hore, P. J.

    2016-04-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by slow radical termination reactions under conditions of continuous photoexcitation. The nature and origin of the amplification are revealed by studies of the intermolecular flavin-tryptophan and flavin-ascorbic acid photocycles and the closely related intramolecular flavin-tryptophan radical pair in cryptochrome. Amplification factors of up to 5.6 were observed for magnetic fields weaker than 1 mT. Substantial chemical amplification could have a significant impact on the viability of a cryptochrome-based magnetic compass sensor.

  6. Categorization of biologically relevant chemical signals in the medial amygdala

    OpenAIRE

    Samuelsen, Chad L.; Meredith, Michael

    2009-01-01

    Many species employ chemical signals to convey messages between members of the same species (conspecific), but chemosignals may also provide information to another species (heterospecific). Here, we found that conspecific chemosignals (male, female mouse urine) increased immediate early gene-protein (IEG) expression in both anterior and posterior medial amygdala of male mice, whereas most heterospecific chemosignals (e.g.: hamster vaginal fluid, steer urine) increased expression only in anter...

  7. Chemical amplification of magnetic field effects relevant to avian magnetoreception

    OpenAIRE

    Kattnig, DR; Evans, EW; Déjean, V; Dodson, CA; Wallace, MI; Mackenzie, SR; Timmel, CR; Hore, PJ

    2016-01-01

    Magnetic fields as weak as the Earth's can change the yields of radical pair reactions even though the energies involved are orders of magnitude smaller than the thermal energy, kBT, at room temperature. Proposed as the source of the light-dependent magnetic compass in migratory birds, the radical pair mechanism is thought to operate in cryptochrome flavoproteins in the retina. Here we demonstrate that the primary magnetic field effect on flavin photoreactions can be amplified chemically by s...

  8. Biodegradation of organic chemicals at environmentally relevant concentrations

    International Nuclear Information System (INIS)

    In the estuary of the river Elbe as well as in the North and Baltic Sea, the mineralization of some chemicals in low concentrations by natural microbial communities in water and sediment samples was studied. The following substances were examined: 4-nitrophenol, 2-nitrophenol, phenol, diethylene glycole (DEG), ethylendiamine-tetraacetate (EDTA), thiourea (THIO), 4-chloraniline, 4-naphthalene-1,5-disulfonic acid (NDSS), 2,4,6-trichlorphenol (TCP) and tetrapropylenebenzenesulfonic acid (TPBS). The three first phenolic substances can be biodegraded relatively easy in eutrophicated or already chemically polluted aquatic habitats. In marine habitats there was either no degradation of these substances of it was slow, incomplete or an acclimation period was observed. DEG, THIO and chloraniline often showed longer turnover times at different stations than the phenols. The biodegradability of these substances differed strongly between habitats. EDTA was not mineralized for more than 20%. NDSS, TCP and TPBS were not degraded by natural microbial communities. (orig.). 86 refs., 14 tabs., 38 figs

  9. Biomedical applications and chemical nature of three dyes first synthesized by Raphael Meldola: isamine blue, Meldola's blue and naphthol green B.

    Science.gov (United States)

    Hope-Roberts, M; Horobin, R W

    2012-05-01

    Brief accounts are given of the chemical nature, and past and current biomedical applications of three dyes first synthesized by Raphael Meldola: isamine blue, Meldola's blue and naphthol green B. PMID:22149360

  10. Chemical derivatization and biofunctionalization of hydrogel nanomembranes for potential biomedical and biosensor applications.

    Science.gov (United States)

    Khan, Musammir; Schuster, Swen; Zharnikov, Michael

    2016-04-28

    Poly(ethylene glycol) based hydrogel nanomembranes (PHMs) are demonstrated to be able to host protein-specific receptors, providing, at the same time, stable, protein-repelling matrices with a characteristic mesh size up to 7-8 nm. The membranes were prepared by crosslinking of amino- and epoxy-terminated STAR-PEG precursors and maintained their hydrogel and protein-repelling properties even at a deviation of the precursor composition from the equilibrium value (1 : 1). The grafting density of the test avidin protein, specifically attached to the biotin moieties coupled to the free amine groups in the PHMs, varied from 0.45 × 10(12) to 1.3 × 10(12) proteins per cm(2) within the sampling depth of the experiments (∼11.5 nm), depending on the precursor composition, whereas the analogous values for the non-specifically adsorbed proteins were lower by a factor of 4-5. The engineering of PHMs with biomolecule-specific receptors and their loading with biomolecules are of potential interest for sensor fabrication and biomedical applications, including tissue engineering and regenerative therapy. PMID:27067511

  11. Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties

    Science.gov (United States)

    Heimann, Robert B.

    2016-06-01

    This contribution discusses salient properties and functions of hydroxylapatite (HA)-based plasma-sprayed coatings, including the effect on biomedical efficacy of coating thickness, phase composition and distribution, amorphicity and crystallinity, porosity and surface roughness, cohesion and adhesion, micro- and nano-structured surface morphology, and residual coating stresses. In addition, it will provide details of the thermal alteration that HA particles undergo in the extremely hot plasma jet that leads to dehydroxylated phases such as oxyhydroxylapatite (OHA) and oxyapatite (OA) as well as thermal decomposition products such as tri-(TCP) and tetracalcium phosphates (TTCP), and quenched phases such as amorphous calcium phosphate (ACP). The contribution will further explain the role of ACP during the in vitro interaction of the as-deposited coatings with simulated body fluid resembling the composition of extracellular fluid (ECF) as well as the in vivo responses of coatings to the ECF and the host tissue, respectively. Finally, it will briefly describe performance profiles required to fulfill biological functions of osteoconductive bioceramic coatings designed to improve osseointegration of hip endoprostheses and dental root implants. In large parts, the content of this contribution is a targeted review of work done by the author and his students and coworkers over the last two decades. In addition, it is considered a stepping stone toward a standard operation procedure aimed at depositing plasma-sprayed bioceramic implant coatings with optimum properties.

  12. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy.

    Science.gov (United States)

    Chembath, Manju; Balaraju, J N; Sujata, M

    2015-11-01

    The surface of NiTi alloy was chemically modified using acidified ferric chloride solution and the characteristics of the alloy surface were studied from the view point of application as a bioimplant. Chemically treated NiTi was also subjected to post treatments by annealing at 400°C and passivation in nitric acid. The surface of NiTi alloy after chemical treatment developed a nanogrid structure with a combination of one dimensional channel and two dimensional network-like patterns. From SEM studies, it was found that the undulations formed after chemical treatment remained unaffected after annealing, while after passivation process the undulated surface was filled with oxides of titanium. XPS analysis revealed that the surface of passivated sample was enriched with oxides of titanium, predominantly TiO2. The influence of post treatment on the corrosion resistance of chemically treated NiTi alloy was monitored using Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS) in Phosphate Buffered Saline (PBS) solution. In the chemically treated condition, NiTi alloy exhibited poor corrosion resistance due to the instability of the surface. On the other hand, the breakdown potential (0.8V) obtained was highest for the passivated samples compared to other surface treated samples. During anodic polarization, chemically treated samples displayed dissolution phenomenon which was predominantly activation controlled. But after annealing and passivation processes, the behavior of anodic polarization was typical of a diffusion controlled process which confirmed the enhanced passivity of the post treated surfaces. The total resistance, including the porous and barrier layer, was in the range of mega ohms for passivated surfaces, which could be attributed to the decrease in surface nickel content and formation of compact titanium oxide. The passivated sample displayed good bioactivity in terms of hydroxyapatite growth, noticed after 14days immersion in

  13. Physical and chemical characterization of titanium-alginate samples for biomedical applications

    International Nuclear Information System (INIS)

    The sol-gel technique combined with powder metallurgy may be an alternative to produce titanium parts for bioengineering, with the advantage of eliminating the powder compaction step, which may introduce defects. The present work introduces a system consisted of titanium powder and sodium alginate suspension, which undergoes reticulation in contact with a calcium salt solution, obtaining titanium/calcium alginate hydrogel with granule morphology. The characterization of the raw materials and granules of calcium alginate and titanium/calcium alginate was performed by x-ray fluorescence spectroscopy and thermogravimetric analysis. The granules topography was analyzed by scanning electron microscopy/EDS. Titanium and sodium alginate chemical composition were adequate for use as raw materials, showing that the methodology used is suitable for processing titanium samples for further consolidation by sintering, in order to produce titanium parts. (author)

  14. Physical and chemical characterization of titanium-alginate samples for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Morani, L.M.; Ribeiro, A.A.; Oliveira, M.V. de; Dantas, F.M.L., E-mail: marize.varella@int.gov.b [Instituto Nacional de Tecnologia (INT), Rio de Janeiro, RJ (Brazil); Leao, M.H.M.R. [Universidade Federal do Rio de Janeiro (EQ/UFRJ), RJ (Brazil). Escola de Quimica

    2010-07-01

    The sol-gel technique combined with powder metallurgy may be an alternative to produce titanium parts for bioengineering, with the advantage of eliminating the powder compaction step, which may introduce defects. The present work introduces a system consisted of titanium powder and sodium alginate suspension, which undergoes reticulation in contact with a calcium salt solution, obtaining titanium/calcium alginate hydrogel with granule morphology. The characterization of the raw materials and granules of calcium alginate and titanium/calcium alginate was performed by x-ray fluorescence spectroscopy and thermogravimetric analysis. The granules topography was analyzed by scanning electron microscopy/EDS. Titanium and sodium alginate chemical composition were adequate for use as raw materials, showing that the methodology used is suitable for processing titanium samples for further consolidation by sintering, in order to produce titanium parts. (author)

  15. Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

    DEFF Research Database (Denmark)

    Mandrup, Karen Riiber; Johansson, Hanna Katarina Lilith; Boberg, Julie; Pedersen, Anne S.; Mortensen, Mette Sidsel; Jørgensen, Jennifer Solgaard; Vinggaard, Anne Marie; Hass, Ulla

    2015-01-01

    Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams were exposed during gestation and lactation to mixtures...... of environmentally relevant EDCs with estrogenic, anti-androgenic or dissimilar modes of action (TotalMix) of 100-, 200- or 450-fold high end human intake estimates. Mammary glands of prepubertal and adult female and male offspring were examined. Oestrogens increased mammary outgrowth in prepubertal...... females and the mRNA level of matrix metalloproteinase-3, which may be a potential biomarker for increased outgrowth. Mixtures of EDCs gave rise to ductal hyperplasia in adult males. Adult female mammary glands of the TotalMix group showed morphological changes possibly reflecting increased prolactin...

  16. Sorption of Highly Hydrophobic Organic Chemicals to Organic Matter Relevant for Fish Bioconcentration Studies.

    Science.gov (United States)

    Böhm, Leonard; Schlechtriem, Christian; Düring, Rolf-Alexander

    2016-08-01

    With regard to a potential underestimation of bioconcentration factors (BCF) in flow-through fish tests, sorption of 11 highly hydrophobic organic chemicals (HOCs) (log KOW 5.5-7.8) from different substance classes was systematically investigated for the first time in the presence of fish feed (FF) and filter residues (FR), the organic matter (OM) most relevant for fish bioconcentration studies. Sorption was investigated in batch-equilibrium experiments by solid-phase microextraction (SPME) resulting in partitioning coefficients of solid-water (Kd), total organic carbon-water (KTOC), and dissolved organic carbon-water (KDOC). Results prove a high affinity of HOCs for FF and FR supporting a significant impact on BCF studies and differing from sorption to Aldrich-humic acid (AHA) utilized as reference sorbent. Sorption is influenced by interactions between HOCs and OM characteristics. For FF, KDOC values were higher than KTOC values. Results help to assess the relevance of interaction of HOCs from different substance classes with OM relevant for BCF studies. PMID:27362743

  17. The Tribological Behaviors of Three Films Coated on Biomedical Titanium Alloy by Chemical Vapor Deposition

    Science.gov (United States)

    Wang, Song; Liao, Zhenhua; Liu, Yuhong; Liu, Weiqiang

    2015-11-01

    Three thin films (DLC, a-C, and TiN) were performed on Ti6Al4V by chemical vapor deposition. Carbon ion implantation was pretreated for DLC and a-C films while Ti transition layer was pretreated for TiN film to strengthen the bonding strength. X-ray diffraction, Raman measurement, nano-hardness and nano-scratch tester, and cross-section etching by FIB method were used to analyze film characteristics. Tribological behaviors of these coatings were studied by articulation with both ZrO2 and UHMWPE balls using ball-on-disk sliding. The thickness values reached ~0.46, ~0.33, and ~1.67 μm for DLC, a-C, and TiN film, respectively. Nano-hardness of the coatings compared with that of untreated and bonding strength (critical load in nano-scratch test) values of composite coatings compared with that of monolayer film all increased significantly, respectively. Under destructive test (ZrO2 ball conterface) in bovine serum lubrication, TiN coating revealed the best wear resistance while DLC showed the worst. Film failure was mainly attributed to the plowing by hard ZrO2 ball characterized by abrasive and adhesive wear. Under normal test (UHMWPE ball conterface), all coatings showed significant improvement in wear resistance both in dry sliding and bovine serum lubrication. Both DLC and a-C films showed less surface damage than TiN film due to the self-lubricating phenomenon in dry sliding. TiN film showed the largest friction coefficient both in destructive and normal tests, devoting to the big TiN grains thus leading to much rougher surface and then a higher value. The self-lubricating film formed on DLC and a-C coating could also decrease their friction coefficients. The results indicated that three coatings revealed different wear mechanisms, and thick DLC or a-C film was more promising in application in lower stress conditions such as artificial cervical disk.

  18. Forecast of the Chemical Aging and Relevant Color Changes in Painting

    CERN Document Server

    Zilbergleyt, B

    2005-01-01

    The article describes the potential application of thermodynamic simulation to forecast chemical aging and relevant color changes in painting. Qualitative and numerical results were obtained by applying the method to various mixtures of pigments without and with atmospheric components. The results were compared to the legendary recommendations on incompatible pigment mixtures with about an 80 percent match regarding potential color changes in the aged mixtures. Results for the cadmium yellow-lead white and cadmium lemon-emerald green mixtures are illustrated by pictures, gradually showing color changes caused by the aging. The method of thermodynamic simulation can be a powerful tool to investigate old masterpieces, in developing new materials, and to forecast some aspects of the aging of real masterpieces.

  19. Probing the bioactivity-relevant chemical space of robust reactions and common molecular building blocks.

    Science.gov (United States)

    Hartenfeller, Markus; Eberle, Martin; Meier, Peter; Nieto-Oberhuber, Cristina; Altmann, Karl-Heinz; Schneider, Gisbert; Jacoby, Edgar; Renner, Steffen

    2012-05-25

    In the search for new bioactive compounds, there is a trend toward increasingly complex compound libraries aiming to target the demanding targets of the future. In contrast, medicinal chemistry and traditional library design rely mainly on a small set of highly established and robust reactions. Here, we probe a set of 58 such reactions for their ability to sample the chemical space of known bioactive molecules, and the potential to create new scaffolds. Combined with ~26,000 common available building blocks, the reactions retrieve around 9% of a scaffold-diverse set of compounds active on human target proteins covering all major pharmaceutical target classes. Almost 80% of generated scaffolds from virtual one-step synthesis products are not present in a large set of known bioactive molecules for human targets, indicating potential for new discoveries. The results suggest that established synthesis resources are well suited to cover the known bioactivity-relevant chemical space and that there are plenty of unexplored regions accessible by these reactions, possibly providing valuable "low-hanging fruit" for hit discovery. PMID:22512717

  20. Chemical transformations of complex mixtures relevant to atmospheric processes: Laboratory and ambient studies

    Science.gov (United States)

    Samy, Shahryar (Shar)

    The study of atmospheric chemistry and chemical transformations, which are relevant to conditions in the ambient atmosphere require the investigation of complex mixtures. In the atmosphere, complex mixtures (e.g. diesel emissions) are continually evolving as a result of physical and chemical transformations. This dissertation examines the transformations of modern diesel emissions (DE) in a series of experiments conducted at the European Outdoor Simulation Chamber (EUPHORE) in Valencia, Spain. Experimental design challenges are addressed, and the development of a NOx removal technology (denuder) is described with results from the application of the newly developed NOx denuder in the most recent EUPHORE campaign (2006). In addition, the data from an ambient aerosol study that examines atmospheric transformation products is presented and discussed. Atmospheric transformations of DE and associated secondary organic aerosol (SOA) production, along with chemical characterization of polar organic compounds (POC) in the EUPHORE experiments, provides a valuable insight on the tranformations of modern DE in environmentally relevant atmospheres. The greatest SOA production occurred in DE with toluene addition experiments (>40%), followed by DE with HCHO (for OH radical generation) experiments. A small amount of SOA (3%) was observed for DE in dark with N2O5 (for NO3 radical production) experiments. Distinct POC formation in light versus dark experiments suggests the role of OH initiated reactions in these chamber atmospheres. A trend of increasing concentrations of dicarboxylic acids in light versus dark experiments was observed when evaluated on a compound group basis. The production of diacids (as a compound group) demonstrates a consistent indicator for photochemical transformation in relation to studies in the ambient atmosphere. The four toluene addition experiments in this study were performed at different [tol]o/[NOx]o ratios and displayed an average SOA %yield (in

  1. Mining Molecular Pharmacological Effects from Biomedical Text: a Case Study for Eliciting Anti-Obesity/Diabetes Effects of Chemical Compounds.

    Science.gov (United States)

    Dura, Elzbieta; Muresan, Sorel; Engkvist, Ola; Blomberg, Niklas; Chen, Hongming

    2014-05-01

    In the pharmaceutical industry, efficiently mining pharmacological data from the rapidly increasing scientific literature is very crucial for many aspects of the drug discovery process such as target validation, tool compound selection etc. A quick and reliable way is needed to collect literature assertions of selected compounds' biological and pharmacological effects in order to assist the hypothesis generation and decision-making of drug developers. INFUSIS, the text mining system presented here, extracts data on chemical compounds from PubMed abstracts. It involves an extensive use of customized natural language processing besides a co-occurrence analysis. As a proof-of-concept study, INFUSIS was used to search in abstract texts for several obesity/diabetes related pharmacological effects of the compounds included in a compound dictionary. The system extracts assertions regarding the pharmacological effects of each given compound and scores them by the relevance. For each selected pharmacological effect, the highest scoring assertions in 100 abstracts were manually evaluated, i.e. 800 abstracts in total. The overall accuracy for the inferred assertions was over 90 percent. PMID:27485890

  2. Recent developments in chemical treatment of roughages and their relevance to animal production in developing countries

    International Nuclear Information System (INIS)

    Recent research in developed regions, at laboratory level, has investigated acids, amines and the oxidizing agents sulphur dioxide, ozone and alkaline hydrogen peroxide as reagents for upgrading roughages. In vivo experiments with sheep show improvements in digestibility from treating with 40 g SO2 per kg wheat straw DM for 3 d at 70 deg. C, comparable to responses normally gained by treating with NaOH. Alkaline H2O2 (pH11.5) treatment in one study increased wheat straw DM digestibility in sheep fed ad libitum, from 467 to 659 g/kg. However this treatment used large inputs (260 g H2O2 and 180 g NaOH/kg straw DM in 26 L solution for 16 h, followed by drying); subsequent studies showed possible input reductions. The techniques are not relevant for use in developing countries except possibly at centralized processing plants, but greater commercial viability will need to be demonstrated before then. The NaOH dip method is the most effective current, low technology upgrading technique and is capable of further development to produce treated roughage of improved digestibility and optimum content of N and required minerals. There are no major new developments in urea ammonia treatment. The recent 'AGRI-AM' method produces NH3 by hydrating a mixture of CaO and (NH4)2SO4 fertilizers, but the method requires much chemical input. 'Ensiling' barley straw for 60 d with 60 g Ca(OH)2 and 30 g urea per kg straw DM improves intake and digestibility in sheep, with little loss of N from the system. This is due to reduced urea hydrolysis caused by high pH. Other research shows that the quantity of straw needing to be treated can be halved by allowing goats (or sheep) to 'graze' untreated straw (to allow 50% refusals) followed by treatment and refeeding. 92 refs, 11 tabs

  3. LigerCat: Using “MeSH Clouds” from Journal, Article, or Gene Citations to Facilitate the Identification of Relevant Biomedical Literature

    OpenAIRE

    Sarkar, Indra Neil; Schenk, Ryan; Miller, Holly; Norton, Catherine N.

    2009-01-01

    The identification of relevant literature from within large collections is often a challenging endeavor. In the context of indexed resources, such as MEDLINE, it has been shown that keywords from a controlled vocabulary (e.g., MeSH) can be used in combination to retrieve relevant search results. One effective strategy for identifying potential search terms is to examine a collection of documents for frequently occurring terms. In this way, “Tag clouds” are a popular mechanism for ascertaining...

  4. Chemical erosion of carbon at ITER relevant plasma fluxes: Results from the linear plasma generator Pilot-PSI

    NARCIS (Netherlands)

    van Rooij, G. J.; Westerhout, J.; Brezinsek, S.; Rapp, J.

    2011-01-01

    The chemical erosion of carbon was investigated in the linear plasma device Pilot-PSI for ITER divertor relevant hydrogen plasma flux densities 10(23) < Gamma < 10(25) m(-2) s(-1). The erosion was analyzed in situ by optical emission spectroscopy and post mortem by surface profilometry. The ex

  5. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  6. The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

    OpenAIRE

    Urban Tillmann; Georg Pohnert; Giovanna Romano; Arturas Razinkovas; Aistë Paldavičienë; Renata Pilkaityte; Llewellyn, Carole A.; Catherine Legrand; Diana Vaiciute; Claudia Halsband; Jonna Engström-Öst; Eva Sonnenschein; Caldwell, Gary S.; Raffaella Casotti; Cembella, Allan D

    2011-01-01

    Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and ant...

  7. Identification of environmentally relevant chemicals in bibliographic databases: a comparative analysis

    DEFF Research Database (Denmark)

    Ellegaard, Ole; Wallin, Johan Albert

    2013-01-01

    Valid and reliable information on the use and effects of chemicals is a key factor in the industry and not least within many regulatory agencies. Identification data from lists of substances sometimes leads to incomplete bibliographic analysis in the major chemical databases. The present study...

  8. Plasma enhanced chemical vapor deposition of wear resistant gradual a-Si1-x:Cx:H coatings on nickel-titanium for biomedical applications

    Science.gov (United States)

    Niermann, Benedikt; Böke, Marc; Schauer, Janine-Christina; Winter, Jörg

    2010-03-01

    Plasma enhanced chemical vapor deposition has been used to deposit thin films with gradual transitions from silicon to carbon on Cu, Ni, stainless steel, and NiTi. Thus show low stress, elasticity, and wear resistance with excellent adhesion on all metals under investigation. Already at low Si concentrations of 10 at. % the intrinsic stress is considerably reduced compared to pure diamondlike carbon (DLC) films. The deposition process is controlled by optical emission spectroscopy. This technique has been applied to monitor the growth precursors and to correlate them with the film composition. The compositions of the films were determined by Rutherford backscattering spectroscopy and XPS measurements. Due to the elastic properties of the gradual transition and the excellent biocompatibility of DLC, the described film systems present a useful coating for biomedical applications.

  9. Plasma enhanced chemical vapor deposition of wear resistant gradual a-Si1-x:Cx:H coatings on nickel-titanium for biomedical applications

    International Nuclear Information System (INIS)

    Plasma enhanced chemical vapor deposition has been used to deposit thin films with gradual transitions from silicon to carbon on Cu, Ni, stainless steel, and NiTi. Thus show low stress, elasticity, and wear resistance with excellent adhesion on all metals under investigation. Already at low Si concentrations of 10 at. % the intrinsic stress is considerably reduced compared to pure diamondlike carbon (DLC) films. The deposition process is controlled by optical emission spectroscopy. This technique has been applied to monitor the growth precursors and to correlate them with the film composition. The compositions of the films were determined by Rutherford backscattering spectroscopy and XPS measurements. Due to the elastic properties of the gradual transition and the excellent biocompatibility of DLC, the described film systems present a useful coating for biomedical applications.

  10. A Chemically Relevant Model for Teaching the Second Law of Thermodynamics.

    Science.gov (United States)

    Williamson, Bryce E.; Morikawa, Tetsuo

    2002-01-01

    Introduces a chemical model illustrating the aspects of the second law of thermodynamics which explains concepts such as reversibility, path dependence, and extrapolation in terms of electrochemistry and calorimetry. Presents a thought experiment using an ideal galvanic electrochemical cell. (YDS)

  11. Li ceramic pebbles chemical compatibility with Eurofer samples in fusion relevant conditions

    International Nuclear Information System (INIS)

    Information on the chemical compatibility between Li ceramic breeders and reactor structural materials is an important issue for fusion reactor technology. In this work, Eurofer samples were placed inside a Li ceramic pebble bed and kept at 600 deg. C under a reducing atmosphere obtained by the flow of a purging gas (He + 0.1vol.%H2). Titanate and orthosilicate Li pebble beds were used in the experiments and exposure time ranged from 50 to 2000 h. Surface chemical reactions were investigated with nuclear microprobe techniques. The orthosilicate pebbles present chemical reactions even with the gas mixture, whereas for the samples in close contact with Eurofer there is evidence of Eurofer elemental diffusion into the pebbles and the formation of different types of compounds. Although the titanate pebbles used in the chemical compatibility experiments present surface alterations with increasing surface irregularities along the annealing time, there is no clear indication of Eurofer constituents diffusion

  12. Properties of Random Complex Chemical Reaction Networks and Their Relevance to Biological Toy Models

    OpenAIRE

    Bigan, Erwan; Steyaert, Jean-Marc; Douady, Stéphane

    2013-01-01

    We investigate the properties of large random conservative chemical reaction networks composed of elementary reactions endowed with either mass-action or saturating kinetics, assigning kinetic parameters in a thermodynamically-consistent manner. We find that such complex networks exhibit qualitatively similar behavior when fed with external nutrient flux. The nutrient is preferentially transformed into one specific chemical that is an intrinsic property of the network. We propose a self-consi...

  13. Identification of chemicals relevant to the Chemical Weapons Convention using the novel sample-preparation methods and strategies of the Mobile Laboratory of the Organization for the Prohibition of Chemical Weapons

    NARCIS (Netherlands)

    O. Terzic; H. Gregg; P. de Voogt

    2014-01-01

    The standard approach to on-site sample preparation for gas chromatography-mass spectrometry analysis of chemicals relevant to the Chemical Weapons Convention provides relatively good coverage of the target analytes, but it suffers from a number of drawbacks, such as low sample throughput, use of bu

  14. Physico-chemical stability of SiC/SiC fiber ceramic composites after exposure to fusion-relevant conditions

    International Nuclear Information System (INIS)

    The physico-chemical stability of SiC/SiC fiber ceramic composite (SiC/SiCf) in contact with Li2O in fusion-relevant conditions has been experimentally studied at 800 C in flowing helium (0.1 L/min) containing either 0.1% H2 or 100 ppm H2O and for exposure times of up to 4,032 h. The exposed SiC/SiC specimens have been characterized. The results obtained demonstrate that although the surface coating of the specimens is strongly attacked through chemical corrosion processes, the main physico-chemical characteristics of SiC/SiCf are affected to a limited extent only in the case of He + 0.1% H2 flowing gas, the bulk material not being attacked

  15. The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

    Directory of Open Access Journals (Sweden)

    Urban Tillmann

    2011-09-01

    Full Text Available Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds, and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs of diatoms. Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP in prymnesiophytes. Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.

  16. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  17. Assessing the state of the art in biomedical relation extraction: overview of the BioCreative V chemical-disease relation (CDR) task.

    Science.gov (United States)

    Wei, Chih-Hsuan; Peng, Yifan; Leaman, Robert; Davis, Allan Peter; Mattingly, Carolyn J; Li, Jiao; Wiegers, Thomas C; Lu, Zhiyong

    2016-01-01

    Manually curating chemicals, diseases and their relationships is significantly important to biomedical research, but it is plagued by its high cost and the rapid growth of the biomedical literature. In recent years, there has been a growing interest in developing computational approaches for automatic chemical-disease relation (CDR) extraction. Despite these attempts, the lack of a comprehensive benchmarking dataset has limited the comparison of different techniques in order to assess and advance the current state-of-the-art. To this end, we organized a challenge task through BioCreative V to automatically extract CDRs from the literature. We designed two challenge tasks: disease named entity recognition (DNER) and chemical-induced disease (CID) relation extraction. To assist system development and assessment, we created a large annotated text corpus that consisted of human annotations of chemicals, diseases and their interactions from 1500 PubMed articles. 34 teams worldwide participated in the CDR task: 16 (DNER) and 18 (CID). The best systems achieved an F-score of 86.46% for the DNER task--a result that approaches the human inter-annotator agreement (0.8875)--and an F-score of 57.03% for the CID task, the highest results ever reported for such tasks. When combining team results via machine learning, the ensemble system was able to further improve over the best team results by achieving 88.89% and 62.80% in F-score for the DNER and CID task, respectively. Additionally, another novel aspect of our evaluation is to test each participating system's ability to return real-time results: the average response time for each team's DNER and CID web service systems were 5.6 and 9.3 s, respectively. Most teams used hybrid systems for their submissions based on machining learning. Given the level of participation and results, we found our task to be successful in engaging the text-mining research community, producing a large annotated corpus and improving the results of

  18. Available IMARES generated ecotoxicological data with relevance to petroleum related chemicals

    NARCIS (Netherlands)

    Vries, de P.; Klok, T.C.

    2011-01-01

    This document provides an overview of ecotoxicological tests of oil and oil-related chemicals performed by Imares. This meta-data overview was generated for the potential use of its underlying data in the ecotoxicological models in the SYMBIOSES model system.

  19. Carbamate Stabilities of Sterically Hindered Amines from Quantum Chemical Methods: Relevance ofr CO2 Capture

    NARCIS (Netherlands)

    Gangarapu, S.; Marcelis, A.T.M.; Zuilhof, H.

    2013-01-01

    The influence of electronic and steric effects on the stabilities of carbamates formed from the reaction of CO2 with a wide range of alkanolamines was investigated by quantum chemical methods. For the calculations, B3LYP, M11-L, MP2, and spin-component-scaled MP2 (SCS-MP2) methods were used, coupled

  20. Chemical Compounds Toxic to Invertebrates Isolated from Marine Cyanobacteria of Potential Relevance to the Agricultural Industry

    KAUST Repository

    Essack, Magbubah

    2014-10-29

    In spite of advances in invertebrate pest management, the agricultural industry is suffering from impeded pest control exacerbated by global climate changes that have altered rain patterns to favour opportunistic breeding. Thus, novel naturally derived chemical compounds toxic to both terrestrial and aquatic invertebrates are of interest, as potential pesticides. In this regard, marine cyanobacterium-derived metabolites that are toxic to both terrestrial and aquatic invertebrates continue to be a promising, but neglected, source of potential pesticides. A PubMed query combined with hand-curation of the information from retrieved articles allowed for the identification of 36 cyanobacteria-derived chemical compounds experimentally confirmed as being toxic to invertebrates. These compounds are discussed in this review.

  1. Moessbauer spectroscopy with high velocity resolution. New possibilities of chemical analysis in material science and biomedical research

    International Nuclear Information System (INIS)

    An improvement in velocity resolution of Moessbauer spectroscopy permitted us to carry out a more detailed study of iron chemical state in various iron-containing compounds in a wide range of research. New possibilities of Moessbauer spectroscopy with high velocity resolution were shown in the studies of meteorites, nanocomposites, pharmaceuticals and biological subjects. (author)

  2. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  3. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  4. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  5. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-08-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.

  6. Corrosion Investigations of Ruthenium in Potassium Periodate Solutions Relevant for Chemical Mechanical Polishing

    Science.gov (United States)

    Cheng, Jie; Wang, Tongqing; Pan, Jinshan; Lu, Xinchun

    2016-05-01

    Ruthenium is the most promising material for the barrier layer used for the sub 14 nm technology node in integrated circuits manufacturing. Potassium periodate (KIO4)-based slurry is used in the chemical mechanical planarization (CMP) process of the barrier layer. However, the electrochemical and corrosion properties of ruthenium have not been investigated in such slurry. In this paper, the electrochemical and corrosion behaviors of ruthenium in KIO4 solutions were investigated under static conditions but at different pH values by potentiodynamic polarization and electrochemical impedance spectroscopy measurements, combined with surface chemical analysis using auger electron spectroscopy. Moreover, to study wear enhanced corrosion during CMP, tribocorrosion experiments were carried out to monitor the current density changes during and after mechanical scratching. The results show that at pH 6, ruthenium forms a relatively thick and heterogeneous surface film composed of RuO2·2H2O/RuO3, showing a high corrosion resistance and it exhibits a quick repassivation after mechanical scratching. At pH 4, ruthenium shows a passivation behavior with formation of a uniform and conductive oxide like RuO2·2H2O. It should be noted that there is a possible formation of RuO4 toxic gas under this condition, which should be avoided in the actual production. However, at pH 11, ruthenium exhibits no considerable passivity and the corrosion proceeds uniformly.

  7. Chemical and toxicological characterisation of water accommodated fractions relevant for oil spill situations

    International Nuclear Information System (INIS)

    The laboratory methodology and preliminary findings from an ongoing characterisation study of Water Accommodated Fraction solutions (WAF) (water systems with dissolved oil components, which is essentially free of dispersed oil droplets) derived from standardised low energy mixing of oils in seawater is presented. The study emphasises a tight connection between chemical characterisation and toxicological testing of WAF, and aims at obtaining improved and realistic data on potential environmental effects in the water column after an oil spill situation. Various oil types and the aspect of weathering (evaporative loss and photolysis) of oil is incorporated in the study. Preliminary results have identified large variation in the composition and toxicity of WAFs depending on the type of crude, oil loading rate (oil:water ratio) and weathering degree of the oils. Data from the study will be used for improving algorithms in present fate and effect models, which again will be used as quantitative tools in future damage assessment studies and in Net Environmental Benefit Analysis of response alternatives in various spill scenarios. (author)

  8. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  9. Quantum chemical study of relative reactivities of a series of amines and nitriles - Relevance to prebiotic chemistry

    Science.gov (United States)

    Loew, G. H.; Berkowitz, D.; Chang, S.

    1975-01-01

    Using the Iterative Extended Huckel Theory (IEHT) calculations of the electron distribution and orbital energies of a series of thirteen amines, nitriles and amino-nitriles relevant to prebiotic and cosmo-chemistry have been carried out. Ground state properties such as the energy and nature of the highest occupied (HOMO) and lowest empty (LEMO) molecular orbitals, net atomic charges and number of nonbonding electrons have been identified as criteria for correlating the relative nucleophilicity of amine and nitrile nitrogens and the electrophilicity of nitrile and other unsaturated carbon atoms. The results of such correlations can be partially verified by known chemical behavior of these compounds and are used to predict and understand their role in prebiotic organic synthesis.

  10. Surface tailoring of inorganic materials for biomedical applications

    CERN Document Server

    Rimondini, Lia; Vernè, Enrica

    2012-01-01

    This e-book provides comprehensive information on technologies for development and characterization of successful functionalized materials for biomedical applications relevant to surface modification.

  11. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  12. Modification of polyetherurethane for biomedical application by radiation-induced grafting. I. Grafting procedure, determination of mechanical properties, and chemical modification of grafted films

    International Nuclear Information System (INIS)

    Radiation grafting of monomers onto suitable trunk polymers is a useful tool for tailoring new polymers for special purposes. This technique has been used in the past for the development of biocompatible materials, e.g., by grafting hydrogels onto mechanically stable polymers. In this first part of our work, the radiation grafting of hydrophilic or reactive monomers onto a polyetherurethane film using the pre-swelling technique is described. Following this technique the trunk polymer was swollen in the monomer before irradiation. As monomers 2-hydroxyethyl methacrylate (HEMA), 2,3-epoxypropyl methacrylate (GMA), 2,3-dihydroxypropyl methacrylate (GOMA), and acrylamide (AAm) were used. The kinetics of the grafting reactions were examined, and the distribution of the graft component inside the trunk polymer was investigated by means of infrared (IR) spectroscopy. Surface-grafted as well as bulk- and surface-grafted products could be obtained. The mechanical behavior of the grafted films--especially in the water-swollen state--was examined and compared with that of the pure trunk polymer. In nearly all cases it was found that the tensile strength sigma B and the elongation at break epsilon R decreases as the grafting yield increases. Modification of GMA- and AAm-grafted films via chemical reactions was performed to create new functional groups of biomedical interest. In this manner a diol structure, a carboxylic acid structure, and a sulfonic acid group could be introduced in the grafted polymer. The water uptake of such modified films is increased markedly when compared with that of the unmodified samples

  13. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique ’intelligent’ characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  14. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  15. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  16. Human health and the environment: Predicting plasma protein binding and metabolic clearance rates of environmentally relevant chemicals.

    Science.gov (United States)

    In silico methods provide a rapid, inexpensive means of screening a wide array of environmentally relevant pollutants, pesticides, fungicides and consumer products for further toxicity testing. Physiologically based pharmacokinetic (PBPK) models bridge the gap between in vitro as...

  17. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  18. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  19. Querying Biomedical Ontologies in Natural Language using Answer Set

    CERN Document Server

    Erdogan, Halit; Erdem, Yelda; Erdem, Esra

    2010-01-01

    In this work, we develop an intelligent user interface that allows users to enter biomedical queries in a natural language, and that presents the answers (possibly with explanations if requested) in a natural language. We develop a rule layer over biomedical ontologies and databases, and use automated reasoners to answer queries considering relevant parts of the rule layer.

  20. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  1. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  2. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  3. Correlated analysis of chemical variations with spectroscopic features of the K-Na jarosite solid solutions relevant to Mars

    Science.gov (United States)

    Ling, Zongcheng; Cao, Fengke; Ni, Yuheng; Wu, Zhongchen; Zhang, Jiang; Li, Bo

    2016-06-01

    Detailed chemical, structural and spectroscopic properties of jarosite solid solution minerals are key information for their potential discoveries by future remote sensing and in-situ detections on Mars. We successfully synthesized seven homogeneous K-Na jarosite solid solutions under hydrothermal conditions at 140 °C, whose phase identifications and chemical compositions are confirmed by X-ray diffraction (XRD) and inductively coupled plasma mass spectrometry (ICP-MS). The chemical ratios of K/(K+Na) in jarosite solid solutions lead to systematic shifts of their characteristic Raman peaks ν1 (SO4)2- (from 1006 to 1011.3 cm-1), ν3 (SO4)2- (from 1100.6 to 1111.2 cm-1), ν2 (SO4)2- (from 434.2 to 444.8 cm-1) with the increase of Na content. While the OH stretching mode decreases with even larger peak position variations (e.g., ∼3410 cm-1 peak shifts from 3410.5 to 3385.7 cm-1) as the K-Na jarosite solid solutions are enriched in Na content. Raman spectroscopic measurements of the seven K-Na jarosite solid solutions enabled us to build a calibration that uses Raman peak positions to estimate K-Na variation in jarosite, which is the key step for their possible applications in the future Raman applications on Mars' missions (e.g., ExoMars and Mars 2020 missions). The band assignments and compositional related variations of their XRD, near-infrared (NIR) and mid-infrared (MIR) spectra also provide informative clues for identifying the jarosite minerals and inferring their composition during martian in-situ and remote sensing measurements.

  4. The Ontology for Biomedical Investigations.

    Directory of Open Access Journals (Sweden)

    Anita Bandrowski

    Full Text Available The Ontology for Biomedical Investigations (OBI is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI and Phenotype Attribute and Trait Ontology (PATO without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT. The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org providing details on the people, policies, and issues being

  5. The Ontology for Biomedical Investigations

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  6. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  7. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  10. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  11. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  12. Quantum Cascade Lasers in Biomedical Infrared Imaging.

    Science.gov (United States)

    Bird, Benjamin; Baker, Matthew J

    2015-10-01

    Technological advances, namely the integration of quantum cascade lasers (QCLs) within an infrared (IR) microscope, are enabling the development of valuable label-free biomedical-imaging tools capable of targeting and detecting salient chemical species within practical clinical timeframes. PMID:26409774

  13. Biomedical composites materials, manufacturing and engineering

    CERN Document Server

    Davim, J Paulo

    2013-01-01

    Composite materials are engineered materials, made from two or more constituents with significantly different physical or chemical properties which remain separate on a macroscopic level within the finished structure. Due to their special mechanical and physical properties they have the potential to replace conventional materials in various fields such as the biomedical industry.

  14. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  15. Sharing big biomedical data

    OpenAIRE

    Toga, Arthur W.; Dinov, Ivo D.

    2015-01-01

    Background The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Findings Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent data...

  16. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  17. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  18. What is biomedical informatics?

    OpenAIRE

    Bernstam, Elmer V.; Smith, Jack W.; Johnson, Todd R

    2009-01-01

    Biomedical informatics lacks a clear and theoretically grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of info...

  19. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  20. Bibliography of astatine chemistry and biomedical applications

    International Nuclear Information System (INIS)

    An overall bibliography is presented on astatine chemistry and on the biomedical applications of its 211At isotope. The references were grouped in the following chapters: General reviews; Discovery, Natural Occurence; Nuclear Data; Preparation, Handling, Radiation Risk; Physico-chemical Properties; Astatine Compounds and Chemical Reactions; Biological Effects and Applications. Entries are sorted alphabetically by authors name in each chapter, and cross-references to other chapters are provided if appropriate. (R.P.)

  1. Thermochemical analysis of chemical processes relevant to the stability and processing of SiC-reinforced Si3N4 composite

    Science.gov (United States)

    Misra, Ajay K.

    1991-01-01

    Chemical processes relevant to the stability and processing of SiC-reinforced Si3N4 composites have been examined from thermochemical considerations. The thermodynamic stabilities of various interfaces, such as SiC-Si3N4, SiC-Si3N4-Si2ON2, and SiC-Si3N4-SiO2, have been examined as a function of temperature, and the temperatures above which these interfaces become unstable have been calculated. The degradation of SiC during the processing of the composite has been examined. The processing routes considered in this study include the reaction bonded silicon nitride (RBSN) process and the pressure-assisted sintering processes with suitable sintering additives.

  2. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  3. TPX: Biomedical literature search made easy

    OpenAIRE

    Joseph, Thomas; Saipradeep, Vangala G; Raghavan, Ganesh Sekar Venkat; Srinivasan, Rajgopal; Rao, Aditya; Kotte, Sujatha; Sivadasan, Naveen

    2012-01-01

    TPX is a web-based PubMed search enhancement tool that enables faster article searching using analysis and exploration features. These features include identification of relevant biomedical concepts from search results with linkouts to source databases, concept based article categorization, concept assisted search and filtering, query refinement. A distinguishing feature here is the ability to add user-defined concept names and/or concept types for named entity recognition. The tool allows co...

  4. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  5. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. PMID:24117708

  6. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  7. Biomedical engineering entrepreneurship

    CERN Document Server

    Lee, Jen-Shih

    2014-01-01

    This book is written for undergraduate and graduate students in biomedical engineering wanting to learn how to pursue a career in building up their entrepreneur ventures. Practicing engineers wanting to apply their innovations for healthcare will also find this book useful. The 21st century is the Biotech Century where many nations are investing heavily in biotechnology. As a result, tremendous business opportunities exist for biomedical engineering graduates who are interested in becoming successful entrepreneurs. However, many challenges await these entrepreneurs intending to invent safe and

  8. Structural and chemical analysis of silica-doped β-TCP ceramic coatings on surgical grade 316L SS for possible biomedical application

    Directory of Open Access Journals (Sweden)

    Karuppasamy Prem Ananth

    2015-09-01

    Full Text Available We have developed a novel approach to introduce silica-doped β-tricalcium phosphate (Si-β-TCP on 316L SS substrates for enhanced biological properties. Doping of β-TCP with silica loadings ranging from 0 to 8 mol% was carried out using chemical precipitation method. Si-β-TCP powder was sintered at 800 °C followed by coating it on 316L SS substrate using electrophoretic deposition. The coated and uncoated samples were investigated by various characterization techniques such as X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, field emission scanning electron microscopy (FESEM and X-ray fluorescence spectroscopy (XRF. Biomineralization ability of the coatings was evaluated by immersing in simulated body fluid (SBF solution for different number of days such as 7, 14, 21 and 28 days. The results obtained in our study have shown that the apatite formation ability was high for the 8 mol% of Si-β-TCP. This will promote better biomineralization ability compared to the other coatings.

  9. MedlineRanker: flexible ranking of biomedical literature.

    OpenAIRE

    Fontaine, J.F.; Barbosa-Silva, A.; Schaefer, M.; Huska, M.R.; Muro, E.M.; Andrade-Navarro, M A

    2009-01-01

    The biomedical literature is represented by millions of abstracts available in the Medline database. These abstracts can be queried with the PubMed interface, which provides a keyword-based Boolean search engine. This approach shows limitations in the retrieval of abstracts related to very specific topics, as it is difficult for a non-expert user to find all of the most relevant keywords related to a biomedical topic. Additionally, when searching for more general topics, the same approach may...

  10. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  11. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  12. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  13. Biomedical applications in EELA.

    Science.gov (United States)

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  14. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  15. Biomedical applications of photochemistry

    OpenAIRE

    Chan, BP

    2010-01-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities a...

  16. Biomedical applications of graphene and graphene oxide.

    Science.gov (United States)

    Chung, Chul; Kim, Young-Kwan; Shin, Dolly; Ryoo, Soo-Ryoon; Hong, Byung Hee; Min, Dal-Hee

    2013-10-15

    Graphene has unique mechanical, electronic, and optical properties, which researchers have used to develop novel electronic materials including transparent conductors and ultrafast transistors. Recently, the understanding of various chemical properties of graphene has facilitated its application in high-performance devices that generate and store energy. Graphene is now expanding its territory beyond electronic and chemical applications toward biomedical areas such as precise biosensing through graphene-quenched fluorescence, graphene-enhanced cell differentiation and growth, and graphene-assisted laser desorption/ionization for mass spectrometry. In this Account, we review recent efforts to apply graphene and graphene oxides (GO) to biomedical research and a few different approaches to prepare graphene materials designed for biomedical applications. Because of its excellent aqueous processability, amphiphilicity, surface functionalizability, surface enhanced Raman scattering (SERS), and fluorescence quenching ability, GO chemically exfoliated from oxidized graphite is considered a promising material for biological applications. In addition, the hydrophobicity and flexibility of large-area graphene synthesized by chemical vapor deposition (CVD) allow this material to play an important role in cell growth and differentiation. The lack of acceptable classification standards of graphene derivatives based on chemical and physical properties has hindered the biological application of graphene derivatives. The development of an efficient graphene-based biosensor requires stable biofunctionalization of graphene derivatives under physiological conditions with minimal loss of their unique properties. For the development graphene-based therapeutics, researchers will need to build on the standardization of graphene derivatives and study the biofunctionalization of graphene to clearly understand how cells respond to exposure to graphene derivatives. Although several

  17. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  18. A document processing pipeline for annotating chemical entities in scientific documents

    OpenAIRE

    Campos, David; Matos, Sérgio; Oliveira, José L.

    2015-01-01

    Background The recognition of drugs and chemical entities in text is a very important task within the field of biomedical information extraction, given the rapid growth in the amount of published texts (scientific papers, patents, patient records) and the relevance of these and other related concepts. If done effectively, this could allow exploiting such textual resources to automatically extract or infer relevant information, such as drug profiles, relations and similarities between drugs, o...

  19. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  20. Nanocrystalline diamond films for biomedical applications

    DEFF Research Database (Denmark)

    Pennisi, Cristian Pablo; Alcaide, Maria

    2014-01-01

    resistance, chemical inertness, superior electrochemical behavior, biocompatibility, and nontoxicity. These properties have positioned the nanocrystalline diamond films as an attractive class of materials for a range of therapeutic and diagnostic applications in the biomedical field. Consequently, the...... better understand the terminology used in the literature, which is related to the fabrication and surface functionalization of this class of materials, some of the most common approaches for synthesis and modification of CVD diamond films is introduced. Although many challenges still remain, it is...

  1. Functionalized conjugated polyelectrolytes design and biomedical applications

    CERN Document Server

    Wang, Shu

    2013-01-01

    Functionalized Conjugated Polyelectrolytes presents a comprehensive review of these polyelectrolytes and their biomedical applications. Basic aspects like molecular design and optoelectronic properties are covered in the first chapter. Emphasis is placed on the various applications including sensing (chemical and biological), disease diagnosis, cell imaging, drug/gene delivery and disease treatment. This book explores a multi-disciplinary topic of interest to researchers working in the fields of chemistry, materials, biology and medicine. It also offers an integrated perspective on both basic

  2. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  3. Toxicology of Biomedical Polymers

    Directory of Open Access Journals (Sweden)

    P. V. Vedanarayanan

    1987-04-01

    Full Text Available This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasised since in our country, at present, there are no regulations covering the manufacturing and marketing of medical devices. Finally the question of the general and subtle long term systemic toxicity of biomedical polymers have been brought to attention with the suggestion that this question needs to be resolved permanently by appropriate studies.

  4. Biomimicry in biomedical research

    OpenAIRE

    Zhang, Ge

    2012-01-01

    Biomimicry (literally defined as the imitation of life or nature) has sparked a variety of human innovations and inspired countless cutting-edge designs. From spider silk-made artificial skin to lotus leaf-inspired self-cleaning materials, biomimicry endeavors to solve human problems. Biomimetic approaches have contributed significantly to advances biomedical research during recent years. Using polyacrylamide gels to mimic the elastic modulus of different biological tissues, Disher’s lab has ...

  5. Toxicology of Biomedical Polymers

    OpenAIRE

    P. V. Vedanarayanan; A. C. Fernandez

    1987-01-01

    This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasi...

  6. Multilingual Biomedical Dictionary

    OpenAIRE

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical inform...

  7. Relevancy 101

    Science.gov (United States)

    Lynnes, Chris; Newman, Doug

    2016-01-01

    Where we present an overview on why relevancy is a problem, how important it is and how we can improve it. The topic of relevancy is becoming increasingly important in earth data discovery as our audience is tuned to the accuracy of standard search engines like Google.

  8. Lipopolysaccharide inhibits or accelerates biomedical titanium corrosion depending on environmental acidity

    Institute of Scientific and Technical Information of China (English)

    Fei Yu; Owen Addison; Stephen J Baker; Alison J Davenport

    2015-01-01

    Titanium and its alloys are routinely used as biomedical implants and are usually considered to be corrosion resistant under physiological conditions. However, during inflammation, chemical modifications of the peri-implant environment including acidification occur. In addition certain biomolecules including lipopolysaccharide (LPS), a component of Gram-negative bacterial cell walls and driver of inflammation have been shown to interact strongly with Ti and modify its corrosion resistance. Gram-negative microbes are abundant in biofilms which form on dental implants. The objective was to investigate the influence of LPS on the corrosion properties of relevant biomedical Ti substrates as a function of environmental acidity. Inductively coupled plasma mass spectrometry was used to quantify Ti dissolution following immersion testing in physiological saline for three common biomedical grades of Ti (ASTM Grade 2, Grade 4 and Grade 5). Complementary electrochemical tests including anodic and cathodic polarisation experiments and potentiostatic measurements were also conducted. All three Ti alloys were observed to behave similarly and ion release was sensitive to pH of the immersion solution. However, LPS significantly inhibited Ti release under the most acidic conditions (pH 2), which may develop in localized corrosion sites, but promoted dissolution at pH 4–7, which would be more commonly encountered physiologically. The observed pattern of sensitivity to environmental acidity of the effect of LPS on Ti corrosion has not previously been reported. LPS is found extensively on the surfaces of skin and mucosal penetrating Ti implants and the findings are therefore relevant when considering the chemical stability of Ti implant surfaces in vivo.

  9. Biomedical exploitation of the fungus-growing ant symbiosis

    DEFF Research Database (Denmark)

    Poulsen, Michael

    2010-01-01

    well as the efforts made in identifying and characterizing chemical compounds mediating these interactions. Finally, I outline the prospects for future natural product discoveries from the system, touching on how advances in chemical analyses and whole-genome sequencing techniques will facilitate the...... process of natural product discovery of biomedical interest....

  10. Europium enabled luminescent nanoparticles for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Syamchand, S.S., E-mail: syamchand.ss@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2015-09-15

    ) Eu-complex based NPs; (3) silica/glass and polymer matrix based Eu-NPs; and (4) Eu-NPs based on metal substrates. In each category the identified biomedical applications are consolidated in a convenient tabular form. • The observed biomedical applications of Eu-NPs are duly classified and discussed under four divisions such as (1) immuno assay based applications; (2) biolabelling/imaging applications; (3) detection and sensing applications and (4) miscellaneous applications. The distinctions between different Eu-NPs for different applications are consolidated. • The review considers 304 relevant research papers from the current field of Eu-based nanoparticles.

  11. Europium enabled luminescent nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    ) Eu-complex based NPs; (3) silica/glass and polymer matrix based Eu-NPs; and (4) Eu-NPs based on metal substrates. In each category the identified biomedical applications are consolidated in a convenient tabular form. • The observed biomedical applications of Eu-NPs are duly classified and discussed under four divisions such as (1) immuno assay based applications; (2) biolabelling/imaging applications; (3) detection and sensing applications and (4) miscellaneous applications. The distinctions between different Eu-NPs for different applications are consolidated. • The review considers 304 relevant research papers from the current field of Eu-based nanoparticles

  12. Handbook on advanced design and manufacturing technologies for biomedical devices

    CERN Document Server

    2013-01-01

    The last decades have seen remarkable advances in computer-aided design, engineering and manufacturing technologies, multi-variable simulation tools, medical imaging, biomimetic design, rapid prototyping, micro and nanomanufacturing methods and information management resources, all of which provide new horizons for the Biomedical Engineering fields and the Medical Device Industry. Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices covers such topics in depth, with an applied perspective and providing several case studies that help to analyze and understand the key factors of the different stages linked to the development of a novel biomedical device, from the conceptual and design steps, to the prototyping and industrialization phases. Main research challenges and future potentials are also discussed, taking into account relevant social demands and a growing market already exceeding billions of dollars. In time, advanced biomedical devices will decisively change methods and resu...

  13. Utilização de regressão multivariada para avaliação espectrofotométrica da demanda química de oxigênio em amostras de relevância ambiental Use of multivariate regression in spectrophotometric evaluation of chemical oxigen demand in samples of environmental relevance

    OpenAIRE

    Patricio Peralta-Zamora; Gilcélia A. Cordeiro; Noemi Nagata

    2005-01-01

    In this work, a partial least squares regression routine was used to develop a multivariate calibration model to predict the chemical oxygen demand (COD) in substrates of environmental relevance (paper effluents and landfill leachates) from UV-Vis spectral data. The calibration models permit the fast determination of the COD with typical relative errors lower by 10% with respect to the conventional methodology.

  14. The Ontology for Biomedical Investigations

    OpenAIRE

    Anita Bandrowski; Ryan Brinkman; Mathias Brochhausen; Brush, Matthew H.; Bill Bug; Chibucos, Marcus C.; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using i...

  15. Generating Explanations for Biomedical Queries

    OpenAIRE

    Erdem, Esra; Oztok, Umut

    2013-01-01

    We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for biomedical queries, using answer set programming. We implement these algorithms and integrate them in BIOQUERY-ASP. We illustrate the usefulness of these methods with some complex biomedical queries related to drug discovery, over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASE ONTOLOGY and ORPHADATA. To appear in Theory and Practice of Logic Program...

  16. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  17. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  18. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  19. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  20. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  1. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  2. CHEMICALS

    CERN Multimedia

    Medical Service

    2002-01-01

    It is reminded that all persons who use chemicals must inform CERN's Chemistry Service (TIS-GS-GC) and the CERN Medical Service (TIS-ME). Information concerning their toxicity or other hazards as well as the necessary individual and collective protection measures will be provided by these two services. Users must be in possession of a material safety data sheet (MSDS) for each chemical used. These can be obtained by one of several means : the manufacturer of the chemical (legally obliged to supply an MSDS for each chemical delivered) ; CERN's Chemistry Service of the General Safety Group of TIS ; for chemicals and gases available in the CERN Stores the MSDS has been made available via EDH either in pdf format or else via a link to the supplier's web site. Training courses in chemical safety are available for registration via HR-TD. CERN Medical Service : TIS-ME :73186 or service.medical@cern.ch Chemistry Service : TIS-GS-GC : 78546

  3. Bio-Inspired Extreme Wetting Surfaces for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Sera Shin

    2016-02-01

    Full Text Available Biological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices. This review describes design and fabrication methods for artificial extreme wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential biomedical applications are also addressed.

  4. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  5. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  6. Commercialising biomedical technology.

    Science.gov (United States)

    Craig, D L

    1989-06-01

    Engineers and scientists working with biomedical technology are a highly inventive lot. However, it is disappointing to see how few of the products of that inventiveness ever see the light of day outside the hospitals or institutions in which they are developed. This is usually because the developers do not know how to go about commercialising their products. The two basic options in commercialising a new product are to license the product to an existing company, or to establish a new company to manufacture and market it. Whichever approach is taken, a "Business Plan" is an essential requirement. This is a selling document which is needed either to convince an existing company that it would be profitable for it to license the product, or to convince an investor/financier to fund the establishment of a new company to commercialise it. PMID:2764795

  7. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  8. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  9. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  10. Nanomaterials driven energy, environmental and biomedical research

    International Nuclear Information System (INIS)

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI)

  11. Nanomaterials driven energy, environmental and biomedical research

    Science.gov (United States)

    Sharma, Prakash C.; Srinivasan, Sesha S.; Wilson, Jeremiah F.

    2014-03-01

    We have developed state-of-the-art nanomaterials such as nanofibers, nanotubes, nanoparticles, nanocatalysts and nanostructures for clean energy, environmental and biomedical research. Energy can neither be created nor be destroyed, but it can be converted from one form to another. Based on this principle, chemical energy such as hydrogen has been produced from water electrolysis at a much lower voltage using RuO2 nanoparticles on the Si wafer substrate. Once the hydrogen is produced from the clean sources such as solar energy and water, it has to be stored by physisorption or chemisorption processes on to the solid state systems. For the successful physical adsorption of hydrogen molecule, we have developed novel polyaniline nanostructures via chemical templating and electrospinning routes. Chemical or complex hydrides involving nano MgH2 and transition metal nanocatalysts have been synthesized to tailor both the thermodynamics and kinetics of hydrogen (chemi) sorption respectively. Utilization of solar energy (UV-Vis) and a coupling of novel semiconductor oxide nanoparticles have been recently demonstrated with enhancement in photo-oxidation and/or photo-reduction processes for the water/air detoxification and sustainable liquid fuel production respectively. Magnetic nanoparticles such as ZnFe2O4 have been synthesized and optimized for biomedical applications such as targeted drug delivery and tumor diagnostic sensing (MRI).

  12. Biomedical applications of radiation technology in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Pardo, Ma. Esther; Vera-Graziano, R.; Ramos-Duron, L. E

    1998-06-01

    Mexican Health Institutions continuously require suitable medical grade prosthetic materials for reconstructive and plastic surgery. In particular, the requirements of polydimethylsiloxane, PDMS, for soft tissue replacements are rapidly growing. In addition to molecular weight, the properties of PDMS in biomedicine strongly depend on its purity, formulation and processing. High energy radiation has been used for both the synthesis of highly pure PDMS, free of catalyst and chemicals, and for sterilization of biomedical products. Here, are discussed the gamma radiation polymerization of different siloxane precursors to obtain PDMS with specific functionality and molecular structure as well as the radiation sterilization of amniotic membranes used as wound dressing.

  13. Biomedical applications of radiation technology in Mexico

    International Nuclear Information System (INIS)

    Mexican Health Institutions continuously require suitable medical grade prosthetic materials for reconstructive and plastic surgery. In particular, the requirements of polydimethylsiloxane, PDMS, for soft tissue replacements are rapidly growing. In addition to molecular weight, the properties of PDMS in biomedicine strongly depend on its purity, formulation and processing. High energy radiation has been used for both the synthesis of highly pure PDMS, free of catalyst and chemicals, and for sterilization of biomedical products. Here, are discussed the gamma radiation polymerization of different siloxane precursors to obtain PDMS with specific functionality and molecular structure as well as the radiation sterilization of amniotic membranes used as wound dressing

  14. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  15. Animal Experiments in Biomedical Research: A Historical Perspective

    OpenAIRE

    Nuno Henrique Franco

    2013-01-01

    Simple Summary This article reviews the use of non-human animals in biomedical research from a historical viewpoint, providing an insight into the most relevant social and moral issues on this topic across time, as well as to how the current paradigm for ethically and publically acceptable use of animals in biomedicine has been achieved. Abstract The use of non-human animals in biomedical research has given important contributions to the medical progress achieved in our day, but it has also b...

  16. Relevant Agents

    Czech Academy of Sciences Publication Activity Database

    Bílková, Marta; Majer, Ondrej; Peliš, Michal; Restall, G.

    London: College Publications, 2010 - (Beklemishev, L.; Goranko, V.; Shehtman, V.), s. 22-38. (8). ISBN 978-1-84890-013-4. [Advances in Modal Logic. Moscow (RU), 24.08.2010-27.08.2010] R&D Projects: GA ČR GEICC/08/E018; GA AV ČR IAA900090703 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z90090514 Keywords : modal logic * epistemic logic * relevant logic * substructural logic * frame semantics Subject RIV: BA - General Mathematics

  17. Thermal Decomposition of an Impure (Roxbury) Siderite: Relevance to the Presence of Chemically Pure Magnetite Crystals in ALH84001 Carbonate Disks

    Science.gov (United States)

    McKay, D.S.; Gibson, E.K.; Thomas-Keprta, K.L.; Clemett, S.J.; Wentworth, S.J.

    2009-01-01

    The question of the origin of nanophase magnetite in Martian meteorite ALH84001 has been widely debated for nearly a decade. Golden et al. have reported producing nearly chemically pure magnetite from thermal decomposition of chemically impure siderite [(Fe, Mg, Mn)CO3]. This claim is significant for three reasons: first, it has been argued that chemically pure magnetite present in the carbonate disks in Martian meteorite ALH84001 could have formed by the thermal decomposition of the impure carbonate matrix in which they are embedded; second, the chemical purity of magnetite has been previously used to identify biogenic magnetite; and, third, previous studies of thermal decomposition of impure (Mg,Ca,Mn)-siderites, which have been investigated under a wide variety of conditions by numerous researchers, invariably yields a mixed metal oxide phase as the product and not chemically pure magnetite. The explanation for this observation is that these siderites all possess the same crystallographic structure (Calcite; R3c) so solid solutions between these carbonates are readily formed and can be viewed on an atomic scale as two chemically different but structurally similar lattices.

  18. Microbial xylanases and their biomedical applications: a review

    Directory of Open Access Journals (Sweden)

    Girish K. Goswami

    2013-06-01

    Full Text Available Xylanases have a great potential, mainly known for industrial applications. They can hydrolyze the xylose (Hemicellulose of plant cell wall and can be used for bio-bleaching the kraft pulp. As it reduces the requirement of harsh chemicals in the process, it can be used further to a number of bio-products with a great aggregate value. Microbial-origin xylanases can also be used in improving the nutritional quality of animal feed (e.g. food additives to poultry, piggery or fishery and indirectly affect the humans. Additionally they can be used directly in human food in bakery, clarification of juices and in xenobiotics like tobacco processing. The great value of xylanase as a bio-bleaching agent has now a new dimension of fiber digesting agent having relevance to food, drugs and cosmetics act. This review presents some important applications of Xylanases extended up to biomedical sciences. [Int J Basic Clin Pharmacol 2013; 2(3.000: 237-246

  19. Applicability of existing magnesium alloys as biomedical implant materials

    NARCIS (Netherlands)

    Erinc, M.; Sillekens, W.H.; Mannens, R.G.T.M.; Werkhoven, R.J.

    2009-01-01

    Being biocompatible and biodegradable, magnesium alloys are considered as the new generation biomedical implant materials, such as for stents, bone fixtures, plates and screws. A major drawback is the poor chemical stability of metallic magnesium; it corrodes at a pace that is too high for most pros

  20. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  1. Contaminant mixtures and repoductive health: Developmental toxicity effects in rats after mixed exposure to environmentally relevant endocrine disrupting chemicals, with focus on effects in females

    DEFF Research Database (Denmark)

    Jacobsen, Pernille Rosenskjold; Christiansen, Sofie; Hass, Ulla

    effects in females both early and later in life. Methods: The results, presented in this thesis, were obtained in five developmental toxicology studies. Two studies investigated mixtures of endocrine disrupting pesticides (Pestimix), two investigated mixtures of endocrine disrupting chemicals based...... on human exposures (Contamed), and one study tested a positive control for estrogenic effects, ethinyl estradiol (EE2). The project with the mixture of the five pesticides included two range-finding studies (collectively called Pestimix RF) and a dose response study (Pestimix DR). In the Contamed project...... chemicals included phthalates, pesticides, UV-filters, bisphenol A, parabens and the drug paracetamol. Together the chemicals represented several modes of action with regard to endocrine disrupting mode of action. Finally, results from a dose response study on the estrogenic drug EE2 were included. In all...

  2. An Italian Biomedical Publications Database

    OpenAIRE

    De Robbio, Antonella; Mozzati, Paola; Lazzari, Luigina; Maguolo, Dario; Dolfino, Manuela; Gradito, Paola

    2002-01-01

    Periodical scientific literature is one of the most important information sources for the scientific community and particularly for biomedicine. As regards Italian publications today, a part from very few laudable exceptions, there is a lack of the instruments necessary for accessing the information that they contain. With over 700 Italian biomedical texts, only 25% are mentioned in the more important biomedical data banks, such as Medline, Embase, Pascal, CAB, with unfortunately a great deal...

  3. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  4. RECENT POTENTIAL USAGE OF SURFACTANT FROM MICROBIAL ORIGIN IN PHARMACEUTICAL AND BIOMEDICAL ARENA: A PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Rath Kalyani

    2011-08-01

    Full Text Available The use and potential commercial application of biosurfactant has increased during the past decade which can be used as emulsifiers, de-emulsifiers, wetting and foaming agents, functional food ingredients and as detergents in petroleum, petrochemicals, environmental management, agrochemicals, foods and beverages, cosmetics and pharmaceuticals and in the mining and metallurgical industries. Their antibacterial, antifungal and antiviral activities make them relevant molecules for applications in combating many diseases and as therapeutic agents. In addition to this their role as antiadhesive agents against several disease causing pathogens makes their utility as suitable antiadhesive coating agents for medical insertional materials which helps in the reduction in a large number of hospital infections without the use of synthetic drugs and chemicals. This review looks at the various pharmaceutical, biomedical and therapeutic perspectives on biosurfactant applications.

  5. A flexible organic resistance memory device for wearable biomedical applications

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-01

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>104), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius biomedical applications.

  6. Optical nanoparticles: synthesis and biomedical application

    Science.gov (United States)

    Nhung Tran, Hong; Nghiem, Thi Ha Lien; Thuy Duong Vu, Thi; Chu, Viet Ha; Huan Le, Quang; Nhung Hoang, Thi My; Thanh Nguyen, Lai; Pham, Duc Minh; Thuan Tong, Kim; Hoa Do, Quang; Vu, Duong; Nghia Nguyen, Trong; Tan Pham, Minh; Nguyen Duong, Cao; Thuy Tran, Thanh; Son Vu, Van; Thuy Nguyen, Thi; Nguyen, Thi Bich Ngoc; Tran, Anh Duc; Thuong Trinh, Thi; Nguyen, Thi Thai An

    2015-01-01

    This paper presents a summary of our results on studies of synthesis and biomedical application of optical nanoparticles. Gold, dye-doped silica based and core-shell multifunctional multilayer (SiO2/Au, Fe3O4/SiO2, Fe3O4/SiO2/Au) water-monodispersed nanoparticles were synthesized by chemical route and surface modified with proteins and biocompatible chemical reagents. The particles were conjugated with antibody or aptamer for specific detecting and imaging bacteria and cancer cells. The photothermal effects of gold nanoshells (SiO2/Au and Fe3O4/SiO2/Au) on cells and tissues were investigated. The nano silver substrates were developed for surface enhanced Raman scattering (SERS) spectroscopy to detect melamine.

  7. Donor–Acceptor Copolymers of Relevance for Organic Photovoltaics: A Theoretical Investigation of the Impact of Chemical Structure Modifications on the Electronic and Optical Properties

    KAUST Repository

    Pandey, Laxman

    2012-08-28

    We systematically investigate at the density functional theory level how changes to the chemical structure of donor-acceptor copolymers used in a number of organic electronics applications influences the intrinsic geometric, electronic, and optical properties. We consider the combination of two distinct donors, where a central five-membered ring is fused on both sides by either a thiophene or a benzene ring, with 12 different acceptors linked to the donor either directly or through thienyl linkages. The interplay between the electron richness/deficiency of the subunits as well as the evolution of the frontier electronic levels of the isolated donors/acceptors plays a significant role in determining the electronic and optical properties of the copolymers. © 2012 American Chemical Society.

  8. Nanomaterials and nanofabrication for biomedical applications

    Science.gov (United States)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  9. Discovering biomedical semantic relations in PubMed queries for information retrieval and database curation.

    Science.gov (United States)

    Huang, Chung-Chi; Lu, Zhiyong

    2016-01-01

    Identifying relevant papers from the literature is a common task in biocuration. Most current biomedical literature search systems primarily rely on matching user keywords. Semantic search, on the other hand, seeks to improve search accuracy by understanding the entities and contextual relations in user keywords. However, past research has mostly focused on semantically identifying biological entities (e.g. chemicals, diseases and genes) with little effort on discovering semantic relations. In this work, we aim to discover biomedical semantic relations in PubMed queries in an automated and unsupervised fashion. Specifically, we focus on extracting and understanding the contextual information (or context patterns) that is used by PubMed users to represent semantic relations between entities such as 'CHEMICAL-1 compared to CHEMICAL-2' With the advances in automatic named entity recognition, we first tag entities in PubMed queries and then use tagged entities as knowledge to recognize pattern semantics. More specifically, we transform PubMed queries into context patterns involving participating entities, which are subsequently projected to latent topics via latent semantic analysis (LSA) to avoid the data sparseness and specificity issues. Finally, we mine semantically similar contextual patterns or semantic relations based on LSA topic distributions. Our two separate evaluation experiments of chemical-chemical (CC) and chemical-disease (CD) relations show that the proposed approach significantly outperforms a baseline method, which simply measures pattern semantics by similarity in participating entities. The highest performance achieved by our approach is nearly 0.9 and 0.85 respectively for the CC and CD task when compared against the ground truth in terms of normalized discounted cumulative gain (nDCG), a standard measure of ranking quality. These results suggest that our approach can effectively identify and return related semantic patterns in a ranked order

  10. Enhancing biomedical text summarization using semantic relation extraction.

    Directory of Open Access Journals (Sweden)

    Yue Shang

    Full Text Available Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1 We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2 We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3 For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization.

  11. Report on the relevance and feasibility of measurements of the heat of chemical reactions during core meltdown and of the integral heat content of core melts. Pt. 2

    International Nuclear Information System (INIS)

    In the feasibility study chemical reactions which seemed to need experimental investigation had to be identified with special reference to the accident simulation by computer codes. For selected reactions, measuring methods and measuring set-ups had to be devised. A total of seven chemical reactions requiring experimental investigation were identified. In line with the current emphasis within the core meltdown research programme, three subjects were selected: (a) the exothermic steel melt-steam reaction during the core melt-concrete interaction, (b) the reaction which may occur immediately after the rupture of the reactor pressure vessel, between the metal melt, which contains steel and residual amounts of zirconium, and the containment atmosphere, and (c) the total of all reactions occuring during core melt-concrete interaction (integral reaction). Measuring methods and detailed set-ups for experimental investigations were conceived for the first two reactions. The apparatus were designed such that they can also be used for other investigations on chemical reactions during core meltdown. As regards the determination of integral heat of reaction by means of high-temperature calorimetry, the study showed that experimental difficulties may arise if gaseous reactions are involved. (orig.) 891 HP

  12. Biomedical journals: keeping up and reading critically.

    Science.gov (United States)

    Chase, Karen L; DiGiacomo, Ronald F; Van Hoosier, Gerald L

    2006-09-01

    By extrapolation from studies of physicians, knowledge and practice of laboratory animal medicine and science are expected to become progressively more outdated the longer practitioners are out of school. Keeping up with current literature and practice is a challenge that necessitates the use of many different sources of continuing education. Both veterinarians and physicians consistently list journals as the most beneficial source of new information. Accordingly, they must select from the veterinary and biomedical literature articles that report original studies and systematic reviews and recognize and respond to valid new knowledge to improve diagnostic and therapeutic approaches and maintain consistent clinical skills. Other objectives include selecting journals for general information and for information relevant or specific to one's field of research. Lastly, candidates for board certification need to read articles from journals that potentially provide the basis for questions on the examination. 'High-impact' journals should be identified, and articles should be reviewed critically. In a survey of recent candidates for laboratory animal medicine board examination, these journals included Contemporary Topics (now JAALAS), Comparative Medicine, ILAR Journal, and Laboratory Animals. Strategies for coping with the challenge of staying current with the literature include wise use of technology, journal clubs, and consultation with colleagues. A laboratory animal practitioner can become a better scientist and clinician by evaluating the research performed by others. Thorough, critical review of biomedical literature is paramount to these goals. PMID:16995641

  13. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  14. Advances in biomedical dosimetry

    International Nuclear Information System (INIS)

    Full text: Radiation dosimetry, the accurate determination of the absorbed dose within an irradiated body or a piece of material, is a prerequisite for all applications of ionizing radiation. This has been known since the very first radiation applications in medicine and biology, and increasing efforts are being made by radiation researchers to develop more reliable, effective and safe instruments, and to further improve dosimetric accuracy for all types of radiation used. Development of new techniques and instrumentation was particularly fast in the field of both medical diagnostic and therapeutic radiology. Thus, in Paris in October the IAEA held the latest symposium in its continuing series on dosimetry in medicine and biology. The last one was held in Vienna in 1975. High-quality dosimetry is obviously of great importance for human health, whether the objectives lie in the prevention and control of risks associated with the nuclear industry, in medical uses of radioactive substances or X-ray beams for diagnostic purposes, or in the application of photon, electron or neutron beams in radiotherapy. The symposium dealt with the following subjects: General aspects of dosimetry; Special physical and biomedical aspects; Determination of absorbed dose; Standardization and calibration of dosimetric systems; and Development of dosimetric systems. The forty or so papers presented and the discussions that followed them brought out a certain number of dominant themes, among which three deserve particular mention. - The recent generalization of the International System of Units having prompted a fundamental reassessment of the dosimetric quantities to be considered in calibrating measuring instruments, various proposals were advanced by the representatives of national metrology laboratories to replace the quantity 'exposure' (SI unit = coulomb/kg) by 'Kerma' or 'absorbed dose' (unit joule/kg, the special name of which is 'gray'), this latter being closer to the practical

  15. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  16. Report on the relevance and feasibility of measurements of the heat of chemical reactions during core meltdown and of the integral heat content of core melts. Pt. 1

    International Nuclear Information System (INIS)

    Under the reactor safety programme of the German Federal Ministry of Research and Technology, Battelle-Frankfurt is conducting investigations into the heat produced by chemical reactions which may occur in the course of a hypothetical core meltdown accident. The first research phase consisted of a study into the significance of this heat compared with the nuclear decay heat. At present, some of the boundary conditions determining the course of the chemical reactions are not sufficiently well known. Therefore, some of the calculations had to be based upon assumptions which were chosen under conservative aspects. The results of the present study should thus be regarded as limiting values intended to stimulate more detailed investigations. Of the reactions that may occur between the main core components (zircaloy, steel and uranium dioxide), steam and atmospheric oxygen in the containment, the oxidation reactions were considered more closely. Reactions involving the hydrogen evolved in the reactions, the pressure vessel material or the concrete were left out of consideration. Based on the available literature, the maximum possible reaction heat, under the assumption of the complete oxidation of zircaloy and steel, and the rate of the highly exothermal reaction between zirconium and steam, were calculated. It was found that the latter reaction alone may be substantial compared with the nuclear decay reaction, both in terms of the amount of heat produced per unit time and of total heat produced. The oxidation of the steel, which is an exothermal reaction as well, is to be added to the oxidation of the zirconium. If the atmospheric oxygen in the containment should participate in the oxidation of steel during the late phases of the accident, additional peaks in the heat production must be expected. (orig.) 891 HP

  17. Relevance of the bioavailable fraction of DDT and its metabolites in freshwater sediment toxicity: New insight into the mode of action of these chemicals on Dictyostelium discoideum.

    Science.gov (United States)

    Sforzini, Susanna; Governa, Daniela; Boeri, Marta; Oliveri, Laura; Oldani, Alessandro; Vago, Fabio; Viarengo, Aldo; Borrelli, Raffaella

    2016-10-01

    In this work, the toxicity of lake sediments contaminated with DDT and its metabolites DDD and DDE (collectively, DDX) was evaluated with widely used toxicity tests (i.e., Vibrio fischeri, Daphnia magna, Pseudokirchneriella subcapitata, and Lumbriculus variegatus) and with the social amoeba Dictyostelium discoideum, a model organism that is also suitable for studying pollutant-induced alterations at the molecular and cellular levels. Although the DDX concentration in the sediments was high (732.5 ppb), the results suggested a minimal environmental risk; in fact, no evidence of harmful effects was found using the different bioassays or when we considered the results of more sensitive sublethal biomarkers in D. discoideum amoebae. In line with the biological results, the chemical data showed that the concentration of DDX in the pore water (in general a highly bioavailable phase) showed a minimal value (0.0071ppb). To confirm the importance of the bioavailability of the toxic chemicals in determining their biological effects and to investigate the mechanisms of DDX toxicity, we exposed D. discoideum amoebae to 732.5ppb DDX in water solution. DDX had no effect on cell viability; however, a strong reduction in amoebae replication rate was observed, which depended mainly on a reduction in endocytosis rate and on lysosomal and mitochondrial alterations. In the presence of a moderate and transient increase in reactive oxygen species, the glutathione level in DDX-exposed amoebae drastically decreased. These results highlight that studies of the bioavailability of pollutants in environmental matrices and their biological effects are essential for site-specific ecological risk assessment. Moreover, glutathione depletion in DDX-exposed organisms is a new finding that could open the possibility of developing new pesticide mixtures that are more effective against DDT-resistant malaria vectors. PMID:27340883

  18. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  19. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  20. Design of Biomedical Robots for Phenotype Prediction Problems.

    Science.gov (United States)

    deAndrés-Galiana, Enrique J; Fernández-Martínez, Juan Luis; Sonis, Stephen T

    2016-08-01

    Genomics has been used with varying degrees of success in the context of drug discovery and in defining mechanisms of action for diseases like cancer and neurodegenerative and rare diseases in the quest for orphan drugs. To improve its utility, accuracy, and cost-effectiveness optimization of analytical methods, especially those that translate to clinically relevant outcomes, is critical. Here we define a novel tool for genomic analysis termed a biomedical robot in order to improve phenotype prediction, identifying disease pathogenesis and significantly defining therapeutic targets. Biomedical robot analytics differ from historical methods in that they are based on melding feature selection methods and ensemble learning techniques. The biomedical robot mathematically exploits the structure of the uncertainty space of any classification problem conceived as an ill-posed optimization problem. Given a classifier, there exist different equivalent small-scale genetic signatures that provide similar predictive accuracies. We perform the sensitivity analysis to noise of the biomedical robot concept using synthetic microarrays perturbed by different kinds of noises in expression and class assignment. Finally, we show the application of this concept to the analysis of different diseases, inferring the pathways and the correlation networks. The final aim of a biomedical robot is to improve knowledge discovery and provide decision systems to optimize diagnosis, treatment, and prognosis. This analysis shows that the biomedical robots are robust against different kinds of noises and particularly to a wrong class assignment of the samples. Assessing the uncertainty that is inherent to any phenotype prediction problem is the right way to address this kind of problem. PMID:27347715

  1. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  2. Using Ontology Fingerprints to disambiguate gene name entities in the biomedical literature

    OpenAIRE

    Chen, Guocai; Zhao, Jieyi; Cohen, Trevor; Tao, Cui; Sun, Jingchun; Xu, Hua; Bernstam, Elmer V.; Lawson, Andrew; Zeng, Jia; Johnson, Amber M.; Holla, Vijaykumar; Bailey, Ann M.; Lara-Guerra, Humberto; Litzenburger, Beate; Meric-Bernstam, Funda

    2015-01-01

    Ambiguous gene names in the biomedical literature are a barrier to accurate information extraction. To overcome this hurdle, we generated Ontology Fingerprints for selected genes that are relevant for personalized cancer therapy. These Ontology Fingerprints were used to evaluate the association between genes and biomedical literature to disambiguate gene names. We obtained 93.6% precision for the test gene set and 80.4% for the area under a receiver-operating characteristics curve for gene an...

  3. Biomedical Applications of Advanced Multifunctional Magnetic Nanoparticles.

    Science.gov (United States)

    Long, Nguyen Viet; Yang, Yong; Teranishi, Toshiharu; Thi, Cao Minh; Cao, Yanqin; Nogami, Masayuki

    2015-12-01

    In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe,

  4. Semi-continuous sampling of health relevant atmospheric particle subfractions for chemical speciation using a rotating drum impactor in series with sequential filter sampler.

    Science.gov (United States)

    Li, Fengxia; Schnelle-Kreis, Jürgen; Karg, Erwin; Cyrys, Josef; Gu, Jianwei; Orasche, Jürgen; Abbaszade, Gülcin; Peters, Annette; Zimmermann, Ralf

    2016-04-01

    To achieve unattended continuous long-term (eg., 1 week) sampling of size-segregated 24-h ambient particulate matter (PM), a sampling strategy of a modified 3-stage rotating drum impactor (RDI) in series with a sequential filter sampler was introduced and verified in a field campaign. Before the field sampling, lab experiment was conducted to test the collection efficiency of the third stage of the RDI using the quartz-fiber filter (QFF) as the substrate. The measured value is 0.36 μm, which is larger than the nominal value 0.1 μm. A fast direct analysis of organic species in all size fractions (<0.36, 0.36-1, 1-2.4, and 2.4-10 μm) of 24-h ambient samples was done using in situ derivatization thermal desorption gas chromatography time-of-flight mass spectrometry (IDTD-GC-TOFMS). A few secondary originated polar markers (dicarboxylic acids, cis-pinonic acid, etc.) were introduced and evaluated using this method for the first time and quantified simultaneously with polycyclic aromatic hydrocarbons (PAH) in the filter samples (<0.36 μm). For the other RDI strip samples (0.36-1, 1-2.4, and 2.4-10 μm), PAH and levoglucosan were quantified. The comparability of two such sampler sets was verified with respect to the PM collection profile of the two RDIs as well as measured concentration of chemical compounds in each sampled size fraction, so that a future epidemiological study on the relationship between the finest PM/its chemical composition and health outcome could be carried out through parallel sampling at two sites. The internal correlations between the size-segregated organic compounds are discussed. Besides, the correlations between the size-segregated organic species and size-segregated particulate number concentration (PNC) as well as meteorological parameter are discussed as well. PMID:26676546

  5. Relevance of various nitrogen fixing microorganisms in ecology and plant productivity as a basis for evaluating their damage by environmental chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Jagnow, G.

    1981-01-01

    To evaluate detrimental side-effects of environmental chemicals on the biological N/sub 2/-fixation the relative importance of the N/sub 2/-fixation of legume and non-legume root nodules, of symbiotic and free living blue-green algae, of aerobic and facultatively anaerobic rhizosphere bacteria and of anaerobic bacteria is discussed on the basis of their fixation rate and their contribution to the conservation of ecosystems. From an agricultural and ecological point of view the symbiotic N/sub 2/-fixation of legumes and non-legumes takes the first place, being followed by that of blue-green algae and rhizosphere bacteria. Compared with these, the strictly anaerobic N/sub 2/-fixation has only a minor importance. Variable side-effects of herbicides on N/sub 2/-fixing bacteria are cited to stress the necessity of testing representatives of various ecological groups. Suitable test systems are proposed with soybeans, white clover, Rhizobium cultures, N/sub 2/-fixing blue-green algae and with Azospirillum species.

  6. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  7. Biomedical applications of supermagnetic nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Babič, Michal; Kubinová, Šárka; Schmiedtová, M.; Poledne, R.; Herynek, V.; Sundstrom, T.; Altanerova, V.; Borisova, T.

    Prague : Institute of Macromolecular Chemistry AS CR, 2015. s. 18. [Research Postdoctoral Colloquium. 14.05.2015, Prague] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:68378041 Keywords : biomedical applications * supermagnetic nanoparticles Subject RIV: CE - Biochemistry

  8. National Space Biomedical Research Institute

    Science.gov (United States)

    2004-01-01

    This report outlines the National Space Biomedical Research Institute's (NSBRI) activities during FY 2004, the Institute's seventh year. It is prepared in accordance with Cooperative Agreement NCC 9-58 between NASA's Lyndon B. Johnson Space Center (JSC) and the Institute's lead institution, Baylor College of Medicine.

  9. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  10. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  11. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  12. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  13. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  14. Li depletion effects on Li2TiO3 reaction with H2 in thermo-chemical environment relevant to breeding blanket for fusion power plants

    International Nuclear Information System (INIS)

    This is a report of the Working Group in the Subtask on Solid Breeder Blankets under the Implementing Agreement on a Co-operative Programme on Nuclear Technology of Fusion Reactors (International Energy Agency (IEA)). This Working Group (Task F and WG-F) was performed from 2000 to 2004 by a collaboration of European Union (EU) and Japan (JA). In this report, lithium depletion effects on the reaction of lithium titanate (Li2TiO3) with hydrogen (H2) in thermo-chemical environment were discussed. The reaction of Li2TiO3 ceramics with H2 was studied in a thermo-chemical environment simulating (excepting irradiation) that of the hottest pebble-bed zone of breeding-blanket actually designed for fusion power plants. This 'reduction' as performed at 900degC in Ar+0.1%H, purge gas (He+0.1%H2 being the designed reference') was found to be enhanced by TiO2 doping of the specimens of simulate 6Li-burn-up expected to reach 20% at their end-of-life. The reaction rates, however, were so slow to be not significantly extrapolated to the breeder material service time (years). In Ar+3%H2, faster reaction rates allowed a better identification of the process evolution (kinetics) by Temperature-Programmed Reduction' (TPR) and 'Oxidation' (TPO), and combined TG-DTA thermal analysis. The reduction of pure Li4/5TiO12/5 spinel phase to Li4/5TiO12/5-y was found to reach in one day the steady state at the O-vacancy concentration y=0.2. Complimentary microscopy (SEM) and spectroscopy (XRD, XPS) techniques were used to characterize the reaction products among which the presence of the orthorhombic LivTiO2 (0 ≤ v ≤ 1/2) and Li2TiO3 could be diagnosed. So that the complete spinel reduction to Li1/2TiO2 was obtained according to a scheme involving the Li1/2TiO2-Li4/5TiO12/5 spinel phase solid solution for which y=3v/(10-5v). The reduction rate of pure meta-titanate to Li2TiO3-x was found much lower (x approx. = 0.01) and even possibly due to the presence of the spinel phase whose quantitative

  15. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  16. Radiation synthesis and fabrication for biomedical applications

    International Nuclear Information System (INIS)

    Radiation synthesis and fabrication techniques can make various specific forms and structures of materials enhancedly which are useful for biomedical applications. Those materials are a porous gel and membrane, an interpenetrating networked (IPN) hydrogel, a heterogeneous surface phase membrane, an ultra-thin membrane, a biofunctional laminate and an ultra-fine particle. Radiation techniques can attach various biofunctionalities to those materials effectively by means of immobilization of biofunctional components such as enzymes, proteins, hormones, drugs, microbial cells and tissue cells. It is convenient that the immobilization can be finished at the same time as the synthesis and fabrication in many cases. The applications to bioreactors, biosensors, artificial organs, drug delivery systems and recently to signal responsive chemical delivery systems, have been studied and developed based on those techniques. (Author)

  17. Radiation synthesis and fabrication for biomedical applications

    International Nuclear Information System (INIS)

    Radiation synthesis and fabrication techniques can make various specific forms and structures of materials enhancedly which are useful for biomedical applications. These materials are a porous gel and membrane, and interpenetrating networked (IPN) hydrogel, a heterogeneous surface phase membrane, an ultra-thin membrane, a biofunctional laminate and an ultra-fine particle. Radiation techniques can attach various biofunctionalities to those materials effectively by means of immobilization of biofunctional components such as enzymes, proteins, hormones, drugs, microbial cell and tissue cells. It is convenient that the immobilization can be finished at the same time as the synthesis and fabrication in many cases. The applications to bioreactors, biosensors, artificial organs, drugs delivery systems and recently to signal responsive chemical delivery systems, have been studied and developed based on those techniques. (Author)

  18. Accelerator mass spectrometry in biomedical research

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, J.S.; Turteltaub, K.W.

    1993-10-20

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:10{sup 9}) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 10{sup 13--15} on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. {sup 14}C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. {sup 3} H, {sup 41}Ca and {sup 26}Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications.

  19. Sensing Mercury for Biomedical and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2009-07-01

    Full Text Available Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury.

  20. Accelerator mass spectrometry in biomedical research

    International Nuclear Information System (INIS)

    Biological effects occur in natural systems at chemical concentrations of parts per billion (1:109) or less. Affected biomolecules may be separable in only milligram or microgram quantities. Quantification at attomole sensitivity is needed to study these interactions. AMS measures isotope concentrations to parts per 1013--15 on milligram-sized samples and is ideal for quantifying long-lived radioisotopic labels that are commonly used to trace biochemical pathways in natural systems. 14C-AMS has now been coupled to a variety of organic separation and definition technologies. The primary research investigates pharmacokinetics and genotoxicities of toxins and drugs at very low doses. Human subject research using AMS includes nutrition, toxicity and elemental balance studies. 3 H, 41Ca and 26Al are also traced by AMS for fundamental biochemical kinetic research. Expansion of biomedical AMS awaits further development of biochemical and accelerator technologies designed specifically for these applications

  1. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  2. Compensatory neurofuzzy model for discrete data classification in biomedical

    Science.gov (United States)

    Ceylan, Rahime

    2015-03-01

    Biomedical data is separated to two main sections: signals and discrete data. So, studies in this area are about biomedical signal classification or biomedical discrete data classification. There are artificial intelligence models which are relevant to classification of ECG, EMG or EEG signals. In same way, in literature, many models exist for classification of discrete data taken as value of samples which can be results of blood analysis or biopsy in medical process. Each algorithm could not achieve high accuracy rate on classification of signal and discrete data. In this study, compensatory neurofuzzy network model is presented for classification of discrete data in biomedical pattern recognition area. The compensatory neurofuzzy network has a hybrid and binary classifier. In this system, the parameters of fuzzy systems are updated by backpropagation algorithm. The realized classifier model is conducted to two benchmark datasets (Wisconsin Breast Cancer dataset and Pima Indian Diabetes dataset). Experimental studies show that compensatory neurofuzzy network model achieved 96.11% accuracy rate in classification of breast cancer dataset and 69.08% accuracy rate was obtained in experiments made on diabetes dataset with only 10 iterations.

  3. Furfuryl methacrylate plasma polymers for biomedical applications.

    Science.gov (United States)

    Shirazi, Hanieh Safizadeh; Rogers, Nicholas; Michelmore, Andrew; Whittle, Jason D

    2016-01-01

    Furfuryl methacrylate (FMA) is a promising precursor for producing polymers for biomedical and cell therapy applications. Herein, FMA plasma polymer coatings were prepared with different powers, deposition times, and flow rates. The plasma polymer coatings were characterized using atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The results from AFM and SEM show the early growth of the coatings and the existence of particle aggregates on the surfaces. XPS results indicated no measureable chemical differences between the deposited films produced under different power and flow rate conditions. ToF-SIMS analysis demonstrated differing amounts of C5H5O (81 m/z) and C10H9O2 (161 m/z) species in the coatings which are related to the furan ring structure. Through judicious choice of plasma polymerization parameters, the quantity of the particle aggregates was reduced, and the fabricated plasma polymer coatings were chemically uniform and smooth. Primary human fibroblasts were cultured on FMA plasma polymer surfaces to determine the effect of surface chemical composition and the presence of particle aggregates on cell culture. Particle aggregates were shown to inhibit fibroblast attachment and proliferation. PMID:27609095

  4. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  5. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  6. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  7. Biomedical waste in laboratory medicine: Audit and management

    OpenAIRE

    Chitnis V; Vaidya K; Chitnis D

    2005-01-01

    Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW). The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste...

  8. Synthesis and Characterization of Multilayered Diamond Coatings for Biomedical Implants

    OpenAIRE

    Booth, Leigh; Catledge, Shane A.; Nolen, Dustin; Raymond G. Thompson; Vohra, Yogesh K.

    2011-01-01

    With incredible hardness and excellent wear-resistance, nanocrystalline diamond (NCD) coatings are gaining interest in the biomedical community as articulating surfaces of structural implant devices. The focus of this study was to deposit multilayered diamond coatings of alternating NCD and microcrystalline diamond (MCD) layers on Ti-6Al-4V alloy surfaces using microwave plasma chemical vapor deposition (MPCVD) and validate the multilayer coating’s effect on toughness and adhesion. Multilayer...

  9. NAMED ENTITY RECOGNITION FROM BIOMEDICAL TEXT -AN INFORMATION EXTRACTION TASK

    Directory of Open Access Journals (Sweden)

    N. Kanya

    2016-07-01

    Full Text Available Biomedical Text Mining targets the Extraction of significant information from biomedical archives. Bio TM encompasses Information Retrieval (IR and Information Extraction (IE. The Information Retrieval will retrieve the relevant Biomedical Literature documents from the various Repositories like PubMed, MedLine etc., based on a search query. The IR Process ends up with the generation of corpus with the relevant document retrieved from the Publication databases based on the query. The IE task includes the process of Preprocessing of the document, Named Entity Recognition (NER from the documents and Relationship Extraction. This process includes Natural Language Processing, Data Mining techniques and machine Language algorithm. The preprocessing task includes tokenization, stop word Removal, shallow parsing, and Parts-Of-Speech tagging. NER phase involves recognition of well-defined objects such as genes, proteins or cell-lines etc. This process leads to the next phase that is extraction of relationships (IE. The work was based on machine learning algorithm Conditional Random Field (CRF.

  10. The Research of Biomedical Intelligent Polymer Materials

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-bin; CHEN Yuan-wei; TANG Chang-wei; QIU Kai; LUO Juan; XU Cheng-yin; WAN Chang-xiu

    2004-01-01

    The properties of biomedical intelligent polymer materials can be changed obviously when there is a little physical or chemical change caused by external condition. They are in the forms of solids, solutions and the polymers on the surface of carrier, and include water solution of hydrophilic polymers, cross-linking hydrophilic polymers(i.e. hydrogels) and the polymers on the surface of carrier. The environmental stimulating factors are temperature, pH value, composition of solution, ionic intention, light intention, electric field, stress field and magnetic field etc.. The properties of intelligent polymer are those of phase, photics, mechanics, electric field, surface energy,reaction ratio, penetrating ratio and recognition etc..Stimulation-response of intelligent water-soluble polymerWater-soluble intelligent polymer can be separated out from solution under special external condition. It can be used as the switch of temperature or pH indicator. When water-soluble intelligent polymer is mixed with soluble-enzyme matter or cell suspension, the polymer can bring phase separation and react with soluble-enzyme matter or cell membrane through accepting some external stimulation. Other water-soluble intelligent polymer is that can make the main chemical group of some natural biomolecular recognition sequence section to arrange on skeleton of polymer at random. It is the same ratio as natural biomolecules.Stimulation-response of intelligent polymer of carrier surface Intelligent polymer can be fixed on the surface of solid polymer carrier through chemical grafting or physical adsorption. When the external conditions are changed, the thickness, humidity and electric field of the surface layer will be changed. Intelligent polymer can be preparated the permanence switch by precipitating into the hole of porous surface, and it can control on-off state of the hole. When protein or cell interacts with intelligent polymer surface to be placed in to open or close, they can be

  11. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  12. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  13. Towards Openness in Biomedical Informatics

    OpenAIRE

    Maojo Garcia, Victor Manuel; Jiménez Castellanos, Ana; Iglesia Jimenez, Diana de la

    2011-01-01

    Over the last years, and particularly in the context of the COMBIOMED network, our biomedical informatics (BMI) group at the Universidad Politecnica de Madrid has carried out several approaches to address a fundamental issue: to facilitate open access and retrieval to BMI resources —including software, databases and services. In this regard, we have followed various directions: a) a text mining-based approach to automatically build a “resourceome”, an inventory of open resources, b) met...

  14. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  15. Silk fibroin nanostructured materials for biomedical applications

    Science.gov (United States)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  16. Vanishing "tattoo" multisensor for biomedical diagnostics

    Science.gov (United States)

    Moczko, E.; Meglinski, I.; Piletsky, S.

    2008-02-01

    Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.

  17. Stimuli responsive magnetic nanogels for biomedical application

    International Nuclear Information System (INIS)

    We report the synthesis and characterization of magnetic nanogels based on magnetite nanoparticles sterically stabilized by double layer oleic acid in water carrier and chemically cross linked poly (N-isopropylacril amide) (pNIPA) and poly (acrylic acid) (pAAc). In this structure the magnetite nanoparticles are attached to the flexible network chain by adhesive forces, resulting in a direct coupling between magnetic and elastic properties. Stable water suspensions of dual responsive magnetic nanogels based on temperature-responsive N-isopropyl acryl amide, pH responsive acrylic acid were obtained. The FTIR spectra of p(NIPA-AAc) ferrogel samples, showed the absorption region of the specific chemical groups associated with pNIPA, pAAc and the Fe3O4 magnetic nanoparticles. The morphology and the structure of the as prepared materials were confirmed by transmission electron microscopy (TEM) and the size distribution was determined by dynamic light scattering (DLS). The magnetic microgels have high magnetization and superparamagnetic behaviour being suitable materials for biomedical application

  18. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  19. Securing a biomedical communications future: thinking strategically.

    Science.gov (United States)

    Stein, D

    1985-11-01

    Ensuring continued growth and viability of the biomedical communication function has become a critical task of the biomedical communications director. Thinking strategically is a cognitive process which assists a director in visualizing programs and tactics which meet clients needs, creates competitive advantages for the biomedical communications unit and builds on existing unit strengths. Thinking strategically can be divided into five phases: strategic vision, strategy development, strategic plan implementation, strategic plan dissemination, and strategic plan evaluation. Each sequence leads the biomedical communications director through a process designed to increase the effectiveness of the biomedical unit and to meet the challenges posed by an environment characterized by diminished financial, material, and human resources as well as respond to threats and opportunities posed by increased competition in the biomedical communications product and marketplace. PMID:4077850

  20. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  1. The Obligation to Participate in Biomedical Research

    OpenAIRE

    Schaefer, G. Owen; Emanuel, Ezekiel J; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to ...

  2. Simbody: multibody dynamics for biomedical research

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2011-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an...

  3. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  4. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  5. National Space Biomedical Research Institute

    Science.gov (United States)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  6. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  7. GPU programming for biomedical imaging

    Science.gov (United States)

    Caucci, Luca; Furenlid, Lars R.

    2015-08-01

    Scientific computing is rapidly advancing due to the introduction of powerful new computing hardware, such as graphics processing units (GPUs). Affordable thanks to mass production, GPU processors enable the transition to efficient parallel computing by bringing the performance of a supercomputer to a workstation. We elaborate on some of the capabilities and benefits that GPU technology offers to the field of biomedical imaging. As practical examples, we consider a GPU algorithm for the estimation of position of interaction from photomultiplier (PMT) tube data, as well as a GPU implementation of the MLEM algorithm for iterative image reconstruction.

  8. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  9. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  10. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  11. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  12. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  13. A general method for modeling biochemical and biomedical response

    Science.gov (United States)

    Ortiz, Roberto; Lerd Ng, Jia; Hughes, Tyler; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah; Allen, Roland

    2012-10-01

    The impressive achievements of biomedical science have come mostly from experimental research with human subjects, animal models, and sophisticated laboratory techniques. Additionally, theoretical chemistry has been a major aid in designing new drugs. Here we introduce a method which is similar to others already well known in theoretical systems biology, but which specifically addresses biochemical changes as the human body responds to medical interventions. It is common in systems biology to use first-order differential equations to model the time evolution of various chemical concentrations, and we as physicists can make a significant impact through designing realistic models and then solving the resulting equations. Biomedical research is rapidly advancing, and the technique presented in this talk can be applied in arbitrarily large models containing tens, hundreds, or even thousands of interacting species, to determine what beneficial effects and side effects may result from pharmaceuticals or other medical interventions.

  14. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  15. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  16. Question Processing and Clustering in INDOC: A Biomedical Question Answering System

    Directory of Open Access Journals (Sweden)

    Ankush Mittal

    2007-12-01

    Full Text Available The exponential growth in the volume of publications in the biomedical domain has made it impossible for an individual to keep pace with the advances. Even though evidence-based medicine has gained wide acceptance, the physicians are unable to access the relevant information in the required time, leaving most of the questions unanswered. This accentuates the need for fast and accurate biomedical question answering systems. In this paper we introduce INDOC—a biomedical question answering system based on novel ideas of indexing and extracting the answer to the questions posed. INDOC displays the results in clusters to help the user arrive the most relevant set of documents quickly. Evaluation was done against the standard OHSUMED test collection. Our system achieves high accuracy and minimizes user effort.

  17. Question Processing and Clustering in INDOC: A Biomedical Question Answering System

    Directory of Open Access Journals (Sweden)

    Sondhi Parikshit

    2007-01-01

    Full Text Available The exponential growth in the volume of publications in the biomedical domain has made it impossible for an individual to keep pace with the advances. Even though evidence-based medicine has gained wide acceptance, the physicians are unable to access the relevant information in the required time, leaving most of the questions unanswered. This accentuates the need for fast and accurate biomedical question answering systems. In this paper we introduce INDOC—a biomedical question answering system based on novel ideas of indexing and extracting the answer to the questions posed. INDOC displays the results in clusters to help the user arrive the most relevant set of documents quickly. Evaluation was done against the standard OHSUMED test collection. Our system achieves high accuracy and minimizes user effort.

  18. Passage relevance models for genomics search

    Directory of Open Access Journals (Sweden)

    Frieder Ophir

    2009-03-01

    Full Text Available Abstract We present a passage relevance model for integrating syntactic and semantic evidence of biomedical concepts and topics using a probabilistic graphical model. Component models of topics, concepts, terms, and document are represented as potential functions within a Markov Random Field. The probability of a passage being relevant to a biologist's information need is represented as the joint distribution across all potential functions. Relevance model feedback of top ranked passages is used to improve distributional estimates of query concepts and topics in context, and a dimensional indexing strategy is used for efficient aggregation of concept and term statistics. By integrating multiple sources of evidence including dependencies between topics, concepts, and terms, we seek to improve genomics literature passage retrieval precision. Using this model, we are able to demonstrate statistically significant improvements in retrieval precision using a large genomics literature corpus.

  19. MedlineRanker: flexible ranking of biomedical literature.

    Science.gov (United States)

    Fontaine, Jean-Fred; Barbosa-Silva, Adriano; Schaefer, Martin; Huska, Matthew R; Muro, Enrique M; Andrade-Navarro, Miguel A

    2009-07-01

    The biomedical literature is represented by millions of abstracts available in the Medline database. These abstracts can be queried with the PubMed interface, which provides a keyword-based Boolean search engine. This approach shows limitations in the retrieval of abstracts related to very specific topics, as it is difficult for a non-expert user to find all of the most relevant keywords related to a biomedical topic. Additionally, when searching for more general topics, the same approach may return hundreds of unranked references. To address these issues, text mining tools have been developed to help scientists focus on relevant abstracts. We have implemented the MedlineRanker webserver, which allows a flexible ranking of Medline for a topic of interest without expert knowledge. Given some abstracts related to a topic, the program deduces automatically the most discriminative words in comparison to a random selection. These words are used to score other abstracts, including those from not yet annotated recent publications, which can be then ranked by relevance. We show that our tool can be highly accurate and that it is able to process millions of abstracts in a practical amount of time. MedlineRanker is free for use and is available at http://cbdm.mdc-berlin.de/tools/medlineranker. PMID:19429696

  20. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013.

    Science.gov (United States)

    Hastings, Janna; de Matos, Paula; Dekker, Adriano; Ennis, Marcus; Harsha, Bhavana; Kale, Namrata; Muthukrishnan, Venkatesh; Owen, Gareth; Turner, Steve; Williams, Mark; Steinbeck, Christoph

    2013-01-01

    ChEBI (http://www.ebi.ac.uk/chebi) is a database and ontology of chemical entities of biological interest. Over the past few years, ChEBI has continued to grow steadily in content, and has added several new features. In addition to incorporating all user-requested compounds, our annotation efforts have emphasized immunology, natural products and metabolites in many species. All database entries are now 'is_a' classified within the ontology, meaning that all of the chemicals are available to semantic reasoning tools that harness the classification hierarchy. We have completely aligned the ontology with the Open Biomedical Ontologies (OBO) Foundry-recommended upper level Basic Formal Ontology. Furthermore, we have aligned our chemical classification with the classification of chemical-involving processes in the Gene Ontology (GO), and as a result of this effort, the majority of chemical-involving processes in GO are now defined in terms of the ChEBI entities that participate in them. This effort necessitated incorporating many additional biologically relevant compounds. We have incorporated additional data types including reference citations, and the species and component for metabolites. Finally, our website and web services have had several enhancements, most notably the provision of a dynamic new interactive graph-based ontology visualization. PMID:23180789

  1. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  2. Superhydrophobic materials for biomedical applications.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. PMID:27449946

  3. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting. PMID:17541863

  4. Tribocorrosion of Diamond Like Carbon (DLC) coatings for biomedical applications

    OpenAIRE

    Sanchez Adam, Jorge

    2015-01-01

    Tribocorrosion has arisen as one of the most important material degradation processes in biomedical applications; thus, the improvement of the materials used in hip or knee prosthesis is very relevant. The aim of this project is to test the outstanding properties of the diamond like carbon material as a coating; a comparison between CoCrMo with several types of DLC as ta-C, a-C:H and metal doped with Ti and Si. Also different deposition methods will be compared like Physical Vapour Deposit...

  5. Biomedical applications of synchrotron radiation

    International Nuclear Information System (INIS)

    Synchrotron radiation techniques application in medical diagnostics have been presented especially for: trace element analysis in tissues, elemental mapping, chemical speciation at trace levels, chemical structure determination. Presented techniques are very useful for early cancer discovery

  6. Biomedical Effects and Nanomaterials: Nanosafety of Engineered Recent Progress%Biomedical Effects and Nanomaterials: Nanosafety of Engineered Recent Progress

    Institute of Scientific and Technical Information of China (English)

    王晓峰; 朱墨桃; 李敬源

    2012-01-01

    With the development of nanotechnology, there are growing concerns about biological effects and biosafety of engineered nanomaterials. On the other hand, nanoparticles are widely used in medical fields based on their novel interactions with biological entities. However, there are still a lot of challenges to establish systematic knowledge about nanotoxicology and develop biologically safer biomedical materials due to the variety of factors determining their biomedical effects and nanotoxicity. Understanding the interactions of engineered nanomaterials with the bio- logical entities becomes crucial to the further development of nanoscience and nanotechnology. In the past decade, colleagues in our laboratory intensively studied the toxic properties of various kinds of nanomaterials and their chemical mechanisms. In this paper we review the recent advance in the research on the biological effects of engi- neered nanomaterials and nanosafety issue, by focusing on the studies about representative nanomaterials in our la- boratory.

  7. Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model

    NARCIS (Netherlands)

    Schachtschneider, K.M.; Madsen, O.; Park, C.; Rund, L.A.; Groenen, M.A.M.; Schook, L.B.

    2015-01-01

    Background: Pigs (Sus scrofa) provide relevant biomedical models to dissect complex diseases due to their anatomical, genetic, and physiological similarities with humans. Aberrant DNA methylation has been linked to many of these diseases and is associated with gene expression; however, the functiona

  8. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    Science.gov (United States)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction

  9. Doped DLC coatings for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Písařík, Petr; Jelínek, Miroslav; Kocourek, Tomáš; Mikšovský, Jan; Remsa, Jan; Zemek, Josef; Jurek, Karel

    Kladno: CTU Faculty of Biomedical Engineering, 2015 - (Jelínek, M.). s. 19 ISBN 978-80-01-05809-1. [Progressive Biomedical Materials and Technologies 2015. 09.10.2015-10.10.2015, Kladno] Institutional support: RVO:68378271 Keywords : biomaterials * doped materials * thin films * diamond like carbon * hydroxyapatite Subject RIV: BM - Solid Matter Physics ; Magnetism

  10. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    International Nuclear Information System (INIS)

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  11. Misconduct policies in high-impact biomedical journals.

    Directory of Open Access Journals (Sweden)

    Xavier Bosch

    Full Text Available BACKGROUND: It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. METHODS: We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were reviewed for information relevant to misconduct policies. RESULTS: Of 399 journals, 140 (35.1% provided explicit definitions of misconduct. Falsification was explicitly mentioned by 113 (28.3% journals, fabrication by 104 (26.1%, plagiarism by 224 (56.1%, duplication by 242 (60.7% and image manipulation by 154 (38.6%. Procedures for responding to misconduct were described in 179 (44.9% websites, including retraction, (30.8% and expression of concern (16.3%. Plagiarism-checking services were used by 112 (28.1% journals. The prevalences of all types of misconduct policies were higher in journals that endorsed any policy from editors' associations, Office of Research Integrity or professional societies compared to those that did not state adherence to these policy-producing bodies. Elsevier and Wiley-Blackwell had the most journals included (22.6% and 14.8%, respectively, with Wiley journals having greater a prevalence of misconduct definition and policies on falsification, fabrication and expression of concern and Elsevier of plagiarism-checking services. CONCLUSIONS: Only a third of top-ranking peer-reviewed journals had publicly-available definitions of misconduct and less than a half described procedures for handling allegations of misconduct. As endorsement of international policies from policy-producing bodies was positively associated with implementation of policies and procedures, journals and their publishers should standardize their policies globally in

  12. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M [University Washington, Seattle, WA (United States); Kalet, I [Kirkland, WA (United States); McNutt, T [Johns Hopkins University, Severna Park, MD (United States); Smith, W [New York Oncology Hematology, Albany, NY (United States)

    2014-06-15

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussion in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be

  13. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  14. Inorganic Janus particles for biomedical applications

    Directory of Open Access Journals (Sweden)

    Isabel Schick

    2014-12-01

    Full Text Available Based on recent developments regarding the synthesis and design of Janus nanoparticles, they have attracted increased scientific interest due to their outstanding properties. There are several combinations of multicomponent hetero-nanostructures including either purely organic or inorganic, as well as composite organic–inorganic compounds. Janus particles are interconnected by solid state interfaces and, therefore, are distinguished by two physically or chemically distinct surfaces. They may be, for instance, hydrophilic on one side and hydrophobic on the other, thus, creating giant amphiphiles revealing the endeavor of self-assembly. Novel optical, electronic, magnetic, and superficial properties emerge in inorganic Janus particles from their dimensions and unique morphology at the nanoscale. As a result, inorganic Janus nanoparticles are highly versatile nanomaterials with great potential in different scientific and technological fields. In this paper, we highlight some advances in the synthesis of inorganic Janus nanoparticles, focusing on the heterogeneous nucleation technique and characteristics of the resulting high quality nanoparticles. The properties emphasized in this review range from the monodispersity and size-tunability and, therefore, precise control over size-dependent features, to the biomedical application as theranostic agents. Hence, we show their optical properties based on plasmonic resonance, the two-photon activity, the magnetic properties, as well as their biocompatibility and interaction with human blood serum.

  15. Nuclear microprobe applications to biomedical studies

    International Nuclear Information System (INIS)

    Nuclear Microprobe techniques have a remarkable potential in biomedicine once image information on tissue topography, structural organisation and elemental distribution is simultaneously obtained. These micro-analytical techniques can constitute an important tool for studies of the influence of external aggressors in health, such as internalised airborne particulate matter, and in pathological conditions associated to inflammatory processes that may result from endogenous aggressors (e.g., reactive products of metabolism, essential trace elements impairment). The tissue reactivity to exogenous or endogenous toxic substances may involve remodelling of specific cells organisation, such as epithelial layers or basement membranes. The evaluation of the magnitude of tissue remodelling and its progression is of the foremost importance to assess the mechanisms involved. The fate of respired particles in the human respiratory system and the evaluation of skin alterations in haemochromatosis condition (disease characterised by impaired Fe metabolism) will illustrate some of the helpful aspects of NMP in biomedical studies. The chemical characterisation of individual particles in the epithelial regions of trachea and bronchi, the accumulation of toxic elements, such as V, Cr, and Ni, in lung alveoli and their mobilisation to surrounding tissue, to phagocytic cells and to the associated lymphatic tissue will be discussed. Also, the abnormal deposition of Fe and its possible role in skin inflammation an din changes of skin integrity and structure will also be presented

  16. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  17. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  18. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  19. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  20. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  1. Why relevance theory is relevant for lexicography

    DEFF Research Database (Denmark)

    Bothma, Theo; Tarp, Sven

    2014-01-01

    a new dictionary project, identifying new tasks and responsibilities of the modern lexicographer. The article furthermore discusses how relevance theory impacts on teaching dictionary culture and reference skills. By integrating insights from lexicography and information science, the article...

  2. Perspectives on the Emerging Applications of Multifaceted Biomedical Polymeric Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ahmad Mohammed Gumel

    2015-01-01

    Full Text Available Biodegradable and biocompatible polymeric nanomaterials, serving as biomedical devices have garnered significant attention as a promising solution to therapeutic management of many chronic diseases. Despite their potentials, majority of the synthetic nanomaterials used in biomedical applications lack crucial properties, for example, ligand binding sites, responsiveness, and switchability to efficiently deliver intended drugs to the target site. Advancements in manipulating nanoscale geometry have incurred the incorporation of triggered release mechanism within the nanomaterials design. This expanded their potential applications beyond nanocarriers to theranostics exhibiting both tandem drug delivery and diagnostic capabilities. Additionally, it highlights possibilities to design nanomaterials that could translate chemical response(s to photometric display, thus making affordable biosensors and actuators readily available for biomedical exploitation. It is anticipated that, in the near future, these implementations could be made to access some of the most difficult therapy locations, for example, blood brain barrier to provide efficient management of Alzheimer, Huntington, and other neurodegenerative diseases. This review aims to serve as a reference platform by providing the readers with the overview of the recent advancements and cutting-edge techniques employed in the production and instrumentation of such nanomaterials.

  3. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  4. Chemical Leukoderma.

    Science.gov (United States)

    Bonamonte, Domenico; Vestita, Michelangelo; Romita, Paolo; Filoni, Angela; Foti, Caterina; Angelini, Gianni

    2016-01-01

    Chemical leukoderma, often clinically mimicking idiopathic vitiligo and other congenital and acquired hypopigmentation, is an acquired form of cutaneous pigment loss caused by exposure to a variety of chemicals that act through selective melanocytotoxicity. Most of these chemicals are phenols and aromatic or aliphatic catechols derivatives. These chemicals, however, are harmful for melanocytes in individuals with an individual susceptibility. Nowadays, chemical leukoderma is fairly common, caused by common domestic products. The presence of numerous acquired confetti- or pea-sized macules is clinically characteristic of chemical leukoderma, albeit not diagnostic. Other relevant diagnostic elements are a history of repeated exposure to a known or suspected depigmenting agent at the sites of onset and a macules distribution corresponding to sites of chemical exposure. Spontaneous repigmentation has been reported when the causative agent is avoided; the repigmentation process is perifollicular and gradual, taking place for a variable period of weeks to months. PMID:27172302

  5. Shape-Memory Polymers for Biomedical Applications

    Science.gov (United States)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  6. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  7. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations. PMID:26851671

  8. Optimal screening designs for biomedical technology

    Energy Technology Data Exchange (ETDEWEB)

    Torney, D.C.; Bruno, W.J.; Knill, E. [and others

    1997-10-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Screening a large number of different types of molecules to isolate a few with desirable properties is essential in biomedical technology. For example, trying to find a particular gene in the Human genome could be akin to looking for a needle in a haystack. Fortunately, testing of mixtures, or pools, of molecules allows the desirable ones to be identified, using a number of experiments proportional only to the logarithm of the total number of experiments proportional only to the logarithm of the total number of types of molecules. We show how to capitalize upon this potential by using optimize pooling schemes, or designs. We propose efficient non-adaptive pooling designs, such as {open_quotes}random sets{close_quotes} designs and modified {open_quotes}row and column{close_quotes} designs. Our results have been applied in the pooling and unique-sequence screening of clone libraries used in the Human Genome Project and in the mapping of Human chromosome 16. This required the use of liquid-transferring robots and manifolds--for the largest clone libraries. Finally, we developed an efficient technique for finding the posterior probability each molecule has the desirable property, given the pool assay results. This technique works well, in practice, even if there are substantial rates of errors in the pool assay data. Both our methods and our results are relevant to a broad spectrum of research in modern biology.

  9. Holographic lithography for biomedical applications

    Science.gov (United States)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  10. Understanding Metabolomics in Biomedical Research.

    Science.gov (United States)

    Kim, Su Jung; Kim, Su Hee; Kim, Ji Hyun; Hwang, Shin; Yoo, Hyun Ju

    2016-03-01

    The term "omics" refers to any type of specific study that provides collective information on a biological system. Representative omics includes genomics, proteomics, and metabolomics, and new omics is constantly being added, such as lipidomics or glycomics. Each omics technique is crucial to the understanding of various biological systems and complements the information provided by the other approaches. The main strengths of metabolomics are that metabolites are closely related to the phenotypes of living organisms and provide information on biochemical activities by reflecting the substrates and products of cellular metabolism. The transcriptome does not always correlate with the proteome, and the translated proteome might not be functionally active. Therefore, their changes do not always result in phenotypic alterations. Unlike the genome or proteome, the metabolome is often called the molecular phenotype of living organisms and is easily translated into biological conditions and disease states. Here, we review the general strategies of mass spectrometry-based metabolomics. Targeted metabolome or lipidome analysis is discussed, as well as nontargeted approaches, with a brief explanation of the advantages and disadvantages of each platform. Biomedical applications that use mass spectrometry-based metabolomics are briefly introduced. PMID:26676338

  11. Orthogonal analysis of functional gold nanoparticles for biomedical applications.

    Science.gov (United States)

    Tsai, De-Hao; Lu, Yi-Fu; DelRio, Frank W; Cho, Tae Joon; Guha, Suvajyoti; Zachariah, Michael R; Zhang, Fan; Allen, Andrew; Hackley, Vincent A

    2015-11-01

    We report a comprehensive strategy based on implementation of orthogonal measurement techniques to provide critical and verifiable material characteristics for functionalized gold nanoparticles (AuNPs) used in biomedical applications. Samples were analyzed before and after ≈50 months of cold storage (≈4 °C). Biomedical applications require long-term storage at cold temperatures, which could have an impact on AuNP therapeutics. Thiolated polyethylene glycol (SH-PEG)-conjugated AuNPs with different terminal groups (methyl-, carboxylic-, and amine-) were chosen as a model system due to their high relevancy in biomedical applications. Electrospray-differential mobility analysis, asymmetric-flow field flow fractionation, transmission electron microscopy, scanning electron microscopy, atomic force microscopy, inductively coupled plasma mass spectrometry, and small-angle X-ray scattering were employed to provide both complementary and orthogonal information on (1) particle size and size distribution, (2) particle concentrations, (3) molecular conjugation properties (i.e., conformation and surface packing density), and (4) colloidal stability. Results show that SH-PEGs were conjugated on the surface of AuNPs to form a brush-like polymer corona. The surface packing density of SH-PEG was ≈0.42 nm(-2) for the methyl-PEG-SH AuNPs, ≈0.26 nm(-2) for the amine-SH-PEG AuNPs, and ≈0.18 nm(-2) for the carboxylic-PEG-SH AuNPs before cold storage, approximately 10 % of its theoretical maximum value. The conformation of surface-bound SH-PEGs was then estimated to be in an intermediate state between brush-like and random-coiled, based on the measured thicknesses in liquid and in dry states. By analyzing the change in particle size distribution and number concentration in suspension following cold storage, the long term colloidal stability of AuNPs was shown to be significantly improved via functionalization with SH-PEG, especially in the case of methyl-PEG-SH and carboxylic

  12. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  13. Lanthanides fluorides doped nanocrystals for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Podhorodecki, A.; Noculak, A.; Banski, M.; Sojka, B.; Zelazo, A.; Misiewicz, J.; Cichos, J.; Karbowiak, M.; Zasońska, Beata Anna; Horák, Daniel; Sikora, B.; Elbaum, D.; Dumych, T.; Bilyy, R.; Szewczyk, M.

    Orlando : The Electrochemical Society, 2014. R1-1581. [ECS Meeting /225./. 11.05.2014-15.05.2014, Orlando] Institutional support: RVO:61389013 Keywords : nanocrystals * biomedical applications Subject RIV: CD - Macromolecular Chemistry

  14. Computer vision for biomedical image applications. Proceedings

    International Nuclear Information System (INIS)

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  15. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  16. Towards Nanoscale Biomedical Devices in Medicine

    DEFF Research Database (Denmark)

    Parracino, A.; Gajula, G.P.; di Gennaro, A.K.;

    2011-01-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report ...

  17. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  18. UMLS knowledge for biomedical language processing.

    OpenAIRE

    McCray, A T; Aronson, A. R.; Browne, A. C.; Rindflesch, T. C.; A razi; Srinivasan, S

    1993-01-01

    This paper describes efforts to provide access to the free text in biomedical databases. The focus of the effort is the development of SPECIALIST, an experimental natural language processing system for the biomedical domain. The system includes a broad coverage parser supported by a large lexicon, modules that provide access to the extensive Unified Medical Language System (UMLS) Knowledge Sources, and a retrieval module that permits experiments in information retrieval. The UMLS Metathesauru...

  19. Biomedical image understanding methods and applications

    CERN Document Server

    Lim, Joo-Hwee; Xiong, Wei

    2015-01-01

    A comprehensive guide to understanding and interpreting digital images in medical and functional applications Biomedical Image Understanding focuses on image understanding and semantic interpretation, with clear introductions to related concepts, in-depth theoretical analysis, and detailed descriptions of important biomedical applications. It covers image processing, image filtering, enhancement, de-noising, restoration, and reconstruction; image segmentation and feature extraction; registration; clustering, pattern classification, and data fusion. With contributions from ex

  20. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  1. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  2. The growth of biomedical terahertz research

    International Nuclear Information System (INIS)

    Interest in biomedical terahertz research is growing rapidly and there are now several terahertz groups in Asia, Europe and the US investigating potential applications such as pharmaceutical quality control, protein characterization and cancer detection. This review article outlines the technological bottlenecks that have been overcome which have made biomedical terahertz research possible. Key research findings will be presented, and the limitations that remain and the research initiatives that strive to address them will also be discussed. (paper)

  3. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    OpenAIRE

    Wei Wang(College of William and Mary); Yuhe Zhu; Susan Liao; Jiajia Li

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matr...

  4. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,

  5. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is diffic...

  6. Environmental practices for biomedical research facilities.

    OpenAIRE

    Medlin, E L; Grupenhoff, J T

    2000-01-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing ...

  7. Science gateways for biomedical big data analysis

    OpenAIRE

    Kampen, van, PJW; Olabarriaga, S.D.; Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists from different organizations. Data-driven or e-Science methods are defined as a combination of Information Technology (IT) and science that enables scientists to tackle the data deluge challenges. Th...

  8. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750. ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  9. Teaching biomedical applications to secondary students.

    Science.gov (United States)

    Openshaw, S; Fleisher, A; Ljunggren, C

    1999-01-01

    Certain aspects of biomedical engineering applications lend themselves well to experimentation that can be done by high school students. This paper describes two experiments done during a six-week summer internship program in which two high school students used electrodes, circuit boards, and computers to mimic a sophisticated heart monitor and also to control a robotic car. Our experience suggests that simple illustrations of complex instrumentation can be effective in introducing adolescents to the biomedical engineering field. PMID:11143394

  10. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  11. Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry/global climate system – Part 1: Halogen distributions, aerosol composition, and sensitivity of climate-relevant gases

    Directory of Open Access Journals (Sweden)

    M. S. Long

    2013-03-01

    Full Text Available Observations and model studies suggest a significant but highly non-linear role for halogens, primarily Cl and Br, in multiphase atmospheric processes relevant to tropospheric chemistry and composition, aerosol evolution, radiative transfer, weather, and climate. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was tested using a size-resolved multiphase coupled chemistry/global climate model (National Center for Atmospheric Research's Community Atmosphere Model (CAM; v3.6.33. Simulation results showed strong meridional and vertical gradients in Cl and Br species. The simulation reproduced most available observations with reasonable confidence permitting the formulation of potential mechanisms for several previously unexplained halogen phenomena including the enrichment of Br− in submicron aerosol, and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile Br mixing ratios were generally high in the troposphere. Br in the stratosphere was lower than observed due to the lack of long-lived organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrated a significant temporal and spatial sensitivity of primary atmospheric oxidants (O3, HOx, NOx, CH4, and non-methane hydrocarbons (NMHC's to halogen cycling. Simulated O3 and NOx were globally lower (65% and 35%, respectively, less in the planetary boundary layer based on median values in simulations that included halogens. Globally, little impact was seen in SO2 and non-sea-salt SO42− processing due to halogens. Significant regional differences were evident: the lifetime of nss-SO42− was extended downwind of large sources of SO2. The burden and lifetime of DMS (and its oxidation products were lower by a factor of 5 in simulations that included halogens, versus those without

  12. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    Science.gov (United States)

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  13. Bio-inspired Aloe vera sponges for biomedical applications.

    Science.gov (United States)

    Silva, S S; Oliveira, M B; Mano, J F; Reis, R L

    2014-11-01

    Chemical composition and biological properties of Aloe vera (AV), a tropical plant, explain its potential use for cosmetic, nutritional and biomedical applications. AV gel present in AV leaves is rich in several compounds, nutrients and polysaccharides. This work proposes using AV gel complex structure and chemical composition, associated with freeze-drying, to produce sponges. To increase the structures stability in aqueous media, a thin coating of gellan gum (GG), was applied onto AV gel. AV-based sponges showed a heterogeneous porous formation, interconnected pores and good porosity (72-77%). The coating with a GG layer onto AV influenced the stability, swelling behavior and mechanical properties of the resulting sponges. Moreover, sponges provided the sustained release of BSA-FTIC, used as a model protein, over 3 weeks. Also, in vitro cell culture studies evidenced that sponges are not cytotoxic for a mouse fibroblast-like cell line. Therefore, developed AV-based sponges have potential use in biomedical applications. PMID:25129743

  14. Biomedical waste in laboratory medicine: Audit and management

    Directory of Open Access Journals (Sweden)

    Chitnis V

    2005-01-01

    Full Text Available Pathology, microbiology, blood bank and other diagnostic laboratories generate sizable amount of biomedical waste (BMW. The audit of the BMW is required for planning proper strategies. The audit in our laboratory revealed 8 kgs anatomical waste, 600 kgs microbiology waste, 220 kgs waste sharps, 15 kgs soiled waste, 111 kgs solid waste, 480 litres liquid waste along with 33000 litres per month liquid waste generated from labware washing and laboratory cleaning and 162 litres of chemical waste per month. Section wise details are described in the text. Needle sharps are collected in puncture proof containers and the needles autoclaved before sending to needle pit. The glass forms the major sharp category and is disinfected with hypochlorite before washing/recycling. All microbiology waste along with containers/plates/tubes are autoclaved before recycling/disposal. The problem of formalin fixed anatomical waste as histology specimens is pointed out. The formalin containing tissues cannot be sent for incineration for the fear of toxic gas release and the guidelines by the Biomedical waste rule makers need to be amended for the issue. The discarded/infected blood units in blood bank need to be autoclaved before disposal since chemical treatments are difficult or inefficient. The liquid waste management needs more attention and effluent treatment facility needs to be viewed seriously for hospital in general. The segregation of waste at source is the key step and reduction, reuse and recycling should be considered in proper perspectives.

  15. Magnetic Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Jing, Ying

    Nanotechnology is revolutionizing human's life. Synthesis and application of magnetic nanoparticles is a fast burgeoning field which has potential to bring significant advance in many fields, for example diagnosis and treatment in biomedical area. Novel nanoparticles to function efficiently and intelligently are in desire to improve the current technology. We used a magnetron-sputtering-based nanocluster deposition technique to synthesize magnetic nanoparticles in gas phase, and specifically engineered nanoparticles for different applications. Alternating magnetic field heating is emerging as a technique to assist cancer treatment or drug delivery. We proposed high-magnetic-moment Fe3Si particles with relatively large magnetic anisotropy energy should in principle provide superior performance. Such nanoparticles were experimentally synthesized and characterized. Their promising magnetic properties can contribute to heating performance under suitable alternating magnetic field conditions. When thermal energy is used for medical treatment, it is ideal to work in a designed temperature range. Biocompatible and "smart" magnetic nanoparticles with temperature self-regulation were designed from both materials science and biomedicine aspects. We chose Fe-Si material system to demonstrate the concept. Temperature dependent physical property was adjusted by tuning of exchange coupling between Fe atoms through incorporation of various amount of Si. The magnetic moment can still be kept in a promising range. The two elements are both biocompatible, which is favored by in-vivo medical applications. A combination of "smart" magnetic particles and thermo-sensitive polymer were demonstrated to potentially function as a platform for drug delivery. Highly sensitive diagnosis for point-of-care is in desire nowadays. We developed composition- and phase-controlled Fe-Co nanoparticles for bio-molecule detection. It has been demonstrated that Fe70Co30 nanoparticles and giant

  16. Nonlinear acoustics in biomedical ultrasound

    Science.gov (United States)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  17. Fuzziness and Relevance Theory

    Institute of Scientific and Technical Information of China (English)

    Grace Qiao Zhang

    2005-01-01

    This paper investigates how the phenomenon of fuzzy language, such as `many' in `Mary has many friends', can be explained by Relevance Theory. It is concluded that fuzzy language use conforms with optimal relevance in that it can achieve the greatest positive effect with the least processing effort. It is the communicators themselves who decide whether or not optimal relevance is achieved, rather than the language form (fuzzy or non-fuzzy) used. People can skillfully adjust the deployment of different language forms or choose appropriate interpretations to suit different situations and communication needs. However, there are two challenges to RT: a. to extend its theory from individual relevance to group relevance; b. to embrace cultural considerations (because when relevance principles and cultural protocols are in conflict, the latter tends to prevail).

  18. Voltage effects on cells cultured on metallic biomedical implants

    Science.gov (United States)

    Haerihosseini, Seyed Morteza

    Electrochemical voltage shifts in metallic biomedical implants occur in-vivo due to a number of processes including mechanically assisted corrosion. Surface potential of biomedical implants and excursions from resting open circuit potential (OCP), which is the voltage they attain while in contact with an electrolyte, can significantly change the interfacial properties of the metallic surfaces and alter the behavior of the surrounding cells, compromising the biocompatibility of metallic implants. Voltages can also be controlled to modulate cell function and fate. To date, the details of the physico-chemical phenomena and the role of different biomaterial parameters involved in the interaction between cells and metallic surfaces under cathodic bias have not been fully elucidated. In this work, changes in the interfacial properties of a CoCrMo biomedical alloy (ASTM F-1537) in phosphate-buffered saline (PBS) (pH 7.4) at different voltages was studied. Step polarization impedance spectroscopy technique was used to apply 50 mV voltage steps to samples, and the time-based current transients were recorded. A new equation was derived based on capacitive discharge through a Tafel element and generalized to deal with non-ideal impedance behavior. The new function compared to the KWW-Randles function, better matched the time-transient response. The results also showed a voltage dependent oxide resistance and capacitance behavior. Additionally, the in-vitro effect of static voltages on the behavior of MC3T3-E1 pre-osteoblasts cultured on CoCrMo alloy (ASTM-1537) was studied to determine the range of cell viability and mode of cell death beyond the viable range. Cell viability and morphology, changes in actin cytoskeleton, adhesion complexes and nucleus, and mode of cell death (necrosis, or intrinsic or extrinsic apoptosis) were characterized at different voltages ranging from -1000 to +500 mV (Ag/AgCl). Moreover, electrochemical currents and metal ion concentrations at each

  19. Relevance Theory in Translation

    Institute of Scientific and Technical Information of China (English)

    Shao Jun; Jiang Min

    2008-01-01

    In perspective of relevance theory, translation is regarded as communication. According to relevance theory, communication not only requires encoding, transfer and decoding processes, but also involves inference in addition. As communication, translation decision-making is also based on the human beings' inferential mental faculty. Concentrating on relevance theory, this paper tries to analyze and explain some translation phenomena in two English versions of Cai Gen Tan-My Crude Philosophy of Life.

  20. Fundamental developments in infrared spectroscopic imaging for biomedical applications.

    Science.gov (United States)

    Pilling, Michael; Gardner, Peter

    2016-04-01

    Infrared chemical imaging is a rapidly emerging field with new advances in instrumentation, data acquisition and data analysis. These developments have had significant impact in biomedical applications and numerous studies have now shown that this technology offers great promise for the improved diagnosis of the diseased state. Relying on purely biochemical signatures rather than contrast from exogenous dyes and stains, infrared chemical imaging has the potential to revolutionise histopathology for improved disease diagnosis. In this review we discuss the recent advances in infrared spectroscopic imaging specifically related to spectral histopathology (SHP) and consider the current state of the field. Finally we consider the practical application of SHP for disease diagnosis and consider potential barriers to clinical translation highlighting current directions and the future outlook. PMID:26996636

  1. Eli Lilly and Company's bioethics framework for human biomedical research.

    Science.gov (United States)

    Van Campen, Luann E; Therasse, Donald G; Klopfenstein, Mitchell; Levine, Robert J

    2015-11-01

    Current ethics and good clinical practice guidelines address various aspects of pharmaceutical research and development, but do not comprehensively address the bioethical responsibilities of sponsors. To fill this void, in 2010 Eli Lilly and Company developed and implemented a Bioethics Framework for Human Biomedical Research to guide ethical decisions. (See our companion article that describes how the framework was developed and implemented and provides a critique of its usefulness and limitations.) This paper presents the actual framework that serves as a company resource for employee education and bioethics deliberations. The framework consists of four basic ethical principles and 13 essential elements for ethical human biomedical research and resides within the context of our company's mission, vision and values. For each component of the framework, we provide a high-level overview followed by a detailed description with cross-references to relevant well regarded guidance documents. The principles and guidance described should be familiar to those acquainted with research ethics. Therefore the novelty of the framework lies not in the foundational concepts presented as much as the attempt to specify and compile a sponsor's bioethical responsibilities to multiple stakeholders into one resource. When such a framework is employed, it can serve as a bioethical foundation to inform decisions and actions throughout clinical planning, trial design, study implementation and closeout, as well as to inform company positions on bioethical issues. The framework is, therefore, a useful tool for translating ethical aspirations into action - to help ensure pharmaceutical human biomedical research is conducted in a manner that aligns with consensus ethics principles, as well as a sponsor's core values. PMID:26325585

  2. Batteries for implantable biomedical devices

    International Nuclear Information System (INIS)

    The special requirements of power cells for a variety of medical applications and the technical means by which the needs have been met are taken up in 11 contributed chapters. Both chemicals (lithium/halogen, nickel/cadmium, etc.) and nuclear batteries are considered

  3. Recent patents on bacteriocins: food and biomedical applications.

    Science.gov (United States)

    Benmechernene, Zineb; Fernandez-No, Inmaculada; Kihal, Mebrouk; Böhme, Karola; Calo-Mata, Pilar; Barros-Velazquez, Jorge

    2013-04-01

    Most types of bacteria produce bacteriocins, which are proteinaceous extracellular compounds that can inhibit the growth of other undesirable microorganisms. Bacteriocins are receiving increasing attention, due to their many applications, ranging from their initial application in strategies for food preservation to more recent proposed uses in biomedical strategies aimed at fighting certain bacterial infections. Thus, while nisin has a long history of use as a safe additive in certain food products for the purpose of food preservation, certain bacteriocin-producing lactic acid bacteria, which are generally recognised as safe microorganisms, or their extracellular extracts are receiving increased attention as protective cultures or antimicrobial extracts in minimally processed food products. More recently, a number of these bacteriocinproducing cultures have been proposed for use in other applications, such as in probiotics, for the inhibition of biofilms in the food industry, or even as coadjuvants of combined therapeutical strategies along with other antimicrobial agents in biomedical applications. This review aims to provide a brief overview of the most relevant recent patents in this field. PMID:22921084

  4. Utilizing weakly controlled vocabulary for sentence segmentation in biomedical literature.

    Science.gov (United States)

    Satou, Kenji; Yamamoto, Kaoru

    2005-01-01

    Since biomedical texts contain a wide variety of domain specific terms, building a large dictionary to perform term matching is of great relevance. However, due to the existence of null boundary between adjacent terms, this matching is not a trivial problem. Moreover, it is known that generative words cannot be comprehensively included in a dictionary because their possible variations are infinite. In this study, we report our approach to dictionary building and term matching in biomedical texts. Large amount of terms with/without part-of-speech (POS) and/or category information were gathered, and a completion program generated approximately 1.36 million term variants to avoid stemming problems when matching terms. The dictionary was stored in a relational database management system (RDBMS) for quick lookup, and used by a matching program. Since the matching operation is not restricted to a substring surrounded by space characters, we can avoid the problem of null boundaries. This feature is also useful for generative words. Experimental results on GENIA corpus are promising: nearly half of the possible terms were correctly recognized as a meaningful segment, and most of the remaining half could be correctly recognized by some post-processing process, like chunking and further decomposition. It should be remarked that although we have not used term cost, connectivity cost, or syntactic information, reasonable segmentation and dictionary lookup were performed in most cases. PMID:15972007

  5. Development of polyphenolic nanoparticles for biomedical applications

    Science.gov (United States)

    Cheng, Huaitzung Andrew

    Polymeric nanoparticles have a wide range of applications, particularly as drug delivery and diagnostic agents, and tannins have been regarded as a promising building block for redox and pH responsive systems. Tannins are a class of naturally occurring polyphenols commonly produced by plants and are found in many of our consumables like teas, spices, fresh fruits, and vegetables. Many of the health benefits associated with these foods are a result of their high tannin contents and the many different types of tannins found in various plants have demonstrated therapeutic potentials for conditions ranging from cardiovascular disease and diabetes to ulcers and cancer. Diets rich in tannins have been associated with lower blood pressure in patients with hypertension. The plurality of phenols in tannins also makes them powerful antioxidants and as a result, there is a lot of interest in taking advantage of their self-assembling abilities to make redox and pH responsive drug delivery systems. However, the benefit of natural tannins is limited by their instability in physiological conditions. Furthermore, there is limited control over molecular weight and reactivity of the phenolic content of plant extracts. Herein we report the novel synthesis of pseudotannins with control over molecular weight and reactivity of phenolic moieties. These pseudotannins have can form nanoscale interpolymer complexes under physiological conditions and have demonstrated antioxidative potential. Furthermore, pseudotannin IPCs have been shown to be responsive to physiologically relevant oxidation as well as the ability to easily incorporate cell targeting peptides, fluorescent tags, and MRI contrast agents. The work presented here describes how pseudotannins would be ideally suited to minimally invasive techniques for diagnosing atherosclerotic plaques and targeting triple negative breast cancer. We demonstrate that pseudotannin can very easily and quickly form nanoscale particles that are small

  6. Radionuclide generators for biomedical applications

    International Nuclear Information System (INIS)

    This document reviews the chemical literature of those radionuclide generators that have gained or appear to possess utility in medical imaging. The text represents a conscientious effort to peruse the scientific literature through 1980. The intent of this work is to provide a reference point for the investigator who is interested in the development of a particular generator system and the refinements which have been reported. Moreover, the incorporation of the particular daughter radionuclide into a suitable radiodiagnostic agent is presented

  7. Biostatistics and epidemiology a primer for health and biomedical professionals

    CERN Document Server

    Wassertheil-Smoller, Sylvia

    2015-01-01

    Since the publication of the first edition, Biostatistics and Epidemiology has attracted loyal readers from across specialty areas in the biomedical community. Not only does this textbook teach foundations of epidemiological design and statistical methods, but it also includes topics applicable to new areas of research. Areas covered in the fourth edition include a new chapter on risk prediction, risk reclassification and evaluation of biomarkers, new material on propensity analyses, and a vastly expanded chapter on genetic epidemiology, which  is particularly relevant to those who wish to understand the epidemiological and statistical aspects of scientific articles in this rapidly advancing field. Biostatistics and Epidemiology was written to be accessible for readers without backgrounds in mathematics. It provides clear explanations of underlying principles, as well as practical guidelines of "how to do it" and "how to interpret it."a philosophical explanation of the logic of science, subsections that ...

  8. Pharmaceutical and biomedical applications of lipid-based nanocarriers.

    Science.gov (United States)

    Carbone, Claudia; Leonardi, Antonio; Cupri, Sarha; Puglisi, Giovanni; Pignatello, Rosario

    2014-03-01

    Increasing attention is being given to lipid nanocarriers (LNs) as drug delivery systems, due to the advantages offered of a higher biocompatibility and lower toxicity compared with polymeric nanoparticles. Many administration routes are being investigated for LNs, including topical, oral and parenteral ones. LNs are also proposed for specific applications such as cancer treatment, gene therapy, diagnosis and medical devices production. However, the high number of published research articles does not match an equal amount of patents. A recent Review of ours, published in Pharmaceutical Patent Analyst, reported the patents proposing novel methods for the production of LNs. This review work discusses recent patents, filed in 2007-2013 and dealing with the industrial applications of lipid-based nanocarriers for the vectorization of therapeutically relevant molecules, as well as biotech products such as proteins, gene material and vaccines, in the pharmaceutical, diagnostic and biomedical areas. PMID:24588596

  9. Radiation protection in medical and biomedical research

    International Nuclear Information System (INIS)

    The human exposure to ionizing radiation in the context of medical and biomedical research raises specific ethical challenges whose resolution approaches should be based on scientific, legal and procedural matters. Joint Resolution MINSAP CITMA-Regulation 'Basic Standards of Radiation Safety' of 30 November 2001 (hereafter NBS) provides for the first time in Cuba legislation specifically designed to protect patients and healthy people who participate in research programs medical and biomedical and exposed to radiation. The objective of this paper is to demonstrate the need to develop specific requirements for radiation protection in medical and biomedical research, as well as to identify all the institutions involved in this in order to establish the necessary cooperation to ensure the protection of persons participating in the investigation

  10. Design and analysis of biomedical studies

    DEFF Research Database (Denmark)

    Hansen, Merete Kjær

    been allocated this field. It is utterly important to utilize these ressources responsibly and efficiently by constantly striving to ensure high-quality biomedical studies. This involves the use of a sound statistical methodology regarding both the design and analysis of biomedical studies. The focus...... for the statistical power of studies with a hierarchical structure to guide biomedical researchers designing future studies of this type. Upon model fitting it is important to examine if the model assumptions are met to avoid that spurious conclusions are drawn. While the range of diagnostic methods is extensive...... for models assuming a normal response it is generally more limited for non-normal models. An R package providing diagnostic tools suitable for examining the validity of binomial regression models have been developed. The binom Tools package is publicly available at the CRAN repository....

  11. Term identification in the biomedical literature.

    Science.gov (United States)

    Krauthammer, Michael; Nenadic, Goran

    2004-12-01

    Sophisticated information technologies are needed for effective data acquisition and integration from a growing body of the biomedical literature. Successful term identification is key to getting access to the stored literature information, as it is the terms (and their relationships) that convey knowledge across scientific articles. Due to the complexities of a dynamically changing biomedical terminology, term identification has been recognized as the current bottleneck in text mining, and--as a consequence--has become an important research topic both in natural language processing and biomedical communities. This article overviews state-of-the-art approaches in term identification. The process of identifying terms is analysed through three steps: term recognition, term classification, and term mapping. For each step, main approaches and general trends, along with the major problems, are discussed. By assessing previous work in context of the overall term identification process, the review also tries to delineate needs for future work in the field. PMID:15542023

  12. NASA Biomedical Informatics Capabilities and Needs

    Science.gov (United States)

    Johnson-Throop, Kathy A.

    2009-01-01

    To improve on-orbit clinical capabilities by developing and providing operational support for intelligent, robust, reliable, and secure, enterprise-wide and comprehensive health care and biomedical informatics systems with increasing levels of autonomy, for use on Earth, low Earth orbit & exploration class missions. Biomedical Informatics is an emerging discipline that has been defined as the study, invention, and implementation of structures and algorithms to improve communication, understanding and management of medical information. The end objective of biomedical informatics is the coalescing of data, knowledge, and the tools necessary to apply that data and knowledge in the decision-making process, at the time and place that a decision needs to be made.

  13. Personalized biomedical devices & systems for healthcare applications

    Science.gov (United States)

    Chen, I.-Ming; Phee, Soo Jay; Luo, Zhiqiang; Lim, Chee Kian

    2011-03-01

    With the advancement in micro- and nanotechnology, electromechanical components and systems are getting smaller and smaller and gradually can be applied to the human as portable, mobile and even wearable devices. Healthcare industry have started to benefit from this technology trend by providing more and more miniature biomedical devices for personalized medical treatments in order to obtain better and more accurate outcome. This article introduces some recent development in non-intrusive and intrusive biomedical devices resulted from the advancement of niche miniature sensors and actuators, namely, wearable biomedical sensors, wearable haptic devices, and ingestible medical capsules. The development of these devices requires carful integration of knowledge and people from many different disciplines like medicine, electronics, mechanics, and design. Furthermore, designing affordable devices and systems to benefit all mankind is a great challenge ahead. The multi-disciplinary nature of the R&D effort in this area provides a new perspective for the future mechanical engineers.

  14. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  15. Using cited references to improve the retrieval of related biomedical documents

    OpenAIRE

    Ortuno, F.M.; Rojas, I.; Andrade-Navarro, M A; Fontaine, J.F.

    2013-01-01

    BACKGROUND: A popular query from scientists reading a biomedical abstract is to search for topic-related documents in bibliographic databases. Such a query is challenging because the amount of information attached to a single abstract is little, whereas classification-based retrieval algorithms are optimally trained with large sets of relevant documents. As a solution to this problem, we propose a query expansion method that extends the information related to a manuscript using its cited refe...

  16. Using rule-based natural language processing to improve disease normalization in biomedical text

    OpenAIRE

    2013-01-01

    Background and objective In order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionary-based. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization. Methods We compared the performance...

  17. Using rule-based natural language processing to improve disease normalization in biomedical text

    OpenAIRE

    Kang, Ning; Singh, Bharat; Afzal, Zubair; Mulligen, Erik; Kors, Jan

    2013-01-01

    textabstractBackground and objective: In order for computers to extract useful information from unstructured text, a concept normalization system is needed to link relevant concepts in a text to sources that contain further information about the concept. Popular concept normalization tools in the biomedical field are dictionarybased. In this study we investigate the usefulness of natural language processing (NLP) as an adjunct to dictionary-based concept normalization. Methods: We compared th...

  18. The development of a multi-disciplinary educational programme in Biomedical Diagnostics - a novel approach.

    OpenAIRE

    MacCormac, Aoife; O'Brien, Emma; O'Kennedy, Richard

    2011-01-01

    This paper describes the development of a taught Master’s course in Biomedical Diagnostics using a novel multi-disciplinary approach. This course, the first of its kind in Ireland, covers the science and technology underlying the development of medical diagnostic devices that detect early markers of diseases such as cancer. The ethical impact of these devices on society, the importance of scientific communication, relevant aspects of business entrepreneurial studies and the commercialisation ...

  19. National Space Biomedical Research Institute Annual Report

    Science.gov (United States)

    2000-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 2000. The NSBRI is responsible for the development of countermeasures against the deleterious effects of long-duration space flight and performs fundamental and applied space biomedical research directed towards this specific goal. Its mission is to lead a world-class, national effort in integrated, critical path space biomedical research that supports NASA's Human Exploration and Development of Space (HEDS) Strategic Plan by focusing on the enabling of long-term human presence in, development of, and exploration of space. This is accomplished by: designing, testing and validating effective countermeasures to address the biological and environmental impediments to long-term human space flight; defining the molecular, cellular, organ-level, integrated responses and mechanistic relationships that ultimately determine these impediments, where such activity fosters the development of novel countermeasures; establishing biomedical support technologies to maximize human performance in space, reduce biomedical hazards to an acceptable level, and deliver quality medical care; transferring and disseminating the biomedical advances in knowledge and technology acquired through living and working in space to the general benefit of mankind, including the treatment of patients suffering from gravity- and radiation-related conditions on Earth; and ensuring open involvement of the scientific community, industry and the public at large in the Institute's activities and fostering a robust collaboration with NASA, particularly through NASA's Lyndon B. Johnson Space Center. Attachment:Appendices (A,B,C,D,E,F,G,H,I,J,K,L,M,N,O, and P.).

  20. Biomedical sensor design using analog compressed sensing

    Science.gov (United States)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    The main drawback of current healthcare systems is the location-specific nature of the system due to the use of fixed/wired biomedical sensors. Since biomedical sensors are usually driven by a battery, power consumption is the most important factor determining the life of a biomedical sensor. They are also restricted by size, cost, and transmission capacity. Therefore, it is important to reduce the load of sampling by merging the sampling and compression steps to reduce the storage usage, transmission times, and power consumption in order to expand the current healthcare systems to Wireless Healthcare Systems (WHSs). In this work, we present an implementation of a low-power biomedical sensor using analog Compressed Sensing (CS) framework for sparse biomedical signals that addresses both the energy and telemetry bandwidth constraints of wearable and wireless Body-Area Networks (BANs). This architecture enables continuous data acquisition and compression of biomedical signals that are suitable for a variety of diagnostic and treatment purposes. At the transmitter side, an analog-CS framework is applied at the sensing step before Analog to Digital Converter (ADC) in order to generate the compressed version of the input analog bio-signal. At the receiver side, a reconstruction algorithm based on Restricted Isometry Property (RIP) condition is applied in order to reconstruct the original bio-signals form the compressed bio-signals with high probability and enough accuracy. We examine the proposed algorithm with healthy and neuropathy surface Electromyography (sEMG) signals. The proposed algorithm achieves a good level for Average Recognition Rate (ARR) at 93% and reconstruction accuracy at 98.9%. In addition, The proposed architecture reduces total computation time from 32 to 11.5 seconds at sampling-rate=29 % of Nyquist rate, Percentage Residual Difference (PRD)=26 %, Root Mean Squared Error (RMSE)=3 %.

  1. Effective written communication in biomedical sciences.

    Science.gov (United States)

    Rugh, K S; Hahn, A W

    1996-01-01

    The written word is the biomedical scientist's most important and most enduring communication tool. Nevertheless, the development of writing skills receives little attention in most scientific disciplines and the ability to conduct research is often viewed as more important than the ability to communicate the results of that research. Consequently, many scientists lack the writing skills necessary to effectively convey essential aspects of their research. In this paper, we will discuss the importance of good writing skills, give examples of common mistakes that are made in biomedical science writing and offer suggestions on how to improve written communication. PMID:8672681

  2. Conference on medical physics and biomedical engineering

    International Nuclear Information System (INIS)

    Due to the rapid technological development in the world today, the role of physics in modern medicine is of great importance. The frequent use of equipment that produces ionizing radiation further increases the need for radiation protection, complicated equipment requires technical support, the diagnostic and therapeutic methods impose the highest professionals in the field of medical physics. Thus, medical physics and biomedical engineering have become an inseparable part of everyday medical practice. There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia who committed themselves to work towards resolving medical physics issues. In 2000 they established the first and still only professional Association for Medical Physics and Biomedical Engineering (AMPBE) in Macedonia; a one competent to cope with problems in the fields of medicine, which applies methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will ultimately lead to improve the quality of medical practice in general. The First National Conference on Medical Physics and Biomedical Engineering was organized by the AMPBE in 2007. The idea was to gather all the professionals working in medical physics and biomedical engineering in one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and professors of physics at the University also took part and contributed to the success of the conference. As a result, the Proceedings were published in Macedonian, with summaries in English. In order to further promote the medical physics amongst the scientific community in Macedonia, our society decided to organize The Second Conference on Medical Physics and Biomedical Engineering in November 2010. Unlike the first, this one was with international participation. This was very suitable

  3. Biological and Biomedical Coatings Handbook Applications

    CERN Document Server

    Zhang, Sam

    2011-01-01

    Written in a versatile, contemporary style that will benefit both novice and expert alike, Biological and Biomedical Coatings Handbook, Two-Volume Set covers the state of the art in the development and implementation of advanced thin films and coatings in the biological field. Consisting of two volumes--Processing and Characterization and Applications--this handbook details the latest understanding of advances in the design and performance of biological and biomedical coatings, covering a vast array of material types, including bio-ceramics, polymers, glass, chitosan, and nanomaterials. Contri

  4. Developing biomedical devices design, innovation and protection

    CERN Document Server

    Andreoni, Giuseppe; Colombo, Barbara

    2013-01-01

    During the past two decades incredible progress has been achieved in the instruments and devices used in the biomedical field. This progress stems from continuous scientific research that has taken advantage of many findings and advances in technology made available by universities and industry. Innovation is the key word, and in this context legal protection and intellectual property rights (IPR) are of crucial importance. This book provides students and practitioners with the fundamentals for designing biomedical devices and explains basic design principles. Furthermore, as an aid to the dev

  5. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  6. Building biomedical materials layer-by-layer

    Directory of Open Access Journals (Sweden)

    Paula T. Hammond

    2012-05-01

    Full Text Available In this materials perspective, the promise of water based layer-by-layer (LbL assembly as a means of generating drug-releasing surfaces for biomedical applications, from small molecule therapeutics to biologic drugs and nucleic acids, is examined. Specific advantages of the use of LbL assembly versus traditional polymeric blend encapsulation are discussed. Examples are provided to present potential new directions. Translational opportunities are discussed to examine the impact and potential for true biomedical translation using rapid assembly methods, and applications are discussed with high need and medical return.

  7. Dividends, sustainability and relevance

    OpenAIRE

    Mantovi, A.

    2011-01-01

    Sustainability and relevance of dividend policies are addressed in terms of an optimal control model set forth by Feichtinger et al. (2007), by means of which two different capitalization measures,accounting for dividends and capital gains, can be given explicit representation. In the light of the theory of capital tailored by Dorfman (1969), an intertemporal economic measure of shareholder value is introduced, together with the associated shadow price. Relevant tradeoffs and scale effects ar...

  8. A flexible organic resistance memory device for wearable biomedical applications.

    Science.gov (United States)

    Cai, Yimao; Tan, Jing; YeFan, Liu; Lin, Min; Huang, Ru

    2016-07-01

    Parylene is a Food and Drug Administration (FDA)-approved material which can be safely used within the human body and it is also offers chemically inert and flexible merits. Here, we present a flexible parylene-based organic resistive random access memory (RRAM) device suitable for wearable biomedical application. The proposed device is fabricated through standard lithography and pattern processes at room temperature, exhibiting the feasibility of integration with CMOS circuits. This organic RRAM device offers a high storage window (>10(4)), superior retention ability and immunity to disturbing. In addition, brilliant mechanical and electrical stabilities of this device are demonstrated when under harsh bending (bending cycle >500, bending radius <10 mm). Finally, the underlying mechanism for resistance switching of this kind of device is discussed, and metallic conducting filament formation and annihilation related to oxidization/redox of Al and Al anions migrating in the parylene layer can be attributed to resistance switching in this device. These advantages reveal the significant potential of parylene-based flexible RRAM devices for wearable biomedical applications. PMID:27242345

  9. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  10. Biomedical applications of functionalized fullerene-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Ranga Partha

    2009-11-01

    Full Text Available Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullerenes in the diagnosis and therapy of human diseases. Functionalized fullerenes are one of the many different classes of compounds that are currently being investigated in the rapidly emerging field of nanomedicine. In this review, the focus is on the three categories of drug delivery, reactive oxygen species quenching, and targeted imaging for which functionalized fullerenes have been studied in depth. In addition, an exhaustive list of the different classes of functionalized fullerenes along with their applications is provided. We will also discuss and summarize the unique approaches, mechanisms, advantages, and the aspect of toxicity behind utilizing functionalized fullerenes for biomedical applications.Keywords: fullerenes, functionalized fullerenes, nanomedicine, drug delivery, buckysomes, radiation protection

  11. Methodology for uranium compounds characterization applied to biomedical monitoring

    International Nuclear Information System (INIS)

    Chronic exposure and accidental contamination to uranium compounds in the nuclear industry, led the authors to develop a methodology in order to characterize those compounds applied to biomedical monitoring. Such a methodology, based on the recommendation of the ICRP and the assessment of Annual Limit on Intake (ALI) values, involves two main steps: (1) The characterization of the industrial compound, i.e. its physico-chemical properties like density (g cm-3), specific area (m2 g-1), x-ray spectrum (crystalline form), solid infrared spectrum (wavelength and bounds), mass spectrometry (isotopic composition), and particle size distribution including measurement of the Activity Median Aerodynamic Diameter (AMAD). They'll specially study aging and hydration state of some compounds. (2) The study of in vitro solubility in several biochemical medium like bicarbonates, Basal Medium Eagle (BME) used in cellular culture, Gamble solvent, which is a serum simulant, with oxygen bubbling, and Gamble added with superoxide anions O2-. Those different mediums allow one to understand the dissolution mechanisms (oxidation, chelating effects...) and to give ICRP classification D, W, or Y. Those two steps are essential to assess a biomedical monitoring either in routine or accidental exposure, and to calculate the ALI. Results on UO3, UF4 and U02 in the French uranium industry are given

  12. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  13. Current investigations into carbon nanotubes for biomedical application

    International Nuclear Information System (INIS)

    The nano-dimensionality of nature has logically given rise to the interest in using nanomaterials in the biomedical field. Currently, a lot of investigations into carbon nanotubes (CNTs), as one of the typical nanomaterials, are being made for biomedical application. In this review, five parts, such as cellular functions induced by CNTs, apatite formation on CNTs, CNT-based tissue engineering scaffold, functionalized CNTs for the delivery of genes and drugs and CNT-based biosensors, are stated, which might indicate that CNTs, with a range of unique properties, appear suited as a biomaterial and may become a useful tool for tissue engineering. However, everything has two parts and CNTs is not an exception. There are still concerns about cytotoxicity and biodegradation of CNTs. Chemical fictionalization may be one of the effective ways to improve the 'disadvantages' and utilize the 'advantages' of CNTs. One of their 'disadvantages', unbiodegradable property, may be utilized by creating monitors in in vivo-engineered tissues or nanosized CNT-based biosensors. Other promising research points, for example proteins adsorbed on CNTs, use of CNTs in combination with other biomaterials to achieve the goals of tissue engineering, mineralization of CNTs and standard toxicological tests for CNTs, are also described in the conclusion and perspectives part. (topical review)

  14. International Symposium on Biomedical Engineering and Medical Physics

    CERN Document Server

    Katashev, Alexei; Lancere, Linda

    2013-01-01

    This volume presents the proceedings of the International Symposium on Biomedical Engineering and Medical Physics and is dedicated to the 150 anniversary of the Riga Technical University, Latvia. The content includes various hot topics in biomedical engineering and medical physics.

  15. Electromembrane extraction for pharmaceutical and biomedical analysis

    DEFF Research Database (Denmark)

    Huang, Chuixiu; Seip, Knut Fredrik; Gjelstad, Astrid;

    2015-01-01

    present paper discusses recent development of EME. The paper focuses on the principles of EME, and discusses how to optimize operational parameters. In addition, pharmaceutical and biomedical applications of EME are reviewed, with emphasis on basic drugs, acidic drugs, amino acids, and peptides. Finally...

  16. Filtration track membranes and their biomedical applications

    International Nuclear Information System (INIS)

    The characteristics of track filtration membranes has been performed. The investigation of radiation resistance has been carried out for different types of polymer foil used as a membrane material. Biomedical applications of track filtration membranes have been presented and discussed. 10 refs, 10 figs

  17. Micro and Nano Manipulations for Biomedical Applications

    CERN Document Server

    Yih, Tachung C

    2007-01-01

    Taking bio-device research and development to "the next level," this book covers the latest advances in biomedical microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). The book presents new developments in the synthesis and use of metallic nanoparticles in bio-sensing and drug delivery, including quantum dots semiconductors nanocrystals.

  18. Communication Patterns in a Biomedical Research Center

    Science.gov (United States)

    Gorry, G. Anthony; And Others

    1978-01-01

    Studies of the communication patterns among scientists in a biomedical research center should help in the assessment of the center's impact on research processes. Such a study at the National Heart and Blood Vessel Research and Demonstration Center (NRDC) at Baylor College of Medicine is reported. (LBH)

  19. Higher Education Program in Biomedical Informatics

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    Buenos Aires: Hospital Italiano, 2008, s. 1-4. [IMIA Working Group on Health and Medical Informatics. Education Meeting. Buenos Aires (AR), 27.10.2008-28.10.2008] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : education * biomedical informatics * e- Learning Subject RIV: IN - Informatics, Computer Science

  20. Lanthanides fluorides doped nanocrystals for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Podhorodecki, A.; Noculak, A.; Banski, M.; Sojka, B.; Zelazo, A.; Misiewicz, J.; Cichos, J.; Karbowiak, M.; Zasońska, Beata Anna; Horák, Daniel; Sikora, B.; Elbaum, D.; Dumych, T.; Bilyy, R.; Szewczyk, M.

    Pennington : Electrochemical Soc, 2014, Roč. 61, č. 5, s. 115-125. ISBN 978-1-60768-520-3. ISSN 1938-5862. [ECS Meeting /225./. Orlando (US), 11.05.2014-15.05.2014] Institutional support: RVO:61389013 Keywords : nanocrystals * biomedical applications Subject RIV: CD - Macromolecular Chemistry

  1. CONAN : Text Mining in the Biomedical Domain

    NARCIS (Netherlands)

    Malik, R.

    2006-01-01

    This thesis is about Text Mining. Extracting important information from literature. In the last years, the number of biomedical articles and journals is growing exponentially. Scientists might not find the information they want because of the large number of publications. Therefore a system was cons

  2. Review of biomedical signal and image processing

    Science.gov (United States)

    2013-01-01

    This article is a review of the book “Biomedical Signal and Image Processing” by Kayvan Najarian and Robert Splinter, which is published by CRC Press, Taylor & Francis Group. It will evaluate the contents of the book and discuss its suitability as a textbook, while mentioning highlights of the book, and providing comparison with other textbooks.

  3. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  4. Advances in Swine biomedical Model Genomics

    Science.gov (United States)

    This manuscript is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease pro...

  5. Advances in Swine Biomedical Model Genomics

    Science.gov (United States)

    The swine has been a major biomedical model species, for transplantation, heart disease, allergies and asthma, as well as normal neonatal development and reproductive physiology. Swine have been used extensively for studies of infectious disease processes and analyses of preventative strategies, inc...

  6. Thermoforming of Film-Based Biomedical Microdevices

    NARCIS (Netherlands)

    Truckenmuller, Roman; Giselbrecht, Stefan; Rivron, Nicolas; Gottwald, Eric; Saile, Volker; Berg, van den Albert; Wessling, Matthias; Blitterswijk, van Clemens

    2011-01-01

    For roughly ten years now, a new class of polymer micromoulding processes comes more and more into the focus both of the microtechnology and the biomedical engineering community. These processes can be subsumed under the term "microthermoforming". In microthermoforming, thin polymer films are heated

  7. Electrospun chitosan/PEO nanofibers and their relevance in biomedical application

    OpenAIRE

    Rošic, Romana; Kocbek, Petra; Baumgartner, Saša; Kristl, Julijana

    2015-01-01

    In the present study, chitosan was chosen as an excellent material for tissue scaffold and wound dressing design due to its versatile ability to stimulate the immune system, promote cellular growth, and control bacterial growth. Different mass ratio of blended solutions of 3% (w/w) chitosan in 2% (w/w) acetic acid and 3% (w/w) poly(ethylene oxide) (PEO) in distilled water were used to produce nanofibers by electrospinning method. Effects of solution and process parameters were studied. Result...

  8. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Artemenko, A.; Kylián, O.; Choukourov, A.; Gordeev, I.; Petr, M.; Vandrovcová, Marta; Polonskyi, O.; Bačáková, Lucie; Slavínská, D.; Biederman, H.

    2012-01-01

    Roč. 520, č. 24 (2012), s. 7115-7124. ISSN 0040-6090 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : plasma polymers * cell adhesion * effect of sterilization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.604, year: 2012

  9. Mining biomedical images towards valuable information retrieval in biomedical and life sciences

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  10. BIG: a Grid Portal for Biomedical Data and Images

    OpenAIRE

    Giovanni Aloisio; Maria Cristina Barba; Euro Blasi; Massimo Cafaro; Sandro Fiore; Maria Mirto

    2004-01-01

    Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc.), advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid), a Web-based Grid portal for management of biomedic...

  11. Network fingerprint: a knowledge-based characterization of biomedical networks

    OpenAIRE

    Xiuliang Cui; Haochen He; Fuchu He; Shengqi Wang; Fei Li; Xiaochen Bo

    2015-01-01

    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerpr...

  12. Misconduct Policies in High-Impact Biomedical Journals

    OpenAIRE

    Bosch, Xavier; Hernández, Cristina; Pericas, Juan M.; Doti, Pamela; Marušić, Ana

    2012-01-01

    Background It is not clear which research misconduct policies are adopted by biomedical journals. This study assessed the prevalence and content policies of the most influential biomedical journals on misconduct and procedures for handling and responding to allegations of misconduct. Methods We conducted a cross-sectional study of misconduct policies of 399 high-impact biomedical journals in 27 biomedical categories of the Journal Citation Reports in December 2011. Journal websites were revie...

  13. Gene expression module-based chemical function similarity search

    OpenAIRE

    Li, Yun; Hao, Pei; Zheng, Siyuan; Tu, Kang; Fan, Haiwei; Zhu, Ruixin; Ding, Guohui; Dong, Changzheng; Wang, Chuan; Li, Xuan; Thiesen, H.-J.; Chen, Y. Eugene; Jiang, HuaLiang; Liu, Lei; Li, Yixue

    2008-01-01

    Investigation of biological processes using selective chemical interventions is generally applied in biomedical research and drug discovery. Many studies of this kind make use of gene expression experiments to explore cellular responses to chemical interventions. Recently, some research groups constructed libraries of chemical related expression profiles, and introduced similarity comparison into chemical induced transcriptome analysis. Resembling sequence similarity alignment, expression pat...

  14. Environmental/chemical thesaurus

    Energy Technology Data Exchange (ETDEWEB)

    Shriner, C.R.; Dailey, N.S.; Jordan, A.C.; Miller, K.C.; Owens, E.T.; Rickert, L.W.

    1978-06-01

    The Environmental/Chemical Thesaurus approaches scientific language control problems from a multidisciplinary view. The Environmental/Biomedical Terminology Index (EBTI) was used as a base for the present thesaurus. The Environmental/Chemical Thesaurus, funded by the Environmental Protection Agency, used as its source of new terms those major terms found in 13 Environmental Protection Agency data bases. The scope of this thesaurus includes not only environmental and biomedical sciences, but also the physical sciences with emphasis placed on chemistry. Specific chemical compounds are not included; only classes of chemicals are given. To adhere to this level of classification, drugs and pesticides are identified by class rather than by specific chemical name. An attempt was also made to expand the areas of sociology and economics. Terminology dealing with law, demography, and geography was expanded. Proper names of languages and races were excluded. Geographic terms were expanded to include proper names for oceans, continents, major lakes, rivers, and islands. Political divisions were added to allow for proper names of countries and states. With such a broad scope, terminology for specific sciences does not provide for indexing to the lowest levels in plant, animal, or chemical classifications.

  15. Environmental/chemical thesaurus

    International Nuclear Information System (INIS)

    The Environmental/Chemical Thesaurus approaches scientific language control problems from a multidisciplinary view. The Environmental/Biomedical Terminology Index (EBTI) was used as a base for the present thesaurus. The Environmental/Chemical Thesaurus, funded by the Environmental Protection Agency, used as its source of new terms those major terms found in 13 Environmental Protection Agency data bases. The scope of this thesaurus includes not only environmental and biomedical sciences, but also the physical sciences with emphasis placed on chemistry. Specific chemical compounds are not included; only classes of chemicals are given. To adhere to this level of classification, drugs and pesticides are identified by class rather than by specific chemical name. An attempt was also made to expand the areas of sociology and economics. Terminology dealing with law, demography, and geography was expanded. Proper names of languages and races were excluded. Geographic terms were expanded to include proper names for oceans, continents, major lakes, rivers, and islands. Political divisions were added to allow for proper names of countries and states. With such a broad scope, terminology for specific sciences does not provide for indexing to the lowest levels in plant, animal, or chemical classifications

  16. Chitosan Microgels and Nanoparticles via Electrofluidodynamic Techniques for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vincenzo Guarino

    2016-01-01

    Full Text Available Electrofluidodynamics techniques (EFDTs are emerging methodologies based on liquid atomization induced by electrical forces to obtain a fine suspension of particles from hundreds of micrometers down to nanometer size. As a function of the characteristic size, these particles are interesting for a wide variety of applications, due to the high scalability of chemical and physical properties in comparison to the bulk form. Here, we propose the optimization of EFDT techniques to design chitosan systems in the form of microgels or nanoparticles for several biomedical applications. Different microscopy techniques (Optical, SEM, TEM have been used to investigate the morphology of chitosan systems at multiple size scale. The proposed study confirms the high versatility and feasibility of EFDTs for creating micro and nano-sized carriers for cells and drug species.

  17. Preparation of natural zeolitic supports for potential biomedical applications

    International Nuclear Information System (INIS)

    Considering the biological properties reported for the purified natural clinoptilolite, NZ, we prepared K- and Li-enriched forms aimed at release matrices for biomedical applications. The raw material and the obtained solid samples were characterized by means of atomic absorption spectroscopy, X-ray diffraction, 27Al and 29Si MAS nuclear magnetic resonance, and nitrogen adsorption. The results demonstrated the structural stability of the materials after the different transformations applied. The chemical behavior of the samples in bi-distilled water and hydrochloric acid was studied by pH and conductivity measurements. A preliminary study related with the liberation of K and Li in aqueous medium was carried out by atomic absorption spectroscopy. The studies showed that the release of both ions from the solid samples is favored in HCl solutions, and that lithium is released faster than potassium in both dissolution media.

  18. Emerging chitin and chitosan nanofibrous materials for biomedical applications

    Science.gov (United States)

    Ding, Fuyuan; Deng, Hongbing; Du, Yumin; Shi, Xiaowen; Wang, Qun

    2014-07-01

    Over the past several decades, we have witnessed significant progress in chitosan and chitin based nanostructured materials. The nanofibers from chitin and chitosan with appealing physical and biological features have attracted intense attention due to their excellent biological properties related to biodegradability, biocompatibility, antibacterial activity, low immunogenicity and wound healing capacity. Various methods, such as electrospinning, self-assembly, phase separation, mechanical treatment, printing, ultrasonication and chemical treatment were employed to prepare chitin and chitosan nanofibers. These nanofibrous materials have tremendous potential to be used as drug delivery systems, tissue engineering scaffolds, wound dressing materials, antimicrobial agents, and biosensors. This review article discusses the most recent progress in the preparation and application of chitin and chitosan based nanofibrous materials in biomedical fields.

  19. Synthesis and Characterization of Multilayered Diamond Coatings for Biomedical Implants

    Directory of Open Access Journals (Sweden)

    Leigh Booth

    2011-05-01

    Full Text Available With incredible hardness and excellent wear-resistance, nanocrystalline diamond (NCD coatings are gaining interest in the biomedical community as articulating surfaces of structural implant devices. The focus of this study was to deposit multilayered diamond coatings of alternating NCD and microcrystalline diamond (MCD layers on Ti-6Al-4V alloy surfaces using microwave plasma chemical vapor deposition (MPCVD and validate the multilayer coating’s effect on toughness and adhesion. Multilayer samples were designed with varying NCD to MCD thickness ratios and layer numbers. The surface morphology and structural characteristics of the coatings were studied with X-ray diffraction (XRD, Raman spectroscopy, and atomic force microscopy (AFM. Coating adhesion was assessed by Rockwell indentation and progressive load scratch adhesion tests. Multilayered coatings shown to exhibit the greatest adhesion, comparable to single-layered NCD coatings, were the multilayer samples having the lowest average grain sizes and the highest titanium carbide to diamond ratios.

  20. Relevance, Derogation and Permission

    Science.gov (United States)

    Stolpe, Audun

    We show that a recently developed theory of positive permission based on the notion of derogation is hampered by a triviality result that indicates a problem with the underlying full-meet contraction operation. We suggest a solution that presupposes a particular normal form for codes of norms, adapted from the theory of relevance through propositional letter sharing. We then establish a correspondence between contractions on sets of norms in input/output logic (derogations), and AGM-style contractions on sets of formulae, and use it as a bridge to migrate results on propositional relevance from the latter to the former idiom. Changing the concept accordingly we show that positive permission now incorporates a relevance requirement that wards off triviality.

  1. Biomedical digital assistant for ubiquitous healthcare.

    Science.gov (United States)

    Lee, Tae-Soo; Hong, Joo-Hyun; Cho, Myeong-Chan

    2007-01-01

    The concept of ubiquitous healthcare service, which emerged as one of measures to solve healthcare problems in aged society, means that patients can receive services such as prevention, diagnosis, therapy and prognosis management at any time and in any place with the help of advanced information and communication technology. This service requires not only biomedical digital assistant that can monitor continuously the patients' health condition regardless of time and place, but also wired and wireless communication devices and telemedicine servers that provide doctors with data on patients' present health condition. In order to implement a biomedical digital assistant that is portable and wearable to patients, the present study developed a device that minimizes size, weight and power consumption, measures ECG and PPG signals, and even monitors moving patients' state. The biomedical sensor with the function of wireless communication was designed to be highly portable and wearable, to be operable 24 hours with small-size batteries, and to monitor the subject's heart rate, step count and respiratory rate in his daily life. The biomedical signal receiving device was implemented in two forms, PDA and cellular phone. The movement monitoring device embedded in the battery pack of a cellular phone does not have any problem in operating 24 hours, but the real-time biomedical signal receiving device implemented with PDA operated up to 6 hours due to the limited battery capacity of PDA. This problem is expected to be solved by reducing wireless communication load through improving the processing and storage functions of the sensor. The developed device can transmit a message on the patient's emergency to the remote server through the cellular phone network, and is expected to play crucial roles in the health management of chronic-aged patients in their daily life. PMID:18002325

  2. Biomedical technology prosperity game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

  3. BIOMedical search engine framework: lightweight and customized implementation of domain-specific biomedical search engines

    OpenAIRE

    Jácome, Alberto G.; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-01-01

    The Smart Drug Search is publicly accessible at http://sing.ei.uvigo.es/sds/. The BIOMedical Search Engine Framework is freely available for non-commercial use at https://github.com/agjacome/biomsef Background and Objectives: Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-sour...

  4. The Limits to Relevance

    Science.gov (United States)

    Averill, M.; Briggle, A.

    2006-12-01

    Science policy and knowledge production lately have taken a pragmatic turn. Funding agencies increasingly are requiring scientists to explain the relevance of their work to society. This stems in part from mounting critiques of the "linear model" of knowledge production in which scientists operating according to their own interests or disciplinary standards are presumed to automatically produce knowledge that is of relevance outside of their narrow communities. Many contend that funded scientific research should be linked more directly to societal goals, which implies a shift in the kind of research that will be funded. While both authors support the concept of useful science, we question the exact meaning of "relevance" and the wisdom of allowing it to control research agendas. We hope to contribute to the conversation by thinking more critically about the meaning and limits of the term "relevance" and the trade-offs implicit in a narrow utilitarian approach. The paper will consider which interests tend to be privileged by an emphasis on relevance and address issues such as whose goals ought to be pursued and why, and who gets to decide. We will consider how relevance, narrowly construed, may actually limit the ultimate utility of scientific research. The paper also will reflect on the worthiness of research goals themselves and their relationship to a broader view of what it means to be human and to live in society. Just as there is more to being human than the pragmatic demands of daily life, there is more at issue with knowledge production than finding the most efficient ways to satisfy consumer preferences or fix near-term policy problems. We will conclude by calling for a balanced approach to funding research that addresses society's most pressing needs but also supports innovative research with less immediately apparent application.

  5. Relevant Subspace Clustering

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan; Krieger, Ralph; Seidl, Thomas

    Subspace clustering aims at detecting clusters in any subspace projection of a high dimensional space. As the number of possible subspace projections is exponential in the number of dimensions, the result is often tremendously large. Recent approaches fail to reduce results to relevant subspace...... clusters. Their results are typically highly redundant, i.e. many clusters are detected multiple times in several projections. In this work, we propose a novel model for relevant subspace clustering (RESCU). We present a global optimization which detects the most interesting non-redundant subspace clusters...... achieves top clustering quality while competing approaches show greatly varying performance....

  6. Fungus mediated synthesis of biomedically important cerium oxide nanoparticles

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • First time biological synthesis of cerium oxide oxide nanoparticles using fungus Humicola sp. • Complete characterization of cerium oxide nanoparticles. • Biosynthesis of naturally protein capped, luminescent and water dispersible CeO2 nanoparticles. • Biosynthesized CeO2 nanoparticles can be used for many biomedical applications. - Abstract: Nanomaterials can be synthesized by chemical, physical and the more recently discovered biological routes. The biological routes are advantageous over the chemical and physical ones as unlike these, the biological synthesis protocols occur at ambient conditions, are cheap, non-toxic and eco-friendly. Although purely biological and bioinspired methods for the synthesis of nanomaterials are environmentally benign and energy conserving processes, their true potential has not been explored yet and attempts are being made to extend the formation of technologically important nanoparticles using microorganisms like fungi. Though there have been reports on the biosynthesis of oxide nanoparticles by our group in the past, no attempts have been made to employ fungi for the synthesis of nanoparticles of rare earth metals or lanthanides. Here we report for the first time, the bio-inspired synthesis of biomedically important cerium oxide (CeO2) nanoparticles using the thermophilic fungus Humicola sp. The fungus Humicola sp. when exposed to aqueous solutions of oxide precursor cerium (III) nitrate hexahydrate (CeN3O9·6H2O) results in the extracellular formation of CeO2 nanoparticles containing Ce (III) and Ce (IV) mixed oxidation states, confirmed by X-ray Photoemission Spectroscopy (XPS). The formed nanoparticles are naturally capped by proteins secreted by the fungus and thus do not agglomerate, are highly stable, water dispersible and are highly fluorescent as well. The biosynthesized nanoparticles were characterized by UV–vis spectroscopy, Photoluminescence spectroscopy (PL), Transmission

  7. Novel ceramics for biomedical applications

    International Nuclear Information System (INIS)

    It was found in a simulated body fluid (SBF) that functional groups such as Si-OH, Ti-OH, Zr-OH, Ta-OH, Nb-OH, COOH and PO4H2 are effective for the apatite nucleation. On the basis of these findings, it was shown that NaOH- and heat-treated titanium, its alloys and tantalum, a H3PO4-treated zirconia ceramics and CaO, SiO2 glass-treated poly(ethylene terephthalate) form the bonelike apatite on their surfaces in SBF. Among them, NaOH- and heat-treated titanium, its alloys and tantalum were confirmed to form the apatite on their surfaces in vivo and bond to living bone through the apatite layer. Y2O3-Al2O3-SiO2 glass microspheres were early shown to be effective for in situ radiotherapy of cancers. Recently, pure Y2O3 and YPO4 polycrystalline microspheres with high chemical durabilities were successfully prepared by high-frequency plasma method. They are expected to be more effective for the radiotherapy. Copyright (2000) The Australian Ceramic Society

  8. An overview of biomedical literature search on the World Wide Web in the third millennium.

    Science.gov (United States)

    Kumar, Prince; Goel, Roshni; Jain, Chandni; Kumar, Ashish; Parashar, Abhishek; Gond, Ajay Ratan

    2012-06-01

    Complete access to the existing pool of biomedical literature and the ability to "hit" upon the exact information of the relevant specialty are becoming essential elements of academic and clinical expertise. With the rapid expansion of the literature database, it is almost impossible to keep up to date with every innovation. Using the Internet, however, most people can freely access this literature at any time, from almost anywhere. This paper highlights the use of the Internet in obtaining valuable biomedical research information, which is mostly available from journals, databases, textbooks and e-journals in the form of web pages, text materials, images, and so on. The authors present an overview of web-based resources for biomedical researchers, providing information about Internet search engines (e.g., Google), web-based bibliographic databases (e.g., PubMed, IndMed) and how to use them, and other online biomedical resources that can assist clinicians in reaching well-informed clinical decisions. PMID:22692275

  9. Developing a competence-based core curriculum in biomedical laboratory science: a Delphi study.

    Science.gov (United States)

    Edgren, Gudrun

    2006-08-01

    In this study the Delphi technique has been used to develop a core curriculum for education of the biomedical scientist. The rapid development in biomedicine and the corresponding changes in methodology in biomedical laboratories demand careful planning of the education of biomedical scientists. The Delphi technique uses an anonymous panel of experts for suggestions and assessments aiming at consensus. Twenty-six experts from different kinds of hospital and university laboratories took part in the investigation. They suggested and assessed necessary competences for a recently graduated biomedical scientist, and if 75% or more of the participants agreed on a competence, it was included in the core curriculum. The final list consisted of 66 competences of varying depth, in three categories. This list contained several generic competences, concerning for example basic laboratory methods, handling of samples, dealing with apparatus and applying relevant rules and laws; basic knowledge in chemistry, preclinical medicine and laboratory methods; and finally attitudes that the panel expected in the recently graduated person. The core was sufficiently restricted to be used in a three-year programme and still leave space for about one year of electives/special study modules. It became rather traditional, e.g. it did not include competences that many recent reports consider important for the future professional. PMID:16973452

  10. Publication planning: promoting an ethics of transparency and integrity in biomedical research.

    Science.gov (United States)

    DeTora, L; Foster, C; Skobe, C; Yarker, Y E; Crawley, F P

    2015-09-01

    Biomedical research should include plans to communicate complete and accurate results to the scientific community and the public in a timely manner. All too often, however, such planning is lacking until after data have been generated. We developed a collaborative professional statement following review of the indexed biomedical literature and relevant professional society guidelines. Planning for publications before, during and after biomedical research studies are conducted promotes the timely dissemination of accurate and comprehensive results. Effective publication planning accounts for the work of all contributors, encourages full transparency and contributes to overall scientific integrity. Although the most obvious contribution of publication planning is to result dissemination, the best planning may also help improve the overall quality of research study design and the overall integrity of study conduct by keeping the final audience in the forefront of the investigators' attention. Publication planning can help biomedical researchers achieve and maintain high standards of transparency and integrity. Table 1 below highlights briefly some of the aspects to be included in a publication plan. PMID:26311328

  11. Blending Rigor and Relevance

    Science.gov (United States)

    Siri, Diane K.; Zinner, Jane; Lezin, Nicole

    2011-01-01

    A collaborative at several sites across the state of California will offer evidence of how successful linked learning, which connects academics to real-world work, can be. This article presents examples that illustrate the powerful connections and linkages that are generated by combining academic rigor with the relevance of applying learning to…

  12. Is Information Still Relevant?

    Science.gov (United States)

    Ma, Lia

    2013-01-01

    Introduction: The term "information" in information science does not share the characteristics of those of a nomenclature: it does not bear a generally accepted definition and it does not serve as the bases and assumptions for research studies. As the data deluge has arrived, is the concept of information still relevant for information…

  13. The Relevance of Literature.

    Science.gov (United States)

    Dunham, L. L.

    1971-01-01

    The "legacy" of the humanities is discussed in terms of relevance, involvement, and other philosophical considerations. Reasons for studying foreign literature in language classes are developed in the article. Comment is also made on attitudes and ideas culled from the writings of Clifton Fadiman, Jean Paul Sartre, and James Baldwin. (RL)

  14. Equilibrium Chemical Engines

    OpenAIRE

    Shibata, Tatsuo; Sasa, Shin-ichi

    1997-01-01

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  15. Using ChemBank to probe chemical biology.

    Science.gov (United States)

    Petri Seiler, Kathleen; Kuehn, Heidi; Pat Happ, Mary; Decaprio, Dave; Clemons, Paul A

    2008-06-01

    ChemBank (http://chembank.broad.harvard.edu/) is a public, Web-based informatics environment. ChemBank stores and makes freely available data derived from small molecules and small-molecule screens and has resources for relating and studying these data. Currently, ChemBank stores information on hundreds of thousands of small molecules and hundreds of biomedically relevant assays performed at the Broad Institute screening center. Web-based analysis tools are available within ChemBank to study the relationships between small molecules, cell measurements, and cell states. This unit demonstrates the use of ChemBank data to ask and answer questions relating to chemical biology and screening experiments contained within ChemBank. PMID:18551413

  16. Figure text extraction in biomedical literature.

    Directory of Open Access Journals (Sweden)

    Daehyun Kim

    Full Text Available BACKGROUND: Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. METHODOLOGY: We first evaluated an off-the-shelf Optical Character Recognition (OCR tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. RESULTS/CONCLUSIONS: The evaluation on 382 figures (9,643 figure texts in total randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36

  17. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  18. Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications

    OpenAIRE

    Chikarakara, Evans; Naher, Sumsun; Brabazon, Dermot

    2010-01-01

    Due to limited lifetime for biomedical implants, material engineers have strived to improve the surface properties of existing biomaterials. Widely used methods of surface modification include film deposition such as physical vapour deposition (PVD), chemical vapour deposition (CVD) and diamond like carbon coating (DLC). Internal stresses make it difficult to bond such coatings to the substrates thus weakening the structure and limiting the life of implants. Laser glazing can achieve an amorp...

  19. Studies on Human and Drosophila melanogaster Glutathione Transferases of Biomedical and Biotechnological Interest

    OpenAIRE

    Mazari, Aslam M.A.

    2016-01-01

    Glutathione transferases (GSTs, EC.2.5.1.18) are multifunctional enzymes that are universally distributed in all cellular life forms. They play important roles in metabolism and detoxication of endogenously produced toxic compounds and xenobiotics. GSTs have gained considerable interest over the years for biomedical and biotechnological applications due to their involvement in the conjugation of glutathione (GSH) to a vast array of chemical species. Additionally, the emergence of non-detoxify...

  20. Biomedical applications of hydrogels: a review of patents and commercial products

    OpenAIRE

    Caló, Enrica; Khutoryanskiy, Vitaliy V.

    2015-01-01

    Hydrogels have become very popular due to their unique properties such as high water content, softness, flexibility and biocompatibility. Natural and synthetic hydrophilic polymers can be physically or chemically cross-linked in order to produce hydrogels. Their resemblance to living tissue opens up many opportunities for applications in biomedical areas. Currently, hydrogels are used for manufacturing contact lenses, hygiene products, tissue engineering scaffolds, drug delivery systems and w...

  1. Consideration for solar system exploration - A system to Mars. [biomedical, environmental, and psychological factors

    Science.gov (United States)

    Nicogossian, Arnauld E.; Garshnek, Victoria

    1989-01-01

    Biomedical issues related to a manned mission to Mars are reviewed. Consideration is given to cardiovascular deconditioning, hematological and immunological changes, bone and muscle changes, nutritional issues, and the development of physiological countermeasures. Environmental issues are discussed, including radiation hazards, toxic chemical exposure, and the cabin environment. Also, human factors, performance and behavior, medical screening of the crew, disease prediction, and health maintenance are examined.

  2. State of the art, challenges and perspectives in the design of nitric oxide-releasing polymeric nanomaterials for biomedical applications.

    Science.gov (United States)

    Seabra, Amedea B; Justo, Giselle Z; Haddad, Paula S

    2015-11-01

    Recently, an increasing number of publications have demonstrated the importance of the small molecule nitric oxide (NO) in several physiological and pathophysiological processes. NO acts as a key modulator in cardiovascular, immunological, neurological, and respiratory systems, and deficiencies in the production of NO or its inactivation has been associated with several pathologic conditions, ranging from hypertension to sexual dysfunction. Although the clinical administration of NO is still a challenge owing to its transient chemical nature, the combination of NO and nanocarriers based on biocompatible polymeric scaffolds has emerged as an efficient approach to overcome the difficulties associated with the biomedical administration of NO. Indeed, significant progress has been achieved by designing NO-releasing polymeric nanomaterials able to promote the spatiotemporal generation of physiologically relevant amounts of NO in diverse pharmacological applications. In this review, we summarize the recent advances in the preparation of versatile NO-releasing nanocarriers based on polymeric nanoparticles, dendrimers and micelles. Despite the significant innovative progress achieved using nanomaterials to tailor NO release, certain drawbacks still need to be overcome to successfully translate these research innovations into clinical applications. In this regard, this review discusses the state of the art regarding the preparation of innovative NO-releasing polymeric nanomaterials, their impact in the biological field and the challenges that need to be overcome. We hope to inspire new research in this exciting area based on NO and nanotechnology. PMID:25636971

  3. A Semantic Web Management Model for Integrative Biomedical Informatics

    Science.gov (United States)

    Deus, Helena F.; Stanislaus, Romesh; Veiga, Diogo F.; Behrens, Carmen; Wistuba, Ignacio I.; Minna, John D.; Garner, Harold R.; Swisher, Stephen G.; Roth, Jack A.; Correa, Arlene M.; Broom, Bradley; Coombes, Kevin; Chang, Allen; Vogel, Lynn H.; Almeida, Jonas S.

    2008-01-01

    Background Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data. Methodology/Principal Findings The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MDAnderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management. Conclusions/Significance The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis. PMID:18698353

  4. Big data and biomedical informatics: a challenging opportunity.

    Science.gov (United States)

    Bellazzi, R

    2014-01-01

    Big data are receiving an increasing attention in biomedicine and healthcare. It is therefore important to understand the reason why big data are assuming a crucial role for the biomedical informatics community. The capability of handling big data is becoming an enabler to carry out unprecedented research studies and to implement new models of healthcare delivery. Therefore, it is first necessary to deeply understand the four elements that constitute big data, namely Volume, Variety, Velocity, and Veracity, and their meaning in practice. Then, it is mandatory to understand where big data are present, and where they can be beneficially collected. There are research fields, such as translational bioinformatics, which need to rely on big data technologies to withstand the shock wave of data that is generated every day. Other areas, ranging from epidemiology to clinical care, can benefit from the exploitation of the large amounts of data that are nowadays available, from personal monitoring to primary care. However, building big data-enabled systems carries on relevant implications in terms of reproducibility of research studies and management of privacy and data access; proper actions should be taken to deal with these issues. An interesting consequence of the big data scenario is the availability of new software, methods, and tools, such as map-reduce, cloud computing, and concept drift machine learning algorithms, which will not only contribute to big data research, but may be beneficial in many biomedical informatics applications. The way forward with the big data opportunity will require properly applied engineering principles to design studies and applications, to avoid preconceptions or over-enthusiasms, to fully exploit the available technologies, and to improve data processing and data management regulations. PMID:24853034

  5. A Semantic Web management model for integrative biomedical informatics.

    Directory of Open Access Journals (Sweden)

    Helena F Deus

    Full Text Available BACKGROUND: Data, data everywhere. The diversity and magnitude of the data generated in the Life Sciences defies automated articulation among complementary efforts. The additional need in this field for managing property and access permissions compounds the difficulty very significantly. This is particularly the case when the integration involves multiple domains and disciplines, even more so when it includes clinical and high throughput molecular data. METHODOLOGY/PRINCIPAL FINDINGS: The emergence of Semantic Web technologies brings the promise of meaningful interoperation between data and analysis resources. In this report we identify a core model for biomedical Knowledge Engineering applications and demonstrate how this new technology can be used to weave a management model where multiple intertwined data structures can be hosted and managed by multiple authorities in a distributed management infrastructure. Specifically, the demonstration is performed by linking data sources associated with the Lung Cancer SPORE awarded to The University of Texas MD Anderson Cancer Center at Houston and the Southwestern Medical Center at Dallas. A software prototype, available with open source at www.s3db.org, was developed and its proposed design has been made publicly available as an open source instrument for shared, distributed data management. CONCLUSIONS/SIGNIFICANCE: The Semantic Web technologies have the potential to addresses the need for distributed and evolvable representations that are critical for systems Biology and translational biomedical research. As this technology is incorporated into application development we can expect that both general purpose productivity software and domain specific software installed on our personal computers will become increasingly integrated with the relevant remote resources. In this scenario, the acquisition of a new dataset should automatically trigger the delegation of its analysis.

  6. On the crisis in biomedical education: is there an overproduction of biomedical PhDs?

    Science.gov (United States)

    Domer, J E; Garry, R F; Guth, P S; Walters, M R; Fisher, J W

    1996-08-01

    The United States is the world leader in biomedical science (BMS) education and research. This preeminence is reflected in superior medical education, the attraction of U.S. educational institutions to foreign visitors seeking advanced training, and a high rate of transfer of knowledge between basic biomedical research and the delivery of health care at the bedside. The foundation for this excellence and leadership has been the research carried out by MD and PhD biomedical scientists. It has been suggested that there is now an oversupply of BMS PhDs, and thus that BMS PhD programs should be downsized. Full examination of the issues involved, including a case study of doctoral graduates and postdoctoral fellows at Tulane Medical Center, leads the authors to conclude that a biomedical PhD "glut" does not exist at the present time, that downsizing training programs would have a serious, long-term negative impact on biomedical research, and that medical school administrators and faculty should resist attempts to reduce biomedical research and training at the local and national level. However, times have changed and training programs must evolve to adapt to the technologic changes occurring in the workplace. Alternatives, such as new alliances with industry, must be sought to compensate for decreased resources at federal and institutional levels; new and innovative curricula must be developed to prepare biomedical scientists for nonacademic, as well as academic, job opportunities in the twenty-first century; and medical center administrators and faculties must work together to increase the visibility of BMS and stress its critical relationship to the research base of the nation. PMID:9125964

  7. Multifunctional Nanofibers towards Active Biomedical Therapeutics

    Directory of Open Access Journals (Sweden)

    Jaishri Sharma

    2015-02-01

    Full Text Available One-dimensional (1-D nanostructures have attracted enormous research interest due to their unique physicochemical properties and wide application potential. These 1-D nanofibers are being increasingly applied to biomedical fields owing to their high surface area-to-volume ratio, high porosity, and the ease of tuning their structures, functionalities, and properties. Many biomedical nanofiber reviews have focused on tissue engineering and drug delivery applications but have very rarely discussed their use as wound dressings. However, nanofibers have enormous potential as wound dressings and other clinical applications that could have wide impacts on the treatment of wounds. Herein, the authors review the main fabrication methods of nanofibers as well as requirements, strategies, and recent applications of nanofibers, and provide perspectives of the challenges and opportunities that face multifunctional nanofibers for active therapeutic applications.

  8. Biomedical Applications of Nanodiamonds: An Overview.

    Science.gov (United States)

    Passeri, D; Rinaldi, F; Ingallina, C; Carafa, M; Rossi, M; Terranova, M L; Marianecci, C

    2015-02-01

    Nanodiamonds are a novel class of nanomaterials which have raised much attention for application in biomedical field, as they combine the possibility of being produced on large scale using relatively inexpensive synthetic processes, of being fluorescent as a consequence of the presence of nitrogen vacancies, of having their surfaces functionalized, and of having good biocompatibility. Among other applications, we mainly focus on drug delivery, including cell interaction, targeting, cancer therapy, gene and protein delivery. In addition, nanodiamonds for bone and dental implants and for antibacterial use is discussed. Techniques for detection and imaging of nanodiamonds in biological tissues are also reviewed, including electron microscopy, fluorescence microscopy, Raman mapping, atomic force microscopy, thermal imaging, magnetic resonance imaging, and positron emission tomography, either in vitro, in vivo, or ex vivo. Toxicological aspects related to the use of nanodiamonds are also discussed. Finally, patents, preclinical and clinical trials based on the use of nanodiamonds for biomedical applications are reviewed. PMID:26353603

  9. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  10. Clinical Relevance of Adipokines

    Directory of Open Access Journals (Sweden)

    Matthias Blüher

    2012-10-01

    Full Text Available The incidence of obesity has increased dramatically during recent decades. Obesity increases the risk for metabolic and cardiovascular diseases and may therefore contribute to premature death. With increasing fat mass, secretion of adipose tissue derived bioactive molecules (adipokines changes towards a pro-inflammatory, diabetogenic and atherogenic pattern. Adipokines are involved in the regulation of appetite and satiety, energy expenditure, activity, endothelial function, hemostasis, blood pressure, insulin sensitivity, energy metabolism in insulin sensitive tissues, adipogenesis, fat distribution and insulin secretion in pancreatic β-cells. Therefore, adipokines are clinically relevant as biomarkers for fat distribution, adipose tissue function, liver fat content, insulin sensitivity, chronic inflammation and have the potential for future pharmacological treatment strategies for obesity and its related diseases. This review focuses on the clinical relevance of selected adipokines as markers or predictors of obesity related diseases and as potential therapeutic tools or targets in metabolic and cardiovascular diseases.

  11. Translation and relevance

    OpenAIRE

    Gutt, E. A.

    1989-01-01

    In this study I argue that the phenomenon commonly referred to as "translation" can be accounted for naturally within the relevance theory of communication developed by Sperber and Wilson: there is no need for a distinct general theory of translation. Most kinds of translation can be analysed as varieties of Interpretive use. I distinguish direct from indirect translation, where direct translation corresponds to the idea that translation should convey the same meaning ...

  12. MIND AND RELEVANCE

    OpenAIRE

    MIGUEL ÁNGEL PÉREZ JIMÉNEZ

    2006-01-01

    The paper is an introduction to some problems of the contemporary Philosophy of Mind. The thesis isthat a conceptual study of the psychological expressions in ordinary language could be relevant in ourscientific-oriented times. The scientific point of view in psychology could lead us to forget the value ofunderstanding the mental for every person in his or her daily life, beside the scientific explanations that atheorist could provide. The first part of the paper is an exposition of some epis...

  13. Perspectives on Social Relevance

    OpenAIRE

    Jayasundra-Smits, Shyamika

    2014-01-01

    markdownabstract__Abstract__ During the recently held expert meeting entitled “Social impact @ sciences: Why does Science matter?” organised by the International Institute of Social Studies of Erasmus University Rotterdam, an invited group of participants from academia, NGOs, ministries and the media shared their experiences, their perspectives and their concerns on a number of topics on the theme of social impact and the societal relevance of social science research. The meeting was conducte...

  14. Services for annotation of biomedical text

    OpenAIRE

    Hakenberg, Jörg

    2008-01-01

    Motivation: Text mining in the biomedical domain in recent years has focused on the development of tools for recognizing named entities and extracting relations. Such research resulted from the need for such tools as basic components for more advanced solutions. Named entity recognition, entity mention normalization, and relationship extraction now have reached a stage where they perform comparably to human annotators (considering inter--annotator agreement, measured in many studies to be aro...

  15. Biomedical Device Technology Principles and Design

    CERN Document Server

    Chan, Anthony Y K

    2008-01-01

    For many years, the tools available to physicians were limited to a few simple handpieces such as stethoscopes, thermometers and syringes; medical professionals primarily relied on their senses and skills to perform diagnosis and disease mitigation. Today, diagnosis of medical problems is heavily dependent on the analysis of information made available by sophisticated medical machineries such as electrocardiographs, ultrasound scanners and laboratory analyzers. Patient treatments often involve specialized equipment such as cardiac pacemakers and electrosurgical units. Such biomedical instrumen

  16. Biomedical Informatics Doctoral Programme and Lifelong Education

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana; Dostálová, T.; Zvára Jr., Karel; Heroutová, Helena

    Amsterdam: IOS Press, 2010 - (Safran, C.; Reti, S.; Marin, S.). s. 1426-1426 ISBN 978-1-60750-587-7. [MEDINFO 2010. World Congress on Medical and Health Informatics /13./. 13.09.2010-16.09.2010, Cape Town] R&D Projects: GA MŠk(CZ) 1M06014 Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * education * e-learning * communication * information technologies Subject RIV: IN - Informatics, Computer Science

  17. The Need for Veterinarians in Biomedical Research

    OpenAIRE

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J. A.; Oglesbee, Michael J.; Rush, Laura J; Mathes, Lawrence E.; Lairmore, Michael D

    2009-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedica...

  18. Magnetic Fluids: Biomedical Applications and Magnetic Fractionation

    OpenAIRE

    Rheinländer, Thomas; Kötitz, Róman; Weitschies, Werner; Semmler, Wolfhard

    2000-01-01

    In addition to engineering applications, magnetic fluids containing magnetic nanoparticles are being increasingly applied to biomedical purposes. Besides the well established use of magnetic particles for biological separation or as contrast agents for magnetic resonance imaging, magnetic particles are also being tested for the inductive heat treatment of tumors or as markers for the quantification of biologically active substances. The properties of magnetic nanoparticles usually exhibit a b...

  19. Organic Bioelectronic Tools for Biomedical Applications

    OpenAIRE

    Susanne Löffler; Ben Libberton; Agneta Richter-Dahlfors

    2015-01-01

    Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review ...

  20. Diversifying Biomedical Training: A Synergistic Intervention

    OpenAIRE

    Gibau, Gina Sanchez; Foertsch, Julie; Blum, Janice; Brutkiewicz, Randy; Queener, Sherry; Roman, Ann; Rhodes, Simon; Sturek, Michael; Wilkes, David; Broxmeyer, Hal

    2010-01-01

    For over three decades, the scientific community has expressed concern over the paucity of African American, Latino and Native American researchers in the biomedical training pipeline. Concern has been expressed regarding what is forecasted as a shortage of these underrepresented minority (URM) scientists given the demographic shifts occurring worldwide and particularly in the United States. Increased access to graduate education has made a positive contribution in addressing this disparity. ...

  1. Advances in Swine Biomedical Model Genomics

    OpenAIRE

    Lunney, Joan K.

    2007-01-01

    This review is a short update on the diversity of swine biomedical models and the importance of genomics in their continued development. The swine has been used as a major mammalian model for human studies because of the similarity in size and physiology, and in organ development and disease progression. The pig model allows for deliberately timed studies, imaging of internal vessels and organs using standard human technologies, and collection of repeated peripheral samples and, at kill, deta...

  2. Biomedical application of the nuclear microprobe

    International Nuclear Information System (INIS)

    The Studsvik Nuclear Microprobe (SMP) has mainly been devoted to applications in the biomedical field. Its ultimate resolution is reached at 2.9x2.9 μm2 with a proton current of 100 pA. With this performance the SMP has been used in a wide range of disciplines covering environmental hygiene, toxicology, various aspects of internal medicine and trace element physiology. Examples of recent applications in these fields are described. (orig.)

  3. Trends in modeling Biomedical Complex Systems

    OpenAIRE

    Remondini Daniel; Castellani Gastone; Romano Paolo; Milanesi Luciano; Liò Petro

    2009-01-01

    Abstract In this paper we provide an introduction to the techniques for multi-scale complex biological systems, from the single bio-molecule to the cell, combining theoretical modeling, experiments, informatics tools and technologies suitable for biological and biomedical research, which are becoming increasingly multidisciplinary, multidimensional and information-driven. The most important concepts on mathematical modeling methodologies and statistical inference, bioinformatics and standards...

  4. Interoperability driven integration of biomedical data sources

    OpenAIRE

    Teodoro, Douglas Henrique; Choquet, Rémy; Schober, Daniel; Mels, Giovanni; Pasche, Emilie; Ruch, Patrick; Lovis, Christian

    2011-01-01

    In this paper, we introduce a data integration methodology that promotes technical, syntactic and semantic interoperability for operational healthcare data sources. ETL processes provide access to different operational databases at the technical level. Furthermore, data instances have they syntax aligned according to biomedical terminologies using natural language processing. Finally, semantic web technologies are used to ensure common meaning and to provide ubiquitous access to the data. The...

  5. Multijet atmospheric plasma device for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Churpita, Olexandr; Hubička, Zdeněk; Jastrabík, Lubomír; Dejneka, Alexandr

    2011-01-01

    Roč. 1, č. 2 (2011), s. 135-141. ISSN 1947-5764 R&D Projects: GA ČR GC202/09/J017; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : atmospheric plasma * plasma sources * biomedical applications Subject RIV: BL - Plasma and Gas Discharge Physics

  6. Integrated nanobiosensor technology for biomedical application

    OpenAIRE

    Choi, Chulhee

    2012-01-01

    Chulhee Choi1,21Department of Bio and Brain Engineering, 2Graduate School of Medical Science and Engineering, 3KI for the BioCentury 4Optical Bioimaging Center, KAIST, Daejeon, Republic of KoreaAbstract: Advances in nanotechnology have led to the development of nanoscale biosensors that have exquisite sensitivity and versatility. The biomedical application of nanobiosensors is wide; moreover, the future impact of nanobiosensor systems for point-of-care diagnostics will be unmatched. The ultim...

  7. Median topographic maps for biomedical data sets

    CERN Document Server

    Hammer, Barbara; Rossi, Fabrice; 10.1007/978-3-642-01805-3_6

    2009-01-01

    Median clustering extends popular neural data analysis methods such as the self-organizing map or neural gas to general data structures given by a dissimilarity matrix only. This offers flexible and robust global data inspection methods which are particularly suited for a variety of data as occurs in biomedical domains. In this chapter, we give an overview about median clustering and its properties and extensions, with a particular focus on efficient implementations adapted to large scale data analysis.

  8. University of Vermont Center for Biomedical Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, Dr. Ira [University of Vermont and State Agricultural College

    2013-08-02

    This grant was awarded in support of Phase 2 of the University of Vermont Center for Biomedical Imaging. Phase 2 outlined several specific aims including: The development of expertise in MRI and fMRI imaging and their applications The acquisition of peer reviewed extramural funding in support of the Center The development of a Core Imaging Advisory Board, fee structure and protocol review and approval process.

  9. Biomedical research in a Digital Health Framework

    OpenAIRE

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep; ,

    2014-01-01

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements - data and tools - of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the suppor...

  10. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  11. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    Brno: Masaryk University, 2007 - (Horová, I.; Hřebíček, J.). s. 126-126 ISBN 978-80-210-4333-6. [TIES 2007. Annual Meeting of the International Environmental Society /18./. 16.08.2007-20.08.2007, Mikulov] R&D Projects: GA AV ČR 1ET200300413 Institutional research plan: CEZ:AV0Z10300504 Keywords : statistics * biomedical informatics * genetics * forensic science Subject RIV: IN - Informatics, Computer Science

  12. Amphiphilic Fullerenes for Biomedical and Optoelectronical Applications

    OpenAIRE

    Witte, Patrick

    2009-01-01

    Fullerenes have an enormous potential in applications to physics and biology. Specifically [60]fullerene with its unique electronic, optical and structural properties has attracted considerable attention for its application in biomedical materials and optoelectronic devices. In this context the selective functionalization of C60, which allows to combine the parent properties with new attributes like water-solubility or amphiphilicity is still a challenging topic for the synthetic chemist. In ...

  13. Nanoliter-droplet thermophoresis for biomedical applications

    OpenAIRE

    Seidel, Susanne

    2014-01-01

    Specific interactions of biomolecules are central to cellular processes, drug discovery and immunodiagnostics. Such biological binding events are quantifiable via thermophoresis, the directed molecule movement driven by a temperature gradient. Biomolecule thermophoresis can be induced by infrared laser heating and analyzed using fluorescence. The objective of this thesis was to enhance and optimize these all-optical measurements, regarding instrumentation, assay design and biomedical applicat...

  14. Zinc dependent nucleases with biomedical potential

    Czech Academy of Sciences Publication Activity Database

    Koval, Tomáš; Stránský, Jan; Lipovová, P.; Podzimek, T.; Matoušek, Jaroslav; Dušková, Jarmila; Skálová, Tereza; Hašek, Jindřich; Fejfarová, Karla; Kolenko, Petr; Dohnálek, Jan

    Prague: Institute of Macromolecular Chemistry AS CR, 2015. s. 9. [ Research Postdoctoral Colloquium. 14.05.2015, Prague] R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109; GA MŠk LG14009 Institutional support: RVO:61389013 ; RVO:86652036 ; RVO:60077344 Keywords : biomedical applications * nuclease Subject RIV: CE - Biochemistry

  15. Functional modification of chitosan for biomedical application

    Science.gov (United States)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  16. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-01-01

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th. PMID:21388570

  17. Genetically engineered livestock for biomedical models.

    Science.gov (United States)

    Rogers, Christopher S

    2016-06-01

    To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome. PMID:26820410

  18. Inorganic nanolayers: structure, preparation, and biomedical applications

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  19. Comparing the performance of biomedical clustering methods.

    Science.gov (United States)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-11-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene expression to protein domains. Performance was judged on the basis of 13 common cluster validity indices. We developed a clustering analysis platform, ClustEval (http://clusteval.mpi-inf.mpg.de), to promote streamlined evaluation, comparison and reproducibility of clustering results in the future. This allowed us to objectively evaluate the performance of all tools on all data sets with up to 1,000 different parameter sets each, resulting in a total of more than 4 million calculated cluster validity indices. We observed that there was no universal best performer, but on the basis of this wide-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art. PMID:26389570

  20. Biomedical research in a Digital Health Framework.

    Science.gov (United States)

    Cano, Isaac; Lluch-Ariet, Magí; Gomez-Cabrero, David; Maier, Dieter; Kalko, Susana; Cascante, Marta; Tegnér, Jesper; Miralles, Felip; Herrera, Diego; Roca, Josep

    2014-11-28

    This article describes a Digital Health Framework (DHF), benefitting from the lessons learnt during the three-year life span of the FP7 Synergy-COPD project. The DHF aims to embrace the emerging requirements--data and tools--of applying systems medicine into healthcare with a three-tier strategy articulating formal healthcare, informal care and biomedical research. Accordingly, it has been constructed based on three key building blocks, namely, novel integrated care services with the support of information and communication technologies, a personal health folder (PHF) and a biomedical research environment (DHF-research). Details on the functional requirements and necessary components of the DHF-research are extensively presented. Finally, the specifics of the building blocks strategy for deployment of the DHF, as well as the steps toward adoption are analyzed. The proposed architectural solutions and implementation steps constitute a pivotal strategy to foster and enable 4P medicine (Predictive, Preventive, Personalized and Participatory) in practice and should provide a head start to any community and institution currently considering to implement a biomedical research platform. PMID:25472554

  1. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles.

    Science.gov (United States)

    Jones, David E; Ghandehari, Hamidreza; Facelli, Julio C

    2016-08-01

    This article presents a comprehensive review of applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles of medical interest. The papers reviewed here present the results of research using these techniques to predict the biological fate and properties of a variety of nanoparticles relevant to their biomedical applications. These include the influence of particle physicochemical properties on cellular uptake, cytotoxicity, molecular loading, and molecular release in addition to manufacturing properties like nanoparticle size, and polydispersity. Overall, the results are encouraging and suggest that as more systematic data from nanoparticles becomes available, machine learning and data mining would become a powerful aid in the design of nanoparticles for biomedical applications. There is however the challenge of great heterogeneity in nanoparticles, which will make these discoveries more challenging than for traditional small molecule drug design. PMID:27282231

  2. The role of biomedical knowledge in echocardiographic interpretation expertise development: a correlation study

    DEFF Research Database (Denmark)

    Nielsen, Dorte Guldbrand; Gøtzsche, Ole; Eika, Berit

    2010-01-01

    professional practice than previously assumed. This study investigates the role of biomedical knowledge represented by physiology knowledge in the development of echocardiographic expertise. Methods: Forty-five physicians (15 novices, 15 intermediates and 15 experts) were evaluated on echocardiography......Purpose: Little is known about factors of relevance for achieving knowledge of echocardiography (TTE); one of the essential skills defined by the European Society of Cardiology Core Curriculum. Recent research in other fields suggests that biomedical knowledge plays a more prominent role in...... interpretation skills. An anatomical focused checklist was developed based on Danish Cardiology Society guidelines for a standard echocardiography of adults. A TTE case of a common and complex clinical presentation was recorded and presented to participants on a portable computer using EchoPac software...

  3. Recent Development in Optical Chemical Sensors Coupling with Flow Injection Analysis

    Directory of Open Access Journals (Sweden)

    Fuensanta Sánchez Rojas

    2006-10-01

    Full Text Available Optical techniques for chemical analysis are well established and sensors based on thesetechniques are now attracting considerable attention because of their importance in applications suchas environmental monitoring, biomedical sensing, and industrial process control. On the other hand,flow injection analysis (FIA is advisable for the rapid analysis of microliter volume samples and canbe interfaced directly to the chemical process. The FIA has become a widespread automatic analyticalmethod for more reasons; mainly due to the simplicity and low cost of the setups, their versatility, andease of assembling. In this paper, an overview of flow injection determinations by using opticalchemical sensors is provided, and instrumentation, sensor design, and applications are discussed. Thiswork summarizes the most relevant manuscripts from 1980 to date referred to analysis using opticalchemical sensors in FIA.

  4. An inventory of biomedical imaging physics elements-of-competence for diagnostic radiography education in Europe

    International Nuclear Information System (INIS)

    Purpose: To develop an inventory of biomedical physics elements-of-competence for diagnostic radiography education in Europe. Method: Research articles in the English literature and UK documentation pertinent to radiography education, competences and role development were subjected to a rigorous analysis of content from a functional and competence analysis perspective. Translations of radiography curricula from across Europe and relevant EU legislation were likewise analysed to ensure a pan-European perspective. Broad Subject Specific Competences for diagnostic radiography that included major biomedical physics components were singled out. These competences were in turn carefully deconstructed into specific elements-of-competence and those elements falling within the biomedical physics learning domain inventorised. A pilot version of the inventory was evaluated by participants during a meeting of the Higher Education Network for Radiography in Europe (HENRE), held in Marsascala, Malta, in November 2004. The inventory was further refined taking into consideration suggestions by HENRE members and scientific, professional and educational developments. Findings: The evaluation of the pilot inventory was very positive and indicated that the overall structure of the inventory was sensible, easily understood and acceptable - hence a good foundation for further development. Conclusions: Use of the inventory by radiography programme leaders and biomedical physics educators would guarantee that all necessary physics elements-of-competence underpinning the safe, effective and economical use of imaging devices are included within radiography curricula. It will also ensure the relevancy of physics content within radiography education. The inventory is designed to be a pragmatic tool for curriculum development across the entire range of radiography education up to doctorate level and irrespective of whether curriculum delivery is discipline-based or integrated, presentation

  5. Biomedical applications of gas chromatography-mass spectrometry

    International Nuclear Information System (INIS)

    Gas chromatography coupled with mass-spectrometry (GC/MS) is a modern technique, which has very important applications in the biomedical area. A large number of qualitative and quantitative determinations of drugs, amino acids, vitamins, lipids, aroma compounds, important nutrients, herb extracts were developed. The extraction procedure is the first important step in the analytical work. The internal standard is usually added at the very begin ing of the quantitative work. The best one is the stable isotopic labeled compound, usually the analogue of the compound of interest. Stable isotopic internal standard or compounds from the same chemical class having boiling point close to that of the compound of interest were used. Quantitation needs very well selected standards and method validation. Some validated methods for the determination of drugs and some active principles in biological media are presented. Several preconcentration extraction procedures were used. The quantitative determinations by detection (GC-MS) were performed. Good validation parameters were obtained: precision, accuracy, linearity in the range of interest, good limit of detection and quantitation, selectivity and specificity. Chromatography was performed on a 5% phenyl methyl polysiloxane column (15 or 30 m x 0.25 mm I.D., 0.25 μm film thickness) operated in suitable temperature programs. Helium carrier gas flow was 1ml/min. Ionization was performed by electron impact and detection in scan or selected ion monitoring (SIM) modes. The methods provided high response linearity (mean r = 0.99), precision and accuracy (< 10% C.V.). Applications of the quantitative methods in biomedical area are described. (author)

  6. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  7. Vanishing tattoo multi-sensor for biomedical diagnostics

    Science.gov (United States)

    Moczko, E.; Meglinski, I.; Piletsky, S.

    2008-04-01

    Currently, precise non-invasive diagnostics systems for the real-time multi detection and monitoring of physiological parameters and chemical analytes in the human body are urgently required by clinicians, physiologists and bio-medical researchers. We have developed a novel cost effective smart 'vanishing tattoo' (similar to temporary child's tattoos) consisting of environmental-sensitive dyes. Painlessly impregnated into the skin the smart tattoo is capable of generating optical/fluorescence changes (absorbance, transmission, reflectance, emission and/or luminescence within UV, VIS or NIR regions) in response to physical or chemical changes. These changes allow the identification of colour pattern changes similar to bar-code scanning. Such a system allows an easy, cheap and robust comprehensive detection of various parameters and analytes in a small volume of sample (e.g. variations in pH, temperature, ionic strength, solvent polarity, presence of redox species, surfactants, oxygen). These smart tattoos have possible applications in monitoring the progress of disease and transcutaneous drug delivery. The potential of this highly innovative diagnostic tool is wide and diverse and can impact on routine clinical diagnostics, general therapeutic management, skin care and cosmetic products testing as well as fundamental physiological investigations.

  8. Fe/Au Core-Shell Nanoparticles for Biomedical Applications

    Science.gov (United States)

    Sra, Amandeep; Leslie-Pelecky, Diandra

    2009-10-01

    The physical properties of nanoparticles, including size, composition and surface chemistry, greatly influence biological and pharmacological properties and, ultimately, their clinical applications. Superparamagnetic iron oxide nanoparticles are widely used for applications such as MRI contrast agents, drug delivery via magnetic targeting and hyperthermia due to their chemical stability and biocompatibility; however, enhancing the saturation magnetization (Ms) of nanoparticles would produce greater sensitivity. Our design strategy involves a bottom-up wet chemistry approach to the synthesis of Fe nanoparticles. Specific advantages of Fe are the high value of Ms (210 emu/g in bulk) coupled with low toxicity; however, Fe nanoparticles must be protected from oxidation, which causes a dramatic reduction in Ms. To circumvent oxidation, Fe nanoparticles are coated with a Au shell that prevents the oxidation of the magnetic core and also provides the nanoparticles with plasmonic properties for optical stimulation. Ligands of various functionalities can be introduced through the well established Au-thiol surface chemistry for different biomedical applications while maintaining the magnetic functionality of the Fe core. In this presentation, we will discuss the physical, chemical and magnetic properties of our Fe/Au nanoparticles and their resistance to oxidation.

  9. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  10. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    Science.gov (United States)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  11. New roles & responsibilities of hospital biomedical engineering.

    Science.gov (United States)

    Frisch, P H; Stone, B; Booth, P; Lui, W

    2014-01-01

    Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments. PMID:25570742

  12. MIND AND RELEVANCE

    Directory of Open Access Journals (Sweden)

    MIGUEL ÁNGEL PÉREZ JIMÉNEZ

    2006-05-01

    Full Text Available The paper is an introduction to some problems of the contemporary Philosophy of Mind. The thesis isthat a conceptual study of the psychological expressions in ordinary language could be relevant in ourscientific-oriented times. The scientific point of view in psychology could lead us to forget the value ofunderstanding the mental for every person in his or her daily life, beside the scientific explanations that atheorist could provide. The first part of the paper is an exposition of some epistemological and ontologicaldebates in the Philosophy of Psychology in which we offer many quotations and references to introducethe reader directly, by him or herself, into the study of the issues. The second part exposes an interpretationof Wittgenstein’s philosophy of mind. In the third part, we raise the question about the value of theWittgenstein’s ideas in the context of theoretical psychology debates.

  13. Biomedical Image Analysis by Program "Vision Assistant" and "Labview"

    Directory of Open Access Journals (Sweden)

    Peter Izak

    2005-01-01

    Full Text Available This paper introduces application in image analysis of biomedical images. General task is focused on analysis and diagnosis biomedical images obtained from program ImageJ. There are described methods which can be used for images in biomedical application. The main idea is based on particle analysis, pattern matching techniques. For this task was chosensophistication method by program Vision Assistant, which is a part of program LabVIEW.

  14. A price index for biomedical research and development.

    OpenAIRE

    Holloway, T M; Reeb, J S

    1989-01-01

    Price changes of goods and services used in biomedical research and development have important effects on the costs of conducting research. We summarize the trends suggested by a recently constructed biomedical research and development price index, which measures the effects of price changes on the inputs to biomedical research from 1979 to 1986. The fixed-weighted index uses fiscal year 1984 National Institutes of Health expenditure patterns in developing the weights. The rate of increase sh...

  15. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    OpenAIRE

    Wilson, Alphus D.; Manuela Baietto

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and futu...

  16. Applying environmental product design to biomedical products research.

    OpenAIRE

    Messelbeck, J; Sutherland, L

    2000-01-01

    The principal themes for the Biomedical Research and the Environment Conference Committee on Environmental Economics in Biomedical Research include the following: healthcare delivery companies and biomedical research organizations, both nonprofit and for-profit, need to improve their environmental performance; suppliers of healthcare products will be called upon to support this need; and improving the environmental profile of healthcare products begins in research and development (R&D). The c...

  17. Enhancing Biomedical Text Summarization Using Semantic Relation Extraction

    OpenAIRE

    Yue Shang; Yanpeng Li; Hongfei Lin; Zhihao Yang

    2011-01-01

    Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) W...

  18. Quality assurance of biomedical equipment repair process on technical condition

    OpenAIRE

    Кучеренко, Валентина Леонідівна

    2014-01-01

    Construction of a system of biomedical equipment repair on the actual technical condition is considered, and results of research in this area are given in the paper. The purpose of the research is to analyze the ways of quality assurance of biomedical equipment repair process in transition to the operation on the actual technical condition. Using the methods and means for the repair process stages automation allows to estimate actual technical condition of biomedical equipment. The analysis o...

  19. 5th International Conference on Biomedical Engineering in Vietnam

    CERN Document Server

    Phuong, Tran

    2015-01-01

    This volume presents the proceedings of the Fifth International Conference on the Development of Biomedical Engineering in Vietnam which was held from June 16-18, 2014 in Ho Chi Minh City. The volume reflects the progress of Biomedical Engineering and discusses problems and solutions. I aims identifying new challenges, and shaping future directions for research in biomedical engineering fields including medical instrumentation, bioinformatics, biomechanics, medical imaging, drug delivery therapy, regenerative medicine and entrepreneurship in medical devices.

  20. Trends in biomedical informatics: most cited topics from recent years

    OpenAIRE

    Kim, Hyeon-eui; Jiang, Xiaoqian; Kim, Jihoon; Ohno-Machado, Lucila

    2011-01-01

    Biomedical informatics is a young, highly interdisciplinary field that is evolving quickly. It is important to know which published topics in generalist biomedical informatics journals elicit the most interest from the scientific community, and whether this interest changes over time, so that journals can better serve their readers. It is also important to understand whether free access to biomedical informatics articles impacts their citation rates in a significant way, so authors can make i...

  1. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Van Kampen, C. L.; Babbush, C. A.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic prosthesis fixation, and dental implants.

  2. Polyaspartate coated magnetite nanoparticles for biomedical applications

    International Nuclear Information System (INIS)

    The use of magnetic nanoparticles (MNP) in biomedical applications is subject to specific conditions. Special demands such as non-toxic core material and a biocompatible shell are prerequisites. These are fulfilled with magnetite cores and amino acid shell material, which provide different functional groups for coupling biomolecules as presented here. In this study the biocompatibility was tested by using breast cancer cell lines and leukocytes from peripheral blood. Functionalization with antibodies and the binding experiments detected by magneto-optical relaxation measurements confirm the bonding capacity and demonstrate the application of the presented MNP in magnetic immunoassays or magnetic drug targeting

  3. Introduction to Statistics for Biomedical Engineers

    CERN Document Server

    Ropella, Kristina

    2007-01-01

    There are many books written about statistics, some brief, some detailed, some humorous, some colorful, and some quite dry. Each of these texts is designed for a specific audience. Too often, texts about statistics have been rather theoretical and intimidating for those not practicing statistical analysis on a routine basis. Thus, many engineers and scientists, who need to use statistics much more frequently than calculus or differential equations, lack sufficient knowledge of the use of statistics. The audience that is addressed in this text is the university-level biomedical engineering stud

  4. Intermediate Probability Theory for Biomedical Engineers

    CERN Document Server

    Enderle, John

    2006-01-01

    This is the second in a series of three short books on probability theory and random processes for biomedical engineers. This volume focuses on expectation, standard deviation, moments, and the characteristic function. In addition, conditional expectation, conditional moments and the conditional characteristic function are also discussed. Jointly distributed random variables are described, along with joint expectation, joint moments, and the joint characteristic function. Convolution is also developed. A considerable effort has been made to develop the theory in a logical manner--developing sp

  5. CMT for biomedical and other applications

    International Nuclear Information System (INIS)

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample

  6. Batteries used to power implantable biomedical devices

    International Nuclear Information System (INIS)

    Battery systems have been developed that provide years of service for implantable medical devices. The primary systems utilize lithium metal anodes with cathode systems including iodine, manganese oxide, carbon monofluoride, silver vanadium oxide and hybrid cathodes. Secondary lithium ion batteries have also been developed for medical applications where the batteries are charged while remaining implanted. While the specific performance requirements of the devices vary, some general requirements are common. These include high safety, reliability and volumetric energy density, long service life, and state of discharge indication. Successful development and implementation of these battery types has helped enable implanted biomedical devices and their treatment of human disease.

  7. Potential biomedical applications of ion beam technology

    Science.gov (United States)

    Banks, B. A.; Weigand, A. J.; Babbush, C. A.; Vankampen, C. L.

    1976-01-01

    Electron bombardment ion thrusters used as ion sources have demonstrated a unique capability to vary the surface morphology of surgical implant materials. The microscopically rough surface texture produced by ion beam sputtering of these materials may result in improvements in the biological response and/or performance of implanted devices. Control of surface roughness may result in improved attachment of the implant to soft tissue, hard tissue, bone cement, or components deposited from blood. Potential biomedical applications of ion beam texturing discussed include: vascular prostheses, artificial heart pump diaphragms, pacemaker fixation, percutaneous connectors, orthopedic pros-thesis fixtion, and dental implants.

  8. All India Seminar on Biomedical Engineering 2012

    CERN Document Server

    Bhatele, Mukta

    2013-01-01

    This book is a collection of articles presented by researchers and practitioners, including engineers, biologists, health professionals and informatics/computer scientists, interested in both theoretical advances and applications of information systems, artificial intelligence, signal processing, electronics and other engineering tools in areas related to biology and medicine in the All India Seminar on Biomedical Engineering 2012 (AISOBE 2012), organized by The Institution of Engineers (India), Jabalpur Local Centre, Jabalpur, India during November 3-4, 2012. The content of the book is useful to doctors, engineers, researchers and academicians as well as industry professionals.

  9. Quality assurance in biomedical neutron activation analysis

    International Nuclear Information System (INIS)

    The summary report represents an attempt to identify some of the possible sources of error in in vitro neutron activation analysis of trace elements applied to specimens of biomedical origin and to advise on practical means to avoid them. The report is intended as guidance for all involved in analysis, including sample collection and preparation for analysis. All these recommendations constitute part of quality assurance which is here taken to encompass the two concepts - quality control and quality assessment. Quality control is the mechanism established to control errors, while quality assessment is the mechanism used to verify that the analytical procedure is operating within acceptable limits

  10. Single-domain antibodies for biomedical applications.

    Science.gov (United States)

    Krah, Simon; Schröter, Christian; Zielonka, Stefan; Empting, Martin; Valldorf, Bernhard; Kolmar, Harald

    2016-02-01

    Single-domain antibodies are the smallest antigen-binding units of antibodies, consisting either only of one variable domain or one engineered constant domain that solely facilitates target binding. This class of antibody derivatives comprises naturally occurring variable domains derived from camelids and sharks as well as engineered human variable or constant antibody domains of the heavy or light chain. Because of their high affinity and specificity as well as stability, small size and benefit of multiple re-formatting opportunities, those molecules emerged as promising candidates for biomedical applications and some of these entities have already proven to be successful in clinical development. PMID:26551147

  11. Biomedical Technology Assessment The 3Q Method

    CERN Document Server

    Weinfurt, Phillip

    2010-01-01

    Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) an

  12. Biomedical Imaging and Sensing using Flatbed Scanners

    OpenAIRE

    Göröcs, Zoltán; Ozcan, Aydogan

    2014-01-01

    In this Review, we provide an overview of flatbed scanner based biomedical imaging and sensing techniques. The extremely large imaging field-of-view (e.g., ~600–700 cm2) of these devices coupled with their cost-effectiveness provide unique opportunities for digital imaging of samples that are too large for regular optical microscopes, and for collection of large amounts of statistical data in various automated imaging or sensing tasks. Here we give a short introduction to the basic features o...

  13. CMT for biomedical and other applications

    Energy Technology Data Exchange (ETDEWEB)

    Spanne, P. [ESRF, Grenoble (France)

    1997-02-01

    This session includes two presentations describing applications for x-ray tomography using synchrotron radiation for biomedical uses and fluid flow modeling, and outlines advantages for using monoenergetic x-rays. Contrast mechanisms are briefly described and several graphs of absorbed doses and scattering of x-rays are included. Also presented are schematic diagrams of computerized tomographic instrumentation with camera head. A brief description of goals for a real time tomographic system and expected improvements to the system are described. Color photomicrographs of the Berea Sandstone and human bone are provided, as well as a 3-D microtomographic reconstruction of a human vertebra sample.

  14. Two-photon probes for biomedical applications

    Directory of Open Access Journals (Sweden)

    Chang Su Lim

    2013-04-01

    Full Text Available Two-photon microscopy (TPM, which uses two photons oflower energy as the excitation source, is a vital tool in biologyand clinical science, due to its capacity to image deep insideintact tissues for a long period of time. To make TPM a moreversatile tool in biomedical research, we have developed avariety of two-photon probes for specific applications. In thismini review, we will briefly discuss two-photon probes forlipid rafts, lysosomes, mitochondria, and pH, and theirbiomedical applications. [BMB Reports 2013; 46(4: 188-194

  15. Production and Biomedical Applications of Probiotic Biosurfactants.

    Science.gov (United States)

    Fariq, Anila; Saeed, Ayesha

    2016-04-01

    Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants. PMID:26742771

  16. MODELING MICROBUBBLE DYNAMICS IN BIOMEDICAL APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    CHAHINE Georges L.; HSIAO Chao-Tsung

    2012-01-01

    Controlling mierobubble dynamics to produce desirable biomedical outcomes when and where necessary and avoid deleterious effects requires advanced knowledge,which can be achieved only through a combination of experimental and numerical/analytical techniques.The present communication presents a multi-physics approach to study the dynamics combining viscousinviseid effects,liquid and structure dynamics,and multi bubble interaction.While complex numerical tools are developed and used,the study aims at identifying the key parameters influencing the dynamics,which need to be included in simpler models.

  17. Author Keywords in Biomedical Journal Articles

    OpenAIRE

    Névéol, Aurélie; Doğan, Rezarta Islamaj; Lu, Zhiyong

    2010-01-01

    As an information retrieval system, PubMed® aims at providing efficient access to documents cited in MEDLINE®. For this purpose, it relies on matching representations of documents, as provided by authors and indexers to user queries. In this paper, we describe the growth of author keywords in biomedical journal articles and present a comparative study of author keywords and MeSH® indexing terms assigned by MEDLINE indexers to PubMed Central Open Access articles. A similarity metric is used to...

  18. How granularity issues concern biomedical ontology integration.

    Science.gov (United States)

    Schulz, Stefan; Boeker, Martin; Stenzhorn, Holger

    2008-01-01

    The application of upper ontologies has been repeatedly advocated for supporting interoperability between domain ontologies in order to facilitate shared data use both within and across disciplines. We have developed BioTop as a top-domain ontology to integrate more specialized ontologies in the biomolecular and biomedical domain. In this paper, we report on concrete integration problems of this ontology with the domain-independent Basic Formal Ontology (BFO) concerning the issue of fiat and aggregated objects in the context of different granularity levels. We conclude that the third BFO level must be ignored in order not to obviate cross-granularity integration. PMID:18487840

  19. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. PMID:26972838

  20. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  1. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  2. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review.

    Science.gov (United States)

    Rafique, Ammara; Mahmood Zia, Khalid; Zuber, Mohammad; Tabasum, Shazia; Rehman, Saima

    2016-06-01

    Chitin and chitosan are amino polysaccharides having multidimensional properties, such as biocompatibility, biodegradability, antibacterial properties and non-toxicity, muco-adhesivity, adsorption properties, etc., and thus they can be widely used in variety of areas. Although human history mainly relies on the biopolymers, however synthetic materials like polyvinyl alcohol (PVA) have good mechanical, chemical and physical properties. Functionalization of PVA with chitin and chitosan is considered very appropriate for the development of well-designed biomaterials such as biodegradable films, for membrane separation, for tissue engineering, for food packaging, for wound healing and dressing, hydro gels formation, gels formation, etc. Considering versatile properties of the chitin and chitosan, and wide industrial and biomedical applications of PVA, this review sheds a light on chitin and chitosan based PVA materials with their potential applications especially focusing the bio-medical field. All the technical scientific issues have been addressed highlighting the recent advancement. PMID:26893051

  3. Catalytic properties and biomedical applications of cerium oxide nanoparticles

    KAUST Repository

    Walkey, Carl D.

    2014-11-10

    Cerium oxide nanoparticles (nanoceria) have shown promise as catalytic antioxidants in the test tube, cell culture models and animal models of disease. However given the reactivity that is well established at the surface of these nanoparticles, the biological utilization of nanoceria as a therapeutic still poses many challenges. Moreover the form that these particles take in a biological environment, such as the changes that can occur due to a protein corona, are not well established. This review aims to summarize the existing literature on biological use of nanoceria, and to raise questions about what further study is needed to apply this interesting catalytic material to biomedical applications. These questions include: 1) How does preparation, exposure dose, route and experimental model influence the reported effects of nanoceria in animal studies? 2) What are the considerations to develop nanoceria as a therapeutic agent in regards to these parameters? 3) What biological targets of reactive oxygen species (ROS) and reactive nitrogen species (RNS) are relevant to this targeting, and how do these properties also influence the safety of these nanomaterials?

  4. Project definition study for the National Biomedical Tracer Facility

    International Nuclear Information System (INIS)

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel's Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization

  5. Energy harvesting for the implantable biomedical devices: issues and challenges.

    Science.gov (United States)

    Hannan, Mahammad A; Mutashar, Saad; Samad, Salina A; Hussain, Aini

    2014-01-01

    The development of implanted devices is essential because of their direct effect on the lives and safety of humanity. This paper presents the current issues and challenges related to all methods used to harvest energy for implantable biomedical devices. The advantages, disadvantages, and future trends of each method are discussed. The concept of harvesting energy from environmental sources and human body motion for implantable devices has gained a new relevance. In this review, the harvesting kinetic, electromagnetic, thermal and infrared radiant energies are discussed. Current issues and challenges related to the typical applications of these methods for energy harvesting are illustrated. Suggestions and discussion of the progress of research on implantable devices are also provided. This review is expected to increase research efforts to develop the battery-less implantable devices with reduced over hole size, low power, high efficiency, high data rate, and improved reliability and feasibility. Based on current literature, we believe that the inductive coupling link is the suitable method to be used to power the battery-less devices. Therefore, in this study, the power efficiency of the inductive coupling method is validated by MATLAB based on suggested values. By further researching and improvements, in the future the implantable and portable medical devices are expected to be free of batteries. PMID:24950601

  6. MIMI: multimodality, multiresource, information integration environment for biomedical core facilities.

    Science.gov (United States)

    Szymanski, Jacek; Wilson, David L; Zhang, Guo-Qiang

    2009-10-01

    The rapid expansion of biomedical research has brought substantial scientific and administrative data management challenges to modern core facilities. Scientifically, a core facility must be able to manage experimental workflow and the corresponding set of large and complex scientific data. It must also disseminate experimental data to relevant researchers in a secure and expedient manner that facilitates collaboration and provides support for data interpretation and analysis. Administratively, a core facility must be able to manage the scheduling of its equipment and to maintain a flexible and effective billing system to track material, resource, and personnel costs and charge for services to sustain its operation. It must also have the ability to regularly monitor the usage and performance of its equipment and to provide summary statistics on resources spent on different categories of research. To address these informatics challenges, we introduce a comprehensive system called MIMI (multimodality, multiresource, information integration environment) that integrates the administrative and scientific support of a core facility into a single web-based environment. We report the design, development, and deployment experience of a baseline MIMI system at an imaging core facility and discuss the general applicability of such a system in other types of core facilities. These initial results suggest that MIMI will be a unique, cost-effective approach to addressing the informatics infrastructure needs of core facilities and similar research laboratories. PMID:17999114

  7. Project definition study for the National Biomedical Tracer Facility

    Energy Technology Data Exchange (ETDEWEB)

    Roozen, K.

    1995-02-15

    The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

  8. Mathematics and physics of emerging biomedical imaging

    International Nuclear Information System (INIS)

    Although the mathematical sciences were used in a general way for image processing, they were of little importance in biomedical work until the development in the 1970s of computed tomography (CT) for the imaging of x-rays and isotope emission tomography. In the 1980s, MRI eclipsed the other modalities in many ways as the most informative medical imaging methodology. Besides these well-established techniques, computer-based mathematical methods are being explored in applications to other well-known methods, such as ultrasound and electroencephalography, as well as new techniques of optical imaging, impedance tomography, and magnetic source imaging. It is worth pointing out that, while the final images of many of these techniques bear many similarities to each other, the technologies involved in each are completely different and the parameters represented in the images are very different in character as well as in medical usefulness. In each case, rather different mathematical or statistical models are used, with different equations. One common thread is the paradigm of reconstruction from indirect measurements--this is the unifying theme of this report. The imaging methods used in biomedical applications that this report discusses include: (1) x-ray projection imaging; (2) x-ray computed tomography (CT); (3) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy; (4) single photon emission computed tomography (SPECT); (5) positron emission tomography (PET); (6) ultrasonics; (7) electrical source imaging (ESI); (8) electrical impedance tomography (EIT); (9) magnetic source imaging (MSI); and (10) medical optical imaging

  9. Career Development among American Biomedical Postdocs.

    Science.gov (United States)

    Gibbs, Kenneth D; McGready, John; Griffin, Kimberly

    2015-01-01

    Recent biomedical workforce policy efforts have centered on enhancing career preparation for trainees, and increasing diversity in the research workforce. Postdoctoral scientists, or postdocs, are among those most directly impacted by such initiatives, yet their career development remains understudied. This study reports results from a 2012 national survey of 1002 American biomedical postdocs. On average, postdocs reported increased knowledge about career options but lower clarity about their career goals relative to PhD entry. The majority of postdocs were offered structured career development at their postdoctoral institutions, but less than one-third received this from their graduate departments. Postdocs from all social backgrounds reported significant declines in interest in faculty careers at research-intensive universities and increased interest in nonresearch careers; however, there were differences in the magnitude and period of training during which these changes occurred across gender and race/ethnicity. Group differences in interest in faculty careers were explained by career interest differences formed during graduate school but not by differences in research productivity, research self-efficacy, or advisor relationships. These findings point to the need for enhanced career development earlier in the training process, and interventions sensitive to distinctive patterns of interest development across social identity groups. PMID:26582238

  10. Commercializing biomedical research through securitization techniques.

    Science.gov (United States)

    Fernandez, Jose-Maria; Stein, Roger M; Lo, Andrew W

    2012-10-01

    Biomedical innovation has become riskier, more expensive and more difficult to finance with traditional sources such as private and public equity. Here we propose a financial structure in which a large number of biomedical programs at various stages of development are funded by a single entity to substantially reduce the portfolio's risk. The portfolio entity can finance its activities by issuing debt, a critical advantage because a much larger pool of capital is available for investment in debt versus equity. By employing financial engineering techniques such as securitization, it can raise even greater amounts of more-patient capital. In a simulation using historical data for new molecular entities in oncology from 1990 to 2011, we find that megafunds of $5–15 billion may yield average investment returns of 8.9–11.4% for equity holders and 5–8% for 'research-backed obligation' holders, which are lower than typical venture-capital hurdle rates but attractive to pension funds, insurance companies and other large institutional investors. PMID:23023199

  11. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  12. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  13. Biomedical Use of Aerospace Personal Cooling Garments

    Science.gov (United States)

    Webbon, Bruce W.; Montgomery, Leslie D.; Callaway, Robert K.

    1994-01-01

    Personal thermoregulatory systems are required during extravehicular activity (EVA) to remove the metabolic heat generated by the suited astronaut. The Extravehicular and Protective Systems (STE) Branch of NASA Ames Research Center has developed advanced concepts or liquid cooling garments for both industrial and biomedical applications for the past 25 years. Examples of this work include: (1) liquid cooled helmets for helicopter pilots and race car drivers; (2) vests for fire and mine rescue personnel; (3) bras to increase the definition of tumors during thermography; (4) lower body garments for young women with erythomelaigia; and (5) whole body garments used by patients with multiple sclerosis (MS). The benefits of the biomedical application of artificial thermoregulation received national attention through two recent events: (1) the liquid-cooled garment technology was inducted into the United States Space Foundation's Space Technology Hall of Fame (1993); and (2) NASA has signed a joint Memorandum of Understanding with the Multiple Sclerosis Association (1994) to share this technology for use with MS patient treatment. The STE Branch is currently pursuing a program to refine thermoregulatory design in light of recent technology developments that might be applicable for use by several medical patient populations. Projects have been initiated to apply thermoregulatory technology for the treatment and/or rehabilitation of patients with spinal cord injuries, multiple sclerosis, migraine headaches, and to help prevent the loss of hair during chemotherapy.

  14. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  15. Integration and Querying of Genomic and Proteomic Semantic Annotations for Biomedical Knowledge Extraction.

    Science.gov (United States)

    Masseroli, Marco; Canakoglu, Arif; Ceri, Stefano

    2016-01-01

    Understanding complex biological phenomena involves answering complex biomedical questions on multiple biomolecular information simultaneously, which are expressed through multiple genomic and proteomic semantic annotations scattered in many distributed and heterogeneous data sources; such heterogeneity and dispersion hamper the biologists' ability of asking global queries and performing global evaluations. To overcome this problem, we developed a software architecture to create and maintain a Genomic and Proteomic Knowledge Base (GPKB), which integrates several of the most relevant sources of such dispersed information (including Entrez Gene, UniProt, IntAct, Expasy Enzyme, GO, GOA, BioCyc, KEGG, Reactome, and OMIM). Our solution is general, as it uses a flexible, modular, and multilevel global data schema based on abstraction and generalization of integrated data features, and a set of automatic procedures for easing data integration and maintenance, also when the integrated data sources evolve in data content, structure, and number. These procedures also assure consistency, quality, and provenance tracking of all integrated data, and perform the semantic closure of the hierarchical relationships of the integrated biomedical ontologies. At http://www.bioinformatics.deib.polimi.it/GPKB/, a Web interface allows graphical easy composition of queries, although complex, on the knowledge base, supporting also semantic query expansion and comprehensive explorative search of the integrated data to better sustain biomedical knowledge extraction. PMID:27045824

  16. Effective use of Latent Semantic Indexing and Computational Linguistics in Biological and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Hongyu eChen

    2013-01-01

    Full Text Available Text mining is rapidly becoming an essential technique for the annotation and analysis of large biological data sets. Biomedical literature currently increases at a rate of several thousand papers per week, making automated information retrieval methods the only feasible method of managing this expanding corpus. With the increasing prevalence of open-access journals and constant growth of publicly-available repositories of biomedical literature, literature mining has become much more effective with respect to the extraction of biomedically-relevant data. In recent years, text mining of popular databases such as MEDLINE has evolved from basic term-searches to more sophisticated natural language processing techniques, indexing and retrieval methods, structural analysis and integration of literature with associated metadata. In this review, we will focus on Latent Semantic Indexing (LSI, a computational linguistics technique increasingly used for a variety of biological purposes. It is noted for its ability to consistently outperform benchmark Boolean text searches and co-occurrence models at information retrieval and its power to extract indirect relationships within a data set. LSI has been used successfully to formulate new hypotheses, generate novel connections from existing data, and validate empirical data.

  17. Preliminary comparison of the Essie and PubMed search engines for answering clinical questions using MD on Tap, a PDA-based program for accessing biomedical literature.

    Science.gov (United States)

    Sutton, Victoria R; Hauser, Susan E

    2005-01-01

    MD on Tap, a PDA application that searches and retrieves biomedical literature, is specifically designed for use by mobile healthcare professionals. With the goal of improving the usability of the application, a preliminary comparison was made of two search engines (PubMed and Essie) to determine which provided most efficient path to the desired clinically-relevant information. PMID:16779415

  18. Relevance of protection quantities in medical exposures

    International Nuclear Information System (INIS)

    International Commission on Radiological Protection (ICRP) continues to classify the exposures to radiation in three categories; namely 1- occupational exposure, 2- public exposure, and 3- medical exposure. Protection quantities are primarily meant for the regulatory purpose in radiological protection for controlling and limiting stochastic risks in occupational and public exposures. These are based on two basic assumptions of 1- linear no-threshold dose-effect relationship (LNT) at low doses and 2- long-term additivity of low doses. Medical exposure are predominantly delivered to individuals (patients) undergoing diagnostic examinations, interventional procedures and radiation therapy but also include individual caring for or comforting patients incurring exposure and the volunteers of biomedical medical research programmes. Radiation protection is as relevant to occupational and public exposure as to medical exposures except that the dose limits set for the formers are not applicable to medical exposure but reference levels and dose constrains are recommended for diagnostic and interventional medical procedures. In medical institutions, both the occupational and medical exposure takes place. Since the doses in diagnostic examinations are low, it has been observed that not only the protection quantities are often used in such cases but these are extended to estimate the number of cancer deaths due to such practices. One of the striking features of the new ICRP recommendations has been to elaborate the concepts of the dosimetric quantities. The limitation of protection quantities ((Effective dose, E=ΣRT DTR.WT.WR and Equivalent Dose HT=ΣRT DTR.WR) have been brought out and this has raised a great concern and initiated debates on the use of these quantities in medical exposures. Consequently, ICRP has set a task group to provide more details and the recommendations. It has, therefore, became important to draw the attention of medical physics community on relevance

  19. Enriching a biomedical event corpus with meta-knowledge annotation

    Directory of Open Access Journals (Sweden)

    Thompson Paul

    2011-10-01

    Full Text Available Abstract Background Biomedical papers contain rich information about entities, facts and events of biological relevance. To discover these automatically, we use text mining techniques, which rely on annotated corpora for training. In order to extract protein-protein interactions, genotype-phenotype/gene-disease associations, etc., we rely on event corpora that are annotated with classified, structured representations of important facts and findings contained within text. These provide an important resource for the training of domain-specific information extraction (IE systems, to facilitate semantic-based searching of documents. Correct interpretation of these events is not possible without additional information, e.g., does an event describe a fact, a hypothesis, an experimental result or an analysis of results? How confident is the author about the validity of her analyses? These and other types of information, which we collectively term meta-knowledge, can be derived from the context of the event. Results We have designed an annotation scheme for meta-knowledge enrichment of biomedical event corpora. The scheme is multi-dimensional, in that each event is annotated for 5 different aspects of meta-knowledge that can be derived from the textual context of the event. Textual clues used to determine the values are also annotated. The scheme is intended to be general enough to allow integration with different types of bio-event annotation, whilst being detailed enough to capture important subtleties in the nature of the meta-knowledge expressed in the text. We report here on both the main features of the annotation scheme, as well as its application to the GENIA event corpus (1000 abstracts with 36,858 events. High levels of inter-annotator agreement have been achieved, falling in the range of 0.84-0.93 Kappa. Conclusion By augmenting event annotations with meta-knowledge, more sophisticated IE systems can be trained, which allow interpretative

  20. Objective and automated protocols for the evaluation of biomedical search engines using No Title Evaluation protocols

    Directory of Open Access Journals (Sweden)

    Campagne Fabien

    2008-02-01

    Full Text Available Abstract Background The evaluation of information retrieval techniques has traditionally relied on human judges to determine which documents are relevant to a query and which are not. This protocol is used in the Text Retrieval Evaluation Conference (TREC, organized annually for the past 15 years, to support the unbiased evaluation of novel information retrieval approaches. The TREC Genomics Track has recently been introduced to measure the performance of information retrieval for biomedical applications. Results We describe two protocols for evaluating biomedical information retrieval techniques without human relevance judgments. We call these protocols No Title Evaluation (NT Evaluation. The first protocol measures performance for focused searches, where only one relevant document exists for each query. The second protocol measures performance for queries expected to have potentially many relevant documents per query (high-recall searches. Both protocols take advantage of the clear separation of titles and abstracts found in Medline. We compare the performance obtained with these evaluation protocols to results obtained by reusing the relevance judgments produced in the 2004 and 2005 TREC Genomics Track and observe significant correlations between performance rankings generated by our approach and TREC. Spearman's correlation coefficients in the range of 0.79–0.92 are observed comparing bpref measured with NT Evaluation or with TREC evaluations. For comparison, coefficients in the range 0.86–0.94 can be observed when evaluating the same set of methods with data from two independent TREC Genomics Track evaluations. We discuss the advantages of NT Evaluation over the TRels and the data fusion evaluation protocols introduced recently. Conclusion Our results suggest that the NT Evaluation protocols described here could be used to optimize some search engine parameters before human evaluation. Further research is needed to determine if NT

  1. Modeling in biomedical informatics - An exploratory analysis (Part 1)

    NARCIS (Netherlands)

    A. Hasman; R. Haux

    2006-01-01

    Objectives: Modeling is a significant part of research, education and practice in biomedical and health informatics. Our objective was to explore, which types of models of processes are used in current biomedical/health informatics research, as reflected in publications of scientific journals in thi

  2. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  3. A brief review of biomedical sensors and robotics sensors

    OpenAIRE

    Yanli Luo; , Qiaoying Zhou; Wenbin Luo

    2016-01-01

    In this paper, we present a brief review of biomedical sensors and robotics sensors. More specifically, we will review the cochlear sensors and retinal sensors in the category of biomedical sensors and ultrasonic Sensors and infrared motion detection sensors in the category of robotic sensors. Our goal is to familiarize readers with the common sensors used in the fields of both biom

  4. Some biomedical applications of chitosan-based hybrid nanomaterials

    International Nuclear Information System (INIS)

    Being naturally abundant resources and having many interesting physicochemical and biological properties, chitin/chitosan have been found to be useful in many fields, especially biomedical ones. This paper describes the strategy to design multifunctional, hybrid chitosan-based nanomaterials and test them in some typical biomedical applications

  5. Trends in Scholarly Communication Among Biomedical Scientists in Greece

    OpenAIRE

    Βλαχάκη, Ασημίνα; Urquhart, Christine

    2011-01-01

    The aim and objectives are to examine the main changes in scholarly communication among Greek biomedical scientists (2007-2011). The methods include a bibliographic survey (two phases), and a questionnaire survey (three phases). Results indicate that awareness of open access publishing has increased since 2010, but that biomedical scientists in Greece are not very aware of the operations of open access journals.

  6. Visualization and simulation of complex flows in biomedical engineering

    CERN Document Server

    Imai, Yohsuke; Ishikawa, Takuji; Oliveira, Mónica

    2014-01-01

    This book focuses on the most recent advances in the application of visualization and simulation methods to understand the flow behavior of complex fluids used in biomedical engineering and other related fields. It shows the physiological flow behavior in large arteries, microcirculation, respiratory systems and in biomedical microdevices.

  7. Biomedical literature classification using encyclopedic knowledge: a Wikipedia-based bag-of-concepts approach.

    Science.gov (United States)

    Mouriño García, Marcos Antonio; Pérez Rodríguez, Roberto; Anido Rifón, Luis E

    2015-01-01

    Automatic classification of text documents into a set of categories has a lot of applications. Among those applications, the automatic classification of biomedical literature stands out as an important application for automatic document classification strategies. Biomedical staff and researchers have to deal with a lot of literature in their daily activities, so it would be useful a system that allows for accessing to documents of interest in a simple and effective way; thus, it is necessary that these documents are sorted based on some criteria-that is to say, they have to be classified. Documents to classify are usually represented following the bag-of-words (BoW) paradigm. Features are words in the text-thus suffering from synonymy and polysemy-and their weights are just based on their frequency of occurrence. This paper presents an empirical study of the efficiency of a classifier that leverages encyclopedic background knowledge-concretely Wikipedia-in order to create bag-of-concepts (BoC) representations of documents, understanding concept as "unit of meaning", and thus tackling synonymy and polysemy. Besides, the weighting of concepts is based on their semantic relevance in the text. For the evaluation of the proposal, empirical experiments have been conducted with one of the commonly used corpora for evaluating classification and retrieval of biomedical information, OHSUMED, and also with a purpose-built corpus of MEDLINE biomedical abstracts, UVigoMED. Results obtained show that the Wikipedia-based bag-of-concepts representation outperforms the classical bag-of-words representation up to 157% in the single-label classification problem and up to 100% in the multi-label problem for OHSUMED corpus, and up to 122% in the single-label classification problem and up to 155% in the multi-label problem for UVigoMED corpus. PMID:26468436

  8. 78 FR 9066 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2013-02-07

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... of Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy...

  9. 77 FR 13347 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings

    Science.gov (United States)

    2012-03-06

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Committee: National Institute of Biomedical Imaging and Bioengineering Special Emphasis Panel;...

  10. 77 FR 71605 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings

    Science.gov (United States)

    2012-12-03

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Biomedical Imaging and Bioengineering Special Emphasis Panel; MSM Program Review. Date: February 26,...

  11. 76 FR 370 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2011-01-04

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Person: Manana Sukhareva, Ph.D., Scientific Review Officer, National Institute of Biomedical Imaging...

  12. 77 FR 50516 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2012-08-21

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special...., Scientific Review Officer, National Institute of Biomedical Imaging, And Bioengineering, National...

  13. 78 FR 3009 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2013-01-15

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Biomedical Imaging and Bioengineering, National Institutes of Health, 6707 Democracy Boulevard, Suite...

  14. 78 FR 46995 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2013-08-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Biomedical Imaging, and Bioengineering, 6707 Democracy Boulevard, Suite 959, Bethesda, MD 20892,...

  15. 78 FR 76632 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2013-12-18

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Review Officer, National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy...

  16. 78 FR 25752 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings

    Science.gov (United States)

    2013-05-02

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Officer, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health,...

  17. 75 FR 35820 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2010-06-23

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special..., ARRA Related Biomedical Research and Research Support Awards, National Institutes of Health, HHS)...

  18. 78 FR 31953 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings

    Science.gov (United States)

    2013-05-28

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special...., Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering, National...

  19. 78 FR 3903 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meetings

    Science.gov (United States)

    2013-01-17

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Biomedical Imaging and, Bioengineering, National Institutes of Health, 6707 Democracy Boulevard, Room...

  20. 78 FR 66373 - National Institute of Biomedical Imaging and Bioengineering; Notice of Closed Meeting

    Science.gov (United States)

    2013-11-05

    ... HUMAN SERVICES National Institutes of Health National Institute of Biomedical Imaging and Bioengineering... personal privacy. Name of Committee: National Institute of Biomedical Imaging and Bioengineering Special... Grossman, DDS, Scientific Review Officer, National Institute of Biomedical Imaging and Bioengineering,...