WorldWideScience

Sample records for biomedical-grade chitosan derivatives

  1. In Vitro Models in BiocompatibilityAssessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    Directory of Open Access Journals (Sweden)

    Lim Chin Keong

    2009-03-01

    Full Text Available One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (b-1,4-D-glucosamine has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemical and physical modifications of chitosan influence its biocompatibility and biodegradability to an uncertain degree. Hence, the modified biomedical-grade of chitosan derivatives should be pre-examined in vitro in order to produce high-quality, biocompatible dressings. In vitro toxicity examinations are more favorable than those performed in vivo, as the results are more reproducible and predictive. In this paper, basic in vitro tools were used to evaluate cellular and molecular responses with regard to the biocompatibility of biomedical-grade chitosan. Three paramount experimental parameters of biocompatibility in vitro namely cytocompatibility, genotoxicity and skin pro-inflammatory cytokine expression, were generally reviewed for biomedical-grade chitosan as wound dressing.

  2. In Vitro Models in Biocompatibility Assessment for Biomedical-Grade Chitosan Derivatives in Wound Management

    OpenAIRE

    Lim Chin Keong; Ahmad Sukari Halim

    2009-01-01

    One of the ultimate goals of wound healing research is to find effective healing techniques that utilize the regeneration of similar tissues. This involves the modification of various wound dressing biomaterials for proper wound management. The biopolymer chitosan (b-1,4-D-glucosamine) has natural biocompatibility and biodegradability that render it suitable for wound management. By definition, a biocompatible biomaterial does not have toxic or injurious effects on biological systems. Chemica...

  3. Biomedical-Grade Chitosan in Wound Management and Its Biocompatibility In Vitro

    OpenAIRE

    Halim, Ahmad Sukari; Lim, Chin Keong

    2010-01-01

    Chitosan and chitosan-based derivatives have various medical applications. It is wellknown that chitosan possesses medicinal properties that accelerate wound healing and tissue regeneration. Chitosan is a natural product. It is biocompatible and biodegradable, enabling it to be used for wound dressing material. However, the practical use of chitosan is restricted to the unmodified forms, as these are water-insoluble and have high viscosity and the tendency to coagulate with proteins at high p...

  4. LYOTROPIC LIQUID CRYSTALLINE BEHAVIOR OF FIVE CHITOSAN DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    Yan-ming Dong; Zhi-qiang Li

    1999-01-01

    Five chitosan derivatives, i.e. O-butyryl chitosan, O-benzoyl chitosan, N-phthaloyl chitosan, N-maleoyl chitosan and O-cyanoethyl chitosan, were prepared from chitosan. All of them had better solubilitythan chitosan, and demonstrated lyotropic liquid crystalline behavior in various solvents. The critical liquid crystalline behavior of three O-substituted chitosan derivatives was evidently different from two Nsubstituted analogues. Typical fingerprint textures of cholesteric phase were only observed in three Osubstituted derivatives. The critical concentration (v/v%) of three O-substituted derivatives does not depend on the acidity of acidic solvents.

  5. SEM-EDX STUDIES OF CHITOSAN DERIVATIVES-METAL ADDUCTS

    OpenAIRE

    Galo Cárdenas; Edelio Taboada; Armando Bravo; S. Patricia Miranda

    2003-01-01

    Chitosan was obtained from shrimps shells (pleuroncodes monodon) using chemical methods. A series of chitosan (QS)charged with solution of copper, cobalt, nickel and mercury ions were prepared at room temperature using the batch method. N-3,5-diethylamino benzoyl chitosan (QDAB); N,O-dimercapto succinate chitosan (QNOT) and 4-aminobenzoate chitosan (QAB) derivatives were prepared. The chitosan metal adducts with Cu, Co, Ni and Hg ions and derivatives maximum loading is discussed. Chitosan and...

  6. Zwitterionic chitosan derivatives for pH-sensitive stealth coating

    OpenAIRE

    Xu, Peisheng; Bajaj, Gaurav; Shugg, Tyler; Van Alstine, William G.; Yeo, Yoon

    2010-01-01

    Zwitterionic chitosan, a chitosan derivative with a unique pH-dependent charge profile, was employed to create a stealth coating on the cationic surface of drug carriers. Zwitterionic chitosans were synthesized by amidation of chitosan with succinic anhydride. The succinic anhydride-conjugated chitosan had an isoelectric point, which could be easily tuned from pH 4.9 to 7.1, and showed opposite charges below and above the isoelectric point. The succinic anhydride-conjugated chitosan was able ...

  7. Environmental applications of chitosan and its derivatives.

    Science.gov (United States)

    Yong, Soon Kong; Shrivastava, Manoj; Srivastava, Prashant; Kunhikrishnan, Anitha; Bolan, Nanthi

    2015-01-01

    , hydraulic conductivity, permeability, surface area and sorption capacity. Crosslinked chitosan is an excellent sorbent for trace metals especially because of the high flexibility of its structural stability. Sorption of trace metals by chitosan is selective and independent of the size and hardness of metal ions, or the physical form of chitosan (e.g., film, powder and solution). Both -OH and -NH2 groups in chitosan provide vital binding sites for complexing metal cations. At low pH, -NH3 + groups attract and coagulate negatively charged contaminants such as metal oxyanions, humic acids and dye molecules. Grafting certain functional molecules into the chitin structure improves sorption capacity and selectivity for remediating specific metal ions. For example, introducing sulfur and nitrogen donor ligands to chitosan alters the sorption preference for metals. Low molecular weight chitosan derivatives have been used to remediate metal contaminated soil and sediments. They have also been applied in permeable reactive barriers to remediate metals in soil and groundwater. Both chitosan and modified chitosan have been used to phytoremediate metals; however, the mechanisms by which they assist in mobilizing metals are not yet well understood. In addition, microbes have been used in combination with chitosan to remediate metals (e.g., Cu and Zn) in contaminated soils. Chitosan has also been used to remediate organic contaminants, such as oil-based wastewater, dyes, tannins, humic acids, phenols, bisphenoi-A, p-benzoquinone, organo-phosphorus insecticides, among others. Chitosan has also been utilized to develop optical and electrochemical sensors for in-situ detection of trace contaminants. In sensor technology, naturally-derived chitosan is used primarily as an immobilizing agent that results from its enzyme compatibility, and stabilizing effect on nanoparticles. Contaminant-sensing agents, such as enzymes, microbes and nanoparticles, have been homogeneously immobilized in chitosan

  8. Radiation processing of chitosan derivative and its characteristics

    International Nuclear Information System (INIS)

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by a carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial agent and it overcome the problem of bad smell using acetic acid. (Author)

  9. Antibacterial activity of irradiated and non-irradiated chitosan and chitosan derivatives against Escherichia coli growth

    International Nuclear Information System (INIS)

    Samples of chitosan and four chitosan derivatives [ionic chitosan, chitosan lactate, carboxymethyl chitosan (C) and carboxymethyl chitosan (L)] were studied for their antibacterial activities against Escherichia coli growth. Chitosan and chitosan derivatives were prepared at concentrations 20, 100, 1000, 10000 ppm and 250, 1000, 5000, 10000, 20000 ppm, respectively. Each of the samples was tested before and after irradiation with electron beam at 25 kGy. The turbidity of bacterial growth media was measured periodically at 0, 0.5, 1, 2, 4, 6 and 24 h after inoculation using the optical density method. The results indicated that non- irradiated chitosan inhibited E. coli growth at 20 and 100 ppm. Meanwhile, irradiated chitosan at 100 and 1000 ppm concentration inhibited E. coli growth. Both irradiated and non-irradiated ionic chitosan inhibited E. coli growth at all concentrations used. Chitosan lactate was found to inhibit E. coli at concentration as low as 5000 ppm for both irradiated and non-irradiated samples. E. coli growth was not inhibited by carboxymethyl chitosan (C) and carboxymethyl chitosan (L), before and after irradiation. The findings suggested that chitosan has greater antibacterial activity as compared to the chitosan derivative samples. (Author)

  10. Effects of sulfate chitosan derivatives on nonalcoholic fatty liver disease

    Science.gov (United States)

    Yu, Mingming; Wang, Yuanhong; Jiang, Tingfu; Lv, Zhihua

    2014-06-01

    Sulfate chitosan derivatives have good solubility and therapeutic effect on the cell model of NAFLD. The aim of this study was to examine the therapeutic effect of sulfate chitosan derivatives on NAFLD. The male Wistar rats were orally fed high fat emulsion and received sulfate chitosan derivatives for 5 weeks to determine the pre-treatment effect of sulfate chitosan derivatives on NAFLD. To evaluate the therapeutic effect of sulfate chitosan derivatives on NAFLD, the rats were orally fed with high concentration emulsion for 5 weeks, followed by sulfate chitosan derivatives for 3 weeks. Histological analysis and biomedical assays showed that sulfate chitosan derivatives can dramatically prevent the development of hepatic steatosis in hepatocyte cells. In animal studies, pre-treatment and treatment with sulfate chitosan derivatives significantly protected against hepatic steatohepatitis induced by high fat diet according to histological analysis. Furthermore, increased TC, ALT, MDA, and LEP in NAFLD were significantly ameliorated by pre-treatment and treatment with sulfate chitosan derivatives. Furthermore, increased TG, AST, and TNF-α in NAFLD were significantly ameliorated by treatment with sulfate chitosan derivatives. Sulfate chitosan derivatives have good pre-treatment and therapeutic effect on NAFLD.

  11. SEM-EDX STUDIES OF CHITOSAN DERIVATIVES-METAL ADDUCTS

    Directory of Open Access Journals (Sweden)

    Galo Cárdenas

    2003-12-01

    Full Text Available Chitosan was obtained from shrimps shells (pleuroncodes monodon using chemical methods. A series of chitosan (QScharged with solution of copper, cobalt, nickel and mercury ions were prepared at room temperature using the batch method. N-3,5-diethylamino benzoyl chitosan (QDAB; N,O-dimercapto succinate chitosan (QNOT and 4-aminobenzoate chitosan (QAB derivatives were prepared. The chitosan metal adducts with Cu, Co, Ni and Hg ions and derivatives maximum loading is discussed. Chitosan and derivatives containing copper were analyzed by SEM to find out the morphology of the polymers. Chitosan-Cu and derivatives charged, QDAB-Ni and QDAB-Hg were analyzed by EDX to verify the presence of the metal in the polymeric chain

  12. The Adsorption Effect of Quaternized Chitosan Derivatives on Bile Acid

    Institute of Scientific and Technical Information of China (English)

    Shu Xian MENG; Ya Qing FENG; Wen Jin LI; Cai Xia YIN; Jin Ping DENG

    2006-01-01

    Three quaternized chitosan derivatives were synthesized and their adsorption performance of bile acid from aqueous solution was studied. The adsorption capacities and rates of bile acid onto quaternized chitosan derivatives were evaluated. The kinetic experimental data properly correlated with the second-order kinetic model, which indicated that the chemical sorption is the rate-limiting step. The results showed that the quaternized chitosan derivatives are favorable adsorbents for bile acid.

  13. Pyridine-grafted chitosan derivative as an antifungal agent.

    Science.gov (United States)

    Jia, Ruixiu; Duan, Yunfei; Fang, Qiang; Wang, Xiangyang; Huang, Jianying

    2016-04-01

    Pyridine moieties were introduced into chitosan by nucleophilic substitution to afford N-(1-carboxybutyl-4-pyridinium) chitosan chloride (pyridine chitosan). The resulting chitosan derivative was well characterized, and its antifungal activity was examined, based on the inhibition of mycelial growth and spore germination. The results indicated that pyridine chitosan exhibited enhanced antifungal activity by comparison with pristine chitosan. The values of the minimum inhibitory concentration and the minimal fungicidal concentration of pyridine chitosan against Fulvia fulva were 0.13 mg/ml and 1 mg/ml, respectively, while the corresponding values against Botrytis cinerea were 0.13 mg/ml and 4 mg/ml, respectively. Severe morphological changes of pyridine chitosan-treated B. cinerea were observed, indicative that pyridine chitosan could damage and deform the structure of fungal hyphae and subsequently inhibit strain growth. Non-toxicity of pyridine chitosan was demonstrated by an acute toxicity study. These results are beneficial for assessing the potential utilization of this chitosan derivative and for exploring new functional antifungal agents with chitosan in the food industry. PMID:26593505

  14. Structure and Function of Chitosan (V). Conformations of Ethylene Glycol Derivatives of Chitin and Chitosan

    OpenAIRE

    YUI, Toshifumi; NAKATA, Kunihiko; OGAWA, Kozo

    1996-01-01

    Molecular structures of ethylene glycol derivatives of chitin and chitosan, where 0-6 of chitin chain was etherified and both 0-3 and 0-6 of chitosan were substituted, were studied by X-ray fiber diffraction methods coupled with conformational analyses. The extended two-fold helical conformations of both chitin and chitosan chains were retained even by the etherifications. Possible molecular conformations of these derivatives were proposed.

  15. Progress of research on the adsorption of chitosan and its derivatives to uranium

    International Nuclear Information System (INIS)

    This paper has summarized the study on the adsorption of chitosan and its derivatives to uranium in recent years at home and abroad. It was found that the derivatives can be serine-type chitosan, methyl phosphoric acid modified chitosan, 3,4-dihydroxy benzoic acid-type chitosan, chitosan with 3,4-dihydroxybenzoic acid moiety, chitosan resin possessing a phenylarsonic acid moiety, quadrol modified chitosan, chitosan modified with molecular imprinting technique, polyacrylamide hydrogel, chitosan-coated perlite and so on. The application vista of chitosan and its derivatives to Absorpt uranium in water has been prospected. (authors)

  16. New antimicrobial chitosan derivatives for wound dressing applications.

    Science.gov (United States)

    Dragostin, Oana Maria; Samal, Sangram Keshari; Dash, Mamoni; Lupascu, Florentina; Pânzariu, Andreea; Tuchilus, Cristina; Ghetu, Nicolae; Danciu, Mihai; Dubruel, Peter; Pieptu, Dragos; Vasile, Cornelia; Tatia, Rodica; Profire, Lenuta

    2016-05-01

    Chitosan is a non-toxic, biocompatible, biodegradable natural cationic polymer known for its low imunogenicity, antimicrobial, antioxidant effects and wound-healing activity. To improve its therapeutic potential, new chitosan-sulfonamide derivatives have been designed to develop new wound dressing biomaterials. The structural, morphological and physico-chemical properties of synthesized chitosan derivatives were analyzed by FT-IR, (1)H NMR spectroscopy, scanning electron microscopy, swelling ability and porosity. Antimicrobial, in vivo testing and biodegradation behavior have been also performed. The chitosan derivative membranes showed improved swelling and biodegradation rate, which are important characteristics required for the wound healing process. The antimicrobial assay evidenced that chitosan-based sulfadiazine, sulfadimethoxine and sulfamethoxazole derivatives were the most active. The MTT assay showed that some of chitosan derivatives are nontoxic. Furthermore, the in vivo study on burn wound model induced in Wistar rats demonstrated an improved healing effect and enhanced epithelialization of chitosan-sulfonamide derivatives compared to neat chitosan. The obtained results strongly recommend the use of some of the newly developed chitosan derivatives as antimicrobial wound dressing biomaterials. PMID:26876993

  17. Synthesis of raloxifene-chitosan conjugate: A novel chitosan derivative as a potential targeting vehicle.

    Science.gov (United States)

    Samadi, Fatemeh Yazdi; Mohammadi, Zohreh; Yousefi, Maryam; Majdejabbari, Sara

    2016-01-01

    Chitosan is a biocompatible, non-toxic and biodegradable biopolymer. Due to the presence of functional groups on its surface, it can be modified and used as a carrier in targeted drug/gene delivery systems. In this study, raloxifene (a selective estrogen receptor ligand) was conjugated to chitosan using different methods. The conjugates were investigated by means of FTIR, TGA and physical properties assessments. Cell viability was evaluated by XTT assay. FTIR and TGA results confirmed that the conjugation between chitosan and raloxifene occurred more efficiently when trimethyl chitosan in the presence of triethylamine and excess amount of linker was used. XTT assay on MCF-7 cell line illustrated that more than 80% of cells were viable after 24h exposure to selected molecules. These findings confirm that the conjugation of raloxifene-chitosan can occur successfully using special synthesis condition and this novel chitosan derivative can be introduced as a potential drug/gene targeting agent. PMID:26552018

  18. Supercritical solvent impregnation of ophthalmic drugs on chitosan derivatives

    OpenAIRE

    Braga, Mara E. M.; Pato, Maria T. Vaz; Silva, Hélio S. R. Costa; Ferreira, Elisabeth I.; Gil, Maria H.; Duarte, Catarina M. M.; Sousa, Hermínio C. de

    2008-01-01

    In this work, three chitosan derivatives (N-carboxymethyl chitosan (CMC), N-carboxybutyl chitosan (CBC) and N-succinyl chitosan (SCC)) were impregnated with flurbiprofen (an anti-inflammatory drug) and timolol maleate (an anti-glaucoma drug), using a supercritical solvent impregnation (SSI) technique (and employing high pressure CO2 and CO2 + EtOH mixtures) in order to develop hydrogel-type ophthalmic drug delivery applications. Impregnation experiments were carried out from 9.0 up to 14.0 MP...

  19. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery.

    Science.gov (United States)

    Ahmed, Tarek A; Aljaeid, Bader M

    2016-01-01

    Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally occurring polysaccharide next to cellulose, is a biocompatible and biodegradable mucoadhesive polymer that has been extensively used in the preparation of micro-as well as nanoparticles. The prepared particles have been exploited as a potential carrier for different therapeutic agents such as peptides, proteins, vaccines, DNA, and drugs for parenteral and nonparenteral administration. Therapeutic agent-loaded chitosan micro- or nanoparticles were found to be more stable, permeable, and bioactive. In this review, we are highlighting the different methods of preparation and characterization of chitosan micro- and nanoparticles, while reviewing the pharmaceutical applications of these particles in drug delivery. Moreover, the roles of chitosan derivatives and chitosan metal nanoparticles in drug delivery have been illustrated. PMID:26869768

  20. Synthesis, characterization, and antifungal activity of novel quaternary chitosan derivatives.

    Science.gov (United States)

    Li, Rongchun; Guo, Zhanyong; Jiang, Pingan

    2010-09-01

    Three novel quaternary chitosan derivatives were successfully synthesized by reaction of chloracetyl chitosan (CACS) with pyridine (PACS), 4-(5-chloro-2-hydroxybenzylideneamino)-pyridine (CHPACS), and 4-(5-bromo-2-hydroxybenzylideneamino)-pyridine (BHPACS). The chemical structure of the prepared chitosan derivatives was confirmed by Fourier transform infrared (FT-IR) and (13)C nuclear magnetic resonance ((13)C NMR) and their antifungal activity against Cladosporium cucumerinum, Monilinia fructicola, Colletotrichum lagenarium, and Fusarium oxysporum was assessed. Comparing with the antifungal activity of chitosan, CACS, and PACS, CHPACS and BHPACS exhibited obviously better inhibitory effects, which should be related to the synergistic reaction of chitosan itself with the grafted 2-[4-(5-chloro-2-hydroxybenzylideneamino)-pyridyl]acetyl and 2-[4-(5-bromo-2-hydroxybenzylideneamino)-pyridyl]acetyl. PMID:20615498

  1. Hg(II) removal from water by chitosan and chitosan derivatives: A review

    International Nuclear Information System (INIS)

    Mercury (Hg) is one of the most toxic heavy metals commonly found in the global environment. Its toxicity is related to the capacity of its compounds to bioconcentrate in organisms and to biomagnifie through food chain. A wide range of adsorbents has been used for removing Hg(II) from contaminated water. Chitosan is obtained by alkaline deacetylation of chitin. The adsorption capacity of chitosan depends on the origin of the polysaccharide, and on the experimental conditions in the preparation, that determine the degree of deacetylation. A great number of chitosan derivatives have been obtained by crosslinking with glutaraldehyde or epichlorohydrin among others or by grafting new functional groups on the chitosan backbone with the aim of adsorbing Hg(II). The new functional groups are incorporated to change the pH range for Hg(II) sorption and/or to change the sorption sites in order to increase sorption selectivity. The chemical modification affords a wide range of derivatives with modified properties for specific applications. Hg(II) adsorption on chitosan or chitosan derivatives is now assumed to occur through several single or mixed interactions: chelation or coordination on amino groups in a pendant fashion or in combination with vicinal hydroxyl groups, electrostatic attraction in acidic media or ion exchange with protonated amino groups. This review reports the recent developments in the Hg(II) removal in waste water treatment, using chitosan and its derivatives in order to provide useful information about the different technologies. When possibly the adsorption capacity of chitosan and chitosan derivatives under different experimental conditions is reported to help to compare the efficacy of the Hg(II) removal process. A comparison with the adsorption capacity of other low-cost adsorbents is also tabled.

  2. Synthesis, characterization and antibacterial activity of new fluorescent chitosan derivatives

    Czech Academy of Sciences Publication Activity Database

    Přichystalová, H.; Almonasy, N.; Abdel-Mohsen, A. M.; Abdel-Rahman, R. M.; Fouda, M. M. G.; Vojtova, L.; Kobera, Libor; Spotz, Z.; Burgert, L.; Jancar, J.

    2014-01-01

    Roč. 65, April (2014), s. 234-240. ISSN 0141-8130 Institutional support: RVO:61389013 Keywords : chitosan derivatives * fluorescence * antibacterial activity Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.858, year: 2014

  3. Rheological and structural studies of carboxymethyl derivatives of chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Winstead, Cherese; Katagumpola, Pushpika [Delaware State University, Department of Chemistry, 1200 N. Dupont Highway, Dover, DE 19901 (United States)

    2014-05-15

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), {sup 1}H Nuclear Magnetic Resonance ({sup 1}H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method.

  4. Rheological and structural studies of carboxymethyl derivatives of chitosan

    International Nuclear Information System (INIS)

    The degrees of substitution of chitosan derivatives were varied and the viscoelastic behavior of these biopolymer solutions was studied using rheology. Chitosan is a cationic copolymer of glucosamine and N-acetylglucosamine obtained by alkaline deacetylation of chitin. Due to its inherent non-toxicity, biocompatibility, and biodegradability, chitosan has gained much interest. However, the poor solubility of the biopolymer in water and most common organic solvents limits its applications. Therefore, the focus of this work is the chemical modification of chitosan via carboxymethylation as well as studying the viscoelastic behavior of these polymer solutions. Varying degrees of substitution (DS) of carboxymethyl chitosan derivatives were synthesized by treating chitosan with monochloroacetic acid under alkylated medium varying the reaction time and temperature. The effect of degree of substitution on the rheology of these polymer solutions was studied as a function of concentration. The viscosity of chitosan derivatives sharply increased with increase in degree of substitution. G' and G' dependence on strain and angular frequency were studied and were found to exhibit predominantly viscous behavior. Additional characterization of the derivatized products were further studied using Fourier transform infrared (FT-IR), 1H Nuclear Magnetic Resonance (1H NMR) spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis as well as differential scanning calorimetry (DSC). Degree of substitution (DS) was calculated by titrimetric method

  5. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    OpenAIRE

    Oana Maria Dragostin; Sangram Keshari Samal; Florentina Lupascu; Andreea Pânzariu; Peter Dubruel; Dan Lupascu; Cristina Tuchilus; Cornelia Vasile; Lenuta Profire

    2015-01-01

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic prop...

  6. Solubility, viscosity and rheological properties of water-soluble chitosan derivatives

    Directory of Open Access Journals (Sweden)

    Songwut Yotsawimonwat

    2012-08-01

    Full Text Available An investigation and comparison of solubility, viscosity and rheological properties under neutral, acidic and alkaline conditions of water-soluble chitosan derivatives, viz. O-carboxymethyl chitosan, N,O-carboxymethyl chitosan, N-[(2-hydroxy-3-trimethylammoniumpropyl] chitosanchloride and O-carboxymethyl-N-[(2-hydroxy-3-trimethylammoniumpropyl] chitosan chloride, was undertaken.

  7. Solubility, viscosity and rheological properties of water-soluble chitosan derivatives

    OpenAIRE

    Songwut Yotsawimonwat

    2012-01-01

    An investigation and comparison of solubility, viscosity and rheological properties under neutral, acidic and alkaline conditions of water-soluble chitosan derivatives, viz. O-carboxymethyl chitosan, N,O-carboxymethyl chitosan, N-[(2-hydroxy-3-trimethylammonium)propyl] chitosanchloride and O-carboxymethyl-N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride, was undertaken.

  8. Physiochemical, Optical and Biological Activity of Chitosan-Chromone Derivative for Biomedical Applications

    OpenAIRE

    Joonseok Koh; Santosh Kumar

    2012-01-01

    This paper describes the physiochemical, optical and biological activity of chitosan-chromone derivative. The chitosan-chromone derivative gels were prepared by reacting chitosan with chromone-3-carbaldehyde, followed by solvent exchange, filtration and drying by evaporation. The identity of Schiff base was confirmed by UV-Vis absorption spectroscopy and Fourier-transform infrared (FTIR) spectroscopy. The chitosan-chromone derivative was evaluated by X-ray diffraction (XRD), thermogravimetric...

  9. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  10. Preparation of a Cyclomaltoheptaose (β-cyclodextrin) Cross-linked Chitosan Derivative via Glyoxal or Glutaraldehyde

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A cyclomaltoheptaose-β-cyclodextrin (β-CD) crosslinked chitosan derivative via glyoxal or glutaraldehyde was prepared. The structures of β-CD crosslined chitosan with glyoxal or glutaraldehyde were characterized by IR spectra. The surface morphology of the β-CD crosslinked chitosan particles was examined using a scanning electron microscope. The immobilization capacity of β-CD on chitosan was affected on the weight ratio of β-CD/chitosan, the utilization amount of crosslinking agent, the acidity of the reaction system and the temperature. The adsorption for nicotine indicated that the chitosan-β-CD was a good adsorbent.

  11. Antimicrobial Activity of Chitosan Derivatives Containing N-Quaternized Moieties in Its Backbone: A Review

    OpenAIRE

    Alessandro F. Martins; Suelen P. Facchi; Follmann, Heveline D. M.; Antonio G. B. Pereira; Adley F. Rubira; Muniz, Edvani C.

    2014-01-01

    Chitosan, which is derived from a deacetylation reaction of chitin, has attractive antimicrobial activity. However, chitosan applications as a biocide are only effective in acidic medium due to its low solubility in neutral and basic conditions. Also, the positive charges carried by the protonated amine groups of chitosan (in acidic conditions) that are the driving force for its solubilization are also associated with its antimicrobial activity. Therefore, chemical modifications of chitosan ...

  12. Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives — A review

    Science.gov (United States)

    Liu, Bingjie; Wang, Dongfeng; Yu, Guangli; Meng, Xianghong

    2013-09-01

    Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups. They have showed significant potentials of removing metal ions, dyes and proteins from various media. Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures. The aims of this review were to summarize the important information of the bioactivities of chitosan, highlight the various preparation methods of chitosan-based active biosorbents, and outline its potential applications in the adsorption of heavy metal ions, dyes and proteins from wastewater and aqueous solutions.

  13. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    OpenAIRE

    Ying-Chien Chung; Cheng-Fang Tsai; Jan-Ying Yeh

    2011-01-01

    The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-s...

  14. Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials

    OpenAIRE

    Kazuo Azuma; Ryotaro Izumi; Tomohiro Osaki; Shinsuke Ifuku; Minoru Morimoto; Hiroyuki Saimoto; Saburo Minami; Yoshiharu Okamoto

    2015-01-01

    Chitin (β-(1-4)-poly-N-acetyl-D-glucosamine) is widely distributed in nature and is the second most abundant polysaccharide after cellulose. It is often converted to its more deacetylated derivative, chitosan. Previously, many reports have indicated the accelerating effects of chitin, chitosan, and its derivatives on wound healing. More recently, chemically modified or nano-fibrous chitin and chitosan have been developed, and their effects on wound healing have been evaluated. In this review,...

  15. Synthesis and characterization of a hydroxyethyl derivative of chitosan and evaluation of its biosafety

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Gao, Jinning; Song, Fulai; Yang, Yan; Liu, Wanshun

    2015-08-01

    Hydroxyethyl chitosan (HE-chitosan) is a water-soluble derivative of chitosan with many apparent biological properties. For example, it is non-toxic and rapidly biodegradable. Moreover, HE-chitosan has advantages in water-solubility, moisture retention and gelling property due to its hydroxyethyl group. However, the biocompatibility and biodegradability of this multifunctional derivative have rarely been documented although they are critical for its application in biomedical and clinical treatments. The purpose of this work was to evaluate the biosafety of HE-chitosan, and draw important clues for its diverse applications. HE-chitosan was synthesized and characterized its chemical structure with FTIR. Its molecular weight (MW) was determined by gel permeation chromatography (GPC), and its deacetylation degree (DD) was investigated through potentiometric analysis. The cytotoxicity of HE-chitosan on mouse fibroblast cell L929 was tested. The biocompatibility and biodegradability of HE-chitosan in rat and rabbit were evaluated. The FTIR results indicated that the hydroxyethyl groups were linked to C6 of chitosan. The GPC analysis confirmed that its Mw was about 90.01 kDa. It was also demonstrated that HE-chitosan had excellent biocompatibility and biodegradability in vivo and had no cytotoxicity on L929. These findings indicated that HE-chitosan can potentially be applied as a biomaterial in tissue engineering, drug delivery, and other biomedical fields.

  16. LOW MOLECULAR WEIGHT O-CARBOXYMETHYLATED CHITOSANS DERIVED FROM IRRADIATED CHITOSAN AND THEIR ANTIBACTERIAL ACTIVITY

    Institute of Scientific and Technical Information of China (English)

    Xu-pin Zhuang; Xiao-fei Liu; Zhi Li; Yun-lin Guan; Kang-de Yao

    2004-01-01

    Original chitosan with My of 2.7 × 10 5 was degraded by irradiation with y-rays and a series of low molecular weight O-carboxymethylated chitosans (O-CMCh) were prepared based on the irradiated chitosan. A kinetic model of the irradiation of chitosan was put forward. Results show that the irradiation degradation of chitosan obeys the rule of random degradation and the degree of deacetylation of irradiated chitosan is slightly raised. The antibacterial activity of O-CMCh is significantly influenced by its MW, and a suppositional antibacterial peak appears when Mv is equal to 2 × 10 5.

  17. Zwitterionic Chitosan Derivative, a New Biocompatible Pharmaceutical Excipient, Prevents Endotoxin-Mediated Cytokine Release

    OpenAIRE

    Bajaj, Gaurav; Van Alstine, William G.; Yeo, Yoon

    2012-01-01

    Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC) derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced a...

  18. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing.

    Science.gov (United States)

    Dragostin, Oana Maria; Samal, Sangram Keshari; Lupascu, Florentina; Pânzariu, Andreea; Dubruel, Peter; Lupascu, Dan; Tuchilus, Cristina; Vasile, Cornelia; Profire, Lenuta

    2015-01-01

    The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol) in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6) showed the highest swelling ratio (197%) and the highest biodegradation rate (63.04%) in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5) which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity. PMID:26694354

  19. Development and Characterization of Novel Films Based on Sulfonamide-Chitosan Derivatives for Potential Wound Dressing

    Directory of Open Access Journals (Sweden)

    Oana Maria Dragostin

    2015-12-01

    Full Text Available The objective of this study was to develop new films based on chitosan functionalized with sulfonamide drugs (sulfametoxydiazine, sulfadiazine, sulfadimetho-xine, sulfamethoxazol, sulfamerazine, sulfizoxazol in order to enhance the biological effects of chitosan. The morphology and physical properties of functionalized chitosan films as well the antioxidant effects of sulfonamide-chitosan derivatives were investigated. The chitosan-derivative films showed a rough surface and hydrophilic properties, which are very important features for their use as a wound dressing. The film based on chitosan-sulfisoxazol (CS-S6 showed the highest swelling ratio (197% and the highest biodegradation rate (63.04% in comparison to chitosan film for which the swelling ratio was 190% and biodegradation rate was only 10%. Referring to the antioxidant effects the most active was chitosan-sulfamerazine (CS-S5 which was 8.3 times more active than chitosan related to DPPH (1,1-diphenyl-2-picrylhydrazyl radical scavenging ability. This compound showed also a good ferric reducing power and improved total antioxidant capacity.

  20. Adsorption of Heavy Metal Ions, Dyes and Proteins by Chitosan Composites and Derivatives-A Review

    Institute of Scientific and Technical Information of China (English)

    LIU Bingjie; WANG Dongfeng; YU Guangli; MENG Xianghong

    2013-01-01

    Chitosan composites and derivatives have gained wide attentions as effective biosorbents due to their low costs and high contents of amino and hydroxyl functional groups.They have showed significant potentials of removing metal ions,dyes and proteins from various media.Chemical modifications that lead to the formation of the chitosan derivatives and chitosan composites have been extensively studied and widely reported in literatures.The aims of this review were to summarize the important information of the bioactivities of chitosan,highlight the various preparation methods of chitosan-based active biosorbents,and outline its potential applications in the adsorption of heavy metal ions,dyes and proteins from wastewater and aqueous solutions.

  1. The effect of chitosan derivatives and chitosan oligosaccharides on bacterial growth: I. Human colonic bacteria

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Lukáš, Filip; Kopečný, Jan

    Ancona: PUM, 2007, s. 7-7. [Application of Chitosan in Medical Sciences. Venezia (IT), 25.01.2007-26.01.2007] R&D Projects: GA AV ČR 1QS500200572 Institutional research plan: CEZ:AV0Z50450515 Keywords : chitosan Subject RIV: EE - Microbiology, Virology

  2. The effect of chitosan derivates and chitosan oligosacharides on bacterial growth: II. Intestinal bifidobacteria

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Filip; Kopečný, Jan; Šimůnek, Jiří

    Ancona : PUM, 2007, s. 9-9. [Application of Chitosan in Medical Sciences. Venezia (IT), 25.01.2007-26.01.2007] R&D Projects: GA AV ČR 1QS500200572 Institutional research plan: CEZ:AV0Z50450515 Keywords : chitosan Subject RIV: EE - Microbiology, Virology

  3. Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative

    Science.gov (United States)

    Shao, Kai; Han, Baoqin; Dong, Wen; Song, Fulai; Liu, Weizhi; Liu, Wanshun

    2015-10-01

    Hydroxypropyl chitosan (HP-chitosan) has been shown to have promising applications in a wide range of areas due to its biocompatibility, biodegradability and various biological activities, especially in the biomedical and pharmaceutical fields. However, it is not yet known about its pharmacokinetics and biodegradation performance, which are crucial for its clinical applications. In order to lay a foundation for its further applications and exploitations, here we carried out fluorescence intensity and GPC analyses to determine the pharmacokinetics mode of fluorescein isothiocyanate-labeled HP-chitosan (FITC-HP-chitosan) and its biodegradability. The results showed that after intraperitoneal administration at a dose of 10 mg per rat, FITC-HP-chitosan could be absorbed rapidly and distributed to liver, kidney and spleen through blood. It was indicated that FITC-HP-chitosan could be utilized effectively, and 88.47% of the FITC-HP-chitosan could be excreted by urine within 11 days with a molecular weight less than 10 kDa. Moreover, our data indicated that there was an obvious degradation process occurred in liver (chitosan has excellent bioavailability and biodegradability, suggesting the potential applications of hydroxypropyl-modified chitosan as materials in drug delivery, tissue engineering and biomedical area.

  4. Peptide-decorated chitosan derivatives enhance fibroblast adhesion and proliferation in wound healing.

    Science.gov (United States)

    Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G

    2016-05-20

    RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. PMID:26917381

  5. Synthesis of Novel Pyrimethanil Grafted Chitosan Derivatives with Enhanced Antifungal Activity

    Science.gov (United States)

    Liu, Song; Xing, Ronge; Chen, Xiaolin

    2016-01-01

    In this study, three pyrimethanil grafted chitosan (PML-g-CS) derivatives were obtained. The structures of the conjugates were confirmed by FT-IR, 1H NMR, and EA. The grafting ratios were measured by HPLC. Antifungal properties of pyrimethanil grafted chitosan (PML-g-CS) derivatives against the plant pathogenic fungi Rhizoctonia solani and Gibberella zeae were investigated at concentrations of 100, 200, and 400 mg/L. The PML-g-CS derivatives showed enhanced antifungal activity in comparison with chitosan. The PML-g-CS-1 showed the best antifungal activity against R. solani, whose antifungal index was 58.32%. The PML-g-CS-2 showed the best antifungal activity against G. zeae, whose antifungal index was 53.48%. The conjugation of chitosan and pyrimethanil showed synergistic effect. The PML-g-CS derivatives we developed showed potential for further study and application in crop protection. PMID:27529072

  6. New sizing agents and flocculants derived from chitosan

    International Nuclear Information System (INIS)

    Novel approaches for development of new textile sizing agents and flocculants were undertaken. One of these approaches is based on acid hydrolysis of chitosan and the other involves its carboxy methylation. Characterization of the hydrolyzed chitosan was performed through monitoring nitrogen content and apparent viscosity, while carboxymethyl chitosan was analyzed for degree of substitution (DS) along with apparent viscosity. Factors affecting both hydrolysis and carboxy methylation were investigated. The nitrogen content and apparent viscosity of chitosan decrease variably by increasing HCl concentration as well as time and temperature of hydrolysis. On the other hand, the DS of carboxymethyl chitosan increases by increasing the concentration of both sodium hydroxide and monochloroacetic acid and similarly increases by prolonging the duration and raising the temperature of carboxy methylation; in contrast with apparent viscosity which is inversely related to these parameters. Aqueous solutions of hydrolyzed chitosan or carboxymethyl chitosan were applied to light cotton fabric with a view to envision the technical feasibility of such water soluble chitosan for textile sizing. The size add-on on the light fabric is directly related to the concentration of the hydrolyzed or carboxymethyl chitosan in the sizing solution and so does the apparent viscosity of the latter. Hundred percent size removals could be achieved with the hydrolyzed chitosan irrespective or the size solution concentration provided that the latter is not less than 8%. Different situation is encountered with carboxymethyl chitosan where the percent size removal increase from 81% to 95% by increasing its concentration in the sizing solution from 5 % to 15%. Drying the sized fabric at 80 degree C for 5 minutes or 120 degree C for 3 minutes has practically no effect on percent size removal. The same holds true for heat treatment of the sized fabric at higher temperatures (up to 160 degree C) for longer

  7. Compatibility of Chitosan-Gelatin Films with Adipose Tissue Derived Stromal Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ling; GAO Yuan; KONG Lijun; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Chitosan has been shown to be a promising material for various applications in tissue engineering. Recently, adipose tissue derived stromal cells (ADSCs) have been investigated as an alternative source of seed cells for tissue engineering. The compatibility of chitosan and chitosan-gelatin complexes with ADSCs is not known. In the present study, ADSCs were isolated and characterized by phenotype using fluorescence-activated cell sorting (FACS). The morphology, viability, and the ability of the ADSCs to differentiate on chitosan and chitosan-gelatin composite films with 60 wt.% gelatin were evaluated. Results show that the ADSCs are positive for CD29, CD44, and CD105, but negative for CD31, CD34, and CD45. ADSCs adhere and grow better on the composite films than on the chitosan films. The ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells is not affected by their being cultured on chitosan-gelatin composite films. Therefore, chitosan-gelatin composite films are compatible with ADSCs and do not impair the ability of ADSCs to differentiate into osteogenic and adipogenic lineage cells.

  8. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  9. Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Atif Sarwar

    Full Text Available Recently, the attention of researchers has been drawn toward the synthesis of chitosan derivatives and their nanoparticles with enhanced antimicrobial activities. In this study, chitosan derivatives with different azides and alkyne groups were synthesized using click chemistry, and these were further transformed into nanoparticles by using the ionotropic gelation method. A series of chitosan derivatives was successfully synthesized by regioselective modification of chitosan via an azide-alkyne click reaction. The amino moieties of chitosan were protected during derivatization by pthaloylation and subsequently unblocked at the end to restore their functionality. Nanoparticles of synthesized derivatives were fabricated by ionic gelation to form complexes of polyanionic penta-sodium tripolyphosphate (TPP and cationic chitosan derivatives. Particle size analysis showed that nanoparticle size ranged from 181.03 ± 12.73 nm to 236.50 ± 14.32 nm and had narrow polydispersity index and positive surface charge. The derivatives and corresponding nanoparticles were evaluated in vitro for antibacterial and antifungal activities against three gram-positive and gram-negative bacteria and three fungal strains, respectively. The minimum inhibitory concentration (MIC of all derivatives ranged from 31.3 to 250 µg/mL for bacteria and 188 to1500 µg/mL for fungi and was lower than that of native chitosan. The nanoparticles with MIC ranging from 1.56 to 25 µg/mLfor bacteria and 94 to 750 µg/mL for fungi exhibited higher activity than the chitosan derivatives. Chitosan O-(1-methylbenzene triazolyl carbamate and chitosan O-(1-methyl phenyl sulfide triazolyl carbamate were the most active against the tested bacterial and fungal strains. The hemolytic assay on erythrocytes and cell viability test on two different cell lines (Chinese hamster lung fibroblast cells V79 and Human hepatic cell line WRL68 demonstrated the safety; suggesting that these derivatives could be

  10. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery

    OpenAIRE

    Ahmed TA; Aljaeid BM

    2016-01-01

    Tarek A Ahmed1,2 Bader M Aljaeid11Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 2Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, EgyptAbstract: Naturally occurring polymers, particularly of the polysaccharide type, have been used pharmaceutically for the delivery of a wide variety of therapeutic agents. Chitosan, the second abundant naturally o...

  11. The antimicrobial action of low-molar-mass chitosan, chitosan derivates and chitooligosaccharides on bifidobacteria

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Koppová, Ingrid; Lukáš, Filip; Tishchenko, Galina; Belzecki, G.

    2010-01-01

    Roč. 55, č. 4 (2010), s. 379-382. ISSN 0015-5632 R&D Projects: GA ČR(CZ) GA525/08/0803 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z40500505 Keywords : chitooligosaccharides * low-molar-mass chitosan Subject RIV: EE - Microbiology, Virology Impact factor: 0.977, year: 2010

  12. Synthesis and Characterization of a Chitosan Derivative for Electro-Optical Applications

    Science.gov (United States)

    Prastofer, Thomas

    1996-01-01

    Chitin is a naturally occurring polymer of alpha(1-4) poly N-acetylglucosamine found primarily in the shells of crustaceans and insects. This polymer is chemically and thermally stable and physically durable as a consequence of hydrogen bonding which causes the alignment and ordering of the polymer chains into microcrystals which aggregate into sheets with chiral nematic order. Industry has attempted to take advantage of chitin's properties and low cost (chitin is a waste product of the shellfish industry) to produce durable fibers and other products. This has been largely unsuccessful because of chitin's non reactivity and insolubility. Chitosan is the deacetylation product of chitin and retains many of the structural properties of chitin. Unlike chitin, chitosan is soluble in aqueous solution at reduced pH making it easier to be processed into fibers and films than chitin. Chitosan and its derivatives are now used in such commercial applications as wound dressings, waste water treatment, and in pharmaceuticals. In this study, we have synthesized a chitosan derivative, N-para-nitrophenyl chitosan (NPNPC), as a model material with potential applications in electro optics.

  13. Advanced fibroblast proliferation inhibition for biocompatible coating by electrostatic layer-by-layer assemblies of heparin and chitosan derivatives.

    Science.gov (United States)

    Follmann, Heveline D M; Naves, Alliny F; Martins, Alessandro F; Félix, Olivier; Decher, Gero; Muniz, Edvani C; Silva, Rafael

    2016-07-15

    Heparin and different chitosan derivatives were applied to produce stable electrostatic layer-by-layer assemblies and further used as coating technique to inhibit natural inflammatory response to implants. Heparin was assembled with chitosan and N-methylated chitosan derivatives, namely N,N-dimethyl chitosan (DMC) and N,N,N-trimethyl chitosan (TMC), by dipping method. DMC and TMC (chitosan derivatives) were synthesized and characterized before LbL assembly. Ellipsometry, quartz crystal microbalance (QCM-D), and contact angle were used to demonstrate the deposition of polyelectrolyte multilayers onto silicon wafers using polyelectrolyte solutions with different ionic strength. The biological properties of these films were evaluated by cell culture assays using NIH/3T3 fibroblast cells. LbL assemblies of Heparin and chitosan derivatives showed to be biocompatible, and at the same time they strongly hinder the proliferation speed of fibroblasts up to 40-fold factors. Therefore, the multilayers prepared from heparin and chitosan derivatives have good features to be used as an alternative coating treatment for biomedical implants with reduced body rejection properties. PMID:27089015

  14. Methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan as a new chitosan derivative: Synthesis, characterization, cytotoxicity and antibacterial activity.

    Science.gov (United States)

    Rahmani, Soheila; Mohammadi, Zohreh; Amini, Mohsen; Isaei, Elham; Taheritarigh, Sadegh; Rafiee Tehrani, Niyousha; Rafiee Tehrani, Morteza

    2016-09-20

    Chitosan, as a biocompatible polymer, is very attractive for biomedical applications. Continues studies are performing for improving its physicochemical features in order to make it more suitable for such approaches. In this study, methylated 4-N,N dimethyl aminobenzyl N,O carboxymethyl chitosan (MABCC) was synthesized,as a new chitosan derivative, in three steps. The investigations were carried out using FTIR, NMR, TGA and zeta potential measurement. Antibacterial and cell viability assessments were performed on four bacterial strains and two cell lines respectively. FTIR and NMR results showed that all substitution reactions were successfully carried out. Zeta potential of MABCC at various pH especially alkaline pH was greater than chitosan and it revealed increasing the solubility of the derivative. Antibacterial activity of MABCC was extremely greater than chitosan especially in Gram positive bacteria.Furthermore,it had no significant cytotoxicity against MCF-7 and Skov-3 cell lines in comparison to chitosan. These findings confirm that this new derivative can be introduced as a suitable compound for biomedical purposes. PMID:27261738

  15. Ellipsometric studies of synthetic albumin-binding chitosan-derivatives and selected blood plasma proteins

    Science.gov (United States)

    Sarkar, Sabyasachi

    This dissertation summarizes work on the synthesis of chitosan-derivatives and the development of ellipsometric methods to characterize materials of biological origin. Albumin-binding chitosan-derivatives were synthesized via addition reactions that involve amine groups naturally present in chitosan. These surfaces were shown to have an affinity towards human serum albumin via ELISA, UV spectroscopy and SDS PAGE. Modified surfaces were characterized with IR ellipsometry at various stages of their synthesis using appropriate optical models. It was found that spin cast chitosan films were anisotropic in nature. All optical models used for characterizing chitosan-derivatives were thus anisotropic. Chemical signal dependence on molecular structure and composition was illustrated via IR spectroscopic ellipsometry (IRSE). An anisotropic optical model of an ensemble of Lorentz oscillators were used to approximate material behavior. The presence of acetic acid in spin-cast non-neutralized chitosan samples was thus shown. IRSE application to biomaterials was also demonstrated by performing a step-wise chemical characterizations during synthesis stages. Protein adsorbed from single protein solutions on these modified surfaces was monitored by visible in-situ variable wavelength ellipsometry. Based on adsorption profiles obtained from single protein adsorption onto silicon surfaces, lumped parameter kinetic models were developed. These models were used to fit experimental data of immunoglobulin-G of different concentrations and approximate conformational changes in fibrinogen adsorption. Biomaterial characterization by ellipsometry was further extended to include characterization of individual protein solutions in the IR range. Proteins in an aqueous environment were characterized by attenuated total internal reflection (ATR) IR ellipsometry using a ZnSe prism. Parameterized dielectric functions were created for individual proteins using Lorentz oscillators. These

  16. Synthesis and Biological Evaluation of New Imine- and Amino-Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Huda E. Abdelwahab

    2015-12-01

    Full Text Available N-substituted chitosan derivatives were synthesized through condensation with a number of selected aryl and heteroaryl aldehydes. The synthesis of the amino-derivatives has been carried out by reductive amination with sodium borohydride as reducing agent. Their structures were characterized by (FT-IR, 1HNMR, and XRD. The antimicrobial activity of Chitosan Schiff’s base (CSB derivatives were investigated against four types of bacteria and two crop-threatening pathogenic fungi, and the results indicated that the antibacterial and antifungal activities of the investigated derivatives are very promising. Additionally, different concentrations of the triazolo-Schiff’s base derivative 3c were used for cytotoxicity screening against Human Breast Adenocarcinoma Cells (MCF-7, Human Colon Carcinoma Cells (HCT-116, and Human Hepatocellular Liver Carcinoma Cells (HepG-2, and the obtained data revealed that the examined compounds have an excellent cell growth inhibitory effects on the cell lines as compared to standard.

  17. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    D. J. Griffon

    2016-01-01

    Full Text Available Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  18. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release.

    Directory of Open Access Journals (Sweden)

    Gaurav Bajaj

    Full Text Available Chitosan is a cationic polymer of natural origin and has been widely explored as a pharmaceutical excipient for a broad range of biomedical applications. While generally considered safe and biocompatible, chitosan has the ability to induce inflammatory reactions, which varies with the physical and chemical properties. We hypothesized that the previously reported zwitterionic chitosan (ZWC derivative had relatively low pro-inflammatory potential because of the aqueous solubility and reduced amine content. To test this, we compared various chitosans with different aqueous solubilities or primary amine contents with respect to the intraperitoneal (i.p. biocompatibility and the propensity to induce pro-inflammatory cytokine production from macrophages. ZWC was relatively well tolerated in ICR mice after i.p. administration and had no pro-inflammatory effect on naïve macrophages. Comparison with other chitosans indicates that these properties are mainly due to the aqueous solubility at neutral pH and relatively low molecular weight of ZWC. Interestingly, ZWC had a unique ability to suppress cytokine/chemokine production in macrophages challenged with lipopolysaccharide (LPS. This effect is likely due to the strong affinity of ZWC to LPS, which inactivates the pro-inflammatory function of LPS, and appears to be related to the reduced amine content. Our finding warrants further investigation of ZWC as a functional biomaterial.

  19. Chitosan and its oligosaccharide derivatives (chito-oligosaccharides) as feed supplements in poultry and swine nutrition.

    Science.gov (United States)

    Swiatkiewicz, S; Swiatkiewicz, M; Arczewska-Wlosek, A; Jozefiak, D

    2015-02-01

    Chitosan is a non-toxic polyglucosamine, widespread in nature, which is deacetylated to varying degrees form of chitin, a component of exoskeleton of shrimps, crabs and insects. Because chitosan contains reactive functional groups, that is, amino acids and hydroxyl groups, it is characterised by antimicrobial, anti-inflammatory, anti-oxidative, antitumor, immunostimulatory and hypocholesterolemic properties when fed as dietary additive for farm animals. This article reviews and discusses the results of studies on the effects of dietary chitosan and its oligosaccharide derivatives on performance and metabolic response in poultry and pigs, that is, haematological, biochemical and immunological blood characteristics, microbiological profile of intestines, intestinal morphology and digestibility of nutrients, as well as on the quality of meat and eggs. The results of most of the experiments presented in this review indicate that chitosan used as a feed additive for poultry and pigs has some beneficial, biological effects, including immunomodulatory, anti-oxidative, antimicrobial and hypocholesterolemic properties. These properties of chitosan, unlike many other kinds of feed additives, were often reflected in improved growth performance (body weight gain and/or feed conversion ratio) of young animals, that is, broiler chickens and weaned pigs. PMID:25041091

  20. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    Directory of Open Access Journals (Sweden)

    Weimin Liu

    2011-01-01

    Full Text Available Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are widely used in controlling postharvest decay of fruits. This review aims to introduce the effect of chitin and chitosan on postharvest decay in fruits and the possible modes of action involved. We found most of the actions discussed in these researches rest on physiological mechanisms. All of the mechanisms are summarized to lay the groundwork for further studies which should focus on the molecular mechanisms of chitin and chitosan in controlling postharvest decay of fruits.

  1. Biological screening of chitosan derivatives using Artemia spp. (brine shrimp test)

    International Nuclear Information System (INIS)

    The present study reported on the screening of six selected chitosan derivatives using the brine shrimp lethality bioassay. In addition, the irradiation effects towards the compounds at 25 kGy were also studied. Chitosan is a natural polysaccharide derived from chitin, extracted from the exoskeletons of crustaceans and insects as well as walls of some bacteria and fungi. Brine shrimp test is employed for the screening of toxicity of chitosan derivatives. Toxicity test was carried out by adding different concentrations of tested samples to approximately 5 to 15 Artemia salina larvae. Biological activity using the brine shrimp bioassay was recorded as LC50 i.e. lethal concentration that kills 50% of the larvae within 24 hours of contact with the samples. Compounds are considered toxic when the LC50 value is lower than 1 mg/ml by brine shrimp bioassay and practically non-toxic when the value is larger. Of the samples tested, none were toxic to the brine shrimp (LC50 > 1 mg/ml). The LC50 values of all chitosan derivatives tested, control and irradiated at 25 kGy were above 1 mg/ml thus all tested samples are considered non-toxic. This study demonstrated that irradiation at 25 kGy showed no significant effects towards the toxicity of the chitosan derivatives. After irradiation, only NO-CMC exhibited marked decrease in LC50 value, reduced by 3-fold from 34.96 mg/ml to 11.07 mg/ml while O-CMC (5.45 mg/ml to 5 mg/ml) showed no clear differences based on rough estimation. This study suggested that brine shrimp bioassay is a simple, reliable and convenient method that could provide useful clues of the relative toxic potential of the sample tested. (Author)

  2. Thermodynamics of pyrimethamine and sulfadiazine binding to a chitosan derivative

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Eunice F.S. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, Sergipe (Brazil)]. E-mail: eunice@ufs.br; Cestari, Antonio R. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, Sergipe (Brazil); Oliveira, Cintia dos S. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, Sergipe (Brazil); Lima, Patricia S. de [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, Sergipe (Brazil); Almeida, Luis E. [Laboratory of Materials and Calorimetry, Departamento de Quimica/CCET, Universidade Federal de Sergipe, 49100-000 Sao Cristovao, Sergipe (Brazil)

    2007-07-01

    A thermodynamic investigation of the interaction of pyrimethamine (PYR) and sulfadiazine (SDZ) with immobilized copper on chitosan (chit-Cu) was done by heat-conduction calorimetry at 298.15 K. Langmuir isotherm describes the adsorption equilibrium behaviour in the entire concentration range studied. The molar enthalpies for formation of a monolayer of drug, {delta}{sub mon} H {sub m}, from linear and (non-linear) data analysis methods were found to be -40.2 {+-} 1.2 (-42.1 {+-} 1.5) and -69.0 {+-} 2.2 (-68.5 {+-} 1.9) kJ mol{sup -1} for PYR and SDZ, respectively.

  3. Thermodynamics of pyrimethamine and sulfadiazine binding to a chitosan derivative

    International Nuclear Information System (INIS)

    A thermodynamic investigation of the interaction of pyrimethamine (PYR) and sulfadiazine (SDZ) with immobilized copper on chitosan (chit-Cu) was done by heat-conduction calorimetry at 298.15 K. Langmuir isotherm describes the adsorption equilibrium behaviour in the entire concentration range studied. The molar enthalpies for formation of a monolayer of drug, Δmon H m, from linear and (non-linear) data analysis methods were found to be -40.2 ± 1.2 (-42.1 ± 1.5) and -69.0 ± 2.2 (-68.5 ± 1.9) kJ mol-1 for PYR and SDZ, respectively

  4. Preparation of Chitosan Derivatives from Gladius of Squid Sepioteuthis lessoniana (Lesson, 1830) and Antimicrobial Potential against Human Pathogens

    OpenAIRE

    Alagiri Srinivasan; Pasiyappazham Ramasamy; Namasivayam Subhapradha; Annaian Shanmugam; Vairamani Shanmugam

    2013-01-01

    In this study, the antimicrobial potential of chitosan and its water soluble derivatives from gladius of squid Sepioteuthis lessoniana against eleven human pathogens (gram +ve and gram -ve bacteria) was investigated. Chitosan was extracted from the gladius through demineralization, deproteinization and deacetylation. Chitosan was chemically modified by reacting with DMF-chlorosulfonic acid and orthophosphoric acid to yield water soluble derivatives such as sulfated chitosan and phosphorylated...

  5. Straightforward determination of the degree of N-acetylation of chitosan by means of first-derivative UV spectrophotometry

    OpenAIRE

    Silva, Ricardo M. P. da; Mano, J.F; Reis, R.L.

    2008-01-01

    First-derivative UV spectrophotometry is shown to be a reliable method for the determination of the degree of N-acetylation of chitosan samples. A mathematical expression is derived that allows to determine the DA directly from the mass concentration of a chitosan solution and the first derivative of its UV spectrum at 202 nm, thus eliminating the need for empiric correction curves for highly deacetylated samples. A procedure is proposed for the accurate mass determination o...

  6. Reactivity of chitosan derivatives and their interaction with guanine: A computational study

    Indian Academy of Sciences (India)

    Bhabesh Chandra Deka; Pradip Kr Bhattacharyya

    2016-04-01

    The present study delves into the reactivity of a few chitosan derivatives (CSDs) and their interaction with guanine in vacuum and in different phases. Increase in the polarity of the solvent lowers reactivity of the chosen derivatives (evaluated by using reactivity descriptors). Interaction between the CSDs and guanine (measured by interaction energy) weakens in solvent media and CSD-guanine interaction is weaker than the interaction between guanine and unmodified chitosan (CS). Chemical stability of CSD-guanine adducts remains similar to that of CS-guanine adduct in both polar and non-polar media. Moreover, CSD-guanine adducts exhibit comparable thermodynamic stability (quantified by free energy of solvation, Gsol) to that of unmodified CS-guanine adduct in non-polar solvent but in polar medium they are immensely destabilized in comparison to CS-guanine adduct. Observed theoretical results are expected to provide guidance for future relevant experimental research on gene delivery by CS derivatives.

  7. ZOT-derived peptide and chitosan functionalized nanocarrier for oral delivery of protein drug.

    Science.gov (United States)

    Lee, Jong Hyun; Sahu, Abhishek; Choi, Won Il; Lee, Jae Young; Tae, Giyoong

    2016-10-01

    In this study, we developed a dual ligand functionalized pluronic-based nanocarrier (NC) for oral delivery of insulin. Chitosan and zonula occludins toxin (ZOT)-derived, tight junction opening peptide were conjugated to NC to increase the permeability of loaded insulin across the small intestine through the paracellular pathway. Surface functionalized NC, either by chitosan or peptide, could modulate the tight junction (TJ) integrity in contrast to no effect of unmodified NC, as evidenced by the change in transepithelial electrical resistance (TEER) and immunostaining of Claudin-4, a tight junction marker, in Caco-2 cell monolayer. On the other hand, dual ligand (chitosan and peptide) functionalized NC significantly further increased the permeation of insulin across Caco-2 cell monolayer. More importantly, insulin loaded, dual ligand functionalized NC could increase the plasma insulin level and efficiently regulate the glycemic response for a prolonged period of time (∼1 day) upon oral administration to diabetic rats, whereas delivery of insulin by single ligand functionalized NCs, either by chitosan or peptide, as well as by unmodified NC and free insulin, could not induce the effective regulation of the blood glucose level. The use of fluorescence dye labeled insulin (FITC-insulin) and Cy5.5 labeled NC revealed that both insulin and dual ligand functionalized NC were adequately penetrated across the whole intestine villi in contrast to limited adsorption of insulin and NC mainly onto the epithelial surface of the intestine for single ligand functionalized NCs. These results suggest that dual conjugation of ZOT-derived peptide and chitosan is a promising approach to functionalize the surface of nanocarrier for oral delivery of protein drugs. PMID:27380442

  8. Effects of Chitin and Its Derivative Chitosan on Postharvest Decay of Fruits: A Review

    OpenAIRE

    Weimin Liu; Hongyin Zhang; Renping Li

    2011-01-01

    Considerable economic losses to harvested fruits are caused by postharvest fungal decay during transportation and storage, which can be significantly controlled by synthetic fungicides. However, considering public concern over pesticide residues in food and the environment, there is a need for safer alternatives for the control of postharvest decay to substitute synthetic fungicides. As the second most abundant biopolymer renewable source in nature, chitin and its derivative chitosan are wide...

  9. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    OpenAIRE

    Griffon, D. J.; Cho, J.; Wagner, J. R.; Charavaryamath, C.; Wei, J.; Wagoner Johnson, A.

    2016-01-01

    Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs) through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs) offer an abundant source of immature and immunoprivileged stem...

  10. Stable aqueous dispersion of superparamagnetic iron oxide nanoparticles protected by charged chitosan derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Szpak, Agnieszka; Kania, Gabriela [Jagiellonian University, Faculty of Chemistry (Poland); Skorka, Tomasz [Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics (Poland); Tokarz, Waldemar [AGH University of Science and Technology, Department of Solid State Physics (Poland); Zapotoczny, Szczepan, E-mail: zapotocz@chemia.uj.edu.pl; Nowakowska, Maria, E-mail: nowakows@chemia.uj.edu.pl [Jagiellonian University, Faculty of Chemistry (Poland)

    2013-01-15

    This article presents the synthesis and characterization of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) coated with ultrathin layer of anionic derivative of chitosan. The water-based fabrication involved a two-step procedure. In the first step, the nanoparticles were obtained by co-precipitation of ferrous and ferric aqueous salt solutions with ammonia in the presence of cationic derivative of chitosan. In the second step, such prepared materials were subjected to adsorption of oppositely charged chitosan derivative which resulted in the preparation of negatively charged SPIONs. They were found to develop highly stable dispersion in water. The core size of the nanocoated SPIONs, determined using transmission electron microscopy, was measured to be slightly above 10 nm. The coated nanoparticles form aggregates with majority of them having hydrodynamic diameter below 100 nm, as measured by dynamic light scattering. Their composition and properties were studied using FTIR and thermogravimetric analyses. They exhibit magnetic properties typical for superparamagnetic material with a high saturation magnetization value of 123 {+-} 12 emu g{sup -1} Fe. Very high value of the measured r{sub 2} relaxivity, 369 {+-} 3 mM{sup -1} s{sup -1}, is conducive for the potential application of the obtained SPIONs as promising contrast agents in magnetic resonance imaging.

  11. Synthesis and characterization of some novel antimicrobial thiosemicarbazone O-carboxymethyl chitosan derivatives.

    Science.gov (United States)

    Mohamed, Nadia A; Mohamed, Riham R; Seoudi, Rania S

    2014-02-01

    Three novel thiosemicarbazone O-carboxymethyl chitosan derivatives were obtained via a condensation reaction of thiosemicarbazide O-carboxymethyl chitosan with o-hydroxybenzaldehyde, p-methoxybenzaldehyde, and p- chlorobenzaldehyde respectively. Their structures were characterized by elemental analysis, FTIR, (13)C NMR and X-ray diffraction. The antimicrobial behaviors of the prepared derivatives against three types of bacteria Staphylococcus aureus (S. aureus, RCMBA 2004), Bacillus subtilis (B. subtilis, RCMBA 6005), and Escherichia coli (E. Coli, RCMBA 5003) and three crops-threatening pathogenic fungi Aspergillus fumigatus (A. fumigatus, RCMBA 06002), Geotrichum candidum (G. candidum, RCMB 05098), and Candida albicans (C. albicans, RCMB 05035) were investigated. The results indicated that the antibacterial and antifungal activities of the investigated derivatives are much higher than those of the parent O-carboxymethyl chitosan. They were more potent in case of Gram-positive bacteria than Gram-negative bacteria. The presence of electron withdrawing chlorine atom on the aryl moiety of the aldehyde portion improved greatly antimicrobial activity to be nearly equivalent to the used standard drugs. PMID:24211430

  12. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This article deals with the determination of the adsorption properties of metal ions and humic acid in water on crosslinked chitosan derivatives (carboxymethylchitosan) which were formed using the irradiation technique without any additives. The solubility test of these crosslinked materials were investigated in acidic, alkaline media,distilled water, and certain organic solvents. Scanning electron microscopic (SEM) images showed that the crosslinked chitosan derivatives possessed a porous morphological structure. Charged characteristic analyses demonstrated typically pH-dependent properties of the crosslinked materials. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu2+, Cd2+) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Moreover, isothermal adsorption data revealed that Cu2+, Cd2+,and humic acid were removed by these crosslinked materials with high efficiency. Adsorption isothermal data were interpreted well by the Langmuir equation. These crosslinked carboxymethylated chitosan derivatives indicate favorable adsorption of metal ions and humic acid.

  13. Modification of chitosan derivatives of environmental and biological interest: a green chemistry approach.

    Science.gov (United States)

    Abdelaal, Magdy Y; Sobahi, Tariq R; Al-Shareef, Hossa F

    2013-04-01

    Chitosan is a non-toxic polyaminosaccharide that is available in a variety of useful forms, and its chemical and biological properties make it a very attractive biomaterial that could be used in a wide variety of medicinal applications. This work focuses on the preparation of different chitosan derivatives by treatment with ethyl cellulose, cellulose triacetate and different carbohydrates in both neutral and slightly acidic media. It also addresses modification with glycidyltrimethyl ammonium chloride, phthalic anhydride and succinic acid derivatives. The obtained derivatives were crosslinked with glutaraldehyde. Thermo-gravimetric (TGA) and FT-IR spectroscopic analyses and electron scanning microscopy (SEM) were used to characterize the obtained products and demonstrate the success of the chitosan-modification process. The obtained products were tested for their ability to uptake transition metal ions from aqueous solutions, and their ion-uptake efficiency was determined with the aid of the ICP-AES technique. The bioactivity of some selected products was tested to study the effect of their concentrations on selected microorganisms. Burkholderia cepaci, Aspergillus niger, and Candida albicans were selected as representative examples of bacteria, yeasts and fungi, respectively. PMID:23376358

  14. Effect of Carburization on the Mechanical Properties of Biomedical Grade Titanium Alloys

    Institute of Scientific and Technical Information of China (English)

    Yong Luo; Haibo Jiang; Gang Cheng; Hongtao Liu

    2011-01-01

    Titanium cermets were successfully synthesized on the surface of biomedical grade titanium alloys by using sequential carburization method. The mechanical properties such as hardness, fracture toughness and plasticity were measured to estimate the potential application of titanium cermets. The results show that after carburization the surface hardness of titanium cermets was 778 HV, with a significant improvement of 128% compared with that of titanium alloys. In addition, the fracture toughness of titanium cermets was 21.5×106 Pa·m1/2, much higher than that of other ceramics. Furthermore, the analysis of the loading-unloading curve in the nanoindentation test also indicates that the plasticity of titanium cermet reached 32.1%, a relatively high value which illustrates the combination of the metal and ceramics properties. The results suggest that sequential carburization should be an efficient way to produce titanium cermets with hard surface, high toughness and plasticity.

  15. Hydrophobic Effect of Amphiphilic Derivatives of Chitosan on the Antifungal Activity against Aspergillus flavus and Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Vera Ap. de Oliveira Tiera

    2013-04-01

    Full Text Available Low molecular weight amphiphilic derivatives of chitosan were synthesized, characterized and their antifungal activities against Aspergillus flavus and Aspergillus parasiticus were tested. The derivatives were synthesized using as starting material a deacetylated chitosan sample in a two step process: the reaction with propyltrimethyl-ammonium bromide (Pr, followed by reductive amination with dodecyl aldehyde. Aiming to evaluate the effect of the hydrophobic modification of the derivatives on the antifungal activity against the pathogens, the degree of substitution (DS1 by Pr groups was kept constant and the proportion of dodecyl (Dod groups was varied from 7 to 29% (DS2. The derivatives were characterized by 1H-NMR and FTIR and their antifungal activities against the pathogens were tested by the radial growth of the colony and minimum inhibitory concentration (MIC methods. The derivatives substituted with only Pr groups exhibited modest inhibition against A. flavus and A. parasiticus, like that obtained with deacetylated chitosan. Results revealed that the amphiphilic derivatives grafted with Dod groups exhibited increasing inhibition indexes, depending on polymer concentration and hydrophobic content. At 0.6 g/L, all amphiphilic derivatives having from 7.0 to 29% of Dod groups completely inhibited fungal growth and the MIC values were found to decrease from 4.0 g/L for deacetylated chitosan to 0.25–0.50 g/L for the derivatives. These new derivatives open up the possibility of new applications and avenues to develop effective biofungicides based on chitosan.

  16. A comparative study on non-covalent functionalization of carbon nanotubes by chitosan and its derivatives for delivery of doxorubicin

    Science.gov (United States)

    Ali Mohammadi, Zahra; Aghamiri, Seyed Foad; Zarrabi, Ali; Talaie, Mohammad Reza

    2015-12-01

    Three targeting drug delivery systems were formulated by functionalization of single-walled carbon nanotubes using chitosan and its derivatives (Palmitoyl Chitosan and Carboxymethyl Chitosan) for delivery of doxorubicin, an anti-cancer drug. Loading efficiency was higher than 75% for all carriers. The systems were stable under neutral pH, while effectively released drug at reduced pH. The drug loading efficiency and the release rate were revealed to be dependent on the type of applied polymer and could be adjusted to a desired rate by changing the hydrophobic/hydrophilic substitution degree. Folic acid was attached and cytotoxicity of system was compared with free drug.

  17. Preparation and Physical Properties of Chitosan Benzoic Acid Derivatives Using a Phosphoryl Mixed Anhydride System

    Directory of Open Access Journals (Sweden)

    Kyu Yun Chai

    2012-02-01

    Full Text Available Direct benzoylation of the two hydroxyl groups on chitosan was achieved using a phosphoryl mixed anhydride system, derived from trifluoroacetic anhydride (TFAA, benzoic acids (BAs, and phosphoric acid (PA. The reaction is operated as a one pot process under mild conditions that does not require neither an inert atmosphere nor dry solvents. The structures of the synthesized compounds were confirmed by NMR and IR spectroscopy. Solubility tests on the products revealed that they were soluble in organic solvents such as N,N-dimethylformamide (DMF, dimethylsulfoxide (DMSO, and acetone. In the meantime, a morphological study by scanning electron microscopy (SEM evidently indicated that the chitosan benzoates underwent significant structural changes after the benzoylation.

  18. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    Science.gov (United States)

    Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.

    2015-07-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.

  19. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet

    OpenAIRE

    Pan, Haitao; Yang, Qingyun; Huang, Guidong; Ding, Chen; Cao, Peiqiu; HUANG, LANLAN; Xiao, Tiancun; Guo, Jiao; Su, Zhengquan

    2016-01-01

    Background: Hyperlipidemia (HLP) is the primary risk factor of cardiovascular disease (CVD). Various factors, including genetics, physical inactivity, and daily nutritional habits, affect the prevalence of HLP. Recently, it was revealed that dietary fibers, such as pectin, psyllium, and especially chitosan (CTS), may play important roles in hypolipidemic management. Thus, this study aims to determine the hypolipidemic effect and mechanism of CTS and its water-soluble derivatives, chitosan oli...

  20. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    Science.gov (United States)

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications. PMID:26562551

  1. PREPARATION AND CHARACTERIZATION OF NOVEL CHITOSAN DERIVATIVES:ADSORPTION EQUILIBRIUM OF IRON(Ⅲ)ION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The adsorption of Fe(Ⅲ)ions from aqueous solution by chitosan alpha-ketoglutaric acid(KCTS)and hydroxamated chitosan alpha-ketoglutaric acid(HKCTS)was studied in a batch adsorption system.Experiments were carried out as function of pH,temperature,agitation rate and concentration of Fe(Ⅲ)ions.The Langmuir and Freundlich adsorption models were applied to describe the equilibrium isotherms and isotherm constants were determined.The Langmuir model agrees very well with experimental data.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The dynamical data fit well with the second-order kinetic model.The pseudo second-order kinetic model was indicated with the activation energy of 19.61 and 7.98 KJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of Fe(Ⅲ)adsorption is likely to be controlled by the chemical process.Results also showed that novel chitosan derivatives(KCTS and HKCTS)were favorable adsorbents.

  2. In Situ Visualization of Lipid Raft Domains by Fluorescent Glycol Chitosan Derivatives.

    Science.gov (United States)

    Jiang, Yao-Wen; Guo, Hao-Yue; Chen, Zhan; Yu, Zhi-Wu; Wang, Zhifei; Wu, Fu-Gen

    2016-07-01

    Lipid rafts are highly ordered small microdomains mainly composed of glycosphingolipids, cholesterol, and protein receptors. Optically distinguishing lipid raft domains in cell membranes would greatly facilitate the investigations on the structure and dynamics of raft-related cellular behaviors, such as signal transduction, membrane transport (endocytosis), adhesion, and motility. However, current strategies about the visualization of lipid raft domains usually suffer from the low biocompatibility of the probes, invasive detection, or ex situ observation. At the same time, naturally derived biomacromolecules have been extensively used in biomedical field and their interaction with cells remains a long-standing topic since it is closely related to various fundamental studies and potential applications. Herein, noninvasive visualization of lipid raft domains in model lipid bilayers (supported lipid bilayers and giant unilamellar vesicles) and live cells was successfully realized in situ using fluorescent biomacromolecules: the fluorescein isothiocyanate (FITC)-labeled glycol chitosan molecules. We found that the lipid raft domains in model or real membranes could be specifically stained by the FITC-labeled glycol chitosan molecules, which could be attributed to the electrostatic attractive interaction and/or hydrophobic interaction between the probes and the lipid raft domains. Since the FITC-labeled glycol chitosan molecules do not need to completely insert into the lipid bilayer and will not disturb the organization of lipids, they can more accurately visualize the raft domains as compared with other fluorescent dyes that need to be premixed with the various lipid molecules prior to the fabrication of model membranes. Furthermore, the FITC-labeled glycol chitosan molecules were found to be able to resist cellular internalization and could successfully visualize rafts in live cells. The present work provides a new way to achieve the imaging of lipid rafts and also

  3. Comparison of Co(2+) adsorption by chitosan and its triethylene-tetramine derivative: Performance and mechanism.

    Science.gov (United States)

    Liao, Bing; Sun, Wei-Yi; Guo, Na; Ding, Sang-Lan; Su, Shi-Jun

    2016-10-20

    A cross-linked chitosan derivative (CCTS) was synthesized via cross-linking of epichlorohydrin and grafting of triethylene-tetramine. The adsorption performance and capacity of the raw chitosan (CTS) and its derivative were also investigated for removal of Co(2+) from aqueous solution. A maximum adsorbed amount of 30.45 and 59.51mg/g was obtained for CTS and CCTS, respectively under the optimized conditions. In addition, the adsorption kinetics for the adsorption of Co(2+) by CTS and CCTS were better described by the pseudo second-order equation. The adsorption isotherm of CCTS was well fitted by the Langmuir equation, but the data of the adsorption of Co(2+) onto CTS followed Freundlich and Sips isotherms better. Furthermore, the adsorbent still exhibited good adsorption performance after five regeneration cycles. Finally, Co(2+) removal mechanisms, including physical, chemical, and electrostatic adsorption, were discussed based on microstructure analysis and adsorption kinetics and isotherms. Chemical adsorption was the main adsorption method among these mechanisms. PMID:27474539

  4. ESI(+-MS and GC-MS Study of the Hydrolysis of N-Azobenzyl Derivatives of Chitosan

    Directory of Open Access Journals (Sweden)

    Fernanda S. Pereira

    2014-10-01

    Full Text Available New N-p-chloro-, N-p-bromo-, and N-p-nitrophenylazobenzylchitosan derivatives, as well as the corresponding azophenyl and azophenyl-p-sulfonic acids, were synthesized by coupling N-benzylvchitosan with aryl diazonium salts. The synthesized molecules were analyzed by UV-Vis, FT-IR, 1H-NMR and 15N-NMR spectroscopy. The capacity of copper chelation by these materials was studied by AAS. Chitosan and the derivatives were subjected to hydrolysis and the products were analyzed by ESI(+-MS and GC-MS, confirming the formation of N-benzyl chitosan. Furthermore, the MS results indicate that a nucleophilic aromatic substitution (SnAr reaction occurs under hydrolysis conditions, yielding chloroaniline from N-p-bromo-, and N-p-nitrophenylazo-benzylchitosan as well as bromoaniline from N-p-chloro-, and N-p-nitrophenylazobenzyl-chitosan.

  5. Protective effects of chitosan and its water-soluble derivatives against lead-induced oxidative stress in mice.

    Science.gov (United States)

    Wang, Zhihua; Yan, Yongbin; Yu, Xiaohua; Li, Wei; Li, Bojie; Qin, Caiqin

    2016-02-01

    Lead-induced oxidative stress was generated in mice under lead exposure, and the antioxidant activity of chitosan (CS) and its water-soluble derivatives was compared in vivo. The results indicated that there was significant difference (Pchitosan (HPCS) and quaternary ammonium salt of chitosan (HACC). And the changed biochemical variables showed recovery with different degrees, which indicated that CS and its derivatives were helpful for alleviating lead-induced oxidation damage in vivo. But the antioxidant activity for different CS was different, followed by HPCS>HACC>carboxymethyl chitosan (CMCS)>CS, which was in close with the introduction of different substituent groups. In particular, for the dietary of HPCS, there was significant recovery for the changed biochemical variables (P<0.05) in mice after lead exposure, except GSSG in kidney and MDA in brain. PMID:26454108

  6. Chitosan nanopolymers effect in activating of mouse bone marrow derived dendritic cells

    Directory of Open Access Journals (Sweden)

    Saeed Daneshmandi

    2014-08-01

    Conclusion: Results showed that chitosan nanopolymers significantly increased dendertic cell maturation phenotype, proinflamatory cytokine production, and induction of T cell proliferation. Therefore, chitosan nanocomplexes and scaffolds can induce and accelerate immune responses.

  7. Chitosan cooperates with mesenchyme-derived factors inregulating salivary gland epithelial morphogenesis

    OpenAIRE

    Yang, Tsung-Lin; Young, Tai-Horng

    2008-01-01

    Chitosan is a widely used biocompatible biomaterial in the tissue regeneration, but its utility and application in the tissue morphogenesis of salivary gland remains unclear. The study aimed to explore the effects of chitosan on the epithelial morphogenesis of submandibular gland (SMG). With chitosan, the branching morphogenesis of the whole SMG explant was facilitated, and the morphogenetic-promoting effects of mesenchymal tissue on SMG were further enhanced. Furthermore, chitosan was compet...

  8. Water-soluble derivatives of chitosan as a target delivery system of 99mTc to some organs in vivo for nuclear imaging and biodistribution

    International Nuclear Information System (INIS)

    Carboxymethyl chitosan, (CMC), and N-lauryl-carboxymethyl chitosan (LCMC), have been prepared as water soluble derivatives of chitosan. These biodegradable chitosan derivatives were characterized and investigated for nuclear imaging and body distribution. They were labeled with 99mTc to use them as targeted delivery to some organs in vivo for nuclear imaging and to follow their biodistribution within the body. The factors controlling the labeling efficiency have been investigated. The percent labeling yield was determined by using ascending paper chromatographic technique. In vivo biodistribution studies of radiolabeled chitosan derivatives were carried out in groups of female Wistar rats, the body distribution profile in rat was recorded by gamma scintigraphy and the biodistribution of 99mTc-labeled compounds in each organ was calculated as a percentage of the injected dose per gram of tissue (%ID/g). It has been found that the biodistribution of the two compounds and the pattern of their liver uptake were markedly different. The present study demonstrates a high potential approach for liver imaging using 99mTc-LCMC. An intriguing finding of this study was that the three samples were excreted rapidly via the kidneys because of the water-soluble nature of chitosan derivatives. This suggests that water-soluble chitosan derivatives are good polymeric carriers for radioactive element that overcomes accumulation in the body. Moreover, the easy and inexpensive availability of chitosan could be beneficial for applications in scintigraphic imaging. (author)

  9. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. coli and S. aureus growth

    Directory of Open Access Journals (Sweden)

    Rejane C. Goy

    2016-02-01

    Full Text Available Abstract Chitosan is largely known for its activity against a wide range of microorganisms, in which the most acceptable antimicrobial mechanism is found to include the presence of charged groups in the polymer backbone and their ionic interactions with bacteria wall constituents. This interaction suggests the occurrence of a hydrolysis of the peptidoglycans in the microorganism wall, provoking the leakage of intracellular electrolytes, leading the microorganism to death. The charges present in chitosan chains are generated by protonation of amino groups when in acid medium or they may be introduced via structural modification. This latter can be achieved by a methylation reaction resulting in a quaternized derivative with a higher polymeric charge density. Since the charges in this derivative are permanents, it is expected a most efficient antimicrobial activity. Hence, in the present study, commercial chitosan underwent quaternization processes and both (mother polymer and derivative were evaluated, in gel form, against Staphylococcus aureus (Gram-positive and Escherichia coli (Gram-negative, as model bacteria. The results, as acquired from turbidity measurements, differ between materials with an expressive reduction on the Gram-positive microorganism (S. aureus growth, while E. coli (Gram-negative strain was less sensitive to both polymers. Additionally, the antibacterial effectiveness of chitosan was strongly dependent on the concentration, what is discussed in terms of spatial polymer conformation.

  10. Sorption of copper onto low molecular weight chitosan derivative from aqueous solution.

    Science.gov (United States)

    Boamah, Peter Osei; Huang, Yan; Hua, Mingqing; Onumah, Jacqueline; Sam-Amoah, Livingstone K; Boamah, Paul Osei; Qian, Yaao; Zhang, Qi

    2016-07-01

    In this study, sorption of copper onto low molecular weight chitosan derivative was studied. Experimental parameters such as pH of the solution (A), temperature (B), dose of the sorbent (C), and concentration of solution (D) were considered. The statistical results indicated that the dose of sorbent (C) and Cu (II) concentration (D) influenced removal efficiency at 5% significance level. Also, some interactions such as ABCD, ACD, ABC and AC affected the removal process. The sorbent was characterized with FTIR, SEM and TG/DSC. Freundlich isotherm model was the best isotherm model. The kinetic study results correlated well with the pseudo-second-order model. The thermodynamic studies revealed that the nature of copper sorption was spontaneous and endothermic. Strong affinity of the sorbent for copper (II) was revealed by the Isothermal Titration Calorimetry (ITC) technique. PMID:27039244

  11. Determination of the parameters of binding between lipopolysaccharide and chitosan and its N-acetylated derivative using a gravimetric piezoquartz biosensor.

    Science.gov (United States)

    Naberezhnykh, G A; Gorbach, V I; Kalmykova, E N; Solov'eva, T F

    2015-03-01

    The interaction of endotoxin (lipopolysaccharide - LPS) with low molecular weight chitosan (5.5 kDa), its N-acylated derivative and chitoliposomes was studied using a gravimetric piezoelectric quartz crystal microbalance biosensor. The optimal conditions for the formation of a biolayer based on immobilized LPS on the resonator surface and its regeneration were elaborated. The association and dissociation rate constants for LPS binding to chitosans were determined and the affinity constants (Kaf) were calculated based on the data on changes in the oscillation frequency of the quartz crystal resonator. The Kaf values correlated with the ones obtained using other methods. The affinity of N-acylated chitosan binding to LPS was higher than that of the parent chitosan binding to LPS. Based on the results obtained, we suggest that water-soluble N-acylated derivatives of chitosan with low degree of substitution of amino groups could be useful compounds for endotoxin binding and neutralization. PMID:25637889

  12. Preparation of chitosan-TPP sub-micron particles: Critical evaluation and derived recommendations.

    Science.gov (United States)

    Rázga, Filip; Vnuková, Dominika; Némethová, Veronika; Mazancová, Petra; Lacík, Igor

    2016-10-20

    The controlled preparation of chitosan particles is far from being trivial due to a considerable number of experimental parameters. For chitosan-tripolyphosphate (TPP) particles we evaluate the impact of chemical (type of chitosan, concentration, chitosan to TPP ratio, pH, ionic strength) and process factors (dialysis, stirring rate, rate of TPP addition, temperature, needle diameter) on the size and colloidal stability. The particles were prepared at pH=6.0 at which chitosan adopts the coiled conformation that is discussed as the dominant factor in controlling the stoichiometry of crosslinking reaction shifted towards TPP. These conditions result in identical particle size around 400nm and zeta potential around 22mV. The colloidal stability evaluated 24 hours after preparation depends on the amount of TPP during crosslinking. Under the same conditions, the colloidal stability up to 1 month is demonstrated. Several recommendations are provided to increase the control over formation of chitosan-TPP particles. PMID:27474593

  13. A study on the hemocompatibility of dendronized chitosan derivatives in red blood cells

    Directory of Open Access Journals (Sweden)

    Zhou YF

    2015-05-01

    Full Text Available Yanfang Zhou,1,* Jiemei Li,1,* Fang Lu,1 Junjie Deng,2 Jiahua Zhang,1 Peijie Fang,1 Xinsheng Peng,1 Shu-Feng Zhou3 1Guangdong Medical Universtity, Dongguan, Guangdong, People’s Republic of China; 2Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, USA; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA *These authors contributed equally to this work Abstract: Dendrimers are hyperbranched macromolecules with well-defined topological structures and multivalent functionalization sites, but they may cause cytotoxicity due to the presence of cationic charge. Recently, we have introduced alkyne-terminated poly(amidoamine (PAMAM dendrons of different generations (G=2,3 into chitosan to obtain dendronized chitosan derivatives [Cs-g-PAMAM (G=2,3], which exhibited a better water solubility and enhanced plasmid DNA transfection efficiency. In this study, we attempted to examine the impact of Cs-g-PAMAM (G=2,3 at different concentrations (25 µg/mL, 50 µg/mL, and 100 µg/mL on the morphology, surface structure, and viability of rat red blood cells (RBCs. The results showed that treatment of RBCs with Cs-g-PAMAM (G=2,3 at 50 µg/mL and 100 µg/mL induced a slightly higher hemolysis than Cs, and Cs-g-PAMAM (G=3 caused a slightly higher hemolysis than Cs-g-PAMAM (G=2, but all values were <5.0%. Optical microscopic and atomic force microscopic examinations indicated that Cs-g-PAMAM (G=2,3 caused slight RBC aggregation and lysis. Treatment of RBCs with 100 µg/mL Cs-g-PAMAM (G=3 induced echinocytic transformation, and RBCs displayed characteristic irregular contour due to the folding of the periphery. Drephanocyte-like RBCs were observed when treated with 100 µg/mL Cs-g-PAMAM (G=3. Erythrocytes underwent similar shape transition upon treatment with Cs-g-PAMAM (G=2 or Cs. The roughness values (Rms of RBCs incubated with Cs-g-PAMAM (G=2,3 were significantly larger

  14. Nanostructures Derived from Starch and Chitosan for Fluorescence Bio-Imaging

    Directory of Open Access Journals (Sweden)

    Yinxue Zu

    2016-07-01

    Full Text Available Fluorescent nanostructures (NSs derived from polysaccharides have drawn great attention as novel fluorescent probes for potential bio-imaging applications. Herein, we reported a facile alkali-assisted hydrothermal method to fabricate polysaccharide NSs using starch and chitosan as raw materials. Transmission electron microscopy (TEM demonstrated that the average particle sizes are 14 nm and 75 nm for starch and chitosan NSs, respectively. Fourier transform infrared (FT-IR spectroscopy analysis showed that there are a large number of hydroxyl or amino groups on the surface of these polysaccharide-based NSs. Strong fluorescence with an excitation-dependent emission behaviour was observed under ultraviolet excitation. Interestingly, the photostability of the NSs was found to be superior to fluorescein and rhodamine B. The quantum yield of starch NSs could reach 11.12% under the excitation of 360 nm. The oxidative metal ions including Cu(II, Hg(IIand Fe(III exhibited a quench effect on the fluorescence intensity of the prepared NSs. Both of the two kinds of the multicoloured NSs showed a maximum fluorescence intensity at pH 7, while the fluorescence intensity decreased dramatically when they were put in an either acidic or basic environment (at pH 3 or 11. The cytotoxicity study of starch NSs showed that low cell cytotoxicity and 80% viability was found after 24 h incubation, when their concentration was less than 10 mg/mL. The study also showed the possibility of using the multicoloured starch NSs for mouse melanoma cells and guppy fish imaging.

  15. Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro.

    Science.gov (United States)

    Li, Junjie; Yang, Boguang; Qian, Yufeng; Wang, Qiyu; Han, Ruijin; Hao, Tong; Shu, Yao; Zhang, Yabin; Yao, Fanglian; Wang, Changyong

    2015-10-01

    In this study, we have developed ι-carrageenan/chitosan/gelatin (CCG) scaffold containing multiple functional groups (-NH2 , -OH, -COOH, and -SO3 H) to resemble the native extracellular matrix (ECM), using the ion-shielding technology and ultrasonic dispersion method. Fourier transform infrared spectroscopy (FTIR) of the CCG scaffolds suggests that the formation of CCG network involves electrostatic interactions between ι-carrageenan (ι-CA) and chitosan/gelatin, and the covalent cross-linking among amino groups of chitosan and/or gelatin. Scanning electron microscopic (SEM) observation reveals that the porous structure of scaffolds can be modulated by the ratio of ι-CA to chitosan/gelatin. The swelling ratio of the hydrogels increases as the ι-CA contents increase. Using differential scanning calorimetry, we found that the double helix structure of ι-CA is only stabilized at low contents of ι-CA in the CCG scaffolds (e.g., 5 wt %). The scaffolds containing 5% ι-CA showed the best protein adsorption capacity (4.46 ± 0.63 μg protein/mg scaffold) and elastic modulus (5.37 ± 1.03 MPa). In addition, the CCG scaffolds exhibit excellent support for adipose-derived mesenchymal stem cells (ADMSCs) attachment and proliferation, and they can improve the osteogenic differentiation and neovascularization capacities of ADMSCs. Overall, we conclude that the CCG may represent an ideal scaffold material for bone tissue engineering. PMID:25449538

  16. Glial cell line-derived neurotrophic factor gene delivery via a polyethylene imine grafted chitosan carrier

    Directory of Open Access Journals (Sweden)

    Peng YS

    2014-06-01

    Full Text Available Yu-Shiang Peng,1,* Po-Liang Lai,2,* Sydney Peng,1 His-Chin Wu,3 Siang Yu,1 Tsan-Yun Tseng,4 Li-Fang Wang,5 I-Ming Chu1 1Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 2Department of Orthopedic Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, 3Department of Materials Engineering, Tatung University, Taipei, 4Graduate School of Biotechnology and Bioengineering, College of Engineering, Yuan Ze University, Chung-Li, 5Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan *Yu-Shiang Peng and Po-Liang Lai contributed equally to this work Abstract: Parkinson’s disease is known to result from the loss of dopaminergic neurons. Direct intracerebral injections of high doses of recombinant glial cell line-derived neurotrophic factor (GDNF have been shown to protect adult nigral dopaminergic neurons. Because GDNF does not cross the blood–brain barrier, intracerebral gene transfer is an ideal option. Chitosan (CHI is a naturally derived material that has been used for gene transfer. However, the low water solubility often leads to decreased transfection efficiency. Grafting of highly water-soluble polyethylene imines (PEI and polyethylene glycol onto polymers can increase their solubility. The purpose of this study was to design a non-viral gene carrier with improved water solubility as well as enhanced transfection efficiency for treating Parkinsonism. Two molecular weights (Mw =600 and 1,800 g/mol of PEI were grafted onto CHI (PEI600-g-CHI and PEI1800-g-CHI, respectively by opening the epoxide ring of ethylene glycol diglycidyl ether (EX-810. This modification resulted in a non-viral gene carrier with less cytotoxicity. The transfection efficiency of PEI600-g-CHI/deoxyribonucleic acid (DNA polyplexes was significantly higher than either PEI1800-g-CHI/DNA or CHI/DNA polyplexes. The maximal GDNF expression of PEI600-g-CHI/DNA was at the

  17. Preparation and adsorption behavior for metal ions and humic acid of chitosan derivatives crosslinked by irradiation

    International Nuclear Information System (INIS)

    Introduction: Removing metal ions and humic acid from water in water treatment has attracted much environment and health interests. Adsorbents, derived from a nature polymer, are desired in the viewpoints of environment-conscious technologies. Recently, some nature materials such as chitin, chitosan and their derivatives have been identified as an attractive option due to their distinctive properties. For an insoluble adsorbent based on these polymers to be obtained over a broad pH range, modification through crosslinking is required. Crosslinking agents such as glutaric dialdehyde and ethylene glycol diglycidyl ether are frequently used for modification. However, these crosslinking agents are not preferred because of their physiological toxicity. Radiation-crosslinking without any additive in the fabrication process results in a high-purity product. In a previous work, we applied ionizing radiation to induce the crosslinking of carboxymethylchitosan under highly concentrated paste-like conditions. The aim of this study is to investigate the adsorption behavior of metal ions, humic acid on irradiation-crosslinked carboxymethylchitosan. Experimental: Irradiation of chitosan samples at paste-like state was done with an electron beam. The solubility test of these crosslinked materials were investigated in acidic, alkaline media, and some organic solvents. Swelling and charged characteristic analyses demonstrated typically pH-sensitive properties of these crosslinked materials. Scanning electron microscopic images showed that the crosslinked samples possessed porous morphological structure. The adsorption studies were carried out by the batch method at room temperature. Adsorption of heavy metal ions (such as Cu2+, Cd2+) and humic acid onto crosslinked samples was found to be strongly pH-dependent. Adsorption kinetic studies indicated the rapid removal of metal ions, and humic acid from the aqueous solutions. Also, isothermal adsorption data revealed that Cu2+, Cd2

  18. 低分子量壳聚糖及其衍生物与金属离子配合物研究%Coordination Compounds of Metal Ions with Low-molecular Weight Chitosan and Their Derivative

    Institute of Scientific and Technical Information of China (English)

    丁德润

    2005-01-01

    Chitosan(CTS) of molecular weight 3 × 106 was degraded by oxidation with H2O2. The molecular weight of degraded chitosan (CTS′) was between 5 500-6 000. Through the reaction of degraded chitosan with glyoxylic acid and sodium borohydride, the modified derivative of N-Carboxymethyl degraded chitosan (NCTS′) was obtained. The metal ions of Fe(Ⅱ), Ni(Ⅱ), Cu(Ⅱ) and Cr(Ⅲ) were coordinated at different conditions by degraded chitosan(CTS′→ M(Ⅱ)) and its derivative (NCTS′→ M(Ⅱ))). These coordination compounds were characterized with UV and IR spectroscopy.

  19. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  20. One-pot green synthesis of luminescent gold nanoparticles using imidazole derivative of chitosan.

    Science.gov (United States)

    Nazirov, Alexander; Pestov, Alexander; Privar, Yuliya; Ustinov, Alexander; Modin, Evgeny; Bratskaya, Svetlana

    2016-10-20

    Water soluble luminescent gold nanoparticles with average size 2.3nm were for the first time synthesized by completely green method of Au(III) reduction using chitosan derivative-biocompatible nontoxic N-(4-imidazolyl)methylchitosan (IMC) as both reducing and stabilizing agent. Reduction of Au(III) to gold nanoparticles in IMC solution is a slow process, in which coordination power of biopolymer controls both reducing species concentration and gold crystal growth rate. Gold nanoparticles formed in IMC solution do not manifest surface plasmon resonance, but exhibit luminescence at 375nm under UV light excitation at 230nm. Due to biological activity of imidazolyl-containing polymers and their ability to bind proteins and drugs, the obtained ultra-small gold nanoparticles can find an application for biomolecules detection, bio-imaging, drug delivery, and catalysis. Very high catalytic activity (as compared to gold nanoparticles obtained by other green methods) was found for Au/IMC nanoparticles in the model reaction of p-nitrophenol reduction providing complete conversion of p-nitrophenol to p-aminophenol within 180-190s under mild conditions. PMID:27474610

  1. Chitosan derivatives/reduced graphene oxide/alginate beads for small-molecule drug delivery.

    Science.gov (United States)

    Chen, Kaihang; Ling, Yunzhi; Cao, Cong; Li, Xiaoyun; Chen, Xiao; Wang, Xiaoying

    2016-12-01

    This work reported chitosan derivatives (CSD)/reduced graphene oxide (rGO) blending with alginate to prepare hydrogel beads for small-molecule drug delivery for the first time. At the beginning, graphene oxide (GO) was successfully reduced using diverse CSD as reducing and stabilizing agents via facile heating. Then the obtained CSD/rGO was blended with alginate and crosslinked into hydrogel beads in CaCl2 solution. Finally, the beads were systematically evaluated as novel vehicles for pH-responsive small-molecule drug delivery. The optimal CSD/rGO/alginate beads showed a high drug-loading efficiency of 82.8% on small-molecule fluorescein sodium (FL), outstanding sustainable release of 71.6% upon 150h at a physiological pH and quick-release of 82.4% drug content at 20h in an acidic medium. Additionally, the cytotoxicity assay result suggested that the CSD/rGO/alginate beads showed negligible cytotoxicity to hepatic stellate cell lines, opening up possibilities for safe and efficient drug delivery. PMID:27612820

  2. A review of chitosan and its derivatives in bone tissue engineering.

    Science.gov (United States)

    LogithKumar, R; KeshavNarayan, A; Dhivya, S; Chawla, A; Saravanan, S; Selvamurugan, N

    2016-10-20

    Critical-sized bone defects treated with biomaterials offer an efficient alternative to traditional methods involving surgical reconstruction, allografts, and metal implants. Chitosan, a natural biopolymer is widely studied for bone regeneration applications owing to its tunable chemical and biological properties. However, the potential of chitosan to repair bone defects is limited due to its water insolubility, faster in vivo depolymerization, hemo-incompatibility, and weak antimicrobial property. Functionalization of chitosan structure through various chemical modifications provides a solution to these limitations. In this review, current trends of using chitosan as a composite with other polymers and ceramics, and its modifications such as quaternization, carboxyalkylation, hydroxylation, phosphorylation, sulfation and copolymerization in bone tissue engineering are elaborated. PMID:27474556

  3. Synthesis optimization and structural characterization of chitosan-glucose derivative obtained by the Maillard reaction

    OpenAIRE

    Montenegro, M I.; Cardelle-Cobas, A.; Gullón, B.; Ruiz-Matute, A.; Corzo, N.; Pintado, Manuela

    2014-01-01

    Several strategies have been applied in order to expand the functional properties of chitosan and its applicability. One of the most successful is the introduction of hydrophilic residues in the chitosan molecule via formation of covalent bonds with the reactive amino groups that may provide it higher solubility (allowing application in more diverse food matrices) and more functional properties, namely prebiotic activity (allowing the development of new functional foods). The M...

  4. Stability of spray-dried chitosan salts derived from lobster chitin as a raw material

    Directory of Open Access Journals (Sweden)

    Nilia De la Paz

    2015-12-01

    Full Text Available Aim: The objective of this work was to develop and validate a method for determining the degree of molar deacetylation of chitosan acetate and chitosan lactate, as well as to study the stability of both salts. Materials and Methods: A spectrophotometric method was validated according to internationally-established quantitative techniques. Three industrial batches of chitosan acetate and chitosan lactate, obtained by spray drying, were stored under shelf life conditions for twelve months. Organoleptic characteristics, the degree of molar deacetylation, pH, loss on drying and microbiological count were determined at the beginning and end of the study. Results and Discussion: The statistical data proved that the two methods complied with international standards for the validation of analytical techniques. It was shown that the procedures developed were linear, specific, precise and accurate, so they can be used for the purposes of quality control and stability study of the polymer salts. Salts remained in powder form, with a light-yellow to dark-yellow coloration. Values of loss on drying (2.5 - 5.2 % of chitosan salt using acetic or lactic acid, as a solvent, indicated the good quality of spray-dried particles of chitosan. Similar behavior was obtained regarding pH. The two salts stayed within the parameters that determine their quality, both in the initial stage and after twelve months at room temperature. Conclusion: Spray drying chitosan acetate and chitosan lactate, stored at room temperature in a dry place, in double polyethylene bags and multilayer paper bags, kept their physical, chemical and microbiological characteristics for a period of twelve months.

  5. Functional recoveries of sciatic nerve regeneration by combining chitosan-coated conduit and neurosphere cells induced from adipose-derived stem cells.

    Science.gov (United States)

    Hsueh, Yuan-Yu; Chang, Ya-Ju; Huang, Tzu-Chieh; Fan, Shih-Chen; Wang, Duo-Hsiang; Chen, Jia-Jin Jason; Wu, Chia-Ching; Lin, Sheng-Che

    2014-02-01

    Suboptimal repair occurs in a peripheral nerve gap, which can be partially restored by bridging the gap with various biosynthetic conduits or cell-based therapy. In this study, we developed a combination of chitosan coating approach to induce neurosphere cells from human adipose-derived stem cells (ASCs) on chitosan-coated plate and then applied these cells to the interior of a chitosan-coated silicone tube to bridge a 10-mm gap in a rat sciatic nerve. Myelin sheath degeneration and glial scar formation were discovered in the nerve bridged by the silicone conduit. By using a single treatment of chitosan-coated conduit or neurosphere cell therapy, the nerve gap was partially recovered after 6 weeks of surgery. Substantial improvements in nerve regeneration were achieved by combining neurosphere cells and chitosan-coated conduit based on the increase of myelinated axons density and myelin thickness, gastrocnemius muscle weight and muscle fiber diameter, and step and stride lengths from gait analysis. High expressions of interleukin-1β and leukotriene B4 receptor 1 in the intra-neural scarring caused by using silicone conduits revealed that the inflammatory mechanism can be inhibited when the conduit is coated with chitosan. This study demonstrated that the chitosan-coated surface performs multiple functions that can be used to induce neurosphere cells from ASCs and to facilitate nerve regeneration in combination with a cells-assisted coated conduit. PMID:24360575

  6. Concentration and Physicochemical Properties of Chitosan Derivatives Determine the Induction of Defense Responses in Roots and Leaves of Tobacco (Nicotiana tabacum Plants

    Directory of Open Access Journals (Sweden)

    Alejandro B. Falcon-Rodriguez

    2009-01-01

    Full Text Available Problem statement: The chitosan derivatives promote diverse defensive responses in plants, which are affected by chitosan chemical features and concentration. Glucanase (EC 3.2.1.6, Phenylalanine Ammonia-Lyase (PAL, EC 4.3.1.5 and peroxidase (POD, EC 1.11.1.6 are key enzymes in tobacco defense responses. Thus, the aim of this study was to know the behavior of their enzymatic activity in leaves and roots of whole tobacco plants, previously elicited with chitosan derivatives of different molecular weight and acetylating degree. Approach: 25 day-old tobacco plants were treated with three chitosan derivatives (CH- 63, CH-88 and OLG of different chemical features. True leaves and roots were sampled after three, six, nine and 12 days post-treatment for further evaluation of the enzymatic activities. Results: Chitosan treatments increased the activity of all three studied enzymes depending on the concentration and chemical feature of the derivative. The highest enzymatic activities with polymers occurred at 1 g L-1 while the oligochitosan mixture achieved good enzymatic levels as compared to controls from 0.1 g L-1 onwards. The Degree of Acetylation (DA affected PAL activity; a more acetylated polymer induced a higher activity than a less acetylated one. However, the low levels of acetylation favored POD activity. The systemic induction of enzymatic activities was detected in leaves of treated plants after root application. The effect of the acetylation degree was systemically transmitted to the leaves by POD, but not by PAL activity; so the transmission of the acetylating degree influence beyond the tissue directly elicited by chitosan polymer depended on each enzymatic response tested. Conclusion: This study proved that various chitosan derivatives induced and raised lasting β-1,3-glucanase, PAL and POD activities in tobacco leaves and roots as local or systemic responses, which could lead to the

  7. Cytotoxicity study of novel water-soluble chitosan derivatives applied as membrane material of alginate microcapsules

    NARCIS (Netherlands)

    Sobol, Marcin; Bartkowiak, Artur; de Haan, Bart; de Vos, Paul

    2013-01-01

    The majority of cell encapsulation systems applied so far are based on polyelectrolyte complexes of alginate and polyvalent metal cations. Although widely used, these systems suffer from the risk of disintegration. This can be partially solved by applying chitosan as additional outer membrane. Howev

  8. Chitosan Derivatives/Calcium Carbonate Composite Capsules Prepared by the Layer-by-Layer Deposition Method

    Directory of Open Access Journals (Sweden)

    Kensuke Sakurai

    2008-03-01

    Full Text Available Core/shell capsules composed of calcium carbonate whisker core (rod-like shape and chitosan/chitosansulfate shell were prepared by the layer-by-layer deposition technique. Two chitosan samples of different molecular weights (Mw=9.7×104 and 1.09×106g·mol-1 were used as original materials. Hollow capsules were also obtained by dissolution of the core in hydrochloric acid. Electron microscopy revealed that the surface of the shell is rather ragged associated with some agglomerates. The shell thickness l obeys a linear relation with respect to the number of deposited layers m as l=md+a(a>0. The values of d (thickness per layer were 4.0 and 1.0 nm for the higher and lower Mw chitosan materials, respectively, both of which are greater than the thickness of the monolayer. The results suggest that the feature of the deposition does not obey an ideal homogeneous monolayer-by-monolayer deposition mechanism. Shell crosslinked capsules were also prepared via photodimerization reaction of cinnamoyl groups after a deposition of cinnamoyl chitosan to the calcium carbonate whisker core. The degree of crosslink was not enough to stabilize the shell structure, and hollow capsule was not obtained.

  9. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhiguo; Zhang, Jie; Chi, Huibo; Cao, Feng, E-mail: cpufengc@163.com [China Pharmaceutical University, Department of Pharmaceutics, School of Pharmacy (China)

    2015-12-15

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC{sub 0–6h} values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes.

  10. Organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides with intercalated phacolysin as ocular delivery system

    International Nuclear Information System (INIS)

    This study was mainly aimed to evaluate the potential use of a novel ocular drug delivery system, organic–inorganic hybrid nanocomposites based on chitosan derivatives and layered double hydroxides (LDH). Organic polymers of chitosan–glutathione (CG) and pre-activated chitosan–glutathione (CG-2MNA) were successfully synthesized and characterized. LDH with intercalated phacolysin (PCL), including larger hexagonal LDH–PCL (Lh-LDH–PCL), larger spherical LDH–PCL (Ls-LDH–PCL), smaller hexagonal LDH–PCL (Sh-LDH–PCL), CG hybrid LDH–PCL (LDH–PCL-CG), and CG-2MNA hybrid LDH–PCL (LDH–PCL-CG-2MNA), were prepared. The nanocomposites with particle size of 107.2–274.9 nm were characterized by powder X-ray diffraction, Fourier transform infrared, transmission electron micrographs, etc. In vivo precorneal retention studies showed that the detectable time of all nanocomposites was prolonged from 2 to 6 h in comparison to PCL saline. Accordingly, the AUC0–6h values of Lh-LDH–PCL, Ls-LDH–PCL, Sh-LDH–PCL, LDH–PCL-CG, and LDH–PCL-CG-2MNA nanocomposites were increased by 2.27-, 2.08-, 3.08-, 4.67-, and 3.36-fold, respectively. The Draize test and hematoxylin and eosin staining demonstrated that modified LDH had no eye irritation after single and repeated administration. These results indicated that chitosan derivatives-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs.Graphical AbstractThiolated chitosan-LDH hybrid nanocomposite dispersion could be a promising ocular drug delivery system to improve precorneal retention time of drugs and may facilitate penetration of drugs into tissues of the eyes

  11. Chitosan as a starting material for wound healing applications

    OpenAIRE

    Patrulea, Viorica; Ostafe, V.; Borchard, Gerrit; Jordan, Olivier

    2015-01-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo a...

  12. Comparison of antithrombin activity of the polysulphate chitosan derivatives in in vivo and in vitro system.

    Science.gov (United States)

    Drozd, N N; Sher, A I; Makarov, V A; Galbraikh, L S; Vikhoreva, G A; Gorbachiova, I N

    2001-06-01

    In order to choose the proper method for evaluating the antithrombin activity in samples of chitosan polysulphate (CP) with different polymerization degrees and sulphation degrees, we estimated the ability of direct anticoagulants to depress the coagulability of recalcified sheep blood using the third international heparin standard (A1 - in vitro system) and determined such activity on pharmacodynamic curve (A2 - in vivo system). The curve admits the kinetics of CP elimination to be nonlinear in case of intravenous injection to rabbits, as it is observed in heparin: Ct = C(o)exp(-K(e)lt), where Ct is the CP concentration at the time moment t; C(o) is the CP concentration at the injection moment; Kel is the elimination constant. Besides, it is assumed that there is a linear approximation of the anticoagulant effect on the dose, which finally makes it possible to calculate the specific activity A2: T = KTCt+T(in), where T is the time of clot formation at different time intervals after CP injection; T(in) is the time of clot formation prior to CP injection. T value was assessed in two tests: blood coagulation time (BCT) and activated partial thromboplastin time (APTT). No correlation was observed between A1 and A2. At the same time, the values of Kel and the period of semi-elimination, with the use of the biospecific cetylpyridinium chloride electrophores for the quantitative determination of CP in rabbit's blood taken at different time intervals after injection, showed a close correlation (r = .94, P < .05) between the same parameters, obtained with the help of the rectilinear pharmacodynamic plot in BCT test. Thus, experimentally, it was proven that the assumption of the CP nonlinear elimination and the CP effect-dose dependence was true, which is necessary for A2 calculation. Relatively low molecular weights (MW 61-82 kDa, polymerization degree 188-252 ) and high sulphation patterns (sulphur amounts 15.6-16.9%, sulphation degree 1.58-1.86) were slowly cleared and

  13. Synthesis and characterization of chitosan phosphopyridoxal Schiff base derivative in ionic liquid%离子液体中壳聚糖磷酸吡哆醛席夫碱衍生物的合成与表征

    Institute of Scientific and Technical Information of China (English)

    李克让; 徐民; 张帅; 刘蒲

    2013-01-01

    5-Phosphate pyridoxal (PPL) is the active coenzyme form of vitamin B6, acting as a coenzyme in a multitude of biochemical processes, therefore chitosan derivatives containing pyridoxal phosphate skeleton will provide an important material for the application of chitosan in the emerging biological function material. Chitosan phosphopyridoxal Schiff base derivative was synthesized by the condensation reaction of chitosan and 5-phosphate pyridoxal in an ionic liquid, 1-butyl-3-methylimidazolium chloride (BmimCl). The product was characterized by Fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR), XRD and TGA. The results showed that phosphopyridoxal group was successfully introduced onto the chitosan chain. It was found that degree of substitution of modified chitosan could reach 16.3%.

  14. Investigation of the effects of cooling rate on the microstructure of investment cast biomedical grade Co alloys

    Science.gov (United States)

    Kaiser, R.; Browne, D. J.; Williamson, K.

    2012-01-01

    The objective of this work is to determine the microstructural characteristics of investment cast cobalt alloy as the cross-sectional area is varied, thus changing the local effective cooling rates and solidification times. The extent of published work on the as-cast properties of cobalt alloys is minimal. The primary aim of this work is therefore to extend knowledge of the behaviour of such alloys as they solidify, which will influence the design of new products as well as the industrial optimisation of the casting process. Wedge-shaped parts were cast from a biomedical grade cobalt alloy employing the method of lost wax investment casting. Analytical techniques such as optical microscopy, image analysis and microhardness testing were used to characterise the as-cast parts. Parameters studied include variations in grain structure, nature of the columnar and equiaxed zones and the spread of porosity (both shrinkage and gas). Changes in microstructure were compared to microhardness values obtained. The solidification profile of the alloy through the prototype cast component was investigated based on measurement of the dendrite arm spacings. A discussion on the physical phenomena controlling the microstructural variations is presented.

  15. Synthesis and physicochemical and dynamic mechanical properties of a water-soluble chitosan derivative as a biomaterial.

    Science.gov (United States)

    Cho, Jaepyoung; Grant, Justin; Piquette-Miller, Micheline; Allen, Christine

    2006-10-01

    The physicochemical and rheological properties of a water-soluble chitosan (WSC) derivative were characterized in order to facilitate its use as a novel material for biomedical applications. The WSC was prepared by conjugating glycidyltrimethylammonium chloride (GTMAC) onto chitosan chains. Varying the molar ratio of GTMAC to chitosan from 3:1 to 6:1 produced WSCs with a degree of substitution (DS) that ranged from 56% to 74%. The WSC with the highest DS was soluble in water up to concentrations of 25 g/dL at room temperature. An increase in the polymer concentration gradually increased both the pH and conductivity of the WSC solutions. The rheological properties of the WSC solutions were found to be dependent on the salt and polymer concentrations as well as the DS value. In the absence of salt, the rheological behavior of the WSC was found to be typical of that for a polyelectrolyte in the dilute solution regime. However, the addition of salt decreased the viscosity of the polymer solution due to the reduction of electrostatic repulsions by the positively charged trimethylated ammonium groups of the WSC. In the concentrated regime, the viscosity of the WSCs was found to follow a power-law expression. The lowest DS WSC had the more favorable viscoelastic properties that were attributed to its high molecular weight, as confirmed by the stress relaxation spectra and intrinsic viscosity measurements. The effect of DS on the degree of interaction between WSC and the lipid egg phosphatidylcholine was investigated by FTIR analysis. Overall, the lower DS WSC had enhanced rheological properties and was capable of engaging in stronger intermolecular physical interactions. PMID:17025361

  16. Chitosan and Its Derivatives Applied in Harvesting Microalgae for Biodiesel Production: An Outlook

    OpenAIRE

    Guanyi Chen; Liu Zhao; Yun Qi; Yuan-Lu Cui

    2014-01-01

    Although oil-accumulating microalgae are a promising feedstock for biodiesel production, large-scale biodiesel production is not yet economically feasible. As harvesting accounts for an important part of total production cost, mass production of microalgae biodiesel requires an efficient low-energy harvesting strategy so as to make biodiesel production economically attractive. Chitosan has emerged as a favorable flocculating agent in harvesting of microalgae. The aim of this paper is to revie...

  17. The Effect of Chitosan on Organogenesis of Oil Palm Embryo-Derived Callus

    Directory of Open Access Journals (Sweden)

    Kantamaht KANCHANAPOOM

    2010-06-01

    Full Text Available Zygotic embryos of oil palm (Elaeis guineensis Jacq. var. tenera were excised and cultured on MS medium containing 3 mg/l 2, 4-D either with or without 0.05% activated charcoal (AC. Improved growth of embryos was obtained on MS medium supplemented with 0.05% AC. Callus cultures were initiated from embryos, young leaves and roots on MS medium containing 2, 4-D, NAA and 0.05% AC. On these media, two morphologically distinct types of white and yellow compact calluses were produced. Green shoots regenerated after several transfers of the yellow compact calluses from zygotic embryos to MS medium supplemented with 15 mg/l chitosan either with or without 5 mg/l 2, 4-D. Histological sectioning revealed that regenerated shoots originated from a clump of meristematic cells that had dense cytoplasm. Regenerated shoots rooted when transferred to MS medium in the presence of 0.05% AC. Transfer of plantlets to soil was achieved. Callus from young seedling leaves and roots did not regenerate shoots or roots in medium containing 2, 4-D or TDZ, with or without chitosan. This finding shows that chitosan can initiate organogenesis in oil palm callus.

  18. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater

    International Nuclear Information System (INIS)

    Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01N H2SO4. The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater

  19. Novel chitosan derivative for the removal of cadmium in the presence of cyanide from electroplating wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Sankararamakrishnan, Nalini [Facility for Ecological and Analytical Testing, 302 Southern Laboratories, Indian Institute of Technology, Kanpur, U.P. 208016 (India)], E-mail: nalini@iitk.ac.in; Sharma, Ajit Kumar; Sanghi, Rashmi [Facility for Ecological and Analytical Testing, 302 Southern Laboratories, Indian Institute of Technology, Kanpur, U.P. 208016 (India)

    2007-09-05

    Chitosan was chemically modified by introducing xanthate group onto its backbone using carbondisulfide under alkaline conditions. The chemically modified chitosan flakes (CMC) was used as an adsorbent for the removal of cadmium ions from electroplating waste effluent under laboratory conditions. CMC was found to be far more efficient than the conventionally used adsorbent activated carbon. The maximum uptake of cadmium by CMC in batch studies was found to be 357.14 mg/g at an optimum pH of 8.0 whereas for plain chitosan flakes it was 85.47 mg/g. Since electroplating wastewater contains cyanide in appreciable concentrations, interference of cyanide ions in cadmium adsorption was found to be very significant. This problem could be easily overcome by using higher doses of CMC, however, activated carbon was not found to be effective even at higher doses. Due to the high formation constant of cadmium with xanthate and adsorption was carried out at pH 8, cations like Pb(II), Cu(II), Ni(II) and Zn(II) did not interfere in the adsorption. Dynamics of the sorption process were studied and the values of rate constant of adsorption were calculated. Desorption of the bound cadmium from CMC was accomplished with 0.01N H{sub 2}SO{sub 4}. The data from regeneration efficiencies for 10 cycles evidenced the reusability of CMC in the treatment of cadmium-laden wastewater.

  20. Potential Biomedical Application of Enzymatically Treated Alginate/Chitosan Hydrosols in Sponges—Biocompatible Scaffolds Inducing Chondrogenic Differentiation of Human Adipose Derived Multipotent Stromal Cells

    Directory of Open Access Journals (Sweden)

    Anna Zimoch-Korzycka

    2016-08-01

    Full Text Available Current regenerative strategies used for cartilage repair rely on biomaterial functionality as a scaffold for cells that may have potential in chondrogenic differentiation. The purpose of the research was to investigate the biocompatibility of enzymatically treated alginate/chitosan hydrosol sponges and their suitability to support chondrogenic differentiation of human adipose derived multipotent stromal cells (hASCs. The alginate/chitosan and enzyme/alginate/chitosan sponges were formed from hydrosols with various proportions and were used as a biomaterial in this study. Sponges were tested for porosity and wettability. The porosity of each sponge was higher than 80%. An equal dose of alginate and chitosan in the composition of sponges improved their swelling ability. It was found that equal concentrations of alginate and chitosan in hydrosols sponges assure high biocompatibility properties that may be further improved by enzymatic treatment. Importantly, the high biocompatibility of these biomaterials turned out to be crucial in the context of hydrosols’ pro-chondrogenic function. After exposure to the chondrogenic conditions, the hASCs in N/A/C and L/A/C sponges formed well developed nodules and revealed increased expression of collagen type II, aggrecan and decreased expression of collagen type I. Moreover, in these cultures, the reactive oxygen species level was lowered while superoxide dismutase activity increased. Based on the obtained results, we conclude that N/A/C and L/A/C sponges may have prospective application as hASCs carriers for cartilage repair.

  1. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots

    Science.gov (United States)

    Fei, Xuening; Yu, Miaozhuo; Zhang, Baolian; Cao, Lingyun; Yu, Lu; Jia, Guozhi; Zhou, Jianguo

    2016-01-01

    The LCC-CdTe quantum dots (QDs) hybrid was fabricated by mixing the N-lauryl-N, O-carboxymethyl chitosan (LCC) micelle with water-soluble CdTe QDs in an aqueous solution via hydrophobic forces and the electronic attraction. The structures of LCC and LCC-CdTe QDs hybrid were determined by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The results showed that the lauryl and carboxymethyl were successfully grafted to chitosan oligosaccharide (CSO), and a number of CdTe QDs were encapsulated by LCC micelle to form a core/shell structure. The tested results of the fluorescent characteristics of LCC, CdTe QDs and LCC-CdTe QDs hybrid showed that there were some obvious fluorescent interactions between LCC and CdTe QDs. Meanwhile, with the change in LCC space structure, the fluorescent interactions between LCC and QDs showed different fluorescent characteristics. The QDs fluorescent (FL) intensity increased first and then decreased to almost quenching, while LCC FL intensity decreased continually.

  2. Curcumin loaded in bovine serum albumin–chitosan derived nanoparticles for targeted drug delivery

    Indian Academy of Sciences (India)

    SRIDHAR SKYLAB RAJAN; AKILA PANDIAN; TAMILSELVI PALANIAPPAN

    2016-06-01

    The main aim of this study is to prepare biocompatible polymeric nanoparticles for targeted delivery of curcumin to human colorectal adenocarcinoma (DLD-1) cells. Curcumin has an ability to block proliferation ofcancer cells by suppressing the nuclear transcription factor NF-KB hence, it is chosen as drug in the current study. To avoid its low bio-availability, high dosage and poor aqueous solubility, curcumin nanoparticles are prepared and loaded in naturally available biopolymers like chitosan and bovine serum albumin (BSA) by nanoprecipitation method at pH 6.3. The prepared nanoformulation was then characterized for surface morphology, particle size, polydispersity index, FT-IR spectra, UV–Visible spectrometer, confocal microscopy and in vitro cytotoxicity studies. Results showed that sizes of the prepared nanoparticles were ranged between 181 and 363 nm and curcumin-loaded particles were selectively targeting colorectal carcinoma cells effectively when concentration gets increased. So this study proved that BSA–chitosan based nanoparticles can be used as an efficient vehicle for effective curcumin delivery in treatment of cancer cells.

  3. Characterization of Protein and Peptide Binding to Nanogels Formed by Differently Charged Chitosan Derivatives

    Directory of Open Access Journals (Sweden)

    Anastasia Zubareva

    2013-07-01

    Full Text Available Chitosan (Chi is a natural biodegradable cationic polymer with remarkable potency as a vehicle for drug or vaccine delivery. Chi possesses multiple groups, which can be used both for Chi derivatization and for particle formation. The aim of this work was to produce stable nanosized range Chi gels (nanogels, NGs with different charge and to study the driving forces of complex formation between Chi NGs and proteins or peptides. Positively charged NGs of 150 nm in diameter were prepared from hexanoyl chitosan (HC by the ionotropic gelation method while negatively charged NGs of 190 nm were obtained from succinoyl Chi (SC by a Ca2+ coacervation approach. NGs were loaded with a panel of proteins or peptides with different weights and charges. We show that NGs preferentially formed complexes with oppositely charged molecules, especially peptides, as was demonstrated by gel-electrophoresis, confocal microscopy and HPLC. Complex formation was accompanied by a change in zeta-potential and decrease in size. We concluded that complex formation between Chi NGs and peptide/proteins is mediated mostly by electrostatic interactions.

  4. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications.

    Science.gov (United States)

    Shahzad, Sohail; Shahzadi, Lubna; Mahmood, Nasir; Siddiqi, Saadat Anwar; Rauf, Abdul; Manzoor, Faisal; Chaudhry, Aqif Anwar; Rehman, Ihtesham Ur; Yar, Muhammad

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and (1)H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. PMID:27207049

  5. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet

    Science.gov (United States)

    Pan, Haitao; Yang, Qingyun; Huang, Guidong; Ding, Chen; Cao, Peiqiu; Huang, Lanlan; Xiao, Tiancun; Guo, Jiao; Su, Zhengquan

    2016-01-01

    Background Hyperlipidemia (HLP) is the primary risk factor of cardiovascular disease (CVD). Various factors, including genetics, physical inactivity, and daily nutritional habits, affect the prevalence of HLP. Recently, it was revealed that dietary fibers, such as pectin, psyllium, and especially chitosan (CTS), may play important roles in hypolipidemic management. Thus, this study aims to determine the hypolipidemic effect and mechanism of CTS and its water-soluble derivatives, chitosan oligosaccharides (MN≤1,000 Da (COSI) and MN≤3,000 Da (COSIII)), in male hyperlipidemic rats induced by a high-fat diet (HFD). Design After the model creation, 120 Sprague-Dawley (SD) rats were equally assigned to 12 groups fed various diets as follows: the normal group with basic diet, an HFD group, an HFD group supplemented with three doses of CTS, COSI and COSIII groups, and an HFD group treated with simvastatin (7 mg/kg·d). After 6 weeks, body weight, fat/body ratio, and the relevant biomarkers of serum, liver, and feces were measured. Additionally, the histological analysis of liver and adipose tissue was performed, and the mRNA expressions of liver peroxisome proliferator-activated receptor-α (PPARα) and hepatic lipase (HL) were examined. Results Compared with HFD group, rats fed CTS, COSI, and COSIII showed a better ability to regulate their body weight, liver and cardiac indices, fat/body ratio, as well as serum, liver, and fecal lipids, and simultaneously to maintain the appropriate activity of liver and serum superoxide dismutase (SOD), alanine aminotransferase (ALT), aspartate aminotransferase (AST), as well as liver and fecal total bile acids (TBA). Simultaneously, there had been a higher mRNA expression of PPARα and HL in the treatment groups. Conclusion The obtained results suggested that these three function foods can effectively improve liver lipid metabolism by normalizing the expressions of PPARα and HL, and protect liver from the oxidized trauma by

  6. Modeling and optimization of degree of folate grafted on chitosan and carboxymethyl-chitosan

    OpenAIRE

    Esfandiarpour-Boroujeni, S.; Bagheri-Khoulenjani, S.; Mirzadeh, H.

    2015-01-01

    Chitosan is a cationic polysaccharide with great properties and so is considered as an attractive biopolymer. However, chitosan shows its antibacterial activity only in acidic environment and this restricts its uses. So water-soluble chitosan derivatives such as carboxymethyl chitosan could be good candidates for such biomedical applications. Modified chitosan with hydrophobic functional groups such as folate (FA) is able to make self-assembled nanoparticles in aqueous media. One of the most ...

  7. Reinforced chitosan-based heart valve scaffold and utility of bone marrow-derived mesenchymal stem cells for cardiovascular tissue engineering

    Science.gov (United States)

    Albanna, Mohammad Zaki

    Recent research has demonstrated a strong correlation between the differentiation profile of mesenchymal stem cells (MSCs) and scaffold stiffness. Chitosan is being widely studied for tissue engineering applications due to its biocompatibility and biodegradability. However, its use in load-bearing applications is limited due to moderate to low mechanical properties. In this study, we investigated the effectiveness of a fiber reinforcement method for enhancing the mechanical properties of chitosan scaffolds. Chitosan fibers were fabricated using a solution extrusion and neutralization method and incorporated into porous chitosan scaffolds. The effects of different fiber/scaffold mass ratios, fiber mechanical properties and fiber lengths on scaffold mechanical properties were studied. The results showed that incorporating fibers improved scaffold strength and stiffness in proportion to the fiber/scaffold mass ratio. A fiber-reinforced heart valve leaflet scaffold achieved strength values comparable to the radial values of human pulmonary and aortic valves. Additionally, the effects of shorter fibers (2 mm) were found to be up to 3-fold greater than longer fibers (10 mm). Despite this reduction in fiber mechanical properties caused by heparin crosslinking, the heparin-modified fibers still improved the mechanical properties of the reinforced scaffolds, but to a lesser extent than the unmodified fibers. The results demonstrate that chitosan fiber-reinforcement can be used to generate tissue-matching mechanical properties in porous chitosan scaffolds and that fiber length and mechanical properties are important parameters in defining the degree of mechanical improvement. We further studied various chemical and physical treatments to improve the mechanical properties of chitosan fibers. With combination of chemical and physical treatments, fiber stiffness improved 40fold compared to unmodified fibers. We also isolated ovine bone marrow-derived MSCs and evaluated their

  8. 壳聚糖及其衍生物在食品工业中的应用%Application of Chitosan and Its Derivatives in Food Industry

    Institute of Scientific and Technical Information of China (English)

    黄国宏

    2015-01-01

    对壳聚糖的制备及改性方法的研究动态进行了综述,并叙述了壳聚糖及其衍生物在水果保鲜、饮料、水产品及肉类保藏食品工业中的应用,并提出了壳聚糖研究发展方向。%The preparation of chitosan and its derivation methods were reviewed in this paper. Besides the application of chitosan and its derivatives in fresh fruits, beverage, aquatic products and meat preservation were introduced and its research direction and development trend were put forward.

  9. Synthesis of a novel water-soluble chitosan derivative for flocculated decolorization

    International Nuclear Information System (INIS)

    To increase the water solubility and cationic charges at pH 7, cationic moieties were introduced onto both the C6-OH and C2-NH2 groups in the chitosan (CTS) matrix by graft modification. The chemical structure of the obtained copolymer was demonstrated by characterizations of FT-IR, 13C NMR, WXRD, SEM. Its excellent decolorization properties as a novel flocculant were evaluated with the C.I. Reactive Orange 5 (RO 5) and C.I. Reactive Blue 19 (RB 19) solutions using a jar test method. Both the nature of the anionic dyes and the pH of the initial dye solutions had effects on the decolorization properties. Charge neutralization played a dominant role for the color removal at pH 4, while polymer bridging contributed mainly to the color removal at pH 7. For the given flocculant/dye solutions, added salt was not in favor of the flocculated decolorization. At 25 deg. C, the flocculant needed for the highest color removal at pH 4 was 60 wt% of the dye (RO 5 or RB 19), but that at pH 7 were 100 wt% of RB 19 and 120 wt% of RO 5, respectively.

  10. Synthesis, characterization and radiation processing of carboxymethyl-chitosan

    International Nuclear Information System (INIS)

    Chitosan is natural polymer derived from chitin, a polysaccharide found in the exoskeleton of shrimps, crabs, fungi and others. Chitosan is a naturally occurring substance that is chemically similar to cellulose. Chitosan possesses a positive ionic charge give ability to chemically bond with negatively charged fats. Chitosan is soluble in organic acid but insoluble in water. Carboxymethyl-chitosan (cm-chitosan) is a derivative of chitosan which is water-soluble was then prepared by carboxymethylation process of chitosan produced from local shrimp shell. A simple method for synthesis of cm-chitosan has been developed at 55 degree C in aqueous sodium hydroxide / propanol with chloroacetic acid (CAA) or sodium chloroacetate salt (SCA). The modification of chitosan to water-soluble chitosan can be used in hydrogel as anti-bacterial and anti-fungal agent, and it overcome the problem of bad smell using organic acid. (Author)

  11. 壳聚糖及其衍生物的抗菌机理及在纺织品抗菌整理中的应用%Antibacterial mechanism and application in textile antibacterial finishing of chitosan and its derivatives

    Institute of Scientific and Technical Information of China (English)

    胡芳; 张惠君; 王亮; 佟淑敏

    2013-01-01

    The properties and antibacterial mechanism of chitosan were introduced. The influencing factors of antibacterial activity on chitosan, the application in textile antibacterial finishing of chitosan and its derivatives and washing durance of antibacterial textiles were reviewed.%介绍了壳聚糖的性质,壳聚糖的抗菌机理,详述了影响壳聚糖抑菌性能的因素、壳聚糖及其衍生物作为抗菌剂在纺织品抗菌整理中的应用以及抗菌织物的耐洗性.

  12. Evaluation of Microcrystalline Chitosan and Fibrin Membranes as Platelet-Derived Growth Factor-BB Carriers with Amoxicillin

    Directory of Open Access Journals (Sweden)

    Kazimiera H. Bodek

    2015-01-01

    Full Text Available The aim of this study was to describe the mechanical and sorption features of homogeneous and composite membranes which consist of microcrystalline chitosan (MCCh and fibrin (Fb in various proportions as well as the in vitro kinetics of platelet-derived growth factor-BB (PDGF-BB released from ten types of membranes in the presence or absence of amoxicillin (Am. The films were characterized by Fourier transform infrared (FTIR spectroscopy, mechanical tests: breaking strength (Bs and elongation at break (Eb, as well as SEM images, and swelling study. The influence of the form of samples (dry or wet on Young’s modulus (E was also examined. The homogeneous MCCh (M1 and composite M3 and M4 (MCCh : Fb = 2 : 1 and 1 : 1 membranes were characterized by good sorption properties and higher mechanical strength, when compared with Fb (M2 membrane. Connecting MCCh with Fb decreases release of PDGF-BB and increases release of Am. The most efficient release of PDGF-BB was observed in the case of M4 (the optimum MCCh : Fb ratio was 1 : 1 membrane. It was found that the degree of PDGF-BB release from the membrane is influenced by the physicochemical and mechanical characteristics of the films and by its affinity to growth factor PDGF-BB.

  13. Use of synovium-derived stromal cells and chitosan/collagen type I scaffolds for cartilage tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gong Zhongcheng; Lin Zhaoquan [Department of Oral and Maxillofacial Surgery, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830054 (China); Xiong Hui; Long Xing; Wei Lili; Li Jian; Wu Yang, E-mail: xinglong1957@yahoo.com.c [State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079 (China)

    2010-10-01

    The objective was to investigate synovium-derived stromal cells (SDSCs) coupled with chitosan/collagen type I (CS/COL-I) scaffolds for cartilage engineering. CS/COL-I scaffolds were fabricated through freeze-drying and cross-linked by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. SDSCs were isolated from synovium and cultured onto CS/COL-I scaffolds, constructs of which were incubated in serum-free chondrogenic medium with sequential application of TGF-{beta}1 and bFGF for up to 21 days and then implanted into nude mice. The physical characteristics of the scaffolds were examined. The quality of the in vitro constructs was assessed in terms of DNA content by PicoGreen assay and cartilaginous matrix by histological examination. The implants of the constructs were evaluated by histological and immunohistochemical examinations and reverse transcription PCR. Results indicated that the CS/COL-I scaffold showed porous structures, and the DNA content of SDSCs in CS/COL-I scaffolds increased at 1 week culture time. Both of the constructs in vitro and the implants were examined with positive stained GAGs histologically and the implants with positive collagen type II immunohistochemically. RT-PCR of the implants indicated that aggrecan and collagen type II expressed. It suggested that SDSCs coupled with CS/COL-I scaffolds treated sequentially with TGF-{beta}1 and bFGF in vitro were highly competent for engineered cartilage formation in vitro and in vivo.

  14. Chitosan-supported Borohydride Reducing Agent

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new chitosan-supported borohydride reducing reagent (CBER) was prepared by treatment of KBH4 with the resin of chitosan derivative, which was first synthesized fiom the reaction of cross-linked chitosan microsphere with glycidyl trimethylammonium chloride. CBER could reduce aromatic carbonyl compound to corresponding alcohol.

  15. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Haitao Pan

    2016-05-01

    Full Text Available Background: Hyperlipidemia (HLP is the primary risk factor of cardiovascular disease (CVD. Various factors, including genetics, physical inactivity, and daily nutritional habits, affect the prevalence of HLP. Recently, it was revealed that dietary fibers, such as pectin, psyllium, and especially chitosan (CTS, may play important roles in hypolipidemic management. Thus, this study aims to determine the hypolipidemic effect and mechanism of CTS and its water-soluble derivatives, chitosan oligosaccharides (MN≤1,000 Da (COSI and MN≤3,000 Da (COSIII, in male hyperlipidemic rats induced by a high-fat diet (HFD. Design: After the model creation, 120 Sprague-Dawley (SD rats were equally assigned to 12 groups fed various diets as follows: the normal group with basic diet, an HFD group, an HFD group supplemented with three doses of CTS, COSI and COSIII groups, and an HFD group treated with simvastatin (7 mg/kg·d. After 6 weeks, body weight, fat/body ratio, and the relevant biomarkers of serum, liver, and feces were measured. Additionally, the histological analysis of liver and adipose tissue was performed, and the mRNA expressions of liver peroxisome proliferator-activated receptor-α (PPARα and hepatic lipase (HL were examined. Results: Compared with HFD group, rats fed CTS, COSI, and COSIII showed a better ability to regulate their body weight, liver and cardiac indices, fat/body ratio, as well as serum, liver, and fecal lipids, and simultaneously to maintain the appropriate activity of liver and serum superoxide dismutase (SOD, alanine aminotransferase (ALT, aspartate aminotransferase (AST, as well as liver and fecal total bile acids (TBA. Simultaneously, there had been a higher mRNA expression of PPARα and HL in the treatment groups. Conclusion: The obtained results suggested that these three function foods can effectively improve liver lipid metabolism by normalizing the expressions of PPARα and HL, and protect liver from the oxidized trauma

  16. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.

    Science.gov (United States)

    Wu, Yang; Sriram, Gopu; Fawzy, Amr S; Fuh, Jerry Yh; Rosa, Vinicius; Cao, Tong; Wong, Yoke San

    2016-08-01

    Biological function of adherent cells depends on the cell-cell and cell-matrix interactions in three-dimensional space. To understand the behavior of cells in 3D environment and their interactions with neighboring cells and matrix requires 3D culture systems. Here, we present a novel 3D cell carrier scaffold that provides an environment for routine 3D cell growth in vitro We have developed thin, mechanically stable electrohydrodynamic jet (E-jet) 3D printed polycaprolactone and polycaprolactone/Chitosan macroporous scaffolds with precise fiber orientation for basic 3D cell culture application. We have evaluated the application of this technology by growing human embryonic stem cell-derived fibroblasts within these 3D scaffolds. Assessment of cell viability and proliferation of cells seeded on polycaprolactone and polycaprolactone/Chitosan 3D-scaffolds show that the human embryonic stem cell-derived fibroblasts could adhere and proliferate on the scaffolds over time. Further, using confocal microscopy we demonstrate the ability to use fluorescence-labelled cells that could be microscopically monitored in real-time. Hence, these 3D printed polycaprolactone and polycaprolactone/Chitosan scaffolds could be used as a cell carrier for in vitro 3D cell culture-, bioreactor- and tissue engineering-related applications in the future. PMID:27252227

  17. Application of chitosan and its derivant in pharmaceutical preparation%壳聚糖及衍生物在药物制剂中的应用

    Institute of Scientific and Technical Information of China (English)

    张晶; 宋力伟

    2011-01-01

    OBJECTIVE: To summarize the application status of chitosan and derivant in pharmaceutical preparation.METHODS: VIP database was retrieved by computer, the time was limited to 1999-01/2010-10. The index words were "chitosan,release, drug, application" in Chinese. Articles about the application status of chitosan and derivant in pharmaceutical preparation were included, outdated literatu res were excluded. Totally 20 documents were involved for analysis.RESULTS: Chitosan has a good biocompatibility, biodegradation, avirulent, and easily film-forming. In the field of pharmacy at home and abroad, chitosan was used to the research of release and controlled release preparation attracted people's attention.The unique physical and chemical properties of chitosan, such as chitosan encounter acid expansion form a gel, have good film-forming and promote the polypeptide, transdermal absorption of protein drugs. Chitosan generally in the form of tablet,film-former, microsphere and microcapsule served as skeleton materials of release and controlled release preparation.CONCLUSION: Controlled release preparations developed by chitosan can balance the drug release rate and reduce drug sideeffects of normal tissue cells.%目的:总结近年壳聚糖及衍生物在药物制剂中的应用现状.方法:由作者应用计算机检索维普数据库,检索时限1999-01/2010-10.检索关键词:壳聚糖,缓释,药物,应用.纳入有关壳聚糖的制备方法及其在药物制剂中应用的文章,排除较陈旧文献.共保留相关文献20篇进入结果分析.结果:壳聚糖具有良好的生物相容性、可生物降解性、无毒性和易成膜性,在国内外药学领域,壳聚糖应用于缓释、控释制剂的研究颇受人们关注.利用壳聚糖特有的物理化学性质,如遇酸膨胀形成凝胶、有良好成膜性及促进多肽类、蛋白质药物的透黏膜吸收等特点,人们一般将壳聚糖以片剂、成膜材料及微球、微囊等形式,作为缓释

  18. Synthesis of Chitosan Quaternary Ammonium Salts

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A series of N-alkyl or N-aryl chitosan quaternary ammonium salts were prepared via Schiffs base intermediates. Quaternization of N-substituted chitosan derivatives was carried out using methyl iodide to produce water-soluble cationic chitosan quaternary ammonium salt. The products were characterized by IR, 1HNMR and elemental analysis. The degree of substitution of chitosan quaternary ammonium salt was calculated by elemental analysis.

  19. Chitosan Fibers Modified with HAp/β–TCP Nanoparticles

    OpenAIRE

    Dariusz Wawro; Luciano Pighinelli

    2011-01-01

    This paper describes a method for preparing chitosan fibers modified with hydroxyapatite (HAp), tricalcium phosphate (β-TCP), and HAp/β-TCP nanoparticles. Fiber-grade chitosan derived from the northern shrimp (Pandalus borealis) and nanoparticles of tricalcium phosphate (β-TCP) and hydroxyapatite (HAp) suspended in a diluted chitosan solution were used in the investigation. Diluted chitosan solution containing nanoparticles of Hap/β-TCP was introduced to a 5.16 wt% solution of chitosan in 3.0...

  20. Chitosan as a starting material for wound healing applications.

    Science.gov (United States)

    Patrulea, V; Ostafe, V; Borchard, G; Jordan, O

    2015-11-01

    Chitosan and its derivatives have attracted great attention due to their properties beneficial for application to wound healing. The main focus of the present review is to summarize studies involving chitosan and its derivatives, especially N,N,N-trimethyl-chitosan (TMC), N,O-carboxymethyl-chitosan (CMC) and O-carboxymethyl-N,N,N-trimethyl-chitosan (CMTMC), used to accelerate wound healing. Moreover, formulation strategies for chitosan and its derivatives, as well as their in vitro, in vivo and clinical applications in wound healing are described. PMID:26614560

  1. Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine

    OpenAIRE

    Xiaosong Li; Min Min; Nan Du; Ying Gu; Tomas Hode; Mark Naylor; Dianjun Chen; Nordquist, Robert E.; Chen, Wei R.

    2013-01-01

    With the development of cancer immunotherapy, cancer vaccine has become a novel modality for cancer treatment, and the important role of adjuvant has been realized recently. Chitin, chitosan, and their derivatives have shown their advantages as adjuvants for cancer vaccine. In this paper, the adjuvant properties of chitin and chitosan were discussed, and some detailed information about glycated chitosan and chitosan nanoparticles was also presented to illustrate the trend for future development.

  2. Chitosan in Plant Protection

    Directory of Open Access Journals (Sweden)

    Abdelbasset El Hadrami

    2010-03-01

    Full Text Available Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of phytoalexins, pathogen-related (PR proteins and proteinase inhibitors, lignin synthesis, and callose formation. Based on these and other proprieties that help strengthen host plant defenses, interest has been growing in using them in agricultural systems to reduce the negative impact of diseases on yield and quality of crops. This review recapitulates the properties and uses of chitin, chitosan, and their derivatives, and will focus on their applications and mechanisms of action during plant-pathogen interactions.

  3. Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning

    Directory of Open Access Journals (Sweden)

    2011-04-01

    Full Text Available Chitosan is soluble in most acids. The protonation of the amino groups on the chitosan backbone inhibits the electrospinnability of pure chitosan. Recently, electrospinning of nanofibers based on chitosan has been widely researched and numerous nanofibers containing chitosan have been prepared by decreasing the number of the free amino groups of chitosan as the nanofibiers have enormous possibilities for better utilization in various areas. This article reviews the preparations and properties of the nanofibers which were electrospun from pure chitosan, blends of chitosan and synthetic polymers, blends of chitosan and protein, chitosan derivatives, as well as blends of chitosan and inorganic nanoparticles, respectively. The applications of the nanofibers containing chitosan such as enzyme immobilization, filtration, wound dressing, tissue engineering, drug delivery and catalysis are also summarized in detail.

  4. Application of chitosan and its N-heterocyclic derivatives for preconcentration of noble metal ions and their determination using atomic absorption spectrometry.

    Science.gov (United States)

    Azarova, Yu A; Pestov, A V; Ustinov, A Yu; Bratskaya, S Yu

    2015-12-10

    Chitosan and its N-heterocyclic derivatives N-2-(2-pyridyl)ethylchitosan (2-PEC), N-2-(4-pyridyl) ethylchitosan (4-PEC), and N-(5-methyl-4-imidazolyl) methylchitosan (IMC) have been applied in group preconcentration of gold, platinum, and palladium for subsequent determination by atomic absorption spectroscopy (AAS) in solutions with high background concentrations of iron and sodium ions. It has been shown that the sorption mechanism, which was elucidated by XPS, significantly influences the sorption capacity of materials, the efficiency of metal ions elution after preconcentration, and, as a result, the accuracy of metal determination by AAS. We have shown that native chitosan was not suitable for preconcentration of Au(III), if the elution step was used as a part of the analysis scheme. The group preconcentration of Au(III), Pd(II), and Pt(IV) with subsequent quantitative elution using 0.1M HCl/1M thiourea solution was possible only on IMC and 4-PEC. Application of IMC for analysis of the national standard quartz ore sample proved that gold could be accurately determined after preconcentration/elution with the recovery above 80%. PMID:26428172

  5. Synthesis and Characterization of Biopolymeric Chitosan Derived from Land Snail Shells and Its Potential for Pb2+ Removal from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2015-12-01

    Full Text Available Pb2+ is considered to be a very toxic pollutant in the aquatic environmental media. Biopolymeric chitosan synthesized from snail shell has been studied for its potential to remove heavy metals from aqueous solution. The experiments were conducted in the range of 1–50 mg/L initial Pb2+ concentration at 298 K. The effects of pH, adsorbent dosage and contact time on the adsorptive property of the adsorbent were investigated and optimized. The derived chitosan was characterized using Fourier transform infrared spectrometer (FT-IR and X-ray florescence (XRF. The experimental data obtained were analysed using the Langmuir and Freundlich adsorption isotherm models. The Langmuir model and pseudo second order kinetic model suitably described the adsorption and kinetics of the process with regression coefficient of 0.99 and 1.00, respectively. Sodium hydroxide was a better desorbing agent than hydrochloric acid and de-ionized water. From the results obtained, it is concluded that synthesized biopolymers from land snail shells has the potential for the removal of Pb2+ from aqueous solutions.

  6. Application of chitosan and its derivatives in cartilage tissue engineering%壳聚糖及其衍生物在软骨组织工程中的应用

    Institute of Scientific and Technical Information of China (English)

    徐敬; 赵建宁; 徐海栋; 张雷

    2015-01-01

    背景:作为生物型支架,壳聚糖因其独特的多孔三维结构、易于改性的特征及良好的生物相容性成为了软骨组织工程支架材料的研究热点。目的:就壳聚糖及其衍生物的设计、改性及在软骨组织工程中的应用作一综述。方法:应用计算机检索PubMed数据库和CNKI数据库,中文关键词为“壳聚糖,壳聚糖衍生物,支架材料,组织工程,软骨组织”,英文检索词为“chitosan;chitosan derivatives;scaffold;tissue engineering;cartilage”,检索文献时间范围为1990年1月至2015年1月。结果与结论:壳聚糖是一种天然的生物多糖,通过化学改性、共混改性等方法可以改变壳聚糖的溶解度、机械强度、生物活性甚至生物降解性等自身特性,从而制成更为合适的生物支架材料。进一步研究表明,将壳聚糖与种子细胞进行共同体外培养可以获得正常形态的软骨细胞并能合成特异性的细胞外基质成分,在动物体内,壳聚糖支架与种子细胞所构建的组织工程软骨能够修复软骨损伤,形成与周围正常软骨相似的组织。壳聚糖及其衍生物支架材料在软骨组织工程中有较为广阔的研究前景。%BACKGROUND:Chitosan and its derivatives have become one of the most active research topics in the field of tissue-engineered scaffold material substitute for cartilage owing to their porous structure, ease of chemical modification, and high affinity to in vivo macromolecules. OBJECTIVE:To summarize chitosan and its derivatives in terms of design, modification and its application in tissue engineering. METHODS:A computer-based search of CNKI and PubMed databases was performed for papers on application of chitosan and its derivatives in cartilage tissue engineering published from January 1990 to January 2015 with the key words“chitosan;chitosan derivatives;scaffold;tissue engineering;cartilage”in Chinese and English

  7. 作为基因输送载体的壳聚糖衍生物研究进展%Research progress of chitosan derivatives as gene delivery vector

    Institute of Scientific and Technical Information of China (English)

    李晏

    2011-01-01

    Despite the advantages of chitosan as a non - viral gene delivery vector, the application of this system is significantly limited by its poor solubility ( the amino groups on chitosan are only partially protonated at physiological pH 7.4) , poor stability of the polyplex at physiological pH, low cell specificity and therefore low transfection efficiency. Chitosan structure modification or additive incorporation is an effective way to improve the stability of the polyplex in biological fluids, enhance targeted cell delivery and facilitate endo - lysosomal release of the complex. In this paper, chitosan derivatives as gene delivery vector were reviewed to facilitate the process of chitosan vector development for clinical application.%壳聚糖作为基因载体,目前存在的主要问题是还不能达到足够高的表达效率.其中主要原因是壳聚糖在pH 7.4的生理环境下溶解度较差,壳聚糖与DNA形成的复合物在生理环境下的稳定性较差,缺乏细胞靶向性.本文综述了作为基因输送载体的壳聚糖衍生物研究进展.为进一步研究和开发壳聚糖衍生物提供依据和参考.

  8. pH敏感型紫杉醇胶束的制备%Preparation of novel pH-sensitive chitosan-derived micelles loaded with paclitaxel

    Institute of Scientific and Technical Information of China (English)

    刘佳; 张灿; 平其能

    2011-01-01

    制备了一系列pH敏感的壳聚糖衍生物,N-辛基-N′(-2-羧基环己甲酰基)-壳聚糖(OCCC)。并用FTIR,1HNMR、元素分析、DSC和XRD对载体理化性质进行了表征,MTT法测定了载体的细胞毒,OCCC包载了难溶性抗癌药物紫杉醇并对载体和载药胶束的pH敏感性进行了研究。芘荧光法测定载体的临界胶束浓度(CMC)为11-72μg/mL,紫杉醇胶束的载药量和包封产率分别为30.47%-48.10%,42.22%-59.24%。细胞毒研究表明载体几乎无毒。pH敏感性研究表明载体和胶束在正常生理环境下能保持稳定,而在微酸性环境(pH 5.5)中时敏感。%A series of pH-sensitive graft copolymers,N-octyl-N-(2-carboxyl-cyclohexamethenyl) chitosan derivatives have been synthesized and characterized by FTIR,1HNMR and elemental analysis,and their physical properties were measured with differential scanning calorimetry and X-ray diffraction spectrometry.The critical micelle concentrations(CMCs) of the modified chitosan determined by using pyrene as a hydrophobic probe in fluorescence spectroscopy were from 11 to 57 μg/mL.The graft polymers can form micelles solubilizing paclitaxel,with drug-loading rate ranging from 30.47% to 48.10% and entrapment effciency from 42.22% to 59.24%.Cytotoxicities of carrier against tumor cells estimated that carriers were nearly non-cytotoxic.Additionally,the results of pH-sensitivity and drug release experiments showed that the micelles were highly sensitive to mild acidic conditions(pH 5.5) while reasonably stable at physiological conditions(pH 7.4).Therefore,chitosan-derived micelle may be a potential anti-tumor drug delivery system for chemotherapy of cancer.

  9. Antigrowth effects of chitosan and its derivatives on human hepatocellular carcinoma cell line SMMC7721%壳聚糖及其衍生物对肝癌细胞SMMC7721生长的抑制作用

    Institute of Scientific and Technical Information of China (English)

    谢勇; 周南进; 曹俊; 丁斌; 刘东升; 刘津麟

    2008-01-01

    背景: 壳聚糖的不同衍生物、不同的分子质量和脱乙酰度对抗肿瘤的作用有所不同.目的: 观察水溶性壳聚糖及其3种衍生物磺化壳聚糖、羧甲基壳聚糖、寡糖对肝癌细胞株SMMC7721生长的抑制作用.设计、时间及地点: 对比观察实验,于2004-01/2006-12在江西省消化疾病研究所完成.材料: 肝癌细胞株SMMC7721由江西省消化疾病研究所传代培养.85.5%脱乙酰度壳寡糖和85%脱乙酰度水溶性壳聚糖为济南海得贝海洋生物工程有限公司产品;88.5%脱乙酰度壳聚糖和羧甲基壳聚糖为上海其胜生物制品有限公司产品.方法: ①磺化壳聚糖的制备和鉴定:88.5%脱乙酰度壳聚糖与氯磺酸-甲酰胺磺化试剂制得磺化壳聚糖.由华东理工大学分析测试中心采用红外光谱分析检测.②MTT试验:将对数生长期的SMMC7721肝癌细胞株接种于96孔细胞培养板中,分别加入6个质量浓度(25,50,100,200,400,800mg/L)的水溶性壳聚糖、磺化壳聚糖、羧甲基壳聚糖和壳寡糖,并设空白对照组.常规培养72h后,加MTT溶液,孵育4h后终止培养,加二甲基亚砜,酶标仪测490nm波长A值.重复3次试验,取均值,计算抑制率.主要观察指标: 不同质量浓度壳聚糖及其衍生物对肝癌细胞的生长抑制率.结果: 在4种不同壳聚糖及其衍生物中,水溶性壳聚糖和磺化壳聚糖可显著抑制肝癌细胞的生长(P0.05).结论: 水溶性壳聚糖和磺化壳聚糖对肝癌细胞具有显著的生长抑制作用,羧甲基壳聚糖和壳寡糖对肝癌细胞无生长抑制作用.%BACKGROUND: Different derivatives of chitosan with different molecular weights or degrees of deacetylation show different anti-tumor effects.OBJECTIVE: To study the inhibition effect of water-soluble chitosan and its derivatives, such as sulfonated chitosan, carboxymethyl chitosan and chitooligosaccharides for the growth of hepatocellular carcinoma cell line SMMC7721.DESIGN, TIME AND

  10. MUCOADHESIVE MICROPARTICLES OF CARBOXYMETHYL CHITOSAN FOR SITE SPECIFIC DELIVERY OF PANTOPRAZOLE: FORMULATION AND IN VITRO CHARACTERIZATION

    OpenAIRE

    N.A. Gujarathi*, B.R. Rane and J.K. Patel

    2012-01-01

    Carboxymethyl chitosan, a water soluble modified carboxymethyl substituted chitosan derivative have distinct and unique properties, rendering them effective to form selective permeable mucoadhesive film or membranes. In the formulation of chitosan microsphere an acidic environment is essentially required that may degrade acid sensitive moiety, peptide or protein drugs. Mucoadhesive microparticle of carboxymethyl chitosan was designed and developed for site specific sustained release of Pantop...

  11. Chitosan: An Update on Potential Biomedical and Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Randy Chi Fai Cheung

    2015-08-01

    Full Text Available Chitosan is a natural polycationic linear polysaccharide derived from chitin. The low solubility of chitosan in neutral and alkaline solution limits its application. Nevertheless, chemical modification into composites or hydrogels brings to it new functional properties for different applications. Chitosans are recognized as versatile biomaterials because of their non-toxicity, low allergenicity, biocompatibility and biodegradability. This review presents the recent research, trends and prospects in chitosan. Some special pharmaceutical and biomedical applications are also highlighted.

  12. Chitosan as a MAMP, searching for a PRR

    OpenAIRE

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chitosan, a deacetylated chitin derivative, behaves like a general elicitor, inducing a non-host resistance and priming a systemic acquired immunity. The defence responses elicited by chitosan include rising of cytosolic H+ and Ca2+, activation of MAP-kinases, callose apposition, oxidative burst, hypersensitive response (HR), synthesis of abscissic acid (ABA), jasmonate, phytoalexins and pathogenesis related (PR) proteins. Putative receptors for chitosan are a chitosan-binding protein, recent...

  13. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  14. Small angle Neutron Scatteringanalysis of chitosan in different phases

    International Nuclear Information System (INIS)

    Biopolymers are studied extensively due to its wide applications in the field of bio-technology, micro fluidics and lab on chip devices. Chitosan is natural biopolymer derived from chitin. It has wide applications in bio-medical engineering because of its biocompatibility and biodegradability. Also, chitosan act as reducing and stabilizing agent for the metal ions. Chitosan is also a good candidate in batteries as membranes. It is therefore important to study the conformational changes of chitosan. In this research work, we used SANS to understand the modifications in the radius of gyration (Rg) values of chitosan polymer in solution and in presence of HAuCl4 and LiClO4. Chitosan solution became a gel in the presence of HAuCl4 enabling to study the associated conformational change in chitosan in gels. We have also made films of chitosan, chitosan- Au and Chitosan- LiClO4 and studied the associated conformational changes in chitosan. Gels and films were formed by varying the concentration of HAuCl4. Lower concentration of HAuCl4 gave films while higher concentration of HAuCl4 gave gels. The Imaging was carried out for the samples using TEM and SEM. SANS shows that the chitosan solution (liquid) had greater Rg value than the chitosan film. The Rg value did not change in gels from that of solution. There was no correlation length for the fitting for chitosan in solution, however there was correlation length observed in the gels. This indicates that in gels the chitosan units are more localized than in solution phase. Interestingly, chitosan-Au-Li film shows the formation of star like structures which are not observed in case of gels. Hence we conclude that the presence of Lithium can induce conformational changes in chitosan films while HAuCl4 can localize chitosan units in solution leading to formation of gels.

  15. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885)

    OpenAIRE

    Annaian Shanmugam; Kandasamy Kathiresan; Lakshman Nayak

    2016-01-01

    Chitosan is a commercially available derivative of chitin that has been extensively studied for its antimicrobial properties. In order to improve the water solubility and its biological activity, the chemical modification or derivatisation is attempted. In the present investigation, the chitosan prepared from the cuttlebone of Sepia kobiensis was being chemically modified by reacting it with orthophosphoric acid so as to obtain phosphorylated chitosan. Then the chitosan and phosphorylated chi...

  16. Effects of carboxymethyl chitosan on the blood system of rats

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Dawei [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China); Han, Baoqin, E-mail: baoqinh@ouc.edu.cn [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China); Dong, Wen; Yang, Zhao; Lv, You; Liu, Wanshun [College of Marine Life Sciences, Ocean University of China, Qingdao 266003 (China)

    2011-04-29

    Highlights: {yields} We report, for the first time, the safety of carboxymethyl chitosan in blood system. {yields} CM-Chitosan has no significant effects on coagulation function of rats. {yields} CM-Chitosan has no significant effects on anticoagulation performance of rats. {yields} CM-Chitosan has no significant effects on fibrinolytic function of rats. {yields} CM-Chitosan has no significant effects on hemorheology of rats. -- Abstract: Carboxymethyl chitosan (CM-chitosan), a derivative of chitosan, was extensively studied in the biomedical materials field for its beneficial biological properties of hemostasis and stimulation of healing. However, studies examining the safety of CM-chitosan in the blood system are lacking. In this study CM-chitosan was implanted into the abdominal cavity of rats to determine blood indexes at different times and to evaluate the effects of CM-chitosan on the blood system of rats. Coagulation function was reflected by thrombin time (TT), prothrombin time (PT), activated partial thromboplatin time (APTT), fibrinogen (FIB) and platelet factor 4 (PF4) indexes; anti-coagulation performance was assessed by the index of antithrombinIII (ATIII); fibrinolytic function was reflected by plasminogen (PLG) and fibrin degradation product (FDP) indexes; and blood viscosity (BV) and plasma viscosity (PV) indexes reflected hemorheology. Results showed that CM-chitosan has no significant effects on the blood system of rats, and provides experimental basis for CM-chitosan to be applied in the field of biomedical materials.

  17. Effects of carboxymethyl chitosan on the blood system of rats

    International Nuclear Information System (INIS)

    Highlights: → We report, for the first time, the safety of carboxymethyl chitosan in blood system. → CM-Chitosan has no significant effects on coagulation function of rats. → CM-Chitosan has no significant effects on anticoagulation performance of rats. → CM-Chitosan has no significant effects on fibrinolytic function of rats. → CM-Chitosan has no significant effects on hemorheology of rats. -- Abstract: Carboxymethyl chitosan (CM-chitosan), a derivative of chitosan, was extensively studied in the biomedical materials field for its beneficial biological properties of hemostasis and stimulation of healing. However, studies examining the safety of CM-chitosan in the blood system are lacking. In this study CM-chitosan was implanted into the abdominal cavity of rats to determine blood indexes at different times and to evaluate the effects of CM-chitosan on the blood system of rats. Coagulation function was reflected by thrombin time (TT), prothrombin time (PT), activated partial thromboplatin time (APTT), fibrinogen (FIB) and platelet factor 4 (PF4) indexes; anti-coagulation performance was assessed by the index of antithrombinIII (ATIII); fibrinolytic function was reflected by plasminogen (PLG) and fibrin degradation product (FDP) indexes; and blood viscosity (BV) and plasma viscosity (PV) indexes reflected hemorheology. Results showed that CM-chitosan has no significant effects on the blood system of rats, and provides experimental basis for CM-chitosan to be applied in the field of biomedical materials.

  18. Adsorption of fucoidan and chitosan sulfate on chitosan modified PET films monitored by QCM-D

    OpenAIRE

    Indest, Tea; Laine, Janne; Johansson, Leena Sisko; Stana-Kleinschek, Karin; Strnad, Simona; Dworczak, Renate; Ribitsch, Volker

    2012-01-01

    The adsorption behavior of fucoidan as well as chitosan derivatives (chitosan sulfate) on poly(ethylene terephthalate) (PET) model film surface was studied using the quartz crystal microbalance technique. These systems were chosen for this study due to their promising biocompatible properties. Moreover, fucoidan and chitosan sulfate have promising anticoagulant properties and represent an alternative to heparin treatment of vascular grafts. As a first step, PET foils were activated by alkalin...

  19. In Vivo Biocompatibility Study of Electrospun Chitosan Microfiber for Tissue Engineering

    OpenAIRE

    Moon Suk Kim; Young Hwan Park; Chun Ho Kim; Heung Jae Chun; Jae Ho Kim; Da Yeon Kim; Kkot Nim Kang; Gyeong Hae Kim; Jae Hoon Ko; Bit Na Lee; Yun Mi Kang

    2010-01-01

    In this work, we examined the biocompatibility of electrospun chitosan microfibers as a scaffold. The chitosan microfibers showed a three-dimensional pore structure by SEM. The chitosan microfibers supported attachment and viability of rat muscle-derived stem cells (rMDSCs). Subcutaneous implantation of the chitosan microfibers demonstrated that implantation of rMDSCs containing chitosan microfibers induced lower host tissue responses with decreased macrophage accumulation than did the chitos...

  20. Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan%Synthesis and Characterization of a Novel Soluble Diethoxy Phosphoryl Chitosan

    Institute of Scientific and Technical Information of China (English)

    Ma, Li; Li, Kerang; Li, Limin; Liu, Pu

    2012-01-01

    A simple and efficient method for the preparation of a novel soluble chitosan derivative, diethoxy phosphoryl chitosan (PH-chitosan), has been developed. Ph-chitosan was characterized by elemental analysis, FT-IR, NMR, ICP, XRD, TG and SEM, respectively. The chemical identity of PH-chitosan was determined by FT-IR and confirmed by NMR, and those results unequivocally demonstrated that diethoxy phosphoryl groups were grafted onto the amino and hydroxyl groups of chitosan. The results of XRD indicated that the crystalline structure of chitosan was destroyed due to the incorporation of diethoxy phosphoryl group resulting in loss of hydrogen bond. The analysis of TG demonstrated that PH-chitosan was less thermal stable than chitosan. This simple synthetic method provided a new and available approach to prepare a soluble high molecule weight chitosan derivative.

  1. High-yield synthesis of strong photoluminescent N-doped carbon nanodots derived from hydrosoluble chitosan for mercury ion sensing via smartphone APP.

    Science.gov (United States)

    Wang, Lei; Li, Baoqiang; Xu, Feng; Shi, Xinyao; Feng, Demeng; Wei, Daqing; Li, Ying; Feng, Yujie; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2016-05-15

    Photoluminescent carbon nanodots (CNDs) have offered considerable potential to be used in biomedical and environmental fields including live cell imaging and heavy metal ion detection due to their superior quantum emission efficiencies, ability to be functionalized using a variety of chemistries and apparent absence of toxicity. However, to date, synthetic yield of CNDs derived from biomass via hydrothermal carbonization is quite low. We report here the synthesis of nitrogen-doped carbon nanodots (N-doped CNDs) derived from hydrosoluble chitosan via hydrothermal carbonization. The synthetic yield could reach 38.4% which is 2.2-320 times increase compared with that from other biomass reported so far. These N-doped CNDs exhibited a high quantum yield (31.8%) as a consequence of nitrogen incorporation coincident with multiple types of functional groups (C=O, O-H, COOH, and NH2). We further demonstrate applications of N-doped CNDs as probes for live cell multicolor imaging and heavy metal ion detection. The N-doped CNDs offered potential as mercury ion sensors with detection limit of 80nM. A smartphone application (APP) based on N-doped CNDs was developed for the first time providing a portable and low cost detection platform for detection of Hg(2+) and alert of heavy metal ions contamination. PMID:26686916

  2. Application of Chitosan and its Derivatives in Treatment of Fluoride Contaminated Water%壳聚糖及其衍生物在处理含氟水中的应用

    Institute of Scientific and Technical Information of China (English)

    张永勇; 贾瑛; 许国根; 贺亚南

    2014-01-01

    Chitosan was a kind of harmless and non-toxic, extensive, readily biodegradable polymer. Chitosan and its derivatives both had a good flocculation performance and played an important role in the adsorption to the fluoride ions. The properties of physi-cal and chemical and the progress on the modification of the chitosan and the adsorption behavior of its derivatives to the fluoride ions were introduced. The perspective of the derivatives used in the treatment of fluoride contaminated water was also discussed.%壳聚糖是一种无毒无害、来源广泛、易生物降解的高分子聚合物,本身及其衍生物都具有良好的絮凝吸附性能,在吸附氟离子方面具有重要作用。本文综述了壳聚糖的物化性质、改性方法及其衍生物对氟离子吸附作用的研究进展,并对石墨烯等改性衍生物在含氟水处理方面的应用前景作了展望。

  3. FK506-loaded chitosan conduit promotes the regeneration of injured sciatic nerves in the rat through the upregulation of brain-derived neurotrophic factor and TrkB.

    Science.gov (United States)

    Zhao, Jia; Zheng, Xifu; Fu, Chongyang; Qu, Wei; Wei, Guoqiang; Zhang, Weiguo

    2014-09-15

    FK506 has been shown to exert neurotrophic and neuroprotective effects, but its long-term application for nerve regeneration is limited. This study evaluated the potential application of a novel FK506-loaded chitosan conduit for peripheral nerve repair, and explored the underlying mechanism. A sciatic nerve injury model was created in male Wistar rats, which were then randomly divided into three treatment groups (n=40, each): chitosan-only, chitosan+FK506 injection, and FK506-loaded chitosan. We found significant recovery of normal morphology of sciatic nerves and higher density of myelinated nerve fibers in rats treated with FK506-loaded chitosan. Similarly, the total number of myelinated nerve fibers, myelin sheath thickness, and axon diameters were significantly higher in this group compared with the others, and the compound muscle action potentials and motor nerve conduction velocity values of sciatic nerves were significantly higher. BDNF and TrkB levels in motor neurons were highest in rats treated with FK506-loaded chitosan. In conclusion, FK506-loaded chitosan promoted peripheral nerve repair and regeneration in a rat model of sciatic nerve injury. These effects are correlated with increased BDNF and TrkB expression in motor neurons. PMID:24954089

  4. Sol–gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    International Nuclear Information System (INIS)

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol–gel of silica/chitosan (SC) organic–inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV–vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability. (paper)

  5. Sol-gel derived silica/chitosan/Fe3O4 nanocomposite for direct electrochemistry and hydrogen peroxide biosensing

    Science.gov (United States)

    Satvekar, R. K.; Rohiwal, S. S.; Tiwari, A. P.; Raut, A. V.; Tiwale, B. M.; Pawar, S. H.

    2015-01-01

    A novel strategy to fabricate hydrogen peroxide third generation biosensor has been developed from sol-gel of silica/chitosan (SC) organic-inorganic hybrid material assimilated with iron oxide magnetic nanoparticles (Fe3O4). The large surface area of Fe3O4 and porous morphology of the SC composite facilitates a high loading of horseradish peroxidase (HRP). Moreover, the entrapped enzyme preserves its conformation and biofunctionality. The fabrication of hydrogen peroxide biosensor has been carried out by drop casting of the SC/F/HRP nanocomposite on glassy carbon electrode (GCE) for study of direct electrochemistry. The x-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) confirms the phase purity and particle size of as-synthesized Fe3O4 nanoparticles, respectively. The nanocomposite was characterized by UV-vis spectroscopy, fluorescence spectroscopy and Fourier transform infrared (FTIR) for the characteristic structure and conformation of enzyme. The surface topographies of the nanocomposite thin films were investigated by scanning electron microscopy (SEM). Dynamic light scattering (DLS) was used to determine the particle size distribution. The electrostatic interactions of the SC composite with Fe3O4 nanoparticles were studied by the zeta potential measurement. Electrochemical impedance spectroscopy (EIS) of the SC/F/HRP/GCE electrode displays Fe3O4 nanoparticles as an excellent candidate for electron transfer. The SC/F/HRP/GCE exhibited a pair of well-defined quasi reversible cyclic voltammetry peaks due to the redox couple of HRP-heme Fe (III)/Fe (II) in pH 7.0 potassium phosphate buffer. The biosensor was employed to detect H2O2 with linear range of 5 μM to 40 μM and detection limit of 5 μM. The sensor displays excellent selectivity, sensitivity, good reproducibility and long term stability.

  6. Intranasal H5N1 vaccines, adjuvanted with chitosan derivatives, protect ferrets against highly pathogenic influenza intranasal and intratracheal challenge.

    Directory of Open Access Journals (Sweden)

    Alex J Mann

    Full Text Available We investigated the protective efficacy of two intranasal chitosan (CSN and TM-CSN adjuvanted H5N1 Influenza vaccines against highly pathogenic avian Influenza (HPAI intratracheal and intranasal challenge in a ferret model. Six groups of 6 ferrets were intranasally vaccinated twice, 21 days apart, with either placebo, antigen alone, CSN adjuvanted antigen, or TM-CSN adjuvanted antigen. Homologous and intra-subtypic antibody cross-reacting responses were assessed. Ferrets were inoculated intratracheally (all treatments or intranasally (CSN adjuvanted and placebo treatments only with clade 1 HPAI A/Vietnam/1194/2004 (H5N1 virus 28 days after the second vaccination and subsequently monitored for morbidity and mortality outcomes. Clinical signs were assessed and nasal as well as throat swabs were taken daily for virology. Samples of lung tissue, nasal turbinates, brain, and olfactory bulb were analysed for the presence of virus and examined for histolopathological findings. In contrast to animals vaccinated with antigen alone, the CSN and TM-CSN adjuvanted vaccines induced high levels of antibodies, protected ferrets from death, reduced viral replication and abrogated disease after intratracheal challenge, and in the case of CSN after intranasal challenge. In particular, the TM-CSN adjuvanted vaccine was highly effective at eliciting protective immunity from intratracheal challenge; serologically, protective titres were demonstrable after one vaccination. The 2-dose schedule with TM-CSN vaccine also induced cross-reactive antibodies to clade 2.1 and 2.2 H5N1 viruses. Furthermore ferrets immunised with TM-CSN had no detectable virus in the respiratory tract or brain, whereas there were signs of virus in the throat and lungs, albeit at significantly reduced levels, in CSN vaccinated animals. This study demonstrated for the first time that CSN and in particular TM-CSN adjuvanted intranasal vaccines have the potential to protect against significant

  7. Characterization of glycol chitosan grafted with low molecular weight polyethylenimine as a gene carrier for human adipose-derived mesenchymal stem cells.

    Science.gov (United States)

    Bae, Yoonhee; Lee, Young Hwa; Lee, Sunray; Han, Jin; Ko, Kyung Soo; Choi, Joon Sig

    2016-11-20

    Mesenchymal stem cells (MSCs) have a great capacity for self-renewal while still maintaining their multipotency, and can differentiate into a variety of cell types. The delivery of genes to a site of injury is a current and interesting field of gene therapy. In the present study, we describe a nonviral gene delivery carrier, glycol chitosan-methyl acrylate-polyethylenimine (GMP) polymer targeted towards human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency, using luciferase (Luc) and a pDNA encoding enhanced green fluorescent protein (EGFP), along with cytotoxicity assays, were performed in human AD-MSCs. The results show that the transfection efficiency of the GMP polymer was similar to that of PEI25kD, and the cytotoxicity was lower. Moreover, human AD-MSCs were treated with the GMP polymer/pDNA polyplex and its cellular uptake and distribution were analyzed by flow cytometry and confocal microscopy. Furthermore, we performed endosomal escape analysis using LysoTracker Red, and found that the conjugated GMP polymer could escape from the endosome to the cytosol. Human AD-MSCs treated with the GMP polymer maintained their potential for osteogenic differentiation and phenotypic expression of human AD-MSCs based on flow cytometry analysis. The present study demonstrates that the GMP polymer can be used as a potential targeted-delivery carrier for effective gene delivery. PMID:27561509

  8. Chitosan dan Aplikasi Klinisnya Sebagai Biomaterial

    Directory of Open Access Journals (Sweden)

    Bambang Irawan

    2015-10-01

    Full Text Available The development of new materials with both organic and inorganic structures is of great interest to obtain special material properties. Chitosan [2-amino-2-deoxy-D-glucan] can be obtained by N-deacetylation of chitin. Chitin is the second most abundant biopolymer in nature and the supporting material of crustaceans, insects, fungi etc. Chitosan is unique polysaccharide and has been widely used in various biomedical application due to its biocompatibility, low toxicity, biodegradability, non-immunogenic and non-carcinogenic character. In the past few years, chitosan and some of its modifications have been reported for use in biomedical applications such as artificial skin, wound dressing, anticoagulant, suture, drug delivery, vaccine carrier and dietary fibers. Recently, the use of chitosan and its derivatives has received much attention as temporary scaffolding to promotie mineralization or stimulate endochodral ossification. This article aims to give a broad overview of chitosan and its clinical applications as biomaterial.

  9. Synthesis and characterization of chitosan alkyl urea.

    Science.gov (United States)

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. PMID:27106154

  10. Recent advances in chitosan-based nanoparticulate pulmonary drug delivery.

    Science.gov (United States)

    Islam, Nazrul; Ferro, Vito

    2016-08-14

    The advent of biodegradable polymer-encapsulated drug nanoparticles has made the pulmonary route of administration an exciting area of drug delivery research. Chitosan, a natural biodegradable and biocompatible polysaccharide has received enormous attention as a carrier for drug delivery. Recently, nanoparticles of chitosan (CS) and its synthetic derivatives have been investigated for the encapsulation and delivery of many drugs with improved targeting and controlled release. Herein, recent advances in the preparation and use of micro-/nanoparticles of chitosan and its derivatives for pulmonary delivery of various therapeutic agents (drugs, genes, vaccines) are reviewed. Although chitosan has wide applications in terms of formulations and routes of drug delivery, this review is focused on pulmonary delivery of drug-encapsulated nanoparticles of chitosan and its derivatives. In addition, the controversial toxicological effects of chitosan nanoparticles for lung delivery will also be discussed. PMID:27439116

  11. Biopolymers produced from gelatin and chitosan using polyphenols

    Science.gov (United States)

    Chitin, and its derivative chitosan, is an abundant waste product derived from crustaceans (e.g. crab). It has unique properties which enable its use in, but not limited to, cosmetic, medical, and food applications. Chitosan has recently been studied, in conjunction with other waste carbohydrates ...

  12. Effect of Chitosan and Its Derivatives on Membrane Potential of HaCaT Cells%壳聚糖及其衍生物对HaCaT细胞膜电位的影响

    Institute of Scientific and Technical Information of China (English)

    何文; 肖礼海; 孙安琪; 王小芹; 徐燃

    2009-01-01

    目的 用流式细胞仪检测壳聚糖及其衍生物对HaCaT细胞膜电位的影响.方法 合成不同取代度的N-三甲基壳聚糖(TMC)和N-羧甲基壳聚糖(MCC);用纯水作对照,运用荧光分子探针DiBAC4(3)标记HaCaT细胞膜电位,流式细胞仪检测壳聚糖及其衍生物处理之后细胞膜电位的变化情况.结果 与纯水组比较,壳聚糖及其衍生物都能显著降低细胞膜电位,其中,TMC20组作用最明显,TMC40组作用最微弱.结论 壳聚糖及其衍生物降低细胞膜电位,可能是其具备透皮吸收促进作用的原因之一.%OBJECTIVE To study the effect of chitosan and its derivatives on membrane potentials of HaCaT cells using flow cytomcter. METHODS N-trimethyl chitosan (TMC) with different degree of quaternization and N-carboxymethylchitosan (MCC) were synthesized from chitosan. HaCaT cells were fluorescent labeled with DiBAC4(3) and the changes of membrane potentials were measured by flow cytometer. RESULTS Compared with pure water, all of chitosan and its derivatives decreased HaCaT cells membrane potentials significantly, and the effect of TMC20 was the most significant while that of TMC40 was the weakest. CONCLUSION The decrease effect of chitosan and its derivatives on HaCaT cells membrane potentials might be one of reasons of their skin penetration enhancment.

  13. Radiation Synthesis and Application of Carboxymethylated Chitosan Hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Young Chang

    2007-08-15

    This research proposal is to investigate radiation effect of carboxymethylated chitosan in order to obtain the crosslinked carboxymethylated chitosan. The application studies on CM-chitosan- based intelligent hydrogels will be tried too. Chitin is the most abundant natural amino polysaccharide and estimated to be produced annually almost as much as cellulose. Chitosan is the deacetylated product of chitin showing the enhanced solubility in dilute acids, further, carboxymethylated chitosan (CM-chitosan) can solve in both acidic and basic physiological media, which might be good candidates as a kind of biomedical materials. Radiation technique is an important method for modification of chitin derivatives. It includes radiation-induced degradation, grafting, and crosslinking. It was found that CM-chitosan degraded in solid state or dilute aqueous solution under irradiation, but crosslinked at paste-like sate when the concentration of CM-chitosan is more than 10%. Both degraded and crosslinked CM-chitosan have antibacterial activity, so it is essential to investigate in detail the radiation effect of CM-chitosan. Study on radiation effect of CM-chitosan in different condition is beneficial to modification of CM-chitosan by irradiation technique. However, little study was reported on radiation crosslinking and application of CM-chitosan. The radiation-closslinked CM-chitosan synthesized from chitosan was characterized by a Fourier transform infrared spectroscopy (FT-IR) analysis. A kinetic swelling in water and the mechanical properties such as a gelation, water absorptivity, and gel strength were also investigated. For the preparation of crosslinked CM-chitosan by using gamma irradiation, the concentration of an aqueous CM-chitosan is above 10wt%. We confirmed that the gel contents was in the range of 15-63%, and when the irradiation dose was increased, the degree of gelation was decreased by disintegration of the CM-chitosan. In conclusion, we developed a new

  14. Chitosan grafted monomethyl fumaric acid as a potential food preservative.

    Science.gov (United States)

    Khan, Imran; Ullah, Shafi; Oh, Deog-Hwan

    2016-11-01

    The present study aims at in vitro antibacterial and antioxidant activity evaluation of chitosan modified with monomethyl fumaric acid (MFA) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) as mediator. Three different kinds of chitosan derivatives Ch-Ds-1,Ch-Ds-2 and Ch-Ds-3 were synthesized by feeding different concentration of MFA. The chemical structures of resulting materials were characterized by (1)H NMR, (13)C NMR, HR-XRD, FT-IR and TNBS assay. The results showed that Ch-Ds-1, Ch-Ds-2 and Ch-Ds-3 were successfully synthesized. The % amino groups of chitosan modified by MFA were evaluated by TNBS assay and ranging from 1.82±0.05% to 7.88±0.04%. All the chitosan derivatives are readily soluble in water and swelled by dimethyl sulfoxide (DMSO), toluene and dimethyl formamide (DMF). The antioxidant activity for all the chitosan derivatives have been significantly improved (P<0.05) compared to the chitosan. Upon antibacterial activity at pH 4.0, all the chitosan derivatives showed significant (P<0.05) antibacterial activity against Gram positive Staphylococcus aureus, Listeria monocytogenes strains and Gram negative Escherichia coli and Salmonella enteritidis strains compared to chitosan. In conclusion, MFA modified chitosan has shown enhanced activities along with solubility, and could be used as a novel food preservative and packaging material for long time food safety and security. PMID:27516253

  15. Mesenchymal stem cell recruitment by stromal derived factor-1-delivery systems based on chitosan/poly(γ-glutamic acid polyelectrolyte complexes

    Directory of Open Access Journals (Sweden)

    RM Gonçalves

    2012-04-01

    Full Text Available Human mesenchymal stem cells (hMSCs have an enormous potential for tissue engineering and cell-based therapies. With a potential of differentiation into multiple lineages and immune-suppression, these cells play a key role in tissue remodelling and regeneration.Here a method of hMSC recruitment is described, based on the incorporation of a chemokine in Chitosan (Ch/Poly(γ-glutamic acid (γ-PGA complexes. Ch is a non-toxic, cationic polysaccharide widely investigated. γ-PGA is a hydrophilic, non-toxic, biodegradable and negatively charged poly-amino acid. Ch and γ-PGA, being oppositely charged, can be combined through electrostatic interactions. These biocompatible structures can be used as carriers for active substances and can be easily modulated in order to control the delivery of drugs, proteins, DNA, etc.Using the layer-by-layer method, Ch and γ-PGA were assembled into polyelectrolyte multilayers films (PEMs with thickness of 120 nm. The chemokine stromal-derived factor-1 (SDF-1 was incorporated in these complexes and was continuously released during 120 h. The method of SDF-1 incorporation is of crucial importance for polymers assembly into PEMs and for the release kinetics of this chemokine. The Ch/γ-PGA PEMs with SDF-1 were able to recruit hMSCs, increasing the cell migration up to 6 fold to a maximum of 16.2 ± 4.9 cells/mm2. The controlled release of SDF-1 would be of great therapeutic value in the process of hMSC homing to injured tissues. This is the first study suggesting Ch/γ-PGA PEMs as SDF-1 reservoirs to recruit hMSCs, describing an efficient method of chemokine incorporation that allows a sustained released up to 5 days and that can be easily scaled-up.

  16. Recent progress on synthesis, property and application of modified chitosan: An overview.

    Science.gov (United States)

    Wang, Junhua; Wang, Li; Yu, Haojie; Zain-Ul-Abdin; Chen, Yongsheng; Chen, Qing; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-07-01

    Because of the unique chemical structure, chitosan and its derivatives have been paid close extensive attention as the potential bio-functional material. This review presents recent synthesis of modified chitosan via N-substitution, O-substitution, free radical graft copolymerization and other modification methods and properties of the modified chitosan. The applications of the modified chitosan in metal ions adsorption, dye removal and pharmaceutical fields are illustrated as well. The rapid development in the modification of chitosan describes broad perspectives of the modified chitosan. PMID:27044349

  17. Biodegradation and biocompatibility of a degradable chitosan vascular prosthesis

    OpenAIRE

    Kong, Xiaoying; Xu, Wenhua

    2015-01-01

    An instrument made by ourselves was used to fabricate biodegradable chitosan-heparin artificial vascular prosthesis with small internal diameter (2 mm) and different crosslinking degree from biodegradable chitosan, chitosan derivates and heparin. In vivo and in vitro degradation studies, inflammatory analysis and electron microscope scanning of this artificial vascular prosthesis were performed. It was observed that 50% of the prosthesis decomposed in vivo and was replaced by natural tissues....

  18. Novel transparent nanocomposite films based on chitosan and bacterial cellulose

    OpenAIRE

    Fernandes, Susana C. M.; Oliveira, Lúcia; Freire, Carmen S. R.; Silvestre, Armando J. D.; Neto, Carlos Pascoal; Gandini, Alessandro; Desbriéres, Jacques

    2009-01-01

    New nanocomposite films based on different chitosan matrices (two chitosans with different DPs and one water soluble derivative) and bacterial cellulose were prepared by a fully green procedure by casting a water based suspension of chitosan and bacterial cellulose nanofibrils. The films were characterized by several techniques, namely SEM, AFM, X-ray diffraction, TGA, tensile assays and visible spectroscopy. They were highly transparent, flexible and displayed better mechanical properties th...

  19. Comparison and Characterisation of Regenerated Chitosan from 1-Butyl-3-methylimidazolium Chloride and Chitosan from Crab Shells

    OpenAIRE

    Saniyat Islam; Lyndon Arnold; Rajiv Padhye

    2015-01-01

    Chitosan is a biopolymer derived from chitin which is naturally occurring in the exoskeleton of crustaceans. This paper reports dissolution and regeneration of chitosan by directly dissolving in an ionic liquid solvent, 1-butyl-3-methylimidazolium chloride (BMIMCl). This will provide an ideal platform to solubilise these kinds of polymers to achieve the dissolution. The current study dissolved chitosan from crab shell utilising BMIMCl as a solvent and characterised the resultant regenerated p...

  20. Differentiation of adipose-derived stem cells toward nucleus pulposuslike cells induced by hypoxia and a three-dimensional chitosan-alginate gel scaffold in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhang Zhicheng; Li Fang; Tian Haiquan; Guan Kai; Zhao Guangmin; Shan Jianlin; Ren Dajiang

    2014-01-01

    Background Injectable three-dimensional (3D) scaffolds have the advantages of fluidity and moldability to fill irregularshaped defects,simple incorporation of bioactive factors,and limited surgical invasiveness.Adipose-derived stem cells (ADSCs) are multipotent and can be differentiated toward nucleus pulposus (NP)-Iike cells.A hypoxic environment may be important for differentiation to NP-like cells because the intervertebral disc is an avascular tissue.Hence,we investigated the induction effects of hypoxia and an injectable 3D chitosan-alginate (C/A) gel scaffold on ADSCs.Methods The C/A gel scaffold consisted of medical-grade chitosan and alginate.Gel porosity was calculated by liquid displacement method.Pore microstructure was analyzed by light and scanning electron microscopy.ADSCs were isolated and cultured by conventional methods.Passage 2 BrdU-labeled ADSCs were co-cultured with the C/A gel.ADSCs were divided into three groups (control,normoxia-induced,and hypoxia-induced groups).In the control group,cells were cultured in 10% FBS/DMEM.Hypoxia-induced and normoxia-induced groups were induced by adding transforming growth factor-β1,dexamethasone,vitamin C,sodium pyruvate,proline,bone morphogenetic protein-7,and 1% ITS-plus to the culture medium and maintaining in 2% and 20% O2,respectively.Histological and morphological changes were observed by light and electron microscopy.ADSCs were characterized by flow cytometry.Cell viability was investigated by BrdU incorporation.Proteoglycan and type Ⅱ collagen were measured by safranin O staining and the Sicool method,respectively.mRNA expression of hypoxia-inducing factor-1α (HIF-1α),aggrecan,and Type Ⅱ collagen was determined by reverse transcription-polymerase chain reaction.Results C/A gels had porous exterior surfaces with 80.57% porosity and 50-200 μm pore size.Flow cytometric analysis of passage 2 rabbit ADSCs showed high CD90 expression,while CD45 expression was very low.The morphology of

  1. Haemostatic chitosan coated gauze: in vitro interaction with human blood and in-vivo effectiveness

    OpenAIRE

    Pogorielov, M.; Kalinkevich, O.; Deineka, V.; Garbuzova, V.; Solodovnik, A.; Kalinkevich, A.; Kalinichenko, T.; Gapchenko, A.; Sklyar, A.; Danilchenko, S.

    2015-01-01

    Background Chitosan and its derivates are widely used for biomedical application due to antioxidative, anti-inflammatory, antimicrobial and tissue repair induced properties. Chitosan-based materials also used as a haemostatic agent but influence of different molecular weight and concentration of chitosan on biological response of blood cells is still not clear. The aim of this research was to evaluate interaction between human blood cells and various forms of chitosan-based materials with dif...

  2. Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride

    OpenAIRE

    Karine Gargioni Pereira Correa de Mello; Leandra de Cássia Bernusso; Ronaldo Nogueira de Moraes Pitombo; Bronislaw Polakiewicz

    2006-01-01

    The N-succinil-chitosan is a chemically modified derivative of the biopolymer chitosan. The succinic anhydride attached to the free amino groups presented along the chitosan's polymer chain imparts to the molecule different physicochemical properties not exhibited before the modification. These chemical modifications enhance chitosan's solubility in slightly acid, neutral and alkaline media. These properties are related to the long alkyl chains attached to hydrophilic parts. In this case the ...

  3. Application of chitin/chitosan in agriculture

    International Nuclear Information System (INIS)

    Chitosan is the deacetylated derivative of chitin and deacetylation degree is an important chemical characteristic which could be determined by HNMR or IR. spectroscopy. Chitosan of high deacetylation degree (87.37%) was oxidized by hydrogen peroxide at 0.6M concentration for 4 hours to obtain low molecular weight ∼ 6.0 x 104, further degradation was carried out by irradiation of chitosan in solution (4%, w/v) with gamma Co-60 rays, in the dose range from 10 kGy to 70 kGy. The test in the field for antifungus of Rhizoctonia Solani on rice plants was investigated. The antifungal effect of resultant chitosan at dose of 50 kGy and concentration of 80 ppm was most effective. (author)

  4. SYNTHESIS AND CHARACTERIZATION OF NEW CHITOSAN-O-ETHYL PHOSPHONATE

    Directory of Open Access Journals (Sweden)

    GLORIA PALMA

    2005-12-01

    Full Text Available The chitin is a natural polymer that is extracted commercially from the shells of crustaceans generated as raw material from the fishing industry. Their chemical structure is constituted by residual units of N-acetyl glucosamine linked by b (1 ® 4 and its derivatives can be obtained from alkaline chitosan. The chitin, chitosan and their derivatives present very good perspectives to be used in agriculture. These derivatives are biodegradable and they exhibit fungicides, germicides, nemacides properties and natural defensive mechanisms of the plants. The chlorophosphonic-2-acid (Ethephon® is a commercial product employed for the early maturation of fruits. The objective of the present work is the synthesis and characterization of chitosan-O-ethyl phosphonate chitosan to obtain a controlled released system with potential plant growth regulation properties. Alkaline chitosan was obtained; and then reacted with the 2-chlorophosphonic acid. The synthesis of new chitosan derivatives and its complete characterization by FT-IR, 13C, ¹H and 31P NMR is described and gas chromatographic, the effects on field blueberries are also tested. A chitosan 99 % deacetylated and Mv = 89,000 g/mol is prepared. The O-(ethyl phosphonic chitosan (QOEP with a degree of substitution of 58% is obtained

  5. Chitosan-based dressings loaded with neurotensin—an efficient strategy to improve early diabetic wound healing

    OpenAIRE

    Moura, Liane I. F.; Dias, Ana M. A.; Ermelindo C. Leal; Carvalho, Lina; Sousa, Hermínio C. de; Carvalho, Eugénia

    2014-01-01

    One important complication of diabetes mellitus is chronic, non-healing diabetic foot ulcers (DFUs). This study aims to develop and use dressings based on chitosan derivatives for the sustained delivery of neurotensin (NT), a neuropeptide that acts as an inflammatory modulator in wound healing. Three different derivatives, namely N-carboxymethyl chitosan, 5-methyl pyrrolidinone chitosan (MPC) and N-succinyl chitosan, are presented as potential biomaterials for wound healing applications. Our ...

  6. Studies for improving and formulating of chitosan-based coatings by radiation treatment for fruit preservation

    International Nuclear Information System (INIS)

    Presented are the investigations: effect of chitosan on fruit - spoiling microorganism and enhancement of antifungal activity by radiation treatment; improvement of antimicrobial activity of chitosan by its derivatives synthesis in combination with radiation treatment; dependence of chitosan antimicrobial activity on molecular weight and distribution of molecular weight; comparative study on the antifungal activity of chitosan of various origins tested in different conditions of radiation treatment and culture mediums; formulation of chitosan membranes and for their properties in mango coating; effectiveness of chitosan-based coatings on fresh fruit appearance and quality during storage; influence of irradiated chitosan on rice plant growing in media contaminated with salt and heavy metals; effect of chitosan solution varied in concentration and molecular weight on seed germination and seedling growth of groundnut, soybean and cabbage. (NHA)

  7. Aqueous Behaviour of Chitosan

    Directory of Open Access Journals (Sweden)

    D. P. Chattopadhyay

    2010-01-01

    Full Text Available Chitosan, a versatile biopolymer, finds numerous applications in textile processing unit operations such as preparation, dyeing, printing, and finishing. However, the accessibility of this biopolymer by the textile material depends on the viscosity of its solution which in turn is a function of its molecular weight. In this work, therefore, the effect of molecular weight, storage life, presence of electrolyte, and particle size of chitosan on its viscosity was investigated. Chitosan of different molecular weights was synthesized by nitrous acid hydrolysis of parent chitosan solution. The synthesized low molecular weight products were analysed by FTIR spectroscopy. Chitosan of nanoconfiguration was prepared by Ionotropic gelation method and characterized by particle size analyzer. The viscosity of different chitosan solutions was determined using Ubbelohde capillary viscometer. As an extension to this study, the chelation property of chitosan was also evaluated.

  8. Chitosan and radiation chemistry

    Science.gov (United States)

    Chmielewski, Andrzej G.

    2010-03-01

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  9. Chitosan and radiation chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, Andrzej G., E-mail: a.chmielewski@ichtj.waw.p [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    2010-03-15

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under gamma-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  10. Chitosan and radiation chemistry

    International Nuclear Information System (INIS)

    Chitosan as a raw material with special properties has drawn attention of scientists working in the field of radiation processing and natural polymer products development, and also of specialists working in the field of radiation protection and oncologists. Especially the applications concern reduced molecular weight chitosan which still retain its chemical structure; such form of the compound is fostering biological, physical and chemical reactivity of the product. Chitosan degrades into fragments under γ-ray or electron beam irradiation. Antibacterial properties of the product are applied in manufacturing hydrogel for wound dressing and additional healing properties can be achieved by incorporating in the hydrogel matrix chitosan bonded silver clusters. Another possible application of chitosan is in reducing radiation damage to the radiation workers or radiation cured patients. In the case of radioisotopes oral or respiratory chitosan-based materials can be applied as chelators. Applications of chitosan in oncology are also reported.

  11. Quaternary Salts of Chitosan: History, Antimicrobial Features, and Prospects

    Directory of Open Access Journals (Sweden)

    Douglas de Britto

    2011-01-01

    Full Text Available Recently, increasing attention has been paid to water-soluble derivatives of chitosan at its applications. The chemical characteristics and the antimicrobial properties of these salts can play significant role in pharmacological and food areas mainly as carriers for drug delivery systems and as antimicrobial packaging materials. In the current paper, a historical sequence of the main preparative methods, physical chemistry aspects, and antimicrobial activity of chitosan quaternized derivatives are presented and briefly discussed. In general, the results indicated that the quaternary derivatives had better inhibitory effects than the unmodified chitosan.

  12. Proliferation of Keratinocytes Induced by Adipose-Derived Stem Cells on a Chitosan Scaffold and Its Role in Wound Healing, a Review

    OpenAIRE

    Gomathysankar, Sankaralakshmi; Halim, Ahmad Sukari; Yaacob, Nik Soriani

    2014-01-01

    In the field of tissue engineering and reconstruction, the development of efficient biomaterial is in high demand to achieve uncomplicated wound healing. Chronic wounds and excessive scarring are the major complications of tissue repair and, as this inadequate healing continues to increase, novel therapies and treatments for dysfunctional skin repair and reconstruction are important. This paper reviews the various aspects of the complications related to wound healing and focuses on chitosan b...

  13. Antimicrobial coating of modified chitosan onto cotton fabrics

    Science.gov (United States)

    Cheng, Xiaoli; Ma, Kaikai; Li, Rong; Ren, Xuehong; Huang, T. S.

    2014-08-01

    Chitosan has been applied as an antibacterial agent to provide biocidal function for textiles but has limitations of application condition and durability. In this study, a new N-halamine chitosan derivative was synthesized by introducing N-halamine hydantoin precursor. The synthesized chitosan derivative 1-Hydroxymethyl-5,5-dimethylhydantoin chitosan (chitosan-HDH) was coated onto cotton fabric with 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent. The coatings were characterized and confirmed by FT-IR and SEM. The treated cotton fabrics can be rendered excellent antimicrobial activity upon exposure to dilute household bleach. The chlorinated coated swatches can inactivate 100% of the Staphylococcus aureus and E. coli O157:H7 with a contact time of 5 min. Almost all the lost chlorine after a month of storage could be recharged upon rechlorination. The crease recovery property of the treated swatches improved while the breaking strength decreased compared with uncoated cotton.

  14. Biophysical studies on chitosan-coated liposomes.

    Science.gov (United States)

    Mady, Mohsen M; Darwish, Mirhane M; Khalil, Safaa; Khalil, Wafaa M

    2009-10-01

    Liposomes have been used as delivery vehicles for stabilizing drugs, overcoming barriers to cellular and tissue uptake, and for directing their contents toward specific sites in vivo. Chitosan is a biological macromolecule derived from crustacean shells and has several emerging applications in drug development, obesity control, and tissue engineering. In the present work, the interaction between chitosan and dipalmitoyl phosphatidylcholine (DPPC) liposomes was studied by transmission electron microscopy (TEM), zeta potential, solubilization using the nonionic detergent octylglucoside (OG), as well as Fourier transform infrared (FTIR) spectroscopy and viscosity measurements. The coating of DPPC liposomes by a chitosan layer was confirmed by electron microscope images and the zeta potential of liposomes. Coating of liposome by chitosan resulted in an increase in liposomal size by addition of a layer of 92 +/- 27.1 nm. The liposomal zeta potential became increasingly positive as chitosan concentration increased from 0.1 to 0.3% w/v, then it held at a relatively constant value. The amount of detergent needed to completely solubilize the liposomal membrane was increased after coating of liposomes with chitosan, indicating an increased membrane resistance to the detergent and hence a change in the natural membrane permeation properties. In the analysis of FTIR spectra of DPPC, the symmetric and antisymmetric CH(2) (at 2,800-3,000 cm(-1)) bands and the C=O (at 1,740 cm(-1)) stretching band were investigated in the absence and presence of the chitosan. It was concluded that appropriate combining of the liposomal and chitosan characteristics might be utilized for the improvement of the therapeutic efficacy of liposomes as a drug delivery system. PMID:19649627

  15. Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885

    Directory of Open Access Journals (Sweden)

    Annaian Shanmugam

    2016-03-01

    Full Text Available Chitosan is a commercially available derivative of chitin that has been extensively studied for its antimicrobial properties. In order to improve the water solubility and its biological activity, the chemical modification or derivatisation is attempted. In the present investigation, the chitosan prepared from the cuttlebone of Sepia kobiensis was being chemically modified by reacting it with orthophosphoric acid so as to obtain phosphorylated chitosan. Then the chitosan and phosphorylated chitosan were structurally characterized through FT-IR spectroscopy. Further the antibacterial activity of chitosan and phosphorylated chitosan was tested against clinically isolated human pathogens (Gram-positive: Streptococcus sp., Streptococcus pneumoniae and Staphylococcus aureus and Gram-negative: Escherichia coli, Vibrio cholerae, V. alginolyticus, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Salmonella sp. and Proteus vulgaris by well diffusion method and the Minimum Inhibitory Concentration (MIC was also calculated. The results of the present study suggests that the chitosan and phosphorylated chitosan has concentration dependent antibacterial activity with variation against several pathogenic human pathogenic bacterial strains which indicates their possible use as antibacterial agents.

  16. Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rongchun [Dezhou Univ., Dezhou (China)

    2011-10-15

    In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the IC{sub 50} values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively.

  17. Synthesis of (2-pyridyl)-Acetyl Chitosan and Its Antioxidant Activity

    International Nuclear Information System (INIS)

    In this paper, chloracetyl chitosan (CACTS) was prepared at first. In the molecules of CACTS, there are active chlorine groups, which can take part in other reactions. Thus, number of chitosan derivatives will be obtained after chlorine is substituted. Choosing pyridine as the active group, a novel water-soluble chitosan derivative, (2-pyridyl)-acetyl chitosan (PACTS) was obtained and its antioxidant activity against hydroxyl radicals and superoxide radicals was assessed. The results indicated that PACTS had better antioxidant activity than that of chitosan, carboxymethyl chitosan (CMCTS), hydroxypropyl chitosan (HPCTS), and Vitamin C. And the IC50 values against hydroxyl radicals and superoxide radicals were 0.31 mg/mL and 0.21 mg/mL, respectively

  18. 两亲性壳聚糖衍生物的制备及其包覆量子点%SYNTHESIS OF AMPHIPHILIC CHITOSAN DERIVATIVES AND THEIR APPLICATION IN ENCAPSULATION OF QDs

    Institute of Scientific and Technical Information of China (English)

    李昆; 孙婷; 孙媛; 杨伯涵; 孟新蕾; 李亚鹏; 王静媛

    2012-01-01

    Amphiphilic chitosan derivatives ( N-octyl-N-mPEG-chitosan, OPEGC ) were successfully synthesized via sequential Schiff base reduction reaction of chitosan with mPEG- aldehyde and n-octanal, with chitosan acting as the backbone of the grafted copolymers, and mPEG- aldehyde providing hydrophilic chain and n- octanal providing hydrophobic alkyl chain, respectively, thereby hydrophobic moiety inclining to segregate into the core of the polymeric micelles, while hydrophilic moiety forming a stabilizing interface between the hydrophobic core and the external medium. The structure of grafted copolymers with both hydrophilic and hydrophobic composition simultaneously was confirmed by characterization employing FTIR and 'H-NMR. In the subsequent procedure, water-soluble quantum dots (QDs) , widely used as nanoprobe for medical application, were achieved by incorporation of QDs inside the polymeric micelle core through the hydrophobic interaction between the acyl chain ligand capped on the QDs and the hydrophobic inner core of the polymeric micelles. The size and distribution of the polymeric micelle was determined by dynamic light scattering ( DLS) , as well the effect of the amount of alkyl chains on the size of the hollow polymeric micelles. The result showed that with grafting level increasing, the size of these nanoparticles diminished accordingly. Moreover,critical micelle concentration (CMC) was determined based on I3/I1 derived from emission spectrum afforded by fluorescence spectroscopy with pyrene as fluorescent probe, with the value of CMC 2. 032×10-2 mg/mL. At last,the optical properties of OPEGC/QDs were characterized by UV-Vis spectroscopy,fluorescence spectroscopy and the morphology of their assembly formed in water was observed by TEM. The results indicated that the OPEGC/QDs nanoparticles with narrow size distribution were prepared here,which represented good water solubility and high quantum yield.%以天然壳聚糖为功能性高分子的骨架,通过

  19. Preparation of chitosan gel

    Directory of Open Access Journals (Sweden)

    Lagerge S.

    2012-06-01

    Full Text Available Aerogel conditioning of the chitosan makes it possible to prepare porous solids of significant specific surface. The increase in the chitosan concentration or the degree of acetylation decreases the specific surface of the synthesized chitosan gel. Whereas drying with supercritical CO2 more effectively makes it possible to preserve the volume of the spheres of gel and to have a more significant specific surface in comparison with evaporative drying.

  20. Kinetic of Th ions adsorption process in the magnetic chitosan

    International Nuclear Information System (INIS)

    A magnetic bio absorbent called chitosan was prepared and it potentiality for removal Th ions in nitric medium was verified. The chitosan is a derivative processed from crustacean shells which is a fishing residue. The adsorption studies were accomplished by essays in batch. The equilibrium time was determined for the concentration of Th 101,4 mg L-1 and the kinetic of equilibrium was analysed according to the pseudo-first order, pseudo-second order and intra particle diffusion models. A removal of 35 % by adsorption was observed to confirm that the magnetic chitosan posses a considerable potential as Th absorbent. The magnetic use of chitosan can contribute in the economic and environmental aspects, viewing the low cost of chitosan and the strategies application of control of fishing activity residues and radionuclides with development of a sustainable technology

  1. A Coarse-Grained Model for Simulating Chitosan Hydrogels

    Science.gov (United States)

    Xu, Hongcheng; Matysiak, Silvina

    Hydrogels are biologically-derived materials composed of water-filled cross-linking polymer chains. It has widely been used as biodegradable material and has many applications in medical devices. The chitosan hydrogel is stimuli-responsive for undergoing pH-sensitive self-assembly process, allowing programmable tuning of the chitosan deposition through electric pulse. To explore the self-assembly mechanism of chitosan hydroge, we have developed an explicit-solvent coarse-grained chitosan model that has roots in the MARTINI force field, and the pH change is modeled by protonating chitosan chains using the Henderson-Hasselbalch equation. The mechanism of hydrogel network formation will be presented. The self-assembled polymer network qualitatively reproduce many experimental observables such as the pH-dependent strain-stress curve, bulk moduli, and structure factor. Our model is also capable of simulating other similar polyelectrolyte polymer systems.

  2. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Podzus, P.E. [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); LAFMACEL, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Daraio, M.E., E-mail: medit@fi.uba.a [Grupo de Aplicaciones de Materiales Biocompatibles, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina); Jacobo, S.E., E-mail: sjacobo@fi.uba.a [LAFMACEL, Departamento de Quimica, Facultad de Ingenieria, Universidad de Buenos Aires. Paseo Colon 850, C1063ACV Buenos Aires (Argentina)

    2009-10-01

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 mum. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  3. Antifungal Effect of Chitosan as Ca(2+) Channel Blocker.

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-06-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  4. Antifungal Effect of Chitosan as Ca2+ Channel Blocker

    Science.gov (United States)

    Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

    2016-01-01

    The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca2+, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca2+ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

  5. Chitosan magnetic microspheres for technological applications: Preparation and characterization

    International Nuclear Information System (INIS)

    One of the major applications of chitosan and its many derivatives are based on its ability to bind strongly heavy and toxic metal ions. In this study chitosan magnetic microspheres have been synthesized. Acetic acid (1%w/v) solution was used as solvent for the chitosan polymer solution (2%w/v) where magnetite nanoparticles were suspended in order to obtain a stable ferrofluid. Glutaraldehyde was used as cross-linker. The magnetic characteristic of these materials allows an easy removal after use if is necessary. The morphological characterization of the microspheres shows that they can be produced in the size range 800-1100 μm. The adsorption of Cu(II) onto chitosan-magnetite nanoparticles was studied in batch system. A second-order kinetic model was used to fit the kinetic data, leading to an equilibrium adsorption capacity of 19 mg Cu/g chitosan.

  6. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres.

    Science.gov (United States)

    Omidvar, Noushin; Ganji, Fariba; Eslaminejad, Mohamadreza Baghaban

    2016-07-01

    This research reports the encapsulation of dexamethasone (Dex) within the chitosan microspheres (CSMs) embedded in a fibrous structure of poly(ɛ-caprolactone) (PCL) to provide a platform for osteogenic differentiation of human mesenchymal stem cells (hMSCs). Dex loaded CSMs were prepared by spray drying a mixture of chitosan and Dex. Then, they were electrospun with PCL solution to create a bilayer fibrous scaffold (PCL/CSMs-Dex). The CSMs act as good depots for sustained release of Dex over a period of 14 days, without noticeable burst release. This is mainly attributed to the core-shell structure of the final PCL/CSMs-Dex-matrix, which could prolong the release and eliminate the initial burst. The water contact angle of PCL scaffolds decreased from 141.4 ± 3.8 to 118.4 ± 7.6 in the presence of CSMs. Improved proliferation of hMSCs cultured on PCL/CSMs-Dex scaffolds was also evidenced. Furthermore, osteogenic assays showed an increase in alkaline phosphatase activity and mineral deposits. The expression of bone-specific genes also confirmed the osteogenic differentiation of cells cultured on these Dex-loaded core-shell structures. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1657-1667, 2016. PMID:26916786

  7. Biodistribution and synthesis of 99mtc-Iabeled chitosan-transferrin derivative at CT26 colon carcinoma-induced BALB/c mouse

    International Nuclear Information System (INIS)

    Transferrin (Tf) is a glycoprotein, which transports ferric ion in the body. It is well known that Tf receptor concentration in tumor cells is much higher than that in normal cells. Chitosan is known as a bioactive agents for carriers of DNA anticancer agents, and radio-labeled molecules. The purpose of this study is to investigate the potential of Tf-conjugated thiolated glycine chitosan (CGGT) for Tc-99m labeled cancer imaging agent. Tf was coupled to the thiol group of thiolated glycine chitosan via maleimidobenzoic acid N-hydroxysuccinimide ester (MBS). Tf-CGGT (0.5 mg) or CGGT (0.5 mg) in water (0.5 ml) was added to Tc-99m solution (50 mCi/0.5 ml) reduced by Sn2Cl. This solution incubated for 30 m, and then determined the radiochemical purity (>93%) by RadioTLC scan. In plasma, Tc-99m CGGT or Tc-99m CGGT-Tf showed the stability of above 90% for 6h. CT26 colon carcinoma cells (1x107 cells) were subcutaneously injected into the back of the BALB/c mouse and left for 2 weeks. The biodistribution study with sacrificed mouse at 30, 60, 180 m was performed. 97.7% and 93.5% of Tc-99m were labeled to the CGGT and CGGT-Tf at 30 m, respectively. After 60 m, Tc-99m labeling efficiency was 99.4% of CGGT and 95.0% of CGGT-Tf. In the biodistribution study, Tc-99m labeled CGGT was primarily accumulated in the liver(33.3%ID/g), spleen(13.4%ID/g), kidney(17.0%ID/g) and tumor (0.7%ID/g) at 30 m. Tc-99m labeled CGGT-Tf was distributed in the liver (27.9%ID/g), spleen (6.3%ID/g), kidney (12.8%ID/g) and tumor (1.2%ID/g) at 30 m. CGGT-Tf was synthesized as a novel Tc-99m labeling agent. The labeling efficiency was high from 30 m after labeling, indicating that CGGT - Tf has a potential of radio-labeled agent. Most of the Tc-99m labeled CGGT - Tf was accumulated in reticuloendothelial systems. Tumor accumulation of Tc-99m labeled CGGT - Tf at CT26 colon carcinoma bearing mouse was twice higher than that of CGGT, indicating that CGGT - Tf has a potential to target and visualize tumor

  8. Chitosan supplementation and cholesterol

    Czech Academy of Sciences Publication Activity Database

    Koppová, Ingrid; Fliegerová, Kateřina; Šimůnek, Jiří; Kopečný, Jan

    Ancona : PUM, 2007, s. 6-6. [Application of Chitosan in Medical Sciences. Venezia (IT), 25.01.2007-26.01.2007] R&D Projects: GA AV ČR 1QS500200572 Institutional research plan: CEZ:AV0Z50450515 Keywords : chitosan Subject RIV: EE - Microbiology, Virology

  9. Production of Chitosan by Fungi

    Directory of Open Access Journals (Sweden)

    K. Nadarajah

    2001-01-01

    Full Text Available In this study chitosan was extracted from the mycelia of Rhizopus sp KN01, Rhizopus sp KN02, Mucor sp KN03 and Aspergillus niger with the highest amount of extractable chitosan obtained at the late exponential phase. The amount of chitosan produced varied widely amongst isolates. Mucor sp KN03 produced the highest amount of extractable chitosan per ml of substrate and the highest yield of chitosan per unit mycelia mass.

  10. Quantum dot/glycol chitosan fluorescent nanoconjugates

    Science.gov (United States)

    Mansur, Alexandra AP; Mansur, Herman S.

    2015-04-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV-vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spectroscopy were used to characterise the synthesis and the relative stability of biopolymer-capped semiconductor nanocrystals. The results clearly demonstrated that the glycol chitosan derivative was remarkably effective at nucleating and stabilising semiconductor CdS quantum dots in aqueous suspensions under acidic, neutral, and alkaline media with an average size of approximately 2.5 nm and a fluorescent activity in the visible range of the spectra.

  11. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    Science.gov (United States)

    Mahmud, Maznah; Naziri, Muhammad Ihsan; Yacob, Norzita; Talip, Norhashidah; Abdullah, Zahid

    2014-02-01

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%-5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper.

  12. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    International Nuclear Information System (INIS)

    The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1%–5%. These chitosan-water mixtures were irradiated at 6kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper

  13. Degradation of chitosan by gamma ray with presence of hydrogen peroxide

    International Nuclear Information System (INIS)

    Full-text: The radiation degraded chitosan samples were prepared by swelling the chitosan powder in water and exposed for gamma irradiation. The ratio chitosan to water was 1:6 with the presence of hydrogen peroxide (H2O2), 1 % - 5 %. These chitosan-water mixtures were irradiated at 6 kGy, which is the lowest irradiation dose that facility can offered. All samples were purified and proceed with characterization. The molecular weight (MW) study was monitored by size exclusion chromatography-multi angle laser light scattering (SEC-MALLS). Results showed that MW of chitosan reduced as the dose increased. Application of H2O2 enhanced the degradation rate of chitosan even at very low irradiation dose. Homogenous degradation also occurred during treatment with H2O2 based on the polydispersity index (PDI) derived from the calculation of weight average molecular weight over number average molecular weight (Mw/Mn). Mechanism of chitosan radiation degradation with and without hydrogen peroxide was also discussed in this paper. Structure of degraded products was characterized with Fourier-transform infrared spectra. The degree of deacetylation (DDA) values of the samples was determined by acid-base titration. Solubility test results showed that, chitosan powder even at low Mw was insoluble in water even at low pH water. Chitosan as well as irradiated chitosan powder are soluble in strong and weak acid solution. Further discussion on behaviours of radiation degraded chitosan will be elaborated more in this paper. (author)

  14. Combinatorial-Designed Epidermal Growth Factor Receptor-Targeted Chitosan Nanoparticles for Encapsulation and Delivery of Lipid-Modified Platinum Derivatives in Wild-Type and Resistant Non-Small-Cell Lung Cancer Cells.

    Science.gov (United States)

    Nascimento, Ana Vanessa; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2015-12-01

    Development of efficient and versatile drug delivery platforms to overcome the physical and biological challenges in cancer therapeutics is an area of great interest, and novel materials are actively sought for such applications. Recent strides in polymer science have led to a combinatorial approach for generating a library of materials with different functional identities that can be "mixed and matched" to attain desired characteristics of a delivery vector. We have applied the combinatorial design to chitosan (CS), where the polymer backbone has been modified with polyethylene glycol, epidermal growth factor receptor-binding peptide, and lipid derivatives of varying chain length to encapsulate hydrophobic drugs. Cisplatin, cis-([PtCl2(NH3)2]), is one of the most potent chemotherapy drugs broadly administered for cancer treatment. Cisplatin is a hydrophilic drug, and in order for it to be encapsulated in the developed nanosystems, it was modified with lipids of varying chain length. The library of four CS derivatives and six platinum derivatives was self-assembled in aqueous medium and evaluated for physicochemical characteristics and cytotoxic effects in platinum-sensitive and -resistant lung cancer cells. The results show that the lipid-modified platinate encapsulation into CS nanoparticles significantly improved cellular cytotoxicity of the drug. In this work, we have also reinforced the idea that CS is a multifaceted system that can be as successful in delivering small molecules as it has been as a nucleic acids carrier. PMID:26523837

  15. The Use of chitosan in The Formation of Silver Nanoparticles, Chitosanic Nanoparticles and Fibrous Structures

    Science.gov (United States)

    Abdelgawad, Abdelrahman Mohamed

    Nanoscale materials have attracted much attention in the last two decades due to their unique properties. The size effect attains new chemical and physical properties to these materials. Nanoparticles and nanofiber are major component of nanomaterials and they have heavily investigated in the literature for different applications. Nanoparticles could be produced from both metals as well as polymers. Chitosan, which is a natural polymer, can be used as capping agent in the preparation of metallic nanoparticles and itself, can produce nanoparticles. The utilization of nanoparticles and nanofibers for wound dressing materials is a very popular approach. Acquiring antibacterial properties to the wound dressing materials could be obtained either by formulation of nanomaterials composites or direct chemical modification of the substance. To improve the antibacterial properties of chitosan two approaches were applied. First, is through the formulation of chitosan with silver nanoparticles and the formation of nanofiber mats. In this study, the concepts of green chemistry were applied and silver nanoparticles were prepared in high concentration using chitosan as a capping polymer and glucose as a reducing agent. Nanofiber mats of polyvinyl alcohol/chitosan/silvernanoparticles were produced via electrospinning. The antibacterial activity of these fibers shows bactericidal effect against E. coli at low concentrations of Ag-NPs. In the second approach, direct chemical modification of chitosan was performed by grafting of Iodoacetic acid to the amino group at carbon-2. The chemical structure of chitosan Iodoacetamide derivative (CIA) was confirmed by FTIR and H1-NMR. The derivative was amorphous and water soluble at neutral pH. The minimum inhibitory concentration of CIA, against E. coli, was 400ig/mL and the derivative was bacteriostatic after 4h of treatment. Nanofiber mats of polyvinyl alcohol/chitosan/chitosan Iodoacetamide were produced via electrospinning. The

  16. Effect of Thorium and Lanthanum on the Uranium Adsorption of Chitosan s

    International Nuclear Information System (INIS)

    Full text: Chitosan is the deacetylated derivative of chitin derived from exoskeletons of crustaceans such as shrimp and crab shells. Chitosan has been applied for adsorption of heavy metal in waste water treatment. In this work, commercial chitosan s obtained from shrimp shells were studied for the uranium adsorption. The physicochemical properties of chitosan s such as particle size distribution, molecular weight and degree of deacetylation were also investigated. The effect of thorium and lanthanum on the uranium adsorption was carried out using batch method. The initial concentration of uranium was 50 mg/L and the concentration of thorium and lanthanum were varied from 0 to 200 mg/L. The concentrations of uranium before and after adsorption by chitosan s were determined by inductively couple plasma atomic emission spectrometry (ICP-AES). Results showed that uranium absorptivity of chitosan s in the initial pH 3 and 4 decreased with the increasing concentration of thorium and lanthanum

  17. Preparation and Characteristics of Chitosan Grafted byγ-methyl L-glutamate

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionGraft polymers based on chitosan or chitin are considered to be useful as biocompatible materials, membrane materials, and supports for bioactive species as well as models for naturally occurring chitin, which has covalently linked polypeptide chains at some of the amino groups.In this paper, new solvent system was applied in graft copolymerization of γ-methyl L-glutamate NCA onto chitosan under heterogeneous conditions. The characteristics of the chitosan derivatives with side chains were stu...

  18. Solid polymer electrolyte from phosphorylated chitosan

    International Nuclear Information System (INIS)

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10−6 S/cm up to 6.01 × 10−4 S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10−3 S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications

  19. Solid polymer electrolyte from phosphorylated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Fauzi, Iqbal, E-mail: arcana@chem.itb.ac.id; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Groups, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2014-03-24

    Recently, the need of secondary battery application continues to increase. The secondary battery which using a liquid electrolyte was indicated had some weakness. A solid polymer electrolyte is an alternative electrolytes membrane which developed in order to replace the liquid electrolyte type. In the present study, the effect of phosphorylation on to polymer electrolyte membrane which synthesized from chitosan and lithium perchlorate salts was investigated. The effect of the component’s composition respectively on the properties of polymer electrolyte, was carried out by analyzed of it’s characterization such as functional groups, ion conductivity, and thermal properties. The mechanical properties i.e tensile resistance and the morphology structure of membrane surface were determined. The phosphorylation processing of polymer electrolyte membrane of chitosan and lithium perchlorate was conducted by immersing with phosphoric acid for 2 hours, and then irradiated on a microwave for 60 seconds. The degree of deacetylation of chitosan derived from shrimp shells was obtained around 75.4%. Relative molecular mass of chitosan was obtained by viscometry method is 796,792 g/mol. The ionic conductivity of chitosan membrane was increase from 6.33 × 10{sup −6} S/cm up to 6.01 × 10{sup −4} S/cm after adding by 15 % solution of lithium perchlorate. After phosphorylation, the ionic conductivity of phosphorylated lithium chitosan membrane was observed 1.37 × 10{sup −3} S/cm, while the tensile resistance of 40.2 MPa with a better thermal resistance. On the strength of electrolyte membrane properties, this polymer electrolyte membrane was suggested had one potential used for polymer electrolyte in field of lithium battery applications.

  20. Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats

    Institute of Scientific and Technical Information of China (English)

    Li Zhao; Wei Qu; Yuxuan Wu; Hao Ma; Huajun Jiang

    2014-01-01

    Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (> 95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects.

  1. Bromine pretreated chitosan for adsorption of lead (II) from water

    Indian Academy of Sciences (India)

    Rajendra Dongre; Minakshi Thakur; Dinesh Ghugal; Jostna Meshram

    2012-10-01

    Pollution by heavy metals like lead (II) is responsible for health hazards and environmental degradation. Adsorption is a prevalent method applied for removal of heavy metal pollutants from water. This study explored adsorption performances of 30% bromine pretreated chitosan for lead (II) abatement from water. Bromine pretreatment alters porosity and specific surface area of chitosan by means of physicochemical interaction with cationic sites of chitosan skeleton, besides imparting anionic alteration at amino linkages of chitosan, to remove lead (II) by chemical interactions on superfluous active sites as characterized by FTIR, SEM, DTA and elemental analysis. Lead adsorptions were studied in batch mode by varying parameters viz. pH, bromine loading, sorbent dosage, initial lead concentration, contact time and temperature. The adsorption equilibrium data was well fitted to Freundlich isotherm and maximum sorption capacity of 30% bromine pretreated chitosan sorbent was 1.755 g/kg with 85–90% lead removal efficiency. Though cost and applicability of sorbent is unproven, yet contrast to raw chitosan derivatives, activated carbons and some resins, 30% bromine pretreated chitosan endow benign and efficient lead abatement technique.

  2. Synthesis and evaluation of chitosan-Vitamin C complex

    Directory of Open Access Journals (Sweden)

    Tian X

    2009-01-01

    Full Text Available Chitosan is a biocompatible, biodegradable and non-toxic polysaccharide polymer. It dissolves in water only if the pH is lower than 6.5. To extend its range of application, many water-soluble derivatives have therefore been prepared. In this research, chitosan-vitamin C complex was synthesized and characterized with Fourier transformed infrared spectroscopy, differential scanning calorimetry and 1 H-NMR. The solubility of chitosan-vitamin C complex in distilled water was greatly improved. The ·O2 - scavenging activity of chitosan-vitamin C complex was compared with chitosan and vitamin C by measuring the auto-oxidation rate of pyrogallic acid. Results showed that the scavenging activity on ·O2 - by chitosan-vitamin C complex was stronger than that by CS. At low concentrations (< 0.05 mg/ml, the scavenging activity of chitosan-vitamin C complex was stronger than that of vitamin C, but after certain concentrations (>0.1mg/ml, its scavenging activity was lower than that of vitamin C.

  3. Chitosan in Plant Protection

    OpenAIRE

    Abdelbasset El Hadrami; Adam, Lorne R.; Ismail El Hadrami; Fouad Daayf

    2010-01-01

    Chitin and chitosan are naturally-occurring compounds that have potential in agriculture with regard to controlling plant diseases. These molecules were shown to display toxicity and inhibit fungal growth and development. They were reported to be active against viruses, bacteria and other pests. Fragments from chitin and chitosan are known to have eliciting activities leading to a variety of defense responses in host plants in response to microbial infections, including the accumulation of ph...

  4. Chitosan against cutaneous pathogens

    OpenAIRE

    Champer, Jackson; Patel, Julie; Fernando, Nathalie; Salehi, Elaheh; Wong, Victoria; Kim, Jenny

    2013-01-01

    Propionibacterium acnes and Staphylococcus aureus are cutaneous pathogens that have become increasingly resistant to antibiotics. We sought to determine if chitosan, a polymer of deacetylated chitin, could be used as a potential treatment against these bacteria. We found that higher molecular weight chitosan had superior antimicrobial properties compared to lower molecular weights, and that this activity occurred in a pH dependent manner. Electron and fluorescence microscopy revealed that chi...

  5. Recovery of thorium along with uranium 233 from Thorex waste solution employing Chitosan

    International Nuclear Information System (INIS)

    The low level waste solution, generated from Thorex process during the processing of U233, contains thorium along with traces of Th228 and U233. Chitosan, a natural bio-polymer derived from Chitin, was earlier used to recover the uranium and americium. The studies were extended to find out its thorium sorption characteristics. Chitosan exhibited very good absorption of thorium (350 mg/g). Chitosan was equilibrated directly with the low level waste solution at different pH after adjusting its pH, for 60 minutes with a Chitosan to aqueous ratio of 1:100 and the raffinates were filtered and analysed. The results showed more than 99% of thorium and U233 could be recovered by Chitosan between pH 4 and 5. Loaded thorium and uranium could be eluted from the Chitosan by 1M HNO3 quantitatively. (author)

  6. A review on chitosan-based adsorptive membranes.

    Science.gov (United States)

    Salehi, Ehsan; Daraei, Parisa; Arabi Shamsabadi, Ahmad

    2016-11-01

    Membrane adsorbents have emerged as powerful and attractive tools for the removal of hazardous materials such as dyes and heavy metal ions, mainly in trace amounts, from water resources. Among membrane adsorbents, those prepared from or modified with chitosan biopolymer and its derivatives are cases of interest because of chitosan advantages including biocompatibility, biodegradability, nontoxicity, reactivity, film and fiber forming capacity and favorable hydrophilicity. This review is oriented to provide a framework for better insight into fabrication methods and applications of chitosan-based adsorptive membranes. Critical aspects including thermokinetic analyses of adsorption and regeneration capacity of the membrane adsorbents have been also overviewed. Future of chitosan-based adsorptive membranes might include efforts for the improvement of mechanical stability and reusability and also most targeted application of appropriate copolymers as well as nanostructures in preparing high performance adsorptive membranes. PMID:27516289

  7. Antibacterial action of a novel functionalized chitosan-arginine against Gram-negative bacteria.

    Science.gov (United States)

    Tang, Hong; Zhang, Peng; Kieft, Thomas L; Ryan, Shannon J; Baker, Shenda M; Wiesmann, William P; Rogelj, Snezna

    2010-07-01

    The antimicrobial activity of chitosan and chitosan derivatives has been well established. However, although several mechanisms have been proposed, the exact mode of action is still unclear. Here we report on the investigation of antibacterial activity and the antibacterial mode of action of a novel water-soluble chitosan derivative, arginine-functionalized chitosan, on the Gram-negative bacteria Pseudomonas fluorescens and Escherichia coli. Two different arginine-functionalized chitosans (6% arginine-substituted and 30% arginine-substituted) each strongly inhibited P. fluorescens and E. coli growth. Time-dependent killing efficacy experiments showed that 5000 mg l(-1) of 6%- and 30%-substituted chitosan-arginine killed 2.7 logs and 4.5 logs of P. fluorescens, and 4.8 logs and 4.6 logs of E. coli in 4h, respectively. At low concentrations, the 6%-substituted chitosan-arginine was more effective in inhibiting cell growth even though the 30%-substituted chitosan-arginine appeared to be more effective in permeabilizing the cell membranes of both P. fluorescens and E. coli. Studies using fluorescent probes, 1-N-phenyl-naphthylamine (NPN), nile red (NR) and propidium iodide (PI), and field emission scanning electron microscopy (FESEM) suggest that chitosan-arginine's antibacterial activity is, at least in part, due to its interaction with the cell membrane, in which it increases membrane permeability. PMID:20060936

  8. TRACTION RESISTANCE IN CHITOSAN TREATED COTTON

    Directory of Open Access Journals (Sweden)

    LOX Wouter

    2015-05-01

    Full Text Available Nowadays natural products interest has increased. However, when some products are included on textile fibers, they have no affinity and need some binders or other kind of auxiliaries to improve the yeld of the process, and some of them are not so natural as the product which are binding and consequently the “bio” definition is missed as some of them can be considered as highly pollutant. Chitosan is a common used bonding agent for cotton. It improves the antimicrobial and antifungal activity, improves wound healing and is a non-toxic bonding agent. The biopolymer used in this work is chitosan, which is a deacetylated derivative of chitin. These properties depend on the amount of deacetylation (DD and the Molecular weight (MW. Along with these improving properties, as it requires some acid pH to ve solved the treatment with chitosan can have some decreasing mechanical properties. The aim of that paper is to evaluate the change in breaking force of the treated samples and a change in elongation of those samples. It compared different amounts of concentration of chitosan with non treated cotton. The traction resistance test were performed on a dynamometer. The test was conducted according to the UNE EN ISO 13934-1 standard.

  9. 两亲性壳聚糖包覆紫杉醇脂质体的制备及体外释放研究%Preparation and in vitro Release of Paclitaxel Loaded Liposomes Modified with Amphiphilic Chitosan Derivatives

    Institute of Scientific and Technical Information of China (English)

    刁雨辉; 霍美蓉; 吕霖; 周建平

    2012-01-01

    Objective: To prepare paclitaxel loaded liposomes modified with amphiphilic chitosan deirvatives (N-octyl-N,O-carboxymethyl chitosan, OCC), and investigate their characteristics and release behavior in vitro. Methods Paclitaxel loaded liposomes modified with or without OCC (PTX-LP, PTX-LP-OCC) were prepared using an ethanol-based proliposome technology. Particle size and zeta potential of the liposomes were determined with Zetasizer 3000HSa The morphology was observed by a transmission electron microscope (TEM) technology. Stability of liposomes was evaluated by determining the particle size and drug leakage from liposomes. Finally, the in vitro release profiles of paclitaxel from PTX-LP and PTX-LP-OCC were evaluated using the bulk-equilibrium reverse dialysis bag technique Results Paclitaxel loaded liposomes were successfully prepared with an average diameter of 2365 nm and zeta potential of -31.4mV. The encapsulation efficiency was 895%. After OCC modification, there was no significant change in encapsulation efficiency, but the particle size and zeta potential significantly increased. As compared to PTX-LP, PTX-LP-OCC possessed better stability and lower burst release Conclusion: Liposome modified with amphiphilic chitosan derivatives is a promising carrier for anticancer drug delivery.%目的:制备两亲性壳聚糖N-辛基-N,O-羧甲基壳聚糖包覆紫杉醇脂质体(PTX-LP-OCC),并考察其理化性质及体外释放行为.方法:采用基于乙醇的前体脂质体法制备紫杉醇脂质体并以OCC包覆,并以普通脂质体(PTX-LP)为对照,测定其包封率、粒径大小、电位,观测其形态及稳定性,然后采用全体液平衡反向透析法研究体外释放行为.结果:紫杉醇脂质体包封率为89.5%,粒径为236.5 nm,Zeta电位为-31.4 mV,多糖包覆修饰后药物包封率无显著变化,粒径及Zeta电位显著增加,脂质体稳定性显著提高,药物释放呈缓释特征,且突释显著降低.结论:两亲性壳聚糖包

  10. Comparison of chitosan nanoparticles and chitosan hydrogels for vaccine delivery

    DEFF Research Database (Denmark)

    Gordon, Sarah; Saupe, Anne; McBurney, Warren;

    2008-01-01

    In this work the potential of chitosan nanoparticles (CNP) and thermosensitive chitosan hydrogels as particulate and sustained release vaccine delivery systems was investigated. CNP and chitosan hydrogels were prepared, loaded with the model protein antigen ovalbumin (OVA) and characterised. The...... release of fluorescently-labelled OVA (FITC-OVA) from CNP and chitosan hydrogels in-vitro showed that approximately 50% of the total protein was released from CNP within a period of ten days; release of antigen from chitosan gel occurred in a more sustained manner, with <10% of total protein being...... released after 10 days. The slow release from gel formulations may be explained by the strong interactions of the protein with chitosan. While OVA-loaded CNP showed no significant immunogenicity, formulations of OVA in chitosan gel were able to stimulate both cell-mediated and humoral immunity in-vivo....

  11. The spacer arm length in cell-penetrating peptides influences chitosan/siRNA nanoparticle delivery for pulmonary inflammation treatment

    Science.gov (United States)

    Jeong, Eun Ju; Choi, Moonhwan; Lee, Jangwook; Rhim, Taiyoun; Lee, Kuen Yong

    2015-11-01

    Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of R9Gn-chitosan/siRNA nanoparticles were investigated in vitro. Increasing the spacing arm length did not significantly affect the complex formation between R9Gn-chitosan and siRNA. However, R9G10-chitosan was much more effective in delivering genes both in vitro and in vivo compared with non-modified chitosan (without the peptide) and R9-chitosan (without the spacer arm). Chitosan derivatives modified with oligoarginine containing a spacer arm can be considered as potential delivery vehicles for various genes.Although chitosan and its derivatives have been frequently utilized as delivery vehicles for small interfering RNA (siRNA), it is challenging to improve the gene silencing efficiency of chitosan-based nanoparticles. In this study, we hypothesized that controlling the spacer arm length between a cell-penetrating peptide (CPP) and a nanoparticle could be critical to enhancing the cellular uptake as well as the gene silencing efficiency of conventional chitosan/siRNA nanoparticles. A peptide consisting of nine arginine units (R9) was used as a CPP, and the spacer arm length was controlled by varying the number of glycine units between the peptide (R9Gn) and the nanoparticle (n = 0, 4, and 10). Various physicochemical characteristics of

  12. DNA/chitosan electrostatic complex.

    Science.gov (United States)

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80). PMID:27050113

  13. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution.

    Science.gov (United States)

    Vllasaliu, Driton; Exposito-Harris, Ruth; Heras, Angeles; Casettari, Luca; Garnett, Martin; Illum, Lisbeth; Stolnik, Snow

    2010-11-15

    Present work investigates the potential of chitosan nanoparticles, formulated by the ionic gelation with tripolyphosphate (TPP), to open the cellular tight junctions and in doing so, improve the permeability of model macromolecules. A comparison is made with chitosan solution at equivalent concentrations. Initial work assessed cytotoxicity (through MTS and LDH assays) of chitosan nanoparticles and solutions on Calu-3 cells. Subsequently, a concentration of chitosan nanoparticles and solution exhibiting minimal toxicity was used to investigate the effect on TEER and macromolecular permeability across filter-cultured Calu-3 monolayer. Chitosan nanoparticles and solution were also tested for their effect on the distribution of the tight junction protein, zonnula occludens-1 (ZO-1). Chitosan nanoparticles produced a sharp and reversible decrease in TEER and increased the permeability of two FITC-dextrans (FDs), FD4 (MW 4 kDa) and FD10 (MW 10 kDa), with effects of a similar magnitude to chitosan solution. Chitosan nanoparticles produced changes in ZO-1 distribution similar to chitosan solution, indicating a tight junction effect. While there was no improvement in permeability with chitosan nanoparticles compared to solution, nanoparticles provide the potential for drug incorporation, and hence the possibility for providing controlled drug release and protection from enzymatic degradation. PMID:20727955

  14. Seed priming with chitosan improves the germination and growth performance of ajowan

    Directory of Open Access Journals (Sweden)

    Batool Mahdavi

    2013-11-01

    Full Text Available Background: Chitosan is a polysaccharide biopolymer derived from chitin. It not only stimulates growth and increases the crop yields but also alleviates the harmful effect of abiotic stress on plant growth. The objective of this study was to investigate the effects of chitosan on germination and growth of ajowan (Carum copticum under salt stress. This study was conducted in a laboratory and greenhouse. Material and Methods: In the first experiment seed germination of ajowan monitored under seed pre-treated by soaking in chitosan solutions of 0, 0.01%, 0.05%, 0.1%, 0.2% and 0.5% for 3 h. In second experiment, seeds soaked in chitosan solutions (0 and 0.2% and sown in pots at different salinity levels (0, 4, 8 and 12 dS/m. Results: Results indicated that all of chitosan concentrations increased germination percentage, germination rate, seedling vigour index, length and dry weight of hypocotyl and radicle compared to control although, 0.2% chitosan concentration was more effective than other treatments. Salinity caused a significant reduction in germination percentage, shoot length, root length, shoot and root dry weight and relative water content, while chitosan adjusted the salt toxicity. Conclusions: It is concluded that chitosan would be able to stimulate germination and growth of ajowan. It is also resulted that soaking ajowan seeds with chitosan, may alleviate the inhibitory effect of salt stress on the plant growth.

  15. Antitumour Acitivty of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    CaiQinQIN; XiaoHaiGAO; 等

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  16. Antitumour Activity of Chitosan Hydrogen Selenites

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Chitosans reacted with selenious acid to prepare chitosan hydrogen selenites, which were found to be growth-inhibitory against sarcoma 180 solid tumor. The results indicated that the activity also depended on the molecular weight of chitosan supports.

  17. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part II: Antibacterial Activity of PVA/Chitosan Hydrogel Synthesized by Gamma Irradiation

    International Nuclear Information System (INIS)

    Poly(vinyl alcohol) (PVA) is a synthetic polymer used in a large range of medical, commercial, industrial and food applications, manufacture of paper products, surgical threads, wound care, and food-contact applications. It was recently used as a coating for dietary supplements and pharmaceutical capsules. Cross-linked PVA microspheres are also used for controlled release of oral drugs. Chitin, a polysaccharide from which chitosan is derived, is the second most abundant natural polysaccharide after cellulose. Chitin is obtained from the exoskeletons (crab, shrimps and squid pen) fungi, insects, and some algae. Chitosan, a non toxic and biocompatible cationic polysaccharide, is produced by partial deacetylation of chitin; these properties of chitosan provide high potential for many applications. Chitosan has been widely used in vastly diverse fields, such as in biomedical applications drug delivery in agriculture metal ion sorption. The most important characteristic of chitosan is the deacetylation degree (DD) which influences its physical and chemical behaviors. Evaluation of DD can be carried out by FT-IR spectroscopy potentiometric titration, first derivative UV spectrophotometry, 1H-NMR and X-ray diffraction. Chitosan extracted from squid pen chitin is inherently purer than crustacean chitosans, it does not contain large amounts of calcium carbonate, and it does contain large amounts of protein. The purity of squid pen chitosan makes it particularly suitable for medical and cosmetic application. Application of radiation for the formation of hydrogels for medical use offers a unique possibility to combine the formation and sterilization of the product in a single technological step. The main aim of this study is to synthesis poly(vinyl alcohol) hydrogels containing different moieties of chitosan by gamma irradiation at a dose of 25 kGy, and investigate the antibacterial effect of chitosan contained in the hydrogel

  18. Basic Fibroblast Growth Factor-chitosan Carriers Induce Bone Marrow-Derived Mesenchymal Stem Cells to Differentiate into Nerve Cells%壳聚糖-碱性成纤维细胞生长因子载体诱导骨髓间充质干细胞向神经细胞分化

    Institute of Scientific and Technical Information of China (English)

    段红梅; 杨朝阳; 李晓光

    2011-01-01

    Objective To explore the effect of bFGF-chitosan carriers on inducing bone marrow-derived mesenchymal stem cells (MSCs) to differentiate into nerve cells.Methods MSCs were detected by immunohistochemistry and Western blot after they were induced by bFGF-chitosan carriers to differentiate into neurons.The MTT chromometry assay was carried out to determine cell viability.Results The proportion of express neural stem cells marker Nestin, and neuronal markers class Ⅲβ-tubulin and MAP-2 was 83.54 % after MSCs induced by bFGF-chitosan carriers.Conclusion bFGF-chitosan carriers can induce MSCs to differentiate into nerve cells with a high percentage.%目的探索壳聚糖-碱性成纤维细胞生长因子(bFGF)载体对骨髓间充质干细胞(MSCs)向神经细胞分化的诱导作用.方法免疫组织化学、Western blot检测MSCs诱导分化为神经细胞,MTT检测诱导后细胞的活性.结果 MSCs经壳聚糖-bFGF载体诱导后,表达神经干细胞的标记物Nestin以及神经细胞的标记物β-tubulinⅢ和MAP-2,比例高达83.54%.结论壳聚糖-bF-GF载体可以诱导MSCs高比例向神经细胞分化.

  19. Chitosan and chemically modified chitosan beads for acid dyes sorption

    Institute of Scientific and Technical Information of China (English)

    AZLAN Kamari; WAN SAIME Wan Ngah; LAI KEN Liew

    2009-01-01

    The capabilities of chitosan and chitosan-EGDE (ethylene glycol diglycidyl ether) beads for removing Acid Red 37 (AR 37) and Acid Blue 25 (AB 25) from aqueous solution were examined. Chitosan beads were cross-linked with EGDE to enhance its chemical resistance and mechanical strength. Experiments were performed as a function of pH, agitation period and concentration of AR 37 and AB 25. It was shown that the adsorption capacities of chitosan were comparatively higher than chitosan-EGDE for both acid dyes. This is mainly because cross-linking using EGDE reduces the major adsorption sites -NH3+ on chitosan. Langmuir isotherm model showed best conformity compared to Freundlich and BET. The kinetic experimental data agreed very well to the pseudo second-order kinetic model. The desorption study revealed that after three cycles of adsorption and desorption by NaOH and HCl, both adsorbents retained their promising adsorption abilities. FT-IR analysis proved that the adsorption of acid dyes onto chitosan-based adsorbents was a physical adsorption. Results also showed that chitosan and chitosan-EGDE beads were favourable adsorbers and could be employed as low-cost alternatives for the removal of acid dyes in wastewater treatment.

  20. Chitosan: Gels and Interfacial Properties

    Directory of Open Access Journals (Sweden)

    Julie Nilsen-Nygaard

    2015-03-01

    Full Text Available Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. This review gives an overview of chitosan hydrogels and their biomedical applications, e.g., in tissue engineering and drug delivery, as well as the chitosan’s surface activity and its role in emulsion formation, stabilization and destabilization. Previously unpublished original data where chitosan acts as an emulsifier and flocculant are presented and discussed, showing that highly-acetylated chitosans can act both as an emulsifier and as a flocculant.

  1. Chitosan-based mucosal adjuvants: Sunrise on the ocean.

    Science.gov (United States)

    Xia, Yufei; Fan, Qingze; Hao, Dongxia; Wu, Jie; Ma, Guanghui; Su, Zhiguo

    2015-11-01

    Mucosal vaccination, which is shown to elicit systemic and mucosal immune responses, serves as a non-invasive and convenient alternative to parenteral administration, with stronger capability in combatting diseases at the site of entry. The exploration of potent mucosal adjuvants is emerging as a significant area, based on the continued necessity to amplify the immune responses to a wide array of antigens that are poorly immunogenic at the mucosal sites. As one of the inspirations from the ocean, chitosan-based mucosal adjuvants have been developed with unique advantages, such as, ability of mucosal adhesion, distinct trait of opening the junctions to allow the paracellular transport of antigen, good tolerability and biocompatibility, which guaranteed the great potential in capitalizing on their application in human clinical trials. In this review, the state of art of chitosan and its derivatives as mucosal adjuvants, including thermo-sensitive chitosan system as mucosal adjuvant that were newly developed by author's group, was described, as well as the clinical application perspective. After a brief introduction of mucosal adjuvants, chitosan and its derivatives as robust immune potentiator were discussed in detail and depth, in regard to the metabolism, safety profile, mode of actions and preclinical and clinical applications, which may shed light on the massive clinical application of chitosan as mucosal adjuvant. PMID:26271831

  2. Enzymatic grafting of peptides from casein hydrolysate to chitosan. Potential for value-added byproducts from food-processing wastes.

    Science.gov (United States)

    Aberg, Christopher M; Chen, Tianhong; Olumide, Ayotunde; Raghavan, Srinivasa R; Payne, Gregory F

    2004-02-25

    Tyrosinase was used to initiate the grafting of peptides onto the amine-containing polysaccharide chitosan. Chemical evidence for covalent grafting was obtained from electrospray mass spectrometry for products formed from reactions with glucosamine (the monomeric unit of chitosan) and the model dipeptide Tyr-Ala. When this model dipeptide was incubated with tyrosinase and chitosan, there was a marked increase in the viscosity of the solution. This viscosity increase provides physical evidence that tyrosinase can initiate peptide grafting onto the chitosan backbone. A peptide-modified chitosan derivative was generated by reacting chitosan (0.32 w/v%) with acid-hydrolyzed casein (0.5 w/v %) using tyrosinase. After reaction, the peptide-modified chitosan was partially purified and dissolved in an aqueous acetic acid solution. Low concentrations of this peptide-modified chitosan were observed to confer viscoelastic properties to the solutions. Specifically they conferred high viscosities and shear thinning properties to the solutions, and solutions containing only 1 w/w % of the peptide-modified chitosan behaved as weak gels. Thus, tyrosinase provides a simple and safe way to convert food-processing byproducts into environmentally friendly products that offer useful functional properties. The selectivity of tyrosinase and the relatively high reactivity of chitosan's amines allow grafting to be performed with uncharacterized peptide mixtures present in crude hydrolysates. PMID:14969532

  3. Biokinetic study of radionuclides in rats after feeding a chitosan diet

    International Nuclear Information System (INIS)

    Chitosan is derived from chitin, which is a cellulose-like biopolymer distributed widely in nature, especially in crustaceans, insects, fungi and yeast. Chitin and chitosan are known to be one of the naturals chelating agents. We already reported that the whole-body retention of orally administered 85Sr in rats decreased remarkably after feeding a chitosan diet when comparing them with controls. The present study was to investigate whether chitosan can be applied to the animal and human bodies in order to reduce the bioavailability of radionuclides in food. Wistar strain male rats were used in this experiment. These rats were fed with different diets in order to observe the removal of ingested radio-iron and zinc by chitosan. The whole-body retention of radio-iron was slightly lower in the 5%-chitosan diet group than non-chitosan diet group. In tissue distribution study, rats were sacrificed 14 days after administration. The relative concentration of iron in the blood and spleen was found to be lower in the 5%-chitosan diet group. The whole-body retention of 65Zn decreased sharply in the rats given 3% phytate water in advance of 65Zn administration when compared with the control rats. The rats given 5% chitosan and 1% phytate water also showed a significant reduction in radio-zinc. However, 5% chitosan diet on it's own did not have a significant effect on accelerating the removal of radio-zinc in the rats. Previous studies have shown that the administration of 1% phytate water is also not effective in reducing radio-zinc in rats. These results suggest that the effectiveness of phytate and chitosan in reducing the bioavailability of radio-zinc depend on their concentration. (author)

  4. N,N-Dilauryl Chitosan:Synthesis and Surface Pressure-area Isotherm

    Institute of Scientific and Technical Information of China (English)

    XIN Mei-hua; WANG Min; LI Ming-chun; LIU Chao; SUN Duo-xian; MITSUISHI Masaya; MIYASHITA Tokuji

    2004-01-01

    With sodium dodecyl sulfonate(SDS) as the phase transferring catalyst, N,N-Dilauryl chitosans with a high degree of alkyl group substitution were prepared and characterized by means of FTIR, 1H NMR and elemental analyses. The results indicate that the average degree of alkyl group substitution on the chitosan increases with decreasing the molecular weight of the chitosan. The fully N,N-dilaurylated chitosan was found to be dissolvable in chloroform. The collapsed pressures of the samples derived from chitosan with 3000,5000 and 10000 dalton are 47.6, 48.2 and 51.0 mN/m, respectively. The surface area occupied by the monomer unit (glucosamine) of all those samples is 0.6 nm2.

  5. Removal of plutonium from low level Purex waste streams by Chitosan

    International Nuclear Information System (INIS)

    The low level waste solution generated from Purex process contains traces of Plutonium and Americium contributing alpha activity to the solution. Chitosan is it natural bio-polymer derived from Chitin. Successful studies were carried out using Chitosan to recover the uranium, thorium and americium from different waste streams. The studies were extended to find out its plutonium sorption characteristics. Chitosan was equilibrated with pure plutonium tracer solution at different pH, for 60 minutes with a Chitosan to aqueous ratio of 1:100 and the raffinates were filtered and analysed radio metrically. The results showed -95 % of plutonium could be recovered by Chitosan between pH 4 and 7. Elution study of loaded plutonium was also studied with 1M HNO3. (author)

  6. Studies on the obtention and characterization of N,N,N-trimethyl chitosan (TMC)

    International Nuclear Information System (INIS)

    In this work, a study was developed on the obtention of N,N,N-trimethyl chitosan (TMC) aiming the preparation of samples with different average degrees of quaternization under controlled experimental conditions. The effects of previous treatments of chitosan on the reactivity toward its N-alkylation were evaluated and it was concluded that the purification method previously applied to chitosan strongly influenced the reaction yield. The average degrees of quaternization of the TMC samples were determined by nuclear magnetic resonance spectroscopy and they ranged from 4,0% to 22%, depending on the previous treatment to which the chitosan was submitted and on the reaction conditions. It was also concluded that an average degree of quaternization close to 4,0% is already high enough to impart water solubility to this chitosan derivative. (author)

  7. PREPARATION AND EVALUATION OF SODIUM DICLOFENAC LOADED CHITOSAN CONTROLLED RELEASE MICROPARTICLES USING FACTORIAL DESIGN

    Directory of Open Access Journals (Sweden)

    Behzad Sharif Makhmal Zadeh

    2010-09-01

    Full Text Available Sodium diclofenac is a non-steroidal anti-inflammatory drug used to relieve the inflammation, swelling, stiffness, and joint pain associated with rheumatoid arthritis. Chitosan is a linear polysaccharide derived from chitin that has been used in different pharmaceutical forms and drug delivery systems. The purpose of this study was to prepare and evaluate the chitosan beads as a controlled drug release system for sodium diclofenac consists of sustained release microparticles and immediate released particles. Sustained release chitosan microparticles were prepared with an ionic cross-linking agent. Loading efficiency was influenced by percentage of sodium polyphosphate, Tween and drug-chitosan proportion with the maximum amount of 83.12%. Release of sodium diclofenac from microparticles pattern indicated burst and sustained release that was influenced by percentage of Tween 80. Finally, Chitosan microparticles provided suitable sustained release and drug loading for sodium diclofenac oral delivery.

  8. Chitosan--A Novel of Gene Vectors%壳聚糖--一种新型基因载体

    Institute of Scientific and Technical Information of China (English)

    何乃普; 王荣民; 宋鹏飞; 王云普

    2005-01-01

      介绍了壳聚糖及其衍生物作为新型基因载体的壳聚糖-DNA复合物、壳聚糖-DNA纳米微球和壳聚糖-DNA自聚体等三种主要形态和类型。%  The applications of chitosan and its derivatives as novel gene vectors including chitosan-DNA complexes, chitosan-DNA nanospheres and Chitosan-DNA self-aggregates are introduced.

  9. In vitro osteoclastogenesis on textile chitosan scaffold

    Directory of Open Access Journals (Sweden)

    C Heinemann

    2010-02-01

    Full Text Available Textile chitosan fibre scaffolds were evaluated in terms of interaction with osteoclast-like cells, derived from human primary monocytes. Part of the scaffolds was further modified by coating with fibrillar collagen type I in order to make the surface biocompatible. Monocytes were cultured directly on the scaffolds in the presence of macrophage colony stimulating factor (M-CSF and receptor activator of nuclear factor kappaB ligand (RANKL for up to 18 days. Confocal laser scanning microscopy (CLSM as well as scanning electron microscopy (SEM revealed the formation of multinuclear osteoclast-like cells on both the raw chitosan fibres and the collagen-coated scaffolds. The modified surface supported the osteoclastogenesis. Differentiation towards the osteoclastic lineage was confirmed by the microscopic detection of cathepsin K, tartrate resistant acid phosphatase (TRAP, acidic compartments using 3-(2,4-dinitroanillino-3’-amino-N-methyldipropylamine (DAMP, immunological detection of TRAP isoform 5b, and analysis of gene expression of the osteoclastic markers TRAP, cathepsin K, vitronectin receptor, and calcitonin receptor using reverse transcription-polymerase chain reaction (RT-PCR. The feature of the collagen-coated but also of the raw chitosan fibre scaffolds to support attachment and differentiation of human monocytes facilitates cell-induced material resorption – one main requirement for successful bone tissue engineering.

  10. Development of drug-loaded chitosan-vanillin nanoparticles and its cytotoxicity against HT-29 cells.

    Science.gov (United States)

    Li, Pu-Wang; Wang, Guang; Yang, Zi-Ming; Duan, Wei; Peng, Zheng; Kong, Ling-Xue; Wang, Qing-Huang

    2016-01-01

    Chitosan as a natural polysaccharide derived from chitin of arthropods like shrimp and crab, attracts much interest due to its inherent properties, especially for application in biomedical materials. Presently, biodegradable and biocompatible chitosan nanoparticles are attractive for drug delivery. However, some physicochemical characteristics of chitosan nanoparticles still need to be further improved in practice. In this work, chitosan nanoparticles were produced by crosslinking chitosan with 3-methoxy-4-hydroxybenzaldehyde (vanillin) through a Schiff reaction. Chitosan nanoparticles were 200-250 nm in diameter with smooth surface and were negatively charged with a zeta potential of - 17.4 mV in neutral solution. Efficient drug loading and drug encapsulation were achieved using 5-fluorouracil as a model of hydrophilic drug. Drug release from the nanoparticles was constant and controllable. The in vitro cytotoxicity against HT-29 cells and cellular uptake of the chitosan nanoparticles were evaluated by methyl thiazolyl tetrazolium method, confocal laser scanning microscope and flow cytometer, respectively. The results indicate that the chitosan nanoparticles crosslinked with vanillin are a promising vehicle for the delivery of anticancer drugs. PMID:24712731

  11. Chitooligosaccharide and Its Derivatives: Preparation and Biological Applications

    Directory of Open Access Journals (Sweden)

    Gaurav Lodhi

    2014-01-01

    Full Text Available Chitin is a natural polysaccharide of major importance. This biopolymer is synthesized by an enormous number of living organisms; considering the amount of chitin produced annually in the world, it is the most abundant polymer after cellulose. The most important derivative of chitin is chitosan, obtained by partial deacetylation of chitin under alkaline conditions or by enzymatic hydrolysis. Chitin and chitosan are known to have important functional activities but poor solubility makes them difficult to use in food and biomedicinal applications. Chitooligosaccharides (COS are the degraded products of chitosan or chitin prepared by enzymatic or chemical hydrolysis of chitosan. The greater solubility and low viscosity of COS have attracted the interest of many researchers to utilize COS and their derivatives for various biomedical applications. In light of the recent interest in the biomedical applications of chitin, chitosan, and their derivatives, this review focuses on the preparation and biological activities of chitin, chitosan, COS, and their derivatives.

  12. Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering

    NARCIS (Netherlands)

    Correia, Clara R.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van Clemens A.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Scaffolds derived from natural polysaccharides are very promising in tissue engineering applications and regenerative medicine, as they resemble glycosaminoglycans in the extracellular matrix (ECM). In this study, we have prepared freeze-dried composite scaffolds of chitosan (CHT) and hyaluronic aci

  13. An Ionic Liquid Solution of Chitosan as Organocatalyst

    Directory of Open Access Journals (Sweden)

    René Wilhelm

    2013-11-01

    Full Text Available Chitosan, which is derived from the biopolymer chitin, can be readily dissolved in different ionic liquids. The resulting homogeneous solutions were applied in an asymmetric Aldol reaction. Depending on the type of ionic liquid used, high asymmetric inductions were found. The influence of different additives was also studied. The best results were obtained in [BMIM][Br] without an additive.

  14. Heavy Metal Removal by Chitosan and Chitosan Composite

    International Nuclear Information System (INIS)

    Radiation grafting of diethyl aminoethyl methacrylate (DEAEMA) on chitosan to impart ion exchange properties and to be used for the separation of metal ions from waste water, was carried out. The effect of experimental conditions such as monomer concentration and the radiation dose on grafting were studied. On using chitosan, grafted chitosan and some chitosan composites in metal ion removal they show high up-take capacity for Cu2+ and lower uptake capacities for the other divalent metal ions used (Zn and Co). Competitive study, performed with solutions containing mixture of metal salts, showed high selectivity for Cu2+ than the other metal ion. Limited grafting of DEAEMA polymer -containing specific functional groups-onto the chitosan backbone improves the sorption performance

  15. Interaction of Protein and Cell with Different Chitosan Membranes

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Interaction between proteins, cells and biomaterial surfaces is commonly observed and often used to measure biocompatibility of biomaterials.In this investigation, three kinds of biomaterials derived from chitosan were prepared.The surface wettability of these polymers, interaction of protein with material surface, and their effects on cell adhesion and growth were studied.The results show that the surface contact angle and surface charge of biomaterials have a close bearing on protein adsorption as well as cell adhesion and growth, indicating that through different chemical modifications, chitosan can be made into different kinds of biomedical materials to satisfy various needs.

  16. Chitosan-based nanocoatings for hypothermic storage of living cells.

    Science.gov (United States)

    Bulwan, Maria; Antosiak-Iwańska, Magdalena; Godlewska, Ewa; Granicka, Ludomira; Zapotoczny, Szczepan; Nowakowska, Maria

    2013-11-01

    The formation of ultrathin chitosan-based nanocoating on HL-60 model cells and their protective function in hypothermic storage are presented. HL-60 cells are encapsulated in ultrathin shells by adsorbing cationic and anionic chitosan derivatives in a stepwise, layer-by-layer, procedure carried out in an aqueous medium under mild conditions. The chitosan-based films are also deposited on model lipid bilayer and the interactions are studied using ellipsometry and atomic force microscopy. The cells covered with the chitosan-based films and stored at 4 °C for 24 h express viability comparable to that of the control sample incubated at 37 °C, while the unprotected cells stored under the same conditions do not show viability. It is shown that the chitosan-based shell protects HL-60 cells against damaging effect of hypothermic storage. Such nanocoatings provide protection, mechanical stability, and support the cell membrane, while ensuring penetration of small molecules such as nutrients/gases what is essential for cell viability. PMID:23966342

  17. POTENTIAL ANTISTATIC PROPERTIES OF A CEMENT COMPOSITION MODIFIED BY CHITOSAN

    Directory of Open Access Journals (Sweden)

    Darchiya Valentina Ivanovna

    2012-10-01

    Full Text Available Environmental compatibility of construction materials and their impact onto the human organism and the environment are the essential factors to be taken account of in the course of construction. Therefore, natural renewable biological polymers arouse interest. Polysaccharide chitin takes a special position among them. It represents one of the most widely spread biological polymers; it is extracted from 100% renewable materials. It is part of the external skeleton of crustaceans and insects, and it also part of cell walls of mushrooms and algae. Any research of potential materials to be generated from chitin and its derivative chitosan may involve a practical implementation. The research of the antistatic properties followed the introduction of 1% of chitosan into the cement composition. Electrostatic field intensity was measured by Electrostatic Field Intensity Meter ST-01. The electrostatic property of the sample modified by chitosan turned out to be lower than the one of the benchmark sample by 5.6 times. The presence of chitosan in the cement composition makes no impact on strength-related properties of the construction material. The cement composition modified by chitosan may be used in the manufacturing of antistatic self-leveling floors.

  18. Chitosan based edible films and coatings: a review.

    Science.gov (United States)

    Elsabee, Maher Z; Abdou, Entsar S

    2013-05-01

    Chitosan is a biodegradable biocompatible polymer derived from natural renewable resources with numerous applications in various fields, and one of which is the area of edible films and coatings. Chitosan has antibacterial and antifungal properties which qualify it for food protection, however, its weak mechanical properties, gas and water vapor permeability limit its uses. This review discusses the application of chitosan and its blends with other natural polymers such as starch and other ingredients for example essential oils, and clay in the field of edible films for food protection. The mechanical behavior and the gas and water vapor permeability of the films are also discussed. References dealing with the antimicrobial behavior of these films and their impact on food protection are explored. PMID:23498203

  19. Neural Stem Cell Affinity of Chitosan and Feasibility of Chitosan-Based Porous Conduits as Scaffolds for Nerve Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    WANG Aijun; AO Qiang; HE Qing; GONG Xiaoming; GONG Kai; GONG Yandao; ZHAO Nanming; ZHANG Xiufang

    2006-01-01

    Neural stem cells (NSCs) are currently considered as powerful candidate seeding cells for regeneration of both spinal cords and peripheral nerves. In this study, NSCs derived from fetal rat cortices were co-cultured with chitosan to evaluate the cell affinity of this material. The results showed that NSCs grew and proliferated well on chitosan films and most of them differentiated into neuron-like cells after 4 days of culture. Then, molded and braided chitosan conduits were fabricated and characterized for their cytotoxicity, swelling, and mechanical properties. Both types of conduits had no cytotoxic effects on fibroblasts (L929 cells) or neuroblastoma (Neuro-2a) cells. The molded conduits are much softer and more flexible while the braided conduits possess much better mechanical properties, which suggests different potential applications.

  20. Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Jolanta Kumirska

    2010-04-01

    Full Text Available Chitin, the second most important natural polymer in the world, and its N-deacetylated derivative chitosan, have been identified as versatile biopolymers for a broad range of applications in medicine, agriculture and the food industry. Two of the main reasons for this are firstly the unique chemical, physicochemical and biological properties of chitin and chitosan, and secondly the unlimited supply of raw materials for their production. These polymers exhibit widely differing physicochemical properties depending on the chitin source and the conditions of chitosan production. The presence of reactive functional groups as well as the polysaccharide nature of these biopolymers enables them to undergo diverse chemical modifications. A complete chemical and physicochemical characterization of chitin, chitosan and their derivatives is not possible without using spectroscopic techniques. This review focuses on the application of spectroscopic methods for the structural analysis of these compounds.

  1. Synthesis and evaluation of diethylethylamine–chitosan for gene delivery: composition effects on the in vitro transfection efficiency

    International Nuclear Information System (INIS)

    Chitosan has been indicated as a safe and promising polycation vector for gene delivery. However its low transfection efficiency has been a challenging obstacle for its application. To address this limitation, we synthesized chitosan derivatives which had increasing amounts of diethylethylamine groups (DEAE) attached to the chitosan main chain. The plasmid DNA VR1412 (pDNA), encoding the ß-galactosidase (ß-gal) reporter gene was used to prepare nanoparticles with the chitosan derivatives, and the transfection studies were performed with HeLa cells. By means of dynamic light scattering and zeta potential measurements, it was shown that diethylethylamine–chitosan derivatives (DEAEx–CH) were able to condense DNA into small particles having a surface charge depending on the polymer/DNA ratio (N/P ratio). Nanoparticles prepared with derivatives containing 15 and 25% of DEAE groups (DEAE15–CH and DEAE25–CH) exhibited transfection efficiencies ten times higher than that observed with deacetylated chitosan (CH). For derivatives with higher degrees of substitution (DS), transfection efficiency decreased. The most effective carriers showed low cytotoxicity and good transfection activities at low charge ratios (N/P). Vectors with low DS were easily degraded in the presence of lysozyme at physiological conditions in vitro and the nontoxicity displayed by these vectors opens up new opportunities in the design of DEAE–chitosan-based nanoparticles for gene delivery. (paper)

  2. Peroxide chitosan derivatives and their application

    OpenAIRE

    Solomko, Nadiya; Budishevska, Olga; Voronov, Stanislav

    2007-01-01

    Радикальними реакціями хітозану з5-трет-бутилперокси-5-метил-1-гексен-3- іном одержано перокси-хітозани з дитретинними пероксидними фрагментами, які можуть застосовуватися разом з низькомолекулярним катіонактивним емульгатором як коемульгатори і макроініціатори у водно-емульсійній полімеризації вінільних мономерів. Показано, що пероксихітозани прищеплюються до поверхні латексних частинок і надають емульсійному полімеру антибактеріальних властивостей. Полімераналогічними перетвореннями хітозан...

  3. Chitosan composite films. Biomedical applications.

    Science.gov (United States)

    Cárdenas, Galo; Anaya, Paola; von Plessing, Carlos; Rojas, Carlos; Sepúlveda, Jackeline

    2008-06-01

    Chitosan acetate films have been prepared using chitosans from shrimps (Pleuroncodes monodon) of low and high molecular weight (LMv = 68,000 g/mol and HMv = 232,000 g/mol) and deacetylation degree of 80 and 100%, respectively. The chitosan films were obtained by addition of several additives to acetic acid chitosan solutions, such as: glycerol, oleic acid and linoleic acid in different proportions. The pH of the solutions before casting ranged from 5.0 to 6.0. The composite film thickness are reported. The films have been analyzed by FTIR showing characteristic bands corresponding to the additives. The scanning electron microscopy (SEM) studies reveals the different morphology of the composite films. The films exhibit different physical properties depending upon the additives and/or mixture of them. The addition of glycerol to composite improves the elasticity of the films. The swelling in glucose and saline solutions for several films was evaluated, being higher in the glucose solution. The bactericide test against Staphylococcus aureus, Pseudomona aeruginosa and Acinetobacter baumanii in plates with either blood and or agar tripticase showed that the molecular weight influences on the bactericidal properties of the chitosan composite films and over its effect against gram positive and gram negative bacteria. Medical applications of the composite films were done in patients with burns, ulcers and injuries, the films containing glycerol showed good adhesion in comparison with those without it. The composite films tested were mainly three (1) chitosan acetate with glycerol, (2) chitosan acetate with oleic acid and (3) chitosan acetate with glycerol and oleic acid. Excellent results in the skin recovery were obtained after 7-10 days. Since the chitosan is biodegradable by the body enzymes it does not need to be removed and increases the gradual grows of the damage tissues. PMID:18165888

  4. Preparation and Characterization of Ferrofluid Stabilized with Biocompatible Chitosan and Dextran Sulfate Hybrid Biopolymer as a Potential Magnetic Resonance Imaging (MRI) T2 Contrast Agent

    OpenAIRE

    Tzu-Chen Yen; Chia-Rui Shen; Wei-Cheng Yang; Chao-Lin Liu; Jen-Fei Wang; Fu-Yuan Tsai; Zei-Tsan Tsai

    2012-01-01

    Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs). Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs) from chitosan, the positively charged polyme...

  5. Chitosan: Gels and Interfacial Properties

    OpenAIRE

    Julie Nilsen-Nygaard; Strand, Sabina P.; Kjell M. Vårum; Kurt I. Draget; Catherine T. Nordgård

    2015-01-01

    Chitosan is a unique biopolymer in the respect that it is abundant, cationic, low-toxic, non-immunogenic and biodegradable. The relative occurrence of the two monomeric building units (N-acetyl-glucosamine and d-glucosamine) is crucial to whether chitosan is predominantly an ampholyte or predominantly a polyelectrolyte at acidic pH-values. The chemical composition is not only crucial to its surface activity properties, but also to whether and why chitosan can undergo a sol–gel transition. T...

  6. Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films

    OpenAIRE

    Zuo, Ping-ping; Feng, Hua-Feng; Xu, Zhi-Zhen; Zhang, Ling-Fan; Zhang, Yu-Long; Xia, Wei; Zhang, Wen-Qing

    2013-01-01

    Background Graphene oxide (GO)can be dispersed through functionalization, or chemically converted to make different graphene-based nanocomposites with excellent mechanical and thermal properties. Chitosan, a partially deacetylated derivative of chitin, is extensively used for food packaging, biosensors, water treatment, and drug delivery. GO can be evenly dispersed in chitosan matrix through the formation of amide linkages between them, which is different from previous reports focusing on pre...

  7. Single-wall carbon nanotube dispersions stabilised with N-trimethyl-chitosan

    OpenAIRE

    Wise, A; Smith, James; Bouropoulos, N.; Yannopoulos, S.; Van der Merwe, Marisa; Fatouros, D.

    2008-01-01

    We report the noncovalent complexation of a biocompatible low substituted N-trimethyl chitosan (TMC), a cationic chitosan derivative, onto the graphitic surface of single-walled carbon nanotubes (SWCNTs). TMC was synthesized and characterized by 1H-NMR. A yield between the range of 34% and 56% was obtained with a degree of substitution of 19.7%. SWCNTs dispersed in TMC resulted in stable dispersions, which were further characterized by Atomic Force Microscopy (AFM) Raman Spectroscopy and ζ-po...

  8. Extraction biotechnologique de la chitine pour la production de chitosane : caractérisation et application

    OpenAIRE

    Pacheco Lopez, Neith

    2010-01-01

    The chitin is one of the most abundant biopolymers in biomass. Its main industrial derivative is the chitosan. These two polysaccharides present an increasing interest thanks to their various interesting physicochemical and biological properties. Their potential applications concern diverse fields as the pharmacy, medicine, food industry and agriculture. Despite numerous advances in methods for the chemical production of chitin and chitosan, the use of concentrated solutions of acids and alka...

  9. Structural Investigations of Chitin and Chitosan Complexed with Iron or Tin

    Science.gov (United States)

    Gamblin, B. E.; Stevens, J. G.; Wilson, K. L.

    1998-12-01

    Chitin (N-acetyl-glucosamine) and its derivative chitosan (glucosamine) bind with most transition and main group metals, including iron and tin. Using 57Fe and 119Sn Mössbauer Spectroscopy it is determined that an oxidation reaction occurs during the metal uptake. Data also supports a structure with more than one metal bonding site and shows the ability of the chitin and chitosan polymers to bind large concentrations of iron.

  10. Identification of yeast genes that confer resistance to chitosan oligosaccharide (COS) using chemogenomics

    OpenAIRE

    Jaime Maria DLA; Lopez-Llorca Luis; Conesa Ana; Lee Anna Y; Proctor Michael; Heisler Lawrence E; Gebbia Marinella; Giaever Guri; Westwood J; Nislow Corey

    2012-01-01

    Background: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results: Three different chemogenomic...

  11. Seed priming with chitosan improves the germination and growth performance of ajowan

    OpenAIRE

    Batool Mahdavi; Asghar Rahimi

    2013-01-01

    Background: Chitosan is a polysaccharide biopolymer derived from chitin. It not only stimulates growth and increases the crop yields but also alleviates the harmful effect of abiotic stress on plant growth. The objective of this study was to investigate the effects of chitosan on germination and growth of ajowan (Carum copticum) under salt stress. This study was conducted in a laboratory and greenhouse. Material and Methods: In the first experiment seed germination of ajowan monitored und...

  12. Preparation and Characterization of Acylated Chitosan

    Institute of Scientific and Technical Information of China (English)

    LI Ming-chun; LIU Chao; XIN Mei-hua; ZHAO Huang; WANG Min; FENG Zhen; SUN Xiao-li

    2005-01-01

    Fully acylated chitosan and N, N-diacyl chitosan were prepared. The products were characterized by elemental analysis, FTIR and 1H NMR. The experimental results indicate that the average degree of acylation depends on the volume ratio of pyridine to chloroform in the reaction medium, the chain length of the acylation agent used, and the molecular weight of chitosan raw materials. The XRD measurements were carried out for pure chitosan, fully acylated chitosan and N, N-diacyl chitosan to verify the crystallinity change caused by the acylation.

  13. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo.

    Science.gov (United States)

    Egan, Áine M; O'Doherty, John V; Vigors, Stafford; Sweeney, Torres

    2016-01-01

    The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0) were fed either T1) basal diet or T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group) for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (Pneuromedin B (P<0.05), neuropeptide Y receptor 5 (P<0.05) in hypothalamic nuclei and neuropeptide Y (P<0.05) in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05). In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo. PMID:26901760

  14. Chitosan, the Marine Functional Food, Is a Potent Adsorbent of Humic Acid

    Directory of Open Access Journals (Sweden)

    Chao-Lin Liu

    2011-11-01

    Full Text Available Chitosan is prepared by the deacetylation of chitin, the second-most abundant biopolymer in nature, and has applicability in the removal of dyes, heavy metals and radioactive waste for pollution control. In weight-reduction remedies, chitosan is used to form hydrogels with lipids and to depress the intestinal absorption of lipids. In this study, an experimental method was implemented to simulate the effect of chitosan on the adsorption of humic acid in the gastrointestinal tract. The adsorption capacity of chitosan was measured by its adsorption isotherm and analyzed using the Langmuir equation. The results showed that 3.3 grams of humic acid was absorbed by 1 gram of chitosan. The adsorption capacity of chitosan was much greater than that of chitin, diethylaminoethyl-cellulose or activated charcoal. Cellulose and carboxymethyl-cellulose, a cellulose derivative with a negative charge, could not adsorb humic acid in the gastrointestinal tract. This result suggests that chitosan entraps humic acid because of its positive charge.

  15. Genetic Stability of In vitro Multiplied Phalaenopsis gigantea Protocorm-like Bodies as Affected by Chitosan

    Directory of Open Access Journals (Sweden)

    Samira SAMARFARD

    2013-05-01

    Full Text Available Chitosan is a carbohydrate polymer derivative of chitin which presents in shell of crustaceans. This biopolymer is a non toxic and environmentally friendly, considered as a plant growth stimulator in some plant species. The present study investigates the effects of chitosan and media types on multiplication and genetic stability of Phalaenopsis gigantea protocorm-like bodies (PLBs. PLBs were inoculated in liquid New Dogashima Medium (NDM and Vacin and Went (VW supplemented with various concentrations of chitosan (0, 5, 10, 15, 20 and 25 mg/L. The highest PLB multiplication was observed on VW and NDM supplemented with 10 mg/L chitosan with mean number of PLBs 177 and 147, respectively. Chitosan promoted the formation of juvenile leaves and the highest number was observed in NDM supplemented with 20 mg/L chitosan with mean number of 66 leaves after 8 weeks of culture. Genetic stability was assessed among mother plant and secondary PLBs after 2, 4, 6, and 8 weeks of culture in liquid media. 8 out of 10 ISSR markers produced a total of 275 clear and reproducible bands with mean of 6.9 bands per primer. The secondary PLBs produced during sub-culturing process of chitosan treated liquid culture were genetically uniform and similar to mother plant.

  16. One-Step Biofunctionalization of Quantum Dots with Chitosan and N-palmitoyl Chitosan for Potential Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Herman S. Mansur

    2013-06-01

    Full Text Available Carbohydrates and derivatives (such as glycolipids, glycoproteins are of critical importance for cell structure, metabolism and functions. The effects of carbohydrate and lipid metabolic imbalances most often cause health disorders and diseases. In this study, new carbohydrate-based nanobioconjugates were designed and synthesized at room temperature using a single-step aqueous route combining chitosan and acyl-modified chitosan with fluorescent inorganic nanoparticles. N-palmitoyl chitosan (C-Pal was prepared aiming at altering the lipophilic behavior of chitosan (CHI, but also retaining its reasonable water solubility for potential biomedical applications. CHI and C-Pal were used for producing biofunctionalized CdS quantum dots (QDs as colloidal water dispersions. Fourier transform infrared spectroscopy (FTIR, thermal analysis (TG/DSC, surface contact angle (SCA, and degree of swelling (DS in phosphate buffer were used to characterize the carbohydrates. Additionally, UV-Visible spectroscopy (UV-Vis, photoluminescence spectroscopy (PL, dynamic light scattering (DLS, scanning and transmission electron microscopy (SEM/TEM were used to evaluate the precursors and nanobioconjugates produced. The FTIR spectra associated with the thermal analysis results have undoubtedly indicated the presence of N-palmitoyl groups “grafted” to the chitosan chain (C-Pal which significantly altered its behavior towards water swelling and surface contact angle as compared to the unmodified chitosan. Furthermore, the results have evidenced that both CHI and C-Pal performed as capping ligands on nucleating and stabilizing colloidal CdS QDs with estimated average size below 3.5 nm and fluorescent activity in the visible range of the spectra. Therefore, an innovative “one-step” process was developed via room temperature aqueous colloidal chemistry for producing biofunctionalized quantum dots using water soluble carbohydrates tailored with amphiphilic behavior

  17. Blood protein adsorption onto chitosan

    OpenAIRE

    Benesch, Johan; Tengvall, P.

    2002-01-01

    Chitosan was recently indicated to enhance osteogenesis, improve wound healing but to activate the coagulation and the complement systems. In the present study approximately 10nm thick chitosan film were prepared on aminopropyltriethoxysilane (APTES) coated silicon. The surfaces were incubated in serum or plasma and subsequently in antibodies towards key complement and contact activation of coagulation proteins. The deposited amounts were compared with those on hydrophilic and hydrop...

  18. Chitosan impregnation with biologically active tryaryl imidazoles in supercritical carbon dioxide.

    Science.gov (United States)

    Cherkasova, Anastasia V; Glagolev, Nikolay N; Shienok, Andrey I; Demina, Tatiana S; Kotova, Svetlana L; Zaichenko, Natalia L; Akopova, Tatiana A; Timashev, Peter S; Bagratashvili, Victor N; Solovieva, Anna B

    2016-09-01

    The presented paper is focused on impregnation of chitosan and its derivatives with a biologically active triaryl imidazole model compound ((2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole) in the supercritical carbon dioxide medium. Since initial chitosan represents a polycation-exchange resin and does not swell in supercritical carbon dioxide, the impregnation was carried out in the presence of water (0.15-3.0 vol%). The maximum 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole concentration in a chitosan film was achieved at the ~5 × 10(-3) g/cm(3) water content in the reactor. We also used hydroxy carboxylic acid derivatives of chitosan and its copolymer with polylactide as matrices for introduction of hydrophobic 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole. We have shown that unmodified chitosan contains the greatest amount of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole, as compared with its hydrophobic derivatives. The kinetics of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole diffusion from a chitosan matrix was studied in acidified water with pH 1.6. We found that the complete release of 2-2-hydroxyphenyl)-4.5-diphenyl-1H-imidazole into the aqueous phase from unmodified chitosan films occurred in 48 h, while its complete release from chitosan modified with hydroxy carboxylic acids occurred in 5 min or less. PMID:27539011

  19. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery

    OpenAIRE

    Bhattarai, Narayan; Ramay, Hassna R; Chou, Shinn-Huey; Zhang, Miqin

    2006-01-01

    Nanoparticles of ~10 nm in diameter made with chitosan or lactic acid-grafted chitosan were developed for high drug loading and prolonged drug release. A drug encapsulation efficiency of 92% and a release rate of 28% from chitosan nanoparticles over a 4-week period were demonstrated with bovine serum protein. To further increase drug encapsulation, prolong drug release, and increase chitosan solubility in solution of neutral pH, chitosan was modified with lactic acid by grafting D,L-lactic ac...

  20. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    OpenAIRE

    Mayumi Egusa; Ryo Iwamoto; Hironori Izawa; Minoru Morimoto; Hiroyuki Saimoto; Hironori Kaminaka; Shinsuke Ifuku

    2015-01-01

    Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth in...

  1. Animal experiments and clinical trials of {sup 166}Ho-chitosan for various cancers

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Sang Moo; Choi, C. W.; Kim, E. H.; Woo, K. S.; Chung, W. S.; Lee, J. I.; Park, S. Y.; Son, Y. S.; Lee, S. H.; Kim, S. J.; Kim, B. G.; Kim, J. H.; Lee, C. H. [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1997-07-01

    {sup 166}Ho is a good therapeutic radionuclide because of its suitable half-life (26.8 hours), high beta energy and 6% gamma ray for imaging. Chitosan is a kind of N-glucosamine with 400 to 500 kD MW, which chelates metal ions and degrades slowly in vivo. As a preclinical studies, we performed cytotoxic effect of {sup 166}Ho-chitosan in a variety of cancer cell lines derived from stomach or ovarian cancer based on MTT assay and HTCA method. To evaluated the absorbed dose to the cavitary wall from {sup 166}Ho-chitosan, intraperitoneal administration of {sup 166}Ho-chitosan in the rat and simulation of energy transfer from the beta particles to the cavity wall using the Monte Carlo code EGS4 was done, and used as a standard for the planning therapy. Intracavitary {sup 166}Ho-chitosan therapy were tried in peritoneal metastatic ovarian and stomach cancers and cystic brain tumors. Intraarterial injection in inoperable primary liver cancer was also tried. As a radiation synovectomy agent, biocompatibility study in the knee joints of rabbits were performed. {sup 166}Ho-chitosan showed synergistic effects with 5-FU or cisplatin in vitro. 97-99% of {sup 166}Ho-chitosan was localized within the peritoneal cavity, and more than 90% of {sup 166}Ho-chitosan was attached to the peritoneal wall. Partial response were observed in 4 among 5 patients with ovarian cancer without severe toxicity. In the cystic brain tumor, 5 of 8 cysts were shrunken in size with thinning of the wall, 2 out of 8 showed growth retardation. In the primary liver cancer, radioactivity was distributed in the teritory of selected hepatic arterial branch, and partial responses were observed in 2 cases. In the knee joints of the rabbits, more than 98% of {sup 166}Ho-chitosan remained in the joint cavity and was stable upto 1 week. 49 refs., 22 tabs. (author)

  2. Physical characteristics of chitosan-silica composite of rice husk ash

    Science.gov (United States)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  3. Effect of Adipose-derived Stem Cells Compound Chitosan Transplantation on Tumor Necrosis Factor-α, Interleukin-1β Content in Early Degenerate Intervertebral Disc of Rabbits%脂肪干细胞复合壳聚糖支架移植对兔退变早期椎间盘内肿瘤坏死因子α、白介素1β的影响

    Institute of Scientific and Technical Information of China (English)

    李进珍; 李放; 叶超群; 任大江; 万中元; 吴坤

    2011-01-01

    目的 观察脂肪干细胞复合可注射温敏型壳聚糖支架移植对退变早期兔椎间盘内肿瘤坏死因子α(TNF-α)、白介素1β(IL-1β)含量的影响.方法 24只新西兰大白兔,雌雄不限,随机分为髓核抽吸组、脂肪干细胞壳聚糖支架复合移植组、单纯支架移植组以及单纯椎间盘暴露组.术后2、4、8周分别将每组处死2只兔,使用ELISA方法检测L2-3、L3-4、L4-5、L5-6椎间盘内TNF-α、IL-1β含量.结果 24只动物均存活.髓核抽吸组与单纯椎间盘暴露组相比,TNF-α、IL-1β浓度升高(P<0.05);复合移植组、单纯支架移植组与单纯椎间盘暴露组相比较,TNF-α、IL-1β浓度均降低(P<0.05);复合移植组与单纯支架移植组相比,8周时IL-1β降低(P<0.05).结论 脂肪干细胞与温敏型壳聚糖支架在兔椎间盘退变早期能抑制TNF-α、IL-1β表达,可能减轻炎症反应.%Objective To observe the effect of adipose-derived stem cells (ADSCs) compound injective thermo-sensitive chitosan scaffold transplantation on content of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in early degenerate lumbar intervertebral disc of rabbits. Methods 24 white New Zealand rabbits (no limit of male or female) were randomly and equally divided into 4 groups: A. Degeneration model group: nucleus aspiration. B. ADSCs compound chitosan transplantation group. C. Cell-free chitosan transplantation group. D. Blank control group: only explore the target intervertebral disc. When aspirate pulposus with 21G needle, inject ADSCs-scaffold complex and chitosan scaffold respectively. The samples of L2-3, L3-4 , L4-5, L5-6 intervertebral disc were obtained from 2 rabit in each group 2, 4, 8 weeks after operation. The contents of TNF-α, IL-1β were measured with ELISA.Results All animals survived after the operation. Compare with the blank control group, the contents of TNF-α, IL-1β in degeneration model group increased significantly (P<0. 05). It

  4. Synthesis of PVA-Chitosan Hydrogels for Wound Dressing Using Gamma Irradiation. Part I: Radiation Degradation of Chitosan in Solid State and in Solution

    International Nuclear Information System (INIS)

    Chitosan is a partially deacetylated product of chitin, a very abundant polysaccharide, existing in exoskeleton of crustaceans. It is a polymer consisting of glucosamine and N-acetylglucosamine units linked by β-1-4-glycosidic bonds. Chitosan, like others polysaccharides, such as cellulose derivatives, alginates and carrageenan is widely used in food, medicine and cosmetic fields. Chitosan presents a variety of distinctive properties, such as biocompatibility, biodegradability, nontoxicity and nonantigenicity. Chitosan obtained by the deacetylation of chitin has, generally, a high molecular weight, which limits its solubility in aqueous solvents. The reduction of its molecular weight by degradation is usually used in order to improve its water solubility. Water-soluble chitosan exhibit some specific properties, such as antifungal activity, antimicrobial activity and plant growth promotion. Among the methods that have been tried to produce low molecular weight chitosan, radiation processing is the most promising one, since the process is simple, it is carried out at room temperature and no purification of the product is required after processing

  5. Enhancing Biological Wastewater Treatment with Chitosan

    Institute of Scientific and Technical Information of China (English)

    陈亮; 陈东辉; 朱珺

    2003-01-01

    Chitin and chitosan have been applied to biological wastewater treatment.From a number of parallel comparison experiments,it can be concluded that the application of chitin and chitosan can both enhance the biological treatment,besides which chitosan is more efficient than chitin.The study on the enhancement mechanism reveals the difference between the two additives:chitosan improves the sludge structure and settlibility,while chitin acts as a kind of carrier for microorganism in the biological treatment system.

  6. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  7. Application of irradiated chitosan for fruit preservation

    Energy Technology Data Exchange (ETDEWEB)

    Lan, K.N. [Post-harvest Technology Institute, 4, Ngo Quyen-Ha Noi (Viet Nam); Lam, N.D. [Ha Noi Radiation Center, VAEC, 5T-160, Nghiado, Tuliem, Ha Noi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-03-01

    Preliminary test of mango (Mangifera indica) preservation by irradiated chitosan coating has been investigated. The coating by using irradiated chitosan in 1.5% solution has extended the shelf life of mango from 7 to 15 days. At the 15th day mango coated by irradiated chitosan has been keeping good color, natural ripening, without spoilage, weight loss 10%, whereas the mango without coating was spoiled completely and the coating of fruit with unirradiated chitosan inhibited the ripening. (author)

  8. Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin

    Science.gov (United States)

    Ho, Thanh Ha; Thanh Le, Thi Nu; Nguyen, Tuan Anh; Chien Dang, Mau

    2015-09-01

    A new scheme of grafting poly (ethylene glycol) onto chitosan was proposed in this study to give new material for delivery of insulin over oral pathway. First, methoxy poly(ethylene glycol) amine (mPEGa MW 2000) were grafted onto chitosan (CS) through multiples steps to synthesize the grafting copolymer PEG-g-CS. After each synthesis step, chitosan and its derivatives were characterized by FTIR, 1H NMR Then, insulin loaded PEG-g-CS nanoparticles were prepared by cross-linking of CS with sodium tripolyphosphate (TPP). Same insulin loaded nanoparticles using unmodified chitosan were also prepared in order to compare with the modified ones. Results showed better protecting capacity of the synthesized copolymer over original CS. CS nanoparticles (10 nm of size) were gel like and high sensible to temperature as well as acidic environment while PEG-g-CS nanoparticles (200 nm of size) were rigid and more thermo and pH stable.

  9. Antimicrobial properties of N-carboxybutyl chitosan.

    OpenAIRE

    Muzzarelli, R; Tarsi, R; Filippini, O; Giovanetti, E; G. Biagini; Varaldo, P E

    1990-01-01

    N-Carboxybutyl chitosan, a modified chitin of crustacean origin, displayed inhibitory, bactericidal, and candidacidal activities when tested against 298 cultures of various pathogens. Examination by electron microscopy showed that microbial cells exposed to N-carboxybutyl chitosan underwent marked morphological alterations. The data are of importance in defining the suitability of N-carboxybutyl chitosan as a wound dressing.

  10. Chitosan-silica nanocomposite sorbent for thin-layer chromatography of alkaloids

    Science.gov (United States)

    Kabulov, B. D.; Shakarova, D. Sh.; Shpigun, O. A.; Negmatov, S. S.

    2008-06-01

    The feasibility of using a chitosan-silica nanocomposite sorbent in thin-layer chromatography of cytisine alkaloid and some of its derivatives was studied. The derivatives were obtained by the reactions of cytisine with aromatic aldehydes containing the -OH, -OCH3, and -Br functional groups as substituents in different benzene ring positions. The separation of cytisine and its derivatives on the chitosan-silica sorbent was more effective than on initial silica gel. The mechanism of chromatographing on the two sorbents was considered; the mobile phase was a 6:1 (v/v) chloroform:methanol mixture.

  11. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo

    Science.gov (United States)

    Egan, Áine M.; O’Doherty, John V.; Vigors, Stafford; Sweeney, Torres

    2016-01-01

    The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0) were fed either T1) basal diet or T2) basal diet plus 1000 ppm chitosan (n = 20 gilts per group) for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001), had lower intake per visit (P<0.001), spent less time eating per day (P<0.001), had a lower eating rate (P<0.01) and had reduced feed intake and final body weight (P< 0.001) compared to animals offered the basal diet. There was a treatment (P<0.05) and time effect (P<0.05) on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05), Peroxisome proliferator activated receptor gamma (P<0.01), neuromedin B (P<0.05), neuropeptide Y receptor 5 (P<0.05) in hypothalamic nuclei and neuropeptide Y (P<0.05) in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05). In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo. PMID:26901760

  12. An in vitro study of the anti-biofilm properties of proanthocyanidin and chitosan in Pseudomonas syringae pv. papulans

    Science.gov (United States)

    Song, Kai

    Biofilm-forming bacteria are a form of planktonic microorganisms that can become resistant against conventional antibiotics. Because they are difficult to eradicate, biofilm-forming bacteria are extremely problematic for the medical industry areas. Thus, materials that can distort biofilm structure would be helpful for eliminating chronic infection and decreasing bacterial resistance. The primary objective of this study is to evaluate the anti-biofilm effect of two bio-derived substances, proanthocyanidin and chitosan. Proanthocyanidins are secondary plant metabolites that are reported to have antibiotic and antioxidant functions. Chitosan (poly [beta-(1, 4)-amino-2-deoxy-beta-D-glucose]) is a deacetylated derivative of chitin, which is abundant in the exoskeleton of crustaceans and insects. It is reported to be a suitable substitute for conventional fungicides and can enhance the proanthocyanidin content in plants when used as an agrochemical. Chitosan-tripolyphosphate (TPP) nanoparticles, which have good neutral water solubility and are nanoscale in size, can be used as carriers for gene and drug therapy and are thus favorable to be tested as a treatment method against bacterial biofilms. In this study, the anti-biofilm and antibacterial properties of proanthocyanidin, chitosan-TPP nanoparticles and proanthocyanidins-loaded chitosan-TPP nanoparticles were tested using the model plant bacterium, Pseudomonas syringae pv. papulans (Psp), a pathogen isolated from infected apples. At a lower concentration (1 mg/mL and 2.5 mg/mL), both chitosan nanoparticles and proanthocyanidins can postpone the formation of biofilms and eventually disrupted part of the biofilm. While higher concentration (above 5 mg/mL) of chitosan nanoparticles or proanthocyanidins can eliminate most of the biofilm in this study. PAC-loaded chitosan nanoparticles also can also distort biofilms. Both proanthocyanidins and chitosan-TPP nanoparticle showed a mild antibacterial property. PAC

  13. Prawn Shell Chitosan Exhibits Anti-Obesogenic Potential through Alterations to Appetite, Affecting Feeding Behaviour and Satiety Signals In Vivo.

    Directory of Open Access Journals (Sweden)

    Áine M Egan

    Full Text Available The crustacean shells-derived polysaccharide chitosan has received much attention for its anti-obesity potential. Dietary supplementation of chitosan has been linked with reductions in feed intake, suggesting a potential link between chitosan and appetite control. Hence the objective of this experiment was to investigate the appetite suppressing potential of prawn shell derived chitosan in a pig model. Pigs (70 ± 0.90 kg, 125 days of age, SD 2.0 were fed either T1 basal diet or T2 basal diet plus 1000 ppm chitosan (n = 20 gilts per group for 63 days. The parameter categories which were assessed included performance, feeding behaviour, serum leptin concentrations and expression of genes influencing feeding behaviour in the small intestine, hypothalamus and adipose tissue. Pigs offered chitosan visited the feeder less times per day (P<0.001, had lower intake per visit (P<0.001, spent less time eating per day (P<0.001, had a lower eating rate (P<0.01 and had reduced feed intake and final body weight (P< 0.001 compared to animals offered the basal diet. There was a treatment (P<0.05 and time effect (P<0.05 on serum leptin concentrations in animals offered the chitosan diet compared to animals offered the basal diet. Pigs receiving dietary chitosan had an up-regulation in gene expression of growth hormone receptor (P<0.05, Peroxisome proliferator activated receptor gamma (P<0.01, neuromedin B (P<0.05, neuropeptide Y receptor 5 (P<0.05 in hypothalamic nuclei and neuropeptide Y (P<0.05 in the jejunum. Animals consuming chitosan had increased leptin expression in adipose tissue compared to pigs offered the basal diet (P<0.05. In conclusion, these data support the hypothesis that dietary prawn shell chitosan exhibits anti-obesogenic potential through alterations to appetite, and feeding behaviour affecting satiety signals in vivo.

  14. Versatile carboxymethyl chitin and chitosan nanomaterials: a review.

    Science.gov (United States)

    Narayanan, Deepa; Jayakumar, R; Chennazhi, K P

    2014-01-01

    Biocompatibility, biodegradability, and low cost of chitin and chitosan have drawn immense attention in many fields including medicine, bioinspired material science, pharmaceuticals, and agriculture. Their handling and processing are difficult owing to its insolubility in neutral aqueous solution or organic solvents. One of the methods used to improve the solubility characteristics of chitin and chitosan is chemical modification. Introducing a carboxymethyl group is the most advantageous method of increasing the solubility of chitosan at neutral and alkaline pH. Carboxymethyl chitin (CMC) and carboxymethyl chitosan (CMCS) are water soluble derivatives formed by introducing CH₂COOH function into the polymer which endows it with better biological properties. The functional group makes CMC/CMCS nanoparticles (NPs) efficient vehicles for the delivery of DNA, proteins, and drugs. This review provides an overview of the characteristics of CMC/CMCS NPs as well as fulfills the task of describing and discussing its important roles primarily in cancer nanomedicine detailing the targeted drug delivery aspect. The application of these NPs in imaging, agriculture, and textiles has also been highlighted. The review also elaborates the advantages of using the CMC and CMCS NPs for drug and gene delivery. PMID:25266740

  15. Hemostatic efficacy evaluation of radiation crosslinked carboxymethyl kappa-carrageenan and chitosan with varying degrees of substitution

    Science.gov (United States)

    Tranquilan-Aranilla, Charito; Barba, Bin Jeremiah D.; Vista, Jeanina Richelle M.; Abad, Lucille V.

    2016-07-01

    Carboxymethyl derivatives of kappa-carrageenan and chitosan, with varying degrees of substitution, were synthesized by multi-step reaction technique and evaluated for hemostatic efficacy through in vitro assays. FTIR analysis confirmed the presence of carboxymethyl group while 1H NMR spectroscopy indicated degrees of substitution ranging from 1.15-1.58 and 0.45-0.51 for carboxymethyl-κ-carrageenan and carboxymethylchitosan, respectively. Derivatives formed into paste consistency (30% w/v) were successfully crosslinked by gamma irradiation at 30 kGy. The data obtained from whole blood clotting and platelet adhesion assays showed a significant increase in hemostatic capability of κ-carrageenan and chitosan as a consequence of carboxymethylation and crosslinking modifications. In addition, the level of efficacy was comparable to that of a chitosan-based commercial product. These results suggest the potential of κ-carrageenan and chitosan derivatives for development into hemostatic agents.

  16. Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources

    Directory of Open Access Journals (Sweden)

    Francisco Pires Avelelas

    2014-06-01

    Full Text Available The four plants pathogens, Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum are responsible for several diseases affecting different plant species in Portugal, such as pines (H. annosum, chestnuts (P. cinnamomi and C. parasitica and eucalyptus (B. cinerea. These pathogens incurs in large economic losses, and ultimately causes the death of these plants. The use of biopolymers as antimicrobial agents, such as chitosan (derived from chitin, is increasing, in order to reduce the negative impact of conventional chemical treatments on the environment, avoiding health risks. Therefore, eco-friendly polymers were produced through (1 N-acetylation with addition of acetic anhydride and (2 hydrogen peroxide of chitosan samples, obtained from two different sources: shrimp (commercial chitosan and swimming crab bycatch specie Polybius henslowii. The chemical structure and molecular weight of the prepared chitosan derivatives, water soluble chitosan (WSC and chitooligosaccharides (COS, was confirmed by Fourier Transform Infrared (FT-IR and Gel Permeation Chromatography (GPC and their antifungal activity evaluated against Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum. The concentration range varied from 0.0125 to 0.1 mg/mL and inhibition percentages were determined by differences in radial growth on the agar plates for all species. Although not all species tested exhibited equal vulnerability towards the concentrations range, antifungal activity of chitosan samples proved to be dependent, increasing the inhibitory capacity with lower concentrations. The results obtained support the use of chitosan fromPolybius henslowii when compared with commercial chitosan with shrimp towards antifungal approaches, suggesting that chitin producers can rely on this crab waste as a raw material for chitin extraction, adding value to this bycatch specie. Financial support was obtained

  17. Chitosan Scaffolds Containing Hyaluronic Acid for Cartilage Tissue Engineering

    OpenAIRE

    Correia, Clara R.; Moreira Teixeira, Liliana S.; Moroni, Lorenzo; Reis, Rui L.; Blitterswijk, van, C.A.; Karperien, Marcel; Mano, João F.

    2011-01-01

    Scaffolds derived from natural polysaccharides are very promising in tissue engineering applications and regenerative medicine, as they resemble glycosaminoglycans in the extracellular matrix (ECM). In this study, we have prepared freeze-dried composite scaffolds of chitosan (CHT) and hyaluronic acid (HA) in different weight ratios containing either no HA (control) or 1%, 5%, or 10% of HA. We hypothesized that HA could enhance structural and biological properties of CHT scaffolds. To test thi...

  18. SYNTHESIS AND PROPERTIES OF SULFHYDRYL CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    杨宇民; 邵健; 姚成

    2001-01-01

    A new adsorbent for heavy metal ions, sulfhydryl chitosan (S-chitosan), was produced by treatment of chitosan with sulhydryl acetic acid in the presence of sulfuric acid as a catalyst. Its structure was confirmed by elemental analysis and FT-IR spectra analysis. The adsorption properties of sulfhydryl chitosan for Cu( Ⅱ ), Cd( Ⅱ ), Pb( Ⅱ ), Cr( Ⅲ ) and Ni( Ⅱ ) were investigated, and the effect of pH value on adsorption, adsorption kinetics, and selective adsorption was examined. It was shown that S-chitosan has good adsorption for Pb( Ⅱ ), Cu( Ⅱ ) and Cd( Ⅱ ) like chitosan, is also insoluble in acid solution; has good adsorption kinetic properties for heavy metal ions; and can be used in acid solution. The adsorption capacities of S-chitosan can be affected by media acidity. The adsorbed Cu( Ⅱ ) Cd ( Ⅱ )and Pb( Ⅱ ) could be eluted by diluted chlorhydric acid.

  19. SYNTHESIS AND PROPERTIES OF SULFHYDRYL CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    杨宇民; 邵健; 姚成

    2001-01-01

    A new adsorbent for heavy metal ions, sulfhydryl chitosan (S-chitosan), was produced by treatment of chitosan with sulhydryl acetic acid in the presence of sulfuric acid as a catalyst. Its structure was confrrmed by elemental analysis and FI'-IR spectra analysis. The adsorption properties of sulthydryl chitosan for Cu(Ⅱ ), Cd(Ⅱ ), Pb(Ⅱ), Cr(Ⅲ) and Ni(Ⅱ) were investigated, and the effect of pH value on adsorption, adsorption kinetics, and selective adsorption was examined. It was shown that S-chitosan has good adsorption for Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) like chitosan, is also insoluble in acid solution; has good adsorption kinetic properties for heavy metal ions; and can be used in acid solution. The adsorption capacities of S-chitosan can be affected by media acidity. The adsorbed Cu(Ⅱ) Cd(Ⅱ) and Pb(Ⅱ) could be eluted by diluted chlorhydric acid.

  20. Anti-fungal activity of irradiated chitosan

    International Nuclear Information System (INIS)

    Anti-fungal activity of chitosan induced by irradiation has been investigated. Commercial chitosan samples of 8B (80% deacetylation) and l0B (99% deacetylation) were irradiated by γ-ray in dry condition. Highly deacethylated chitosan (10B) at low dose irradiation (75 kGy) was effective for inhibition of fungal growth. The sensitivities of Exobasidium vexans, Septoria chrysanthemum and Gibberella fujikuroi for the irradiated chitosan were different and the necessary concentrations of chitosan were 550, 350 and 250 μg/ml, respectively. For the plant growth, low deacethylation (chitosan 8B) and high dose (500 kGy) was effective and the growth of chrysanthemum was promoted by spraying the irradiated chitosan. (author)

  1. Novel Chitosan-based Biomaterials

    Institute of Scientific and Technical Information of China (English)

    Mingchun Li; Meihua Xin

    2005-01-01

    @@ 1Introduction Chitosan with two long side chains of N-alkyl group is an important amphiphilic material, which has potential application in tissue engineering and drug delivery system. In this paper the amphiphilic N, N-dilauryl chitosan has been prepared by the phase transfer catalysis. The π-A isotherms of the products were measured in order to find some fundamental data for making self-assembled vesicles out of this kind of material. The LB film experiment indicates that N, N-dilauryl chitosan can form ultrathin LB film with highly ordered layer structure and smooth surface. The thickness of each layer of the LB film was measured as 1.74 nm by XRD.

  2. Development of Cy5.5-Labeled Hydrophobically Modified Glycol Chitosan Nanoparticles for Protein Delivery

    Science.gov (United States)

    Chin, Amanda

    Therapeutic proteins are often highly susceptible to enzymatic degradation, thus restricting their in vivo stability. To overcome this limitation, delivery systems designed to promote uptake and reduce degradation kinetics have undergone a rapid shift from macro-scale systems to nanomaterial based carriers. Many of these nanomaterials, however, elicit immune responses and may have cytotoxic effects both in vitro and in vivo. The naturally derived polysaccharide chitosan has emerged as a promising biodegradable material and has been utilized for many biomedical applications; nevertheless, its function is often constrained by poor solubility. Glycol chitosan, a derivative of chitosan, can be hydrophobically modified to impart amphiphilic properties that enable the self-assembly into nanoparticles in aqueous media at neutral pH. This nanoparticle system has shown initial success as a therapeutic agent in several model cell culture systems, but little is known about its stability against enzymatic degradation. Therefore, the goal of this research was to investigate the resistance of hydrophobically modified glycol chitosan against enzyme-catalyzed degradation using an in vivo simulated system containing lysozyme. To synthesize the nanoparticles, hydrophobic cholanic acid was first covalently conjugated to glycol chitosan using of N-(3-Dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). Conjugates were purified by dialysis, lyophilized, and ultra-sonicated to form nanoparticles. Fourier transform infrared (FT-IR) spectroscopy confirmed the binding of 5beta-cholanic acid to the glycol chitosan. Particle size and stability over time were determined with dynamic light scattering (DLS), and particle morphology was evaluated by transmission electron microscopy (TEM). The average diameter of the nanoparticles was approximately 200 nm, which remained stable at 4°C for up to 10 days. Additionally, a near infrared fluorescent (NIRF) dye

  3. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  4. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Nimitt G. [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699 (United States); Materials Science and Engineering PhD Program, Clarkson University, Potsdam, NY, 13699 (United States); Kumar, Ajeet [Center for Advanced Materials Processing, Clarkson University, Potsdam, NY, 13699 (United States); Jayawardana, Veroni N. [Department of Mathematics, Clarkson University, Potsdam, NY, 13699 (United States); Woodworth, Craig D. [Department of Biology, Clarkson University, Potsdam, NY, 13699 (United States); Yuya, Philip A., E-mail: pyuya@clarkson.edu [Department of Mechanical and Aeronautical Engineering, Clarkson University, Potsdam, NY, 13699 (United States)

    2014-11-01

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films.

  5. Fabrication, nanomechanical characterization, and cytocompatibility of gold-reinforced chitosan bio-nanocomposites

    International Nuclear Information System (INIS)

    Chitosan, a naturally derived polymer represents one of the most technologically important classes of active materials with applications in a variety of industrial and biomedical fields. Gold nanoparticles (∼ 32 nm) were synthesized via a citrate reduction method from chloroauric acid and incorporated in Chitosan matrix. Bio-nanocomposite films with varying concentrations of gold nanoparticles were prepared through solution casting process. Uniform distribution of gold nanoparticles was achieved throughout the chitosan matrix and was confirmed with SEM. Synthesis outcomes and prepared nanocomposites were characterized using SEM, TEM, EDX, SAED, UV–vis, XRD, DLS, and Zeta potential for their physical, morphological and structural properties. Nanoscale properties of materials under the influence of temperature were characterized through nanoindentation techniques. From quasi-static nanoindentation, it was observed that hardness and reduced modulus of the nanocomposites were increased significantly in direct proportion to the gold nanoparticle concentration. Gold nanoparticle concentration also showed positive impact on storage modulus and thermal stability of the material. The obtained films were confirmed to be biocompatible by their ability to support growth of human cells in vitro. In summary, the results show enhanced mechanical properties with increasing gold nanoparticle concentration, and provide better understanding of the structure–property relationships of such biocompatible materials for potential biomedical applications. - Highlights: • We fabricated gold reinforced chitosan nanocomposite for biomedical applications. • Gold nanoparticles significantly enhanced nanomechanical properties of chitosan. • Nanocomposite films supported growth of human cells in vitro. • Gold nanoparticles significantly improved cell proliferation on chitosan films

  6. A study on biosorption of copper ions by fungal chitosan: an alternative to shrimp chitosan

    Directory of Open Access Journals (Sweden)

    Sanaz Behnam

    2015-02-01

    Full Text Available   Introduction : One of the main applications of chitosan is for heavy metals removal from waste waters. Industrially, chitosan is produced through deacetylation of chitin present in shellfish waste. Another source of chitosan is the cell wall of zygomycetes fungi with several advantages over shellfish wastes .   Materials and method s: Fungal chitosan purified from biomass of Mucor indicus and shrimp chitosan were applied and compared for removal of copper ions from aqueous solution. The effects of pH (3 to 5.5, copper ion concentration (5 to 52 mg l-1, the amount of chitosan (200 to 3000 mg l-1, adsorption time, temperature, and presence of other metal ions on the biosorption of Cu2+ were investigated .   Results : Maximum adsorption capacities for fungal and shrimp chitosans were 58.5 and 60.7 mg g-1, respectively. T he rate of copper adsorption by the fungal chitosan was significantly higher than that by the shrimp chitosan. Among p seudo-first order, pseudo-second order, intra-particle diffusion, and Elovich models, Ho’s pseudo-second order model was the best model for fitting the kinetic data. The adsorption capacity increased for both types of chitosans by increasing the solution pH. However, temperature and presence of other ions did not show significant effects on the biosorption capacity of copper. The isotherm data were very well described by Langmuir, Freundlich, and Redlich-Peterson models .   Discussion and conclusion : Both fungal and shrimp chitosans can effectively be used for removal of copper ions from aqueous solutions. Adsorption process for fungal chitosan is fast, while the process is slower for the shrimp chitosan. Therefore, from the kinetics point of view, the fungal chitosan is preferable compared with the shrimp chitosan . Key words: Biosorption, Copper, Fungal chitosan, Shrimp chitosan, Water treatment .

  7. 低分子量N-羧丁酰壳聚糖的合成及其吸湿保湿性%Synthesis, Moisture Adsorption and Moisture Retention Capacities of Low Molecular Weight N-Succinyl-chitosan

    Institute of Scientific and Technical Information of China (English)

    王丽; 汪琴; 王爱勤

    2005-01-01

    Low molecular weight N-succinyl-chitosans with different degrees of substitution were synthesized by controlling reaction temperature, reaction time, and the molar ratio of the low molecular weight chitosan to succinic anhydride. The structure of the low molecular weight N-succinyl-chitosan was characterized by infrared spectroscopy(IR), by which —COCH2CH2 COOH was proved to be introduced to the —NH2 of the low molecular weight chitosan. The moisture adsorption and moisture retention capacities of the low molecular weight chitosan derivatives with different degrees of substitution were investigated. The results indicate that the moisture adsorption and moisture retention capacities of the low molecular weight N-succinyl-chitosan increase with the increase of the degree of substitution. When the degree of substitution is greater than 38%, the derivatives have better moisture adsorption and moisture retention capacities than hyaluronic acid.

  8. Optimizing deacetylation process for chitosan production from green mussel (perna viridis) shell

    Science.gov (United States)

    Danarto, Y. C.; Distantina, Sperisa

    2016-02-01

    The green mussel (perna viridis) shell waste could be utilized for chitosan production because it contained chitin. Chitin can be derived into chitosan through the deacetylation process. Chitosan is a polysaccharides polymer that is readily soluble in dilute acid solution and easily modified into other useful compounds. This research aimed to study the chitosan production from green mussel shells. This experiment had the following stages, deproteinization process aimed to eliminate the protein content using 1N NaOH solution, demineralization process aimed to remove minerals in green mussel shells as CaCO3 using 1 N HCl solution and decolorization process aimed to eliminate the color pigments and other impurities using ethanol solvent. All process above resulted chitin. Furthermore, chemical modification of chitin into chitosan by deacetylation process. This stage was very important because it greatly affected the chitosan properties. This research studied two different treatment for deacetylation process. The first treatment was the deacetylation process using concentrated NaOH solution (50% w), at high temperatures (90 - 100 °C) for 2 hours extraction, whilw the second treatment was deacetylation process using a low concentration of NaOH solution (15% w), at room temperature for 24 hours. The results showed that deproteinization, demineralization, and decolorizaton was capable of removing protein, mineral, and pigment. This experiment yield chitin 41.6 %wt. Chitosan yield from second treatment was 39.5%w and it was better than first treatment. Chitosan from first treatment had 79.8% degree of deacetylation and 16.5 kDa molecular weight. It was better than first treatment.

  9. Characterization of surface charge and mechanical properties of chitosan/alginate based biomaterials

    International Nuclear Information System (INIS)

    This study aims to examine mechanical properties and surface charge characteristics of chitosan/alginate-based films for biomedical applications. By varying the concentrations of chitosan and alginate, we have developed films with varying surface charge densities and mechanical characteristics. The surface charge densities of these films were determined by applying an analytical model on force curves derived from an atomic force microscope (AFM). The average surface charge densities of films containing 60% chitosan and 80% chitosan were found to be - 0.46 mC/m2 and - 0.32 mC/m2, respectively. The surface charge density of 90% chitosan containing films was found to be neutral. The elastic moduli and the water content were found to be decreasing with increasing chitosan concentration. The films with 60%, 80% and 90% chitosan gained 93.5 ± 6.6%, 217.1 ± 22.1% and 396.8 ± 67.5% of their initial weight, respectively. Their elastic moduli were found to be 2.6 ± 0.14 MPa, 1.9 ± 0.27 MPa and 0.93 ± 0.12 MPa, respectively. The trend observed in the mechanical response of these films has been attributed to the combined effect of the concentration of polyelectrolyte complexes (PEC) and the amount of water absorbed. The Fourier transform infrared spectroscopy experiments indicate the presence of higher alginate on the surface of the films compared to the bulk in all films. The presence of higher alginate on surface is consistent with negative surface charge densities of these films, determined from AFM experiments. Highlights: → Chitosan/alginate based fibrous polyelectrolyte complex films were developed. → The average surface charge density of the films was determined using AFM. → Elastic modulus of the films increased with increase in PEC content. → FTIR analysis indicated higher alginate content on surface compared to bulk.

  10. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes.

    Science.gov (United States)

    Dumont, Vitor C; Mansur, Alexandra A P; Carvalho, Sandhra M; Medeiros Borsagli, Fernanda G L; Pereira, Marivalda M; Mansur, Herman S

    2016-02-01

    phosphate phase produced during the co-precipitation aqueous process for both the chitosan and CMC biocomposites. These novel hybrid systems based on chitosan and chitosan-derivatives with nHA composites were non-cytotoxic to a human osteoblast-like model cell line (SAOS) according to MTT in vitro assays. Moreover, the CMC-nHA biocomposites revealed a striking improvement in the cell viability response compared to the CHI-nHA biocomposite, which was attributed to the much higher surface area caused by the refinement of the nanoparticles size. Thus, the results of this study demonstrate that these novel bionanocomposite membranes offer promising perspectives as biomaterials for potential repair and replacement of cartilage and bone tissues. PMID:26652373

  11. Chitosan as an adjuvant for poliovaccine.

    Science.gov (United States)

    Ghendon, Y; Markushin, S; Akopova, I; Koptiaeva, I; Krivtsov, G

    2011-05-01

    The use of inactivated poliomyelitis vaccine is very important for eradicating poliomyelitis. However, this vaccine is not available readily in underdeveloped countries due to the high cost. Adjuvants can improve the immunogenicity of a vaccine and reduce the antigen dose required for vaccination, thus lowering the cost of the vaccine. Chitosan glutamate solution and a chitosan sulfate micro/nanoparticle suspension were tested as adjuvants for Imovax-inactivated poliovaccine and for inactivated monovalent poliovirus type 1, 2, and 3 vaccines obtained by inactivation of the attenuated Sabin poliovirus strains. Inactivated vaccines admixed with either chitosan glutamate or chitosan sulfate micro/nanoparticles and administered to mice showed significantly enhanced immunogenicity to poliovirus type 1, 2, and 3 strains compared to the respective vaccines administered without chitosan. Chitosan preparations increased the immunogenicity of 1:2 and 1:4 diluted inactivated Sabin strain preparations in mice 8- to 16-fold, so that the neutralizing antibody titers after vaccination with adjuvanted diluted vaccine were equal to those obtained after vaccination with undiluted vaccine administered without chitosan. Neutralizing antibodies could be detected in sera of rats vaccinated with undiluted, 1:10, and 1:100 diluted Imovax vaccine admixed with chitosan sulfate micro/nanoparticles, although in the control group, vaccination only with the undiluted vaccine resulted in antibody production. These results show that the chitosan glutamate solution and chitosan sulfate micro/nanoparticle suspension can significantly improve the immunogenicity of various poliovaccines, and reduce the effective antigen dose. PMID:21412793

  12. Pharmacokinetics and biodegradation of chitosan in rats

    Science.gov (United States)

    Li, Hui; Jiang, Zhiwen; Han, Baoqin; Niu, Shuyi; Dong, Wen; Liu, Wanshun

    2015-10-01

    Chitosan, an excellent biomedical material, has received a widespread in vivo application. In contrast, its metabolism and distribution once being implanted were less documented. In this study, the pharmacokinetics and biodegradation of fluorescein isothiocyanate (FITC) labeled and muscle implantation administrated chitosan in rats were investigated with fluorescence spectrophotometry, histological assay and gel chromatography. After implantation, chitosan was degraded gradually during its distribution to diverse organs. Among the tested organs, liver and kidney were found to be the first two highest in chitosan content, which was followed by heart, brain and spleen. Urinary excretion was believed to be the major pathway of chitosan elimination, yet 80% of chitosan administered to rats was not trackable in their urine. This indicated that the majority of chitosan was degraded in tissues. In average, the molecular weight of the degradation products of chitosan in diverse organs and urine was found to be <65 kDa. This further confirmed the in vivo degradation of chitosan. Our findings provided new evidences for the intensive and safe application of chitosan as a biomedical material.

  13. Blood contact properties of ascorbyl chitosan.

    Science.gov (United States)

    Yalinca, Z; Yilmaz, E; Taneri, B; Bullici, F; Tuzmen, S

    2013-01-01

    Ascorbyl chitosan was synthesized by heating chitosan with ascorbic acid in isopropanol. The products were characterized by FTIR and C-13 NMR spectroscopies, SEM, and elemental analysis. Blood contact properties of ascorbyl chitosans were evaluated. The ascorbyl chitosans demonstrated to have increased lipid-lowering activity in comparison to chitosan alone upon contact with human blood serum in in vitro conditions. Furthermore, the total cholesterol/HDL ratio was improved towards the desirable ideal values after three hours contact with ascorbyl chitosan samples. The lipid-lowering activity increased with ascorbyl substitution. The inherent nonspecific adsorption capability of chitosan due to its chelating power with several different functional groups was exhibited by ascorbyl chitosans as well. This behavior was exemplified in a simultaneous decrease in the total iron values of the volunteers together with lower lipid levels. Furthermore, ascorbyl chitosans were observed to have less hemocompatibility but increased anticoagulant activity when compared to chitosan alone. Additional in vivo studies are necessary to support these results and to investigate further the advantages and disadvantages of these materials to prove their safety prior to clinical applications. PMID:23862665

  14. Effect of Chitosan on in vitro development and morphology of two isolates of Colletotrichum gloeosporioides (Penz.) Penz. and Sacc.

    OpenAIRE

    Silvia Bautista Baños; Mónica Hernández López; Ana Niurka Hernández Lauzardo; José Luis Trejo Espino; Mayra Karina Bautista Cerón; Gloria Elena Melo Giorgana

    2005-01-01

    Colletotrichum gloeosporioides is the casual agent of the disease known as anthracnose. This fungus infects a wide range of hosts during the pre and postharvest stages of various horticultural commodities. To date, chitosan a natural biodegradable compound, chitin derivative, has been tested in the control of pathogenic microorganisms. In this research, the fungicidal or fungistatic potential of chitosan with different degrees of polymerization (low, medium and high molecular weight) and conc...

  15. Quitosana: biopolímero funcional com potencial industrial biomédico Chitosan: functional byopolymer with biomedical industrial potential

    OpenAIRE

    Mauro C. M. Laranjeira; Valfredo T. de Fávere

    2009-01-01

    The importance of chitosan has grown significantly over the last two decades due to its renewable and biodegradable source, and also because of the recent increase in the knowledge of its functionality in the technological and biomedical applications. The present article reviews the biopolymer chitosan and its derivatives as versatile biomaterials for potential drug delivery systems, as well as tissue engineering applications, analgesia and treatment of arthritis.

  16. Quitosana: biopolímero funcional com potencial industrial biomédico Chitosan: functional byopolymer with biomedical industrial potential

    Directory of Open Access Journals (Sweden)

    Mauro C. M. Laranjeira

    2009-01-01

    Full Text Available The importance of chitosan has grown significantly over the last two decades due to its renewable and biodegradable source, and also because of the recent increase in the knowledge of its functionality in the technological and biomedical applications. The present article reviews the biopolymer chitosan and its derivatives as versatile biomaterials for potential drug delivery systems, as well as tissue engineering applications, analgesia and treatment of arthritis.

  17. Chitosan and chitosan/wheat gluten blends : properties of extrudates, solid films and bio-foams

    OpenAIRE

    Chen, Fei

    2015-01-01

    This thesis presents four different studis describing the characteristics and processing opportunities of two widely available biopolymers: chitosan and wheat gluten. The interest in these materials is mainly because they are bio-based and obtained as co- or by-products in the fuel and food sector In the first study, high solids content chitosan samples (60 wt.%) were successfully extruded. Chitosan extrusion has previously been reported but not chitosan extrusion with a high solids content, ...

  18. Synthesis, characterization and bioactivities of N,O-carbonylated chitosan.

    Science.gov (United States)

    Liu, Hongli; Liu, Xiaoli; Yue, Lin; Jiang, Qixing; Xia, Wenshui

    2016-10-01

    N,O-Carbonylated chitosan derivative (NTCS) was synthesized via oxidation and substitution reaction, respectively. The carboxyethylation of the polysaccharide was identified by Fourier transform infrared (FTIR), (1)H nuclear magnetic resonance (NMR), X-ray diffraction analysis (XRD), Zeta potential measurement and Thermogravimetric analysis (TGA). It is revealed that compared with chitosan (CS), NTCS exhibited an excellent solubility in distilled water, high in vitro bile acid binding capacity, as well as a low viscosity. The in vitro bile acid binding capacity reached 17.21mg/g, which was 4.5-fold higher than that of CS. The results suggest that NTCS may be useful as a potential functional food supplement in food industry or a key ingredient in the pharmaceutical industry. These findings provide important supports for developing new food additive, and expand the scope of application of CS in the food industry. PMID:27189702

  19. Chitosan adsorption to salivary pellicles

    NARCIS (Netherlands)

    van der Mei, Henderina; Engels, Eefje; de Vries, Jacob; Dijkstra, Rene JB; Busscher, Hendrik

    2007-01-01

    The salivary pellicle is a negatively charged protein film, to which oral bacteria readily adhere. Chitosans are cationic biomolecules with known antimicrobial properties that can be modified in different ways to enhance its antimicrobial activity. Here, we determined the changes in surface chemical

  20. Characterization of chitosan composites with various clays.

    Science.gov (United States)

    Lewandowska, Katarzyna; Sionkowska, Alina; Kaczmarek, Beata; Furtos, Gabriel

    2014-04-01

    The structural properties, thermal behaviour and mechanical properties of composites of chitosan (Ch) with nanoclay (montmorillonite, MMT) and/or nanoclays after surface modification have been characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and a tensile tests. The microstructure obtained by SEM and AFM microscopy for unmodified chitosan and its composites showed that particles are relatively well dispersed in the chitosan matrix. However, the increasing concentration of the chitosan solution from 1% to 2% decreases the homogeneity of the surface of the composites. In the case of chitosan composite with modified nanoclay (contains 25-30 wt.% of octadecylamine), the lack of particles aggregates in polymer matrix independent of the concentration of chitosan solution was observed. Generally, addition of nanoclay after its surface modification improved the mechanical and thermal properties of the composite much more than montmorillonite without modification. PMID:24530323

  1. In Vitro Degradation of Polyglycolide/Chitosan Hybrid Braids

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiaoyan; ZHANG Qingwei; WANG Yonglin; YAO Kangde

    2005-01-01

    Hybrid braids of polyglycolide (PGA) and chitosan were prepared by the three-yarn braiding method from PGA and chitosan fiber bundles. These braids were in vitro degraded by incubating them in phosphate buffered saline (PBS) at pH 7.4 and 37 ℃ for 5 weeks. Results suggested that PGA/chitosan hybrid braids degraded significantly. Scanning electron micrographs showed that chitosan fibers in the PGA/chitosan hybrid braid with about 750% PGA in weight (PGA75/chitosan) were shaped into gel-like after 5 weeks, but those in the hybrid braid with about 250% PGA in weight (PGA25/chitosan) did not change. After 5 weeks, the ultimate tensile loads of PGA and PGA75/chitosan braids lost almost completely, but those of chitosan and PGA25/chitosan braids remained around 14 N. The PGA/chitosan hybrid braids with higher initial ultimate tensile load would have potential applications in tendon/ligament tissue reconstruction.

  2. ADSORPTION OF LDL ON THE MODIFIED CHITOSAN

    Institute of Scientific and Technical Information of China (English)

    LIUManying; ZHAOLirui; 等

    2000-01-01

    In this paper,the selective adsorption of LDL on chitosan modified with PEG and Asp.was studied.The adsorption rate of LDL and HDL on the double modified chitosan was 57% and 12% respoectively,The results shown that the double modified chitosan can be used a adsorbent for selective binding to LDL,this work may help to develop functional columns for hemoperfusion.

  3. Effect of Chitosan Properties on Immunoreactivity

    OpenAIRE

    Sruthi Ravindranathan; Bhanu prasanth Koppolu; Smith, Sean G.; Zaharoff, David A

    2016-01-01

    Chitosan is a widely investigated biopolymer in drug and gene delivery, tissue engineering and vaccine development. However, the immune response to chitosan is not clearly understood due to contradicting results in literature regarding its immunoreactivity. Thus, in this study, we analyzed effects of various biochemical properties, namely degree of deacetylation (DDA), viscosity/polymer length and endotoxin levels, on immune responses by antigen presenting cells (APCs). Chitosan solutions fro...

  4. Nanoindentation of Chitosan Doped with Silver Nanoparticles

    Science.gov (United States)

    Palumbo, Matthew; Teklu, Alem; Kuthirummal, Narayanan; Levi-Polyachenko, Nicole; Department of Physics; Astronomy, College of Charleston Collaboration; Department of Plastic; Reconstructive Surgery, Wake Forest University Health Sciences Collaboration

    Imaging and spectroscopic analysis via nanoindentation was performed with the Nanosurf EasyScan2 AFM on the pure and silver doped chitosan samples allowing for a more localized determination of their stiffness, hardness, and reduced Young's modulus. The pure chitosan sample was tested to have a stiffness of 0.367 N/m, a hardness of 1.12 GPa, and a reduced Young's modulus of 30.5 MPa. The film with 5mg Ag nanoparticle per gram of chitosan was tested on the boundaries between the chitosan and Ag nanoparticles to show an increase in stiffness of about 4.6% at 0.384 N/m, an increase in hardness of about 5.4% at 1.18 GPa, and an increase in the reduced Young's modulus of about 5.0% at 3.2 MPa in comparison to the pure chitosan sample. On the other hand, upon increasing the doping to 10mg Ag nanoparticle per gram of chitosan showed a decrease in stiffness of about 6.3% at 0.344 N/m, a decrease in hardness of about 27.0% at 0.820 GPa, and a decrease in the reduced Young's modulus of about 6.0% at 28.7 MPa in comparison to the pure chitosan sample. Obviously, films doped with 5mg Ag nanoparicle per gram of chitosan provided the composites with improved mechanical strength compared to chitosan alone.

  5. Specific optical rotation indicatrices of chitosan films

    Science.gov (United States)

    Rudenko, Darya A.; Shipovskaya, Anna B.

    2016-04-01

    The optical activity of chitosan films in the forms of polysalt (chitosan acetate) and polybase was studied. The specific optical rotation [α] of all our films was negative. The absolute values of [α] of polybasic chitosan films was by an order of magnitude higher than that for polysalt films. A dependence of [α] on the orientation angle of the sample relative to the direction of the polarization vector of the incident light beam in the plane perpendicular to this beam was established. Specific optical rotation indicatrices of the chitosan films of both chemical forms were plotted.

  6. Biophysical properties of chitosan/siRNA polyplexes: profiling the polymer/siRNA interactions and bioactivity.

    Science.gov (United States)

    Holzerny, Pascale; Ajdini, Baskim; Heusermann, Wolf; Bruno, Katharina; Schuleit, Michael; Meinel, Lorenz; Keller, Michael

    2012-01-30

    Chitosans are naturally occurring polymers widely used in life science to mediate intracellular uptake of nucleic acids such as siRNA. Four chitosans of fungal origin (Agaricus bisporus; molecular weights MW=44, 63, 93 and 143 kDa) were used in this study and profiled for size, viscosity and hydrodynamic radius using gel permeation chromatography (GPC). Polyplexes made of these chitosans and siRNA were developed and optimized for transfection efficacy in vitro. The characteristics of these polyplexes were low chitosan:siRNA ratios (4-8; N:P) similar positive zeta potential (20-30 mV) and comparable particle sizes (about 150 nm). Endogenous luciferase reporter gene down-regulation in human epithelial H1299 cells at nanomolar concentrations (37.5-150 nM) was significantly stronger for the lower molecular weight chitosans. The impact of these low N:P polyplexes on the cellular viability was minimal also at 150 nM. To help develop an understanding of these differences, an energetic profile of the molecular interactions and polyplex formation was established by isothermal titration calorimetry (ITC). The four polyplexes exhibited strong binding enthalpies delta H(bind)(-84 to -102 kcal/mol) resulting in nanomolar dissociation constants. Intracellular trafficking studies using rhodamine labeled siRNA revealed that polyplexes made from smaller MW chitosans exhibited faster cellular uptake kinetics than their higher MW counterpart. Transmission electron microscopy and small angle X-ray scattering studies (SAXS) revealed that the 44 kDa derived polyplexes exhibited regular spherical structure, whereas the 143 kDa chitosan polyplex was rather irregularly shaped. With regards to adverse effects these low N:P chitosan/siRNA formulations represent an interesting alternative to so far reported chitosan polyplexes that used vast N:P excess to achieve similar bioactivity. PMID:21884740

  7. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications.

    Science.gov (United States)

    H P S, Abdul Khalil; Saurabh, Chaturbhuj K; A S, Adnan; Nurul Fazita, M R; Syakir, M I; Davoudpour, Y; Rafatullah, M; Abdullah, C K; M Haafiz, M K; Dungani, R

    2016-10-01

    Chitin is one of the most abundant natural polymers in world and it is used for the production of chitosan by deacetylation. Chitosan is antibacterial in nature, non-toxic, and biodegradable thus it can be used for the production of biodegradable film which is a green alternative to commercially available synthetic counterparts. However, their poor mechanical and thermal properties restricted its wide spread applications. Chitosan is highly compatible with other biopolymers thus its blending with cellulose and/or incorporation of nanofiber isolated from cellulose namely cellulose nanofiber and cellulose nanowhiskers are generally useful. Cellulosic fibers in nano scale are attractive reinforcement in chitosan to produce environmental friendly composite films with improved physical properties. Thus chitosan based composites have wide applicability and potential in the field of biomedical, packaging and water treatment. This review summarises properties and preparation procedure of chitosan-cellulose blends and nano size cellulose reinforcement in chitosan bionanocomposites for different applications. PMID:27312632

  8. Development of new additive for drilling fluid from the partial hydrophobization N,N,N-trimethyl chitosan (TMC)

    International Nuclear Information System (INIS)

    N,N,N-trimethyl chitosan (TMC) hydrophobically modified can act as an excellent additive for drilling fluids water based, working as inhibitor of reactive shales and rheological modifiers. The cationic chitosan was obtained by reaction of chitosan with CH3I in N-methyl-2-pyrrolidone to obtain the TMC and chitosan was also hydrophobically modified with palmitoil chloride to get Quit P. Through another route, Quit P was modified to obtain the cationic TMCP. The derivatives were characterized by FT-IR and 1HNMR spectrophotometry allowing the calculation of the degree of quaternization of the TMC. The rheology tests showed that the system with TMCP presented pseudo plastic behavior, while the system with TMC behaved as a Newtonian fluid. The results indicated that TMCP can act as rheology modifier for water-based drilling fluids. (author)

  9. One-step electrospinning of cross-linked chitosan fibers.

    Science.gov (United States)

    Schiffman, Jessica D; Schauer, Caroline L

    2007-09-01

    Chitin is a nitrogen-rich polysaccharide that is abundant in crustaceans, mollusks, insects, and fungi and is the second most abundant organic material found in nature next to cellulose. Chitosan, the N-deacetylated derivative of chitin, is environmentally friendly, nontoxic, biodegradable, and antibacterial. Fibrous mats are typically used in industries for filter media, catalysis, and sensors. Decreasing fiber diameters within these mats causes many beneficial effects such as increased specific surface area to volume ratios. When the intrinsically beneficial effects of chitosan are combined with the enhanced properties of nanofibrous mats, applications arise in a wide range of fields, including medical, packaging, agricultural, and automotive. This is particularly important as innovative technologies that focus around bio-based materials are currently of high urgency, as they can decrease dependencies on fossil fuels. We have demonstrated that Schiff base cross-linked chitosan fibrous mats can be produced utilizing a one-step electrospinning process that is 25 times faster and, therefore, more economical than a previously reported two-step vapor-cross-linking method. These fibrous mats are insoluble in acidic, basic, and aqueous solutions for 72 h. Additionally, this improved production method results in a decreased average fiber diameter, which measures 128 +/- 40 nm. Chemical and structural analyses were conducted utilizing Fourier transform infrared spectroscopy, solubility studies, and scanning electron microscopy. PMID:17696400

  10. Potential of chitosan (chemically-modified chitin) for extraction of lead-arsenate contaminated soils

    Science.gov (United States)

    Arsenic (As), phosphorous (P), and lead (Pb) contamination in soils represents a health risk to humans and the environment. Chitosan (poly-N-acetyl glucosamine) is a non-toxic and inexpensive food industry byproduct derived from chitin that has been used as an adsorbent of heavy metals. The object...

  11. Characterization of Chitosan Nanofiber Sheets for Antifungal Application

    Directory of Open Access Journals (Sweden)

    Mayumi Egusa

    2015-11-01

    Full Text Available Chitosan produced by the deacetylation of chitin is a cationic polymer with antimicrobial properties. In this study, we demonstrate the improvement of chitosan properties by nanofibrillation. Nanofiber sheets were prepared from nanofibrillated chitosan under neutral conditions. The Young’s modulus and tensile strength of the chitosan NF sheets were higher than those of the chitosan sheets prepared from dissolving chitosan in acetic acid. The chitosan NF sheets showed strong mycelial growth inhibition against dermatophytes Microsporum and Trichophyton. Moreover, the chitosan NF sheets exhibited resistance to degradation by the fungi, suggesting potentials long-lasting usage. In addition, surface-deacetylated chitin nanofiber (SDCNF sheets were prepared. The SDCNF sheet had a high Young’s modulus and tensile strength and showed antifungal activity to dermatophytes. These data indicate that nanofibrillation improved the properties of chitosan. Thus, chitosan NF and SDCNF sheets are useful candidates for antimicrobial materials.

  12. Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility.

    Science.gov (United States)

    Liu, Mingxian; Zhang, Yun; Wu, Chongchao; Xiong, Sheng; Zhou, Changren

    2012-11-01

    Incorporation of nanosized reinforcements into chitosan usually results in improved properties and changed microstructures. Naturally occurred halloysite nanotubes (HNTs) are incorporated into chitosan for forming bionanocomposite films via solution casting. The electrostatic attraction and hydrogen bonding interactions between HNTs and chitosan are confirmed. HNTs are uniformly dispersed in chitosan matrix. The tensile strength and Young's modulus of chitosan are enhanced by HNTs. The storage modulus and glass transition temperature of chitosan/HNTs films also increase significantly. Blending with HNTs induces changes in surface nanotopography and increase of roughness of chitosan films. In vitro fibroblasts response demonstrates that both chitosan and chitosan/HNTs nanocomposite films are cytocompatibility even when the loading of HNTs is 10%. In summary, these results provide insights into understanding of the structural relationships of chitosan/HNTs bionanocomposite films in potential applications, such as scaffold materials in tissue engineering. PMID:22743347

  13. Degradation of chitosan for rice crops application

    International Nuclear Information System (INIS)

    A variety of techniques including chemical and enzymatic hydrolysis, and radiation degradation processes can be used to prepare low molecular weight chitosan. Degradation of chitosan by radiation can be carried out in solid state and liquid state. Radiation degraded polysaccharides has been reported to exhibit growth-stimulating activity like phytohormones that induce the promotion in germination, shoot and root elongation in variety of plants. In this study, the chitosan was irradiated in solid state (powder form) by gamma rays within the dose range of 25-75 kGy. And the irradiated chitosan was then irradiated in solution form in the presence of hydrogen peroxide. The effects of irradiation on the molecular weight and viscosity of the chitosan were investigated using Ubbelohde Capillary Viscometer. The molecular weight and viscosity of the chitosan decreased with increment of absorbed doses. In the presence of hydrogen peroxide, the molecular weight of chitosan could be further decreased. The effect of radiation degraded chitosan on the growth promotion of rice was investigated and it was shown during seedling period of 15 days for transplanting whereby the growth is 15%-20% faster than using chemicals growth promoters. (authors)

  14. Application of irradiated chitosan for fruit preservation

    International Nuclear Information System (INIS)

    Application of irradiated chitosan has been investigated for coating of fruit preservation. Anti-fungal activity of chitosan was induced by γ-ray irradiation in dry condition at 25 kGy. The irradiated chitosan can suppress the growth of Aspergillus. spp. and Fusarium. spp. isolated from Vietnam mango. Fusarium. spp. was sensitive for irradiated chitosan than the other strains. The coating from irradiated chitosan solution at dose 31 kGy has prolonged the storage life of mango from 7 to 15 days. At the 15th day mango keeps good colour, natural ripening, without spoilage, weight loss 10%, whereas the control is spoiled completely and the sample of fruit with unirradiated chitosan coating could not ripe. The effect is due to the anti-fungal activity and change in physico-chemical properties of chitosan by irradiation. Radiation causes the decrease in viscosity affecting the gas permeability of coating film. The irradiated chitosan coating has positive effect on mango that is susceptible to chilling injury at low storage temperature. (author)

  15. Antifungal Effect of Chitosan as Ca²⁺ Channel Blocker

    Directory of Open Access Journals (Sweden)

    Choon Geun Lee

    2016-06-01

    Full Text Available The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2 was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca²⁺, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca²⁺ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases.

  16. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling.

    Science.gov (United States)

    Soares, Paula I P; Sousa, Ana Isabel; Silva, Jorge Carvalho; Ferreira, Isabel M M; Novo, Carlos M M; Borges, João Paulo

    2016-08-20

    In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature. PMID:27178936

  17. MUCOADHESIVE MICROPARTICLES OF CARBOXYMETHYL CHITOSAN FOR SITE SPECIFIC DELIVERY OF PANTOPRAZOLE: FORMULATION AND IN VITRO CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    N.A. Gujarathi*, B.R. Rane and J.K. Patel

    2012-11-01

    Full Text Available Carboxymethyl chitosan, a water soluble modified carboxymethyl substituted chitosan derivative have distinct and unique properties, rendering them effective to form selective permeable mucoadhesive film or membranes. In the formulation of chitosan microsphere an acidic environment is essentially required that may degrade acid sensitive moiety, peptide or protein drugs. Mucoadhesive microparticle of carboxymethyl chitosan was designed and developed for site specific sustained release of Pantoprazole sodium. Thus prolong the residence time at the absorption site by intimate contact with the mucus layer thereby increase bioavailability, reduce the frequency of dose administration and also prolong the drug release. The mucoadhesive microparticles were prepared by Orifice ionic gelation method using carboxymethyl chitosan in combination with Carbopol 934 and HPMC K15. Entrapment efficiency was in the range of 42.4 to 84.6 %. SEM studies revealed that microparticles were discrete, spherical and free flowing. Microparticle exhibited good mucoadhesive property in the in vitro wash off test and found that Carbopol 934 had greater mucoadhesive strength than that of HPMC K15. A sustained release of Pantoprazole sodium was obtained from mucoadhesive microparticle. Stability study of optimized batch was carried out and drug content found was retained with permissible limits and there was no significant difference in the drug content.

  18. The anti-giardial effectiveness of fungal and commercial chitosan against Giardia intestinalis cysts in vitro.

    Science.gov (United States)

    Yarahmadi, Mohammad; Fakhar, Mahdi; Ebrahimzadeh, Mohammad Ali; Chabra, Aroona; Rahimi-Esboei, Bahman

    2016-03-01

    Chitosan with poly-N-acetylglucosamine sequences is a deacetylated derivative of chitin that can be found in the exoskeletons of crabs, shrimp and lobsters, the cuticles of insects and the cell walls of fungi. The aim of the present study was to compare the effects of fungal chitosan (FC) prepared from the cell walls of Penicillium viridicatum and Penicillium aurantiogriseum with commercially available chitosan (CC) against Giardia intestinalis cysts in vitro. The giardia cysts were isolated using a sucrose method. Four concentrations (50, 100, 200 and 400 μg/ml) of each type of prepared chitosan were applied for 10, 30, 60 and 180 min. The viability of the cysts was checked via 0.1 % eosin staining. Our results indicate that P. viridicatum (with a 47.5 % DD) and P. aurantiogriseum (with a 47.3 % DD) at different concentrations after 180 min precipitated, respectively, 56, 69, 81 and 100 %, and 63, 75, 86 and 100 % mortality rates. CC (with a 54 % DD) showed 79, 84, 93 and 100 % mortality rates. In conclusion, both FC and CC at 400 μg/ml concentrations after 180 min of exposure showed the most potent effect against G. intestinalis cysts. Accordingly, chitosan could be suggested as a new natural nanoform agent for future research in the safe and effective treatment of Giardia infections. PMID:27065602

  19. Preparation and Blood Compatibility of Oxidized-chitosan Films

    Institute of Scientific and Technical Information of China (English)

    Yue Dong YANG; Jiu Gao YU; Yong Guo ZHOU; Pei Guo LI

    2005-01-01

    Chitosan membrane was modified by the selective oxidization of chitosan molecules on its surface with NO2 gas. FTIR spectra indicated there were plenty of-COOH and -COO- groups on the modified membrane surface. The SEM study showed the modified membrane surface was rough rather than smooth as chitosan membrane. All antithrombosis test, hemolysis test and blood cell morphology observation with SEM revealed that modified chitosan membranes have superior blood compatibility to chitosan.

  20. Application Of Chitosan/Cyclodextrin Nanoparticles for Tissue Glutathione Delivery

    OpenAIRE

    Rotar O.V.; Rotar V.I.

    2013-01-01

    The aim of this study was to investigate an ability of chitosan nanoparticles for tissue delivery of the peptide glutathione. Formulations composed of chitosan or chitosan plus cyclodextrin-beta comlex were prepared. Reduced glutathione was loaded and delivered to mucosal layer of small intestine after ischemia-reperfusion injury more efficiently in chitosan/cyclodextrin-beta nanoparticles. From the data obtained, we believe that chitosan/cyclodextrin nanoparticles can be used for the oral adm...

  1. PHARAMACEUTICAL RELEVANCE OF CROSSLINKED CHITOSAN IN MICROPARTICULATE DRUG DELIVERY

    OpenAIRE

    Pahuja Sonia; Aggarwal Shweta

    2013-01-01

    This review highlights the importance of cross-linking with chitosan. Derivatisation of chitosan leads to the cross-linking of chitosan without changing its fundamental skelton structure. Cross-linking agents are broadly divided into two categories i.e Physical and chemical cross-linking; on the basis of interaction with chitosan. The various cross-linking agents used for the preparation of chitosan microspheres and its mechanism of cross-linking have also been described. This article also re...

  2. Preparation and characterization of magnetic chitosan particles for hyperthermia application

    International Nuclear Information System (INIS)

    The size and shape of magnetic chitosan particles were found to be dependent on both the barium ferrite/chitosan (BF/C) ratio and viscosity of a chitosan solution. The saturation magnetization of magnetic chitosan particles varied directly with the BF/C ratio, while coercivity remained almost constant. Notably, incorporated chitosan was shown to exert substantial activity with regard to low cytotoxicity and high heating rate

  3. Faster chitosan production by mucoralean strains in submerged culture

    OpenAIRE

    Amorim Rosa Valéria da Silva; Souza Wanderley de; Fukushima Kazutaka; Campos-Takaki Galba Maria de

    2001-01-01

    Production of chitosan was conducted using two Mucoralean strains, Mucor racemosus and Cunninghamella elegans. Chitosan was extracted from mycelia of M. racemosus and C. elegans at different growth phases on YPD medium. In both fungi, chitosan was rapidly produced, while highest yield of extractable chitosan was found in 24h of cultivation in submerged culture. The yield of chitosan isolated from dry mycelia of M. racemosus was about 40% higher than from C. elegans. The degree of N-acetylatio...

  4. Preparation of Chitosan-g-HEMA by radiation technique

    International Nuclear Information System (INIS)

    Chitosan-g-HEMA copolymer was prepared by radiation technique. Effects of chitosan and HEMA concentrations, irradiation dose on grafting have been investigated. Results showed that grafting process of HEMA onto chitosan occurred smoothly and achieved high grafting degree, up to 600% at 5 kGy, with 15% HEMA and 1.5% chitosan. The obtained copolymer was characterized by IR spectra, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). These measured parameters proved that HEMA grafted onto chitosan backbone. (author)

  5. Drug Release Assays from New Chitosan/Phema Membranes Obtained by Gamma Irradiation

    International Nuclear Information System (INIS)

    Chitosan is a polysaccharide derived from chitin, which presents biocompatibility, biodegradability and antimicrobial properties. Thus, applications in biomedical and environmental fields have been reported. Poly(hydroxyethyl methacrylate) is a synthetic hydrogel which possesses high mechanical strength and biocompatibility, and the conjunction of these two components may result in a new matrix that combines the useful properties of both polymers. With the purpose of obtaining a biocompatible and sterilized matrix for controlled drug release systems, membranes with different contents in chitosan and hydroxyethyl methacrylate (HEMA) have been prepared by γ irradiation from a 60Co source. Antibiotic release experiments were performed before and after irradiation over amoxicillin loaded chitosan/pHEMA membranes in physiological saline solution. Results point out a fast amoxicillin release, dependent on membranes network crosslinking and membrane thickness

  6. Chitosan-Based Zwitterionic Polyelectrolytes and Their N-Phosphobetainates: Facile Synthesis and Aqueous Solution Behaviors

    Institute of Scientific and Technical Information of China (English)

    Hongmei Kang; Yuanli Cai; Haijia Zhang; Junjie Deng; Pengsheng Liu

    2005-01-01

    @@ 1Introduction Chitosan has remarkable potential applications in pharmaceutical and cosmetic formulations[1], e.g. for drug delivery systems, tissue engineering, transplant and cell regeneration due to its excellent biocompatibility, biodegradability, mucoadhesion, etc. Its major drawback as considered for pharmaceutical and cosmetic formulations is its poor solubility due to strong hydrogen bonding and compact structures. Considerable efforts were focused on improving its solubility and enforcing its functionality[1]. As well-known that phosphorylcholine (PC), the structural component of cell membrane, is an amphiphile containing the zwitterionic quaternary ammonium and phosphonic acid moieties (phosphobetaine groups). There has been an intensive effort over the past decades to prepare and explore potential applications of the synthetic PC-polymers[2].In this paper, we describe a facile synthesis of chitosan derivatives containing zwitterionic secondary/tertiary amine and phosphonic acid groups and their further N-phosphobetainates. The polyelectrolyte effect and anti-polyelectrolyte effect of the chitosan-based zwitterionic polyelectrolytes were studied.

  7. Hydrogels made from chitosan and silver nitrate.

    Science.gov (United States)

    Kozicki, Marek; Kołodziejczyk, Marek; Szynkowska, Małgorzata; Pawlaczyk, Aleksandra; Leśniewska, Ewa; Matusiak, Aleksandra; Adamus, Agnieszka; Karolczak, Aleksandra

    2016-04-20

    This work describes a gelation of chitosan solution with silver nitrate. Above the critical concentration of chitosan (c*), continuous hydrogels of chitosan-silver can be formed. At lower concentrations, the formation of nano- and micro-hydrogels is discussed. The sol-gel analysis was performed to characterise the hydrogels' swelling properties. Moreover, the following were employed: (i) mechanical testing of hydrogels, (ii) inductively coupled plasma-optical emission spectroscopy (ICP-OES) for the measurement of silver concentration, (iii) scanning electron microscopy (SEM) to examine the morphology of products obtained, and (iv) dynamic light scattering (DLS) and UV-vis spectrophotometry to examine products formed at low concentration of chitosan (cchitosan used that showed no such activity. PMID:26876830

  8. Antimicrobial and antitumor activities of chitosan from shiitake stipes, compared to commercial chitosan from crab shells.

    Science.gov (United States)

    Chien, Rao-Chi; Yen, Ming-Tsung; Mau, Jeng-Leun

    2016-03-15

    Chitosan was prepared by alkaline N-deacetylation of chitin obtained from shiitake stipes and crab shells and its antimicrobial and antitumor activities were studied. Chitosan from shiitake stipes and crab shells exhibited excellent antimicrobial activities against eight species of Gram positive and negative pathogenic bacteria with inhibition zones of 11.4-26.8mm at 0.5mg/ml. Among chitosan samples, shiitake chitosan C120 was the most effective with inhibition zones of 16.4-26.8mm at 0.5mg/ml. In addition, shiitake and crab chitosan showed a moderate anti-proliferative effect on IMR 32 and Hep G2 cells. At 5mg/ml, the viability of IMR 32 cells incubated with chitosan was 68.8-85.0% whereas that of Hep G2 cells with chitosan was 60.4-82.9%. Overall, shiitake chitosan showed slightly better antimicrobial and antitumor activities than crab chitosan. Based on the results obtained, shiitake and crab chitosan were strong antimicrobial agents and moderate antitumor agents. PMID:26794761

  9. Cartilage tissue engineering by collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells in vitro%大鼠脂肪干细胞复合胶原-壳聚糖-硫酸软骨素三维支架构建组织工程软骨

    Institute of Scientific and Technical Information of China (English)

    张涛; 付勤; 于志永

    2009-01-01

    Objective To evaluate the character of the collagen-chitosan-chondroitin sulfate scaffold seeded with rat adipose tissue-derived stromal cells. Methods A dipose tissue were harvested from 6 weeks old Wistar rats and the stromal cells were harvested by type Ⅰ collagenase and then cultured in vitro. Type Ⅰ collagen was fully mixed with chitosan, freeze-dried and cross-linked with chondroitin sulfate, then freeze-dried again and sterilized by ethylene oxide. The pore diameter, water content, porosity of the scaffold were tested. The adipose tissue-derived stromal cells were digested, seeded into the plates, scaffold, and cen-trifuged into pellet, and then induced into cartilage. MTT detection for cell proliferation was done. After 3 weeks, the cell morphology, and cell proliferation and adhesion were observed, and chondrngenic differenti-ation was also analyzed. Results The pore diameter, water content, porosity tested for the scaffold showed an appropriate form. Cell proliferation showed faster in the scaffold and pellet culture system after 5 day, there was still cell proliferation in the scaffold system after 14 days but no obvious changes in the pellet cul-ture system; ceils on the scaffold proliferated densely showed by histological staining, but there was a scaf-fold structure residues in the inner layer. The finding of type Ⅱ immunohistochemistry stain showed that cells express strong positive for type Ⅱ collagen in the scaffold and pellet culture system whereas it was weakly positive in the plate culture system; the specific mRNA for cartilage, type Ⅱ collagen, aggrecan and SOX-9 were expressed in all three systems showed by RT-PCR, but type X collagen was expressed continu-ously in the plate culture system and expressed after 21 days in the pellet culture system, whereas it was not detected in the collagen-chitosan-chondroitin sulfate scaffold system. Conclusion The parameters of the collagen-chitosan-chondroitin sulfate scaffold were suitable in

  10. Radiation processing of polysaccharide derivatives

    International Nuclear Information System (INIS)

    Carboxymethylcellulose (CMC), carboxymethylstarch (CMS), carboxymethylchitin (CM-chitin) and carboxymethylchitosan (CM-chitosan) form gels when irradiated at paste-like condition. Bedsore prevention mat filled up CMC hydrogel crosslinked by irradiation at paste-like condition was practical applied as a health care products. It was found that CM-chitosan hydrogels have anti-microbial activity and effective as absorbents to remove metal ions. When crosslinked gel sheets of CM-chitin and CM-chitosan were immersed in copper (II) aqueous solution, absorption of Cu (II) were 161 mg/g and 172 mg/g, respectively. Radiation crosslinking of cellulose derivative such as hydroxypropyl methylcellulose phthalate, (HPMCP) kneaded with aqueous alkali solution and methanol was achieved with EB-irradiation at paste-like condition. The HPMCP gel absorbed organic solvents such as chloroform and pyridine. (author)

  11. Deriving Derivatives

    OpenAIRE

    Soklakov, Andrei N.

    2013-01-01

    Quantitative Structuring is a rigorous framework for the design of financial products. We show how it incorporates traditional investment ideas while supporting a more accurate expression of clients' views on the market. We briefly touch upon adjacent topics regarding the safety of financial derivatives and the role of pricing models in product design.

  12. Effects of Chitosan Concentration on the Protein Release Behaviour of Electrospun Poly(ε-caprolactone)/Chitosan Nanofibers

    OpenAIRE

    Fatemeh Roozbahani; Naznin Sultana; Davood Almasi; Farnaz Naghizadeh

    2015-01-01

    Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan were electrospun from a formic acid/acetic acid (FA/AA) solvent system. Bovine serum albumin (BSA) was used as a model protein to incorporate biochemical cues into the nanofibrous scaffolds. The morphological characteristics of PCL/chitosan and PCL/chitosan/BSA Nanofibers were investigated by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) was used to detect the p...

  13. Functional modification of chitosan for biomedical application

    Science.gov (United States)

    Tang, Ruogu

    Chitosan is a linear polysaccharide. Normally commercial chitosan consists of randomly distributed beta-(1-4)-linked D-glucosamine (deacetylated proportion) and N-acetyl-D-glucosamine (acetylated proportion) together. Chitosan has been proved to be a multifunctional biopolymer that presents several unique properties due to free amino groups in the repeating unit therefore chitosan has been widely applied in various areas. To be specific, provided by the excellent biocompatibility, chitosan is expected to be used in biological and medical applications including wound dressing, implants, drug carrier/delivery, etc. In this thesis, we worked on chitosan functionalization for biomedical application. The thesis are composed of three parts: In the first part, we focused on modifying the chitosan thin film, chemically introducing the nitric oxide functional groups on chitosan film. We covalently bonded small molecule diazeniumdiolates onto the chitosan films and examined the antimicrobial function and biocompatibility. Commercial chitosan was cast into films from acidic aqueous solutions. Glutaraldehyde reacted with the chitosan film to introduce aldehyde groups onto the chitosan film (GA-CS film). GA-CS reacted with a small molecule NO donor, NOC-18, to covalently immobilize NONO groups onto the polymer (NO-CS film). The-CHO and [NONO] group were verified by FT IR, UV and Griess reagent. The NO releasing rate in aqueous solution and and thermal stability were studied quantitatively to prove its effectiveness. A series of antimicrobial tests indicated that NO-CS films have multiple functions: 1. It could inhibit the bacteria growth in nutrient rich environment; 2. It could directly inactivate bacteria and biofilm; 3. It could reduce the bacteria adherence on the film surface as well as inhibit biofilm formation. In addition, the NO-CS film was proved to be biocompatible with cell and it was also compatible with other antibiotics like Amoxicillin. In the second part, we

  14. The effect of chitosan concentration on the electrical property of chitosan-blended cellulose electroactive paper

    International Nuclear Information System (INIS)

    We studied the effect of chitosan blending on the electrical property of chitosan-blended cellulose electroactive paper (EAPap) under different humidity conditions. As the chitosan blending ratio increased, the real part of the dielectric constant of chitosan-blended cellulose EAPap increased while the dielectric loss factor decreased. From the curve fitting of the measured data using an electrode polarization model, it was found that increasing the chitosan ratio in the EAPap might promote a decrease in the relaxation time of the EAPap, resulting in an increase of the ion mobility and dc conductivity. Over 30% of the chitosan blending ratio, a gradual increment of the ion mobility of the EAPap was observed at 40% relative humidity, while a quadratic increment of the mobility was found at 60% relative humidity condition. This kind of ion-mobility-enhanced cellulose EAPap can be used not only for bending actuators but also for medical applications such as blood clotting patches

  15. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Directory of Open Access Journals (Sweden)

    Lydia S. Abebe

    2016-02-01

    Full Text Available The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI between 4.7 (±1.56 and 7.5 (±0.02 log10 for Escherichia coli, and between 2.8 (±0.10 and 4.5 (±1.04 log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities < 1 NTU, which meet turbidity standards of the US EPA and guidance by the World Health Organization (WHO. According to WHO health-based microbial removal targets for household water treatment technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions.

  16. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment

    Science.gov (United States)

    Abebe, Lydia S.; Chen, Xinyu; Sobsey, Mark D.

    2016-01-01

    The use of porous ceramic filters is promoted globally for household water treatment, but these filters are ineffective in removing viruses from water. In order to increase virus removal, we combine a promising natural coagulant, chitosan, as a pretreatment for ceramic water filters (CWFs) and evaluate the performance of this dual barrier water treatment system. Chitosan is a non-toxic and biodegradable organic polymer derived by simple chemical treatments from chitin, a major source of which is the leftover shells of crustacean seafoods, such as shrimp, prawns, crabs, and lobsters. To determine the effectiveness of chitosan, model test water was contaminated with Escherichia coli K011 and coliphage MS2 as a model enteric bacterium and virus, respectively. Kaolinite clay was used to model turbidity. Coagulation effectiveness of three types of modified chitosans was determine at various doses ranging from 5 to 30 mg/L, followed by flocculation and sedimentation. The pre-treated supernatant water was then decanted into the CWF for further treatment by filtration. There were appreciable microbial removals by chitosan HCl, acetate, and lactate pretreatment followed by CWF treatment, with mean reductions (95% CI) between 4.7 (±1.56) and 7.5 (±0.02) log10 for Escherichia coli, and between 2.8 (±0.10) and 4.5 (±1.04) log10 for MS2. Turbidity reduction with chitosan treatment and filtration consistently resulted in turbidities technology, chitosan coagulation achieved health protective targets for both viruses and bacteria. Therefore, the results of this study support the use of chitosan to improve household drinking water filtration processes by increasing virus and bacteria reductions. PMID:26927152

  17. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    OpenAIRE

    Yolanda Osuna; Karla M. Gregorio-Jauregui; J. Gerardo Gaona-Lozano; de la Garza-Rodríguez, Iliana M.; Anna Ilyna; Enrique Díaz Barriga-Castro; Hened Saade; López, Raúl G.

    2012-01-01

    Chitosan-coated magnetic nanoparticles (CMNP) were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowe...

  18. COMPARATIVE STUDIES OF IMMUNOMODULATING PROPERTIES OF C HITOSAN AND ITS DERIVATIVES

    Directory of Open Access Journals (Sweden)

    L. A. Ivanushko

    2007-01-01

    Full Text Available Abstract. Comparative study was carried out, aiming to assess immunostimulatory properties of high-molecular chitosan (Ch-HM and its derivatives, i.e., low molecular weight chitosan (Ch-LM, N-3-hydroxymyristoyl (Ch-LM at a low acylation ratio, N-3-hydroxymyristoylchitooligosaccharides (N-acylchito-biose, -triose, -tetraose, N-, O-carboxyalkylchitosans (carboxymethyl, -ethyl, -propyl derivates. It was established, that the chemical modifications of chitosan influenced its biological activity. The derivatives of chitosan were found to have improved physical properties (good solubility in neutral and alkaline solutions, low viscosity in acidic solutions, good absorption from a gastrointestinal compartment, as compared with initial (high molecular weight chitosan formula. They possess immunomodulatory properties and may be regarded as promising substances for preparation of medical drugs and biologically active food additives (BAFA.

  19. Chitosan: a propitious biopolymer for drug delivery.

    Science.gov (United States)

    Duttagupta, Dibyangana S; Jadhav, Varsha M; Kadam, Vilasrao J

    2015-01-01

    Scientists have always been interested in the use of natural polymers for drug delivery. Chitosan, being a natural cationic polysaccharide has received a great deal of attention in the past few years. It is obtained by deacetylation of chitin and is regarded as the second most ubiquitous polymer subsequent to cellulose on earth. Unlike other natural polymers, the cationic charge possessed by chitosan is accountable for imparting interesting physical and chemical properties. Chitosan has been widely exploited for its mucoadhesive character, permeation enhancing properties and controlled release of drugs. Moreover it's non-toxic, biocompatible and biodegradable properties make it a good candidate for novel drug delivery system. This review provides an insight on various chitosan based formulations for drug delivery. Some of the current applications of chitosan in areas like ophthalmic, nasal, buccal, sublingual, gastro-retentive, pulmonary, transdermal, colon-specific and vaginal drug delivery have been discussed. In addition, active targeting of drugs to tumor cells using chitosan has been described. Lastly a brief section covering the safety aspects of chitosan has also been reviewed. PMID:25761010

  20. Cytocompatibility of chitosan and collagen-chitosan scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Ligia L. Fernandes

    2011-01-01

    Full Text Available In this work, chitosan and collagen-chitosan porous scaffolds were produced by the freeze drying method and characterized as potential skin substitutes. Their beneficial effects on soft tissues justify the choice of both collagen and chitosan. Samples were characterized using scanning electron microscope, Fourier Transform InfraRed Spectroscopy (FTIR and thermogravimetry (TG. The in vitro cytocompatibility of chitosan and collagen-chitosan scaffolds was evaluated with three different assays. Phenol and titanium powder were used as positive and negative controls, respectively. Scanning electron microscopy revealed the highly interconnected porous structure of the scaffolds. The addition of collagen to chitosan increased both pore diameter and porosity of the scaffolds. Results of FTIR and TG analysis indicate that the two polymers interact yielding a miscible blend with intermediate thermal degradation properties. The reduction of XTT ((2,3-bis[2-methyloxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide and the uptake of Neutral Red (NR were not affected by the blend or by the chitosan scaffold extracts, but the blend and the titanium powder presented greater incorporation of Crystal Violet (CV than phenol and chitosan alone. In conclusion, collagen-chitosan scaffolds produced by freeze-drying methods were cytocompatible and presented mixed properties of each component with intermediate thermal degradation properties.

  1. Characterization of a Chitosanase from Jelly Fig (Ficus awkeotsang Makino Latex and Its Application in the Production of Water-Soluble Low Molecular Weight Chitosans.

    Directory of Open Access Journals (Sweden)

    Chen-Tien Chang

    Full Text Available A chitosanase was purified from jelly fig latex by ammonium sulfate fractionation (50-80% saturation and three successive column chromatography steps. The purified enzyme was almost homogeneous, as determined by SDS-polyacrylamide gel electrophoresis (SDS-PAGE and gel activity staining. The molecular mass of the enzyme was 20.5 kDa. The isoelectric point (pI was <3.5, as estimated by isoelectric focusing electrophoresis on PhastGel IEF 3-9. Using chitosan as the substrate, the optimal pH for the enzyme reaction was 4.5; the kinetic parameters Km and Vmax were 0.089 mg mL-1 and 0.69 μmol min-1 mg-1, respectively. The enzyme showed activity toward chitosan polymers which exhibited various degrees of deacetylation (21-94%. The enzyme hydrolyzed 70-84% deacetylated chitosan polymers most effectively. Substrate specificity analysis indicated that the enzyme catalyzed the hydrolysis of chitin and chitosan polymers and their derivatives. The products of the hydrolysis of chitosan polymer derivatives, ethylene glycol (EG chitosan, carboxymethyl (CM chitosan and aminoethyl (AE chitosan, were low molecular weight chitosans (LMWCs; these products were referred to as EG-LMWC, CM-LMWC and AE-LMWC, respectively. The average molecular weights of EG-LMWC, CM-LMWC and AE-LMWC were 11.2, 11.2 and 8.89 kDa, respectively. All of the LMWC products exhibited free radical scavenging activities toward ABTS•+, superoxide and peroxyl radicals.

  2. Chitosan-Pectin Synergistic Interaction and Gelation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Mixed gels of chitosan-pectin were prepared by varying the ratio of constituents in the presence of NaCl. Mixed gel at 3% of total polysaccharide concentration with addtion of 12% NaCl showed a synergistic maximum when the ratio of chitosan to pectin was 60 : 40. The effect of the polysaccharide concentration,the preparation temperature(Tp), the time of incubation, balk salt concentration, the molecular weight and the degree of deacetylation of chitosan on gelation have been studied. Interaction mechanism between molecules of both polysaccharides was investigated by FT-IR spectrometry.

  3. Adsorption of Cadmium By Silica Chitosan

    OpenAIRE

    Moftah Ali; Ani Mulyasuryani; Akhmad Sabarudin

    2013-01-01

    The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm), on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65%) as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the re...

  4. Chitosan Conduit for Peripheral Nerve Regeneration

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Chitosan, the N-deacetylated form of chitin, has good biocompatibility and biodegradability.This paper investigates the feasibility of using chitosan conduits for peripheral nerve regeneration.Cell culture experiments were used to test the material's cytotoxicity and affinity to nerve cells.Conduit implantation experiments were used to study the degradation of the material and the regeneration of injured sciatic nerves.The primary results indicate that chitosan has good mechanical properties, biocompatibility, and biodegradability and it may be a promising biomaterial for peripheral nerve regeneration.

  5. Viscometric studies of chitosan radiation degradation

    International Nuclear Information System (INIS)

    The paper presents the preliminary results, related to the viscometric studies on chitosan gamma radiation degradation. To follow the effects on the processes of chitosan transformations caused by irradiation in vacuum irradiated solutions changes of viscosity, and viscosity average molecular weight were measured The influence of absorbed dose on the chitosan molecular weight was studied using the Mark-Houwink-Sakurada equation. Various relationships for the for the determination of the intrinsic viscosity were made vias the Huggins, Kramer and Schulz- Blaschke models. The distinct decrease of intrinsic viscosity indicates that the main change scission was the dominating process

  6. nanocomposites chitosan /clay for electrochemical sensors

    International Nuclear Information System (INIS)

    This study was performed to obtain films of nanocomposites chitosan/bentonite and chitosan/montmorillonite intercalation by the technique of solution in the proportions of 5:1 and 10:1. The nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and the nanocomposites Chitosan/montmorillonite also were characterized by thermogravimetric analysis (TG). The results indicated that the feasibility of obtaining films of nanocomposites exfoliate. Among the suggested applications for films developed in this study includes them use for electrochemical sensors. (author)

  7. Rheological study of chitosan in solution

    International Nuclear Information System (INIS)

    Chitosan is an abundant biopolymer with remarkable physicochemical and biological properties, usually employed in a wide range of applications. It acts as a cationic polyelectrolyte in aqueous acid solutions, leading to unique characteristics. In this work, chitosan was characterized by 1H NMR and its rheological behavior were studied as function of chitosan sample, shear rate, polymer concentration, ionic strength, time and temperature. In order to calculate rheological parameters and to understand the macromolecular dynamic in solution, the Otswald-de Waele model was fitted. (author)

  8. Improvement of Intestinal Absorption of Forsythoside A and Chlorogenic Acid by Different Carboxymethyl Chitosan and Chito-oligosaccharide, Application to Flos Lonicerae - Fructus Forsythiae Herb Couple Preparations

    OpenAIRE

    Wei Zhou; Haidan Wang; Xuanxuan Zhu; Jinjun Shan; Ailing Yin; Baochang Cai; Liuqing Di

    2013-01-01

    The current study aims to investigate the effect of chitosan derivatives on the intestinal absorption and bioavailabilities of forsythoside A (FTA) and Chlorogenic acid (CHA), the major active components in Flos Lonicerae - Fructus Forsythiae herb couple. Biopharmaceutics and pharmacokinetics properties of the two compounds have been characterized in vitro, in situ as well as in rats. Based on the identified biopharmaceutics characteristics of the two compounds, the effect of chitosan derivat...

  9. Some features of irradiated chitosan and its biological effect

    International Nuclear Information System (INIS)

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (Gd) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  10. Some features of irradiated chitosan and its biological effect

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Le; Hien, Nguyen Quoc; Luan, Le Quang; Hanh, Truong Thi; Man, Nguyen Tan; Ha, Pham Thi Le; Thuy, Tran Thi [Nuclear Research Institute, VAEC, Dalat (Viet Nam); Yoshii, Fumio; Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Preparation of chitosan oligomer by radiation degradation was carried out on the gamma Co-60 source. The radiation degradation yield (G{sub d}) of the chitosan was found to be of 1.03. The oligochitosan with 50% of dp>8 fraction was obtained by irradiating the 10% (w/v) chitosan solution in 5% acetic acid at 45 kGy for the chitosan having the initial viscometric average molecular weight, Mv=60,000. Irradiated chitosan showed higher antifungal effect than that of unirradiated one. Furthermore, the irradiated chitosan also showed the growth-promotion effect for plants. (author)

  11. Preparation of Chitosan Nanocompositeswith a Macroporous Structure by Unidirectional Freezing and Subsequent Freeze-Drying

    Directory of Open Access Journals (Sweden)

    Inmaculada Aranaz

    2014-11-01

    Full Text Available Chitosan is the N-deacetylated derivative of chitin, a naturally abundant mucopolysaccharide that consists of 2-acetamido-2-deoxy-β-d-glucose through a β (1→4 linkage and is found in nature as the supporting material of crustaceans, insects, etc. Chitosan has been strongly recommended as a suitable functional material because of its excellent biocompatibility, biodegradability, non-toxicity, and adsorption properties. Boosting all these excellent properties to obtain unprecedented performances requires the core competences of materials chemists to design and develop novel processing strategies that ultimately allow tailoring the structure and/or the composition of the resulting chitosan-based materials. For instance, the preparation of macroporous materials is challenging in catalysis, biocatalysis and biomedicine, because the resulting materials will offer a desirable combination of high internal reactive surface area and straightforward molecular transport through broad “highways” leading to such a surface. Moreover, chitosan-based composites made of two or more distinct components will produce structural or functional properties not present in materials composed of one single component. Our group has been working lately on cryogenic processes based on the unidirectional freezing of water slurries and/or hydrogels, the subsequent freeze-drying of which produce macroporous materials with a well-patterned structure. We have applied this process to different gels and colloidal suspensions of inorganic, organic, and hybrid materials. In this review, we will describe the application of the process to chitosan solutions and gels typically containing a second component (e.g., metal and ceramic nanoparticles, or carbon nanotubes for the formation of chitosan nanocomposites with a macroporous structure. We will also discuss the role played by this tailored composition and structure in the ultimate performance of these materials.

  12. Elastic chitosan/chondroitin sulfate multilayer membranes.

    Science.gov (United States)

    Sousa, M P; Cleymand, F; Mano, J F

    2016-01-01

    Freestanding multilayered films were obtained using layer-by-layer (LbL) technology from the assembly of natural polyelectrolytes, namely chitosan (CHT) and chondroitin sulfate (CS). The morphology and the transparency of the membranes were evaluated. The influence of genipin (1 and 2 mg ml(-1)), a naturally-derived crosslinker agent, was also investigated in the control of the mechanical properties of the CHT/CS membranes. The water uptake ability can be tailored by changing the crosslinker concentration that also controls the Young's modulus and ultimate tensile strength. The maximum extension tends to decrease upon crosslinking with the highest genipin concentration, compromising the elastic properties of CHT/CS membranes: nevertheless, when using a lower genipin concentration, the ultimate tensile stress is similar to the non-crosslinked one, but exhibits a significantly higher modulus. Moreover, the crosslinked multilayer membranes exhibited shape memory properties, through a simple hydration action. The in vitro biological assays showed better L929 cell adhesion and proliferation when using the crosslinked membranes and confirmed the non-cytotoxicity of the developed CHT/CS membranes. Within this research work, we were able to construct freestanding biomimetic multilayer structures with tailored swelling, mechanical and biological properties that could find applicability in a variety of biomedical applications. PMID:27200488

  13. High Performance Chitosan Based Vector Mediated Gene Delivery%高性能壳聚糖介导基因载体

    Institute of Scientific and Technical Information of China (English)

    郑连英; 肖玉良

    2004-01-01

      Efficiency of non-viral gene delivery based on chitosan and chitosan derivatives as DNA-condensing carrier is dependent on a series of factors, such as complex size, complex stability, toxicicy, immunogenicity, protection against DNase degradation and intracellular trafficking of the DNA. The advances in the application of chitosan and chitosan derivatives to non-viral gene delivery and the transfection studies on chitosan and chitosan derivatives as transfection agents, are reviewed.%  以阳离子聚合物作载体的非病毒性基因载体的作用效率受到许多因素的影响,如粒子的大小、络合物的稳定性、毒性、免疫原性、保护DNA免受DNase(脱氧核糖核酸酶)降解的能力以及细胞内DNA的传递。本文着重介绍了壳聚糖及其衍生物在非病毒基因载体方面的应用以及近年来壳聚糖基因转移载体转染的研究进展。

  14. Electrochemical and Thermal Studies of Prepared Conducting Chitosan Biopolymer Film

    International Nuclear Information System (INIS)

    In this paper, chitosan based conducting bipolymer films were prepared by casting and solvent evaporating technique. All prepared chitosan films were of pale yellow colour, transparent, and smooth. Sulphuric acid was chosen as the cross-linking agent. It enhanced conduction pathway in cross-linked chitosan films. Mechanical properties, solid-state, and thermal behavior of prepared chitosan fimls were studied by means of a material testing machine, powder X-ray diffractometry (XRD), thermogravimetric analysis (TG-DTG), and differential scanning calorimetry (DSC). By the XRD diffraction pattern, high molecular weight of chitosan product indicates the semi-crystalline nature, but the prepared chitosan film and doped chitosan film indicate significantly lower in crystallinity prove which of the amorphous characteristics. In addition, DSC thermogram of pure chitosan film exhibited exothermic peak around at 300 C, indicating polymer decomposition of chitosan molecules in chitosan films. Furthermore, these DSC thermograms clearly showed that while pure chitosan film display exothermal decomposition, the doped chitosan films mainly endothermic characteristics. The ionic conductivity of doped chitosan films were in the order of 10 to 10 S cm , which is in the range of semi-conductor. These results showed that cross-linked chitoson films may be used as polymer electrolyte film to fabricate solid state electrochemical cells

  15. 季铵盐壳聚糖三维支架复合GNDF载间充质干细胞向神经样细胞分化%Neuron-like differentiation of mesenchymal stem cells induced by quaternary chitosan thermosensitive hydrogel scaffolds combined with glial cell line-derived neurotrophic factor

    Institute of Scientific and Technical Information of China (English)

    黄成; 杨建东; 冯新民; 李广峰; 李艺楠; 肖海祥; 孙钰

    2013-01-01

    chitosan thermosensitive hydrogel scaffold and to look for more ideal tissue engineering materials for the treatment of nervous system damage. METHODS:The thermosensitive hygrogel scaffold was prepared using hydroxypropyltrimethyl ammonium chloride chitosan (HACC) andβ-glycerophosphate (β-GP). The spatial structure of scaffold was observed by scanning electronic microscope. Effect of leaching liquor from the HACC/β-GP scaffold on the viability of bone marrow mesenchymal stem cells was detected by (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The albumin from bovine serum was combined with the scaffold, and the slow-release effect of the scaffold was detected by ultraviolet absorption spectrometry. Bone marrow mesenchymal stem cells were incubated onto the compound scaffold at 3 passages. The adhesion, growth and differentiation of bone marrow mesenchymal stem cells on the compound scaffold were observed by the scanning electron microscope. Neuron-specific enolase was detected by immunofluorescence. RESULTS AND CONCLUSION:The porosity and thermal sensitivity of HACC/β-GP scaffold and slow-release effect of glial cellline-derived neurotrophic factor were apparent. The results of MTT showed that the compound scaffold cannot take apparent negative effects to the proliferation of bone marrow mesenchymal stem cells. After inoculation, bone marrow mesenchymal stem cells permeated the porous structure of the scaffold and adhered to the scaffold. Under the role of glial cellline-derived neurotrophic factor, bone marrow mesenchymal stem cells showed neuron-like cellmorphology and cells co-cultured with the compound scaffold expressed the marker of neurons, neuron-specific enolase. Under the role of slow-release glial cellline-derived neurotrophic factor, bone marrow mesenchymal stem cells can grow wel in vitro and differentiate into neuron-like cells on the HACC/β-GP scaffold.

  16. Quantum dot/glycol chitosan fluorescent nanoconjugates

    OpenAIRE

    Mansur, Alexandra AP; Mansur, Herman S.

    2015-01-01

    In this study, novel carbohydrate-based nanoconjugates combining chemically modified chitosan with semiconductor quantum dots (QDs) were designed and synthesised via single-step aqueous route at room temperature. Glycol chitosan (G-CHI) was used as the capping ligand aiming to improve the water solubility of the nanoconjugates to produce stable and biocompatible colloidal systems. UV-visible (UV–vis) spectroscopy, photoluminescence (PL) spectroscopy, and Fourier transform infrared (FTIR) spec...

  17. Irradiating or autoclaving chitosan/polyol solutions. Effect on thermogelling chitosan-β-glycerophosphate systems

    International Nuclear Information System (INIS)

    The effects of steam sterilization and γ-irradiation on chitosan and thermogelling chitosan-βglycerophosphate (GP) solutions containing polyol additives were investigated. The selected polyols were triethylene glycol, glycerol, sorbitol, glucose and poly(ethylene glycol) (PEG). They were incorporated to chitosan solutions prior to sterilization in a proportion ranging from 1 to 5% (w/v). The solutions were characterized with respect to their viscosity, thermogelling properties, compressive stress relaxation behavior and chitosan degradation. All polyols reduced the autoclaving-induced viscosity loss and had a positive impact on the solution thermogelling properties and compressive performance of the gels. Steam sterilization in the presence of glucose resulted in a substantial increase in the solution viscosity and gel strength. This was associated with a strong discoloration suggesting chemical alteration of the system. PEG was the most effective agent in preventing hydrolytic degradation of chitosan chains. Gamma-irradiation strongly decreased the chitosan solution viscosity regardless of the presence of additives, even when sterilization was carried out at -80 deg C. Moreover, the thermogelling properties were dramatically altered, and thus, γ-irradiation would not be an appropriate method to sterilize chitosan solutions. In conclusion, polyols are potentially useful additive to maximise the viscoelastic and mechanical properties of chitosan-GP after steam sterilization. (author)

  18. Effect of chitosan molecular weight on rheological behavious of chitosan modified nanoclay at highly hydrated state

    Science.gov (United States)

    Effect of chitosan molecular weight (M(cs)) on the rheological properties of chitosan modified clay (CMCs) at highly hydrated state was investigated. With special emphasis on its effect on the thixotropy of CMCs, the structure recovery at rest after underwent a pre-shearing process was further perfo...

  19. Clarification Effects of Chitosan on Apple Fruit Juice

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-fei; LI He-sheng; ZHANG Xiao-ping; HUANG Xiao-chun

    2003-01-01

    Chitosan is a good flocculant. The paper deals with the clarification of apple juice by means of chitosan. The results showed that the transmittance was over 97% and soluble solid content was stable basically, under the technological condition of chitosan of 0.5 - 1.2 g L-1 , temperature of 45 - 55℃ and pH 4.5. After the orthogonal trial, the optimum technological conditions of apple juice clarification by using chitosan were 0.3 g L-1 chitosan, 45℃C and pH 4.5. The research of the apple juice clarification with chitosan made a basis of the application of chitosan and provided the theoretical basis for the clarification of apple juice with chitosan.

  20. Dyeing Characteristics of Chitosan Biguanidine Hydrochloride Treated Wool Fabrics

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xue; HE JIN-xin

    2010-01-01

    @@ Chitosan biguanidine hydrochloride(CGH)has been synthesized by the guanidineylation reaction of chitosan with dicyandiamide.The structures of CGH were characterized by Fourier transform infrared spectroscopy and 13CNMR spectra.

  1. Enhancement of antimicrobial activity of chitosan by irradiation

    International Nuclear Information System (INIS)

    Antimicrobial activity of irradiated chitosan was studied against Escherichia coli B/r. Irradiation of chitosan at 100 kGy under dry conditions was effective in increasing the activity, and inhibited the growth of E. coli completely. The molecular weight of chitosan significantly decreased with the increase in irradiation dose, whereas the relative surface charge of chitosan was decreased only 3% by 100 kGy irradiation. Antimicrobial activity assay of chitosan fractionated according to molecular weight showed that 1 x 105-3 x 105 fraction was most effective in suppressing the growth of E coli. This fraction comprised only 8% of the 100 kGy irradiated chitosan. On the other hand, chitosan whose molecular weight was less than 1 x 105 had no activity. The results show that low dose irradiation, specifically 100 kGy, of chitosan gives enough degradation to increase its antimicrobial activity as a result of a change in molecular weight. (Author)

  2. Chitosan-Coated Magnetic Nanoparticles with Low Chitosan Content Prepared in One-Step

    Directory of Open Access Journals (Sweden)

    Yolanda Osuna

    2012-01-01

    Full Text Available Chitosan-coated magnetic nanoparticles (CMNP were obtained at 50°C in a one-step method comprising coprecipitation in the presence of low chitosan content. CMNP showed high magnetization and superparamagnetism. They were composed of a core of 9.5 nm in average diameter and a very thin chitosan layer in accordance with electron microscopy measurements. The results from Fourier transform infrared spectrometry demonstrated that CMNP were obtained and those from thermogravimetric analysis allowed to determine that they were composed of 95 wt% of magnetic nanoparticles and 5 wt% of chitosan. 67% efficacy in the Pb+2 removal test indicated that only 60% of amino groups on CMNP surface bound to Pb, probably due to some degree of nanoparticle flocculation during the redispersion. The very low weight ratio chitosan to magnetic nanoparticles obtained in this study, 0.053, and the high yield of the precipitation reactions (≈97% are noticeable.

  3. The effect of andiroba oil and chitosan concentration on the physical properties of chitosan emulsion film

    Directory of Open Access Journals (Sweden)

    Vanessa Tiemi Kimura

    2016-01-01

    Full Text Available Abstract Chitosan film is used as a dressing to heal burns. The physical and biological properties of the film can be modified by the addition of phytotherapic compounds. This work used the casting -solvent evaporation technique to prepare chitosan film containing andiroba oil (Carapa guianensis which has anti-inflammatory, antibiotic, and healing properties. The objective of this study was to determine the effect of the concentrations of chitosan and andiroba oil on the physical properties of chitosan films. The emulsion films were evaluated concerning the mechanical properties and fluid handling capacity. Additionally, scanning electron microscopy and thermal analysis were performed. The results showed that the barrier and mechanical properties were affected by the addition of andiroba oil, and these may be modulated as a function of the concentration of oil added to the film. The thermal analysis showed no evidence of chemical interactions between the oil and chitosan.

  4. Preparations, Characterizations and Applications of Chitosan-based Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chitosan is a natural polysaccharide prepared by the N-deacetylation of chitin. In this paper we have reviewed the methods of preparation of chitosan-based nanoparticles and their pharmaceutical applications. There are five methods of their preparations: emulsion cross-linking, emulsion-droplet coalescence, ionic gelation, reverse micellar method and chemically modified chitosan method. Chitosan nanoparticles are used as carriers for low molecular weight drug, vaccines and DNA. Releasing characteristics, biodistribution and applications are also summarized.

  5. PREPARATION OF CHITOSAN COATED METAL AFFINITY CHROMATOGRAPHY ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    AanTianwei; XuWeijiang; 等

    1998-01-01

    A new and an inexpensive adsorbent of chitosan coated silica for immobilized metal affinity chromatography(IMAC) was studied.After a double coating,the chitosan coated on silica beads could be up to 53.4mg/g silica beads.When pH>3.8,the metal ligand Cu2+ was chelated on the coated chitosan with a bound capacity of 14.6mg/g chitosan without introducing iminodiacetic acid(IDA).

  6. Chitosan-based nanoparticles prepared by template polymerization

    OpenAIRE

    Pereira, Paula; Gama, F. M.

    2010-01-01

    INTRODUCTION: Chitosan (CS) /poly(acrylic acid) (PAA) nanoparticles (NPs) have recently been obtained by template polymerization1. In this technique, the NPs are produced upon polymerization of an acrylic monomer next to the chitosan backbone. Due to the electrostatic interaction, the negatively charged acrylic monomers align along the chitosan molecules. These physic interactions leads to self-assembled particles. The molecular weight and deacetylation degree of chitosan affect the solubili...

  7. Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects

    OpenAIRE

    Long Xu; Yun-An Huang; Qiu-Jin Zhu; Chun Ye

    2015-01-01

    Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained consi...

  8. Removal of azo dye from aqueous solutions using chitosan

    OpenAIRE

    Zuhair Jabbar; G. Hadi Ferdoos Sami; A , Angham

    2014-01-01

    Adsorption of Congo Red (CR) from aqueous solution onto chitosan was investigated in a batch system. The effects of solution pH, initial dye concentration, and temperature were studied. Results indicated that chitosan could be used as a biosorbent to remove the azo dyes from contaminated water. Synthesize of chitosan involved three main stages as preconditioning, demineralization, deproteinization and deacetylation. Chitosan was characterized using Fourier Transform Infrared Spectroscopy (FTI...

  9. Effect of chitosan coating on the characteristics of DPPC liposomes

    OpenAIRE

    Mady, Mohsen M; Mirhane M. Darwish

    2010-01-01

    Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM), zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was con...

  10. Adhesion and viability of two enterococcal strains on covalently grafted chitosan and chitosan/kappa-carrageenan multilayers

    NARCIS (Netherlands)

    Bratskaya, S.; Marinin, D.; Simon, F.; Synytska, A.; Zschoche, S.; Busscher, H. J.; Jager, D.; van der Mei, H. C.

    2007-01-01

    Chitosans are natural aminopolysaccharides, whose low cytotoxicity suggests their potential use for nonadhesive, antibacterial coatings on biomaterials implant surfaces. Here, the antiadhesive behavior and ability to kill bacteria upon adhesion ("contact killing") of chitosan coatings were evaluated

  11. Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering

    OpenAIRE

    Jayakumar, R.; Nair, S. V.; Furuike, T.; Tamura, H.

    2010-01-01

    This review summarized the preparation and tissue engineering applications of chitin and chitosan based nanofibers. Additional studies are necessary before clinical applications and for commercialization of the chitin and chitosan based nanofibers. We hope that this review article will bring new innovative types of chitin and chitosan nanofibers for tissue engineering applications in the future.

  12. Interactions between chitosan and cells measured by AFM

    International Nuclear Information System (INIS)

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  13. Interactions between chitosan and cells measured by AFM

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Sheng-Wen; Thien, Doan Van Hong; Ho, Ming-Hua [Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan (China); Hsieh, Hsyue-Jen [Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Li, Chung-Hsing [Division of Orthodontics and Pediatric Dentistry, Department of Dentistry, Tri-Service General Hospital, Taipei, Taiwan (China); Hung, Chang-Hsiang [Department of Dentistry, Kinmen Hospital Department of Health, Taiwan (China); Li, Hsi-Hsin, E-mail: mhho@mail.ntust.edu.t [Deputy Superintendent, Kinmen Hospital Department of Health, Taiwan (China)

    2010-10-01

    Chitosan, a biocompatible material that has been widely used in bone tissue engineering, is believed to have a high affinity to osteoblastic cells. This research is the first to prove this hypothesis. By using atomic force microscopy (AFM) with a chitosan-modified cantilever, quantitative evaluation of the interforce between chitosan and cells was carried out. A chitosan tip functionalized with Arg-Gly-Asp (RGD) was also used to measure the interforce between RGD-chitosan and osteoblastic cells. This research concluded by examining cell adhesion and spreading of chitosan substrates as further characterization of the interactions between cells and chitosan. The force measured by AFM showed that the interforce between chitosan and osteoblasts was the highest (209 nN). The smallest adhesion force (61.8 nN) appeared between chitosan and muscle fibroblasts, which did not demonstrate any osteoblastic properties. This result proved that there was a significant interaction between chitosan and bone cells, and correlated with the observations of cell attachment and spreading. The technique developed in this research directly quantified the adhesion between chitosan and cells. This is the first study to demonstrate that specific interaction exists between chitosan and osteoblasts.

  14. Preparation, characterization and in vitro evaluation of nanostructured chitosan/apatite and chitosan/Si-doped apatite composites

    OpenAIRE

    Solis, Yaimara; Davidenko, Natalia; Carrodeguas, Raul G.; Cruz, Jeny; Hernandez, Andy; Tomas, Miriela; Cameron, Ruth Elizabeth; Peniche, Carlos

    2013-01-01

    Chitosan/apatite composites are attracting great attention as biomaterials for bone repair and regeneration procedures. The reason is their unique set of properties: bioactivity and osteoconductivity provided by apatite and resorbability supplied by chitosan among others. Thus, in this work chitosan/apatite and chitosan/Si-doped apatite composites were prepared and characterized. Particle size, surface area, in vitro physiological stability, enzymatic biodegradation and bioactivity were evalu...

  15. Performance of PRP Associated with Porous Chitosan as a Composite Scaffold for Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Andréa Arruda Martins Shimojo

    2015-01-01

    Full Text Available This study aimed to evaluate the in vitro performance of activated platelet-rich plasma associated with porous sponges of chitosan as a composite scaffold for proliferation and osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. The sponges were prepared by controlled freezing (−20, −80, or −196°C and lyophilization of chitosan solutions (1, 2, or 3% w/v. The platelet-rich plasma was obtained from controlled centrifugation of whole blood and activated with calcium and autologous serum. The composite scaffolds were prepared by embedding the sponges with the activated platelet-rich plasma. The results showed the performance of the scaffolds was superior to that of activated platelet-rich plasma alone, in terms of delaying the release of growth factors and increased proliferation of the stem cells. The best preparation conditions of chitosan composite scaffolds that coordinated the physicochemical and mechanical properties and cell proliferation were 3% (w/v chitosan and a −20°C freezing temperature, while −196°C favored osteogenic differentiation. Although the composite scaffolds are promising for regenerative medicine, the structures require stabilization to prevent the collapse observed after five days.

  16. The encapsulation of bleomycin within chitosan based polymeric vesicles does not alter its biodistribution.

    Science.gov (United States)

    Sludden, J; Uchegbu, I F; Schätzlein, A G

    2000-04-01

    Polymeric vesicles have recently been developed from an amphiphilic chitosan derivative--palmitoyl glycol chitosan. Their potential as a drug delivery system was evaluated using the anti-cancer compound bleomycin as a model drug. Palmitoyl glycol chitosan (GCP41) was synthesised by conjugation of palmitoyl groups to glycol chitosan. Bleomycin-containing vesicles (669 nm diameter) were prepared from a mixture of GCP41 and cholesterol by remote loading. The vesicles were imaged by freeze-fracture electron microscopy and their in-vitro stability tested. Incubation of the larger vesicles with plasma in-vitro led to a reduction of mean size by 49%, a reaction not seen with control sorbitan monostearate niosomes (215 nm in size). They also showed a higher initial drug release (1 h), but GCP41 and sorbitan monostearate vesicles retained 62% and 63% of the encapsulated drug after 24h, respectively. The biodistribution of smaller vesicles (290 nm) prepared by extrusion through a 200-nm filter was also studied in male Balb/c mice. Encapsulation of bleomycin into polymeric vesicles did not significantly alter the pharmacokinetics of biodistribution of bleomycin in male Balb/c mice although plasma and kidney levels were slightly increased. It is concluded that the extruded GCP41 vesicles break down in plasma in-vivo and hence are unlikely to offer any therapeutic advantage over the free drug. PMID:10813546

  17. Synthesis and Characterization of Chitosan-based Biomaterials Modified with Different Active Groups and Their Relationship with Cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cytotoxicity profile of three chitosan derivatives with different affinity to water was evaluated in vitro. The derivatives selected were carboxymethylated-chitosan (CMCH), linoleic acid modified-chitosan (LACH) and deoxycholic acid modified-chitosan (DACH), respectively, and the results of FTIR and NMR confirmed the successful modification. Cytotoxicity of these polymers was investigated via the red blood cell lysis assay and the MTT assay. The red blood cell lysis test showed that CH elicited a certain level of red blood cell toxicity, while CMCH, LACH and DACH all displayed low membrane damaging effects,with the hemolysis rates of 2.385%, 1.560% and 4.404%, respectively, which comes well within permissible limit (5%). The MTT assay revealed that CH exhibited significant inhibitory effect on fibroblast proliferation at higher concentration, while its three derivatives showed no cytotoxicity. CMCH had stimulatory effects on fetal mouse fibroblast proliferation. Differences in cytotoxicity of CH and its derivatives may result from the specific chemical modifications leading to the alteration of molecular charge density and type of the cationic functionalities, structure and sequence, and conformational flexibility.

  18. Preparation and Characterization of Chitosan Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    FENG; HuiXia

    2001-01-01

    Chitin 1 is a biodegradable and nontoxic polysaccharide widely spread among marine and terrestrial invertebrates and fungi. It is usually obtained from waste materials of the sea food-processing industry, mainly shells of crab, shrimp, prawn and krill. Native chitin occurs in such natural composite materials usually combined with inorganics, proteins, lipids and pigments. Its isolation calls for chemical treatments to eliminate these contaminants, some of which maybe coimmercially explored. By treating crude chitin with aqueous 40~50% sodium hydroxide at 110~115℃ chitosan is obtained. However, the fully deacetylated product is rarely obtained due to the risks of side reactions and chain deplolymerization. Chitosan and chitin are closely related since both are linear polysaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units joined by β (1→4) glycosidic bonds. They can be distinguished by their contents of the above-mentioned units and by their solubilities in aqueous media. The acetylated units predominate in chitin while chitosan chains contain mostly deacetylated units. Chitin is soluble in a very limited number of solvents while chitosan is soluble in aqueous dilute solutions of a number of mineral and organic acids, being the most common ones, the hydrochloric and acetic acids. In aqueous dilute acid media chitosan forms salts, producing polyelectrolyte chains bearing positive charges on the nitrogen atoms of their amine groups. In fact the salt of chitosan may be formed in a separate step or as a consequence of the presence of acid in the water suspension of the neutralized form of chitosan.  ……

  19. Nuclear imaging evaluation of galactosylation of chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Jeong; Kim, Eun Mi; Kim, Chang Guhn [School of Medicine, Wonkwang Univ., Iksan (Korea, Republic of); Park, In Kyu; Cho, Chong Su [Seoul National Univ., Seoul (Korea, Republic of); Bom, Hee Seung [School of Medicine, Chonnam National Univ., Gwangju (Korea, Republic of)

    2004-06-01

    Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelater, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan Cytotoxicity of {sup 99}mTc-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with {sup 99}mTc-GMC and {sup 99}mTc-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. The results of MTT assay indicated that {sup 99}mTc-GMC was non-toxic. {sup 99}mTc-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, {sup 99}mTc-MC showed faint liver uptake. {sup 99}mTc-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetability is a clear example of the great benefit proffered by nuclear imaging.

  20. Preparation and Characterization of Chitosan Hydrochloride

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chitin 1 is a biodegradable and nontoxic polysaccharide widely spread among marine and terrestrial invertebrates and fungi. It is usually obtained from waste materials of the sea food-processing industry, mainly shells of crab, shrimp, prawn and krill. Native chitin occurs in such natural composite materials usually combined with inorganics, proteins, lipids and pigments. Its isolation calls for chemical treatments to eliminate these contaminants, some of which maybe coimmercially explored. By treating crude chitin with aqueous 40~50% sodium hydroxide at 110~115℃ chitosan is obtained. However, the fully deacetylated product is rarely obtained due to the risks of side reactions and chain deplolymerization. Chitosan and chitin are closely related since both are linear polysaccharides containing 2-acetamido-2-deoxy-D-glucopyranose and 2-amino-2-deoxy-D-glucopyranose units joined by β (1→4) glycosidic bonds. They can be distinguished by their contents of the above-mentioned units and by their solubilities in aqueous media. The acetylated units predominate in chitin while chitosan chains contain mostly deacetylated units. Chitin is soluble in a very limited number of solvents while chitosan is soluble in aqueous dilute solutions of a number of mineral and organic acids, being the most common ones, the hydrochloric and acetic acids. In aqueous dilute acid media chitosan forms salts, producing polyelectrolyte chains bearing positive charges on the nitrogen atoms of their amine groups. In fact the salt of chitosan may be formed in a separate step or as a consequence of the presence of acid in the water suspension of the neutralized form of chitosan.

  1. Probing cellular behaviors through nanopatterned chitosan membranes

    International Nuclear Information System (INIS)

    This paper describes a high-throughput method for developing physically modified chitosan membranes to probe the cellular behavior of MDCK epithelial cells and HIG-82 fibroblasts adhered onto these modified membranes. To prepare chitosan membranes with micro/nanoscaled features, we have demonstrated an easy-to-handle, facile approach that could be easily integrated with IC-based manufacturing processes with mass production potential. These physically modified chitosan membranes were observed by scanning electron microscopy to gain a better understanding of chitosan membrane surface morphology. After MDCK cells and HIG-82 fibroblasts were cultured on these modified chitosan membranes for various culture durations (i.e. 1, 2, 4, 12 and 24 h), they were investigated to decipher cellular behavior. We found that both cells preferred to adhere onto a flat surface rather than on a nanopatterned surface. However, most (> 80%) of the MDCK cells showed rounded morphology and would suspend in the cultured medium instead of adhering onto the planar surface of negatively nanopatterned chitosan membranes. This means different cell types (e.g. fibroblasts versus epithelia) showed distinct capabilities/preferences of adherence for materials of varying surface roughness. We also showed that chitosan membranes could be re-used at least nine times without significant contamination and would provide us consistency for probing cell–material interactions by permitting reuse of the same substrate. We believe these results would provide us better insight into cellular behavior, specifically, microscopic properties and characteristics of cells grown under unique, nanopatterned cell-interface conditions. (paper)

  2. Nuclear imaging evaluation of galactosylation of chitosan

    International Nuclear Information System (INIS)

    Chitosan has been studied as a non-viral gene delivery vector, drug delivery carrier, metal chelater, food additive, and radiopharmaceutical, among other things. Recently, galactose-graft chitosan was studied as a non-viral gene and drug delivery vector to target hepatocytes. The aim of this study was to investigate the usefulness of nuclear imaging for in vivo evaluation of targeting the hepatocyte by galactose grafting. Galactosyl methylated chitosan (GMC) was produced by methylation to lactobionic acid coupled chitosan Cytotoxicity of 99mTc-GMC was determined by MTT assay. Rabbits were injected via their auricular vein with 99mTc-GMC and 99mTc-methylated chitosan (MC), the latter of which does not contain a galactose group, and images were acquired with a gamma camera equipped with a parallel hole collimator. The composition of the galactose group in galactosylated chitosan (GC), as well as the tri-, di-, or mono-methylation of GMC, was confirmed by NMR spectroscopy. The results of MTT assay indicated that 99mTc-GMC was non-toxic. 99mTc-GMC specifically accumulated in the liver within 10 minutes of injection and maintained high hepatic uptake. In contrast, 99mTc-MC showed faint liver uptake. 99mTc-GMC scintigraphy of rabbits showed that the galactose ligand principally targeted the liver while the chitosan functionalities led to excretion through the urinary system. Bioconjugation with a specific ligand endows some degree of targetability to an administered molecule or drug, as in the case of galactose for hepatocyte in vivo, and evaluating said targetability is a clear example of the great benefit proffered by nuclear imaging

  3. In vitro treatments of Echinococcus granulosus with fungal chitosan, as a novel biomolecule

    Institute of Scientific and Technical Information of China (English)

    Bahman Rahimi-Esboei; Mahdi Fakhar; Aroona Chabra; Mahboobeh Hosseini

    2013-01-01

    Objective: To determined the antiparasitic activity of the isolated chitosan from Penicillium viridicatum, Penicillium aurantiogriseum and commercial chitosan against protoscolicidal of hydatid cysts were determined. Methods:After isolating chitosan from fungal cell walls, four concentrations (50, 100, 200, 400μg/mL) of each type of prepared chitosan and commercial chitosan were used for 10, 30, 60, and 180 min, respectively. Results: Among different type of chitosan, commercial chitosan with the highest degree of deacetylation showed high scolicidal activity in vitro. Fungal chitosan could be recommended, as good as commercial chitosan, for hydatic cysts control. Conclusions:It seems to be a good alternative to synthetic and chemical scolicidal.

  4. Sorption of technetium on chitosan from aqueous solutions

    International Nuclear Information System (INIS)

    This work was aimed to study influence of the contact time, effect of pH and effect of foreign ions on sorption of pertechnetate anions on chitosan and crosslinked chitosan. Sorption of technetium on chitosan was studied using batch techniques in static arrangement of experiment under aerobic conditions at laboratory temperature. The influence of contact time, effect of pH and effect of foreign ions on sorption of pertechnetate anions on chitosan and crosslinked chitosan was studied. The adsorption of technetium on these sorbents was rapid and the percentage of the technetium sorption was > 80 % for chitosan and > 98 % for crosslinked chitosan. The highest value of the percentage technetium sorption on chitosan was observed at pH value near 3. The adsorption capacity of crosslinked chitosan was increased with increasing pH values. In the pH range of 3-11 adsorption of technetium on crosslinked chitosan was > 98 %. The competition effect of Fe3+ towards TcO4 - sorption on crosslinked chitosan is stronger than the competition effect of other observed cations. The selectivity of chitosan and crosslinked chitosan for these cations in solution with the concentration above 1· 10-3 mol dm-3 was in the order Na+ > Ca2+ > Fe2+ and Ca2+ > Na+ > Fe2+, respectively. From these results it can be expected that crosslinked chitosan could be a suitable sorbent for the immobilization of technetium in the liquid radioactive waste. Further work is necessary to investigate the influence of some anions on technetium sorption on crosslinked chitosan. (authors)

  5. Substrate Specificity and Enzyme Recycling Using Chitosan Immobilized Laccase

    Directory of Open Access Journals (Sweden)

    Everton Skoronski

    2014-10-01

    Full Text Available The immobilization of laccase (Aspergillus sp. on chitosan by cross-linking and its application in bioconversion of phenolic compounds in batch reactors were studied. Investigation was performed using laccase immobilized via chemical cross-linking due to the higher enzymatic operational stability of this method as compared to immobilization via physical adsorption. To assess the influence of different substrate functional groups on the enzyme’s catalytic efficiency, substrate specificity was investigated using chitosan-immobilized laccase and eighteen different phenol derivatives. It was observed that 4-nitrophenol was not oxidized, while 2,5-xylenol, 2,6-xylenol, 2,3,5-trimethylphenol, syringaldazine, 2,6-dimetoxyphenol and ethylphenol showed reaction yields up 90% at 40 °C. The kinetic of process, enzyme recyclability and operational stability were studied. In batch reactors, it was not possible to reuse the enzyme when it was applied to syringaldazne bioconversion. However, when the enzyme was applied to bioconversion of 2,6-DMP, the activity was stable for eight reaction batches.

  6. Zwitterionic chitosan for the systemic treatment of sepsis

    Science.gov (United States)

    Cho, Eun Jung; Doh, Kyung-Oh; Park, Jinho; Hyun, Hyesun; Wilson, Erin M.; Snyder, Paul W.; Tsifansky, Michael D.; Yeo, Yoon

    2016-01-01

    Severe sepsis and septic shock are life-threatening conditions, with Gram-negative organisms responsible for most sepsis mortality. Systemic administration of compounds that block the action of lipopolysaccharide (LPS), a constituent of the Gram-negative outer cell membrane, is hampered by their hydrophobicity and cationic charge, the very properties responsible for their interactions with LPS. We hypothesize that a chitosan derivative zwitterionic chitosan (ZWC), previously shown to suppress the production of pro-inflammatory cellular mediators in LPS-challenged macrophages, will have protective effects in an animal model of sepsis induced by systemic injection of LPS. In this study, we evaluate whether ZWC attenuates the fatal effect of LPS in C57BL/6 mice and investigate the mechanism by which ZWC counteracts the LPS effect using a PMJ2-PC peritoneal macrophage cell line. Unlike its parent compound with low water solubility, intraperitoneally administered ZWC is readily absorbed with no local residue or adverse tissue reaction at the injection site. Whether administered at or prior to the LPS challenge, ZWC more than doubles the animals’ median survival time. ZWC appears to protect the LPS-challenged organisms by forming a complex with LPS and thus attenuating pro-inflammatory signaling pathways. These findings suggest that ZWC have utility as a systemic anti-LPS agent. PMID:27412050

  7. Impedance spectroscopy study of dehydrated chitosan and chitosan containing LiClO4

    International Nuclear Information System (INIS)

    Cast films of chitosan and chitosan containing LiClO4 were characterized using Fourier transform infrared spectroscopy and the thermogravimetric technique. The electric properties of hydrated and dehydrated films were investigated with impedance spectroscopy in the frequency range from 0.1 Hz to 1 MHz, at temperatures varying from 30 to 110 oC. The frequency dependence of the impedance for dehydrated chitosan and chitosan containing LiClO4 films indicated ionic conduction. Two relaxation peaks were evident on the imaginary curve of the electric modulus, which were assigned to ionic conduction. The peak at higher frequency was found for chitosan and chitosan containing LiClO4 films. The peak at lower frequency was attributed to Li+ conduction since it appeared only for the chitosan containing LiClO4. The peak frequency varied with the temperature according to an Arrhenius process with activation energies of circa of 0.6 and 0.45 eV, for H+ and Li+ conduction, respectively.

  8. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.

    Science.gov (United States)

    Rudzinski, Walter E; Palacios, Adriana; Ahmed, Abuzar; Lane, Michelle A; Aminabhavi, Tejraj M

    2016-08-20

    Small interfering RNA (siRNA) molecules specifically target messenger RNA species, decreasing intracellular protein levels. β-Catenin protein concentrations are increased in 70-80% of colon tumors, promoting tumor progression. Chitosan exhibits low levels of toxicity and can be transported across mucosal membranes; therefore, our objective was to develop chitosan and poly(ethylene glycol)-grafted (PEGylated) chitosan nanoparticles, 100-150nm in diameter, encapsulating anti-β-catenin siRNA for transfection into colon cancer cells. Encapsulation efficiencies up to 97% were observed. Confocal microscopy visualized the entry of fluorescently-tagged siRNA into cells. Western blot analysis showed that both chitosan and PEGylated chitosan nanoparticles containing anti-β-catenin siRNA decreased β-catenin protein levels in cultured colon cancer cells. These results indicate that nanoparticles made with chitosan and PEGylated chitosan can successfully enter colon cancer cells and decrease the level of a protein that promotes tumor progression. These or similar nanoparticles may prove beneficial for the treatment of colon cancer in humans. PMID:27178938

  9. Synthesis of oxidized glycerol monooleate-chitosan polymer and its hydrogel formation for sustained release of trimetazidine hydrochloride.

    Science.gov (United States)

    Zhang, Jianjun; Fu, Meng; Zhang, Minyan; Xu, Liang; Gao, Yuan

    2014-04-25

    In this paper, a lipid material glycerol monooleate was used as the starting material to synthesize the oxidized glycerol monooleate (OGMO). OGMO was subsequently linked to chitosan (CS) via imine bonds (-C=N-) to obtain a new chitosan-based polymer (OGMO-CS), which can form hydrogels rapidly in aqueous media. Scanning electron microscopy, swelling behavior studies and degradation kinetics studies were performed to demonstrate the effect of this synthetic modification on the hydrogels formation of chitosan network and in vitro drug release. The effects of OGMO-CS type, dry hydrogels percentage, release media and drug loading on the sustained release of the model drug trimetazidine hydrochloride were evaluated. The release profiles of the hydrogels could be described by the Peppas-Sahlin mechanism, a combination of Fickian diffusion and Case-II relaxation. Based on the fact that numerous pharmaceutical lipids are available, the present study may pave the way for other lipids to be employed as modifiers of chitosan for more innovative chitosan derivatives with versatile properties and pharmaceutical applications. PMID:24508554

  10. Influence of canopy-applied chitosan on the composition of organic cv. Sangiovese and Cabernet Sauvignon berries and wines.

    Science.gov (United States)

    Tessarin, Paola; Chinnici, Fabio; Donnini, Silvia; Liquori, Enrico; Riponi, Claudio; Rombolà, Adamo Domenico

    2016-11-01

    The effects of canopy-applied chitosan on grapes and derived wine were evaluated in an organically managed mature vineyard. The experiment was performed on Sangiovese and Cabernet Sauvignon red grape cultivars, the application of a chitosan solution was compared to water spraying. Each treatment was applied 3 times (beginning and end of veraison, and pre-harvest) in a randomized block experimental design. Significant differences in (+)-catechin, (-)-epicatechin and procyanidin B2 amounts in berries and wines were detected in Cabernet Sauvignon but not in Sangiovese. Chitosan did not influence the berry skin anthocyanin and flavonol amount or t-resveratrol concentration in both skins and wines. A considerable increase in γ-aminobutyric acid (GABA), together with some other amino acids, ammonium and amines was observed in the berry flesh of cv. Cabernet Sauvignon. The increase in phenolic acids and nitrogenous compounds, especially GABA, in the pulp of Cabernet Sauvignon grapes suggests changes in stress response. PMID:27211677

  11. Preparation of a novel chitosan-microcapsules/starch blend film and the study of its drug-release mechanism.

    Science.gov (United States)

    Huo, Weiqiang; Xie, Gancheng; Zhang, Weixin; Wang, Wei; Shan, Junyang; Liu, Hechou; Zhou, Xiaohua

    2016-06-01

    A novel drug delivery system, chitosan-microcapsules/starch blend film for antofloxacin controlled release, was prepared, and characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (X-RD), thermogravimetry and derivative thermogravimetry (TG/DTG), and scanning electron microscopy (SEM). Following incorporation of the chitosan-microcapsules in the film matrix, the synergistic interactions between these drug-carriers were significant. The thermostability and mechanical properties of the blend film were greatly improved by the incorporation of the microcapsules. The water resistance of the blend film was enhanced by increasing the content of microcapsules, indicating that the microcapsules acted as moisture barriers. After being incorporated, chitosan-microcapsules/starch blend film shows a sustained drug release. The extent of the film degradation and microcapsules swelling in the release system indicated that the drug released of the blend film was pH-sensitive. The blend film exhibited pharmacodynamic efficacy because of the efficient drug releasing. PMID:26902892

  12. 3,6-O-[N-(2-Aminoethyl)-acetamide-yl]-chitosan exerts antibacterial activity by a membrane damage mechanism.

    Science.gov (United States)

    Yan, Feilong; Dang, Qifeng; Liu, Chengsheng; Yan, Jingquan; Wang, Teng; Fan, Bing; Cha, Dongsu; Li, Xiaoli; Liang, Shengnan; Zhang, Zhenzhen

    2016-09-20

    A novel chitosan derivative, 3,6-O-[N-(2-aminoethyl)-acetamide-yl]-chitosan (AACS), was successfully prepared to improve water solubility and antibacterial activity of chitosan. AACS had good antibacterial activity, with minimum inhibitory concentrations of 0.25mg/mL, against Escherichia coli and Staphylococcus aureus. Cell membrane integrity, electric conductivity and NPN uptake tests showed that AACS caused quickly increasing the release of intracellular nucleic acids, the uptake of NPN, and the electric conductivity by damaging membrane integrity. On the other hand, hydrophobicity, cell viability and SDS-PAGE experiments indicated that AACS was able to reduce the surface hydrophobicity, the cell viability and the intracellular proteins through increasing membrane permeability. SEM observation further confirmed that AACS could kill bacteria via disrupting their membranes. All results above verified that AACS mainly exerted antibacterial activity by a membrane damage mechanism, and it was expected to be a new food preservative. PMID:27261735

  13. Preparation of ultrafine chitosan particles by reverse microemulsion

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ultrafine chitosan particles were prepared by reverse microemulsion consisting of water, Triton X-100, octanol and cyclohexane. Two methods of preparing ultrafine chitosan particles were adopted and compared using TEM and IR, and possible mechanisms for the formation of ultrafine chitosan particles were proposed. Experimental results show that the method which combined ionic gelation and cross-linking gave uniformly sized chitosan nanoparticles with an average diameter of 92 nm, while the cross-linking without ionic gelation produced spindly chitosan particles with an average length of 943 nm and width of 188 nm.

  14. Removal of Petroleum Spill in Water by Chitin and Chitosan

    OpenAIRE

    Francisco Cláudio de Freitas Barros; Luiz Constantino Grombone Vasconcellos; Técia Vieira Carvalho; Ronaldo Ferreira do Nascimento

    2014-01-01

    The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent), the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oi...

  15. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    OpenAIRE

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-01-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, ...

  16. Electrical Signal Guided Ibuprofen Release from Electrodeposited Chitosan Hydrogel

    Directory of Open Access Journals (Sweden)

    Youyu Liu

    2014-01-01

    Full Text Available Electrical signal guided drug release from conductive surface provides a simple and straightforward way for advanced drug delivery. In this study, we investigated the ibuprofen release from electrodeposited chitosan hydrogel by applying electrical signals. Specifically, chitosan hydrogel was electrodeposited on titanium plate and used as a matrix for ibuprofen load and release. The release of ibuprofen from the chitosan hydrogel on titanium plate was pH sensitive. By applying a positive or negative electrical potential, the release rate of ibuprofen from the electrodeposited chitosan can be facilely controlled. Thus, coupling chitosan electrodeposition and electrical signal control spurs new possibilities for biopolymeric coating and drug elution on conductive implants.

  17. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Marc in het Panhuis

    2011-04-01

    Full Text Available The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that the electrical response upon exposure to humid atmosphere is influenced by clay-chitosan interactions, i.e., the resistance of clay–CNT materials decreases, whereas that of clay–CNT–chitosan increases.

  18. In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles

    OpenAIRE

    Nogueira, Daniele R.; Tavano, Lorena; Mitjans Arnal, Montserrat; Pérez Muñoz, Lourdes; Infante Martínez-Pardo, Ma. Rosa; Vinardell Martínez-Hidalgo, Ma. Pilar

    2013-01-01

    Nanoparticles with pH-sensitive behavior may enhance the success of chemotherapy in many cancers by efficient intracellular drug delivery. Here, we investigated the effect of a bioactive surfactant with pH-sensitive properties on the antitumor activity and intracellular behavior of methotrexate-loaded chitosan nanoparticles (MTX-CS-NPs). NPs were prepared using a modified ionotropic complexation process, in which was included the surfactant derived from Nα,Nε-dioctanoyl lysine with an inorgan...

  19. In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering

    OpenAIRE

    Wrobel, Sandra; Serra, Sofia Cristina; Samy, S. M.; Sousa, Nuno; Heimann, Claudia; Barwig, Christina; Grothe, Claudia; Salgado, A. J.; Talini, Kirsten Haastert

    2014-01-01

    Natural biomaterials have attracted an increasing interest in the field of tissue-engineered nerve grafts, representing a possible alternative to autologous nerve transplantation. With the prospect of developing a novel entubulation strategy for transected nerves with cell-seeded chitosan films, we examined the biocompatibility of such films in vitro. Different types of rat Schwann cells (SCs)—immortalized, neonatal, and adult—as well as rat bone-marrow-derived mesenchymal stromal cells (BMSC...

  20. Development of Dorzolamide Loaded 6-O-Carboxymethyl Chitosan Nanoparticles for Open Angle Glaucoma

    OpenAIRE

    Ujwala Shinde; Mohammed Hadi Ahmed; Kavita Singh

    2013-01-01

    Chitosan (CS) is a biodegradable, biocompatible, and mucoadhesive natural polymer soluble in acidic pH only and can be irritating to the eye. Objective of the study was to synthesize water soluble 6-O-carboxymethyl (OCM-CS) derivative of CS, and to develop CS and OCM-CS nanoparticles (NPs) loaded with dorzolamide hydrochloride (DRZ). CS was reacted with monochloroacetic acid (MCA) ...

  1. Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources

    OpenAIRE

    Francisco Pires Avelelas; Luís F.V. Pinto; Cátia Velez

    2014-01-01

    The four plants pathogens, Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum are responsible for several diseases affecting different plant species in Portugal, such as pines (H. annosum), chestnuts (P. cinnamomi and C. parasitica) and eucalyptus (B. cinerea). These pathogens incurs in large economic losses, and ultimately causes the death of these plants. The use of biopolymers as antimicrobial agents, such as chitosan (derived from chitin), is...

  2. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    OpenAIRE

    Oliveira MI; SG Santos; MJ Oliveira; AL Torres; MA Barbosa

    2012-01-01

    Macrophages and dendritic cells (DC) share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch), with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display p...

  3. TRANSPORT MECHANISM STUDIES OF CHITOSAN ELECTROLYTE SYSTEMS

    International Nuclear Information System (INIS)

    ABSTRACT: Knowledge of ion-conduction mechanisms in polymers is important for designing better polymer electrolytes for electrochemical devices. In this work, chitosan-ethylene carbonate/propylene carbonate (chitosan-EC/PC) system with lithium acetate (LiCH3COO) and lithium triflate (LiCF3SO3) as salts were prepared and characterized using electrochemical impedance spectroscopy to study the ion-conduction mechanism. It was found that the electrolyte system using LiCF3SO3 salt had a higher ionic conductivity, greater dielectric constant and dielectric loss value compared to system using LiCH3COO at room temperature. Hence, it may be inferred that the system incorporated with LiCF3SO3 dissociated more readily than LiCH3COO. Conductivity mechanism for the systems, 42 wt.% chitosan- 28 wt.% LiCF3SO3-30 wt.% EC/PC (CLT) and 42 wt.% chitosan-28 wt.% LiCH3COO-30 wt.% EC/PC (CLA) follows the overlapping large polaron tunneling (OLPT) model. Results show that the nature of anion size influences the ionic conduction of chitosan based polymer electrolytes. The conductivity values of the CLA system are found to be higher than that of CLT system at higher temperatures. This may be due to the vibration of bigger triflate anions would have hindered the lithium ion movements. FTIR results show that lithium ions can form complexation with polymer host which would provide a platform for ion hopping

  4. Flocculation efficiency of chitosan for papermaking applications

    Directory of Open Access Journals (Sweden)

    Raluca Nicu

    2013-02-01

    Full Text Available There is a large interest in bio-polymers as environment-friendly alternatives to synthetic additives in papermaking. In this work, the behavior of three chitosans with different molecular weights and cationic charges were investigated as flocculation additives in papermaking on two systems: calcium carbonate (GCC and pulp/GCC suspension. Comparison was made with two traditional cationic polymers used in wet end chemistry (poly-diallyldimethyl-ammonium chloride (PDADMAC and poly-ethylene imine (PEI. Flocculation efficiency was evaluated by flocculation parameters (mean floc size and number of counts and by floc behavior under shear conditions, using a focused beam reflectance measurement (FBRM technique. Results indicated different behaviors between the three chitosans when they were used for the flocculation of GCC and pulp/GCC suspensions. Chitosans were found to be more efficient over PDADMAC and PEI for flocculating small particles of the GCC suspension, but less efficient for increasing floc sizes, regardless of their MW or CCD. Flocculation parameters for pulp/GCC suspensions suggested the flocculation behavior of chitosan was close to that of PEI, but chitosan had higher efficiency and affinity towards cellulose fibers.

  5. Adsorption of Cadmium By Silica Chitosan

    Directory of Open Access Journals (Sweden)

    Moftah Ali

    2013-03-01

    Full Text Available The adsorption process depends on initial concentration of Cd2+ and ratio of  chitosan in adsorbent. The present study deals with the competitive adsorption of Cd2+ ion onto silica graft with chitosan. Batch adsorption experiments were performed at five different initial Cd2+ concentrations (5, 10, 15, 20 and 25 ppm, on five different proportion from silica to chitosan (100%, 95%, 85%, 75% and 65% as adsorbent at pH 5. In the recovery process, the high recovery at 0.5 mg and observed the recovery decrease with increasing the initial concentration of Cd2+, and the low recovery at 0.25 mg from Cd2+. In this study, the adsorption capacity of Cd2+ in regard to the ratio of silica and chitosan hybrid adsorbents are examined in detail. The aim of this study to explore effects of initial concentrations of Cd2+, and the ratio of silica to chitosan on the adsorption and recovery of Cd2+.

  6. ADSORPTION OF Mg(II) ION FROM AQUEOUS SOLUTION ON CHITOSAN BEADS AND CHITOSAN POWDER

    OpenAIRE

    Sari Edi Cahyaningrum

    2010-01-01

    A basic investigation on the removal of Mg(II) ion from aqueous solution by chitosan beads wasconducted in a batch adsorption system. The influence of different experimental parameters; pH,agitation period and different concentration of Mg(II) ion was evaluated. A pH 7.0 was found to be anoptimum pH for Mg(II) adsorption onto chitosan powder and chitosan beads. The Langmuir andFreundlich adsorption isotherm models were applied to describe the isotherms and isotherm constantsfor the adsorption...

  7. Chitosan in Mucoadhesive Drug Delivery: Focus on Local Vaginal Therapy

    Directory of Open Access Journals (Sweden)

    Toril Andersen

    2015-01-01

    Full Text Available Mucoadhesive drug therapy destined for localized drug treatment is gaining increasing importance in today’s drug development. Chitosan, due to its known biodegradability, bioadhesiveness and excellent safety profile offers means to improve mucosal drug therapy. We have used chitosan as mucoadhesive polymer to develop liposomes able to ensure prolonged residence time at vaginal site. Two types of mucoadhesive liposomes, namely the chitosan-coated liposomes and chitosan-containing liposomes, where chitosan is both embedded and surface-available, were made of soy phosphatidylcholine with entrapped fluorescence markers of two molecular weights, FITC-dextran 4000 and 20,000, respectively. Both liposomal types were characterized for their size distribution, zeta potential, entrapment efficiency and the in vitro release profile, and compared to plain liposomes. The proof of chitosan being both surface-available as well as embedded into the liposomes in the chitosan-containing liposomes was found. The capability of the surface-available chitosan to interact with the model porcine mucin was confirmed for both chitosan-containing and chitosan-coated liposomes implying potential mucoadhesive behavior. Chitosan-containing liposomes were shown to be superior in respect to the simplicity of preparation, FITC-dextran load, mucoadhesiveness and in vitro release and are expected to ensure prolonged residence time on the vaginal mucosa providing localized sustained release of entrapped model substances.

  8. ALTERED ENZYMATIC ACTIVITY OF LYSOZYMES BOUND TO VARIOUSLY SULFATED CHITOSANS

    Institute of Scientific and Technical Information of China (English)

    Hong-wei Wang; Lin Yuan; Tie-liang Zhao; He Huang; Hong Chen; Di Wu

    2012-01-01

    The purpose of this research is to investigate the effects of the variously sulfated chitosans on lysozyme activity and structure.It was shown that the specific enzymatic activity of lysozyme remained almost similar to the native protein after being bound to 6-O-sulfated chitosan (6S-chitosan) and 3,6-O-sulfated chitosan (3,6S-chitosan),but decreased greatly after being bound to 2-N-6-O-sulfated chitosan (2,6S-chitosan).Meanwhile,among these sulfated chitosans,2,6S-chitosan induced the greatest conformational change in lysozyme as indicated by the fluorescence spectra.These findings demonstrated that when sulfated chitosans of different structures bind to lysozyme,lysozyme undergoes conformational change of different magnitudes,which results in corresponding levels of lysozyme activity.Further study on the interaction of sulfated chitosans with lysozyme by surface plasmon resonance (SPR) suggested that their affinities might be determined by their molecular structures.

  9. Determination of the optimum conditions for production of chitosan nanoparticles

    International Nuclear Information System (INIS)

    Biodegradable nanoparticles are intensively investigated for their potential applications in drug delivery systems. Being a biocompatible and biodegradable polymer, chitosan holds great promise for use in this area. This investigation was concerned with determination and optimization of the effective parameters involved in the production of chitosan nanoparticles using ionic gelation method. Studied variables were concentration and p H of the chitosan solution, the ratio of chitosan to sodium tripolyphosphate therein and the molecular weight of chitosan. For this purpose, Taguchi statistical method was used for design of experiments in three levels. The size of chitosan nanoparticle was determined using laser light scattering. The experimental results showed that concentration of chitosan solution was the most important parameter and chitosan molecular weight the least effective parameter. The optimum conditions for preparation of nanoparticles were found to be 1 mg/ml chitosan solution with p H=5, chitosan to sodium tripolyphosphate ratio of 3 and chitosan molecular weight of 200,000 daltons. The average nanoparticle size at optimum conditions was found to be about 150 nm

  10. Degradation of chitosan-based materials after different sterilization treatments

    International Nuclear Information System (INIS)

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  11. Degradation of chitosan-based materials after different sterilization treatments

    Science.gov (United States)

    San Juan, A.; Montembault, A.; Gillet, D.; Say, J. P.; Rouif, S.; Bouet, T.; Royaud, I.; David, L.

    2012-02-01

    Biopolymers have received in recent years an increasing interest for their potential applications in the field of biomedical engineering. Among the natural polymers that have been experimented, chitosan is probably the most promising in view of its exceptional biological properties. Several techniques may be employed to sterilize chitosan-based materials. The aim of our study was to compare the effect of common sterilization treatments on the degradation of chitosan-based materials in various physical states: solutions, hydrogels and solid flakes. Four sterilization methods were compared: gamma irradiation, beta irradiation, exposure to ethylene oxide and saturated water steam sterilization (autoclaving). Exposure to gamma or beta irradiation was shown to induce an important degradation of chitosan, regardless of its physical state. The chemical structure of chitosan flakes was preserved after ethylene oxide sterilization, but this technique has a limited use for materials in the dry state. Saturated water steam sterilization of chitosan solutions led to an important depolymerization. Nevertheless, steam sterilization of chitosan flakes bagged or dispersed in water was found to preserve better the molecular weight of the polymer. Hence, the sterilization of chitosan flakes dispersed in water would represent an alternative step for the preparation of sterilized chitosan solutions. Alternatively, autoclaving chitosan physical hydrogels did not significantly modify the macromolecular structure of the polymer. Thus, this method is one of the most convenient procedures for the sterilization of physical chitosan hydrogels after their preparation.

  12. Suppression of Zn stress on barley by irradiated chitosan

    International Nuclear Information System (INIS)

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 105 to ca. 6 x 103 by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of 62Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  13. Suppression of Zn stress on barley by irradiated chitosan

    Energy Technology Data Exchange (ETDEWEB)

    Nagasawa, N.; Mitomo, H. [Gunma Univ., Faculty of Engineering, Department of Biological and Chemical Engineering, Kiryu, Gunma (Japan); Ha, P.T.L. [Nuclear Research Institute, Dalat (Viet Nam); Watanabe, S.; Ito, T.; Takeshita, H.; Yoshii, F.; Kume, T. [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Chitosan was irradiated up to 1000 kGy in solid state. Irradiation of chitosan caused the reduction of molecular weight. The molecular weight of the chitosan reduced from ca. 4 x 10{sup 5} to ca. 6 x 10{sup 3} by irradiation at 1000 kGy. For the barley growth promotion, irradiated chitosan showed the significant effect and 1000 kGy irradiated chitosan improved 20% of growth. Using the positron emitting tracer imaging system (PETIS), the effect of chitosan on uptake and transportation of {sup 62}Zn in barley were investigated. It was found that the transportation of Zn from root to shoot and the damage of plant by Zn were suppressed with irradiated chitosan. (author)

  14. Chitosan nanoparticles conjugate with trypsin and trypsin inhibitor.

    Science.gov (United States)

    Chanphai, P; Tajmir-Riahi, H A

    2016-06-25

    Chitosan-protein conjugates are widely used in therapeutic drug delivery. We report the bindings of chitosan nanoparticles with trypsin (try) and trypsin inhibitor (tryi), using thermodynamic analysis and multiple spectroscopic methods. Thermodynamic parameters ΔS, ΔH and ΔG showed chitosan-protein bindings occur mainly via H-bonding and van der Waals contacts with trypsin inhibitor forming more stable conjugate than trypsin. As chitosan size increased more stable polymer-protein conjugate was formed. Chitosan complexation induces more perturbations of trypsin inhibitor structure than trypsin with reduction of protein alpha-helix and major increase of random structure. The negative value of ΔG indicates spontaneous protein-chitosan complexation at room temperature. Chitosan nanoparticles can be used to transport trypsin and trypsin inhibitor. PMID:27083826

  15. Interaction between cholesterol and chitosan in Langmuir monolayers

    Directory of Open Access Journals (Sweden)

    Felippe J. Pavinatto

    2005-06-01

    Full Text Available Chitosan incorporated in the aqueous subphase is found to affect the Langmuir monolayers of cholesterol, causing the surface pressure and the surface potential isotherms to become more expanded. The mean molecular area per cholesterol molecule in the condensed monolayer increases from 53 Ų in the absence of chitosan to 61 Ų for a concentration of 0.100 mg/mL of chitosan in the subphase. If additional chitosan is incorporated in the subphase, no change is noted, which points to saturation in the effects from chitosan. The interaction between chitosan and cholesterol probably occurs via hydrogen bonding. The monolayer expansion is also manifested in the monolayer morphology, as indicated by Brewster angle microscopy measurements, where larger cholesterol domains are visualized when chitosan is present in the subphase.

  16. Growth rate inhibition of phytopathogenic fungi by characterized chitosans

    Directory of Open Access Journals (Sweden)

    Enio N. Oliveira Junior

    2012-06-01

    Full Text Available The inhibitory effects of fifteen chitosans with different degrees of polymerization (DP and different degrees of acetylation (F A on the growth rates (GR of four phytopathogenic fungi (Alternaria alternata, Botrytis cinerea, Penicillium expansum, and Rhizopus stolonifer were examined using a 96-well microtiter plate and a microplate reader. The minimum inhibitory concentrations (MICs of the chitosans ranged from 100 µg × mL-1 to 1,000 µg × mL-1 depending on the fungus tested and the DP and F A of the chitosan. The antifungal activity of the chitosans increased with decreasing F A. Chitosans with low F A and high DP showed the highest inhibitory activity against all four fungi. P. expansum and B. cinerea were relatively less susceptible while A. alternata and R. stolonifer were relatively more sensitive to the chitosan polymers. Scanning electron microscopy of fungi grown on culture media amended with chitosan revealed morphological changes.

  17. 壳聚糖季铵盐研究进展%Research progress on chitosan quaternary ammonium salt

    Institute of Scientific and Technical Information of China (English)

    李荣春

    2011-01-01

    壳聚糖是应用广泛的天然多糖,资源丰富,壳聚糖化学改性后得到的衍生物改善了壳聚糖的功能,并保留了壳聚糖本身的可生物降解性、生物相容性等优点.其中壳聚糖的季铵盐改性明显提高了其抑菌、抗氧化等活性,并增强了壳聚糖的水溶性,近年来研究较多,介绍了壳聚糖季铵盐的化学改性及应用研究进展,这些化学改性方式均在一定程度上提高了壳聚糖的活性,为壳聚糖的应用奠定了坚实的理论基础.%Chitosan is a natural polysaccharide which is widely used and rich in resource. After chemically modified, the derivatives improved the function of chitosan and retained their biodegradability,biocompatibility,etc. The chitosan quaternary ammonium salt derivatives improved the antifungal, antioxidant activity and the water-soluble properties. There are many researches on these fields in recent years. This paper reviewed the progress of the methods and applications of chitosan quaternary ammonium salt. These methods were all improved the properties of chitosan and the results are theoretically fundamental for further develop and make use of chitosan resources.

  18. Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.

    Science.gov (United States)

    Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng

    2013-10-01

    With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. PMID:23732332

  19. Chromium (VI) ion adsorption features of chitosan film and its chitosan/zeolite conjugate 13X film

    OpenAIRE

    Maria Teresa Tavares; Galba M. de Campos-Takaki; Villanueva, Emílio R.; Rosa Valéria S. Amorim; Anabelle C. L. Batista

    2011-01-01

    This research evaluated the importance of the adsorption properties of chitosan a chitosan/zeolite conjugate film for the removal of Cr(VI) ions from solutions in the 5–260 mg/L concentration range, when the pH was adjusted to 4.0 and 6.0. The uptake capacities of the films formed by chitosan and by the chitosan/zeolite conjugate were calculated by mass balance. The equilibrium isotherms were fitted to the Langmuir, Freundlich and Redlich-Peterson models. The chitosan film seems to be a good ...

  20. Thiolated chitosan nanoparticles enhance anti-inflammatory effects of intranasally delivered theophylline

    Directory of Open Access Journals (Sweden)

    Mohapatra Shyam S

    2006-08-01

    Full Text Available Abstract Background Chitosan, a polymer derived from chitin, has been used for nasal drug delivery because of its biocompatibility, biodegradability and bioadhesiveness. Theophylline is a drug that reduces the inflammatory effects of allergic asthma but is difficult to administer at an appropriate dosage without causing adverse side effects. It was hypothesized that adsorption of theophylline to chitosan nanoparticles modified by the addition of thiol groups would improve theophylline absorption by the bronchial epithelium and enhance its anti-inflammatory effects. Objectives We sought to develop an improved drug-delivery matrix for theophylline based on thiolated chitosan, and to investigate whether thiolated chitosan nanoparticles (TCNs can enhance theophylline's capacity to alleviate allergic asthma. Methods A mouse model of allergic asthma was used to test the effects of theophylline in vivo. BALB/c mice were sensitized to ovalbumin (OVA and OVA-challenged to produce an inflammatory allergic condition. They were then treated intranasally with theophylline alone, chitosan nanoparticles alone or theophylline adsorbed to TCNs. The effects of theophylline on cellular infiltration in bronchoalveolar lavage (BAL fluid, histopathology of lung sections, and apoptosis of lung cells were investigated to determine the effectiveness of TCNs as a drug-delivery vehicle for theophylline. Results Theophylline alone exerts a moderate anti-inflammatory effect, as evidenced by the decrease in eosinophils in BAL fluid, the reduction of bronchial damage, inhibition of mucus hypersecretion and increased apoptosis of lung cells. The effects of theophylline were significantly enhanced when the drug was delivered by TCNs. Conclusion Intranasal delivery of theophylline complexed with TCNs augmented the anti-inflammatory effects of the drug compared to theophylline administered alone in a mouse model of allergic asthma. The beneficial effects of theophylline in

  1. Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships

    Science.gov (United States)

    Avérous, Luc; Pollet, Eric

    2016-03-01

    In the last years, biopolymers have attracted great attention. It is for instance the case of chitosan, a linear polysaccharide. It is a deacetylated derivative of chitin, which is the second most abundant polysaccharide found in nature after cellulose. Chitosan has been found to be nontoxic, biodegradable, biofunctional, and biocompatible in addition to having antimicrobial and antifungal properties, and thus has a great potential for environmental (packaging,) or biomedical applications.For preparing chitosan-based materials, only solution casting or similar methods have been used in all the past studies. Solution casting have the disadvantage in low efficiency and difficulty in scaling-up towards industrial applications. Besides, a great amount of environmentally unfriendly chemical solvents are used and released to the environment in this method. The reason for not using a melt processing method like extrusion or kneading in the past studies is that chitosan, like many other polysaccharides such as starch, has very low thermal stability and degrade prior to melting. Therefore, even if the melt processing method is more convenient and highly preferred for industrial production, its adaptation for polysaccharide-based materials remains very difficult. However, our recently published studies has demonstrated the successful use of an innovative melt processing method (internal mixer, extrusion,) as an alternative route to solution casting, for preparing materials based on thermoplastic chitosan. These promising thermoplastic materials, obtained by melt processing, have been the main topic of recent international projects, with partners from different countries Multiphase systems based on various renewable plasticizers have been elaborated and studied. Besides, different blends, and nano-biocomposites based on nanoclays, have been elaborated and fully analyzed. The initial consortium of this vast project was based on an international consortium (Canada, Australia

  2. ZnO Nanoparticles-Chitosan Composite as Antibacterial Finish for Textiles

    Directory of Open Access Journals (Sweden)

    Asmaa Farouk

    2012-01-01

    Full Text Available The antibacterial performance of sol-gel-derived inorganic-organic hybrid polymers filled with ZnO nanoparticles-chitosan against a gram-negative bacterium Escherichia coli and a gram-positive Micrococcus luteus has been investigated. Three different molecular weights (MW of chitosan (CTS 1.36 · 105, 2.2 · 105, and 3.0 · 105 Da with equal degree of deacetylation (DD, 85% (coded as S 85-60, He 85-250, and He 85-500 with equal degree of deacetylation (DD, 85% were examined. ZnO was prepared by the base hydrolysis of zinc acetate in isopropanol using lithium hydroxide (LiOH · H2O to hydrolyze the precursor. Sol-gel-based inorganic-organic hybrid polymers were modified with these oxides and were applied to cellulosic cotton (100% and cotton/polyester (65/35% fabrics. Inorganic-organic hybrids polymers were based on 3-glycidyloxypropyltrimethoxysilane (GPTMS. Bacteriological tests were performed in nutrient agar media on solid agar plates and in liquid broth systems using ZnO nanoparticles with average particle size of (40 nm. Our study showed the enhanced antibacterial activity of ZnO nanoparticles chitosan (different MW of against a gram-negative bacterium Escherichia coli DSMZ 498 and a gram-positive Micrococcus luteus ATCC 9341 in repeated experiments. The antibacterial activity of textile treated with ZnO nanoparticles chitosan increases with decreasing the molecular weight of chitosan.

  3. Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer.

    Science.gov (United States)

    Ferreira, D P; Conceição, D S; Calhelha, R C; Sousa, T; Socoteanu, Radu; Ferreira, I C F R; Vieira Ferreira, L F

    2016-10-20

    Porphyrins and some of its derivatives are well known and widely used as photosensitizers (PSs) for Photodynamic Therapy of Cancer (PDT). The present study regards the characterization and evaluation of a synthesized asymmetric porphyrin dye in solution to be used as PS for PDT. This molecule was also incorporated into biopolymeric films composed by chitosan, polyethylene glycol (PEG) and gelatin in order to overtake some of the disadvantages inherent to the PS, but more important, to evaluate the potential of a system composed by the porphyrin/biopolymer to be applied as localized therapeutic agents. FTIR spectroscopy showed a strong interaction between the polymers involved in the preparation of the films under study: film 1: chitosan, film 2: chitosan/PEG and film 3: chitosan/gelatin. Photochemical studies were performed for the dye in solution and into the three different biopolymeric films. Ground state absorption showed the characteristic bands of these kinds of dyes in solution and also incorporated into the films. The films composed by porphyrin/chitosan and porphyrin into chitosan/gelatin, revealed the presence of non-emissive aggregates exhibiting a strong quenching effect in the fluorescence intensity, quantum yields and lifetimes. In this way, the system composed by the porphyrin incorporated into the chitosan/PEG film presents the best fluorescence quantum yield and lifetime. The transient absorption spectra were obtained for all the systems indicating the formation of an excited triplet state of the porphyrins following excitation, which takes special importance in the generation of phototoxic species namely singlet oxygen. Singlet oxygen quantum yields were also determined and the results obtained were very promising for the dye in solution but also for the dye into the different substrates. The release of the dye from the three different films onto a buffer solution was evaluated and we conclude that after a few days the dye was completely released

  4. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    Science.gov (United States)

    Martin, Holly J.; Schulz, Kirk H.; Bumgardner, Joel D.; Walters, Keisha B.

    2008-05-01

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  5. An XPS study on the attachment of triethoxsilylbutyraldehyde to two titanium surfaces as a way to bond chitosan

    International Nuclear Information System (INIS)

    A bioactive coating has the ability to create a strong interface between bone tissue and implant. Chitosan, a biopolymer derived from the exoskeletons of shellfish, exhibits many bioactive properties that make it an ideal material for use as a coating such as antibacterial, biodegradable, non-toxic, and the ability to attract and promote bone cell growth and organized bone formation. A previous study reported on the bonding of chitosan to a titanium surface using a three-step process. In the current study, 86.4% de-acetylated chitosan coatings were bound to implant quality titanium in a two-step process that involved the deposition of triethoxsilylbutyraldehyde (TESBA) in toluene, followed by a reaction between the aldehyde of TESBA with chitosan. The chitosan coatings were examined on two different metal treatments to determine if any major differences in the ability of titanium to bind chitosan could be detected. The surface of the titanium metal and the individual reaction steps were examined using X-ray photoelectron spectroscopy (XPS). Following the deposition of TESBA, significant changes were seen in the amounts of oxygen, silicon, carbon, and titanium present on the titanium surface, which were consistent with the anticipated reaction steps. It was demonstrated that more TESBA was bound to the piranha-treated titanium surface as compared to the passivated titanium surface. The two different silane molecules, aminopropyltriethoxysilane (APTES) and TESBA, did not affect the chemistry of the resultant chitosan films. XPS showed that both the formation of unwanted polysiloxanes and the removal of the reactive terminal groups were prevented by using toluene as the carrier solvent to bond TESBA to the titanium surfaces, instead of an aqueous solvent. Qualitatively, the chitosan films demonstrated improved adhesion after using toluene, as the films remained attached to the titanium surface even when placed under the ultra-high vacuum necessary for XPS, unlike the

  6. Herstellung von Chitosan und einige Anwendungen

    Science.gov (United States)

    Struszczyk, Marcin Henryk

    2001-05-01

    1. Die Deacetylierung von crabshell - Chitosan führte gleichzeitig zu einem drastischen Abfall der mittleren viscosimetrischen Molmasse ( Mv), insbesondere wenn die Temperatur und die Konzentration an NaOH erhöht werden. Diese Parameter beeinflussten jedoch nicht den Grad der Deacetylierung (DD). Wichtig ist jedoch die Quelle des Ausgangsmaterials: Chitin aus Pandalus borealis ist ein guter Rohstoff für die Herstellung von Chitosan mit niedrigem DD und gleichzeitig hoher mittlerer Mv, während Krill-Chitin (Euphausia superba) ein gutes Ausgangsmaterial zur Herstellung von Chitosan mit hohem DD und niedrigem Mv ist. Chitosan, das aus Insekten (Calliphora erythrocephala), unter milden Bedingungen (Temperatur: 100°C, NaOH-Konzentration: 40 %, Zeit: 1-2h ) hergestellt wurde, hatte die gleichen Eigenschaften hinsichtlich DD und Mv wie das aus Krill hergestellte Chitosan. Der Bedarf an Zeit, Energie und NaOH ist für die Herstellung von Insekten-Chitosan geringer als für crabshell-Chitosan vergleichbare Resultaten für DD und Mv. 2. Chitosan wurde durch den Schimmelpilz Aspergillus fumigatus zu Chitooligomeren fermentiert. Die Ausbeute beträgt 25%. Die Chitooligomere wurden mit Hilfe von HPLC und MALDI-TOF-Massenspektrmetrie identifiziert. Die Fermentationsmischung fördert die Immunität von Pflanzen gegen Bakterien und Virusinfektion. Die Zunahme der Immunität schwankt jedoch je nach System Pflanze-Pathogen. Die Fermentation von Chitosan durch Aspergillus fumigatus könnte eine schnelle und billige Methode zur Herstellung von Chitooligomeren mit guter Reinheit und Ausbeute sein. Eine partiell aufgereinigte Fermentationsmischung dieser Art könnte in der Landwirtschaft als Pathogeninhibitor genutzt werden. Durch kontrollierte Fermentation, die Chitooligomere in definierter Zusammensetzung (d.h. definierter Verteilung des Depolymerisationsgrades) liefert, könnte man zu Mischungen kommen, die für die jeweilige Anwendung eine optimale Bioaktivität besitzen. 3

  7. Photoelectrochemical Solar Cells Based on Chitosan Electroylte

    Institute of Scientific and Technical Information of China (English)

    M.H.A.Buraidah; A.K.Arof

    2007-01-01

    1 Results ITO-ZnTe/Chitosan-NH4I-I2/ITO photoelectrochemical solar cells have been fabricated and characterized by current-voltage characteristics.In this work,the ZnTe thin film was prepared by electrodeposition on indium-tin-oxide coated glass.The chitosan electrolyte consists of NH4I salt and iodine.Iodine was added to provide the I3-/I- redox couple.The PEC solar cell was fabricated by sandwiching an electrolyte film between the ZnTe semiconductor and ITO conducting glass.The area of the solar cell...

  8. Chitosan Effects on Plant Systems

    Directory of Open Access Journals (Sweden)

    Massimo Malerba

    2016-06-01

    Full Text Available Chitosan (CHT is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity.

  9. Chitosan Effects on Plant Systems.

    Science.gov (United States)

    Malerba, Massimo; Cerana, Raffaella

    2016-01-01

    Chitosan (CHT) is a natural, safe, and cheap product of chitin deacetylation, widely used by several industries because of its interesting features. The availability of industrial quantities of CHT in the late 1980s enabled it to be tested in agriculture. CHT has been proven to stimulate plant growth, to protect the safety of edible products, and to induce abiotic and biotic stress tolerance in various horticultural commodities. The stimulating effect of different enzyme activities to detoxify reactive oxygen species suggests the involvement of hydrogen peroxide and nitric oxide in CHT signaling. CHT could also interact with chromatin and directly affect gene expression. Recent innovative uses of CHT include synthesis of CHT nanoparticles as a valuable delivery system for fertilizers, herbicides, pesticides, and micronutrients for crop growth promotion by a balanced and sustained nutrition. In addition, CHT nanoparticles can safely deliver genetic material for plant transformation. This review presents an overview on the status of the use of CHT in plant systems. Attention was given to the research that suggested the use of CHT for sustainable crop productivity. PMID:27347928

  10. Chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol

    Directory of Open Access Journals (Sweden)

    Shete Amol S

    2012-12-01

    Full Text Available Abstract Background and the purpose of the study Carvedilol nonselective β-adrenoreceptor blocker, chemically (±-1-(Carbazol-4-yloxy-3-[[2-(o-methoxypHenoxy ethyl] amino]-2-propanol, slightly soluble in ethyl ether; and practically insoluble in water, gastric fluid (simulated, TS, pH 1.1, and intestinal fluid (simulated, TS without pancreatin, pH 7.5 Compounds with aqueous solubility less than 1% W/V often represents dissolution rate limited absorption. There is need to enhance the dissolution rate of carvedilol. The objective of our present investigation was to compare chitosan and chitosan chlorhydrate based various approaches for enhancement of dissolution rate of carvedilol. Methods The different formulations were prepared by different methods like solvent change approach to prepare hydrosols, solvent evaporation technique to form solid dispersions and cogrind mixtures. The prepared formulations were characterized in terms of saturation solubility, drug content, infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, powder X-ray diffraction (PXRD, electron microscopy, in vitro dissolution studies and stability studies. Results The practical yield in case of hydrosols was ranged from 59.76 to 92.32%. The drug content was found to uniform among the different batches of hydrosols, cogrind mixture and solid dispersions ranged from 98.24 to 99.89%. There was significant improvement in dissolution rate of carvedilol with chitosan chlorhdyrate as compare to chitosan and explanation to this behavior was found in the differences in the wetting, solubilities and swelling capacity of the chitosan and chitosan salts, chitosan chlorhydrate rapidly wet and dissolve upon its incorporation into the dissolution medium, whereas the chitosan base, less water soluble, would take more time to dissolve. Conclusion This technique is scalable and valuable in manufacturing process in future for enhancement of dissolution of poorly water soluble

  11. Grafting of Chitosan and Chitosantrimethoxylsilylpropyl Methacrylate on Single Walled Carbon Nanotubes-Synthesis and Characterization

    OpenAIRE

    Carson, Laura; Kelly-Brown, Cordella; Stewart, Melisa; Oki, Aderemi; Regisford, Gloria; Stone, Julia; Traisawatwong, Pasakorn; Durand-Rougely, Clarissa; Luo, Zhiping

    2010-01-01

    Acid functionalized single walled carbon nanotubes (CNTs) were grafted to chitosan by first reacting the oxidized CNTs with thionyl chloride to form acyl-chlorinated CNTs. This product was subsequently dispersed in chitosan and covalently grafted to form CNT-chitosan. CNT-chitosan was further grafted onto 3-trimethoxysilylpropyl methacrylate by free radical polymerization conditions, to yield CNT-g-chitosan-g-3-trimethoxysilylpropyl methacrylate (TMSPM), hereafter referred to as CNT-chitosan-...

  12. Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation?

    OpenAIRE

    Moacir Fernandes Queiroz; Karoline Rachel Teodosio Melo; Diego Araujo Sabry; Guilherme Lanzi Sassaki; Hugo Alexandre Oliveira Rocha

    2014-01-01

    Chitosan is widely used in the biomedical field due its chemical and pharmacological properties. However, intake of chitosan results in renal tissue accumulation of chitosan and promotes an increase in calcium excretion. On the other hand, the effect of chitosan on the formation of calcium oxalate crystals (CaOx) has not been described. In this work, we evaluated the antioxidant capacity of chitosan and its interference in the formation of CaOx crystals in vitro. Here, the chitosan obtained c...

  13. Starch-chitosan hydrogels prepared by reductive alkylation cross-linking

    OpenAIRE

    Baran, E. T.; Mano, J. F.; Reis, R. L.

    2004-01-01

    Starch–chitosan hydrogels were produced by oxidation of soluble starch to produce polyaldehyde and subsequently cross-linked with chitosan via reductive alkylation. The swelling ratio of starch–chitosan membranes was increased gradually with increasing starch ratio, but it was always lower than the native chitosan. In dry state, starch–chitosan membranes with low starch ratio (0.16, 0.38) showed similar tensile strength values to those of native chitosan while these values decreased with incr...

  14. Synthesis and Characterization of Covalently Linked Graphene/Chitosan Composites

    Science.gov (United States)

    Sayyar, S.; Murray, E.; Gambhir, S.; Spinks, G.; Wallace, G. G.; Officer, D. L.

    2016-01-01

    Chitosan, a naturally derived polysaccharide, was covalently linked to chemically converted graphene (CCG) and the properties of the resulting composites were investigated. The composites were prepared using a stable dispersion of CCG in aqueous solvent. The CCG sheets are stabilised in solution by a small number of peripheral charged groups that can be used to form amide linkages with the polymer matrix. Apart from processability and swellability, the synthesized composites exhibited improved mechanical properties and conductivity by the addition of graphene. Graphene incorporation also introduced a control over the extent of swelling in the composites. The synthesized graphene/composites are promising materials for a variety of applications, for example as conducting substrates for the electrically stimulated growth of cells.

  15. Effects of Dietary Chitosan on Hormone Level in Dairy Calves

    Directory of Open Access Journals (Sweden)

    Dong Li

    2012-01-01

    Full Text Available The objective of the present study was to evaluate the effects of chitosan on serum GH, T3 and T4 in and to determine the appropriate supplemental dosage level of chitosan in dairy calves diet. A 30 days trial of dietary chitosan supplementation was reported. Twenty dairy calves were allotted at random to four groups at 10 days of age. Calves in the control group were fed the basal diet alone and calves in treatment groups I-III were fed the basal diet supplemented with 200, 400, 600 mg/day/h Chitosan (CTS, respectively for 30 days. The trial demonstrated that dietary chitosan supplementation significantly increased serum T3 level (p<0.05, when comparing chitosan groups I, II with the control group. Dietary supplementation of chitosan at 400 mg/day/h significantly increased serum T3 (p<0.05. Treatments with various levels of chitosan supplementation showed a tendency of increase in serum T4 and GH levels. So, the appropriate supplemental dosage of chitosan in the diets of dairy calves was 400 mg/day/h Chitosan (CTS.

  16. Degrees of chitosan deacetylation from white shrimp shell waste as dental biomaterials

    Directory of Open Access Journals (Sweden)

    Sularsih Sularsih

    2012-03-01

    Full Text Available Background: Chitosan is biomaterial improved for various dentistry applications because it is biocompatible, degradable, nontoxic, and not carcinogenic. The main parameter affecting the characteristics of chitosan is deacetylation degree. Purpose: This study is aimed to determine the degree of deacetylated of chitosan derived from white shrimp shell waste used as dental biomaterial. Methods: White shrimp shells were crushed into powder. Next, deproteination process was conducted with 3.5% NaOH solution, demineralized with 1N HCl solution, and then depigmented with 90% acetone solution into chitin powder. Deacetylation process was then conducted by soaking the chitin powder in 50% NaOH solution for 6 h at 65° C to produce white powder of chitosan. Afterwards, deacetylation degree test was conducted by using Fourier Transform Infrared Spectrophotometer (FTIR to calculate the ratio of the absorption bands between the absorbance peak of amide group about 1655 cm–1 and the absorbance peak of hydroxyl group about 3450 cm–1. Results: The result of the deacetylation degree test on the chitosan powder derived from white shrimp shell waste was high, about 85.165%, and had the eligible form, solubility, and pH. Conclusion: It can be concluded that the deacetylation degree of chitosan from white shrimp shells could reach 85.165%.Latar belakang: Kitosan merupakan biomaterial yang dikembangkan untuk berbagai aplikasi kedokteran gigi karena biokompatibel, dapat didegradasi, tidak toksik dan tidak karsinogenik. Parameter utama yang mempengaruhi karakteristik kitosan adalah derajat deasetilasi. Tujuan: Tujuan dari penelitian ini adalah mengetahui derajat deasetilasi kitosan dari limbah kulit udang putih sebagai biomaterial kedokteran gigi. Metode: Kulit udang putih dihaluskan menjadi serbuk. Setelah itu dilakukan proses deproteinasi dengan larutan NaOH 3,5%, demineralisasi dengan larutan HCl 1N, depigmentasi dengan larutan aseton 90% sehingga menjadi serbuk

  17. Chemical, biochemical, and microbiological aspects of chitosan quaternary salt as active coating on sliced apples

    Directory of Open Access Journals (Sweden)

    Douglas de Britto

    2012-09-01

    Full Text Available The biocompatibility of chitosan and chitosan quaternary salt coatings was evaluated for use as edible coatings for sliced apple. Measurement of water loss, color change, and fungal growth appearance were monitored as a function of time. A significant brownish effect was observed on chitosan coated slices, varying greatly from L* = 76.5 and Hue angle = 95.9° (t = 0 to L* = 45.3 and Hue angle = 69.8° (t = 3 days, whilst for TMC coated samples the variation was considerable lower (L* = 74.1; Hue angle = 95.0° to (L* = 67.0; Hue angle = 83.8° within the same period. The hydrosoluble derivative N,N,N-trimethylchitosan demonstrated good antifungal activity against P. expansum although highly dependent on the polymer properties such as degree of quaternization. The most efficient formulation was that prepared from derivative having a degree of quaternization of 45%, high solubility, and high viscosity. This formulation restrained fungus spreading up to 30%, while for the control it reached almost 80% of the total assessed surfaces during 7 days of storage.

  18. Novel materials based on chitosan, its derivatives and cellulose fibres

    OpenAIRE

    Fernandes, Susana Cristina de Matos

    2010-01-01

    O presente trabalho tem como principal objectivo o desenvolvimento de novos materiais baseados em quitosano, seus derivados e celulose, na forma de nanofibras ou de papel. Em primeiro lugar procedeu-se à purificação das amostras comerciais de quitosano e à sua caracterização exaustiva em termos morfológicos e físicoquímicos. Devido a valores contraditórios encontrados na literatura relativamente à energia de superfície do quitosano, e tendo em conta a sua utilização como precursor de...

  19. Effects of Chitosan Alkali Pretreatment on the Preparation of Electrospun PCL/Chitosan Blend Nanofibrous Scaffolds for Tissue Engineering Application

    Directory of Open Access Journals (Sweden)

    Fatemeh Roozbahani

    2013-01-01

    Full Text Available Recently, nanofibrous scaffolds have been used in the field of biomedical engineering as wound dressings, tissue engineering scaffolds, and drug delivery applications. The electrospun nanofibrous scaffolds can be used as carriers for several types of drugs, genes, and growth factors. PCL is one of the most commonly applied synthetic polymers for medical use because of its biocompatibility and slow biodegradability. PCL is hydrophobic and has no cell recognition sites on its structure. Electrospinning of chitosan and PCL blend was investigated in formic acid/acetic acid as the solvent with different PCL/chitosan ratios. High viscosity of chitosan solutions makes difficulties in the electrospinning process. Strong hydrogen bonds in a 3D network in acidic condition prevent the movement of polymeric chains exposed to the electrical field. Consequently, the amount of chitosan in PCL/chitosan blend was limited and more challenging when the concentration of PCL increases. The treatment of chitosan in alkali condition under high temperature reduced its molecular weight. Longer treatment time further decreased the molecular weight of chitosan and hence its viscosity. Electrospinning of PCL/chitosan blend was possible at higher chitosan ratio, and SEM images showed a decrease in fiber diameter and narrower distribution with increase in the chitosan ratio.

  20. Chitosan-based nanocarriers for antimalarials

    Science.gov (United States)

    Dreve, Simina; Kacso, Iren; Popa, Adriana; Raita, Oana; Bende, A.; Borodi, Gh.; Bratu, I.

    2012-02-01

    The objective of this research was to synthesize and characterize chitosan-based liquid and solid materials with unique absorptive and mechanical properties as carriers for quinine - one of the most used antimalarial drug. The use of chitosan (CTS) as base in polyelectrolyte complex systems, to prepare solid release systems as sponges is presented. The preparation by double emulsification of CTS hydrogels carrying quinine as anti-malarial drug is reported. The concentration of quinine in the CTS hydrogel was 0.08 mmol. Chitosan - drug loaded hydrogel was used to generate solid sponges by freeze-drying at -610°C and 0.09 atm. Structural investigations of the solid formulations were done by Fourier-transformed infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-VIS), spectrofluorimetry, differential scanning calorimetry (DSC) and X-ray diffractometry. The results indicated that the drug molecule is forming temporary chelates in CTS hydrogels and sponges. Electron paramagnetic resonance (EPR) demonstrates the presence of free radicals in a wide range and the antioxidant activity for chitosan - drug supramolecular cross-linked assemblies.

  1. Chitosan application in food preparation and digestion

    Czech Academy of Sciences Publication Activity Database

    Kopečný, Jan

    Antalya : Hacettepe University, 2007, s. 47-47. [International Conference of European Chitin Society /8./. Antalya (TR), 08.09.2007-11.09.2007] R&D Projects: GA AV ČR 1QS500200572 Institutional research plan: CEZ:AV0Z50450515 Keywords : chitosan Subject RIV: GM - Food Processing

  2. Chitosan catalyzes hydrogen evolution at mercury electrodes

    Czech Academy of Sciences Publication Activity Database

    Paleček, Emil; Římánková, Ludmila

    2014-01-01

    Roč. 44, JUL2014 (2014), s. 59-62. ISSN 1388-2481 R&D Projects: GA ČR(CZ) GAP301/11/2055 Institutional support: RVO:68081707 Keywords : Chitosan * Glucosamine-containing polymers * Catalytic hydrogen evolution Subject RIV: BO - Biophysics Impact factor: 4.847, year: 2014

  3. Application of mushroom chitosans in medical biomaterials

    Czech Academy of Sciences Publication Activity Database

    Beran, M.; Urban, M.; Adámek, L.; Jandušík, L.; Spěváček, Jiří

    Snowbird, Utah : Keystone Symposia, 2007. s. 49. [Keystone Symposia: Tissue Engineering and Development Biology. 12.04.2007-17.04.2007, Snowbird] R&D Projects: GA MŠk 2B06173 Institutional research plan: CEZ:AV0Z40500505 Keywords : mushrooms * chitosan * biomaterials Subject RIV: EI - Biotechnology ; Bionics

  4. Reinforcing of chitosan phase with chitin nanofibrils

    Czech Academy of Sciences Publication Activity Database

    Tishchenko, Galina; Kelnar, Ivan; Kaprálková, Ludmila; Pavlova, Ewa; Vacková, Taťana; Brožová, Libuše; Strachota, Adam; Špírková, Milena; Bastl, Zdeněk; Carezzi, F.; Morganti, P.

    Roma : AIRI/Nanotec IT, 2013. s. 105. ISBN 978-88-6140-152-5. [NanotechItaly 2013 - Key Enabling Technologies for Responsible Innovation. 27.11.2013-29.11.2013, Venice] EU Projects: European Commission(XE) 315233 - N-CHITOPACK Institutional support: RVO:61389013 ; RVO:61388955 Keywords : chitin nanofibers * chitosan * reinforcing effect Subject RIV: CD - Macromolecular Chemistry

  5. Conjugation of kojic acid with chitosan

    Czech Academy of Sciences Publication Activity Database

    Synytsya, Andriy.; Blafková, P.; Synytsya, A.; Čopíková, J.; Spěváček, Jiří; Uher, M.

    2008-01-01

    Roč. 72, č. 1 (2008), s. 21-31. ISSN 0144-8617 R&D Projects: GA ČR GA525/05/0273 Institutional research plan: CEZ:AV0Z40500505 Keywords : kojic acid * chitosan * iron(III) * chlorokojic acid Subject RIV: GM - Food Processing Impact factor: 2.644, year: 2008

  6. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  7. The Mechanical and Biological Properties of Chitosan Scaffolds for Tissue Regeneration Templates Are Significantly Enhanced by Chitosan from Gongronella butleri

    Directory of Open Access Journals (Sweden)

    Hiroshi Tamura

    2009-04-01

    Full Text Available Chitosan with a molecular weight (MW of 104 Da and 13% degree of acetylation (DA was extracted from the mycelia of the fungus Gongronella butleri USDB 0201 grown in solid substrate fermentation and used to prepare scaffolds by the freeze-drying method. The mechanical and biological properties of the fungal chitosan scaffolds were evaluated and compared with those of scaffolds prepared using chitosans obtained from shrimp and crab shells and squid bone plates (MW 105-106 Da and DA 10-20%. Under scanning electron microscopy, it was observed that all scaffolds had average pore sizes of approximately 60-90 mm in diameter. Elongated pores were observed in shrimp chitosan scaffolds and polygonal pores were found in crab, squid and fungal chitosan scaffolds. The physico-chemical properties of the chitosans had an effect on the formation of pores in the scaffolds, that consequently influenced the mechanical and biological properties of the scaffolds. Fungal chitosan scaffolds showed excellent mechanical, water absorption and lysozyme degradation properties, whereas shrimp chitosan scaffolds (MW 106Da and DA 12% exhibited the lowest water absorption properties and lysozyme degradation rate. In the evaluation of biocompatibility of chitosan scaffolds, the ability of fibroblast NIH/3T3 cells to attach on all chitosan scaffolds was similar, but the proliferation of cells with polygonal morphology was faster on crab, squid and fungal chitosan scaffolds than on shrimp chitosan scaffolds. Therefore fungal chitosan scaffold, which has excellent mechanical and biological properties, is the most suitable scaffold to use as a template for tissue regeneration.

  8. Determination of the degree of acetylation and the distribution of acetyl groups in chitosan by HPLC analysis of nitrous acid degraded and PMP labeled products.

    Science.gov (United States)

    Han, Zhangrun; Zeng, Yangyang; Lu, Hong; Zhang, Lijuan

    2015-09-01

    Chitin is one of the most abundant polysaccharides on earth. It consists of repeating β-1,4 linked N-acetylated glucosamine (A) units. Chitosan is an N-deacetylated product of chitin. Chitosan and its derivatives have broad medical applications as drugs, nutraceuticals, or drug delivery agents. However, a reliable analytical method for quality control of medically used chitosans is still lacking. In current study, nitrous acid was used to cleave all glucosamine residues in chitosan into 2,5-anhydromannose (M) or M at the reducing end of di-, tri-, and oligosaccharides. PMP, i.e. 1-phenyl-3-methyl-5-pyrazolone, was used to label all the Ms. Online UV detection allowed quantification of all M-containing UV peaks whereas online MS analysis directly identified 11 different kinds of mono-, di-, tri-, and oligosaccharides that correlated each oligosaccharide with specific UV peak after HPLC separation. The DA (degree of acetylation) for chitosans was calculated based on the A/(A+M) value derived from the UV data. This newly developed method had several advantages for quality control of chitosan: 1. the experimental procedures were extensively optimized; 2. the reliability of the method was confirmed by online LC-MS analysis; 3. the DA value was obtainable based on the UV data after HPLC analysis, which was comparableto that of (1)H NMR and conductometric titration analyses; 4. finally and most importantly, this method could be used to obtain the DA as well as chemical acetylation/deacetylation mechanisms for chitosan by any laboratory equipped with a HPLC and an online UV detector. PMID:26114886

  9. 壳聚糖的改性及其应用进展%Progress with respect to modification and application of chitosan

    Institute of Scientific and Technical Information of China (English)

    艾林芳; 王光辉

    2011-01-01

    Structure of chitosan was introduced. Some main modification methods for preparing of chitosan derivatives, including etherification, oxidation, acylation, crosslinking, alkylation, graft copolymerization, quaterization and recombination with other materials et al were focused. Applications of chitosan and its derivatives in water treatment, medication, food processing and other fields were summarized.%介绍了壳聚糖的结构;重点论述了壳聚糖的一些主要的改性方法,包括醚化、氧化、酰化、交联、烷基化、接枝共聚、季铵化及和其他材料复合等方法;并综述了壳聚糖及其衍生物在水处理、医药、食品加工及其他领域的应用现状.

  10. Antimicrobial Activity of Chitosan-Carbon Nanotube Hydrogels

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2014-05-01

    Full Text Available In the present study, we have prepared chitosan-carbon nanotube (Chitosan-CNT hydrogels by the freeze-lyophilization method and examined their antimicrobial activity. Different concentrations of CNT were used in the preparation of Chitosan-CNT hydrogels. These differently concentrated CNT hydrogels were chemically characterized using Fourier Transform-Infrared Spectroscopy, Scanning Electron Microscopy and Optical microscopy. The porosity of the hydrogels were found to be >94%. Dispersion of chitosan was observed in the CNT matrix by normal photography and optical microscopy. The addition of CNT in the composite scaffold significantly reduced the water uptake ability. In order to evaluate antimicrobial activity, the serial dilution method was used towards Staphylococcus aureus, Escherichia coli and Candida tropicalis. The composite Chitosan-CNT hydrogel showed greater antimicrobial activity with increasing CNT concentration, suggesting that Chitosan-CNT hydrogel scaffold will be a promising biomaterial in biomedical applications.

  11. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites

    Science.gov (United States)

    Pylypchuk, Ie. V.; Kołodyńska, D.; Kozioł, M.; Gorbyk, P. P.

    2016-03-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.

  12. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites.

    Science.gov (United States)

    Pylypchuk, Ie V; Kołodyńska, D; Kozioł, M; Gorbyk, P P

    2016-12-01

    The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods. PMID:27030468

  13. Structural evaluation of phospholipidic nanovesicles containing small amounts of chitosan.

    Science.gov (United States)

    Mertins, Omar; Cardoso, Mateus Borba; Pohlmann, Adriana Raffin; da Silveira, Nádya Pesce

    2006-08-01

    In this study we present a full characterization of nanovesicles containing soybean phosphatidylcholine and polysaccharide chitosan. The nanovesicles were prepared by the reverse phase evaporation method, including the preparation of reverse micelles followed by the formation of an organogel, which is dispersed in water to yield the final liposomal particles. Structural changes as a function of the chitosan amount and the filter porosity used in the nanovesicles preparation were studied employing Static and Dynamic Light Scattering as well as Small Angle X-ray Scattering. The hydrodynamic radius of the nanovesicles ranged between 106 and 287 nm, depending on the chitosan contents and the filter porosity. A comparison with nanovesicles free of chitosan indicates the existence of higher contents of multilamellar structures that depends on the chitosan concentration in the vesicles containing chitosan. Typical spherical vesicles having nanometric diameters with polydispersity mostly desired in the biomedical area could only be achieved by filtration through a 0.45 microm porous filter. PMID:17037851

  14. Removal of Petroleum Spill in Water by Chitin and Chitosan

    Directory of Open Access Journals (Sweden)

    Francisco Cláudio de Freitas Barros

    2014-05-01

    Full Text Available The present study was undertaken to evaluate the capacity of adsorption of crude oil spilled in seawater by chitin flakes, chitin powder, chitosan flakes, chitosan powder, and chitosan solution. The results showed that, although chitosan flakes had a better adsorption capacity by oil (0.379 ± 0.030 grams oil per gram of adsorbent, the biopolymer was sinking after adsorbing oil. Chitosan solution did not present such inconvenience, despite its lower adsorption capacity (0.013 ± 0.001 grams oil per gram of adsorbent. It was able to form a polymeric film on the oil slick, which allowed to restrain and to remove the oil from the samples of sea water. The study also suggests that chitosan solution 0.5% has greater efficiency against oil spills in alkaline medium than acidic medium.

  15. Use of the montmorillonite as crosslink agents for chitosan

    International Nuclear Information System (INIS)

    The montmorillonite (the main constituent of bentonite) has been the most commonly used inorganic load in the formation of nanocomposites chitosan / layered silicate. To evaluate its effect as an agent for the reticulation of chitosan, a sodium montmorillonite, Cloisite Na+, supplied by Southern Clay Products, Texas, USA, was used. For the reticulation of chitosan dispersions of chitosan / Cloisite Na+ were prepared in different proportions and the obtained films characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TG). The results indicated that the Cloisite Na+ was for efficient and the reticulation of the chitosan and can be used in place of sulfuric acid, which is one of the most common reticulants for chitosan. (author)

  16. Synthesis and characterization of new chitosan-based Schiff base compounds.

    Science.gov (United States)

    Gavalyan, Vasak B

    2016-07-10

    Chitin (Cn) was extracted from the armors of crustaceans Astacus leptodactylus (Lake Sevan, Armenia) and then converted to chitosan (Cs), its deacetylated derivative. Novel Schiff bases (CsSB) were synthesized by interaction of Cs with 4-(2-chloroethyl)benzaldehyde (aldehyde-1) and 4-(2-bromoethyl)benzaldehyde (aldehyde-2), and underwent dehydrohalogenation, under basic conditions (10°C), to yield respective vinyl derivatives. All newly synthesized compounds were structurally characterized by solubility tests, elemental analysis, infrared spectroscopy (FTIR), thermogravimetry (TGA), proton nuclear magnetic resonance ((1)H NMR), and X-ray diffraction (XRD). PMID:27106149

  17. Antibacterial activity of chitosan and the interpolyelectrolyte complexes of poly(acrylic acid-chitosan

    Directory of Open Access Journals (Sweden)

    Hortensia Ortega-Ortiz

    2010-06-01

    Full Text Available The antimicrobial activity of chitosan and water soluble interpolyelectrolyte complexes of poly(acrylic acid-chitosan was studied. Chitosans of two different molecular weights were tested at different concentration for 0.5 to 5 g·L-1 as antimicrobial agents against P. aeruginosa and P. oleovorans. In both cases, the best microbial inhibition was obtained with the concentration of 5 g·L-1. However, the interpolyelectrolyte complexes of poly(acrylic acid-chitosan with composition φ =2 produced higher antibacterial activity than the two chitosans at the concentration of 0.5 g·L-1. The NPEC2 complex was more effective than chitosans. This could be attributed to the number of moles of the amino groups of chitosan and the carboxylic acid groups of the interpolyelectrolyte complexes poly(acrylic acid.A atividade antimicrobiana de quitosana e complexos interpolieletrolíticos hidrossoluvéis de poli(ácido acrílico-quitosana foi estudada. Quitosanas de dois diferentes pesos moleculares foram testados em diferentes concentrações, 0,5 a 5 g • L-1, como agentes antimicrobianos nas P. aeruginosa e P. oleovorans. Em ambos os casos, obteu-se a melhor inibição microbiana com a concentração de 5 g • L-1, no entanto os complexos interpolieletrolíticos de poli (ácido acrílico-quitosana com composição φ = 2 apresentaram maior atividade antibacteriana do que os dois quitosans na concentração de 0,5 g • L-1. O complexo NPEC2 foi mais eficaz do que as quitosanas, sendo que o resultado pode ser atribuído ao número de moles dos grupos aminos da quitosana e aos grupos carboxílicos dos complexos de poli(ácido acrílico.

  18. Combining Hyaluronic Acid with Chitosan Enhances Gene Delivery

    OpenAIRE

    2014-01-01

    The low gene transfer efficiency of chitosan-DNA polyplexes is a consequence of their high stability and consequent slow DNA release. The incorporation of an anionic polymer is believed to loosen chitosan interactions with DNA and thus promote higher transfection efficiencies. In this work, several formulations of chitosan-DNA polyplexes incorporating hyaluronic acid were prepared and characterized for their gene transfection efficiency on both HEK293 and retinal pigment epithelial cells. The...

  19. Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Adnan A. Badwan

    2015-03-01

    Full Text Available Despite the numerous uses of chitin and chitosan as new functional materials of high potential in various fields, they are still behind several directly compressible excipients already dominating pharmaceutical applications. There are, however, new attempts to exploit chitin and chitosan in co-processing techniques that provide a product with potential to act as a direct compression (DC excipient. This review outlines the compression properties of chitin and chitosan in the context of DC pharmaceutical applications.

  20. Preparation and Characterization of Chitosan /Ethylcellulose Complex Microcapsule

    Institute of Scientific and Technical Information of China (English)

    史新元; 谭天伟

    2003-01-01

    In this work a system which consists of chitosan microcores entrapped in ethylcellulose is presented.Vitamin D2 was eficiently entrapped in chitosan microcores with spray-drying method and was microencapsulated by coating of ethylcellulose.The average size of chitosan microspheres was 6.06μm.The morphology and release properties of microcapsules were tested.The results of release in vitro showed that the microcapsule could realize sustained release for 12h in artificial intestinal juice.

  1. Ionic Conductivity of Chitosan Membrane and Application for Electrochemical Devices

    Institute of Scientific and Technical Information of China (English)

    A. K. Arof

    2005-01-01

    @@ 1Introduction The product that is able to dissolve in dilute acetic acid when chitin is deacetylated is generally referred to as chitosan. Chitosan is well known for its aptitude to generate thin films[1]. The oxygen and nitrogen atoms of chitosan, in particular, have lone pair electrons that can form complexes with inorganic salts. However,the NH2 groups react much more rapidly than OH moieties towards salt[1-3].

  2. Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics

    DEFF Research Database (Denmark)

    Martirosyan, Alina; Olesen, Morten Jarlstad; Howard, Kenneth A.

    2014-01-01

    polysaccharide chitosan have been used to facilitate delivery of siRNA across mucosal surfaces following local administration. This chapter describes the mucosal barriers that need to be addressed in order to design an effective mucosal delivery strategy and the utilization of the mucoadhesive properties of...... chitosan. Focus is given to preparation methods and the preclinical application of chitosan nanoparticles for respiratory and oral delivery of siRNA....

  3. Permeability Evaluation Through Chitosan Membranes Using Taguchi Design

    OpenAIRE

    Sharma, Vipin; Marwaha, Rakesh Kumar; Dureja, Harish

    2010-01-01

    In the present study, chitosan membranes capable of imitating permeation characteristics of diclofenac diethylamine across animal skin were prepared using cast drying method. The effect of concentration of chitosan, concentration of cross-linking agent (NaTPP), crosslinking time was studied using Taguchi design. Taguchi design ranked concentration of chitosan as the most important factor influencing the permeation parameters of diclofenac diethylamine. The flux of the diclofenac diethylamine ...

  4. Films, Buckypapers and Fibers from Clay, Chitosan and Carbon Nanotubes

    OpenAIRE

    Marc in het Panhuis; Holly Warren; Higgins, Thomas M.

    2011-01-01

    The mechanical and electrical characteristics of films, buckypapers and fiber materials from combinations of clay, carbon nanotubes (CNTs) and chitosan are described. The rheological time-dependent characteristics of clay are maintained in clay–carbon nanotube–chitosan composite dispersions. It is demonstrated that the addition of chitosan improves their mechanical characteristics, but decreases electrical conductivity by three-orders of magnitude compared to clay–CNT materials. We show that ...

  5. Optimizing Conditions to Cholesterol Adsorbed with Carboxymethyl Chitosan

    OpenAIRE

    Mardiyah Kurniasih; Dwi Kartika; Riyanti Riyanti

    2016-01-01

    A research on optimizing conditions to cholesterol adsorbed have been performed. Optimization was performed by varying: contact time, adsorbent weight and temperature of the system's. A full factorial experimental design was used in this study. Characterization performed on the synthesized chitosan and carboxymethyl chitosan including FTIR, water content, ash content, solubility, porosity, and swelling effect. The results showed that carboxymethyl chitosan able to adsorb cholesterol under con...

  6. The production of fully deacetylated chitosan by compression method

    OpenAIRE

    Xiaofei He; Kecheng Li; Ronge Xing; Song Liu; Linfeng Hu; Pengcheng Li

    2016-01-01

    Chitosan’s activities are significantly affected by degree of deacetylation (DDA), while fully deacetylated chitosan is difficult to produce in a large scale. Therefore, this paper introduces a compression method for preparing 100% deacetylated chitosan with less environmental pollution. The product is characterized by XRD, FT-IR, UV and HPLC. The 100% fully deacetylated chitosan is produced in low-concentration alkali and high-pressure conditions, which only requires 15% alkali solution and ...

  7. Extraction of Copper(I Thiosulfate by Modified Chitosan

    Directory of Open Access Journals (Sweden)

    Okky Anggraito

    2013-12-01

    Full Text Available Chitosan is one of non-toxic natural biopolymer and abundance in nature. Chitosan have two active sites such as amine and hydroxyl groups. Amine groups (-NH2 in chitosan can be modified into secondary amine (-NHR. In this research, copper was dissolved as copper(I thiosulfate as anion complex (Cu(S2O323- and chitosan was modified by trimethylamine sulfur trioxide (TMAS. One of hydrogen atom in –NH2 was substituted by –SO3Na. The result of this research, the modified chitosan was identified by FT-IR. FT-IR spectra gave characteristic band at 3600-3200 cm-1 (O-H and N-H; 1648 cm-1 (C=O; 1115,74 cm-1 (S=O and 617,18 cm-1 (N-S. The result of surface analysis using SEM and TEM showed that the surface morphology of sulfated chitosan as a result of modification is different in comparison with chitosan. Based on chitosan, pH extraction was adjusted to pH 3 until 8. After optimum pH of extraction was obtained then re-extraction was done by using thiosulfate solution at 0.05 ; 0.10 ; 0.50 ; and 1.00 M. Extraction and re-extraction of copper(I thiosulfate was analyzed by Atomic Absorption Spectrophotometer (AAS. The highest efficiency extraction using modified chitosan and chitosan respectively at pH 3 and 6. The efficiency re-extraction using modified chitosan and chitosan respectively 100% and below 100%.

  8. In Situ Mineralization of Magnetite Nanoparticles in Chitosan Hydrogel

    OpenAIRE

    Wang Yongliang; Li Baoqiang; Zhou Yu; Jia Dechang

    2009-01-01

    Abstract Based on chelation effect between iron ions and amino groups of chitosan, in situ mineralization of magnetite nanoparticles in chitosan hydrogel under ambient conditions was proposed. The chelation effect between iron ions and amino groups in CS–Fe complex, which led to that chitosan hydrogel exerted a crucial control on the magnetite mineralization, was proved by X-ray photoelectron spectrum. The composition, morphology and size of the mineralized magnetite nanoparticles were ...

  9. COMPARISON OF PREBIOTIC ACTIVITY OF CHITOSAN AND LACTOSE DERIVATIVES Сравнение пребиотической активности производных хитозана и лактозы

    OpenAIRE

    Buchakhchyan Z. V.; Alieva L. R.; Kulikova I. K.; Evdokimov I. A.; Kaledina M. V.; Zhigulina O. V.

    2011-01-01

    This research is aimed to evaluate the prebiotic potential of lactitol and chitosan succinate using the vitro fermentation model. Four substrates (raftilos, lactitol, cellulose, chitosan succinate) were tested in vitro, using Batch culture fermentation method with fermentation of mixed human faecal microflora . Measurement of prebiotic effect (MPE) values were generated comparing bacterial changes through determination of maximum growth rates of groups, rate of substrate assimilation and prod...

  10. Surface grafted chitosan gels. Part I. Molecular insight into the formation of chitosan and poly(acrylic acid) multilayers

    DEFF Research Database (Denmark)

    Liu, Chao; Thormann, Esben; Claesson, Per M.;

    2014-01-01

    Composite polyelectrolyte multilayers of chitosan and low molecular weight poly(acrylic acid) (PAA) have been assembled by sequential adsorption as a first step toward building a surface anchored chitosan gel. Silane chemistry was used to graft the first chitosan layer to prevent film detachment...... and decomposition. The assembly process is characterized by nonlinear growth behavior, with different adsorption kinetics for chitosan and PAA. In situ analysis of the multilayer by means of surface sensitive total internal reflection Raman (TIRR) spectroscopy, combined with target factor analysis of...... steps. The higher molecular weight chitosan shows a similar behavior, although to a much lower extent. Our data demonstrate that the charged monomeric units of chitosan are mainly compensated by carboxylate ions from PAA. Furthermore, the morphology and mechanical properties of the multilayers were...

  11. Research of the Mechanism of Enhancing Biological Treatment by Chitosan

    Institute of Scientific and Technical Information of China (English)

    CHEN Liang; QIN Bing; CHEN Dong-hui

    2006-01-01

    Chitosan of different molecular weight (M. W. ) was added into SBR bioreactor to treat domestic wastewater. From comparison of treatment efficiency, sludge activity, sludge structure etc., we revealed the mechanism that chitosan enhanced the biological treatment function of activated sludge. The results proved that, chitosan is certain to restrain the reaction of activated sludge, but it do improve the structure of sludge fiocs and increase the treatment efficiency of activated sludge. The bigger the M. W. of chitosan is, the better the efficiency of enhancing biological treatment can be.

  12. DILUTE SOLUTION BEHAVIOR OF CHITOSAN IN DIFFERENT ACID SOLVENTS

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; WANG Lihua; QIN Wen

    1994-01-01

    Dilute solution behavior of chitosan was studied in formic acid, acetic acid,lactic acid and hydrochloric acid aqueous solution under different pH values. The reduced viscosities, ηsp/C,of chitosan solutions were dependent on the properties of acid and pH value of solvents. For a given chitosan concentration, ηsp/C decreased with the increase of acid concentration, or decreasing pH of solvent, indicating shielding effect of excessive acid similar to adding salt into solution. The stabilities of dilute chitosan solution in formic acid and lactic acid were better than that in acetic acid and hydrochloric acid.

  13. FUNGICIDAL POTENTIAL OF CHITOSAN AGAINST PHYTOPATHOGENIC Fusarium Solani

    Directory of Open Access Journals (Sweden)

    Anirban Bhattacharya

    2013-09-01

    Full Text Available nhibitory effects of chitosan (CHN on colony growth, sporulation, spore germination and germ tube elongation of phytopathogenic fungus Fusarium solani (Mart. Sacc. was reported under in vitro condition. Inhibition caused by chitosan was concentration dependent and maximum inhibition was on 0.20% chitosan dose, that led to the highest growth inhibition of fungal colony development (76.0%, lowest spore production (9 x 104 /ml culture filtrate and complete cessation of spore germination and germ tube emergence. Findings of the present study show that chitosan may be an alternative control agent against the pathogenic fungus, replacing the harmful chemical fungicides

  14. Adsorptive separation of rare earths by using chelating chitosan

    International Nuclear Information System (INIS)

    Two kinds of chelating chitosan were prepared by chemically modifying chitosan with functional groups of EDTA or DTPA, abbreviated as EDTA- and DTPA-chitosan hereafter, respectively, to investigate the adsorption behaviour for rare earths the mutual separation of which is the most difficult among metal ions on these chelating chitosan from dilute hydrochloric or sulfuric acid solution. The plots of the distribution ratio of a series of rare earths against equilibrium pH lay on different straight lines with slope of 3 corresponding to each earth for both of two chelating chitosan, suggesting that 3 hydrogen ions are released for the adsorption of unit ion of each rare earth by chelate formation with the functional group of EDTA or DTPA and that mutual adsorptive separation between adjacent rare earth is possible with these chelating chitosan. Apparent equilibrium constants of the adsorption were evaluated from the intercepts of these straight lines with the ordinate for each rare earth and for both chelating chitosan. It was found that the equilibrium constants of adsorption on EDTA- or DTPA-chitosan are quite analogous to those of chelate formation with EDTA or DTPA themselves, suggesting that chelating characteristics of these complexones is still maintained after their immobilization on polymer matrices of chitosan. (author)

  15. Synthesis and Characterization of Oil-Chitosan Composite Spheres

    OpenAIRE

    Huang, Keng-Shiang; Wang, Chih-Yu; Yang, Chih-Hui; Grumezescu, Alexandru; Lin, Yung-Sheng; Kung, Chao-Pin; Lin, I-Yin; Chang, Yi-Ching; Weng, Wei-Jie; Wang, Wei-Ting

    2013-01-01

    Oil-chitosan composite spheres were synthesized by encapsulation of sunflower seed oil in chitosan droplets, dropping into NaOH solution and in situ solidification. Hydrophilic materials (i.e., iron oxide nanoparticles) and lipophilic materials (i.e., rhodamine B or epirubicin) could be encapsulated simultaneously in the spheres in a one step process. The diameters of the prepared spheres were 2.48 ± 0.11 mm (pure chitosan spheres), 2.31 ± 0.08 mm (oil-chitosan composites), 1.49 ± 0.15 mm (ir...

  16. Viscometric and Rheological Behaviour of Chitosan-Hydrophilic Polymer Blends

    OpenAIRE

    R. K. Wanchoo; Thakur, Anupama; Sweta, A.

    2008-01-01

    Blends of chitosan with hydrophilic polymers were investigated for miscibility. Chitosan/poly (vinyl alcohol) (CS/PVA), chitosan/poly vinylpyrollidone (CS/PVP) and chitosan/poly (ethylene oxide) (CS/PEO) blends were prepared in dilute aqueous acetic acid ( = 1 %) and found to be miscible over the entire composition range by dilute solution viscosity and rheological measurements. The miscibility of blends by viscosity measurements at 25 ± 0.1 C was estimated on the basis of experimental and ...

  17. Effect of chitosan coating on the characteristics of DPPC liposomes

    Directory of Open Access Journals (Sweden)

    Mohsen M. Mady

    2010-07-01

    Full Text Available Because it is both biocompatible and biodegradable, chitosan has been used to provide a protective capsule in new drug formulations. The present work reports on investigations into some of the physicochemical properties of chitosan-coated liposomes, including drug release rate, transmission electron microscopy (TEM, zeta potential and turbidity measurement. It was found that chitosan increases liposome stability during drug release. The coating of DPPC liposomes with a chitosan layer was confirmed by electron microscopy and the zeta potential of liposomes. The coating of liposomes by chitosan resulted in a marginal increase in the size of the liposomes, adding a layer of (92 ± 27.1 nm. The liposomal zeta potential was found to be increasingly positive as chitosan concentration increased from 0.1% to 0.3% (w/v, before stabilising at a relatively constant value. Turbidity studies revealed that the coating of DPPC liposomes with chitosan did not significantly modify the main phase transition temperature of DPPC at examined chitosan concentrations. The appropriate combination of liposomal and chitosan characteristics may produce liposomes with specific, prolonged and controlled release.

  18. Synthesis and physicochemical characterization of chemically modified chitosan by succinic anhydride

    Directory of Open Access Journals (Sweden)

    Karine Gargioni Pereira Correa de Mello

    2006-07-01

    Full Text Available The N-succinil-chitosan is a chemically modified derivative of the biopolymer chitosan. The succinic anhydride attached to the free amino groups presented along the chitosan's polymer chain imparts to the molecule different physicochemical properties not exhibited before the modification. These chemical modifications enhance chitosan's solubility in slightly acid, neutral and alkaline media. These properties are related to the long alkyl chains attached to hydrophilic parts. In this case the hydrophilic part of D-glucosamine promotes stronger interactions with the water molecules, and consequently, enhances the solubility of the chitosan polymer. Non-modified free chitosan is soluble only in acidic medium (pH A N-succinil-quitosana é um derivado quimicamente modificado do biopolímero quitosana. A inserção de substituintes de anidrido succínico nas aminas protonadas presentes ao longo da cadeia do polímero quitosana, conferem diferentes características físico-químicas a molécula de quitosana. Esta modificação química, possibilitou à quitosana, solubilidade em pHs que variam do ácido (2.0 a 3.0 até alcalino (13.0 a 14.0. Estas propriedades são atribuídas ao alongamento da cadeia alquílica, que afasta a parte hidrofílica da cadeia fechada da D-glicosamina, facilitando o acesso da água, a qual irá estabelecer uma interação mais forte com a molécula de quitosana. Esta propriedade não está presente em amostras de quitosana pura, a qual sabe-se que solubiliza-se apenas em pH abaixo de 5.5. Estas modificações na quitosana possibilitam novas aplicações na área de biotecnologia, uma vez que a solubilidade em meio neutro e levemente alcalino é importante na área biológica.

  19. Thermodynamic study on adsorption of Copper Formaldehyde, Chitosan immobilised on Red Soil, Chitosan reinforced by Banana stem fibre

    OpenAIRE

    J. Thilagan, Prof. S. Gopalakrishnan,; Dr. T. Kannadasan

    2013-01-01

    The effective and economic removal of heavy metals from industrial effluents is one of the important issues globally. Batch adsorption experiments were carried to fix the adsorption dosage and also to find the optimum pH. A thermodynamic study was made on the adsorption of Cu +2 ions in aqueous solution distinctly by the adsorbents such as Chitosan blended with Cellulose and cross linked by Formaldehyde, Chitosan immobilised on Red Soil and Chitosan reinforced...

  20. Detection of chlorine-labelled chitosan in Scots pine by energy-dispersive X-ray spectroscopy

    OpenAIRE

    Larnøy, Erik; Eikenes, Morten; Militz, Holger

    2011-01-01

    The aim of this study was to use energy-dispersive X-ray spectroscopy (EDX) to localize chitosan in the cell wall of chitosan-impregnated Scots pine. It was of interest to investigate the concentration of chitosan in wood to gain further knowledge and understanding of the distribution of chitosan in the wooden matrix. After deacetylation, chitosan was re-acetylated with chloroacetic anhydride to achieve a covalent bonding of chloride to the chitosan polymer. Chloride-labelled chitosan was mea...