WorldWideScience

Sample records for biomedical testing module

  1. Modulation Techniques for Biomedical Implanted Devices and Their Challenges

    Directory of Open Access Journals (Sweden)

    Salina A. Samad

    2011-12-01

    Full Text Available Implanted medical devices are very important electronic devices because of their usefulness in monitoring and diagnosis, safety and comfort for patients. Since 1950s, remarkable efforts have been undertaken for the development of bio-medical implanted and wireless telemetry bio-devices. Issues such as design of suitable modulation methods, use of power and monitoring devices, transfer energy from external to internal parts with high efficiency and high data rates and low power consumption all play an important role in the development of implantable devices. This paper provides a comprehensive survey on various modulation and demodulation techniques such as amplitude shift keying (ASK, frequency shift keying (FSK and phase shift keying (PSK of the existing wireless implanted devices. The details of specifications, including carrier frequency, CMOS size, data rate, power consumption and supply, chip area and application of the various modulation schemes of the implanted devices are investigated and summarized in the tables along with the corresponding key references. Current challenges and problems of the typical modulation applications of these technologies are illustrated with a brief suggestions and discussion for the progress of implanted device research in the future. It is observed that the prime requisites for the good quality of the implanted devices and their reliability are the energy transformation, data rate, CMOS size, power consumption and operation frequency. This review will hopefully lead to increasing efforts towards the development of low powered, high efficient, high data rate and reliable implanted devices.

  2. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed "Observation platform for dynamic biomedical and biotechnology experiments using the ISS Light Microscopy Module" consists of a platen sized to fit the...

  3. Extracting laboratory test information from biomedical text

    Directory of Open Access Journals (Sweden)

    Yanna Shen Kang

    2013-01-01

    Full Text Available Background: No previous study reported the efficacy of current natural language processing (NLP methods for extracting laboratory test information from narrative documents. This study investigates the pathology informatics question of how accurately such information can be extracted from text with the current tools and techniques, especially machine learning and symbolic NLP methods. The study data came from a text corpus maintained by the U.S. Food and Drug Administration, containing a rich set of information on laboratory tests and test devices. Methods: The authors developed a symbolic information extraction (SIE system to extract device and test specific information about four types of laboratory test entities: Specimens, analytes, units of measures and detection limits. They compared the performance of SIE and three prominent machine learning based NLP systems, LingPipe, GATE and BANNER, each implementing a distinct supervised machine learning method, hidden Markov models, support vector machines and conditional random fields, respectively. Results: Machine learning systems recognized laboratory test entities with moderately high recall, but low precision rates. Their recall rates were relatively higher when the number of distinct entity values (e.g., the spectrum of specimens was very limited or when lexical morphology of the entity was distinctive (as in units of measures, yet SIE outperformed them with statistically significant margins on extracting specimen, analyte and detection limit information in both precision and F-measure. Its high recall performance was statistically significant on analyte information extraction. Conclusions: Despite its shortcomings against machine learning methods, a well-tailored symbolic system may better discern relevancy among a pile of information of the same type and may outperform a machine learning system by tapping into lexically non-local contextual information such as the document structure.

  4. Photovoltaic Module Qualification Plus Testing

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Kempe, M.; Bosco, N.; Hacke, P.; Jordan, D.; Miller, D. C.; Silverman, T. J.; Phillips, N.; Earnest, T.; Romero, R.

    2013-12-01

    This report summarizes a set of test methods that are in the midst of being incorporated into IEC 61215 for certification of a module design or other tests that go beyond certification to establish bankability.

  5. Observation Platform for Dynamic Biomedical and Biotechnology Experiments Using the International Space Station (ISS) Light Microscopy Module (LMM)

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Techshot, Inc., has developed an observation platform for the LMM on the ISS that will enable biomedical and biotechnology experiments. The LMM Dynamic Stage consists of an electronics module and the first two of a planned suite of experiment modules. Specimens and reagent solutions can be injected into a small, hollow microscope slide-the heart of the innovation-via a combination of small reservoirs, pumps, and valves. A life science experiment module allows investigators to load up to two different fluids for on-orbit, real-time image cytometry. Fluids can be changed to initiate a process, fix biological samples, or retrieve suspended cells. A colloid science experiment module conducts microparticle and nanoparticle tests for investigation of colloid self-assembly phenomena. This module includes a hollow glass slide and heating elements for the creation of a thermal gradient from one end of the slide to the other. The electronics module supports both experiment modules and contains a unique illuminator/condenser for bright and dark field and phase contrast illumination, power supplies for two piezoelectric pumps, and controller boards for pumps and valves. This observation platform safely contains internal fluids and will greatly accelerate the research and development (R&D) cycle of numerous experiments, products, and services aboard the ISS.

  6. Non-animal methodologies within biomedical research and toxicity testing.

    Science.gov (United States)

    Knight, Andrew

    2008-01-01

    Laboratory animal models are limited by scientific constraints on human applicability, and increasing regulatory restrictions, driven by social concerns. Reliance on laboratory animals also incurs marked - and in some cases, prohibitive - logistical challenges, within high-throughput chemical testing programmes, such as those currently underway within Europe and the US. However, a range of non-animal methodologies is available within biomedical research and toxicity testing. These include: mechanisms to enhance the sharing and assessment of existing data prior to conducting further studies, and physicochemical evaluation and computerised modelling, including the use of structure-activity relationships and expert systems. Minimally-sentient animals from lower phylogenetic orders or early developmental vertebral stages may be used, as well as microorganisms and higher plants. A variety of tissue cultures, including immortalised cell lines, embryonic and adult stem cells, and organotypic cultures, are also available. In vitro assays utilising bacterial, yeast, protozoal, mammalian or human cell cultures exist for a wide range of toxic and other endpoints. These may be static or perfused, and may be used individually, or combined within test batteries. Human hepatocyte cultures and metabolic activation systems offer potential assessment of metabolite activity and organ-organ interaction. Microarray technology may allow genetic expression profiling, increasing the speed of toxin detection, well prior to more invasive endpoints. Enhanced human clinical trials utilising micro- dosing, staggered dosing, and more representative study populations and durations, as well as surrogate human tissues, advanced imaging modalities and human epidemiological, sociological and psycho- logical studies, may increase our understanding of illness aetiology and pathogenesis, and facilitate the development of safe and effective pharmacologic interventions. Particularly when human tissues

  7. Binary module test. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, J.R.; Colley, T.C.; Pundyk, J.

    1980-12-01

    The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

  8. A 1V low power second-order delta-sigma modulator for biomedical signal application.

    Science.gov (United States)

    Hsu, Chih-Han; Tang, Kea-Tiong

    2013-01-01

    This paper presents the design and implementation of a low-power delta-sigma modulator for biomedical application with a standard 90 nm CMOS technology. The delta-sigma architecture is implemented as 2nd order feedforward architecture. A low quiescent current operational transconductance amplifier (OTA) is utilized to reduce power consumption. This delta-sigma modulator operated in 1V power supply, and achieved 64.87 dB signal to noise distortion ratio (SNDR) at 10 KHz bandwidth with an oversampling ratio (OSR) of 64. The power consumption is 17.14 µW, and the figure-of-merit (FOM) is 0.60 pJ/conv.

  9. Integrated Performance Testing Workshop, Modules 6 - 11

    Energy Technology Data Exchange (ETDEWEB)

    Leach, Janice; Torres, Teresa M.

    2012-10-01

    These modules cover performance testing of: Interior Detection Systems; Access Controls; Exterior Detection Systems; Video Assessment Systems; SNM / Contraband Detection Systems; Access Delay Elements

  10. [An integral chip for the multiphase pulse-duration modulation used for voltage changer in biomedical microprocessor systems].

    Science.gov (United States)

    Balashov, A M; Selishchev, S V

    2004-01-01

    An integral chip (IC) was designed for controlling the step-down pulse voltage converter, which is based on the multiphase pulse-duration modulation, for use in biomedical microprocessor systems. The CMOS technology was an optimal basis for the IC designing. An additional feedback circuit diminishes the output voltage dispersion at dynamically changing loads.

  11. Environmental testing of CIS based modules

    Energy Technology Data Exchange (ETDEWEB)

    Willett, D.

    1995-11-01

    This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.

  12. CryoModule Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CMTFis able to test complete SRF cryomodules at cryogenic operating temperatures and with RF Power. CMTF will house the PIP-II Injector Experiment allowing test of...

  13. Endovascular Device Testing with Particle Image Velocimetry Enhances Undergraduate Biomedical Engineering Education

    Science.gov (United States)

    Nair, Priya; Ankeny, Casey J.; Ryan, Justin; Okcay, Murat; Frakes, David H.

    2016-01-01

    We investigated the use of a new system, HemoFlow™, which utilizes state of the art technologies such as particle image velocimetry to test endovascular devices as part of an undergraduate biomedical engineering curriculum. Students deployed an endovascular stent into an anatomical model of a cerebral aneurysm and measured intra-aneurysmal flow…

  14. Thermal Module Tests with Irradiated 070 Detectors.

    CERN Document Server

    HOWCROFT, C L F

    1998-01-01

    Four n-in-n detectors were irradiated at KEK to a fluence of 3*1014 protons cm-2. These were used to construct a thermal barrel module to 070 drawings with an A3-90 baseboard at the Rutherford Appleton Laboratory. Thermal testes were conducted on the module, examining the runaway point and the temperatures across the silicon. The results obtained were used to calculate the runaway point under ATLAS conditions. It was concluded that this module meets the specifications in the Technical Design Report, of 160 mW mm-2@ 0°C for runaway and less than 5°C across the silicon. The module was also compared to a Finite Element Analysis, and showed a good agreement.

  15. Siemens SOFC Test Article and Module Design

    Energy Technology Data Exchange (ETDEWEB)

    Pierre, Joseph F.

    2011-03-31

    Preliminary design studies of the 95 kWe-class SOFC test article continue resulting in a stack architecture of that is 1/3 of 250 kWe-class SOFC advanced module. The 95 kWeclass test article is envisioned to house 20 bundles (eight cells per bundle) of Delta8 cells with an active length of 100 cm. Significant progress was made in the conceptual design of the internal recirculation loop. Flow analyses were initiated in order to optimize the bundle row length for the 250 kWeclass advanced module. A preferred stack configuration based on acceptable flow and thermal distributions was identified. Potential module design and analysis issues associated with pressurized operation were identified.

  16. Cost Modeling for SOC Modules Testing

    Directory of Open Access Journals (Sweden)

    Balwinder Singh

    2013-08-01

    Full Text Available The complexity of the system design is increasing very rapidly as the number of transistors on Integrated Circuits (IC doubles as per Moore’s law.There is big challenge of testing this complex VLSI circuit, in which whole system is integrated into a single chip called System on Chip (SOC. Cost of testing the SOC is also increasing with complexity. Cost modeling plays a vital role in reduction of test cost and time to market. This paper includes the cost modeling of the SOC Module testing which contains both analog and digital modules. The various test cost parameters and equations are considered from the previous work. The mathematical relations are developed for cost modeling to test the SOC further cost modeling equations are modeled in Graphical User Interface (GUI in MATLAB, which can be used as a cost estimation tool. A case study is done to calculate the cost of the SOC testing due to Logic Built in Self Test (LBIST and Memory Built in Self Test (MBIST. VLSI Test engineers can take the benefits of such cost estimation tools for test planning.

  17. Cost Modeling for SOC Modules Testing

    OpenAIRE

    Balwinder Singh; Arun Khosla; Sukhleen B. Narang

    2013-01-01

    The complexity of the system design is increasing very rapidly as the number of transistors on Integrated Circuits (IC) doubles as per Moore’s law.There is big challenge of testing this complex VLSI circuit, in which whole system is integrated into a single chip called System on Chip (SOC). Cost of testing the SOC is also increasing with complexity. Cost modeling plays a vital role in reduction of test cost and time to market. This paper includes the cost modeling of the SOC Module testing...

  18. Predictive validity of the Biomedical Admissions Test: an evaluation and case study.

    Science.gov (United States)

    McManus, I C; Ferguson, Eamonn; Wakeford, Richard; Powis, David; James, David

    2011-01-01

    There has been an increase in the use of pre-admission selection tests for medicine. Such tests need to show good psychometric properties. Here, we use a paper by Emery and Bell [2009. The predictive validity of the Biomedical Admissions Test for pre-clinical examination performance. Med Educ 43:557-564] as a case study to evaluate and comment on the reporting of psychometric data in the field of medical student selection (and the comments apply to many papers in the field). We highlight pitfalls when reliability data are not presented, how simple zero-order associations can lead to inaccurate conclusions about the predictive validity of a test, and how biases need to be explored and reported. We show with BMAT that it is the knowledge part of the test which does all the predictive work. We show that without evidence of incremental validity it is difficult to assess the value of any selection tests for medicine.

  19. Novel Electrochemical Test Bench for Evaluating the Functional Fatigue Life of Biomedical Alloys

    Science.gov (United States)

    Ijaz, M. F.; Dubinskiy, S.; Zhukova, Y.; Korobkova, A.; Pustov, Y.; Brailovski, V.; Prokoshkin, S.

    2017-08-01

    The aim of the present work was first to develop and validate a test bench that simulates the in vitro conditions to which the biomedical implants will be actually subjected in vivo. For the preliminary application assessments, the strain-controlled fatigue tests of biomedically pure Ti and Ti-Nb-Zr alloy in simulated body fluid were undertaken. The in situ open-circuit potential measurements from the test bench demonstrated a strong dependence on the dynamic cycling and kind of material under testing. The results showed that during fatigue cycling, the passive oxide film formed on the surface of Ti-Nb-Zr alloy was more resistant to fatigue degradation when compared with pure Ti. The Ti-Nb-Zr alloy exhibited prolonged fatigue life when compared with pure Ti. The fractographic features of both materials were also characterized using scanning electron microscopy. The electrochemical results and the fractographic evidence confirmed that the prolonged functional fatigue life of the Ti-Nb-Zr alloy is apparently ascribable to the reversible martensitic phase transformation.

  20. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    Science.gov (United States)

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  1. Test System for Thermoelectric Modules and Materials

    Science.gov (United States)

    Hejtmánek, J.; Knížek, K.; Švejda, V.; Horna, P.; Sikora, M.

    2014-10-01

    We present a design for a complex measuring device that enables its user to assess the parameters of power-generating thermoelectric modules (TEMs) (or bulk thermoelectric materials) under a wide range of temperatures ( T cold = 25°C to 90°C, T hot i) a measuring chamber where the TEM/material is compressed between thermally shielded heating blocks equipped with a mechanical loading system and water-cooled copper-based cooler, (ii) an electrical load system, (iii) a type K thermocouple array connected to a data acquisition computer, and (iv) a thermostatic water-based cooling system with electronically controlled flow rate and temperature of cooling water. Our testing setup represents a useful tool able to assess, e.g., the thermoelectric parameters of newly developed TEMs and materials or to evaluate the thermoelectric parameters of commercially available modules and materials for comparison with values declared by the manufacturer.

  2. Sandwich module testing for space solar power

    Science.gov (United States)

    Jaffe, Paul

    Solar power satellites have been envisioned as a means to provide electricity for terrestrial use. The approach entails collection of solar energy in space and its wireless transmission to the earth. This potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the Modular Symmetrical Concentrator and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. The research described herein details efforts in the development and testing of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for 2.45 GHz microwave-based “ sandwich” module prototypes. Prototypes were designed, fabricated, and subjected to the challenging conditions inherent in the space environment, including the solar concentration levels in which an array of modules might be required to operate.

  3. Critical evaluation of the use of dogs in biomedical research and testing in Europe.

    Science.gov (United States)

    Hasiwa, Nina; Bailey, Jarrod; Clausing, Peter; Daneshian, Mardas; Eileraas, Marianne; Farkas, Sándor; Gyertyán, István; Hubrecht, Robert; Kobel, Werner; Krummenacher, Goran; Leist, Marcel; Lohi, Hannes; Miklósi, Adám; Ohl, Frauke; Olejniczak, Klaus; Schmitt, Georg; Sinnett-Smith, Patrick; Smith, David; Wagner, Kristina; Yager, James D; Zurlo, Joanne; Hartung, Thomas

    2011-01-01

    Dogs are sometimes referred to as "man's best friend" and with the increase in urbanization and lifestyle changes, dogs are seen by their owners as family members. Society expresses specific concerns about the experimental use of dogs, as they are sometimes perceived to have a special status for humans. This may appear somewhat conflicting with the idea that the intrinsic value of all animals is the same, and that also several other animal species are used in biomedical research and toxicology. This aspect and many others are discussed in an introductory chapter dealing with ethical considerations on the use of dogs as laboratory animals. The report gives an overview on the use of dogs in biomedical research, safety assessment and the drug developmental process and reflects the discussion on the use of dogs as second (non-rodent)species in toxicity testing. Approximately 20,000 dogs are used in scientific procedures in Europe every year, and their distinct genetic, physiological and behavioral characteristics may support their use as models for e.g. behavioral analysis and genetic research. Advances in the 3Rs (Replacement, Reduction and Refinement of experiments using dogs) are described, potential opportunities are discussed and recommendations for further progress in this area are made.

  4. Observation Platform for Dynamic Biomedical and Biotechnology Experiments using the ISS Light Microscopy Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the research is the completion of an observation platform for the ISS Light Microscopy Module (LMM) as it currently resides on the US Fluids...

  5. Modules and supporting hardware for FASTBUS test and diagnostic purposes

    Energy Technology Data Exchange (ETDEWEB)

    Bertolucci, B.

    1981-10-01

    This paper contains detailed descriptions and circuitry of some modules and supporting hardware for the FASTBUS System developed at SLAC. A fast slave-only Memory Module (PRIMO), a Dummy Module (U2), a FASTBUS Test Box (LAIKA), and a Bus Display Bar (BBD) have been built, tested and used for test and diagnostic purposes for FASTBUS.

  6. [Tests of statistical significance in three biomedical journals: a critical review].

    Science.gov (United States)

    Sarria Castro, Madelaine; Silva Ayçaguer, Luis Carlos

    2004-05-01

    To describe the use of conventional tests of statistical significance and the current trends shown by their use in three biomedical journals read in Spanish-speaking countries. All descriptive or explanatory original articles published in the five-year period of 1996 through 2000 were reviewed in three journals: Revista Cubana de Medicina General Integral [Cuban Journal of Comprehensive General Medicine], Revista Panamericana de Salud Pública/Pan American Journal of Public Health, and Medicina Clínica [Clinical Medicine] (which is published in Spain). In the three journals that were reviewed various shortcomings were found in their use of hypothesis tests based on P values and in the limited use of new tools that have been suggested for use in their place: confidence intervals (CIs) and Bayesian inference. The basic findings of our research were: minimal use of CIs, as either a complement to significance tests or as the only statistical tool; mentions of a small sample size as a possible explanation for the lack of statistical significance; a predominant use of rigid alpha values; a lack of uniformity in the presentation of results; and improper reference in the research conclusions to the results of hypothesis tests. Our results indicate the lack of compliance by authors and editors with accepted standards for the use of tests of statistical significance. The findings also highlight that the stagnant use of these tests continues to be a common practice in the scientific literature.

  7. Testing Interconnections using Conductive Adhesives for Application in PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; De Jong, P.C.; Kloos, M.J.H. [ECN Solar Energy, Petten (Netherlands); Van den Nieuwenhof, M.A.C.J.; Bots, T.L.; Meuwissen, M.H.H.; Steijvers, H.L.A.H. [TNO Science and Industry, Eindhoven (Netherlands)

    2006-09-15

    In current module production the electrical interconnections are soldered to the solar cells. For current modules with thin cells and new module concepts with back contact cells, the replacement of solder by conductive adhesives can be advantageous. However, the current IEC tests were developed for soldered interconnections, which have other failure mechanisms. Therefore, three additional tests have been developed for the testing of conductive adhesives to be used in solar modules. In combination with computer simulation techniques developed in the same project, the tests will contribute to a better understanding of failure mechanisms of PV modules with conductive adhesives.

  8. CMS Silicon Tracker Module Assembly and Testing at FNAL

    CERN Document Server

    Coppage, Don; Gerber, Cecilia Elena; Kahl, William E; Medel, E; Ronzhin, Anatoly; Sogut, Kenan; Shabalina, Elizaveta; Spiegel, Leonard; Ten, Timour Borisovich

    2005-01-01

    This note is intended to provide details on a recent activity at FNAL in which CMS Tracker Outer Barrel modules were assembled and tested as part of a qualification of some of the sensor fabrication lines. At the same time the note serves to document the assembly and testing operations at FNAL for CMS silicon tracker modules. Of the 88 modules produced fo the qualification study at FNAL, one module was outside the mechanical alignment specification. For module bonding an introduced failure rate of 4.0x10^-4 faults per channel was observed. Eighty-five of the modules passed the full set of electrical tests. Two of the failures could be attributed to the sensors and one to a problem with the front-end hybrid. Additionally, a couple of the passed modules drew unusually high leakage currents. The high current modules are discussed in some detail.

  9. CMS Silicon Tracker Module Assembly and Testing at FNAL

    CERN Document Server

    Coppage, Don; Gerber, Cecilia Elena; Kahl, William E; Medel, E; Ronzhin, Anatoly; Sogut, Kenan; Shabalina, Elizaveta; Spiegel, Leonard; Ten, Timour Borisovich

    2005-01-01

    This note is intended to provide details on a recent activity at FNAL in which CMS Tracker Outer Barrel modules were assembled and tested as part of a qualification of some of the sensor fabrication lines. At the same time the note serves to document the assembly and testing operations at FNAL for CMS silicon tracker modules. Of the 88 modules produced fo the qualification study at FNAL, one module was outside the mechanical alignment specification. For module bonding an introduced failure rate of 4.0x10^-4 faults per channel was observed. Eighty-five of the modules passed the full set of electrical tests. Two of the failures could be attributed to the sensors and one to a problem with the front-end hybrid. Additionally, a couple of the passed modules drew unusually high leakage currents. The high current modules are discussed in some detail.

  10. Evaluation tests for photovoltaic concentrator receiver sections and modules

    Energy Technology Data Exchange (ETDEWEB)

    Woodworth, J.R.; Whipple, M.L.

    1992-06-01

    Sandia has developed a third-generation set of specifications for performance and reliability testing of photovoltaic concentrator modules. Several new requirements have been defined. The primary purpose of the tests is to screen new concentrator designs and new production runs for susceptibility to known failure mechanisms. Ultraviolet radiation testing of materials precedes receiver section and module performance and environmental tests. The specifications include the purpose, procedure, and requirements for each test. Recommendations for future improvements are presented.

  11. Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C. R.

    2008-03-01

    This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

  12. Regenesys utility scale energy storage. Module test programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This short document reports on the testing and development of the Regenesys XL modules at the operations Training and Evaluation Facility (OTEF) at the Aberthaw Power Station UK between March 2002 and December 2003. The study covered the development and testing of the commercial XL200 module technology to be installed at Little Barford. The objectives of the test programme were to identify potential long-term failure modes, determine performance stability and operational lifetime, and identify possible long-term operational impacts on the module and the system. Two modules (the XL200.833 and the XL200.858) were tested. Following mechanical failures triggered by system faults, the tests were repeated for more than 1500 operational hours with new modules XL200.911 and XL200.921. The work was carried out as part of the DTI New and Renewable Energy Programme managed by Future Energy Solutions.

  13. Design and preliminary test results of Daya Bay RPC modules*

    Energy Technology Data Exchange (ETDEWEB)

    Hackenburg, R.

    2011-09-01

    Resistive Plate Chamber (RPC) modules will be used as one part of the cosmic muon veto system in the Daya Bay reactor neutrino experiment. A total of 189 RPC modules will cover the three water pools in the experiment. To achieve track reconstruction and high efficiency, each module consists of 4 layers, each of which contains two sizes of bare chambers. The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas. The module efficiency and patch efficiency were studied both in simulation and test of the data analysis. 143 modules have been constructed and tested. The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

  14. Design and preliminary test results of Daya Bay RPC modules

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Lei; Logan Lebanowski; Cullen Newsom; Lin Shih-Kai; Jonathan Link; MA Lie-Hua; Viktor Pě(c); Vit Vorobel; CHEN Jin; LIU Jin-Chang; ZHOU Yong-Zhao; GUAN Meng-Yun; LIANG Hao; YANG Chang-Gen; WANG Yi-Fang; ZHANG Jia-Wen; LU Chang-Guo; Kirk McDonald; Robert Hackenburg; Kwong Lau

    2011-01-01

    Resistive Plate Chamber(RPC)modules will be used as one part of the cosmic muon veto system in the Days Bay reactor neutrino experiment.A total of 189 RPC modules will cover the three water pools in the experiment.To achieve track reconstruction and high efficiency,each module consists of 4 layers,each of which contains two sizes of bare chambers.The placement of bare chambers is reversed in different layers to reduce the overlapping dead areas.The module efficiency and patch efficiency were studied both in simulation and test of the data analysis.143 modules have been constructed and tested.The preliminary study shows that the module and patch 3 out of 4 layers efficiency reaches about 98%.

  15. Creep Burst Testing of a Woven Inflatable Module

    Science.gov (United States)

    Selig, Molly M.; Valle, Gerard D.; James, George H.; Oliveras, Ovidio M.; Jones, Thomas C.; Doggett, William R.

    2015-01-01

    A woven Vectran inflatable module 88 inches in diameter and 10 feet long was tested at the NASA Johnson Space Center until failure from creep. The module was pressurized pneumatically to an internal pressure of 145 psig, and was held at pressure until burst. The external environment remained at standard atmospheric temperature and pressure. The module burst occurred after 49 minutes at the target pressure. The test article pressure and temperature were monitored, and video footage of the burst was captured at 60 FPS. Photogrammetry was used to obtain strain measurements of some of the webbing. Accelerometers on the test article measured the dynamic response. This paper discusses the test article, test setup, predictions, observations, photogrammetry technique and strain results, structural dynamics methods and quick-look results, and a comparison of the module level creep behavior to the strap level creep behavior.

  16. Design and Testing of CPAS Main Deployment Bag Energy Modulator

    Science.gov (United States)

    Mollmann, Catherine

    2017-01-01

    During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.

  17. Designing an Affordable Usability Test for E-Learning Modules

    Science.gov (United States)

    O'Bryan, Corliss A.; Johnson, Donald M.; Shores-Ellis, Katrina D.; Crandall, Philip G.; Marcy, John A.; Seideman, Steve C.; Ricke, Steven C.

    2010-01-01

    This article provides background and an introduction to a user-centered design and usability test in an inexpensive format that allows content experts who are novices in e-learning development to perform testing on newly developed technical training modules prior to their release. The use of a small number of test participants, avoidance of…

  18. Development and pilot testing of an online module for ethics education based on the Nigerian National Code for Health Research Ethics

    Science.gov (United States)

    2013-01-01

    Background The formulation and implementation of national ethical regulations to protect research participants is fundamental to ethical conduct of research. Ethics education and capacity are inadequate in developing African countries. This study was designed to develop a module for online training in research ethics based on the Nigerian National Code of Health Research Ethics and assess its ease of use and reliability among biomedical researchers in Nigeria. Methodology This was a three-phased evaluation study. Phase one involved development of an online training module based on the Nigerian Code of Health Research Ethics (NCHRE) and uploading it to the Collaborative Institutional Training Initiative (CITI) website while the second phase entailed the evaluation of the module for comprehensibility, readability and ease of use by 45 Nigerian biomedical researchers. The third phase involved modification and re-evaluation of the module by 30 Nigerian biomedical researchers and determination of test-retest reliability of the module using Cronbach’s alpha. Results The online module was easily accessible and comprehensible to 95% of study participants. There were significant differences in the pretest and posttest scores of study participants during the evaluation of the online module (p = 0.001) with correlation coefficients of 0.9 and 0.8 for the pretest and posttest scores respectively. The module also demonstrated excellent test-retest reliability and internal consistency as shown by Cronbach’s alpha coefficients of 0.92 and 0.84 for the pretest and posttest respectively. Conclusion The module based on the Nigerian Code was developed, tested and made available online as a valuable tool for training in cultural and societal relevant ethical principles to orient national and international biomedical researchers working in Nigeria. It would complement other general research ethics and Good Clinical Practice modules. Participants suggested that awareness of the

  19. Test-to-Failure of Crystalline Silicon Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Terwilliger, K.; Glick, S.; Trudell, D.; Bosco, N.; Johnston, S.; Kurtz, S. R.

    2010-10-01

    Accelerated lifetime testing of five crystalline silicon module designs was carried out according to the Terrestrial Photovoltaic Module Accelerated Test-to-Failure Protocol. This protocol compares the reliability of various module constructions on a quantitative basis. The modules under test are subdivided into three accelerated lifetime testing paths: 85..deg..C/85% relative humidity with system bias, thermal cycling between ?40..deg..C and 85..deg..C, and a path that alternates between damp heat and thermal cycling. The most severe stressor is damp heat with system bias applied to simulate the voltages that modules experience when connected in an array. Positive 600 V applied to the active layer with respect to the grounded module frame accelerates corrosion of the silver grid fingers and degrades the silicon nitride antireflective coating on the cells. Dark I-V curve fitting indicates increased series resistance and saturation current around the maximum power point; however, an improvement in junction recombination characteristics is obtained. Shunt paths and cell-metallization interface failures are seen developing in the silicon cells as determined by electroluminescence, thermal imaging, and I-V curves in the case of negative 600 V bias applied to the active layer. Ability to withstand electrolytic corrosion, moisture ingress, and ion drift under system voltage bias are differentiated.

  20. Hubble Space Telescope solar cell module thermal cycle test

    Science.gov (United States)

    Douglas, Alexander; Edge, Ted; Willowby, Douglas; Gerlach, Lothar

    1992-01-01

    The Hubble Space Telescope (HST) solar array consists of two identical double roll-out wings designed after the Hughes flexible roll-up solar array (FRUSA) and was developed by the European Space Agency (ESA) to meet specified HST power output requirements at the end of 2 years, with a functional lifetime of 5 years. The requirement that the HST solar array remain functional both mechanically and electrically during its 5-year lifetime meant that the array must withstand 30,000 low Earth orbit (LEO) thermal cycles between approximately +100 and -100 C. In order to evaluate the ability of the array to meet this requirement, an accelerated thermal cycle test in vacuum was conducted at NASA's Marshall Space Flight Center (MSFC), using two 128-cell solar array modules which duplicated the flight HST solar array. Several other tests were performed on the modules. The thermal cycle test was interrupted after 2,577 cycles, and a 'cold-roll' test was performed on one of the modules in order to evaluate the ability of the flight array to survive an emergency deployment during the dark (cold) portion of an orbit. A posttest static shadow test was performed on one of the modules in order to analyze temperature gradients across the module. Finally, current in-flight electrical performance data from the actual HST flight solar array will be tested.

  1. Tests of CMS MSGC Modules at PSI

    CERN Document Server

    Beaumont, Willem; Bernier, Kim; Blum, Peter; Bouhali, Othmane; Boulogne, Isabelle; Bozzo, Marco; Brez, Alessandro; Buzulutskov, A; Coffin, Jean-Pierre Coffin; Daubie, Evelyne; De Lentdecker, Gilles; Devroede, O; Erbacher, Th; Fahrer, Manuel; Fontaine, Jean-Charles; Flügge, Gunter; Gariano, G; Geist, Walter M; Gottschalk, M; Helleboid, Jean-Marie; Huss, Daniel; Iacopi, F; Kärcher, Kurt; Latronico, Luca; Lounis, Abdenour; Lumb, Nicholas; Maazouzi, Chaker; Macke, D; Massai, Marco Maria; Mörmann, Dirk; Müller, Th; Neuberger, D; Nowack, Andreas; Papanestis, Antonios; Raffo, R; Roederer, Frank; Schulte, R; Shekhtman, L I; Sigward, M H; Simonis, H J; Spandre, Gloria; Spezziga, Mario; Struczinski, W; Tatarinov, A A; Toropin, Alexander N.; Van Doninck, Walter; Van Dyck, C; Van Lancker, Luc; Van der Velde, C; Vanlaer, Pascal; Bellazzini, Ronaldo; Zander, A; Barvich, Tobias; Zghiche, Amina; Zhukov, Valery; Brom, Jean-Marie; Ageron, M; Chowotz, Piotr; Albert, A; Mirabito, Laurent; Bluem, P.; Kaercher, K; Moermann, Dirk; Mueller, Th; Roederer, Frank; Weiler, Thomas

    1999-01-01

    The CMS experiment, to be installed at the future p-p collider LHC at CERN, foresees the use of Micro-Strip Gas Counters ( MSGC's) for the outer layers of its central tracker. Present developments focus on the reliability of MSGC's in the harsh radiation environment imposed by the LHC. This paper reports on tests of two baseline CMS MSGC's identical to those foreseen for the barrel part of the tracker, in a high intensity pion beam at the Paul Scherrer Institute ( PSI), in april 1999.

  2. Standard Test Methods for Determining Mechanical Integrity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 These test methods cover procedures for determining the ability of photovoltaic modules to withstand the mechanical loads, stresses and deflections used to simulate, on an accelerated basis, high wind conditions, heavy snow and ice accumulation, and non-planar installation effects. 1.1.1 A static load test to 2400 Pa is used to simulate wind loads on both module surfaces 1.1.2 A static load test to 5400 Pa is used to simulate heavy snow and ice accumulation on the module front surface. 1.1.3 A twist test is used to simulate the non-planar mounting of a photovoltaic module by subjecting it to a twist angle of 1.2°. 1.1.4 A cyclic load test of 10 000 cycles duration and peak loading to 1440 Pa is used to simulate dynamic wind or other flexural loading. Such loading might occur during shipment or after installation at a particular location. 1.2 These test methods define photovoltaic test specimens and mounting methods, and specify parameters that must be recorded and reported. 1.3 Any individual mech...

  3. New test and characterization methods for PV modules and cells

    Energy Technology Data Exchange (ETDEWEB)

    Van Aken, B.; Sommeling, P. [ECN Solar Energy, Petten (Netherlands); Scholten, H. [Solland, Heerlen (Netherlands); Muller, J. [Moser-Baer, Eindhoven (Netherlands); Grossiord, N. [Holst Centre, Eindhoven (Netherlands); Smits, C.; Blanco Mantecon, M. [Holland Innovative, Eindhoven (Netherlands); Verheijen, M.; Van Berkum, J. [Philips Innovation Services, Eindhoven (Netherlands)

    2012-08-15

    The results of the project geZONd (shared facility for solar module analysis and reliability testing) are described. The project was set up by Philips, ECN, Holst, Solland, OM and T and Holland Innovative. The partners have shared most of their testing and analysis equipment for PV modules and cells, and together developed new or improved methods (including the necessary application know-how). This enables faster and more efficient innovation projects for each partner, and via commercial exploitation for other interested parties. The project has concentrated on five failure modes: corrosion, delamination, moisture ingress, UV irradiation, and mechanical bending. Test samples represented all main PV technologies: wafer based PV and rigid and flexible thin-film PV. Breakthroughs are in very early detection of corrosion, in quantitative characterization of adhesion, in-situ detection of humidity and oxygen inside modules, and ultra-fast screening of materials on UV stability.

  4. ATLAS silicon module assembly and qualification tests at IFIC Valencia

    CERN Document Server

    Bernabeu, J; Costa, M J; Escobar, C; Fuster, J; García, C; García-Navarro, J E; Gonzalez, F; González-Sevilla, S; Lacasta, C; Llosa, G; Martí i García, S; Minano, M; Mitsou, V A; Modesto, P; Nacher, J; Rodriguez-Oliete, R; Sanchez, F J; Sospedra, L; Strachko, V

    2007-01-01

    ATLAS experiment, designed to probe the interactions of particles emerging out of proton proton collisions at energies of up to 14 TeV, will assume operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper discusses the assembly and the quality control tests of forward detector modules for the ATLAS silicon microstrip detector assembled at the Instituto de Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.

  5. ATLAS silicon module assembly and qualification tests at IFIC Valencia

    CERN Document Server

    Bernabeu, J; Costa, M J; Escobar, C; Fuster, J; García, C; García-Navarro, J E; González, F; González-Sevilla, S; Lacasta, C; Llosá, G; Martí i García, S; Miñano, M; Mitsou, V A; Modesto, P; Nácher, J; Rodríguez-Oliete, R; Sánchez,F J; Sospedra, L; Strachko V

    2007-01-01

    ATLAS experiment, designed to probe the interactions of particles emerging out of proton proton collisions at energies of up to 14 TeV, will assume operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper discusses the assembly and the quality control tests of forward detector modules for the ATLAS silicon microstrip detector assembled at the Instituto de Física Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.

  6. Beam test of CSES silicon strip detector module

    Science.gov (United States)

    Zhang, Da-Li; Lu, Hong; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, Zheng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2017-05-01

    The silicon-strip tracker of the China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSDs) which provide incident particle tracking information. A low-noise analog ASIC VA140 was used in this study for DSSD signal readout. A beam test on the DSSD module was performed at the Beijing Test Beam Facility of the Beijing Electron Positron Collider (BEPC) using a 400-800 MeV/c proton beam. The pedestal analysis results, RMSE noise, gain correction, and intensity distribution of incident particles of the DSSD module are presented. Supported by the XXX Civil Space Programme

  7. Beam test of CSES silicon strip detector module

    CERN Document Server

    Zhang, Da-Li; Wang, Huan-Yu; Li, Xin-Qiao; Xu, Yan-Bing; An, heng-Hua; Yu, Xiao-xia; Wang, Hui; Shi, Feng; Wang, Ping; Zhao, Xiao-Yun

    2016-01-01

    The silicon-strip tracker of China Seismo-Electromagnetic Satellite (CSES) consists of two double-sided silicon strip detectors (DSSD). It provides the tracking information of incident particles. The low-noise analog ASIC VA140 was used for signal readout of DSSD. A beam test of the DSSD module was performed in the Beijing test beam Facility of the Beijing Electron Positron Collider (BEPC) using proton beam of 400~800MeV/c. Results on pedestal analysis, RMSE noise, gain correction and reconstruction of incident position of DSSD module are presented.

  8. Development and Testing of Shingle-type Solar Cell Modules

    Science.gov (United States)

    Shepard, N. F., Jr.

    1979-01-01

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.

  9. The Conceptual Design of Module Documentation Based Testing Tool

    Directory of Open Access Journals (Sweden)

    Salmi Baharom

    2008-01-01

    Full Text Available Software testing plays an important role to assure the quality of software and can be highly effective if performed rigorously. Studies found that testing can benefit from formal specification as it provides precise description of expected software behavior and most importantly, it is in a form that it can be manipulated easily for automation purpose. Grey-box testing approach usually based on knowledge obtains from specification and source code while seldom the design specification is concerned. In this study, an approach was described with an example of circular queue for testing a module with internal memory from its formal specification based on grey-box approach. However, in this research, we proposed a grey-box testing approach that uses the knowledge of design specification instead of source code. We utilized formal specifications that were documented using Parnas's Module Documentation (MD method to generate test oracle and to execute the test. The MD provides the information of external and internal view of a module that is useful in our testing approach.

  10. Preliminary dimensioning of the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu; Abou-Sena, Ali; Chen, Yuming; Freund, Jana; Klix, Axel; Kondo, Keitaro; Vladimirov, Pavel

    2013-10-15

    Highlights: • The design of the IFMIF Tritium Release Test Module is explained. • Nuclear responses in the module and specimens are calculated. • Temperature fields during irradiation are calculated by 1D methods. • The tritium budget is calculated by 1D methods. -- Abstract: As part of the ongoing Engineering Validation and Engineering Design Activities for the International Fusion Materials Irradiation Facility (IFMIF), an experimental device suitable for the irradiation and online tritium release measurements of solid breeder ceramics and beryllium is investigated. This experimental device is called the Tritium Release Test Module (TRTM). In the preliminary design phase, the possible thermal conditions, the tritium diffusion budgets, and the mechanical loads have been studied by analytical calculations and numerical codes. The most important results concern the tritium production and nuclear heating induced in the structures, the temperature distribution in the specimen region and the structure, and the diffusion of tritium through the safety barriers.

  11. Jar Test. Training Module 5.230.2.77.

    Science.gov (United States)

    Bonte, John L.; Davidson, Arnold C.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the jar test and its application to the coagulation, floculation and sedimentation processes, and the chemical precipitation process. Included are objectives, an instructor guide, student handouts, and transparency masters. A video…

  12. Phase 1 pixel modules production and High Density Interconnect testing

    CERN Document Server

    Still, Joseph

    2014-01-01

    During the first run of the LHC, luminosity peaked at $1 \\times 10^{34} cm^{-2}s^{-1}$ with $ \\approx 50 ns$ bunch spacing a pile-up of about 25, or simultaneous inelastic collisions per crossing, occur in the CMS experiment. However after the upgrade of of the LHC during long shut down 1, luminosity, and therefore pile-up. Therefore the CMS pixel tracker has to be upgraded to be able to operate correctly under this news stronger constraints. That is how this CERN Summer Student project, which took place at the CERN Meyrin site, comes within the framework of the pixel detector upgrade in the CMS experiment with a work aimed on the phase 1 of pixel modules production and tests of the HDI. The production and tests of the HDI were held in cleanroom facilities. This included first hand as well as to work on pixel modules building and performing size and flatness tests on them, and on a other hand testing several HDIs. At first, prototypes modules were assembled before real modules building. Another aspect of work...

  13. Recommendations on practice of conditioned pain modulation (CPM) testing.

    Science.gov (United States)

    Yarnitsky, D; Bouhassira, D; Drewes, A M; Fillingim, R B; Granot, M; Hansson, P; Landau, R; Marchand, S; Matre, D; Nilsen, K B; Stubhaug, A; Treede, R D; Wilder-Smith, O H G

    2015-07-01

    Protocols for testing conditioned pain modulation (CPM) vary between different labs/clinics. In order to promote research and clinical application of this tool, we summarize the recommendations of interested researchers consensus meeting regarding the practice of CPM and report of its results.

  14. Liquid Metal Thermal Electric Converter bench test module

    Energy Technology Data Exchange (ETDEWEB)

    Lukens, L.L.; Andraka, C.E.; Moreno, J.B.

    1988-04-01

    This report describes the design, fabrication, and test of a Liquid Metal Thermal Electric Converter Bench Test Module. The work presented in this document was conducted as a part of Heat Engine Task of the US Department of Energy's (DOE) Solar Thermal Technology Program. The objective of this task is the development and evaluation of heat engine technologies applicable to distributed receiver systems, in particular, dish electric systems.

  15. Testing and analysis of photovoltaic modules for electrochemical corrosion

    Science.gov (United States)

    Neff, Michael; Mon, Gordon R.; Whitla, Guy; Ross, Russ, Jr.

    1986-01-01

    This paper describes the testing and evaluation used to characterize the mechanisms of electrochemical corrosion of photovoltaic modules - encapsulated solar cells. Accelerated exposure testing was performed on a sample matrix of cell/encapsulant combinations, and microanalytical failure analysis was performed on selected samples to confirm the correlation between the accelerated test data and the life prediction model. A quantitative correlation between field exposure time and exposure time in the accelerated multistress tests was obtained based upon the observation that equal quantities of interelectrode charge transfer resulted in equivalent degrees of electrochemical charge.

  16. A General Method for Module Automatic Testing in Avionics Systems

    Directory of Open Access Journals (Sweden)

    Li Ma

    2013-05-01

    Full Text Available The traditional Automatic Test Equipment (ATE systems are insufficient to cope with the challenges of testing more and more complex avionics systems. In this study, we propose a general method for module automatic testing in the avionics test platform based on PXI bus. We apply virtual instrument technology to realize the automatic testing and the fault reporting of signal performance. Taking the avionics bus ARINC429 as an example, we introduce the architecture of automatic test system as well as the implementation of algorithms in Lab VIEW. The comprehensive experiments show the proposed method can effectively accomplish the automatic testing and fault reporting of signal performance. It greatly improves the generality and reliability of ATE in avionics systems.

  17. Micro CHP module with Stirling engine: tests and market introduction; Mikro-KWK-Modul mit Stirlingmotor

    Energy Technology Data Exchange (ETDEWEB)

    Baumueller, A.

    2002-07-01

    This article describes a small combined heat and power (CHP) module based on a stationary Stirling engine with a 2 - 9 kW electrical and a 8 - 24 kW thermal rating. Its associated gas burner is also described. The article reviews the history of the development of this CHP module and describes how the Stirling engine works. The advantages offered by the Stirling engine in comparison with conventional engines in terms of low maintenance requirements and low emissions of pollutants are discussed. The design of the module and its integration into heating systems are examined. Tests with 30 units providing a total of 150,000 hours of operation are discussed. Production facilities and market introduction activities are briefly described.

  18. [Official experimental testing of biomedical products. Regulatory frame and importance of for quality, safety and efficacy].

    Science.gov (United States)

    Vieths, S; Seitz, R

    2014-10-01

    The official experimental testing of biomedicinal products provides a very significant contribution to ensuring quality, safety and efficacy of these indispensable medicines. Already in the prelicensing phase or to elucidate clusters of increased adverse effects, official medicinal control laboratories are committed to perform experimental testing. The official batch release can be seen as external quality control of the manufacturer's release testing. For proficient performance in these tasks, scientific research is required, in particular on the development and refinement of test methods, and considering the continuous development of innovative biomedicinal products. This article is aimed at introducing the present thematic issue and in particular the regulatory basis of experimental product testing, and illustrates by means of several examples its great importance for the sake of the patients.

  19. Metrology test object for dimensional verification in additive manufacturing of metals for biomedical applications.

    Science.gov (United States)

    Teeter, Matthew G; Kopacz, Alexander J; Nikolov, Hristo N; Holdsworth, David W

    2015-01-01

    Additive manufacturing continues to increase in popularity and is being used in applications such as biomaterial ingrowth that requires sub-millimeter dimensional accuracy. The purpose of this study was to design a metrology test object for determining the capabilities of additive manufacturing systems to produce common objects, with a focus on those relevant to medical applications. The test object was designed with a variety of features of varying dimensions, including holes, cylinders, rectangles, gaps, and lattices. The object was built using selective laser melting, and the produced dimensions were compared to the target dimensions. Location of the test objects on the build plate did not affect dimensions. Features with dimensions less than 0.300 mm did not build or were overbuilt to a minimum of 0.300 mm. The mean difference between target and measured dimensions was less than 0.100 mm in all cases. The test object is applicable to multiple systems and materials, tests the effect of location on the build, uses a minimum of material, and can be measured with a variety of efficient metrology tools (including measuring microscopes and micro-CT). Investigators can use this test object to determine the limits of systems and adjust build parameters to achieve maximum accuracy.

  20. A systems approach to water recovery testing for space life support - Initial biomedical results from the ECLSS Water Recovery Test and plans for testbed utilization

    Science.gov (United States)

    Aten, Laurie A.; Crump, William J.; Sauer, Richard L.

    1992-01-01

    Among the challenges of designing and constructing Space Station Freedom is the development of the water system. A review of past efforts in reclaiming waste water in enclosed environments reveals that there are many gaps in the biomedical understanding of this process. Some of the key uncertainties of human interaction with a closed water system include determining potential contaminants and establishing safe levels of multiple compounds in the enclosed system of Space Station. Another uncertainty is the microbial constituency of such a system and what impact it could have on crew health and performance. The use of iodine as the passive biocide may have both an indirect and direct impact on the crew. In this paper the initial results of the Water Recovery Test are reviewed from a biomedical perspective, revealing areas where more information is needed to develop the ECLSS water system. By including the approach of 'man as a subsystem', consideration is given to how man interacts with the total water system. Taking this systems approach to providing the crew with a safe source of water gives useful insight into the most efficient design and utilization of closed system testbeds.

  1. Design, fabrication, and testing of an optoelectronic interface connectorized module

    Science.gov (United States)

    Benoit, Jeffrey T.; Grzybowski, Richard R.; Rubino, Robert A.; Newman, Leon A.; Fields, Christopher V.; DiDomenico, John A.; Donofrio, Andrew J.

    1994-10-01

    As efforts to include fiber optic technology in aircraft flight control electronics have progressed, the need has arisen for a compact optoelectronic interface with an integral multipin optical connector. The United Technologies Research Center optoelectronic Connectorized Module (CM) was designed and built to satisfy this need. This paper will discuss the background, design, fabrication and testing of a completed Connectorized Module. The prototype CM is a four channel speed sensor interface that incorporates established ceramic multichip module (MCM-C) technology with optical emitters and detectors and a multipin fiber optic connector. This combination of technologies yields a compact and rugged interface module. In addition, the CM removes optical fibers, and their associated difficult to repair pigtails, from within the electronic control box. The CM achieves this because: it contains all necessary optoelectronic circuitry, has integral electrical and optical connectors, and is mounted directly on the electronic control box wall, not on an internal circuit board. Although this CM is a speed sensor interface, the flexible nature of MCM-C technology will enable a wide variety of sensor and data communication interfaces to be implemented.

  2. An Engineering Approach to Biomedical Sciences: Advanced Testing Methods and Pharmacokinetic Modeling

    Science.gov (United States)

    Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2012-01-01

    In this paper, the philosophy of a research in pharmacology field, driven by an engineering approach, was described along with some case histories and examples. The improvement in the testing methods for pharmaceutical systems (in-vitro techniques), as well as the proposal and the testing of mathematical models to describe the pharmacokinetics (in-silico techniques) are reported with the aim of pointing out methodologies and tools able to reduce the need of expensive and ethical problematic in-vivo measurements. PMID:23905061

  3. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs.

  4. Modulators for the S-band test linac at DESY

    Science.gov (United States)

    Bieler, M.; Choroba, S.; Hameister, J.; Lewin, H.-Ch.

    1995-07-01

    The development of adequate modulators for high peak power klystrons is one of the focus points for linear collider R&D programs. For the DESY/THD S-band linear collider study 150 MW rf-pulse power at 50 Hz repetition rate and 3 μs pulse duration is required [1]. Two different modulator schemes are under investigation. One is the conventional line type pulser, using a pulse forming network and a step up transformer, the other one is a hard tube pulser, using a dc power source at the full klystron voltage and a switch tube. This paper is focused on the modulator development for the S-band Test Linac at DESY. After a short overview over the test linac and a brief description of the 150 MW S-band klystron the circuitry of the line type pulse (LTP) is given. A hard tube pulser (HTP), which switches the high voltage directly from a storage capacitor to the klystron, has been built up at DESY. Circuitry and the results of the commissioning of the switch tube are reported.

  5. Tests of the presampler electrodes for module 0

    CERN Document Server

    Belymam, A; Hoummada, A; Lund-Jensen, B

    2000-01-01

    The ATLAS presampler will be composed of approximately 90000 printed circuit board electrodes. These electrodes need to be tested to verify that they are whithin the tight thickness and size tolerances required by the module production technique. For the 3-layer anode electrodes a measurement of the electrical properties is required. A testbench to automatize these electrical measurements has been developed at KTH. This note presents the results obtained from measurements of thickness, size and electrical properties of the electrodes for the first series produced sectors, "module 0" . The thickness requirements are well fulfiled on 2-layer cathode electrodes. A large fraction of the 3-layer anode electrodes did not meet the thickness specifications. The reasons for this are identified and several improvements of the manufacturing process are proposed. The quality of the contour cutting of the boards is examined on preseries cut by milling and preseries cut by punching. Measurements show that the precision of ...

  6. Integrated system tests of the LSST raft tower modules

    Science.gov (United States)

    O'Connor, P.; Antilogus, P.; Doherty, P.; Haupt, J.; Herrmann, S.; Huffer, M.; Juramy-Giles, C.; Kuczewski, J.; Russo, S.; Stubbs, C.; Van Berg, R.

    2016-07-01

    The science focal plane of the LSST camera is made up of 21 fully autonomous 144 Mpixel imager units designated raft tower modules (RTM). These imagers incorporate nine 4K x 4K fully-depleted CCDs and 144 channels of readout electronics, including a dedicated CMOS video processing ASIC and components that provide CCD biasing and clocking, video digitization, thermal stabilization, and a high degree of monitoring and telemetry. The RTM achieves its performance goals for readout speed, read noise, linearity, and crosstalk with a power budget of less than 400mW/channel. Series production is underway on the first units and the production will run until 2018. We present the RTM final design, tests of the integrated signal chain, and performance results for the fully-integrated module with pre-production CCDs.

  7. Testing the precision optical calibration module for PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, Martin; Holzapfel, Kilian [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The Precision IceCube Next Generation Upgrade (PINGU) is primarily designed to determine the neutrino mass hierarchy. This measurement requires an accurate calibration of the detector in order to reduce systematic uncertainties. The Precision Optical Calibration Modules (POCAM) will be placed in the detector as a well calibrated artificial light source in the ice. The POCAM will be enclosed in a glass sphere identical to those used for the detector modules. To construct and simulate a prototype of the POCAM, every component needs to be analyzed by their optical characteristics and by the behavior in temperatures down to -50 C. Therefore a highly shielded an isolated environment has to be build up. We report the status of the testing environment and the hardware selected.

  8. Developing research competencies through a project-based tissue-engineering module in the biomedical engineering undergraduate curriculum.

    Science.gov (United States)

    Wallen, M; Pandit, A

    2009-05-01

    In addressing the task of developing an undergraduate module in the field of tissue engineering, the greatest challenge lies in managing to capture what is a growing and rapidly changing field. Acknowledging the call for the development of greater critical thinking and interpersonal skills among the next generation of engineers as well as encouraging students to engage actively with the dynamic nature of research in the field, the module was developed to include both project-based and cooperative-learning experiences. These learning activities include developing hypotheses for the application of newly introduced laboratory procedures, a collaborative mock grant submission, and debates on ethical issues in which students are assigned roles as various stakeholders. Feedback from module evaluations has indicated that, while students find the expectations challenging, they are able to gain an advanced insight into a dynamic field. More importantly, students develop research competencies by engaging in activities that require them to link current research directions with their own development of hypotheses for future tissue-engineering applications.

  9. Initial performance tests of SLATS photovoltaic concentrator modules

    Science.gov (United States)

    Stern, Theodore G.

    Tests have been performed to determine the terrestrial conversion efficiency and operating temperature in space of a modular photovoltaic concentrator. Nine test modules were fabricated, each having a set of three mirrors mounted in a graphite composite frame. Each mirror was mechanically formed by beryllium-copper sheet stock into an offset parabolic cylinder. An active photovoltaic receiver, comprising two strings of three parallel-connected gallium arsenide cells, was mounted on the central portion of the middle mirror in each module. Tests performed under terrestrial illumination (AM1.5) indicated mean mirror-cell conversion efficiency of 16.4 percent for silvered mirrors and 14 percent for aluminized mirrors at a 50 C cell temperature. Tests performed in a liquid-nitrogen shrouded vacuum chamber indicated a cell operating temperature of 90 C, which corresponds well to the results of independent thermal analysis. On the basis of these data, the performance of kilowatt-sized units in space using beryllium-copper mirrors is projected to be 35 W/kg. By substituting aluminum substrates for copper, a specific power of up to 55 W/kg is achievable in this configuration.

  10. Long Term Outdoor Testing of Low Concentration Solar Modules

    Science.gov (United States)

    Fraas, Lewis; Avery, James; Minkin, Leonid; Huang, H. X.; Hebrink, Tim; Hurt, Rik; Boehm, Robert

    2011-12-01

    A 1-axis carousel tracker equipped with four 3-sun low-concentration mirror modules has now been under test outdoors at the University of Nevada in Las Vegas (UNLV) for three years. There are three unique features associated with this unit. First, simple linear mirrors are used to reduce the amount of expensive single crystal silicon in order to potentially lower the module cost while potentially maintaining cell efficiencies over 20% and high module efficiency. Simple linear mirrors also allow the use of a single axis tracker. Second, the azimuth carousel tracker is also unique allowing trackers to be used on commercial building rooftops. Third, an experiment is underway comparing aluminum based mirrors with novel 3M Company multilayer polymeric mirrors which are potentially very low cost. Comparing the data from March of 2008 through March of 2011 shows that the aluminum mirror degradation to date is negligible and that the carousel tracker has been operating continuously and reliable. Also, no degradation has been observed for the 3M brand cool mirrors after one year in use.

  11. Examples of testing global identifiability of biological and biomedical models with the DAISY software.

    Science.gov (United States)

    Saccomani, Maria Pia; Audoly, Stefania; Bellu, Giuseppina; D'Angiò, Leontina

    2010-04-01

    DAISY (Differential Algebra for Identifiability of SYstems) is a recently developed computer algebra software tool which can be used to automatically check global identifiability of (linear and) nonlinear dynamic models described by differential equations involving polynomial or rational functions. Global identifiability is a fundamental prerequisite for model identification which is important not only for biological or medical systems but also for many physical and engineering systems derived from first principles. Lack of identifiability implies that the parameter estimation techniques may not fail but any obtained numerical estimates will be meaningless. The software does not require understanding of the underlying mathematical principles and can be used by researchers in applied fields with a minimum of mathematical background. We illustrate the DAISY software by checking the a priori global identifiability of two benchmark nonlinear models taken from the literature. The analysis of these two examples includes comparison with other methods and demonstrates how identifiability analysis is simplified by this tool. Thus we illustrate the identifiability analysis of other two examples, by including discussion of some specific aspects related to the role of observability and knowledge of initial conditions in testing identifiability and to the computational complexity of the software. The main focus of this paper is not on the description of the mathematical background of the algorithm, which has been presented elsewhere, but on illustrating its use and on some of its more interesting features. DAISY is available on the web site http://www.dei.unipd.it/ approximately pia/.

  12. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  13. TURBHO - Higher order turbulence modeling for industrial applications. Design document: Module Test Phase (MTP). Software engineering module: Testing; TURBHO. Turbulenzmodellierung hoeherer Ordnung fuer industrielle Anwendungen. Design document: Module Test Phase (MTP). Software engineering module: testing

    Energy Technology Data Exchange (ETDEWEB)

    Grotjans, H.

    1998-11-19

    In the current Software Engineering Module (SEM-4) new physical model implementations have been tested and additional complex test cases have been investigated with the available models. For all validation test cases it has been shown that the computed results are grid independent. This has been done by systematic grid refinement studies. No grid independence has been shown so far for the Aerospatiale-A airfoil, the draft tube flow, the transonic bump flow and the impinging jet flow. Most of the main objectives of the current SEM, cf. Chapter 1, are fulfilled. These are the verification of the alternative pressure-strain term (SSG-model), the implementation of a swirl correction for the standard-{kappa}-{epsilon} turbulence model and the assembling of additional test cases. However, few results are available so far for the industrial test cases. These have to be provided in the remaining time of this project. The implementation of the Low-Reynolds model has not been completed in this SEM as the other topics were preferred for completion. Additionally to the planned items two models have been implemented and tested. These are the wall distance equation, which is considered to give an important part of a low-Reynolds model implementation, and the {kappa}-{omega} turbulence model. (orig.)

  14. Tritium transport calculations for the IFMIF Tritium Release Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Jana, E-mail: jana.freund@kit.edu; Arbeiter, Frederik; Abou-Sena, Ali; Franza, Fabrizio; Kondo, Keitaro

    2014-10-15

    Highlights: • Delivery of material data for the tritium balance in the IFMIF Tritium Release Test Module. • Description of the topological models in TMAP and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). • Computation of release of tritium from the breeder solid material into the purge gas. • Computation of the loss of tritium over the capsule wall, rig hull, container wall and purge gas return line. - Abstract: The IFMIF Tritium Release Test Module (TRTM) is projected to measure online the tritium release from breeder ceramics and beryllium pebble beds under high energy neutron irradiation. Tritium produced in the pebble bed of TRTM is swept out continuously by a purge gas flow, but can also permeate into the module's metal structures, and can be lost by permeation to the environment. According analyses on the tritium inventory are performed to support IFMIF plant safety studies, and to support the experiment planning. This paper describes the necessary elements for calculation of the tritium transport in the Tritium Release Test Module as follows: (i) applied equations for the tritium balance, (ii) material data from literature and (iii) the topological models and the computation of the five different cases; namely release of tritium from the breeder solid material into the purge gas, loss of tritium over the capsule wall, rig hull, container wall and purge gas return line in detail. The problem of tritium transport in the TRTM has been studied and analyzed by the Tritium Migration Analysis Program (TMAP) and the adapted fusion-devoted Tritium Permeation Code (FUS-TPC). TMAP has been developed at INEEL and now exists in Version 7. FUS-TPC Code was written in MATLAB with the original purpose to study the tritium transport in Helium Cooled Lead Lithium (HCLL) blanket and in a later version the Helium Cooled Pebble Bed (HCPB) blanket by [6] (Franza, 2012). This code has been further modified to be applicable to the TRTM. Results from the

  15. Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)

    Science.gov (United States)

    Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony; hide

    2017-01-01

    The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.

  16. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  17. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  18. Review of Artificial Abrasion Test Methods for PV Module Technology

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Muller, Matt T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Simpson, Lin J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-08-01

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended to provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.

  19. Water Power Calculator Temperature and Analog Input/Output Module Ambient Temperature Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. McKay

    2011-02-01

    Water Power Calculator Temperature and Analog input/output Module Ambient Temperature Testing A series of three ambient temperature tests were conducted for the Water Power Calculator development using the INL Calibration Laboratory’s Tenney Environmental Chamber. The ambient temperature test results demonstrate that the Moore Industries Temperature Input Modules, Analog Input Module and Analog Output Module, ambient temperature response meet or exceed the manufactures specifications

  20. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  1. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  2. Biomedical Libraries

    Science.gov (United States)

    Pizer, Irwin H.

    1978-01-01

    Biomedical libraries are discussed as a distinct and specialized group of special libraries and their unique services and user interactions are described. The move toward professional standards, as evidenced by the Medical Library Association's new certification program, and the current state of development for a new section of IFLA established…

  3. Characterization of Multi Crystalline PV Modules under Standard Test Conditions and its Comparison with other Module Types

    Directory of Open Access Journals (Sweden)

    Rahnuma. Siddiqui

    2014-06-01

    Full Text Available Photovoltaic modules based on the relatively high efficiency crystalline technology are gaining importance in the photovoltaic market. Improving module performance is driven by a focus on lifetime yields and requirements of space – constraints sites. The materials used not only in thin film technologies but also crystalline pose problems in terms of measuring how much power is generated under STC. The fact that the modules power rates vary depends both on the amount of time they have been exposed to the sun and on their history of sunlight exposure in order to know the current state of the module. It is necessary to determine an easily accomplishable testing method that ensures the repeatability of the measurements of the power generated. This is essential because in order to have a reliable sample of the PV module population of a large PV plant, a huge no of modules must be measured. This paper shows different tests performed on different commercial crystalline PV modules both multi and mono, in order to find the best way to obtain measurements. A correlation was tested between sun exposure and power measured. A method for obtaining indoor measurements that takes periods of sunlight exposure into account is proposed. Also, temperature and irradiance coefficients were also determined for different technologies in order to obtain accurate measurements. Tests are operated in outdoor exposure and natural sunlight located in Gurgaon Region of Haryana (India as specific composite climate environment, characterized by high irradiation and temperature levels.

  4. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  5. Nuclear analysis of ITER Test Blanket Module Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Villari, Rosaria, E-mail: rosaria.villari@enea.it [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Kim, Byoung Yoon; Barabash, Vladimir; Giancarli, Luciano; Levesy, Bruno; Loughlin, Michael; Merola, Mario [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Moro, Fabio [ENEA, Fusion Technical Unit, Nuclear Technologies Laboratory, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Pascal, Romain [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France); Petrizzi, Luigino [European Commission, DG Research & Innovation G5, CDMA 00/030, B-1049 Brussels (Belgium); Polunovsky, Eduard; Van Der Laan, Jaap G. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 Saint Paul-lez-Durance Cedex (France)

    2015-10-15

    Highlights: • 3D nuclear analysis of the ITER TBM Port Plug (PP). • Calculations of neutron fluxes, nuclear heating, damage and He-production in TBM PP components. • Shutdown dose rate assessment with Advanced D1S method considering different configurations. • Potential design improvements to reduce the shutdown dose rate in the port interspace. - Abstract: Nuclear analyses have been performed for the ITER Test Blanket Module Port Plug (TBM PP) using the MCNP-5 Monte Carlo Code. A detailed 3D model of the TBM Port Plug with dummy TBM has been integrated into the ITER MCNP model (B-lite v.3). Neutron fluxes, nuclear heating, helium production and neutron damage have been calculated in all the TBM PP components. Global shutdown dose rate calculations have also been performed with Advanced D1S method for different configurations of the TBM PP system. This paper presents the results of these analyses and discusses potential design improvements aiming to further reduce the shutdown dose rate in the port interspace.

  6. Analysis of Tritium Breeding in the Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Hong, SeongHee; Park, YunSeo; Kim, Myung Hyun [Kyung Hee University, Yongin (Korea, Republic of)

    2015-10-15

    In this paper, neutronic analyses are conducted on redesign of TMs which have high tritium breeding performance based on results of previous study. Calculation model is simplified, there is no effect to cover very complex geometry of fusion reactor for this study. As spent fuel disposal problem is issued in nuclear industry, FFHR is one of the most fascinating candidates for solving this problem through waste transmutation. Our research team also was designed a full core FFHR for waste transmutation. However, in this study, Test Module (TM) as test bed of FFHR for various purposes are analyzed. Analysis of tritium breeding on the TM was conducted as a first phase among TMs having various purposes. Because there are no fissionable materials in the TM for tritium breeding, geometry and neutronic reactions of its simpler compared to TM for waste transmutation and power production. Additionally, it is important database for tritium self-sufficiency as basic design condition of TM. In the previous study, neutronic analyses are conducted on these various TMs: Helium cooled solid breeder (HCSB), water cooled solid breeder (WCSB), Helium cooled dual breeder (HCDB) and molten-salt cooled liquid breeder (MSLB) in order to understand design characteristics. Neutronics calculations are performed with MCNPX 2.6.0 with ENDF/B-VII.0 neutron cross section library and activity and time-dependent tritium production calculations are performed with CINDER'90. In this paper, analysis of tritium breeding on WCHESL and WCHELL as TM is conducted. WCHESL is designed for effective tritium breeding performance and it satisfies design conditions. On the other hand WCHELL is designed for tritium breeding as much as possible and it also satisfies design conditions. However, neutron multiplication performance with these TM is not outstanding. WCHESL consist ceramic Li breeder, its period is 4.15E+08 sec.

  7. Standard Test Method for Hot Spot Protection Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method provides a procedure to determine the ability of a photovoltaic (PV) module to endure the long-term effects of periodic “hot spot” heating associated with common fault conditions such as severely cracked or mismatched cells, single-point open circuit failures (for example, interconnect failures), partial (or non-uniform) shadowing or soiling. Such effects typically include solder melting or deterioration of the encapsulation, but in severe cases could progress to combustion of the PV module and surrounding materials. 1.2 There are two ways that cells can cause a hot spot problem; either by having a high resistance so that there is a large resistance in the circuit, or by having a low resistance area (shunt) such that there is a high-current flow in a localized region. This test method selects cells of both types to be stressed. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method....

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  9. Laboratory Test of a Cylindrical Heat Storage Module with Water and Sodium Acetate Trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Johansen, Jakob Berg;

    2016-01-01

    Cylindrical heat storage modules with internal heat exchangers have been tested in a laboratory. The modules were filled with water and sodium acetate trihydrate with additives. The testing focused on the heat content of the storage material and the heat exchange capacity rate during charge...... of the module. For the tests with the phase change materials, the focus was furthermore on the stability of supercooling and cycling stability. Testing the module with sodium acetate trihydrate and 6.4% extra water showed that phase separation increased and the heat released after solidification of supercooled...... phase change material was reduced over 17 test cycles. The heat released after solidification of the supercooled sodium acetate trihydrate with thickening agent and graphite was stable over the test cycles. Stable supercooling was obtained in 7 out of 17 test cycles with the module with sodium acetate...

  10. Sand Impact Tests of a Half-Scale Crew Module Boilerplate Test Article

    Science.gov (United States)

    Vassilakos, Gregory J.; Hardy, Robin C.

    2012-01-01

    Although the Orion Multi-Purpose Crew Vehicle (MPCV) is being designed primarily for water landings, a further investigation of launch abort scenarios reveals the possibility of an onshore landing at Kennedy Space Center (KSC). To gather data for correlation against simulations of beach landing impacts, a series of sand impact tests were conducted at NASA Langley Research Center (LaRC). Both vertical drop tests and swing tests with combined vertical and horizontal velocity were performed onto beds of common construction-grade sand using a geometrically scaled crew module boilerplate test article. The tests were simulated using the explicit, nonlinear, transient dynamic finite element code LS-DYNA. The material models for the sand utilized in the simulations were based on tests of sand specimens. Although the LSDYNA models provided reasonable predictions for peak accelerations, they were not always able to track the response through the duration of the impact. Further improvements to the material model used for the sand were identified based on results from the sand specimen tests.

  11. Quantum dot technology and its application in biomedical test%量子点技术及其在生物医学检验中的应用

    Institute of Scientific and Technical Information of China (English)

    汤陌生

    2016-01-01

    Quantum dots technology in recent years has been widely used in biomedical applications, gradually become an important biomedical test because of its spectral characteristics and good photochemical stability. At the end of the last century seventy's, scientists have conducted in-depth research on quantum dots technology, its advantage has gradually been excavated, it can be said of quantum dots has a long research history. But until the late twentieth century was applied to the field of biology, since then, the application of quantum dots in biomedicine has attracted people's attention. In many fields of biomedicine, there is a breakthrough. This paper analyzed comprehensive for quantum dot technology and its application in biomedical test.%目前,量子点技术在生物医学中取得了广泛的应用,由于其具有独特的光谱特性和很好的光化学稳定性,逐渐成为生物医学检验领域中一种重要方式。早在20世纪70年代末,科学家已对量子点技术进行了深入的研究,其优势逐渐显现,20世纪的末期被应用到生物学领域。至此之后,量子点技术在生物医学中的应用受到关注和重视,在生物医学的多个领域有了突破性的进展,并具有广阔的前景。

  12. Hydraulic testing of helium cooled irradiation rigs of the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christine, E-mail: Christine.Klein@kit.edu [Karlsruhe Institute of Technology, INR, Eggenstein-Leopoldshafen (Germany); Arbeiter, Frederik; Jackowski, Thomas; Martin, Thomas; Schlindwein, Georg [Karlsruhe Institute of Technology, INR, Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Uniform perfusion of the multiple parallel minichannels of the rig model B by helium gas, which is of importance to obtain uniform and predictable temperatures, could be verified by measuring the mean velocity profiles of the rectangular jets are measured using hot-wire anemometry. Black-Right-Pointing-Pointer The pressure drop in the test section with rig model B was measured and delivers data for the validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. The pressure drop depends significantly on the pressure level; acceleration resulting from the volumetric expansion of helium gas has to be modeled carefully in simulations. Black-Right-Pointing-Pointer Measurements with strain gage show the pressure depending deformation of the compartment container without the rig. The results agree well with simulations and approximation calculations. - Abstract: The hydraulic testing of a single 1:1 irradiation rig inside a mock-up container is part of the validation activities which support the engineering design of the High Flux Test Module. Uniform perfusion of the multiple parallel minichannels of the irradiation rigs by helium gas is of importance to obtain uniform and predictable temperatures. To evaluate the uniform distribution to the different parallel minichannels, the mean velocity profiles of the rectangular jets are measured using hot-wire anemometry. The velocity profiles show a symmetric and constant distribution of the mass flow to the parallel minichannels. The pressure drop in the test section with one of the candidate rig shapes is measured. The pressure drop depends significantly on the entrance pressure level; acceleration resulting from the volumetric expansion of helium gas has to be taken into account in simulations. Measurements with strain gage show the pressure depending deformation of the compartment container without the rig. The results agree

  13. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert;

    2016-01-01

    This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...

  14. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  15. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  16. Testing the Data Assimilation Capability of the Profiler Virtual Module

    Science.gov (United States)

    2016-02-01

    to produce timely meteorological information for artillery trajectory calculations . The PVM receives Global Forecast System (GFS) global model ...David R Stauffer Pennsylvania State University, Department of Meteorology , University Park, PA David J Epler CACI International, Lawton, OK RW...the accuracy of meteorological computer messages derived from 1) a Profiler Virtual Module (PVM) using its data assimilation (DA) capability as

  17. Moderated heat pipe thermionic reactor (MOHTR) module development and test

    Science.gov (United States)

    Merrigan, Michael A.; Trujillo, Vincent L.

    1992-01-01

    The Moderated Heat Pipe Thermionic Reactor (MOHTR) thermionic space reactor design combines the low risk technology associated with the Thermionic Fuel Element (TFE) Verification Program with the high reliability heat transfer capability of liquid metal heat pipe technology. The resulting design concept, capable of implementation over the power range of 10 to 100 kWe, offers efficiency and reliability with reduced risk of single point failures. The union of TFE and heat pipe technology is achieved by imbedding TFEs and heat pipes in a beryllium matrix to which they are thermally coupled by brazing or by liquid metal (NaK or Na) bonding. The reactor employs an array of TFE modules, each comprising a TFE, a zirconium hydride (ZrH) cylinder for neutron moderation, and heat pipes for transport of heat from the collector surface of the TFE to the waste heat radiator. An advantage of the design is the low temperature drop from the collector surface to the radiating surface. This is a result of the elimination of electrical insulation from the heat transport path through electrical isolation of the modules. The module used in this study consisted of a beryllium core, and electrical cartridge heater simulating the TFE, and three heat pipes to dissipate the waste heat. The investigation was focused on the thermal performance of the assembly, including evaluation of the sodium and braze bonding options for minimizing the thermal resistance between the elements, the temperature distribution in the beryllium matrix, and the heat pipe performance. Continuing subjects of the investigation include performance of the heat pipes through start-up transients, during normal operation, and in a single heat pipe failure mode. Secondary objectives of the investigation include correlation of analytic models for the thermionic element and module including the effects of gap thermal conductances at the modules electrically insulated surfaces.

  18. Tester Board for testing mass-produced SMB modules for CMS Preshower

    Science.gov (United States)

    Velikzhanin, Y. S.; Chou, C. H.; Hsiung, Y. B.; Lee, Y. J.; Shiu, J. G.; Sun, C. D.; Wang, Y. Z.

    2007-09-01

    We have developed a Tester Board to test the electrical characteristics of the System Motherboard (SMB) for the CMS Preshower detector at CERN. The board is designed to test input resistances, output resistances, connections, interconnections and possible short- circuits of a module having up to 640 connector pins. The Tester Board is general-purpose in nature: it could be used to test any electronic module or cable by using dedicated cable sets. The module can detect a variety of problems not detected by either functional tests or the "flying probes" technique. The design, algorithms and results of using the Tester Board during mass production of CMS Preshower SMBs are presented.

  19. Tester Board for testing mass-produced SMB modules for CMS Preshower

    CERN Document Server

    Velikzhanin, Yu S; Hsiung, Y B; Lee, Y J; Shiu, J G; Sun, C D; Wang, Y Z

    2007-01-01

    We have developed a Tester Board to test the electrical characteristics of the System Motherboard (SMB) for the CMS Preshower detector at CERN. The board is designed to test input resistances, output resistances, connections, interconnections and possible short- circuits of a module having up to 640 connector pins. The Tester Board is general-purpose in nature: it could be used to test any electronic module or cable by using dedicated cable sets. The module can detect a variety of problems not detected by either functional tests or the "flying probes" technique. The design, algorithms and results of using the Tester Board during mass production of CMS Preshower SMBs are presented.

  20. Testing of PCM Heat Storage Modules with Solar Collectors as Heat Source

    DEFF Research Database (Denmark)

    Englmair, Gerald; Dannemand, Mark; Johansen, Jakob Berg;

    2016-01-01

    . In long periods with high level of irradiance several modules were charged in parallel due to the limited heat exchange capacity of the integrated heat exchanger of the modules. After the modules were heated to more than 80° C they were set to passively cool down. Modules reached 30 °C in a period......A latent heat storage based on the phase change material Sodium Acetate Trihydrate (SAT) has been tested as part of a demonstration system. The full heat storage consisted of 4 individual modules each containing about 200 kg of sodium acetate trihydrate with different additives. The aim...... was to actively utilize the ability of the material to supercool to obtain long storage periods. The modules were charged with solar heat supplied by 22.4 m2 evacuated tubular collectors. The investigation showed that it was possible to fully charge one module within a period of 270 minutes with clear skies...

  1. Development of a photovoltaic module qualification test based on combined-environment accelerated stress data

    Science.gov (United States)

    Trenchard, S. E.; Royal, E.; Anderson, R. T.

    1982-01-01

    The U.S. Coast Guard has developed a qualification test to screen photovoltaic modules for utilization on marine aids to navigation. The test is based on a combined-environment of hot and cold saltwater immersion and air pressurization. The test has demonstrated a very high acceleration factor and excellent correlation of electrical failures with modules in a concurrent real-time marine exposure.

  2. Functionalized carbon nanotubes: biomedical applications.

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.

  3. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-2, Pump Functional Testing.

    Science.gov (United States)

    Wasel, Ed; Espy, John

    This second in a series of eight modules for a course titled Mechanical Inspection describes typical pump functional tests which are performed after pump installation and prior to release of the plant for unrestricted power operation. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  4. Orion Crew Module / Service Module Structural Weight and Center of Gravity Simulator and Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing

    Science.gov (United States)

    Ascoli, Peter A.; Haddock, Michael H.

    2014-01-01

    An Orion Crew Module Service Module Structural Weight and Center of Gravity Simulator and a Vehicle Motion Simulator Hoist Structure for Orion Service Module Umbilical Testing were designed during a summer 2014 internship in Kennedy Space Centers Structures and Mechanisms Design Branch. The simulator is a structure that supports ballast, which will be integrated into an existing Orion mock-up to simulate the mass properties of the Exploration Mission-1 flight vehicle in both fueled and unfueled states. The simulator mimics these configurations through the use of approximately 40,000 lbf of steel and water ballast, and a steel support structure. Draining four water tanks, which house the water ballast, transitions the simulator from the fueled to unfueled mass properties. The Ground Systems Development and Operations organization will utilize the simulator to verify and validate equipment used to maneuver and transport the Orion spacecraft in its fueled and unfueled configurations. The second design comprises a cantilevered tripod hoist structure that provides the capability to position a large Orion Service Module Umbilical in proximity to the Vehicle Motion Simulator. The Ground Systems Development and Operations organization will utilize the Vehicle Motion Simulator, with the hoist structure attached, to test the Orion Service Module Umbilical for proper operation prior to installation on the Mobile Launcher. Overall, these two designs provide NASA engineers viable concepts worthy of fabricating and placing into service to prepare for the launch of Orion in 2017.

  5. Partial Shade Stress Test for Thin-Film Photovoltaic Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, Timothy J.; Deceglie, Michael G.; Deline, Chris; Kurtz, Sarah

    2015-09-02

    Partial shade of monolithic thin-film PV modules can cause reverse-bias conditions leading to permanent damage. In this work, we propose a partial shade stress test for thin-film PV modules that quantifies permanent performance loss. We designed the test with the aid of a computer model that predicts the local voltage, current and temperature stress that result from partial shade. The model predicts the module-scale interactions among the illumination pattern, the electrical properties of the photovoltaic material and the thermal properties of the module package. The test reproduces shading and loading conditions that may occur in the field. It accounts for reversible light-induced performance changes and for additional stress that may be introduced by light-enhanced reverse breakdown. We present simulated and experimental results from the application of the proposed test.

  6. Dynamical Behaviour of a Modulated Torsion Pendulum in Test of Weak Equivalence Principle

    Institute of Scientific and Technical Information of China (English)

    YUE Ying; FAN Shu-Hua; LIU Lin-Xia; LUO Jun

    2005-01-01

    @@ The dynamic behaviour of a modulated torsion pendulum used to test the weak equivalence principle (WEP) is studied in detail. Theoretical analysis shows that the pendulum will be driven by a force with double-frequency of the rotating turntable no matter whether the WEP is valid or not. This double-frequency effect should be considered for improving the sensitivity of the modulated pendulum in test of the WEP.

  7. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2007-08-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  8. Preliminary Failure Modes and Effects Analysis of the US DCLL Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2010-06-01

    This report presents the results of a preliminary failure modes and effects analysis (FMEA) of a small tritium-breeding test blanket module design for the International Thermonuclear Experimental Reactor. The FMEA was quantified with “generic” component failure rate data, and the failure events are binned into postulated initiating event families and frequency categories for safety assessment. An appendix to this report contains repair time data to support an occupational radiation exposure assessment for test blanket module maintenance.

  9. LHCb VErtex LOcator module characterisation and long term quality assurance tests

    Energy Technology Data Exchange (ETDEWEB)

    Bates, A., E-mail: a.bates@physics.gla.ac.u [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Dimattia, R.; Doherty, F. [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Dumps, R. [European Laboratory for Nuclear Physics (CERN), Geneve-23, CH-1211 (Switzerland); Dwyer, L. [University of Liverpool, Oliver Lodge Laboratory, Oxford Street, Liverpool L697ZF (United Kingdom); Gersabeck, M.; Marinho, F.; Melone, J.; Parkes, C.; Saavedra, A. [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Tobin, M. [University of Liverpool, Oliver Lodge Laboratory, Oxford Street, Liverpool L697ZF (United Kingdom); Viret, S. [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom)

    2009-11-21

    LHCb is the dedicated b-physics experiment of the LHC. Its vertex detector, the VErtex LOcator (VELO), will operate in a harsh radiation environment with limited access due to its proximity to the LHC beam. To ensure the long term operation and performance, every module was required to pass a set of quality assurance tests. These were specifically developed for the VELO modules to take into account their operational environment and assembly steps. Each VELO module was rigorously inspected, tested and thermally cycled in the Glasgow module burn-in procedures. This paper provides details of the burn-in procedures and summarises the main results that were found. Some of the major results presented in this paper are: the full characterisation of the leakage currents; identification of bad channels; and signal to noise measurements. A few minor problems were identified through visual inspections of the modules and the feedback into the production process proved critical. As a result of the electrical and thermal tests, one module out of the 45 that were tested was rejected due to its thermal performance. Studies are also reported, based on individual modules, characterising the front end read out chip pulse shape.

  10. Facility and test support equipment for the manned thermal vacuum tests of the Apollo Soyuz docking module

    Science.gov (United States)

    Pearson, O. L.

    1975-01-01

    In order to accommodate manned thermal-vacuum testing of the Apollo-Soyuz docking module (ASDM), modifications to the facility, cleanliness and access control, and special test equipment were required. Facility modifications discussed briefly include: the addition of an oxygen supply system; the modification of manlock (ML) piping for cleaning and access controls; the addition of a nitrogen diluent system; the removal of manlock internal lights and the addition of external lights as well as fusing all power circuits over 10 watts; the removal/containment of flammable materials; the upgrading of a ML fire suppression system; and the addition of a garment donning station for cleanliness control. Special test equipment discussed include: an access tunnel for crew ingress/egress; a support device for the docking module (DM) and simulators; a command module thermal simulator; a DM infrared (IR) simulator; a docking system IR simulator; a metabolic heat load simulator; and a television camera simulator.

  11. Paradigm Change for Accelerated Stress Testing of Thin-Film Modules

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu; Johnston, Steve

    2017-01-01

    A fundamental change in the analysis for the accelerated stress testing of thin-film modules is proposed, whereby power changes due to metastability and other effects that may occur due to the thermal history are removed from the power measurement that we obtain as a function of the applied stress...... factor. The power of reference modules normalized to an initial state—undergoing the same thermal and light exposure history but without the applied stress factor such as humidity or voltage bias— is subtracted from that of the stressed modules. For better understanding and appropriate application...... in standardized tests, the method is demonstrated and discussed for potential-induced degradation testing in view of the physical mechanisms that can lead to confounding power changes in the module....

  12. Electrical production testing of the D0 Silicon microstrip tracker detector modules

    Energy Technology Data Exchange (ETDEWEB)

    D0, SMT Production Testing Group; /Fermilab

    2006-03-01

    The D0 Silicon Microstrip Tracker (SMT) is the innermost system of the D0 detector in Run 2. It consists of 912 detector units, corresponding to 5 different types of assemblies, which add up to a system with 792,576 readout channels. The task entrusted to the Production Testing group was to thoroughly debug, test and grade each detector module before its installation in the tracker. This note describes the production testing sequence and the procedures by which the detector modules were electrically tested and characterized at the various stages of their assembly.

  13. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua;

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... the supercooled sodium acetate water mixture was 194 kJ/kg of sodium acetate water mixture in the first test cycles dropping to 179 kJ/kg in the later test cycles. Instability of the supercooling occurred when the charging periods were short and in the last test cycles where the tube connecting the module...

  14. Testing a scale pulsed modulator for an IEC neutron source into a resistive load

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Gregory E [Los Alamos National Laboratory; Wheat, Robert M [Los Alamos National Laboratory; Aragonez, Robert [Los Alamos National Laboratory

    2009-01-01

    A 1/10th scaled prototype pulse modulator for an Inertial Electrostatic Confinement (IEC) neutron source has been designed and tested at Los Alamos National Laboratory (LANL). The scaled prototype modulator is based on a solid-state Marx architecture and has an output voltage of 13 kV and an output current of 10 A. The modulator has a variable pulse width between 50 {micro}s and 1 ms with < 5% droop at all pulse widths. The modulator operates with a duty factor up to 5% and has a maximum pulse repetition frequency of 1 kHz. The use of a solid-state Marx modulator in this application has several potential benefits. These benefits include variable pulse width and amplitude, inherent switch overcurrent and transient overvoltage protection, and increased efficiency over DC supplies used in this application. Several new features were incorporated into this design including inductorless charging, fully snubberless operation, and stage fusing. The scaled prototype modulator has been tested using a 1 k{Omega} resistive load. Test results are given. Short (50 {micro}s) and long (1 ms) pulses are demonstrated as well as high duty factor operation (1 kHz rep rate at a 50 {micro}s pulse width for a 5% duty factor). Pulse agility of the modulator is demonstrated through turning the individual Marx stages on and off in sequence producing ramp, pyramid, and reverse pyramid waveforms.

  15. Orion Pad Abort 1 Crew Module Mass Properties Test Approach and Results

    Science.gov (United States)

    Herrera, Claudia; Harding, Adam

    2012-01-01

    The Flight Loads Laboratory at the Dryden Flight Research Center conducted tests to measure the inertia properties of the Orion Pad Abort 1 (PA-1) Crew Module (CM). These measurements were taken to validate analytical predictions of the inertia properties of the vehicle and assist in reducing uncertainty for derived aero performance coefficients to be calculated post-launch. The first test conducted was to determine the Ixx of the Crew Module. This test approach used a modified torsion pendulum test setup that allowed the suspended Crew Module to rotate about the x axis. The second test used a different approach to measure both the Iyy and Izz properties. This test used a Knife Edge fixture that allowed small rotation of the Crew Module about the y and z axes. Discussions of the techniques and equations used to accomplish each test are presented. Comparisons with the predicted values used for the final flight calculations are made. Problem areas, with explanations and recommendations where available, are addressed. Finally, an evaluation of the value and success of these techniques to measure the moments of inertia of the Crew Module is provided.

  16. 10 CFR 431.224 - Uniform test method for the measurement of energy consumption for traffic signal modules and...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy consumption for traffic signal modules and pedestrian modules. 431.224 Section 431.224 Energy DEPARTMENT OF... measurement of energy consumption for traffic signal modules and pedestrian modules. (a) Scope. This section...

  17. Biostatistics Series Module 2: Overview of Hypothesis Testing.

    Science.gov (United States)

    Hazra, Avijit; Gogtay, Nithya

    2016-01-01

    Hypothesis testing (or statistical inference) is one of the major applications of biostatistics. Much of medical research begins with a research question that can be framed as a hypothesis. Inferential statistics begins with a null hypothesis that reflects the conservative position of no change or no difference in comparison to baseline or between groups. Usually, the researcher has reason to believe that there is some effect or some difference which is the alternative hypothesis. The researcher therefore proceeds to study samples and measure outcomes in the hope of generating evidence strong enough for the statistician to be able to reject the null hypothesis. The concept of the P value is almost universally used in hypothesis testing. It denotes the probability of obtaining by chance a result at least as extreme as that observed, even when the null hypothesis is true and no real difference exists. Usually, if P is < 0.05 the null hypothesis is rejected and sample results are deemed statistically significant. With the increasing availability of computers and access to specialized statistical software, the drudgery involved in statistical calculations is now a thing of the past, once the learning curve of the software has been traversed. The life sciences researcher is therefore free to devote oneself to optimally designing the study, carefully selecting the hypothesis tests to be applied, and taking care in conducting the study well. Unfortunately, selecting the right test seems difficult initially. Thinking of the research hypothesis as addressing one of five generic research questions helps in selection of the right hypothesis test. In addition, it is important to be clear about the nature of the variables (e.g., numerical vs. categorical; parametric vs. nonparametric) and the number of groups or data sets being compared (e.g., two or more than two) at a time. The same research question may be explored by more than one type of hypothesis test. While this may be

  18. Biostatistics series module 2: Overview of hypothesis testing

    Directory of Open Access Journals (Sweden)

    Avijit Hazra

    2016-01-01

    Full Text Available Hypothesis testing (or statistical inference is one of the major applications of biostatistics. Much of medical research begins with a research question that can be framed as a hypothesis. Inferential statistics begins with a null hypothesis that reflects the conservative position of no change or no difference in comparison to baseline or between groups. Usually, the researcher has reason to believe that there is some effect or some difference which is the alternative hypothesis. The researcher therefore proceeds to study samples and measure outcomes in the hope of generating evidence strong enough for the statistician to be able to reject the null hypothesis. The concept of the P value is almost universally used in hypothesis testing. It denotes the probability of obtaining by chance a result at least as extreme as that observed, even when the null hypothesis is true and no real difference exists. Usually, if P is < 0.05 the null hypothesis is rejected and sample results are deemed statistically significant. With the increasing availability of computers and access to specialized statistical software, the drudgery involved in statistical calculations is now a thing of the past, once the learning curve of the software has been traversed. The life sciences researcher is therefore free to devote oneself to optimally designing the study, carefully selecting the hypothesis tests to be applied, and taking care in conducting the study well. Unfortunately, selecting the right test seems difficult initially. Thinking of the research hypothesis as addressing one of five generic research questions helps in selection of the right hypothesis test. In addition, it is important to be clear about the nature of the variables (e.g., numerical vs. categorical; parametric vs. nonparametric and the number of groups or data sets being compared (e.g., two or more than two at a time. The same research question may be explored by more than one type of hypothesis test

  19. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T. [Japan Atomic Energy Research Inst., Tokyo (Japan). Dept. of Fusion Facility

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns. During these tests, the module temperaturewas increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H{sub 2} at a pressure of 5 x 10{sup -2} Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm{sup 2}). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  20. EEG INTERFACE MODULE FOR COGNITIVE ASSESSMENT THROUGH NEUROPHYSIOLOGIC TESTS

    Directory of Open Access Journals (Sweden)

    Kundan Lal Verma

    2014-12-01

    Full Text Available The cognitive signal processing is one of the important interdisciplinary field came from areas of life sciences, psychology, psychiatry, engi-neering, mathematics, physics, statistics and many other fields of research. Neurophysiologic tests are utilized to assess and treat brain injury, dementia, neurological conditions, and useful to investigate psychological and psychiatric disorders. This paper presents an ongoing research work on development of EEG interface device based on the principles of cognitive assessments and instrumentation. The method proposed engineering and science of cogni-tive signal processing in case of brain computer in-terface based neurophysiologic tests. The future scope of this study is to build a low cost EEG device for various clinical and pre-clinical applications with specific emphasis to measure the effect of cognitive action on human brain.

  1. Qualification Tests of Micro-camera Modules for Space Applications

    Science.gov (United States)

    Kimura, Shinichi; Miyasaka, Akira

    Visual capability is very important for space-based activities, for which small, low-cost space cameras are desired. Although cameras for terrestrial applications are continually being improved, little progress has been made on cameras used in space, which must be extremely robust to withstand harsh environments. This study focuses on commercial off-the-shelf (COTS) CMOS digital cameras because they are very small and are based on an established mass-market technology. Radiation and ultrahigh-vacuum tests were conducted on a small COTS camera that weighs less than 100 mg (including optics). This paper presents the results of the qualification tests for COTS cameras and for a small, low-cost COTS-based space camera.

  2. Real time outdoor exposure testing of solar cell modules and component materials

    Science.gov (United States)

    Anagnostou, E.; Forestieri, A. F.

    1977-01-01

    Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.

  3. TURBHO - Higher order turbulence modeling for industrial appications. Design document: Module Test Phase (MTP). Software engineering module: Additional physical models; TURBHO. Turbulenzmodellierung hoeherer Ordnung fuer industrielle Anwendungen. Design document: Module Test Phase (MTP). Software engineering module: additional physical models

    Energy Technology Data Exchange (ETDEWEB)

    Grotjans, H.

    1998-04-01

    In the current Software Engineering Module (SEM2) three additional test cases have been investigated, as listed in Chapter 2. For all test cases it has been shown that the computed results are grid independent. This has been done by systematic grid refinement studies. The main objective of the current SEM2 was the verification and validation of the new wall function implementation for the k-{epsilon} mode and the SMC-model. Analytical relations and experimental data have been used for comparison of the computational results. The agreement of the results is good. Therefore, the correct implementation of the new wall function has been demonstrated. As the results in this report have shown, a consistent grid refinement can be done for any test case. This is an important improvement for industrial applications, as no model specific requirements must be considered during grid generation. (orig.)

  4. Development and testing of shingle-type solar cell modules. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, N.F.

    1979-02-28

    The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASG SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.

  5. Development and Results of a First Generation Least Expensive Approach to Fission: Module Tests and Results

    Science.gov (United States)

    Houts, Mike; Godfroy, Tom; Pederson, Kevin; Sena, J. Tom; VanDyke, Melissa; Dickens, Ricky; Reid, Bob J.; Martin, Jim

    2000-01-01

    The use of resistance heaters to simulate heat from fission allows extensive development of fission systems to be performed in non-nuclear test facilities, saving time and money. Resistance heated tests on the Module Unfueled Thermal-hydraulic Test (MUTT) article has been performed at the Marshall Space Flight Center. This paper discusses the results of these experiments and identifies future tests to be performed.

  6. GPM Avionics Module Heat Pipes Design and Performance Test Results

    Science.gov (United States)

    Ottenstein, Laura; DeChristopher, Mike

    2012-01-01

    GPM is a satellite constellation to study precipitation formed from a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA). The GPM Core Observatory, being developed and tested at GSFC, serves as a reference standard to unify precipitation measurements from the GPM satellite constellation. The Core Observatory carries an advanced radar/radiometer system to measure precipitation from space. The scientific data gained from GPM will benefit both NASA and JAXA by advancing our understanding of Earth's water and energy cycle, improving forecasts of extreme weather events, and extending our current capabilities in using accurate and timely precipitation information to benefit society.

  7. Development and testing of shingle-type solar cell modules. Quarterly report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, N.F.

    1978-01-05

    The details of a shingle module design which produces in excess of 97 watts/m/sup 2/ of module area at 1 kW/m/sup 2/ insolation and at 60/sup 0/C are reported. This selected design employs a tempered glass coverplate to provide the primary solar cell structural support. The use of the B.F. Goodrich FLEXSEAL roofing system as the outer skin of the shingle substrate provides a high confidence of achieving the 15 year service life goal. The fabrication and testing of a preproduction module of this design has demonstrated that this selected approach will meet the environmental testing requirements imposed by the contract. Attempts to fabricate a preproduction module of an alternative design, which embeds the solar cell assembly within a methyl methacrylate casting, proved unsuccessful.

  8. Test of CMS tracker silicon detector modules with the ARC readout system

    CERN Document Server

    Axer, M; Flügge, G; Franke, T; Hegner, B; Hermanns, T; Kasselmann, S T; Mnich, J; Nowack, A; Pooth, O; Pottgens, M

    2004-01-01

    The CMS tracker will be equipped with 16,000 silicon microstrip detector modules covering a surface of approximately 220 m**2. For quality control, a compact and inexpensive DAQ system is needed to monitor the mass production in industry and in the CMS production centres. To meet these requirements a set-up called APV Readout Controller (ARC) system was developed and distributed among all collaborating institutes to perform full readout tests of hybrids and modules at each production step. The system consists of all necessary hardware components, C++ based readout software using LabVIEW **1 Lab VIEW is a product of National Instruments, Austin, USA. as graphical user interface and provides full database connection to track every single module component during the production phase. Two preseries of Tracker End Cap (TEC) silicon detector modules have been produced by the TEC community and tested with the ARC system at Aachen. The results of the second series are presented.

  9. Test results of a Stirling engine utilizing heat exchanger modules with an integral heat pipe

    Science.gov (United States)

    Skupinski, Robert C.; Tower, Leonard K.; Madi, Frank J.; Brusk, Kevin D.

    1993-01-01

    The Heat Pipe Stirling Engine (HP-1000), a free-piston Stirling engine incorporating three heat exchanger modules, each having a sodium filled heat pipe, has been tested at the NASA-Lewis Research Center as part of the Civil Space Technology Initiative (CSTI). The heat exchanger modules were designed to reduce the number of potential flow leak paths in the heat exchanger assembly and incorporate a heat pipe as the link between the heat source and the engine. An existing RE-1000 free-piston Stirling engine was modified to operate using the heat exchanger modules. This paper describes heat exchanger module and engine performance during baseline testing. Condenser temperature profiles, brake power, and efficiency are presented and discussed.

  10. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  11. SMART empirical approaches for predicting field performance of PV modules from results of reliability tests

    Science.gov (United States)

    Hardikar, Kedar Y.; Liu, Bill J. J.; Bheemreddy, Venkata

    2016-09-01

    Gaining an understanding of degradation mechanisms and their characterization are critical in developing relevant accelerated tests to ensure PV module performance warranty over a typical lifetime of 25 years. As newer technologies are adapted for PV, including new PV cell technologies, new packaging materials, and newer product designs, the availability of field data over extended periods of time for product performance assessment cannot be expected within the typical timeframe for business decisions. In this work, to enable product design decisions and product performance assessment for PV modules utilizing newer technologies, Simulation and Mechanism based Accelerated Reliability Testing (SMART) methodology and empirical approaches to predict field performance from accelerated test results are presented. The method is demonstrated for field life assessment of flexible PV modules based on degradation mechanisms observed in two accelerated tests, namely, Damp Heat and Thermal Cycling. The method is based on design of accelerated testing scheme with the intent to develop relevant acceleration factor models. The acceleration factor model is validated by extensive reliability testing under different conditions going beyond the established certification standards. Once the acceleration factor model is validated for the test matrix a modeling scheme is developed to predict field performance from results of accelerated testing for particular failure modes of interest. Further refinement of the model can continue as more field data becomes available. While the demonstration of the method in this work is for thin film flexible PV modules, the framework and methodology can be adapted to other PV products.

  12. Development and pilot testing of full-scale membrane distillation modules for deployment of waste heat

    NARCIS (Netherlands)

    Jansen, A.E.; Assink, J.W.; Hanemaaijer, J.H.; Medevoort, J. van; Sonsbeek, E. van

    2013-01-01

    Membrane distillation is an attractive technology for extracting fresh water from seawater. Newly developed modules have been used in pilot tests and bench scale tests to demonstrate the potential of producing excellent product water quality in a single step, little need for water pretreatment and a

  13. Prototype of space-borne LTT module and its ground tests

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to develop the technique of Laser Time Transfer(LTT) ,Shanghai Astronomical Observatory has built a prototype of space-borne LTT module. The performance of the LTT module and the results of ground tests are discussed in the paper. The average precision of time difference between two rubidium clocks measured by laser pulses is 196 ps,and the uncertainty of measurement for the relative frequency differences is 1.2×10-13/2800 s.

  14. Protoflight photovoltaic power module system-level tests in the space power facility

    Science.gov (United States)

    Rivera, Juan C.; Kirch, Luke A.

    1989-01-01

    Work Package Four, which includes the NASA-Lewis and Rocketdyne, has selected an approach for the Space Station Freedom Photovoltaic (PV) Power Module flight certification that combines system level qualification and acceptance testing in the thermal vacuum environment: The protoflight vehicle approach. This approach maximizes ground test verification to assure system level performance and to minimize risk of on-orbit failures. The preliminary plans for system level thermal vacuum environmental testing of the protoflight PV Power Module in the NASA-Lewis Space Power Facility (SPF), are addressed. Details of the facility modifications to refurbish SPF, after 13 years of downtime, are briefly discussed. The results of an evaluation of the effectiveness of system level environmental testing in screening out incipient part and workmanship defects and unique failure modes are discussed. Preliminary test objectives, test hardware configurations, test support equipment, and operations are presented.

  15. Advanced Accelerated Power Cycling Test for Reliability Investigation of Power Device Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Jørgensen, Søren; Blaabjerg, Frede

    2016-01-01

    of tested power IGBT module. The various realistic electrical operating conditions close to real three-phase converter applications can be achieved by the simple control method. Further, by the proposed concept of applying the temperature stress, it is possible to apply various magnitudes of temperature......This paper presents an apparatus and methodology for an advanced accelerated power cycling test of insulated-gate bipolar transistor (IGBT) modules. In this test, the accelerated power cycling test can be performed under more realistic electrical operating conditions with online wear-out monitoring...... power cycling test setup is given. Then, an improved in situ junction temperature estimation method using on-state collector–emitter voltage VCE ON and load current is proposed. In addition, a procedure of advanced accelerated power cycling test and test results with 600 V, 30 A transfer molded IGBT...

  16. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules.

    CERN Document Server

    Rubinskiy, Igor; The ATLAS collaboration

    2011-01-01

    The upgrade for the ATLAS detector will undergo different phases towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.2 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reduction of the pixel size and of the material budget. Two different promising Silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies qualification with particular emphasis on irradiation and beam tests will be presented.

  17. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, I

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013–2014). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing Pixel Detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase in the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the Pixel Detector. An overview of the sensor technologies' qualification with particular emphasis on irradiation and beam tests is presented.

  18. Irradiation and beam tests qualification for ATLAS IBL Pixel Modules

    CERN Document Server

    Rubinskiy, Igor

    2013-01-01

    The upgrade for the ATLAS detector will have different steps towards HL-LHC. The first upgrade for the Pixel Detector will consist in the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (foreseen for 2013-14). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 33 mm. The IBL will require the development of several new technologies to cope with the increase of the radiation damage and the pixel occupancy and also to improve the physics performance, which will be achieved by reduction of the pixel size and of the material budget. Two different promising silicon sensor technologies (Planar n-in-n and 3D) are currently under investigation for the pixel detector. An overview of the sensor technologies’ qualification with particular emphasis on irradiation and beam tests are presented.

  19. Biomedical technology

    CERN Document Server

    Wriggers, Peter

    2015-01-01

    During the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtual patients. The physical and animal testing procedures could be reduced by virtual prototyping of medical devices. Here simulations can enhance the performance of alternate device designs for a range of virtual patients. This will lead to a refinement of designs and to safer products. This book summarizes different aspects of approaches to enhance function, production, initialization and complications of different types o...

  20. Methods of Evaluating Protective Clothing Relative to Heat and Cold Stress: Thermal Manikin, Biomedical Modeling, and Human Testing

    Science.gov (United States)

    2011-01-01

    composition (typically estimated from skinfold thickness ), and fitness level (based on 2-mile run time or measured during an aerobic exercise test). These...activity, vehicle operation, and assembly line or machine supervision. Inputs to this model, shown in Table I, include environmental conditions, mission...parameters from the HSDA shown in Table II pertain to mission performance, the limits are based on the prediction of core temperature. Rational Models In

  1. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  2. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    Energy Technology Data Exchange (ETDEWEB)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd [MKS, Deutsches Elektronen Synchrotron DESY, 22607 Hamburg (Germany)

    2014-01-29

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  3. Cost effective second generation AC-modules: Development and testing aspects

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Saiful; Belmans, Ronnie [Katholieke Universiteit Leuven, Department of Electrical Engineering, ESAT/ELECTA, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee (Belgium); Woyte, Achim [3E nv, Verenigingsstraat 39, B-1000, Brussel (Belgium); Heskes, Peter; Rooij, P.M. [Energy Research Centre of the Netherlands ECN, PO Box 1, 1755 ZG Petten (Netherlands); Hogedoorn, Ron [Mastervolt International, Snijdersbergweg 93, 1105AN Amsterdam Z.O. (Netherlands)

    2006-09-15

    In the framework of the European research project PV2GO, a new AC-module inverter was developed, taking into account all relevant aspects from a European market's point of view (standards, market, application, and research and development goals). The project goal was to achieve the overall system costs of 3 Euro per Wp for a modular plug-and-play photovoltaic system. For the photovoltaic-module, a standard 130-Wp Eurosolare module was chosen. The research and development (R and D) goal was to develop an advanced DC-control system consisting of a state-of-the-art programmable digital device and an Application Specific Integrated Circuit (ASIC) for the AC-control of the inverter. According to the topology concept, thermal and magnetic designs were optimized with regard to production technology and packaging for large-scale production. The new AC-modules were tested in a number of field-test sites in various parts of Europe and their reliability was assessed through Highly Accelerated Stress Tests. Efficiency and power quality have been tested in the laboratory. Further in the PV2GO project an optimization study of the manufacturing process of the new generation of AC-modules for high volume output was done. Another task was the pre-certification procedure to assure compliance with the European guidelines and standards. (author)

  4. Concept, implementation and commissioning of the automation system for the accelerator module test facility AMTF

    Science.gov (United States)

    Böckmann, Torsten A.; Korth, Olaf; Clausen, Matthias; Schoeneburg, Bernd

    2014-01-01

    The European XFEL project launched on June 5, 2007 will require about 103 accelerator modules as a main part of the XFEL linear accelerator. All superconducting components constituting the accelerator module like cavities and magnets have to be tested before the assembly. For the tests of the individual cavities and the complete modules an XFEL Accelerator Module Test Facility (AMTF) has been erected at DESY. The process control system EPICS (Experimental Physics and Industrial Control System) is used to control and operate the cryogenic plant and all its subcomponents. A complementary component of EPICS is the Open Source software suit CSS (Control System Studio). CSS is an integrated engineering, maintenance and operating tool for EPICS. CSS enables local and remote operating and monitoring of the complete system and thus represents the human machine interface. More than 250 PROFIBUS nodes work at the accelerator module test facility. DESY installed an extensive diagnostic and condition monitoring system. With these diagnostic tools it is possible to examine the correct installation and configuration of all PROFIBUS nodes in real time. The condition monitoring system based on FDT/DTM technology shows the state of the PROFIBUS devices at a glance. This information can be used for preventive maintenance which is mandatory for continuous operation of the AMTF facility. The poster will describe all steps form engineering to implementation and commissioning.

  5. Design, Integration, Certification and Testing of the Orion Crew Module Propulsion System

    Science.gov (United States)

    McKay, Heather; Coffman, Eric; May, Sarah; Freeman, Rich; Cain, George; Albright, John; Schoenberg, Rich; Delventhal, Rex

    2014-01-01

    The Orion Crew Module Propulsion Reaction Control System is currently complete and ready for flight as part of the Orion program's first flight test, Exploration Flight Test One (EFT-1). As part of the first article design, build, test, and integration effort, several key lessons learned have been noted and are planned for incorporation into the next build of the system. This paper provides an overview of those lessons learned and a status on the Orion propulsion system progress to date.

  6. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Sekulic, B.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-06-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of interrow shading, and their ability to be deployed at a greater ground-coverage ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from interrow shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of interrow shading mismatch is at a maximum.

  7. Evaluation of Maxim Module-Integrated Electronics at the DOE Regional Test Centers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; Sekulic, B.; Stein, J.; Barkaszi, S.; Yang, J.; Kahn, S.

    2014-07-01

    Module-embedded power electronics developed by Maxim Integrated are under evaluation through a partnership with the Department of Energy's Regional Test Center (RTC) program. Field deployments of both conventional modules and electronics-enhanced modules are designed to quantify the performance advantage of Maxim's products under different amounts of inter-row shading, and their ability to be deployed at a greater ground-coverage-ratio than conventional modules. Simulations in PVSYST have quantified the predicted performance difference between conventional modules and Maxim's modules from inter-row shading. Initial performance results have identified diffuse irradiance losses at tighter row spacing for both the Maxim and conventional modules. Comparisons with published models show good agreement with models predicting the greatest diffuse irradiance losses. At tighter row spacing, all of the strings equipped with embedded power electronics outperformed their conventional peers. An even greater performance advantage is predicted to occur in the winter months when the amount of inter-row shading mismatch is at a maximum.

  8. Cryogenic System for the Test Facilities of the ATLAS Liquid Argon Calorimeter Modules

    CERN Document Server

    Bremer, J; Chalifour, M; Haug, F; Passardi, Giorgio; Tischhauser, Johann

    1998-01-01

    To perform cold tests on the different modules of the ATLAS liquid argon calorimeter, a cryogenic system has been constructed and is now operated at the CERN North Experimental Area. Three different test cryostats will house the modules, which can also be exposed to particle beams for calibration purposes. The three cryostats share a common liquid argon and liquid nitrogen distribution system. The system is rather complex since it has to allow operations of the three cryostats at the same time. Liquid nitrogen is used as cold source for both the cool-down of the cryostats and for normal operation of the cryostats filled with liquid argon.

  9. ANALOG I/O MODULE TEST SYSTEM BASED ON EPICS CA PROTOCOL AND ACTIVEX CA INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    YENG,YHOFF,L.

    2003-10-13

    Analog input (ADC) and output (DAC) modules play a substantial role in device level control of accelerator and large experiment physics control system. In order to get the best performance some features of analog modules including linearity, accuracy, crosstalk, thermal drift and so on have to be evaluated during the preliminary design phase. Gain and offset error calibration and thermal drift compensation (if needed) may have to be done in the implementation phase as well. A natural technique for performing these tasks is to interface the analog VO modules and GPIB interface programmable test instruments with a computer, which can complete measurements or calibration automatically. A difficulty is that drivers of analog modules and test instruments usually work on totally different platforms (vxworks VS Windows). Developing new test routines and drivers for testing instruments under VxWorks (or any other RTOS) platform is not a good solution because such systems have relatively poor user interface and developing such software requires substantial effort. EPICS CA protocol and ActiveX CA interface provide another choice, a PC and LabVIEW based test system. Analog 110 module can be interfaced from LabVIEW test routines via ActiveX CA interface. Test instruments can be controlled via LabVIEW drivers, most of which are provided by instrument vendors or by National Instruments. Labview also provides extensive data analysis and process functions. Using these functions, users can generate powerful test routines very easily. Several applications built for Spallation Neutron Source (SNS) Beam Loss Monitor (BLM) system are described in this paper.

  10. Simple and Universal Current Modulator Circuit for Indoor Mobile Free-Space-Optical Communications Testing

    Directory of Open Access Journals (Sweden)

    Stanislav Hejduk

    2014-01-01

    Full Text Available The use of LED for illumination and communication together is more and more interesting with the increasing deployment of LEDs to our homes and industrial buildings. Modulation of this kind of light sources is difficult because of high voltage and current demands. Since the LED configurations and values of current and voltage are different, our universal modulator has to be able to operate even under these circumstances. This paper proposes simple and universal current modulator for LED lighting modulation for frequencies around 1MHz. Main objective is to allow initial testing of different types of High Power LEDs and different photodetector configurations and circuits in diffusive based Free-Space-Optical networks. In the experimental part we also compare results for some different types of LED light sources.

  11. Dynamic Test Case Design Scenario and analysis of Module Testing Using Manual vs. Automated Technique

    OpenAIRE

    Er. RAJENDER KUMAR; Dr. M.K.GUPTA

    2012-01-01

    Software can be tested either manually or automatically.The two approaches are complementary: automated testingcan perform a huge number of tests in short time or period,whereas manual testing uses the knowledge of the testingengineer to target testing to the parts of the system that areassumed to be more error-prone. Despite this contemporary,tools for manual and automatic testing are usually different,leading to decreased productivity and reliability of thetesting process. AutoTest is a tes...

  12. Design, fabrication, test, and qualification and price analysis of third generation design solar cell modules

    Science.gov (United States)

    Shepard, N. F.

    1980-03-01

    The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.

  13. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  14. Use of Melt Flow Rate Test in Reliability Study of Thermoplastic Encapsulation Materials in Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.; Sakurai, K.; Kempe, M.; Tamizhmani, G.; Kurtz, S.

    2011-10-01

    Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grade uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.

  15. Effects of UV on power degradation of photovoltaic modules in combined acceleration tests

    Science.gov (United States)

    Ngo, Trang; Heta, Yushi; Doi, Takuya; Masuda, Atsushi

    2016-05-01

    UV exposure and other factors such as high/low temperature, humidity and mechanical stress have been reported to degrade photovoltaic (PV) module materials. By focusing on the combined effects of UV stress and moisture on PV modules, two new acceleration tests of light irradiation and damp heat (DH) were designed and conducted. The effects of UV exposure were validated through a change in irradiation time (UV dosage) and a change of the light irradiation side (glass side vs backsheet side) in the UV-preconditioned DH and cyclic sequential tests, respectively. The chemical corrosion of finger electrodes in the presence of acetic acid generated from ethylene vinyl acetate used as an encapsulant was considered to be the main origin of degradation. The module performance characterized by electroluminescence images was confirmed to correlate with the measured acetic acid concentration and Ag finger electrode resistance.

  16. Cosmic ray test system for the ATLAS thin gap chamber modules at KOBE

    CERN Document Server

    Suigmoto, T; Arataki, Y; Bando, T; Homma, Y; Ichimiya, R; Ikeno, M; Ishii, K; Ishino, M; Iwasaki, H; Kurashige, H; Mima, T; Miyazaki, Y; Nakagawa, Y; Nakaune, Y; Nozaki, M; Ohshita, H; Okumura, K; Sasaki, O; Suzuki, R; Takeda, H; Takeshita, T; Tanaka, S; Uda, J; Yokoyama, C

    2004-01-01

    Thin gap chamber modules giving function of forward muon trigger to the ATLAS detector in the LHC experiment have been constructed at High Energy Research Organization (KEK) in Japan and their performances have been checked at Kobe University. A large-scale test system specially designed for measuring uniformity of the detection efficiencies and the timing resolution of 8 TGC modules at the same time was successfully operated. Each TGC module had 72 anode wire channels and 64 cathode strip channels (in total 1088 readout channels for 8 modules). Drift tubes consisted of 12 layers (total 428 tubes), between which the TGC modules are put, determined trajectories of cosmic rays. Hit pattern and timing of all detector signals (Trigger counter. Drift tubes and TGCs) were measured by using VME modules. In regular data acquisition situation, i.e. about effective 19 Hz trigger rate from scintillation counters and 73% tracking efficiency by the drift tubes, the detection efficiency of each layer by 5 mm * 5 mm region ...

  17. Fusion Reactor and Fusion Reactor Materials:Concept Design of the ITER Test Blanket Modules

    Institute of Scientific and Technical Information of China (English)

    HUANGJinhua; LIZaixing; ZHUYukun; HUGang

    2003-01-01

    Performances required: prospect to be adopted in DEMO. Shielding for V.V. and TFC in ITER. Design principles: the peak temperature and stress should not exceed technical limits. The structure of test blanket modules (TBM) should be simple for easy fabrication, and TBM should be robust for reliability.

  18. International Space Station Alpha's bearing, motor, and roll ring module developmental testing and results

    Science.gov (United States)

    Obrien, David L.

    1994-01-01

    This paper presents the design and developmental testing associated with the bearing, motor, and roll ring module (BMRRM) used for the beta rotation axis on International Space Station Alpha (ISSA). The BMRRM with its controllers located in the electronic control unit (ECU), provides for the solar array pointing and tracking functions as well as power and signal transfer across a rotating interface.

  19. Test du Module BECKHOFF (BK7420) Entrées/Sorties deportees sur FIPIO de SCHNEIDER

    CERN Document Server

    Palluel, J; CERN. Geneva. AB Department

    2004-01-01

    Cette note présente le test du nouveau coupleur I/O déporté sur FIPIO de Beckhoff référencé BK7420 (voir photo ci-dessous), et notamment son évaluation sur différentes longueurs par rapport à un module semblable de Schneider (Momentum 170 FNT 110 01).

  20. ITER test blanket module error field simulation experiments at DIII-D

    NARCIS (Netherlands)

    Schaffer, M. J.; Snipes, J. A.; Gohil, P.; P. de Vries,; Evans, T. E.; Fenstermacher, M.E.; Gao, X.; Garofalo, A. M.; Gates, D. A.; Greenfield, C.M.; Heidbrink, W. W.; Kramer, G. J.; La Haye, R. J.; Liu, S.; Loarte, A.; Nave, M. F. F.; Osborne, T. H.; Oyama, N.; Park, J. K.; Ramasubramanian, N.; Reimerdes, H.; Saibene, G.; Salmi, A.; Shinohara, K.; Spong, D. A.; Solomon, W. M.; Tala, T.; Zhu, Y. B.; Boedo, J. A.; Chuyanov, V.; Doyle, E. J.; Jakubowski, M.; Jhang, H.; Nazikian, R. M.; Pustovitov, V. D.; Schmitz, O.; Srinivasan, R.; Taylor, T. S.; Wade, M. R.; You, K. I.; Zeng, L.

    2011-01-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized m

  1. First test beam results of prototype modules for the upgrade of the ATLAS strip tracking detector

    CERN Document Server

    Kuehn, Susanne; The ATLAS collaboration

    2016-01-01

    The LHC is foreseen to be upgraded to the High-Luminosity LHC (HL-LHC). This will result in higher particle rates and radiation doses. The ATLAS experiment plans to replace its inner tracking detector by a new all-silicon tracker which is based on the concept of modularity. For the new silicon strip tracker a large prototyping and evaluation campaign is ongoing. Many modules of different types were built and tested both in the laboratories and in test beams. In the following first results obtained in test beams are presented. Both mini and full-size modules for the central and forward regions were tested before and after irradiation to fluences as expected at the HL-LHC.

  2. LHCb VErtex LOcator module characterisation and long term quality assurance tests

    CERN Document Server

    Bates, A; Doherty, F; Dumps, R; Dwyer, L; Gersabeck, M; Marinho, 1, F; Melone, J; Parkes, C; Saavedra, A; Tobin, M; Viret, S

    2009-01-01

    LHCb is the dedicated b-physics experiment of the LHC. Its vertex detector, the VErtex LOcator (VELO), will operate in a harsh radiation environment with limited access due to its proximity to the LHC beam. To ensure the long term operation and performance, every module was required to pass a set of quality assurance tests. These were specifically developed for the VELO modules to take into account their operational environment and assembly steps. Each VELO module was rigorously inspected, tested and thermally cycled in the Glasgow module burn-in procedures. This paper provides details of the burn-in procedures and summarises the main results that were found. Some of the major results presented in this paper are: the full characterisation of the leakage currents; identification of bad channels; and signal to noise measurements. A few minor problems were identified through visual inspections of the modules and the feedback into the production process proved critical. As a result of the electrical and thermal t...

  3. ATLAS Level-1 Calorimeter Trigger Subsystem Tests of a Prototype Cluster Processor Module

    CERN Document Server

    Garvey, J; Apostologlou, P; Ay, C; Barnett, B M; Bauss, B; Brawn, I P; Bohm, C; Dahlhoff, A; Davis, A O; Edwards, J; Eisenhandler, E F; Gee, C N P; Gillman, A R; Hanke, P; Hellman, S; Hidévgi, A; Hillier, S J; Jakobs, K; Kluge, E E; Landon, M; Mahboubi, K; Mahout, G; Meier, K; Meshkov, P; Moye, T H; Mills, D; Moyse, E; Nix, O; Penno, K; Perera, V J O; Qian, W; Schmitt, K; Schäfer, U; Silverstein, S; Staley, R J; Thomas, J; Trefzger, T M; Watkins, P M; Watson, A; 9th Workshop On Electronics For LHC Experiments - LECC 2003

    2003-01-01

    The Level-1 Calorimeter Trigger consists of a Preprocessor (PP), a Cluster Processor (CP), and a Jet/Energy-sum Processor (JEP). The CP and JEP receive digitised trigger-tower data from the Preprocessor and produce trigger multiplicity and Region-of-Interest (RoI) information. The trigger will also provide intermediate results to the data acquisition (DAQ) system for monitoring and diagnostic purposes by using Readout Driver (ROD) Modules. The CP Modules (CPM) are designed to find isolated electron/photon and hadron/tau clusters in overlapping windows of trigger towers. Each pipelined CPM processes 8-bit data from a total of 128 trigger towers at each LHC crossing. Four full-specification prototypes of CPMs have been built and results of complete tests on individual boards will be presented. These modules were then integrated with other modules to build an ATLAS Level-1 Calorimeter Trigger subsystem test bench. Realtime data were exchanged between modules, and time-slice readout data were tagged and transferr...

  4. Accelerated Stress Testing of Thin-Film Modules with SnO2:F Transparent Conductors

    Energy Technology Data Exchange (ETDEWEB)

    Osterwald, C. R.; McMahon, T. J.; del Cueto, J. A.; Adelstein, J.; Puett, J.

    2003-05-01

    This paper reviews a testing program conducted at NREL for the past two years that applied voltage, water vapor, and light stresses to thin-film photovoltaic (PV) modules with SnO2:F transparent conducting oxides (TCOs) deposited on soda-lime glass superstrates. Electrochemical corrosion at the glass-TCO interface was observed to result in delamination of the thin-film layers. Experimental testing was directed toward accelerating the corrosion and understanding the nature of the resulting damage.

  5. Baroreflex modulation of muscle sympathetic nerve activity during cold pressor test in humans

    Science.gov (United States)

    Cui, Jian; Wilson, Thad E.; Crandall, Craig G.

    2002-01-01

    The purpose of this project was to test the hypothesis that baroreceptor modulation of muscle sympathetic nerve activity (MSNA) and heart rate is altered during the cold pressor test. Ten subjects were exposed to a cold pressor test by immersing a hand in ice water for 3 min while arterial blood pressure, heart rate, and MSNA were recorded. During the second and third minute of the cold pressor test, blood pressure was lowered and then raised by intravenous bolus infusions of sodium nitroprusside and phenylephrine HCl, respectively. The slope of the relationship between MSNA and diastolic blood pressure was more negative (P cold pressor test (-244.9 +/- 26.3 units x beat(-1) x mmHg(-1)) when compared with control conditions (-138.8 +/- 18.6 units x beat(-1) x mmHg(-1)), whereas no significant change in the slope of the relationship between heart rate and systolic blood pressure was observed. These data suggest that baroreceptors remain capable of modulating MSNA and heart rate during a cold pressor test; however, the sensitivity of baroreflex modulation of MSNA is elevated without altering the sensitivity of baroreflex control of heart rate.

  6. Development of the Water Cooled Ceramic Breeder Test Blanket Module in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Enoeda, Mikio, E-mail: enoeda.mikio@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Suzuki, Satoshi; Ochiai, Kentaro; Konno, Chikara; Kawamura, Yoshinori; Yamanishi, Toshihiko; Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu; Ezato, Koichiro; Seki, Yohji; Yoshikawa, Akira; Tsuru, Daigo; Akiba, Masato [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2012-08-15

    The development of a Water Cooled Ceramic Breeder (WCCB) Test Blanket Module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and evaluation toward DEMO blanket, the module fabrication technology development by a candidate structural material, reduced activation martensitic/ferritic steel, F82H, is one of the most critical items from the viewpoint of realization of TBM testing in ITER. In Japan, fabrication of a real scale first wall, side walls, a breeder pebble bed box and assembling of the first wall and side walls have succeeded. Recently, the real scale partial mockup of the back wall was fabricated. The fabrication procedure of the back wall, whose thickness is up to 90 mm, was confirmed toward the fabrication of the real scale back wall by F82H. Important key technologies are almost clarified for the fabrication of the real scale TBM module mockup. From the view point of testing and evaluation, development of the technology of the blanket tritium recovery, development of advanced breeder and multiplier pebbles and the development of the blanket neutronics measurement technology are also performed. Also, tritium production and recovery test using D-T neutron in the Fusion Neutronics Source (FNS) facility has been started as the verification test of tritium production performance. This paper overviews the recent achievements of the development of the WCCB TBM in Japan.

  7. Sequential accelerated tests: Improving the correlation of accelerated tests to module performance in the field

    Science.gov (United States)

    Felder, Thomas; Gambogi, William; Stika, Katherine; Yu, Bao-Ling; Bradley, Alex; Hu, Hongjie; Garreau-Iles, Lucie; Trout, T. John

    2016-09-01

    DuPont has been working steadily to develop accelerated backsheet tests that correlate with solar panels observations in the field. This report updates efforts in sequential testing. Single exposure tests are more commonly used and can be completed more quickly, and certain tests provide helpful predictions of certain backsheet failure modes. DuPont recommendations for single exposure tests are based on 25-year exposure levels for UV and humidity/temperature, and form a good basis for sequential test development. We recommend a sequential exposure of damp heat followed by UV then repetitions of thermal cycling and UVA. This sequence preserves 25-year exposure levels for humidity/temperature and UV, and correlates well with a large body of field observations. Measurements can be taken at intervals in the test, although the full test runs 10 months. A second, shorter sequential test based on damp heat and thermal cycling tests mechanical durability and correlates with loss of mechanical properties seen in the field. Ongoing work is directed toward shorter sequential tests that preserve good correlation to field data.

  8. Biomedical Engineering Laboratory

    Science.gov (United States)

    2007-11-02

    The Masters of Engineering program with concentration in Biomedical Engineering at Tennessee State University was established in fall 2000. Under... biomedical engineering . The lab is fully equipped with 10 Pentium5-based, 2 Pentium4-based laptops for mobile experiments at remote locations, 8 Biopac...students (prospective graduate students in biomedical engineering ) are regularly using this lab. This summer, 8 new prospective graduate students

  9. Polymeric amines and biomedical uses thereof

    NARCIS (Netherlands)

    Broekhuis, Antonius; Zhang, Youchum; Picchioni, Francesco; Roks, Antonius

    2010-01-01

    The invention relates to the field of polymers and biomedical applications thereof. In particular, it relates to the use of polymeric amines derived from alternating polyketones.Provided is the use of a polymeric amine for modulating or supporting cellular behavior, said polymeric amine being an alt

  10. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    Science.gov (United States)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  11. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  12. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  13. Pre-irradiation testing of actively cooled Be-Cu divertor modules

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Duwe, R.; Kuehnlein, W. [Forschungszentrum Juelich GmbH (Germany)] [and others

    1995-09-01

    A set of neutron irradiation tests is prepared on different plasma facing materials (PFM) candidates and miniaturized components for ITER. Beside beryllium the irradiation program which will be performed in the High Flux Reactor (HFR) in Petten, includes different carbon fiber composites (CFQ) and tungsten alloys. The target values for the neutron irradiation will be 0.5 dpa at temperatures of 350{degrees}C and 700{degrees}C, resp.. The post irradiation examination (PIE) will cover a wide range of mechanical tests; in addition the degradation of thermal conductivity will be investigated. To determine the high heat flux (HHF) performance of actively cooled divertor modules, electron beam tests which simulate the expected heat loads during the operation of ITER, are scheduled in the hot cell electron beam facility JUDITH. These tests on a selection of different actively cooled beryllium-copper and CFC-copper divertor modules are performed before and after neutron irradiation; the pre-irradiation testing is an essential part of the program to quantify the zero-fluence high heat flux performance and to detect defects in the modules, in particular in the brazed joints.

  14. Trial Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D.; Deibert, S.; Wohlgemuth, J.

    2014-06-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires), caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat', 'thermal-cycle', or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial run of the test procedure. The described experiments examine 4 moisture-cured silicones, 4 foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 deg C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden, Miami, and Phoenix for 1 year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  15. Cryo-vacuum testing of the JWST Integrated Science Instrument Module (SPIE)

    Science.gov (United States)

    Kimble, Randy A.; Vila, M. Begona; Van Campen, Julie; Birkmann, Stephan M.; Comber, Brian J.; Fatig, Curtis C.; Glasse, Alistair C. H.; Glazer, Stuart D.; Kelly, Douglas M.; Mann, Steven D.; Martel, Andre R.; Novo-Gradac, Kevin J.; Ohl, Raymond G.; Penanen, Konstantin; Rohrbach, Scott O.; Sullivan, Joseph F.; Zak, Dean; Zhou, Julia

    2016-01-01

    In late 2015/early 2016, a major cryo-vacuum test was carried out for the Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope (JWST). This test comprised the final cryo-certification and calibration test of the ISIM, after its ambient environmental test program (vibration, acoustics, EMI/EMC), and before its delivery for integration with the rest of the JWST observatory. Over the 108-day period of the round-the-clock test program, the full complement of ISIM flight instruments, structure, harness radiator, and electronics were put through a comprehensive program of thermal, optical, electrical, and operational tests. The test verified the health and excellent performance of the instruments and ISIM systems, proving the ISIM element's readiness for integration with the telescope. We report here on the context, goals, setup, execution, and key results for this critical JWST milestone.

  16. Deep sea tests of a prototype of the KM3NeT digital optical module

    CERN Document Server

    Adrián-Martínez, S; Aharonian, F; Aiello, S; Albert, A; Ameli, F; Anassontzis, E G; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; de Asmundis, R; Band, H; Barbarino, G; Barbarito, E; Barbato, F; Baret, B; Baron, S; Belias, A; Berbee, E; Berg, A M van den; Berkien, A; Bertin, V; Beurthey, S; van Beveren, V; Beverini, N; Biagi, S; Bianucci, S; Billault, M; Birbas, A; Rookhuizen, H Boer; Bormuth, R; Bouche, V; Bouhadef, B; Bourlis, G; Bouwhuis, M; Bozza, C; Bruijn, R; Brunner, J; Cacopardo, G; Caillat, L; Calamai, M; Calvo, D; Capone, A; Caramete, L; Caruso, F; Cecchini, S; Ceres, A; Cereseto, R; Champion, C; Chateau, F; Chiarusi, T; Christopoulou, B; Circella, M; Classen, L; Cocimano, R; Colonges, S; Coniglione, R; Cosquer, A; Costa, M; Coyle, P; Creusot, A; Curtil, C; Cuttone, G; D'Amato, C; D'Amico, A; De Bonis, G; De Rosa, G; Deniskina, N; Destelle, J -J; Distefano, C; Donzaud, C; Dornic, D; Dorosti-Hasankiadeh, Q; Drakopoulou7, E; Drouhin, D; Drury, L; Durand, D; Eberl, T; Eleftheriadis, C; Elsaesser, D; Enzenhofer, A; Fermani, P; Fusco, L A; Gajana, D; Gal, T; Galata, S; Gallo, F; Garufi, F; Gebyehu, M; Giordano, V; Gizani, N; Ruiz, R Gracia; Graf, K; Grasso, R; Grella, G; Grmek, A; Habel, R; van Haren, H; Heid, T; Heijboer, A; Heine, E; Henry, S; Hernandez-Rey, J J; Herold, B; Hevinga, M A; van der Hoek, M; Hofestadt, J; Hogenbirk, J; Hugon, C; Hosl, J; Imbesi, M; James, C; Jansweijer, P; Jochum, J; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Kappos, E; Katz, U; Kavatsyuk, O; Keller, P; Kieft, G; Koffeman, E; Kok, H; Kooijman, P; Koopstra, J; Korporaal, A; Kouchner, A; Koutsoukos, S; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Provost, H Le; Leisos, A; Lenis, D; Leonora, E; Clark, M Lindsey; Liolios, A; Alvarez, C D Llorens; Lohner, H; Presti, D Lo; Louis, F; Maccioni, E; Mannheim, K; Manolopoulos, K; Margiotta, A; Maris, O; Markou, C; Martinez-Mora, J A; Martini, A; Masullo, R; Michael, T; Migliozzi, P; Migneco, E; Miraglia, A; Mollo, C; Mongelli, M; Morganti, M; Mos, S; Moudden, Y; Musico, P; Musumeci, M; Nicolaou, C; Nicolau, C A; Orlando, A; Orzelli, A; Papageorgiou, K; Papaikonomou, A; Papaleo, R; Pavalas, G E; Peek, H; Pellegrino, C; Pellegriti, M G; Perrina, C; Petridou, C; Piattelli, P; Popa, V; Pradier, Th; Priede, M; Puhlhofer, G; Pulvirenti, S; Racca, C; Raffaelli, F; Randazzo, N; Rapidis, P A; Razis, P; Real, D; Resvanis, L; Reubelt, J; Riccobene, G; Rovelli, A; Royon, J; Saldana, M; Samtleben, D F E; Sanguineti, M; Santangelo, A; Sapienza, P; Savvidis, I; Schmelling, J; Schnabel, J; Sedita, M; Seitz, T; Sgura, I; Simeone, F; Siotis, I; Sipala, V; Solazzo, M; Spitaleri, A; Spurio, M; Steijger, J; Stolarczyk, T; Stransky, D; Taiuti, M; Terreni, G; Tezier, D; Theraube, S; Thompson, L F; Timmer, P; Trapierakis, H I; Trasatti, L; Trovato, A; Tselengidou, M; Tsirigotis, A; Tzamarias, S; Tzamariudaki, E; Vallage, B; Van Elewyck, V; Vermeulen, J; Vernin, P; Viola, S; Vivolo, D; Werneke, P; Wiggers, L; Wilms, J; de Wolf, E; van Wooning, R H L; Yatkin, K; Zachariadou, K; Zonca, E; Zornoza, J D; Zúñiga, J; Zwart, A

    2014-01-01

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same $^{40}$K decay and the localization bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions.

  17. Deep sea tests of a prototype of the KM3NeT digital optical module

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Llorens Alvarez, C.D.; Saldana, M. [Universitat Politecnica de Valencia, Instituto de Investigacion para la Gestion Integrada de las Zonas Costeras, Gandia (Spain); Ageron, M.; Bertin, V.; Beurthey, S.; Billault, M.; Brunner, J.; Caillat, L.; Cosquer, A.; Coyle, P.; Curtil, C.; Destelle, J.J.; Dornic, D.; Gallo, F.; Henry, S.; Keller, P.; Lamare, P.; Royon, J.; Solazzo, M.; Tezier, D.; Theraube, S.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Aharonian, F.; Drury, L. [DIAS, Dublin (Ireland); Aiello, S.; Giordano, V.; Leonora, E.; Randazzo, N.; Sipala, V. [INFN, Sezione di Catania, Catania (Italy); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Universite de Haute Alsace, IUT de Colmar, Colmar (France); Ameli, F.; De Bonis, G.; Nicolau, C.A.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Anassontzis, E.G. [National and Kapodistrian University of Athens, Deparment of Physics, Athens (Greece); Anghinolfi, M.; Cereseto, R.; Hugon, C.; Kulikovskiy, V.; Musico, P.; Orzelli, A. [INFN, Sezione di Genova, Genoa (Italy); Anton, G.; Classen, L.; Eberl, T.; Enzenhoefer, A.; Gal, T.; Graf, K.; Heid, T.; Herold, B.; Hofestaedt, J.; Hoessl, J.; James, C.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Reubelt, J.; Schnabel, J.; Seitz, T.; Stransky, D.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Chateau, F.; Durand, D.; Le Provost, H.; Louis, F.; Moudden, Y.; Zonca, E. [CEA, Irfu/Sedi, Centre de Saclay, Gif-sur-Yvette (France); Asmundis, R. de; Deniskina, N.; Migliozzi, P.; Mollo, C. [INFN, Sezione di Napoli, Naples (Italy); Balasi, K.; Drakopoulou, E.; Markou, C.; Pikounis, K.; Siotis, I.; Stavropoulos, G.; Tzamariudaki, E. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); Band, H.; Berbee, E.; Berkien, A.; Beveren, V. van; Boer Rookhuizen, H.; Bouwhuis, M.; Gajana, D.; Gebyehu, M.; Heijboer, A.; Heine, E.; Hoek, M. van der; Hogenbirk, J.; Jansweijer, P.; Kieft, G.; Kok, H.; Koopstra, J.; Korporaal, A.; Michael, T.; Mos, S.; Peek, H.; Schmelling, J.; Steijger, J.; Timmer, P.; Vermeulen, J.; Werneke, P.; Wiggers, L.; Zwart, A. [Nikhef, Amsterdam (Netherlands); Barbarino, G.; Barbato, F.; De Rosa, G.; Garufi, F.; Vivolo, D. [INFN, Sezione di Napoli, Naples (Italy); Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Barbarito, E.; Ceres, A.; Circella, M.; Mongelli, M.; Sgura, I. [INFN, Sezione di Bari, Bari (Italy); Baret, B.; Baron, S.; Champion, C.; Colonges, S.; Creusot, A.; Galata, S.; Gracia Ruiz, R.; Kouchner, A.; Lindsey Clark, M.; Van Elewyck, V. [APC,Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Belias, A.; Rapidis, P.A.; Trapierakis, H.I. [Institute of Nuclear Physics, NCSR ' ' Demokritos' ' , Athens (Greece); National Observatory of Athens, NESTOR Institute for Deep Sea Research, Technology, and Neutrino Astroparticle Physics, Pylos (Greece); Berg, A.M. van den; Dorosti-Hasankiadeh, Q.; Hevinga, M.A.; Kavatsyuk, O.; Loehner, H.; Wooning, R.H.L. van [KVI-CART, University of Groningen, Groningen (Netherlands); Beverini, N. [INFN, Sezione di Pisa, Pisa (Italy); Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Biagi, S.; Cecchini, S.; Fusco, L.A.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Bianucci, S.; Bouhadef, B.; Calamai, M.; Morganti, M.; Raffaelli, F.; Terreni, G. [Universita di Pisa, Dipertimento di Fisica, Pisa (Italy); Birbas, A.; Bourlis, G.; Christopoulou, B.; Gizani, N.; Leisos, A.; Lenis, D.; Tsirigotis, A.; Tzamarias, S. [Hellenic Open University, School of Science and Technology, Patras (Greece); Bormuth, R.; Jong, M. de; Samtleben, D.F.E. [Nikhef, Amsterdam (Netherlands); Leiden University, Leiden Institute of Physics, Leiden (Netherlands); Bouche, V.; Fermani, P.; Masullo, R.; Perrina, C. [INFN, Sezione di Roma, Rome (Italy); Universita di Roma La Sapienza, Dipartimento di Fisica, Rome (Italy); Bozza, C.; Grella, G. [Universita ' Federico II' , Dipartimento di Fisica, Naples (Italy); Universita di Salerno, Dipartimento di Fisica, Fisciano (Italy); Bruijn, R.; Koffeman, E.; Wolf, E. de [Nikhef, Amsterdam (Netherlands); University of Amsterdam, Institute of Physics, Amsterdam (Netherlands); Cacopardo, G.; Caruso, F.; Cocimano, R.; Coniglione, R.; Costa, M.; Cuttone, G.; D' Amato, C.; D' Amico, A.; Distefano, C.; Grasso, R.; Grmek, A.; Imbesi, M.; Larosa, G.; Lattuada, D.; Migneco, E.; Miraglia, A.; Musumeci, M.; Orlando, A.; Papaleo, R.; Pellegrino, C.; Pellegriti, M.G.; Piattelli, P. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Collaboration: KM3NeT Collaboration; and others

    2014-09-15

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deep waters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has been integrated in the ANTARES detector for in-situ testing and validation. This paper reports on the first months of data taking and rate measurements. The analysis results highlight the capabilities of the new module design in terms of background suppression and signal recognition. The directionality of the optical module enables the recognition of multiple Cherenkov photons from the same {sup 40}K decay and the localisation of bioluminescent activity in the neighbourhood. The single unit can cleanly identify atmospheric muons and provide sensitivity to the muon arrival directions. (orig.)

  18. Final tuning of the EPFL heating module for response tests; Finalisation du module de l'EPFL pour les tests de reponse

    Energy Technology Data Exchange (ETDEWEB)

    Lyesse, L.; Steinmann, G.

    2002-07-01

    Within this project, the heating equipment of the Swiss Federal Institute of Technology (EPFL), in Lausanne, carried out in 1998 to study the thermomechanical behavior of thermal piles, is optimized to also carry out response tests on the geothermal probes and to determine the thermal characteristics of soils (conductivity and heat capacity). The principal improvements made during this project are: a) the reduction of the volume of the heating equipment, necessary in order to facilitate the transport on the building sites, b) the control and the improvement of the insulation, c) a new range of power is currently available, d) the partial automation of the test with acquisition and data processing. A calibration of the various sensors was carried out in this new configuration. The results obtained showed that the transformation of the heating module improved the quality of measurements. This work also made it possible to carry out a complete and detailed procedure for response tests for a forthcoming accreditation of this test. A first response test with the new configuration was carried out successfully in the canton of St-Gallen. (author)

  19. High RF power test of a CFC antenna module for lower hybrid current drive

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee

    1998-07-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m{sup 2} were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m{sup 2}, could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10{sup -2} Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  20. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...... due to cell fractures, and the additional series resistance losses observed under illumination. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test and initial and final module flash testing...

  1. A Low Cost System for Testing and Monitoring the Performance of Photovoltaic Module

    Directory of Open Access Journals (Sweden)

    POPESCU, V.

    2013-11-01

    Full Text Available The purpose of this paper is to develop a low cost system for testing and monitoring the performance of PV modules in outdoor conditions. In order to do this, we improved and adapted another measuring system. This system was developed by us and enables us to ensure the performance of the PV module through testing and monitoring, as well as saving collected data to a database. This database can be accessed through a graphical interface on a laptop connected to the system using serial interface. The error sources of this system are reduced to minimum because of human operators interfering with the system only through the graphical user interface. The Two Diode Model with series and parallel resistances was used to estimate the parameters of the electrical equivalent circuit for the PV module. This model will be simulated in CASPOC 2009. The performances of PV module were obtained in outdoor conditions and were saved to the database. They will be compared with the performances obtained through simulation, to prove the efficiency of the model.

  2. Investigating performance, reliability and safety parameters of photovoltaic module inverter: Test results and compliances with the standards

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Saiful; Belmans, Ronnie [Department of Electrical Engineering, Katholieke Universiteit Leuven, ESAT/ELECTA, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Woyte, Achim [Verenigingsstraat 39, B-1000 Brussel (Belgium); Heskes, P.J.M.; Rooij, P.M. [Energy Research Centre of the Netherlands ECN, P.O. Box 1, 1755 ZG Petten (Netherlands)

    2006-07-15

    Reliability, safety and quality requirements for a new type of photovoltaic module inverter have been identified and its performance has been evaluated for prototypes. The laboratory tests have to show whether the so-called second generation photovoltaic module inverter can comply with the expectations and where improvements are still necessary. Afterwards, the test results have been compared with the internationals standards. (author)

  3. Qualification and durability tests - Applications for thermal collectors and photovoltaic modules

    Science.gov (United States)

    Riesch, G.

    Accelerated and abbreviated durability tests for characterizing the long-term reliability of solar thermal and photovoltaic modules are described. The tests have been designed to provoke behaviors which would normally require years to become manifest, thereby allowing lifetime predictions to be made over a short testing period. Increasing the intensity of the potentially damaging agent, e.g., UV radiation, humidity, a combination of both, is one method, and cycling the specimen through exposures and out of them in repetitive rapid succession, such as in thermal cycling, is another. The two techniques can also be combined. Solar flat plate collectors are presently tested for overpressure resistance of the absorber, leak tests, rain penetration, load carrying capacity, resistance to hail impact, and durability under thermal shock. Trials are also run involving exposure to a dry atmosphere, UV radiation, ozone-contaminatead atmosphere, sulfur dioxide, cyclic damp heat, and salt mist. Photovoltaic modules are tested for thermal strength, in mounting twist tests, for insulation integrity, for ice loading, for humidity freezing, temperature cycling, long exposure to high temperatures, in damp heat in long storage, and to the same atmospheric factors as flat plates.

  4. Assessing photovoltaic module degradation and lifetime from long term environmental tests

    Science.gov (United States)

    Otth, D. H.; Ross, R. G., Jr.

    1983-01-01

    The photovoltaic module failure mechanisms related to temperature, humidity, and electrical bias are analyzed using the data collected over a period of 20 years from various sites in the U.S. The approach is based on measuring the rate dependence of the mechanisms on site stress levels, and then using the rate data to analytically estimate the field life by means of computer models of the site environment. A correlation is established between the accelerated constant-stress testing and the time-varying field exposures. Test results are presented for two failure mechanisms for a module design featuring polyvinyl butyral encapsulant for the temperature range of 85 to 100 C and 85-percent relative humidity.

  5. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  6. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Pater; Sera, Dezso

    2015-09-15

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. From the analysis we determine three main categories of failure modes associated with the module degradation consisting of: shunting, recombination losses, increased series resistance losses, and current mismatch losses associated with a decrease in photo-current generation by removal of some cell areas due to cell fractures. Based on the analysis, we propose an in-situ module power loss monitoring procedure that relies on dark current-voltage measurements taken during the stress test, and initial and final module flash testing, to determine the power degradation characteristic of the module.

  7. Pharmaceutical and biomedical applications of quantum dots.

    Science.gov (United States)

    Bajwa, Neha; Mehra, Neelesh K; Jain, Keerti; Jain, Narendra K

    2016-05-01

    Quantum dots (QDs) have captured the fascination and attention of scientists due to their simultaneous targeting and imaging potential in drug delivery, in pharmaceutical and biomedical applications. In the present study, we have exhaustively reviewed various aspects of QDs, highlighting their pharmaceutical and biomedical applications, pharmacology, interactions, and toxicological manifestations. The eventual use of QDs is to dramatically improve clinical diagnostic tests for early detection of cancer. In recent years, QDs were introduced to cell biology as an alternative fluorescent probe.

  8. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  9. Examination of a Junction-Box Adhesion Test for Use in Photovoltaic Module Qualification: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.

    2012-08-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of its adhesion system. The details of the proposed test will be described, in addition to the preliminary results obtained using representative materials and components. The described discovery experiments examine moisture-cured silicone, foam tape, and hot-melt adhesives used in conjunction with PET or glass module 'substrates.' To be able to interpret the results, a set of material-level characterizations was performed, including thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. PV j-boxes were adhered to a substrate, loaded with a prescribed weight, and then placed inside an environmental chamber (at 85C, 85% relative humidity). Some systems did not remain attached through the discovery experiments. Observed failure modes include delamination (at the j-box/adhesive or adhesive/substrate interface) and phase change/creep. The results are discussed in the context of the application requirements, in addition to the plan for the formal experiment supporting the proposed modification to the qualification test.

  10. Effectiveness of web-based teaching modules: test-enhanced learning in dental education.

    Science.gov (United States)

    Jackson, Tate H; Hannum, Wallace H; Koroluk, Lorne; Proffit, William R

    2011-06-01

    The purpose of our study was to evaluate the effectiveness of self-tests as a component of web-based self-instruction in predoctoral orthodontics and pediatric dentistry. To this end, the usage patterns of online teaching modules and self-tests by students enrolled in three courses at the University of North Carolina at Chapel Hill School of Dentistry were monitored and correlated to final exam grade and course average. We recorded the frequency of access to thirty relevant teaching modules and twenty-nine relevant self-tests for 157 second- and third-year D.D.S. students during the course of our data collection. There was a statistically significant positive correlation between frequency of accessing self-tests and course performance in one course that was totally based on self-instruction with seminars and multiple-choice examination (Level IV): Spearman correlation between frequency of self-test access and final exam grade, rho=0.23, p=0.044; correlation between frequency of self-test access and course average: rho=0.39, p=0.0004. In the other two courses we monitored, which included content beyond self-instruction with self-tests, the correlations were positive but not statistically significant. The students' use of online learning resources varied significantly from one course (Level I) to the next (Level II): Wilcoxon matched pairs signed-rank tests, S=-515.5, p=.0057 and S=1086, pweb-based self-tests may be correlated with more effective learning in predoctoral dental education by virtue of the testing effect and that dental students' usage of resources for learning changes significantly over the course of their education.

  11. The State of the Art Report on the Development and Manufacturing Technology of Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. S.; Jeong, Y. H.; Park, S. Y.; Lee, M. H.; Choi, B. K.; Baek, J. H.; Park, J. Y.; Kim, J. H.; Kim, H. G.; Kim, K. H

    2006-07-15

    The main objective of the present R and D on breeder blanket is the development of test blanket modules (TBMs) to be installed and tested in International Thermonuclear Experimental Reactor (ITER). In the program of the blanket development, a blanket module test in the ITER is scheduled from the beginning of the ITER operation, and the performance test of TBM in ITER is the most important milestone for the development of the DEMO blanket. The fabrication of TBMs has been required to test the basic performance of the DEMO blanket, i.e., tritium production/recovery, high-grade heat generation and radiation shielding. Therefore, the integration of the TBM systems into ITER has been investigated with the aim to check the safety, reliability and compatibility under nuclear fusion state. For this reason, in the Test Blanket Working Group (TBWG) as an activity of the International Energy Association (IEA), a variety of ITER TBMs have been proposed and investigated by each party: helium-cooled ceramic (WSG-1), helium-cooled LiPb (WSG-2), water-cooled ceramic (WSG-3), self-cooled lithium (WSG-4) and self-cooled molten salt (WSG-5) blanket systems. Because we are still deficient in investigation of TBM development, the need of development became pressing. In this report, for the development of TBM sub-module and mock-up, it is necessary to analyze and examine the state of the art on the development of manufacturing technology of TBM in other countries. And we will be applied as basic data to establish a manufacturing technology.

  12. The Temperature Dependence Coefficients of Amorphous Silicon and Crystalline Photovoltaic Modules Using Malaysian Field Test Investigation

    Directory of Open Access Journals (Sweden)

    Sulaiman Shaari

    2009-01-01

    Full Text Available The temperature dependence coefficients of amorphous silicon and crystalline photovoltaic (PV modules using Malaysian field data have been obtained using linear regression technique. This is achieved by studying three test stand-alone PV-battery systems using 62 Wp a-Si, 225 Wp multi-crystalline and 225 Wp mono-crystalline PV modules. These systems were designed to provide electricity for rural domestic loads at 200 W, 500 W and 530 W respectively. The systems were installed in the field with data monitored using data loggers. Upon analysis, the study found that the normalized power output per operating array temperature for the amorphous silicon modules, multi-crystalline modules and mono-crystalline modules were: +0.037 per°C, +0.0225 per °C and +0.0263 per °C respectively. In addition, at a solar irradiance value of 500 Wm-2, the current, voltage, power and efficiency dependence coefficients on operating array temperatures obtained from linear regression were: +37.0 mA per °C, -31.8 mV per °C, -0.1036 W per °C and -0.0214% per °C, for the a-Si modules, +22.5 mA per °C, -39.4 mV per °C, -0.2525 W per °C, -0.072 % per °C for the multi-crystalline modules and +26.3 mA per °C, -32.6 mV per °C, -0.1742 W per °C, -0.0523 % per °C for the mono-crystalline modules. These findings have a direct impact on all systems design and sizing in similar climate regions. It is thus recommended that the design and sizing of PV systems in the hot and humid climate regions of the globe give due address to these findings.

  13. Digital fabrication of multi-material biomedical objects.

    Science.gov (United States)

    Cheung, H H; Choi, S H

    2009-12-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  14. Design, fabrication, and testing of a helium-cooled module for the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Baxi, C.B.; Smith, J.P.; Youchison, D.

    1994-08-01

    The International Thermonuclear Reactor (ITER) will have a single-null divertor with total power flow of 200 MW and a peak heat flux of about 5 MW/m{sup 2}. The reference coolant for the divertor is water. However, helium is a viable alternative and offers advantages from safety considerations, such as excellent radiation stability and chemical inertness. In order to prove the feasibility of helium cooling at ITER relevant heat flux conditions, General Atomics designed, fabricated, and tested a helium-cooled divertor module. The module was made from dispersion strengthened copper, with a heat flux surface 25 mm wide and 80 mm long, designed for twice the ITER divertor heat flux. Different techniques were examined to enhance the heat transfer, which in turn reduced the flow and pumping power required to cool the module. It was concluded that an extended surface was the most practical solution. An optimization study was performed to find the best extended surface parameters. The optimum extended surface geometry consisted of fins: 10 mm high, 0.4 mm thick with a 1 mm pitch. It was estimated to require a pumping power of 150 W to remove 20 kW of power. This is more than an order of magnitude reduction in pumping power requirement, compared to smooth surface. The module was fabricated by electric discharge machining (EDM) process. The testing was carried out at SNLA during August 1993. The testing confirmed the design calculations. The peak heat flux during the test was 10 MW/m{sup 2} applied over a surface area of 20 cm{sup 2}. The pumping power calculated from flow rate and pressure drop measurement was about 160 W, which was less than 1% of the power removed. It is planned to test the module to higher temperature limits and higher heat fluxes during coming months. As a result of this effort we conclude that helium cooling of the ITER divertor is feasible without requiring a very large helium pressure or a large pumping power.

  15. Test of the Hamamatsu MPPC module S11834 as a RICH photon detector

    Energy Technology Data Exchange (ETDEWEB)

    Korpar, S. [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); J. Stefan Institute, Ljubljana (Slovenia); Tahirović, E. [J. Stefan Institute, Ljubljana (Slovenia); Križan, P., E-mail: peter.krizan@ijs.si [J. Stefan Institute, Ljubljana (Slovenia); Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Pestotnik, R. [J. Stefan Institute, Ljubljana (Slovenia)

    2014-12-01

    In our previous studies, we have shown that silicon photo-multipliers can be used as single photon detectors in a RICH counter (Korpar et al., 2009, 2010 [1,2]). Their main advantage with respect to the classical photo-multiplier tubes is the operation in high magnetic fields, while their disadvantage is a relatively high dark count rate. Recently, Hamamatsu made commercially available sensors with a rather low dark count rate (≈0.1 MHz/mm{sup 2}) and with a larger active area, offering a possibility for a much better signal-to-noise ratio. We have designed, constructed and tested a module with Hamamatsu 8×8 channel S11834 MPPCs. To increase the geometric acceptance, light concentrators have been employed. In the present contribution we discuss the results of studies of the light concentrator design optimization and of the detector module response to fast light pulses. Also presented are the results of RICH prototype tests in a test beam. - Highlights: • Single Cherenkov photons were detected with a novel 8×8 channel array of SiPMs, Hamamatsu S11834 MPPCs. • To increase the signal-to-noise ratio, pyramidal light concentrators were designed and successfully employed. • The sensor was successfully tested in an electron test beam at DESY.

  16. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  17. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  18. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  19. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  20. Damage Tolerance Testing of a NASA TransHab Derivative Woven Inflatable Module

    Science.gov (United States)

    Edgecombe, John; delaFuente, Horacio; Valle, Gerard

    2009-01-01

    Current options for Lunar habitat architecture include inflatable habitats and airlocks. Inflatable structures can have mass and volume advantages over conventional structures. However, inflatable structures carry different inherent risks and are at a lower Technical Readiness Level (TRL) than more conventional metallic structures. One of the risks associated with inflatable structures is in understanding the tolerance to induced damage. The Damage Tolerance Test (DTT) is designed to study the structural integrity of an expandable structure. TransHab (Figure 1) was an experimental inflatable module developed at the NASA/Johnson Space Center in the 1990 s. The TransHab design was originally envisioned for use in Mars Transits but was also studied as a potential habitat for the International Space Station (ISS). The design of the TransHab module was based on a woven design using an Aramid fabric. Testing of this design demonstrated a high level of predictability and repeatability with analytical predictions of stresses and deflections. Based on JSC s experience with the design and analysis of woven inflatable structures, the Damage Tolerance Test article was designed and fabricated using a woven design. The DTT article was inflated to 45 psig, representing 25% of the ultimate burst pressure, and one of the one-inch wide longitudinal structural members was severed by initiating a Linear Shaped Charge (LSC). Strain gage measurements, at the interface between the expandable elements (straps) and the nonexpandable metallic elements for pre-selected longitudinal straps, were taken throughout pressurization of the module and strap separation. Strain gage measurements show no change in longitudinal strap loading at the bulkhead interface after strap separation indicating loads in the restraint layer were re-distributed local to the damaged area due to the effects of friction under high internal pressure loading. The test completed all primary objectives with better than

  1. Testing Results and Prospects of Educational Module “Individualization and Personalization of Educational Work with Students of Different Types”

    Directory of Open Access Journals (Sweden)

    Zaslavskaya O.Y.

    2015-11-01

    Full Text Available The article presents the testing results of educational module “Individualization and Personalization of Educational Work with Students of Different Types” in pedagogical master program, Teacher education (secondary general education teacher training direction. The module based on the professional direction, involving the connection of the objectives, content, forms, tools, and educational results with the main educational results according to Federal State Educational standard, as well as the content of different professional activities of future teachers of secondary education, are contained in the professional standards of the teacher. We characterized the structure and content of module subjects, the kinds of master educational activity organization, assessment tools which were used for the module educational outcomes (competencies, job functions and teacher activity in master students. The article describes the changes and updates that have been made in teaching and guidance documents on the results of the module testing and presents the perspectives of module in master students training.

  2. Estimating service lifetimes of a polymer encapsulant for photovoltaic modules from accelerated testing

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A.W.; Pern, F.J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper, most of the emphasis is on A9918 ethylene vinyl acetate (EVA) used commercially as the pottant for encapsulating photovoltaic (PV) modules, in which the efficiencies in field-deployed modules have been reduced by 10-70% in 4-12 years. Yet, projections were made by several different research groups in the 1980s that the EVA lifetime could range from 2-100 years. The authors (1) elucidate the complexity of the encapsulation problem, (2) indicate the performance losses reported for PV systems deployed since 1981, (3) critically assess the service lifetime predictions for EVA as a PV pottant based on studies by others for which they review the inherent errors in their assumptions about the Arrhenius relation, (4) show how degradation of minimodules in laboratory experiments that simulate reality can produce efficiency losses comparable to those in field-degraded PV modules reported in the literature, and (5) outline an acceptable methodology for making a service lifetime prediction of the polymer encapsulant, including the essential need for relating accelerated lifetime testing to real-time testing with a sufficient number of samples.

  3. Development Of A Computerized I-V-Tracing System For Solar PV Module Testing

    Directory of Open Access Journals (Sweden)

    Gour Chand Mazumder

    2015-08-01

    Full Text Available this paper is about a development work of I-V-Curve tracing system. The system is automatic and replaces manual procedure of conventional I-V-Curve tracing method for Photovoltaic Solar Cell or Panel. This system is basically a combination of several blocks consisted by electronic devices and instrument groups. Some blocks are developed for measurement requirements and some are proprietary. This instrument can be used at solar module assembling industry for panel testing. In recent years there are significant rises on the counts of these types of business in developing countries. As this particular requires much lesser cost in comparison to other such type it is expected that this device may contribute to solar industry to help manufacturing process and quality control. Universities and laboratories may also find this suitable for their purpose. Although there are some little fluctuations in the acquired data the system can analyze the module characteristics properly.

  4. A multichannel neural signal detecting module: Its design and test in animal experiments

    Institute of Scientific and Technical Information of China (English)

    Wang Yufeng; Wang Zhigong; Lü Xiaoying; Gu Xiaosong; Li Wenyuan; Wang Huiling; Jiang Zhenlin; Lü Guangming; K. P. Koch

    2007-01-01

    A four-channel neural signal detecting module with an implantable 12-contact cuff electrode was designed for real-time neural signal recording on peripheral and central nerves. The mathematic coupling model between nerve and electronic system was analyzed. Electrode connection configurations were considered. The detecting circuit included an input coupling network, a pre-amplifier, and some filtering and notching stages. Shield guarding and the right-leg-driven circuit were developed for further elimination of common mode interference. By electrode switches, the module could cooperate with a nerve functional electrical stimulation circuit, building a neural channel bridge-connection system. It was tested by recording experiments on rat's sciatic and spine nerves. The signals in spontaneous and evoked conditions have been captured successfully. In addition, an implantable neural signal detecting CMOS IC has been introduced.

  5. Alignment of the Pixel and SCT Modules for the 2004 ATLAS Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    ATLAS Collaboration; Ahmad, A.; Andreazza, A.; Atkinson, T.; Baines, J.; Barr, A.J.; Beccherle, R.; Bell, P.J.; Bernabeu, J.; Broklova, Z.; Bruckman de Renstrom, P.A.; Cauz, D.; Chevalier, L.; Chouridou, S.; Citterio, M.; Clark, A.; Cobal, M.; Cornelissen, T.; Correard, S.; Costa, M.J.; Costanzo, D.; Cuneo, S.; Dameri, M.; Darbo, G.; de Vivie, J.B.; Di Girolamo, B.; Dobos, D.; Drasal, Z.; Drohan, J.; Einsweiler, K.; Elsing, M.; Emelyanov, D.; Escobar, C.; Facius, K.; Ferrari, P.; Fergusson, D.; Ferrere, D.; Flick,, T.; Froidevaux, D.; Gagliardi, G.; Gallas, M.; Gallop, B.J.; Gan, K.K.; Garcia, C.; Gavrilenko, I.L.; Gemme, C.; Gerlach, P.; Golling, T.; Gonzalez-Sevilla, S.; Goodrick, M.J.; Gorfine, G.; Gottfert, T.; Grosse-Knetter, J.; Hansen, P.H.; Hara, K.; Hartel, R.; Harvey, A.; Hawkings, R.J.; Heinemann, F.E.W.; Henss, T.; Hill, J.C.; Huegging, F.; Jansen, E.; Joseph, J.; Unel, M. Karagoz; Kataoka, M.; Kersten, S.; Khomich, A.; Klingenberg, R.; Kodys, P.; Koffas, T.; Konstantinidis, N.; Kostyukhin, V.; Lacasta, C.; Lari, T.; Latorre, S.; Lester, C.G.; Liebig, W.; Lipniacka, A.; Lourerio, K.F.; Mangin-Brinet, M.; Marti i Garcia, S.; Mathes, M.; Meroni, C.; Mikulec, B.; Mindur, B.; Moed, S.; Moorhead, G.; Morettini, P.; Moyse, E.W.J.; Nakamura, K.; Nechaeva, P.; Nikolaev, K.; Parodi, F.; Parzhitskiy, S.; Pater, J.; Petti, R.; Phillips, P.W.; Pinto, B.; Poppleton, A.; Reeves, K.; Reisinger, I.; Reznicek, P.; Risso, P.; Robinson, D.; Roe, S.; Rozanov, A.; Salzburger, A.; Sandaker, H.; Santi, L.; Schiavi, C.; Schieck, J.; Schultes, J.; Sfyrla, A.; Shaw, C.; Tegenfeldt, F.; Timmermans, C.J.W.P.; Toczek, B.; Troncon, C.; Tyndel, M.; Vernocchi, F.; Virzi, J.; Anh, T. Vu; Warren, M.; Weber, J.; Weber, M.; Weidberg, A.R.; Weingarten, J.; Wellsf, P.S.; Zhelezkow, A.

    2008-06-02

    A small set of final prototypes of the ATLAS Inner Detector silicon tracking system(Pixel Detector and SemiConductor Tracker), were used to take data during the 2004 Combined Test Beam. Data were collected from runs with beams of different flavour (electrons, pions, muons and photons) with a momentum range of 2 to 180 GeV/c. Four independent methods were used to align the silicon modules. The corrections obtained were validated using the known momenta of the beam particles and were shown to yield consistent results among the different alignment approaches. From the residual distributions, it is concluded that the precision attained in the alignmentof the silicon modules is of the order of 5 mm in their most precise coordinate.

  6. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  7. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  8. Statistics in biomedical research

    OpenAIRE

    González-Manteiga, Wenceslao; Cadarso-Suárez, Carmen

    2007-01-01

    The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new p...

  9. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  10. Optical Design for Biomedical Imaging

    CERN Document Server

    Liang, Rongguang

    2010-01-01

    Designing an efficient imaging system for biomedical optics requires a solid understanding of the special requirements of the optical systems for biomedical imaging and the optical components used in the systems. However, a lack of reference books on optical design (imaging and illumination) for biomedical imaging has led to some inefficient systems. This book fills the gap between biomedical optics and optical design by addressing the fundamentals of biomedical optics and optical engineering, and biomedical imaging systems. The first half provides a brief introduction to biomedical optics and

  11. Classification and prioritization of biomedical literature for the comparative toxicogenomics database.

    Science.gov (United States)

    Vishnyakova, Dina; Pasche, Emilie; Gobeill, Julien; Gaudinat, Arnaud; Lovis, Christian; Ruch, Patrick

    2012-01-01

    We present a new approach to perform biomedical documents classification and prioritization for the Comparative Toxicogenomics Database (CTD). This approach is motivated by needs such as literature curation, in particular applied to the human health environment domain. The unique integration of chemical, genes/proteins and disease data in the biomedical literature may advance the identification of exposure and disease biomarkers, mechanisms of chemical actions, and the complex aetiologies of chronic diseases. Our approach aims to assist biomedical researchers when searching for relevant articles for CTD. The task is functionally defined as a binary classification task, where selected articles must also be ranked by order of relevance. We design a SVM classifier, which combines three main feature sets: an information retrieval system (EAGLi), a biomedical named-entity recognizer (MeSH term extraction), a gene normalization (GN) service (NormaGene) and an ad-hoc keyword recognizer for diseases and chemicals. The evaluation of the gene identification module was done on BioCreativeIII test data. Disease normalization is achieved with 95% precision and 93% of recall. The evaluation of the classification was done on the corpus provided by BioCreative organizers in 2012. The approach showed promising performance on the test data.

  12. In-Situ Measurement of Power Loss for Crystalline Silicon Modules Undergoing Thermal Cycling and Mechanical Loading Stress Testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    We analyze the degradation of multi-crystalline silicon photovoltaic modules undergoing simultaneous thermal, mechanical, and humidity-freeze stress testing to develop a dark environmental chamber in-situ measurement procedure for determining module power loss. We analyze dark I-V curves measured...

  13. Tests of modulated intensity small angle scattering in time of flight mode

    Energy Technology Data Exchange (ETDEWEB)

    Brandl, G. [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr. 1, 85747 Garching (Germany); Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Lal, J. [Argonne National Laboratory, Materials Science Division, Argonne, IL 60439 (United States); Carpenter, J. [Argonne National Laboratory, Materials Science Division, Argonne, IL 60439 (United States); Oak Ridge National Laboratory, Oak Ridge, TN 37831-6477 (United States); Crow, L.; Robertson, L. [Oak Ridge National Laboratory, Oak Ridge, TN 37831-6477 (United States); Georgii, R., E-mail: Robert.Georgii@frm2.tum.de [Forschungsneutronenquelle Heinz Maier-Leibnitz, Technische Universitaet Muenchen, Lichtenbergstr. 1, 85747 Garching (Germany); Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Boeni, P. [Physik Department E21, Technische Universitaet Muenchen, James-Franck-Str., 85747 Garching (Germany); Bleuel, M. [Technical University of Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2012-03-01

    We report results of tests of the MISANS technique at the CG-1D beamline at the High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterized MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS).

  14. Tests of Modulated Intensity Small Angle Scattering in time of flight mode

    CERN Document Server

    Brandl, G; Carpenter, J; Crow, L; Robertson, L; Georgii, R; Böni, P; Bleuel, M

    2011-01-01

    We report results of tests of the MISANS technique at the CG-1D beamline at High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory (ORNL). A chopper at 40 Hz simulated a pulsed neutron source at the beamline. A compact turn-key MISANS module operating with the pulsed beam was installed and a well characterised MnSi sample was tested. The feasibility of application of high magnetic fields at the sample position was also explored. These tests demonstrate the great potential of this technique, in particular for examining magnetic and depolarizing samples, under extreme sample environments at pulsed sources, such as the Spallation Neutron Source (SNS) or the planned European Spallation Source (ESS).

  15. Completion of an Online Library Module Improves Engineering Student Performance on Information Literacy Skills Tests

    Directory of Open Access Journals (Sweden)

    Rachel E. Scott

    2016-12-01

    Full Text Available A Review of: Zhang, Q., Goodman, M., & Xie, S. (2015. Integrating library instruction into the Course Management System for a first-year engineering class: An evidence-based study measuring the effectiveness of blended learning on students’ information literacy levels. College & Research Libraries, 76(7, 934-958. http://dx.doi.org/10.5860/crl.76.7.934 Objective – To assess the efficacy of an online library module and of blended learning methods on students’ information literacy skills. Design – Multi-modal, pre- and posttests, survey questionnaire, and focus groups. Setting – Public research university in London, Ontario, Canada. Subjects – First-year engineering students. Methods – Of 413 students enrolled in Engineering Science (ES 1050, 252 volunteered to participate in the study. Participants were asked to complete the online module, a pretest, a posttest, an online follow-up survey, and to take part in a focus group. Researchers generated a pretest and a posttest, each comprised of 15 questions:; multiple choice, true or false, and matching questions which tested students’ general and engineering-specific information literacy skills. The pretest and posttest had different, but similarly challenging, questions to ensure that students involved in the study would not have an advantage over those who had opted out. While all components of the study were voluntary, the posttest was a graded course assignment. In-person tutorials were offered on 4 occasions, with only 15 students participating. Both tutorial and module content were designed to cover all questions and competencies tested in the pretest and the posttest, including Boolean operators, peer review, identifying plagiarism, engineering standards, engineering handbooks, search strategies, patents, article citations, identifying reliable sources, and how to read journal articles. The posttest survey was delivered in the CMS immediately after the posttest was completed. It

  16. Manufacturing and testing of a Be/OFHCCu divertor module

    Science.gov (United States)

    Araki, M.; Youchison, D. L.; Akiba, M.; Watson, R. D.; Sato, K.; Suzuki, S.

    1996-10-01

    Beryllium, carbon-based materials and tungsten are considered as plasma facing materials for the next generation of fusion machines such as the international thermonuclear experimental reactor (ITER). Beryllium is one of the primary candidate materials because of its low atomic number and lack of tritium codeposition. However, joining of a beryllium armor to a copper heat sink remains a critical problem due to the formation of brittle intermetallics at the interface. To address this concern, the Japan Atomic Energy Research Institute manufactured a beryllium/Cu divertor module with Cr and Ni diffusion barriers. This Be/Cu module was tested in the electron beam test system of Sandia National Laboratories in the framework of the US—Japan Fusion Collaboration. The divertor module consisted of four beryllium tiles, 25 mm × 25 mm, and a square copper heat sink with convolutions like a screw nut inside the coolant channel. To evaluate the integrity of the brazed bonds under various heat fluxes, beryllium tiles of two different thicknesses, 2 and 10 mm, were bonded to the copper heat sink. Cooling conditions of 10 m/s water flow velocity at 1 MPa, and a water inlet temperature of 20°C were selected based on the thermal analysis. During high heat flux testing the 10 mm thick Be tiles detached at an absorbed heat flux around 5 MW/m 2 for several shots due to flaws at the braze joint confirmed by optical observation after manufacturing. One of the 2 mm thick Be tiles failed after 550 cycles at the steady state heat flux of 6.5 MW/m 2. Most likely the failure was caused by brittleness at the interface caused by the presence of BeCu intermetallics.

  17. Orion MPCV Service Module Avionics Ring Pallet Testing, Correlation, and Analysis

    Science.gov (United States)

    Staab, Lucas; Akers, James; Suarez, Vicente; Jones, Trevor

    2012-01-01

    The NASA Orion Multi-Purpose Crew Vehicle (MPCV) is being designed to replace the Space Shuttle as the main manned spacecraft for the agency. Based on the predicted environments in the Service Module avionics ring, an isolation system was deemed necessary to protect the avionics packages carried by the spacecraft. Impact, sinusoidal, and random vibration testing were conducted on a prototype Orion Service Module avionics pallet in March 2010 at the NASA Glenn Research Center Structural Dynamics Laboratory (SDL). The pallet design utilized wire rope isolators to reduce the vibration levels seen by the avionics packages. The current pallet design utilizes the same wire rope isolators (M6-120-10) that were tested in March 2010. In an effort to save cost and schedule, the Finite Element Models of the prototype pallet tested in March 2010 were correlated. Frequency Response Function (FRF) comparisons, mode shape and frequency were all part of the correlation process. The non-linear behavior and the modeling the wire rope isolators proved to be the most difficult part of the correlation process. The correlated models of the wire rope isolators were taken from the prototype design and integrated into the current design for future frequency response analysis and component environment specification.

  18. Test of electrical multi-chip module for Belle II pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Felix [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: Belle II-Collaboration

    2015-07-01

    DEPFET pixel detectors offer excellent signal to noise ratio, resolution and low power consumption with few material. They will be used at Belle II and are a candidate for an ILC vertex detector. The Electrical Multi-Chip Module (EMCM) has been designed to study the back end of line (BEOL) and the metal layer interconnectivity of the DEPFET matrix production for Belle II. The electrical characterization of the EMCM allows studying the signal and control line routings. Having verified the integrity of the electrical network three different types of ASICs are flip-chipped on the EMCM. The electrical characterization of the assembled module allows the analysis and optimization of the ASICs in terms of data integrity. The EMCM serves also as a mechanical test structure to exercise flip-chip and wire bonding. Finally a small DEPFET prototype matrix is mounted on the module which acts as silicon PCB. Consequently, the full study of the complete readout chain can be done. An overview of the EMCM concept and first characterization results with the latest ASIC generation are presented.

  19. Advanced power cycling test for power module with on-line on-state VCE measurement

    DEFF Research Database (Denmark)

    Choi, Ui-min; Trintis, Ionut; Blaabjerg, Frede

    2015-01-01

    module. The proposed concept can perform various stress conditions which is valid in a real mission profile and it is using a real power converter application with small loss. The concept of the proposed test setup is first presented. Then, the on-line on-state collector-emitter voltage VCE measurement......Recent research has made an effort to improve the reliability of power electronic systems to comply with more stringent constraints on cost, safety, predicted lifetime and availability in many applications. For this, studies about failure mechanisms of power electronic components and lifetime...

  20. Overview of results of the first phase of validation activities for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Arbeiter, Frederik, E-mail: frederik.arbeiter@kit.edu [Karlsruhe Institute of Technology, Karlsruhe (Germany); Chen Yuming; Dolensky, Bernhard; Freund, Jana; Heupel, Tobias; Klein, Christine; Scheel, Nicola; Schlindwein, Georg [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Validation of computational fluid dynamics (CFD) modeling approach for application in the IFMIF High Flux Test Module. Black-Right-Pointing-Pointer Fabrication of prototypes of the irradiation capsules of the IFMIF High Flux Test Module. - Abstract: The international fusion materials irradiation facility (IFMIF) is projected to create an experimentally validated database of material properties relevant for fusion reactor designs. The IFMIF High Flux Test Module is the dedicated experiment to irradiate alloys in the temperature range 250-550 Degree-Sign C and up to 50 displacements per atom per irradiation cycle. The High Flux Test Module is developed to maximize the specimen payload in the restricted irradiation volume, and to minimize the temperature spread within each specimen bundle. Low pressure helium mini-channel cooling is used to offer a high integration density. Due to the demanding thermo-hydraulic and mechanical conditions, the engineering design process (involving numerical neutronic, thermo-hydraulic and mechanical analyses) is supported by extensive experimental validation activities. This paper reports on the prototype manufacturing, thermo-hydraulic modeling experiments and component tests, as well as on mechanical testing. For the testing of the 1:1 prototype of the High Flux Test Module, a dedicated test facility, the Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been taken into service.

  1. Providing Experiential Business and Management Training for Biomedical Research Trainees.

    Science.gov (United States)

    Petrie, Kimberly A; Carnahan, Robert H; Brown, Abigail M; Gould, Kathleen L

    2017-01-01

    Many biomedical PhD trainees lack exposure to business principles, which limits their competitiveness and effectiveness in academic and industry careers. To fill this training gap, we developed Business and Management Principles for Scientists, a semester-long program that combined didactic exposure to business fundamentals with practical team-based projects aimed at solving real business problems encountered by institutional shared--resource core facilities. The program also included a retreat featuring presentations by and networking with local life science entrepreneurs and final team presentations to expert judges. Quantitative and qualitative metrics were used to evaluate the program's impact on trainees. A pretest-posttest approach was used to assess trainees' baseline knowledge and mastery of module concepts, and each individual's pretest and posttest responses were compared. The mean score improved by more than 17 percentage points. Trainees also took an online survey to provide feedback about the module. Nearly all participants agreed or strongly agreed that the module was a valuable use of their time and will help guide their career decisions and that project work helped drive home module concepts. More than 75% of trainees reported discussing the module with their research advisors, and all of these participants reported supportive or neutral responses. Collectively, the trainee feedback about the module, improvement in test scores, and trainee perception of advisor support suggest that this short module is an effective method of providing scientists with efficient and meaningful exposure to business concepts. © 2017 K. A. Petrie et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http

  2. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    Science.gov (United States)

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  3. Optical Testing and Verification Methods for the James Webb Space Telescope Integrated Science Instrument Module Element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; hide

    2016-01-01

    NASA's James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (40K). The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) that contains four science instruments (SI) and the fine guider. The SIs are mounted to a composite metering structure. The SI and guider units were integrated to the ISIM structure and optically tested at the NASA Goddard Space Flight Center as a suite using the Optical Telescope Element SIMulator (OSIM). OSIM is a full field, cryogenic JWST telescope simulator. SI performance, including alignment and wave front error, were evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  4. Optical testing and verification methods for the James Webb Space Telescope Integrated Science Instrument Module element

    Science.gov (United States)

    Antonille, Scott R.; Miskey, Cherie L.; Ohl, Raymond G.; Rohrbach, Scott O.; Aronstein, David L.; Bartoszyk, Andrew E.; Bowers, Charles W.; Cofie, Emmanuel; Collins, Nicholas R.; Comber, Brian J.; Eichhorn, William L.; Glasse, Alistair C.; Gracey, Renee; Hartig, George F.; Howard, Joseph M.; Kelly, Douglas M.; Kimble, Randy A.; Kirk, Jeffrey R.; Kubalak, David A.; Landsman, Wayne B.; Lindler, Don J.; Malumuth, Eliot M.; Maszkiewicz, Michael; Rieke, Marcia J.; Rowlands, Neil; Sabatke, Derek S.; Smith, Corbett T.; Smith, J. Scott; Sullivan, Joseph F.; Telfer, Randal C.; Te Plate, Maurice; Vila, M. Begoña.; Warner, Gerry D.; Wright, David; Wright, Raymond H.; Zhou, Julia; Zielinski, Thomas P.

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5m diameter, segmented, deployable telescope for cryogenic IR space astronomy. The JWST Observatory includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM), that contains four science instruments (SI) and the Fine Guidance Sensor (FGS). The SIs are mounted to a composite metering structure. The SIs and FGS were integrated to the ISIM structure and optically tested at NASA's Goddard Space Flight Center using the Optical Telescope Element SIMulator (OSIM). OSIM is a full-field, cryogenic JWST telescope simulator. SI performance, including alignment and wavefront error, was evaluated using OSIM. We describe test and analysis methods for optical performance verification of the ISIM Element, with an emphasis on the processes used to plan and execute the test. The complexity of ISIM and OSIM drove us to develop a software tool for test planning that allows for configuration control of observations, implementation of associated scripts, and management of hardware and software limits and constraints, as well as tools for rapid data evaluation, and flexible re-planning in response to the unexpected. As examples of our test and analysis approach, we discuss how factors such as the ground test thermal environment are compensated in alignment. We describe how these innovative methods for test planning and execution and post-test analysis were instrumental in the verification program for the ISIM element, with enough information to allow the reader to consider these innovations and lessons learned in this successful effort in their future testing for other programs.

  5. Design, Testing and Operation of the Modulator for the CTF3 Tail Clipper Kicker

    CERN Document Server

    Barnes, M J; Ravida, G

    2010-01-01

    The goal of the present CLIC Test Facility (CTF3) is to demonstrate the technical feasibility of specific key issues in the CLIC scheme. The extracted drive beam from the combiner ring (CR, of 35 A magnitude and 140 ns duration, is sent to the new CLic EXperimental area (CLEX). A Tail Clipper (TC) is required, in the CR to CLEX transfer line, to allow the duration of the extracted beam pulse to be adjusted. Fours sets of striplines are used for the tail clipper, each consisting of a pair of deflector plates driven to equal potential but opposite polarity. The tail clipper kick must have a fast field risetime, of not more than 5 ns, in order to minimize uncontrolled beam loss. High voltage MOSFETs have been chosen to meet the demanding specifications for the semiconductor switches for the modulator of the tail clipper. This paper discusses the design of the modulator; measurement data obtained during testing and operation of the tail clipper is presented and analyzed.

  6. Safety analysis of the US dual coolant liquid lead lithium ITER test blanket module

    Science.gov (United States)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2007-07-01

    The US is proposing a prototype of a dual coolant liquid lead-lithium DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER test blanket module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER international team (IT) to address specific reactor safety concerns, such as vaccum vessel (VV) pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  7. Mast material test program (MAMATEP). [for Solar Array Assembly of Space Station Photovoltaic Power Module

    Science.gov (United States)

    Ciancone, Michael L.; Rutledge, Sharon K.

    1988-01-01

    The MAMATEP program, which is aimed at verifying the need for and evaluating the performance of various protection techniques for the solar array assembly mast of the Space Station photovoltaic power module, is discussed. Coated and uncoated mast material samples have been environmentally tested and evaluated, before and after testing, in terms of mass and bending modulus. The protective coatings include CV-1144 silicone, a Ni/Al/InSn eutectic, and an open-weave Al braid. Long-term plasma asher results from unprotected samples indicate that, even though fiberglass-epoxy samples degrade, a protection technique may not be necessary to ensure structural integrity. A protection technique, however, may be desirable to limit or contain the amount of debris generated by the degradation of the fiberglass-epoxy.

  8. Design, Construction, and Testing of Lightweight X-ray Mirror Modules

    Science.gov (United States)

    McClelland, Ryan S.; Biskach, Michael P.; Chan, Kai-Wing; Espina, Rebecca A.; Hohl, Bruce R.; Matson, Elizabeth A.; Saha, Timo C.; Zhang, William W.

    2013-01-01

    Lightweight and high resolution optics are needed for future space-based X-ray telescopes to achieve advances in high-energy astrophysics. The Next Generation X-ray Optics (NGXO) team at NASA GSFC is nearing mission readiness for a 10 arc-second Half Power Diameter (HPD) slumped glass mirror technology while laying the groundwork for a future 1-2 arc-second technology based on polished silicon mirrors. Technology Development Modules (TDMs) have been designed, fabricated, integrated with mirrors segments, and extensively tested to demonstrate technology readiness. Tests include X-ray performance, thermal vacuum, acoustic load, and random vibration. The thermal vacuum and acoustic load environments have proven relatively benign, while the random vibration environment has proven challenging due to large input amplification at frequencies above 500 Hz. Epoxy selection, surface preparation, and larger bond area have increased bond strength while vibration isolation has decreased vibration amplification allowing for space launch requirements to be met in the near term. The next generation of TDMs, which demonstrates a lightweight structure supporting more mirror segments, is currently being fabricated. Analysis predicts superior performance characteristics due to the use of E-60 Beryllium-Oxide Metal Matrix Composite material, with only a modest cost increase. These TDMs will be larger, lighter, stiffer, and stronger than the current generation. Preliminary steps are being taken to enable mounting and testing of 1-2 arc-second mirror segments expected to be available in the future. A Vertical X-ray Test Facility (VXTF) will minimize module gravity distortion and allow for less constrained mirror mounts, such as fully kinematic mounts. Permanent kinematic mounting into a modified TDM has been demonstrated to achieve 2 arc-second level distortion free alignment.

  9. PV module performance at Mead, Nebraska test site. Quarterly report for October 1, 1978--December 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Forman, S. E.; Themelis, M. P.

    1979-04-01

    The Department of Energy has set a 20-year lifetime goal for terrestrial photovoltaic modules. Massachusetts Institute of Technology's Lincoln Laboratory, in its capacity as a Photovoltaic Field Tests and Applications Center, has established various experimental test sites in the United States ranging in size from 0.1 to 25 kW of peak power. These sites serve as test beds for photovoltaic system components and include modules from several manufacturers. This report summarizes the activities of the Materials, Processes and Testing Laboratory of the Solar Photovoltaic Project during a three-month (10/1/78--12/31/78) period. Particular attention is given to testing and analysis of solar modules from the Mead, Nebraska site, which contains a 25-kW array. A trip to the site was made, where various testing and inspection procedures were followed, in order to ascertain the physical and electrical degradation which had occurred in modules. In addition, several modules were removed for more detailed testing and inspection in the Laboratory. The results of both the field testing and laboratory analyses are reported here.

  10. Standard Specification for Steel Blades Used with the Photovoltaic Module Surface Cut Test

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification specifies the recommended physical characteristics of the steel blades required for the surface cut test described in ANSI/UL 1703 (Section 24) and IEC 61730-2 (Paragraph 10.3). 1.2 ANSI/UL 1703 and IEC 61730-2 are standards for photovoltaic module safety testing. 1.3 This standard provides additional fabrication details for the surface cut test blades that are not provided in ANSI/UL 1703 or IEC 61730-2. Surface cut test blades that have out-of-tolerance corner radii or burrs are known to cause erroneous test results, either passes or failures. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  12. Biomedical implantable microelectronics.

    Science.gov (United States)

    Meindl, J D

    1980-10-17

    Innovative applications of microelectronics in new biomedical implantable instruments offer a singular opportunity for advances in medical research and practice because of two salient factors: (i) beyond all other types of biomedical instruments, implants exploit fully the inherent technical advantages--complex functional capability, high reliability, lower power drain, small size and weight-of microelectronics, and (ii) implants bring microelectronics into intimate association with biological systems. The combination of these two factors enables otherwise impossible new experiments to be conducted and new paostheses developed that will improve the quality of human life.

  13. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  14. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  15. Ethics in biomedical engineering.

    Science.gov (United States)

    Morsy, Ahmed; Flexman, Jennifer

    2008-01-01

    This session focuses on a number of aspects of the subject of Ethics in Biomedical Engineering. The session starts by providing a case study of a company that manufactures artificial heart valves where the valves were failing at an unexpected rate. The case study focuses on Biomedical Engineers working at the company and how their education and training did not prepare them to deal properly with such situation. The second part of the session highlights the need to learn about various ethics rules and policies regulating research involving human or animal subjects.

  16. Microfabrication materials for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek James

    Major hurdles to the implementation of microfabricated devices for therapeutic applications include materials processing and biocompatibility issues. This dissertation reports research on improving the materials selection and fabrication for biomedical microdevices, using a microfabricated immunoisolation biocapsule as an example. Two material classes in the microfabrication protocol were examined based on the requirements determined for biomedical microdevices: the adhesive layer for bonding devices to encapsulate delicate biological substances and the thin film structural materials for surface structures, such as the biocapsule membrane. The major requirements for the adhesive layer material included non-cytotoxicity during bonding, adhesive strength, and durability under physiological conditions. Low glassy-phase transition temperature (Tg) methacrylates were found to be suitable candidates for adhesives of biomedical microdevices. A comparison study of poly propy1methacrylate (PPMA), poly (butyl, ethyl) methacrylate (PBEMA), and the higher Tg PMMA showed that all of the methacrylates had similar biocompatibility, adhesive strength, and durability. The adhesive strengths were found to be suitable for the adhesion of biomedical microdevices, as shown by measurement using a pressurized plate test and the current use of PMMA as bone cement. None of the methacrylates showed evidence of cytotoxicity, as measured by both optical and cytometric cell culture cytotoxicity tests. A protocol for the selective placement of smooth, thin films of PPMA using a Gel-PakTM transfer substrate was developed and demonstrated. The major requirements determined for the thin film structural materials were based on processing, mechanical, and biological parameters. Several candidates were identified as for structural materials based on these requirements: polycrystalline silicon. silicon nitride, fluoropolymers, PMMA, and silicone. A new fabrication protocol was developed to allow the

  17. Spectral modulation effect in teleseismic P-waves from DPRK nuclear tests recorded at different azimuths

    Science.gov (United States)

    Gitterman, Yefim; Kim, So Gu; Hofstetter, Abraham

    2014-05-01

    Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by the Israel Seismic Network. Pronounced coherent minima (spectral nulls) at 1.2-1.3 Hz were revealed in the spectra of teleseismic P-waves. For a ground-truth explosion with a shallow source depth (relatively to an earthquake), this phenomenon can be interpreted in terms of the interference between the down-going P-wave and the pP phase reflected from the Earth's surface. A similar effect was observed at ISN stations for the Pakistan nuclear explosion at a different frequency 1.7 Hz indicating a source and not site-effect. Similar spectral minima with about the same frequency were observed in teleseismic P-waves of all three North Korea explosions (including the 2006 test) recorded at network stations and arrays in Kazakhstan (KURK), Norway (NORESS, ARCESS), Australia (Alice Springs, Warramunga) and Canada (Yellowknife), covering a broad azimuthal range. Data of the 2013 test at Warramunga array showed harmonic spectral modulation with several minima, evidencing a clear interference effect. These observations support the above-mentioned interpretation. Based on the null frequency dependency on the near-surface acoustic velocity and the source depth, the depth of the North Korea tests was estimated as ~2 km (different from the value ~1 km reported by USGS for the third test). This unusual depth estimation needs an additional validation based on more stations and verification by other methods.

  18. Hydraulic and thermal testing of different helium cooled irradiation rig models for the IFMIF High Flux Test Module

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Christine, E-mail: Christine.Klein@kit.edu; Arbeiter, Frederik; Martin, Thomas; Taubmann, Peter

    2016-03-15

    Highlights: • Two different single 1:1 irradiation rigs inside a mock-up container are presented. • Pressure drops in the single rig minichannels are measured. • Temperature fields are measured under different heater and flow conditions. • Predictability and reproducibility of the cooling flows can be shown. - Abstract: The hydraulic and thermal testing of two different irradiation rig models A and B, differing in the inlet nozzle design, bottom reflector length and steps inside a mock-up container is part of the HFTM validation activities which support the engineering design of the High Flux Test Module. The pressure drops for all models in the test section are measured for overall mass flow rates of 1–12 g/s and different absolute pressures of 1500 hPa and 2500 hPa at the pressure port at the inlet section. The pressure drops in different sections of the experiment and in the single rig minichannels are also measured with additional pressure ports on the surfaces of the rig models. Predictability and reproducibility of the cooling effects of the main cooling channels in the HFTM irradiation zone can be shown. Rig model B with a backward facing step is for high mass flow rates >∼7.5 g/s (this is the operation regime of the HFTM) superior to rig model A. Uniform perfusion of the multiple parallel minichannels of the irradiation rigs by helium gas is of importance to obtain uniform and predictable temperatures. Temperature fields under different heater and flow conditions have been measured.

  19. Post-test analysis of components from selenide isotope generator modules M-7, M-15, and M-18

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Keiser, J.R.; Crouse, R.S.; Allen, M.D.; Schaffhauser, A.C.

    1979-05-01

    Several critical components removed from SIG (Selenide Isotope Generator) thermoelectric modules M-7, M-15C, M-15D, and M-18 were examined. These modules failed to show the predicted stability and conversion efficiency. Understanding the degradation and identifying means for preventing it necessitated detailed post-test examinations of key parts in the modules. Steel springs, which provided pressure for contacts at the hot and cold ends of P- or N-legs, relaxed more than expected. Beryllium oxide insulators had dark deposits that caused electrical shorts. The GdSe/sub 1/ /sub 49/ N-leg exhibited cracking. The (Cu,Ag)/sub 2/Se P-leg lost weight or sublimed excessively in module M-7 and more than expected in the other modules.

  20. Long term testing and evaluation of PV modules with and without Sunarc antireflective coating of the cover glass

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Han, Jiangong

    2015-01-01

    Two Photovoltaic (PV) modules have been manufactured by Swemodule. One with Sunarc antireflective coated glass and one without glass surface treatment. The modules have been tested at DTU during 16 months under realistic outdoor conditions. Exactly the same polycrystalline cells were used...... in the modules. No cleaning of the glass has been made except for removal of bird droppings and leaves on single cells that could give a very wrong comparison. The PV modules were mounted due south at 45 degree tilt angle. They were connected to the electric grid with small 250W module inverters from Involar...... applications. In PV applications the slightly higher cell temperature, due to the higher transmittance of the glass for all solar wavelengths, reduces the potential electrical performance improvement....

  1. Test of a single module of the J-PET scanner based on plastic scintillators

    CERN Document Server

    Moskal, P; Bednarski, T; Czerwiński, E; Kapłon, Ł; Kubicz, E; Moskal, I; Pawlik-Niedźwiecka, M; Sharma, N G; Silarski, M; Zieliński, M; Zoń, N; Białas, P; Gajos, A; Kochanowski, A; Korcyl, G; Kowal, J; Kowalski, P; Kozik, T; Krzemień, W; Molenda, M; Pałka, M; Raczyński, L; Rudy, Z; Salabura, P; Słomski, A; Smyrski, J; Strzelecki, A; Wieczorek, A; Wiślicki, W

    2014-01-01

    Time of Flight Positron Emission Tomography scanner based on plastic scintillators is being developed at the Jagiellonian University by the J-PET collaboration. The main challenge of the conducted research lies in the elaboration of a method allowing application of plastic scintillators for the detection of low energy gamma quanta. In this article we report on tests of a single detection module built out from BC-420 plastic scintillator strip (with dimensions of 5x19x300mm^3) read out at two ends by Hamamatsu R5320 photomultipliers. The measurements were performed using collimated beam of annihilation quanta from the 68Ge isotope and applying the Serial Data Analyzer (Lecroy SDA6000A) which enabled sampling of signals with 50ps intervals. The time resolution of the prototype module was established to be better than 80ps (sigma) for a single level discrimination. The spatial resolution of the determination of the hit position along the strip was determined to be about 0.93cm (sigma) for the annihilation quanta...

  2. Ultraviolet light test and evaluation methods for encapsulants of photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael D. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2010-02-15

    Photovoltaic (PV) modules are exposed to harsh conditions of heat, humidity, high voltage, mechanical stress, thermal cycling, and ultraviolet (UV) radiation. The current qualification tests (e.g. IEC 61215) do not require UV exposure sufficient to evaluate a lifespan of 20 years or more. Methods to quickly evaluate the UV durability of photovoltaic materials are needed. The initial performance and cost of encapsulant materials must be taken into account, but equally important is their ability to maintain adhesion and transmissivity under UV exposure. This can be evaluated under highly accelerated conditions with light from a xenon arc lamp using glass that transmits more UV radiation than a module would normally see. The use of highly UV transmissive glass (no Ce to block UV-B radiation) results in a UV dose that is about 3.8 times greater with regard to adhesion than a Ce-containing glass. With this configuration, the effect of 20 years of exposure, as compared with the use of UV-B blocking glass, can be simulated in just over 6 months using standard commercial accelerated stress chambers. This also indicates that the use of non-UV blocking glass may significantly reduce the long-term adhesive stability of PV materials. (author)

  3. Cognitive modulation of psychophysical, respiratory and autonomic responses to cold pressor test.

    Science.gov (United States)

    Santarcangelo, Enrica L; Paoletti, Giulia; Chiavacci, Iacopo; Palombo, Carlo; Carli, Giancarlo; Varanini, Maurizio

    2013-01-01

    In healthy subjects with high hypnotisability (highs) under hypnosis, subjectively effective suggestions for analgesia abolish the increases in blood pressure associated with cold pressor test (cpt) by reducing the peripheral vascular resistance. The aim of the present study was to investigate the effects of the suggestions of analgesia on the responses to cpt in healthy highs (n = 22) and in low hypnotisable participants (lows, n = 22) out of hypnosis. Cpt was administered without (CPT) and with suggestions for analgesia (CPT+AN). Psychophysical (pain intensity, pain threshold, cpt duration (time of immersion) and pain tolerance, defined as the difference between cpt duration and pain threshold), respiratory (amplitude and frequency) and autonomic variables (tonic skin conductance, mean RR interval (RR = 1/heart rate), blood pressure, skin blood flow) were studied. The suggestions for analgesia increased cpt duration and RR in both groups, but decreased pain intensity and enhanced pain threshold only in highs; in both groups they did not modulate systolic blood pressure, tonic skin conductance and skin blood flow; thus, increased parasympathetic activity appears responsible for the heart rate reduction induced by suggestions in both groups. In conclusion, our findings show that suggestions modulate pain experience differentially in highs and lows, and are partially effective also in lows. We hypothesize that the mechanisms responsible for the efficacy of suggestions in healthy lows may be involved also in their efficacy in chronic pain patients with low hypnotisability.

  4. Cognitive modulation of psychophysical, respiratory and autonomic responses to cold pressor test.

    Directory of Open Access Journals (Sweden)

    Enrica L Santarcangelo

    Full Text Available In healthy subjects with high hypnotisability (highs under hypnosis, subjectively effective suggestions for analgesia abolish the increases in blood pressure associated with cold pressor test (cpt by reducing the peripheral vascular resistance. The aim of the present study was to investigate the effects of the suggestions of analgesia on the responses to cpt in healthy highs (n = 22 and in low hypnotisable participants (lows, n = 22 out of hypnosis. Cpt was administered without (CPT and with suggestions for analgesia (CPT+AN. Psychophysical (pain intensity, pain threshold, cpt duration (time of immersion and pain tolerance, defined as the difference between cpt duration and pain threshold, respiratory (amplitude and frequency and autonomic variables (tonic skin conductance, mean RR interval (RR = 1/heart rate, blood pressure, skin blood flow were studied. The suggestions for analgesia increased cpt duration and RR in both groups, but decreased pain intensity and enhanced pain threshold only in highs; in both groups they did not modulate systolic blood pressure, tonic skin conductance and skin blood flow; thus, increased parasympathetic activity appears responsible for the heart rate reduction induced by suggestions in both groups. In conclusion, our findings show that suggestions modulate pain experience differentially in highs and lows, and are partially effective also in lows. We hypothesize that the mechanisms responsible for the efficacy of suggestions in healthy lows may be involved also in their efficacy in chronic pain patients with low hypnotisability.

  5. [A biomedical signal processing toolkit programmed by Java].

    Science.gov (United States)

    Xie, Haiyuan

    2012-09-01

    According to the biomedical signal characteristics, a new biomedical signal processing toolkit is developed. The toolkit is programmed by Java. It is used in basic digital signal processing, random signal processing and etc. All the methods in toolkit has been tested, the program is robust. The feature of the toolkit is detailed explained, easy use and good practicability.

  6. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  7. Holography In Biomedical Sciences

    Science.gov (United States)

    von Bally, G.

    1988-01-01

    Today not only physicists and engineers but also biological and medical scientists are exploring the potentials of holographic methods in their special field of work. Most of the underlying physical principles such as coherence, interference, diffraction and polarization as well as general features of holography e.g. storage and retrieval of amplitude and phase of a wavefront, 3-d-imaging, large field of depth, redundant storage of information, spatial filtering, high-resolving, non-contactive, 3-d form and motion analysis are explained in detail in other contributions to this book. Therefore, this article is confined to the applications of holography in biomedical sciences. Because of the great number of contributions and the variety of applications [1,2,3,4,5,6,7,8] in this review the investigations can only be mentioned briefly and the survey has to be confined to some examples. As in all fields of optics and laser metrology, a review of biomedical applications of holography would be incomplete if military developments and their utilization are not mentioned. As will be demonstrated by selected examples the increasing interlacing of science with the military does not stop at domains that traditionally are regarded as exclusively oriented to human welfare like biomedical research [9]. This fact is actually characterized and stressed by the expression "Star Wars Medicine", which becomes increasingly common as popular description for laser applications (including holography) in medicine [10]. Thus, the consequence - even in such highly specialized fields like biomedical applications of holography - have to be discussed.

  8. What is biomedical informatics?

    Science.gov (United States)

    Bernstam, Elmer V; Smith, Jack W; Johnson, Todd R

    2010-02-01

    Biomedical informatics lacks a clear and theoretically-grounded definition. Many proposed definitions focus on data, information, and knowledge, but do not provide an adequate definition of these terms. Leveraging insights from the philosophy of information, we define informatics as the science of information, where information is data plus meaning. Biomedical informatics is the science of information as applied to or studied in the context of biomedicine. Defining the object of study of informatics as data plus meaning clearly distinguishes the field from related fields, such as computer science, statistics and biomedicine, which have different objects of study. The emphasis on data plus meaning also suggests that biomedical informatics problems tend to be difficult when they deal with concepts that are hard to capture using formal, computational definitions. In other words, problems where meaning must be considered are more difficult than problems where manipulating data without regard for meaning is sufficient. Furthermore, the definition implies that informatics research, teaching, and service should focus on biomedical information as data plus meaning rather than only computer applications in biomedicine.

  9. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  10. Preliminary piping layout and integration of European test blanket modules subsystems in ITER CVCS area

    Energy Technology Data Exchange (ETDEWEB)

    Tarallo, Andrea, E-mail: andrea.tarallo@unina.it [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Mozzillo, Rocco; Di Gironimo, Giuseppe [CREATE, University of Naples Federico II, DII, P.le Tecchio, 80, 80125 Naples (Italy); Aiello, Antonio; Utili, Marco [ENEA UTIS, C.R. Brasimone, Bacino del Brasimone, I-40032 Camugnano, BO (Italy); Ricapito, Italo [TBM& MD Project, Fusion for Energy, EU Commission, Carrer J. Pla, 2, Building B3, 08019 Barcelona (Spain)

    2015-04-15

    Highlights: • The use of human modeling tools for piping design in view of maintenance is discussed. • A possible preliminary layout for TBM subsystems in CVCS area has been designed with CATIA. • A DHM-based method to quickly check for maintainability of piping systems is suggested. - Abstract: This paper explores a possible integration of some ancillary systems of helium-cooled lithium lead (HCLL) and helium-cooled pebble-bed (HCPB) test blanket modules in ITER CVCS area. Computer-aided design and ergonomics simulation tools have been fundamental not only to define suitable routes for pipes, but also to quickly check for maintainability of equipment and in-line components. In particular, accessibility of equipment and systems has been investigated from the very first stages of the design using digital human models. In some cases, the digital simulations have resulted in changes in the initial space reservations.

  11. Study for verification testing of the helmet-mounted display in the Japanese Experimental Module.

    Science.gov (United States)

    Nakajima, I; Yamamoto, I; Kato, H; Inokuchi, S; Nemoto, M

    2000-02-01

    Our purpose is to propose a research and development project in the field of telemedicine. The proposed Multimedia Telemedicine Experiment for Extra-Vehicular Activity will entail experiments designed to support astronaut health management during Extra-Vehicular Activity (EVA). Experiments will have relevant applications to the Japanese Experimental Module (JEM) operated by National Space Development Agency of Japan (NASDA) for the International Space Station (ISS). In essence, this is a proposal for verification testing of the Helmet-Mounted Display (HMD), which enables astronauts to verify their own blood pressures and electrocardiograms, and to view a display of instructions from the ground station and listings of work procedures. Specifically, HMD is a device designed to project images and data inside the astronaut's helmet. We consider this R&D proposal to be one of the most suitable projects under consideration in response to NASDA's open invitation calling for medical experiments to be conducted on JEM.

  12. Development of Reduced Activation Ferritic-Martensitic Steels and fabrication technologies for Indian test blanket module

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Baldev [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Jayakumar, T., E-mail: tjk@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2011-10-01

    For the development of Reduced Activation Ferritic-Martensitic Steel (RAFMS), for the Indian Test Blanket Module for ITER, a 3-phase programme has been adopted. The first phase consists of melting and detailed characterization of a laboratory scale heat conforming to Eurofer 97 composition, to demonstrate the capability of the Indian industry for producing fusion grade steel. In the second phase which is currently in progress, the chemical composition will be optimized with respect to tungsten and tantalum for better combination of mechanical properties. Characterization of the optimized commercial scale India-specific RAFM steel will be carried out in the third phase. The first phase of the programme has been successfully completed and the tensile, impact and creep properties are comparable with Eurofer 97. Laser and electron beam welding parameters have been optimized and welding consumables were developed for Narrow Gap - Gas Tungsten Arc welding and for laser-hybrid welding.

  13. A method for testing the integrated thermal resistance of thermoelectric modules.

    Science.gov (United States)

    Gao, Junling; Du, Qungui; Chen, Min

    2013-11-01

    The integrated thermal resistance (ITR) of thermoelectric modules (TEMs) is an important parameter that represents the thermal-conduction of ceramic substrates, copper conducting strips, and welding material used in the TEM as well as the thermal contact resistances between different materials. In this study, an accurate and practical test method is proposed for the ITR of TEMs according to thermoelectric heat transfer theory and the equivalent characteristics of heat flux through the cold and hot sides of TEMs in an open-circuit situation. By using such measurements and comparisons, it is verified that the measured ITR value in our mode is accurate and reliable. In particular this method accurately predicts the actual operating conditions of TEMs, in which TEMs are under certain mechanical pressure. It effectively solves the problem of thermal resistance extraction from operating TEMs and is of great significance in their analysis and optimization.

  14. Technical issues of reduced activation ferritic/martensitic steels for fabrication of ITER test blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, H. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)], E-mail: tanigawa.hiroyasu@jaea.go.jp; Hirose, T.; Shiba, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kasada, R. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Wakai, E. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Serizawa, H.; Kawahito, Y. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Jitsukawa, S. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kimura, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Kohno, Y. [Department of Materials Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido 050-8585 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011 (Japan); Katayama, S. [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mori, H.; Nishimoto, K. [Division of Materials and Manufacturing Science, Osaka University, Ibaraki, Osaka 565-0871 (Japan); Klueh, R.L.; Sokolov, M.A.; Stoller, R.E.; Zinkle, S.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6132 (United States)

    2008-12-15

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems. The RAFM F82H was developed in Japan with emphasis on high-temperature properties and weldability. Extensive irradiation studies have conducted on F82H, and it has the most extensive available database of irradiated and unirradiated properties of all RAFMs. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of an ITER test blanket module (TBM) suggested from the recent research achievements in Japan. This work clarified that the primary issues with F82H involve welding techniques and the mechanical properties of weld joints. This is the result of the distinctive nature of the joint caused by the phase transformation that occurs in the weld joint during cooling, and its impact on the design of a TBM will be discussed.

  15. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  16. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-4, Operation of Magnetic Particle Test Equipment.

    Science.gov (United States)

    Groseclose, Richard

    This fourth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the specific technique variables and options which are available to the test technician, provides instructions for selecting and operating the appropriate test equipment, describes physical criteria for detectable discontinuities,…

  17. Power cycling test and failure analysis of molded Intelligent Power IGBT Module under different temperature swing durations

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, Søren

    2016-01-01

    on the lifetime of 600 V, 30 A, 3-phase molded Intelligent PowerModules (IPM) and their failuremechanismsare investigated. The study is based on the accelerated power cycling test results of 36 samples under 6 different conditions and tests are performed under realistic electrical conditions by an advanced power...

  18. Effect of conditioned pain modulation on trigeminal somatosensory function evaluated by quantitative sensory testing.

    Science.gov (United States)

    Oono, Yuka; Baad-Hansen, Lene; Wang, Kelun; Arendt-Nielsen, Lars; Svensson, Peter

    2013-12-01

    The aim of the study was to systematically investigate the effect of craniofacially evoked conditioned pain modulation on somatosensory function using a quantitative sensory testing (QST) protocol applied to the trigeminal area in healthy humans. Pressure pain evoked by a mechanical compressive device was applied as conditioning stimulus (CS) in the craniofacial region, with a pain intensity of 5 on a visual analogue scale (VAS: 0-10 cm) (painful session) or with VAS score of 0 (control session). A full QST battery of 13 parameters was performed as test stimuli on the dominant-side cheek. The individual QST data from 11 men and 12 women were transformed into z scores, and the QST data and z scores were tested using analyses of variance. Analyses of variance of pressure pain threshold (PPT) data (log-transformed values and z scores) indicated significant session (P ≤ .003) and time (P painful session were associated with significantly higher log-transformed PPT values and significantly lower z scores compared with the control session at the time point during CS (hypoalgesia) (P pain inhibitory mechanisms.

  19. Experimental results and validation of a method to reconstruct forces on the ITER test blanket modules

    Energy Technology Data Exchange (ETDEWEB)

    Zeile, Christian, E-mail: christian.zeile@kit.edu; Maione, Ivan A.

    2015-10-15

    Highlights: • An in operation force measurement system for the ITER EU HCPB TBM has been developed. • The force reconstruction methods are based on strain measurements on the attachment system. • An experimental setup and a corresponding mock-up have been built. • A set of test cases representing ITER relevant excitations has been used for validation. • The influence of modeling errors on the force reconstruction has been investigated. - Abstract: In order to reconstruct forces on the test blanket modules in ITER, two force reconstruction methods, the augmented Kalman filter and a model predictive controller, have been selected and developed to estimate the forces based on strain measurements on the attachment system. A dedicated experimental setup with a corresponding mock-up has been designed and built to validate these methods. A set of test cases has been defined to represent possible excitation of the system. It has been shown that the errors in the estimated forces mainly depend on the accuracy of the identified model used by the algorithms. Furthermore, it has been found that a minimum of 10 strain gauges is necessary to allow for a low error in the reconstructed forces.

  20. EMC Testing on the Integrated Science Instrument Module (ISIM) - A Summary of the EMC Test Campaign for the Science Payload of the James Webb Space Telescope (JWST)

    Science.gov (United States)

    McCloskey, John

    2016-01-01

    This paper describes the electromagnetic compatibility (EMC) tests performed on the Integrated Science Instrument Module (ISIM), the science payload of the James Webb Space Telescope (JWST), at NASAs Goddard Space Flight Center (GSFC) in August 2015. By its very nature of being an integrated payload, it could be treated as neither a unit level test nor an integrated spacecraft/observatory test. Non-standard test criteria are described along with non-standard test methods that had to be developed in order to evaluate them. Results are presented to demonstrate that all test criteria were met in less than the time allocated.

  1. Carbon Nanotubes Reinforced Composites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites, their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  2. Carbon nanotubes reinforced composites for biomedical applications.

    Science.gov (United States)

    Wang, Wei; Zhu, Yuhe; Liao, Susan; Li, Jiajia

    2014-01-01

    This review paper reported carbon nanotubes reinforced composites for biomedical applications. Several studies have found enhancement in the mechanical properties of CNTs-based reinforced composites by the addition of CNTs. CNTs reinforced composites have been intensively investigated for many aspects of life, especially being made for biomedical applications. The review introduced fabrication of CNTs reinforced composites (CNTs reinforced metal matrix composites, CNTs reinforced polymer matrix composites, and CNTs reinforced ceramic matrix composites), their mechanical properties, cell experiments in vitro, and biocompatibility tests in vivo.

  3. Biomedical Visual Computing: Case Studies and Challenges

    KAUST Repository

    Johnson, Christopher

    2012-01-01

    Advances in computational geometric modeling, imaging, and simulation let researchers build and test models of increasing complexity, generating unprecedented amounts of data. As recent research in biomedical applications illustrates, visualization will be critical in making this vast amount of data usable; it\\'s also fundamental to understanding models of complex phenomena. © 2012 IEEE.

  4. The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.

    NARCIS (Netherlands)

    Lameris, A.L.L.; Hoenderop, J.G.J.; Bindels, R.J.M.; Eijsvogels, T.M.H.

    2015-01-01

    BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to

  5. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  6. Use of a systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices.

    Science.gov (United States)

    Smith, Anne-Louise

    2011-12-01

    Many microorganisms responsible for hospital-acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches.

  7. The development and testing of a unique and flexible training module for residents and fellows using digital breast tomosythesis (DBT)

    Science.gov (United States)

    Hakim, Christiane M.; Drescher, John; King, Jill L.; Logue, Durwin; Klym, Amy H.; Gur, David

    2017-03-01

    The transition from FFDM to digital breast tomosynthesis (DBT) necessitates new approaches for training radiology residents and fellows that highlight depiction differences between the same abnormalities on the two modalities. We developed a unique, flexible training module that enables training with complete feedback, as well as testing performance before and after use of this training module. Currently, 219 examinations, with priors and other relevant information, are included. Using a special interface to the Secure View workstation (Hologic), we developed a management program that displays each case in a randomized manner and in a sequential mode (i.e. FFDM first followed by FFDM+DBT) and allows the reader to rate the case followed by viewing the images side by side with results of the full imaging based history (reporting) by the screening interpreter, the diagnostic workup interpreter (when applicable), and the actual pathology (biopsy and/or surgical). This approach allows the reader to review their correct and/or incorrect interpretation at each step of the management decision making. The module also has sets of pre- and post-training cases, allowing for a test-train-test study to be performed, if so desired. Two observer studies using 18 radiologists, residents, and fellows have been performed using this module, to date. The training module was assembled, tested, and implemented. We found it to be extremely flexible and useful in training. After completing two observer performance studies, the module was installed in our clinical facility and is currently being used to train residents and fellows at their own pace. All users found this module to be useful and extremely informative.

  8. Zapping biomedical waste

    Energy Technology Data Exchange (ETDEWEB)

    Strack, T.

    1997-08-01

    Advances made in the use of microwave radiation techniques in the disinfection and disposal of biomedical wastes were discussed. Commercial-scale microwave disinfection methods have been developed in Germany and brought to North America in 1990. Since then some 30 hospitals in the U.S. and one in Canada have adopted the system. Details of the technology and its several operational benefits such as reduced costs, higher productivity, enhanced quality, and environmentally superior attributes, were described. The only Canadian installation is currently being operated by MEDispose Inc., as an independent, commercial biomedical treatment facility. It serves all of the southern Ontario region. Other Canadian provinces are expected to embrace the technology following extensive information dissemination about the Toronto project by the Canadian Electricity Association.

  9. Sharing big biomedical data.

    Science.gov (United States)

    Toga, Arthur W; Dinov, Ivo D

    The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent datasets; however there are significant technical, social, regulatory, and institutional barriers that need to be overcome to ensure the power of Big Data overcomes these detrimental factors. Pragmatic policies that demand extensive sharing of data, promotion of data fusion, provenance, interoperability and balance security and protection of personal information are critical for the long term impact of translational Big Data analytics.

  10. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  11. Particle Physics and Astronomy Research Council (PPARC) members, United Kingdom, visiting the ATLAS semiconductor tracker (SCT) module tests.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    Photo 01: Mr Peter Warry, PPARC Chairman, Victrex Plc, United Kingdom visiting the ATLAS SCT module tests with Dr Joleen Pater, SCT (Manchester). Photo 02: PPARC Council Members, United Kingdom, visiting the ATLAS SCT module tests. L.t to r.: Mrs Judith Scott, Chief Executive, British Computer Society, Prof. George Efstathiou, Institute of Astronomy, University of Cambridge, Mr Peter Warry, PPARC Chairman, Victrex Plc, Prof. Martin Ward, Director X-Ray Astronomy, of Leicester, Prof. James Stirling, Director, Institute for Particle Physics Phenomenology, University of Durham and Prof. Brian Foster, University of Bristol.

  12. Proposed Junction-Box Stress Test (Using an Added Weight) for Use During the Module Qualification (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Wohlgemuth, J. H.; Kurtz, S. R.

    2012-02-01

    Engineering robust adhesion of the junction-box (j-box) is a hurdle typically encountered by photovoltaic (PV) module manufacturers during product development. Furthermore, there are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp heat' IEC qualification test is proposed to verify the basic robustness of the j-box adhesion system. The details of the proposed test are described, in addition to the preliminary results conducted using representative materials and components.

  13. Adaptive Biomedical Innovation.

    Science.gov (United States)

    Honig, P K; Hirsch, G

    2016-12-01

    Adaptive Biomedical Innovation (ABI) is a multistakeholder approach to product and process innovation aimed at accelerating the delivery of clinical value to patients and society. ABI offers the opportunity to transcend the fragmentation and linearity of decision-making in our current model and create a common collaborative framework that optimizes the benefit and access of new medicines for patients as well as creating a more sustainable innovation ecosystem.

  14. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  15. [Biomedical activity of biosurfactants].

    Science.gov (United States)

    Krasowska, Anna

    2010-07-23

    Biosurfactants, amphiphilic compounds, synthesized by microorganisms have surface, antimicrobial and antitumor properties. Biosurfactants prevent adhesion and biofilms formation by bacteria and fungi on various surfaces. For many years microbial surfactants are used as antibiotics with board spectrum of activity against microorganisms. Biosurfactants act as antiviral compounds and their antitumor activities are mediated through induction of apoptosis. This work presents the current state of knowledge related to biomedical activity of biosurfactants.

  16. Biomedical accelerator mass spectrometry

    Science.gov (United States)

    Freeman, Stewart P. H. T.; Vogel, John S.

    1995-05-01

    Ultrasensitive SIMS with accelerator based spectrometers has recently begun to be applied to biomedical problems. Certain very long-lived radioisotopes of very low natural abundances can be used to trace metabolism at environmental dose levels ( [greater-or-equal, slanted] z mol in mg samples). 14C in particular can be employed to label a myriad of compounds. Competing technologies typically require super environmental doses that can perturb the system under investigation, followed by uncertain extrapolation to the low dose regime. 41Ca and 26Al are also used as elemental tracers. Given the sensitivity of the accelerator method, care must be taken to avoid contamination of the mass spectrometer and the apparatus employed in prior sample handling including chemical separation. This infant field comprises the efforts of a dozen accelerator laboratories. The Center for Accelerator Mass Spectrometry has been particularly active. In addition to collaborating with groups further afield, we are researching the kinematics and binding of genotoxins in-house, and we support innovative uses of our capability in the disciplines of chemistry, pharmacology, nutrition and physiology within the University of California. The field can be expected to grow further given the numerous potential applications and the efforts of several groups and companies to integrate more the accelerator technology into biomedical research programs; the development of miniaturized accelerator systems and ion sources capable of interfacing to conventional HPLC and GMC, etc. apparatus for complementary chemical analysis is anticipated for biomedical laboratories.

  17. Design of a Compact, Portable Test System for Thermoelectric Power Generator Modules

    Science.gov (United States)

    Faraji, Amir Yadollah; Akbarzadeh, Aliakbar

    2013-07-01

    Measurement of fundamental parameters of a thermoelectric generator (TEG) module, including efficiency, internal electrical resistance, thermal resistance, power output, Seebeck coefficient, and figure of merit ( Z), is necessary in order to design a thermoelectric-based power generation system. This paper presents a new design for a compact, standalone, portable test system that enables measurement of the main parameters of a TEG over a wide range of temperature differences and compression pressures for a 40 mm × 40 mm specimen. The Seebeck coefficient and figure of merit can also be calculated from the information obtained. In the proposed system, the temperature of each side of the TEG can be set at the desired temperature—the hot side as high as 380°C and the cold side as low as 5°C, with 0.5°C accuracy—utilizing an electrical heating system and a thermoelectric-based compact chilling system. Heating and cooling procedures are under control of two proportional-integral-derivative (PID) temperature controllers. Using a monitored pressure mechanism, the TEG specimen is compressed between a pair of hot and cold aluminum cubes, which maintain the temperature difference across the two sides of the TEG. The compressive load can be varied from 0 kPa to 800 kPa. External electrical loading is applied in the form of a direct-current (DC) electronic load. Data collection and processing are through an Agilent 34972A data logger, a computer, and BenchLink software, with results available as computer output. The input power comes from a 240-V general-purpose power point, and the only sound-generating component is a 4-W cooling fan. Total calculated uncertainty in results is approximately 7%. Comparison between experimental data and the manufacturer's published datasheet for a commercially available specimen shows good agreement. These results obtained from a preliminary experimental setup serve as a good guide for the design of a fully automatic portable test system

  18. The impact of formative testing on study behaviour and study performance of (bio)medical students: a smartphone application intervention study.

    NARCIS (Netherlands)

    Lameris, A.L.L.; Hoenderop, J.G.J.; Bindels, R.J.M.; Eijsvogels, T.M.H.

    2015-01-01

    BACKGROUND: Formative testing can increase knowledge retention but students often underuse available opportunities. Applying modern technology to make the formative tests more attractive for students could enhance the implementation of formative testing as a learning tool. This study aimed to determ

  19. Test setup for accelerated test of high power IGBT modules with online monitoring of Vce and Vf voltage during converter operation

    DEFF Research Database (Denmark)

    de Vega, Angel Ruiz; Ghimire, Pramod; Pedersen, Kristian Bonderup;

    2014-01-01

    of the device in real application. The hypothesis is that ageing of power modules closer to real environment including cooling system, full dc-link voltage and continuous PWM operation could lead to more accurate study of failure mechanism. A new type of test setup is proposed, which can create different real...

  20. SU-E-T-508: End to End Testing of a Prototype Eclipse Module for Planning Modulated Arc Therapy On the Siemens Platform

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L [Huntsman Cancer Hospital, Salt Lake City, UT (United States); Sarkar, V [University of Utah Hospitals, Salt Lake City, UT (United States); Spiessens, S [Varian Medical Systems France, Buc Cedex (France); Rassiah-Szegedi, P; Huang, Y; Salter, B [University Utah, Salt Lake City, UT (United States); Zhao, H [University of Utah, Salt Lake City, UT (United States); Szegedi, M [Huntsman Cancer Hospital, The University of Utah, Salt Lake City, UT (United States)

    2014-06-01

    Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-planned as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.

  1. Psychophysical testing of spatial and temporal dimensions of endogenous analgesia: conditioned pain modulation and offset analgesia.

    Science.gov (United States)

    Honigman, Liat; Yarnitsky, David; Sprecher, Elliot; Weissman-Fogel, Irit

    2013-08-01

    The endogenous analgesia (EA) system is psychophysically evaluated using various paradigms, including conditioned pain modulation (CPM) and offset analgesia (OA) testing, respectively, the spatial and temporal filtering processes of noxious information. Though both paradigms assess the function of the EA system, it is still unknown whether they reflect the same aspects of EA and consequently whether they provide additive or equivalent data. Twenty-nine healthy volunteers (15 males) underwent 5 trials of different stimulation conditions in random order including: (1) the classic OA three-temperature stimulus train ('OA'); (2) a three-temperature stimulus train as control for the OA ('OAcon'); (3) a constant temperature stimulus ('constant'); (4) the classic parallel CPM ('CPM'); and (5) a combination of OA and CPM ('OA + CPM'). We found that in males, the pain reduction during the OA + CPM condition was greater than during the OA (P = 0.003) and CPM (P = 0.07) conditions. Furthermore, a correlation was found between OA and CPM (r = 0.62, P = 0.01) at the time of maximum OA effect. The additive effect found suggests that the two paradigms represent at least partially different aspects of EA. The moderate association between the CPM and OA magnitudes indicates, on the other hand, some commonality of their underlying mechanisms.

  2. Fast Ion Effects During Test Blanket Module Simulation Experiments in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G J; Ellis, R; Gorelenkova, M; Heidbrink, W W; Kurki-Suonio, T; Nazikian, R; Salmi, A; Schaffer, M J; Shinohara, K; Snipes, J A; Spong, D A; Koskela, T

    2011-06-03

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mockup of two Test Blanket Modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam-ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot which is predicted to be different among the various codes.

  3. Fast-ion effects during test blanket module simulation experiments in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G. [Princeton Plasma Physics Laboratory (PPPL); Budny, R. V. [Princeton Plasma Physics Laboratory (PPPL); Ellis, R. [Princeton Plasma Physics Laboratory (PPPL); Gorelenkova, M. [Princeton Plasma Physics Laboratory (PPPL); Heidbrink, W. [University of California, Irvine; Kurki-Suonio, T. [Aalto University, Finland; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Saimi, A. [Aalto University, Finland; Schaffer, M. J. [General Atomics, San Diego; Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Snipes, J. A. [ITER Organization, Cadarache, France; Spong, Donald A [ORNL; Koskela, T. [Aalto University, Finland; Van Zeeland, Michael [General Atomics

    2011-01-01

    Fast beam-ion losses were studied in DIII-D in the presence of a scaled mock-up of two test blanket modules (TBM) for ITER. Heating of the protective tiles on the front of the TBM surface was found when neutral beams were injected and the TBM fields were engaged. The fast-ion core confinement was not significantly affected. Different orbit-following codes predict the formation of a hot spot on the TBM surface arising from beam ions deposited near the edge of the plasma. The codes are in good agreement with each other on the total power deposited at the hot spot, predicting an increase in power with decreasing separation between the plasma edge and the TBM surface. A thermal analysis of the heat flow through the tiles shows that the simulated power can account for the measured tile temperature rise. The thermal analysis, however, is very sensitive to the details of the localization of the hot spot, which is predicted to be different among the various codes.

  4. Electromagnetic analysis of the Korean helium cooled ceramic reflector test blanket module set

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin, E-mail: ymlee@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Ku, Duck Young [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ahn, Mu-Young; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Korean helium cooled ceramic reflector (HCCR) test blanket module set (TBM-set) will be installed at equatorial port #18 of Vacuum Vessel in ITER in order to test the breeding blanket performance for forthcoming fusion power plant. Since ITER tokamak has a set of electromagnetic coils (Central Solenoid, Poloidal Field and Toroidal Field coil set) around Vacuum Vessel, the HCCR TBM-set, the TBM and associated shield, is greatly influenced by magnetic field generated by these coils. In the case of fast transient electromagnetic events such as major disruption, vertical displacement event or magnet fast discharge, magnetic field and induced eddy current results in huge electromagnetic load, known as Lorentz load, on the HCCR TBM-set. In addition, the TBM-set experiences electromagnetic load due to magnetization of the structural material not only during the fast transient events but also during normal operation since the HCCR TBM adopts Reduced Activation Ferritic Martensitic (RAFM) steel as a structural material. This is known as Maxwell load which includes Lorentz load as well as load due to magnetization of structure material. This paper presents electromagnetic analysis results for the HCCR TBM-set. For analysis, a 20° sector finite model was constructed considering ITER configuration such as Vacuum Vessel, ITER shield blankets, Central Solenoid, Poloidal Field, Toroidal Field coil set as well as the HCCR TBM-set. Three major disruptions (operational event, likely event and highly unlikely event) were selected for analysis based on the load specifications. ANSYS-EMAG was used as a calculation tool. The results of EM analysis will be used as input data for the structural analysis.

  5. ITER test blanket module error field simulation experiments at DIII-D

    Science.gov (United States)

    Schaffer, M. J.; Snipes, J. A.; Gohil, P.; de Vries, P.; Evans, T. E.; Fenstermacher, M. E.; Gao, X.; Garofalo, A. M.; Gates, D. A.; Greenfield, C. M.; Heidbrink, W. W.; Kramer, G. J.; La Haye, R. J.; Liu, S.; Loarte, A.; Nave, M. F. F.; Osborne, T. H.; Oyama, N.; Park, J.-K.; Ramasubramanian, N.; Reimerdes, H.; Saibene, G.; Salmi, A.; Shinohara, K.; Spong, D. A.; Solomon, W. M.; Tala, T.; Zhu, Y. B.; Boedo, J. A.; Chuyanov, V.; Doyle, E. J.; Jakubowski, M.; Jhang, H.; Nazikian, R. M.; Pustovitov, V. D.; Schmitz, O.; Srinivasan, R.; Taylor, T. S.; Wade, M. R.; You, K.-I.; Zeng, L.; DIII-D Team

    2011-10-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Δv/v ~ 60% via non-resonant braking. Changes to global Δn/n, Δβ/β and ΔH98/H98 were ~3 times smaller. These effects are stronger at higher β. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L- and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

  6. ITER Test Blanket Module Error Field Simulation Experiments at DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Schaffer, M. J. [General Atomics, San Diego; Testa, D. [CRPP, Switzerland; Snipes, J. A. [ITER Organization, Cadarache, France; Gohil, P. [General Atomics; De Vries, P. [Culham Centre for Fusion Energy, Culham, UK; Evans, T. E. [General Atomics, San Diego; Fenstermacher, M. E. [Lawrence Livermore National Laboratory (LLNL); Gao, X. [Academia Sinica, Institute of Plasma Physics, Hefei, China; Garofalo, A. [General Atomics, San Diego; Gates, D.A. [Princeton Plasma Physics Laboratory (PPPL); Greenfield, C. M. [General Atomics; Heidbrink, W. [University of California, Irvine; La Haye, R. [General Atomics, San Diego; Liu, S. [ASIPP, Hefei, China; Loarte, A. [ITER Organization, Cadarache, France; Nave, M. F. F. [Association EURATOM/IST, Lisbon, Portugal; Osborne, T.H. [General Atomics, San Diego; Oyama, N. [Japan Atomic Energy Agency (JAEA); Osakabe, M. [National Institute for Fusion Science, Toki, Japan; Park, J. K. [Princeton Plasma Physics Laboratory (PPPL); Ramasubramanian, N. [Institute for Plasma Research, Gandhinagar, India; Reimerdes, H. [Columbia University; Saibene, G. [Fusion for Energy (F4E), Barcelona, Spain; Saimi, A. [Aalto University, Finland; Shinohara, K. [Japan Atomic Energy Agency (JAEA), Naka; Spong, Donald A [ORNL; Solomon, W. M. [Princeton Plasma Physics Laboratory (PPPL); Tala, T. [Association Euratom-Tekes, Finland; Zhu, Y. B. [University of California, Irvine; Zhai, K. [University of Wisconsin, Madison; Boedo, J. [University of California, San Diego; Chuyanov, V. [ITER Organization, Cadarache, France; Doyle, E. J. [University of California, Los Angeles; Jakubowski, M. W. [Max-Planck-Institute for Plasmaphysik, EURATOM-Association, Greifswald, Germany; Jhang, H. [National Fusion Research Institute, Daejon, South Korea; Nazikian, Raffi [Princeton Plasma Physics Laboratory (PPPL); Pustovitov, V. D. [Russian Research Center, Kurchatov Institute, Moscow, Russia; Schmitz, O. [Forschungszentrum Julich, Julich, Germany; Sanchez, Raul [ORNL; Srinivasan, R. [Institute for Plasma Research, Gandhinagar, India; Taylor, T. S. [General Atomics, San Diego; Wade, M. [General Atomics, San Diego; You, K. I. [National Fusion Research Institute, Daejon, South Korea; Zeng, L. [University of California, Los Angeles

    2011-01-01

    Experiments at DIII-D investigated the effects of magnetic error fields similar to those expected from proposed ITER test blanket modules (TBMs) containing ferromagnetic material. Studied were effects on: plasma rotation and locking, confinement, L-H transition, the H-mode pedestal, edge localized modes (ELMs) and ELM suppression by resonant magnetic perturbations, energetic particle losses, and more. The experiments used a purpose-built three-coil mock-up of two magnetized ITER TBMs in one ITER equatorial port. The largest effect was a reduction in plasma toroidal rotation velocity v across the entire radial profile by as much as Delta upsilon/upsilon similar to 60% via non-resonant braking. Changes to global Delta n/n, Delta beta/beta and Delta H(98)/H(98) were similar to 3 times smaller. These effects are stronger at higher beta. Other effects were smaller. The TBM field increased sensitivity to locking by an applied known n = 1 test field in both L-and H-mode plasmas. Locked mode tolerance was completely restored in L-mode by re-adjusting the DIII-D n = 1 error field compensation system. Numerical modelling by IPEC reproduces the rotation braking and locking semi-quantitatively, and identifies plasma amplification of a few n = 1 Fourier harmonics as the main cause of braking. IPEC predicts that TBM braking in H-mode may be reduced by n = 1 control. Although extrapolation from DIII-D to ITER is still an open issue, these experiments suggest that a TBM-like error field will produce only a few potentially troublesome problems, and that they might be made acceptably small.

  7. Development and testing of thermal energy storage modules for use in active solar heating and cooling systems

    Science.gov (United States)

    Parker, J. C.

    1981-04-01

    The project development requirements and criteria are presented along with technical data for the modules. Performance tests included: ducting, temperature, pressure and air flow measurements, dry and wet bulb temperature; duct pressure measurements; and air conditioning apparatus checks; installation, operation, and maintenance instructions are included.

  8. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  9. Passive wireless MEMS microphones for biomedical applications.

    Science.gov (United States)

    Sezen, A S; Sivaramakrishnan, S; Hur, S; Rajamani, R; Robbins, W; Nelson, B J

    2005-11-01

    This paper introduces passive wireless telemetry based operation for high frequency acoustic sensors. The focus is on the development, fabrication, and evaluation of wireless, battery-less SAW-IDT MEMS microphones for biomedical applications. Due to the absence of batteries, the developed sensors are small and as a result of the batch manufacturing strategy are inexpensive which enables their utilization as disposable sensors. A pulse modulated surface acoustic wave interdigital transducer (SAW-IDT) based sensing strategy has been formulated. The sensing strategy relies on detecting the ac component of the acoustic pressure signal only and does not require calibration. The proposed sensing strategy has been successfully implemented on an in-house fabricated SAW-IDT sensor and a variable capacitor which mimics the impedance change of a capacitive microphone. Wireless telemetry distances of up to 5 centimeters have been achieved. A silicon MEMS microphone which will be used with the SAW-IDT device is being microfabricated and tested. The complete passive wireless sensor package will include the MEMS microphone wire-bonded on the SAW substrate and interrogated through an on-board antenna. This work on acoustic sensors breaks new ground by introducing high frequency (i.e., audio frequencies) sensor measurement utilizing SAW-IDT sensors. The developed sensors can be used for wireless monitoring of body sounds in a number of different applications, including monitoring breathing sounds in apnea patients, monitoring chest sounds after cardiac surgery, and for feedback sensing in compression (HFCC) vests used for respiratory ventilation. Another promising application is monitoring chest sounds in neonatal care units where the miniature sensors will minimize discomfort for the newborns.

  10. Thermo-Mechanical Analyses of the High Heat Flux Component for ITER Dual Functional Lithium Lead Test Blanket Module

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongli; BAI Yunqing

    2009-01-01

    The finite element code ANSYS is used to calculate the temperature and stress distributions for the first wall of DFLL-TBM (dual functional lithium lead-test blanket module),for testing in ITER. Preliminary analyses indicate that not only the low temperature design rules,the well-known 3Sm rules, are satisfied for the first wall, but the additional high temperature structural design criteria for the creep damage limits and creep-ratcheting limits are met as well.

  11. NIH Funding for Biomedical Imaging

    Science.gov (United States)

    Conroy, Richard

    Biomedical imaging, and in particular MRI and CT, is often identified as among the top 10 most significant advances in healthcare in the 20th century. This presentation will describe some of the recent advances in medical physics and imaging being funded by NIH in this century and current funding opportunities. The presentation will also highlight the role of multidisciplinary research in bringing concepts from the physical sciences and applying them to challenges in biological and biomedical research.. NIH Funding for Biomedical Imaging.

  12. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  13. Standard Test Method for Determining Resistance of Photovoltaic Modules to Hail by Impact with Propelled Ice Balls

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method provides a procedure for determining the ability of photovoltaic modules to withstand impact forces of falling hail. Propelled ice balls are used to simulate falling hailstones. 1.2 This test method defines test specimens and methods for mounting specimens, specifies impact locations on each test specimen, provides an equation for determining the velocity of any size ice ball, provides a method for impacting the test specimens with ice balls, provides a method for determining changes in electrical performance, and specifies parameters that must be recorded and reported. 1.3 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable levels of ice ball impact resistance is beyond the scope of this test method. 1.4 The size of the ice ball to be used in conducting this test is not specified. This test method can be used with various sizes of ice balls. 1.5 This test method may be applied to concentrator and nonconcentrator modules. 1.6 The v...

  14. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  15. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  16. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  18. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  19. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  20. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  1. Biomedical problems of hydrotechnical construction

    Energy Technology Data Exchange (ETDEWEB)

    Avakyan, A.B.; El' piner, L.I.; Delitsyn, V.M.

    1988-04-01

    The effect of hydrotechnical and water-management construction on the living conditions and health of the population was examined. The results were used to develop the scientific bases and methods of biomedical predictions in several stages: evaluating biomedical conditions in territories where a change is expected, and constructing biomedical prediction proper of the effect of hydrotechnical constructions. The development of the indicated predictions make it possible to include measures on intensifying the positive and preventing or abating undesired effects on the biomedical situation when designing hydrotechnical and water-management construction.

  2. Biomedical ontologies: a functional perspective

    National Research Council Canada - National Science Library

    Rubin, Daniel L; Shah, Nigam H; Noy, Natalya F

    .... Ontologies-specifications of the entities, their attributes and relationships among the entities in a domain of discourse-are increasingly enabling biomedical researchers to accomplish these tasks...

  3. A path to stable low-torque plasma operation in ITER with test blanket modules

    Science.gov (United States)

    Lanctot, M. J.; Snipes, J. A.; Reimerdes, H.; Paz-Soldan, C.; Logan, N.; Hanson, J. M.; Buttery, R. J.; deGrassie, J. S.; Garofalo, A. M.; Gray, T. K.; Grierson, B. A.; King, J. D.; Kramer, G. J.; La Haye, R. J.; Pace, D. C.; Park, J.-K.; Salmi, A.; Shiraki, D.; Strait, E. J.; Solomon, W. M.; Tala, T.; Van Zeeland, M. A.

    2017-03-01

    New experiments in the low-torque ITER Q  =  10 scenario on DIII-D demonstrate that n  =  1 magnetic fields from a single row of ex-vessel control coils enable operation at ITER performance metrics in the presence of applied non-axisymmetric magnetic fields from a test blanket module (TBM) mock-up coil. With n  =  1 compensation, operation below the ITER-equivalent injected torque is successful at three times the ITER equivalent toroidal magnetic field ripple for a pair of TBMs in one equatorial port, whereas the uncompensated TBM field leads to rotation collapse, loss of H-mode and plasma current disruption. In companion experiments at high plasma beta, where the n  =  1 plasma response is enhanced, uncorrected TBM fields degrade energy confinement and the plasma angular momentum while increasing fast ion losses; however, disruptions are not routinely encountered owing to increased levels of injected neutral beam torque. In this regime, n  =  1 field compensation leads to recovery of a dominant fraction of the TBM-induced plasma pressure and rotation degradation, and an 80% reduction in the heat load to the first wall. These results show that the n  =  1 plasma response plays a dominant role in determining plasma stability, and that n  =  1 field compensation alone not only recovers most of the impact on plasma performance of the TBM, but also protects the first wall from potentially damaging heat flux. Despite these benefits, plasma rotation braking from the TBM fields cannot be fully recovered using standard error field control. Given the uncertainty in extrapolation of these results to the ITER configuration, it is prudent to design the TBMs with as low a ferromagnetic mass as possible without jeopardizing the TBM mission.

  4. Integrating image data into biomedical text categorization.

    Science.gov (United States)

    Shatkay, Hagit; Chen, Nawei; Blostein, Dorothea

    2006-07-15

    Categorization of biomedical articles is a central task for supporting various curation efforts. It can also form the basis for effective biomedical text mining. Automatic text classification in the biomedical domain is thus an active research area. Contests organized by the KDD Cup (2002) and the TREC Genomics track (since 2003) defined several annotation tasks that involved document classification, and provided training and test data sets. So far, these efforts focused on analyzing only the text content of documents. However, as was noted in the KDD'02 text mining contest-where figure-captions proved to be an invaluable feature for identifying documents of interest-images often provide curators with critical information. We examine the possibility of using information derived directly from image data, and of integrating it with text-based classification, for biomedical document categorization. We present a method for obtaining features from images and for using them-both alone and in combination with text-to perform the triage task introduced in the TREC Genomics track 2004. The task was to determine which documents are relevant to a given annotation task performed by the Mouse Genome Database curators. We show preliminary results, demonstrating that the method has a strong potential to enhance and complement traditional text-based categorization methods.

  5. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  6. Technical issues of RAFMs for the fabrication of ITER Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Tanigawa, Hiroyasu; Hirose, Takanori; Shiba, Kiyoyuki [Japan Atomic Energy Agency (JP)] (and others)

    2007-07-01

    Reduced activation ferritic/martensitic steels (RAFMs) are recognized as the primary candidate structural materials for fusion blanket systems, as it has they have been developed based on massive industrial experience of ferritic/martensitic steel replacing Mo and Nb of high chromium heat resistant martensitic steels (such as modified 9Cr-1Mo) with W and Ta, respectively. F82H and JLF-1 are RAFMs, which have been developed and studied in Japan and the various effects of irradiation were reported. F82H is designed with emphasis on high temperature property and weldability, and was provided and evaluated in various countries as a part of the IEA fusion materials development collaboration. The JAEA/US collaboration program also has been conducted with the emphasis on irradiation effects of F82H. Now, among the existing database for RAFMs the most extensive one is that for F82H. The objective of this paper is to review the R and D status of F82H and to identify the key technical issues for the fabrication of ITER Test Blanket Module (TBM) suggested from the recent achievements in Japan. It is desirable to make the status of RAFMs equivalent to commercial steels to use RAFMs as the ITER-TBM structural material. This would require demonstrating the reproducibility and weldability as well as providing the database. The excellent reproducibility of F82H has been demonstrated with four 5-ton-heats, and two of them were provided as F82H-IEA heats. It has been also proved that F82H could be provided as plates (thickness of 1.5 to 55 mm), pipes and rectangular tubes. It is also important to have the excellent weldability as the TBM has about 300m length of weld line, and it was proved through TIG, EB and YAG weld test performed in air atmosphere. Various mechanical and microstructural data have been accumulated including long-term tests such as creep rupture tests and aging tests. Although F82H is a well-perceived RAFM as the ITER-TBM structural material, some issues are

  7. Trial-Run of a Junction-Box Attachment Test for Use in Photovoltaic Module Qualification: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Miller, D. C.; Deibert, S. L.; Wohlgemuth, J. H.

    2014-06-01

    Engineering robust adhesion of the junction box (j-box) is a hurdle typically encountered by photovoltaic module manufacturers during product development and manufacturing process control. There are historical incidences of adverse effects (e.g., fires) caused when the j-box/adhesive/module system has failed in the field. The addition of a weight to the j-box during the 'damp-heat,' 'thermal-cycle,' or 'creep' tests within the IEC qualification protocol is proposed to verify the basic robustness of the adhesion system. The details of the proposed test are described, in addition to a trial-run of the test procedure. The described experiments examine four moisture-cured silicones, four foam tapes, and a hot-melt adhesive used in conjunction with glass, KPE, THV, and TPE substrates. For the purpose of validating the experiment, j-boxes were adhered to a substrate, loaded with a prescribed weight, and then subjected to aging. The replicate mock-modules were aged in an environmental chamber (at 85 degrees C/85% relative humidity for 1000 hours; then 100 degrees C/<10% relative humidity for 200 hours) or fielded in Golden (CO), Miami (FL), and Phoenix (AZ) for one year. Attachment strength tests, including pluck and shear test geometries, were also performed on smaller component specimens.

  8. Reliability of terrestrial photovoltaic modules at various DOE/MIT Lincoln Laboratory Test Sites

    Energy Technology Data Exchange (ETDEWEB)

    Forman, S. E.; Themelis, M. P.

    1981-03-30

    During the past four years, acting under the auspices of the US Department of Energy, Massachusetts Institute of Technology Lincoln Laboratory has built and operated in the United States photovoltaic power-generating systems ranging in size from less than 1 kWp to 100 kWp. Slightly more than 11,000 modules from several manufactures have been utilized at these sites with a cumulative number of electrical failures of approximately 2%. Discussion is presented of module performance at two of these sites; a 25-kWp array field at Mead, Nebraska, and a 100-kWp array field at Natural Bridges National Monument, Utah. Data and photographs of module failures, failure modes, physical and electrical degradation, and array diagnostics are presented for each of the five different types of modules utilized at these sites.

  9. Total Ionizing Dose Test Report for the UC1823A Pulse Width Modulator

    Science.gov (United States)

    Chen, Dakai; Forney, James

    2017-01-01

    The purpose of this study is to examine the total ionizing dose susceptibility for the UC1823A pulse width modulator manufactured by Texas Instruments, Inc. The part is suspected to be vulnerable to enhanced low dose rate sensitivity (ELDRS).

  10. Biomedical ontology improves biomedical literature clustering performance: a comparison study.

    Science.gov (United States)

    Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol

    2007-01-01

    Document clustering has been used for better document retrieval and text mining. In this paper, we investigate if a biomedical ontology improves biomedical literature clustering performance in terms of the effectiveness and the scalability. For this investigation, we perform a comprehensive comparison study of various document clustering approaches such as hierarchical clustering methods, Bisecting K-means, K-means and Suffix Tree Clustering (STC). According to our experiment results, a biomedical ontology significantly enhances clustering quality on biomedical documents. In addition, our results show that decent document clustering approaches, such as Bisecting K-means, K-means and STC, gains some benefit from the ontology while hierarchical algorithms showing the poorest clustering quality do not reap the benefit of the biomedical ontology.

  11. The RAFMS RUSFER-EK-181 as structural material for the test module DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Leonteva-Smirnova, M.V.; Chernov, V.M.; Ioltukhovsky, A.G.; Mozhanov, E.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Potapenko, M.M. [Tomsk State Univ., Institute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Bulanova, T.M.; Golovanov, N. [Research Institute for Atomic Reactors, Dimitrovgrad (Russian Federation); Strebkov, Y.S. [Research and Development Institute of Power Engineering (RDIPE), Moscow (Russian Federation); Kalashnikov, A.N. [Rosatom, Moscow (Russian Federation); Kuteev, B.V. [Russian Science Center, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: In the framework of the RF R and D activity for fusion power energy mastering and manufacturing of the test ceramic module DEMO, reduced activation ferritic-martensitic steel (RAFMS) based on Fe-12Cr-2W-V-Ta-B system (RUSFER-EK-181) is obtained. Industrial ingots of RUSFER-EK-181 steel and its modifications, articles of which (plates, rods, tube stocks, others) posses the necessary complex of physical, mechanical (short-term and long-term) and technological (welding) characteristics in a wide temperature range, have been manufactured. The factor determining high heat resistance of the steel is its structural-phase state and precipitation hardening regulated by the chemical composition and the developed regimes of thermo-mechanical treatments of the steel. Structural-phase state of the steel provides the required level of the operating characteristic of goods under the established regimes of radiation and temperature loads. Good results of heat resistance tests of the steel under the stress 80 MPa at 650 deg. C during 25000 hours have been obtained. The technologies of welding of the articles have been developed, examples of argon-arc welding joints and their structural states are given. The results on the effect of different regimes of heat treatment on the radiation properties of RUSFER-EK-181 at low irradiation temperature (fast reactor BOR-60) have been obtained. The gradient structural-phase state changing along the length of the steel article has been suggested. High level of heat resistance in the high temperature application zone of the articles is developed with use of the traditional heat treatment for ferritic-martensitic steels (normalization and tempering). New combined heat treatment including additional heat cycling of the steel near its critical point is applied for the low temperature part of the article. The structure obtained by the combined heat treatment of the steel provides higher level of its resistance to

  12. Construction and Test of Full-Size Micromegas Modules for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Bortfeldt, Jonathan; The ATLAS collaboration

    2015-01-01

    In 2015 the first full size resistive-strip Micromegas operational modules for the ATLAS New Small Wheel upgrade will be realized. The goal is to provide precision muon tracking with spatial resolution below 100$\\mu$m on trapezoidal four-layer detector modules with areas between 2 and 3m$^2$. This poses stringent limits on the overall accuracy of the modules with respect to strip positioning and planarity. The overall thickness of each modules is about 70mm and the total number of readout channels is on the order of $1.5\\cdot10^4$ per module. Each module is a quadruplet of four resistive strip Micromegas layers with 5mm drift gap. It is constructed from two readout panels with readout anodes on both sides and three drift panels, that carry the cathode structure. The panels are realized as sandwich structures of aluminum honeycomb, framed by aluminum bars and faced by printed circuit boards, carrying readout or cathode structures. The readout structure consists of strips with 0.43mm pitch and up to 2m length. ...

  13. From Classrooms to Geosciences Careers: Developing and Testing a Curriculum Module and Web Application for Modeling Water in Urban Environments

    Science.gov (United States)

    Cervenec, J. M.; Durand, M. T.

    2014-12-01

    A curriculum module created to teach basic principles of hydrology and promote geoscience careers at the high school level will be shared. The module, consisting of five exercises of increasing complexity, focuses on investigating local problems in hydrology using tangible models, readily available online tools, and a custom-built web application. The module culminates in students examining changing land use patterns over time and looking at subsequent impacts on runoff. Materials were field tested during two summer workshops for educators and support was provided during the subsequent school years. Participants reported that the materials filled existing voids in their instructional materials, that they preferred to select individual exercises for use in their classrooms rather than the module as a whole, and that they found online tools in geosciences and connections to local field sites and geoscience professionals to be particularly valuable. Furthermore, while the five exercises where developed for use together in high school classrooms, individual exercises were found to be applicable in classrooms from the elementary through graduate levels. The module addresses NGSS Disciplinary Core Idea - The Role of Water in Earth's Surface Processes in addition to Cross Cutting Concepts - Systems and System Models and Influence of Engineering, Technology, and Science on Society and the Natural World and multiple NGSS Practices.

  14. Procedure and comparative analysis of results of silicon tracker modules testing for D0 (FNAL) collider experiment

    CERN Document Server

    Ermolov, P F; Karmanov, D E; Leflat, A; Merkin, M M; Shabalina, E K

    2002-01-01

    The silicon microstrip tracker consists of three main parts: the central cylindrical one, internal disks and face disks. All the parts of the tracker have modular structure. The modulus contains one or several silicon detectors and a flexible printed circuit with an integral read-out system. The methodology for testing the D0 tracker parts on their functional efficiency, reliability and defectiveness is described. Comparison of the results of the disks modules testing with the disk detectors parameters before their assembling is carried out. The comparative analysis results make it possible to optimize the process of the detector mass testing and work out the criteria for the detectors quality evaluation

  15. Impact of Diabetes Type 1 in Children on Autonomic Modulation at Rest and in Response to the Active Orthostatic Test

    Science.gov (United States)

    Giacon, Thais Roque; Vanderlei, Franciele Marques; Christofaro, Diego Giulliano Destro; Vanderlei, Luiz Carlos Marques

    2016-01-01

    Introduction Cardiovascular autonomic neuropathy is one of the most common complications of diabetes mellitus type 1 (DM1), of which one of the first subclinical manifestations is changes in heart rate variability (HRV). Thus, analysis of HRV associated with the autonomic active orthostatic test is important in this population. Objectives To analyze the autonomic modulation responses induced by the implementation of the active orthostatic test, in children with DM1, and study the autonomic modulation by means of HRV indices. Method Data of 35 children were analyzed, of both sexes, aged between 7 and 15 years, who were divided into two groups: Diabetic (n = 16) and Control (n = 19). The following variables were collected initially: weight, height, body fat percentage, heart rate, blood pressure and casual blood glucose. Subsequently, for analysis of autonomic modulation, the beat-to-beat heart rate was captured by a heart rate monitor in the supine position for 30 minutes and after 10 minutes standing during performance of the active orthostatic test. HRV indices were calculated in the time and frequency domains. For data analysis, covariance analysis was used to compare groups and ANOVA for repeated measures to compare the effects of the active orthostatic test. These data were adjusted for age, sex, ethnicity, body fat percentage and casual blood glucose, with a 5% significance level. Results The results suggested that diabetic children at rest present a decrease in SDNN (50.4 vs. 75.2), rMSSD (38.7 vs 57.6) and LF [ms2] (693.6 vs 1874.6). During the active orthostatic test the children in both groups demonstrated a reduction in SDNN, RMSSD and LF [ms2] compared to the resting position, and this response was less pronounced in the diabetic group. Conclusion We conclude that regardless of age, sex, ethnicity, body fat percentage and casual blood glucose, performing the active orthostatic test promoted increased sympathetic modulation and reduced parasympathetic

  16. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  17. Study on measurement accuracy of active optics null test systems based on liquid crystal spatial light modulator and laser interferometer

    Science.gov (United States)

    Liu, Shijie; Xu, Longbo; Ma, Xiao; Zhang, Zhigang; Zhou, You; Lu, Qi; Bai, Yunbo; Shao, Jianda

    2017-06-01

    A common way to test high-quality aspherical lenses is to use a measurement system based on a set of null corrector and a laser interferometer. The null corrector can either be a combination of spherical lenses or be a computer generated hologram (CGH), which compensates the aspheric wave-front being tested. However, the null optics can't be repeatedly used once the shape of tested optics changes. Alternative active null correctors have been proposed based on dynamic phase modulator devices. A typical dynamic phase modulator is liquid crystal spatial light modulator (LCSLM), which can spatially change the refractive index of the liquid crystal and thus modify the phase of the input wave-front. Even though the measurement method based on LCSLM and laser interferometer has been proposed and demonstrated for optical testing several years ago, it still can't be used in the high quality measurement process due to its limited accuracy. In this paper, we systematically study the factors such as LCSLM structure parameters, encoding error and laser interferometer performance, which significantly affect the measurement accuracy. Some solutions will be proposed in order to improve the measurement accuracy based on LCSLM and laser interferometer.

  18. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  19. Magnetic Fluids: Biomedical Applications and Magnetic Fractionation

    OpenAIRE

    Rheinländer, Thomas; Kötitz, Róman; Weitschies, Werner; Semmler, Wolfhard

    2000-01-01

    In addition to engineering applications, magnetic fluids containing magnetic nanoparticles are being increasingly applied to biomedical purposes. Besides the well established use of magnetic particles for biological separation or as contrast agents for magnetic resonance imaging, magnetic particles are also being tested for the inductive heat treatment of tumors or as markers for the quantification of biologically active substances. The properties of magnetic nanoparticles usually exhibit a b...

  20. Biomedical applications of collagens.

    Science.gov (United States)

    Ramshaw, John A M

    2016-05-01

    Collagen-based biomedical materials have developed into important, clinically effective materials used in a range of devices that have gained wide acceptance. These devices come with collagen in various formats, including those based on stabilized natural tissues, those that are based on extracted and purified collagens, and designed composite, biosynthetic materials. Further knowledge on the structure and function of collagens has led to on-going developments and improvements. Among these developments has been the production of recombinant collagen materials that are well defined and are disease free. Most recently, a group of bacterial, non-animal collagens has emerged that may provide an excellent, novel source of collagen for use in biomaterials and other applications. These newer collagens are discussed in detail. They can be modified to direct their function, and they can be fabricated into various formats, including films and sponges, while solutions can also be adapted for use in surface coating technologies.

  1. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  2. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  3. NASA Ames Research Center R and D Services Directorate Biomedical Systems Development

    Science.gov (United States)

    Pollitt, J.; Flynn, K.

    1999-01-01

    The Ames Research Center R&D Services Directorate teams with NASA, other government agencies and/or industry investigators for the development, design, fabrication, manufacturing and qualification testing of space-flight and ground-based experiment hardware for biomedical and general aerospace applications. In recent years, biomedical research hardware and software has been developed to support space-flight and ground-based experiment needs including the E 132 Biotelemetry system for the Research Animal Holding Facility (RAHF), E 100 Neurolab neuro-vestibular investigation systems, the Autogenic Feedback Systems, and the Standard Interface Glove Box (SIGB) experiment workstation module. Centrifuges, motion simulators, habitat design, environmental control systems, and other unique experiment modules and fixtures have also been developed. A discussion of engineered systems and capabilities will be provided to promote understanding of possibilities for future system designs in biomedical applications. In addition, an overview of existing engineered products will be shown. Examples of hardware and literature that demonstrate the organization's capabilities will be displayed. The Ames Research Center R&D Services Directorate is available to support the development of new hardware and software systems or adaptation of existing systems to meet the needs of academic, commercial/industrial, and government research requirements. The Ames R&D Services Directorate can provide specialized support for: System concept definition and feasibility Mathematical modeling and simulation of system performance Prototype hardware development Hardware and software design Data acquisition systems Graphical user interface development Motion control design Hardware fabrication and high-fidelity machining Composite materials development and application design Electronic/electrical system design and fabrication System performance verification testing and qualification.

  4. Testing cosmological models with large-scale power modulation using microwave background polarization observations

    CERN Document Server

    Bunn, Emory F; Zheng, Haoxuan

    2016-01-01

    We examine the degree to which observations of large-scale cosmic microwave background (CMB) polarization can shed light on the puzzling large-scale power modulation in maps of CMB anisotropy. We consider a phenomenological model in which the observed anomaly is caused by modulation of large-scale primordial curvature perturbations, and calculate Fisher information and error forecasts for future polarization data, constrained by the existing CMB anisotropy data. Because a significant fraction of the available information is contained in correlations with the anomalous temperature data, it is essential to account for these constraints. We also present a systematic approach to finding a set of normal modes that maximize the available information, generalizing the well-known Karhunen-Loeve transformation to take account of the constraints from the temperature data. A polarization map covering at least $\\sim 60\\%$ of the sky should be able to provide a $3\\sigma$ detection of modulation at the level favored by the...

  5. Study on Pulse Skip Modulation Mode in Smart Power Integrated Circuits and Its Test Technology

    Institute of Scientific and Technical Information of China (English)

    LUO Ping

    2005-01-01

    @@ Up to now, the popular control modes for smart power integrated circuit (SPIC) are PWM and PFM.PWM bases on constant frequency variable width (CFVW) control pulse, whereas, PFM bases on constant width variable frequency (CWVF) control pulse. PWM converter has low efficiency with light loads and high amplitude harmonic. On the other hand,the control circuit and filter for PFM are much complex. This dissertation proposes a novel modulation mode named pulse skip modulation (PSM)for SPIC converter, which bases on constant width constant frequency (CWCF) control pulse. It is shown that PSM converter would improve its efficiency and suppress EMI. It also has quick response speed, good interfere rejection and strong robust. Furthermore, it is easy to realize PSM control circuit. The modulating theories of PSM are firstly studied in the world according to the author's investigation.

  6. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G. [Association Euratom-CEA, Centre d`Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M.; Obara, K. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  7. Integrated testing strategies (ITS) for bioaccumulation: hierarchical scheme of chemistrydriven modules and definition of applicability domains

    DEFF Research Database (Denmark)

    Nendza, M.; Scheringer, M.; Strempel, S.

    2011-01-01

    to conduct in-vivo experiments with vertebrates. The OSIRIS inventory of chemistry-driven and in-silico BCF modules for ITS compiles: · Sources of existing data · Computational methods - B/nonB classification models - QSARs - Physiological models - Exposure models - Read across · in-vitro tools · 3R (Refine...... for chemical registration. The alternative ITS modules share three major objectives to save time and money by reducing the number of experimental animals required to come to a conclusion about the bioaccumulation potential of chemicals under REACH: · Classification of non-B/B/vB-compounds · Omission of BCF...

  8. Beliefs,Anxiety,Motivation in English Language Learning and Its Pedagogical Implication for Module Advancement Teaching and Testing

    Institute of Scientific and Technical Information of China (English)

    颜泓

    2015-01-01

    It was realized that teaching methods were only exterior factors, and what to a large extent exerted determinative effect on the learners were their inner factors.Therefore, the focus of the foreign language teaching research shifted from "how to teach" to "how to learn" and from studying "teachers" to doing research on "students".This article briefly indicates the significance of beliefs, anxiety and motivation in English learning.Thus, the author gets the implications for module advancement teaching and testing.

  9. Quality Control for Scoring Tests Administered in Continuous Mode: An NCME Instructional Module

    Science.gov (United States)

    Allalouf, Avi; Gutentag, Tony; Baumer, Michal

    2017-01-01

    Quality control (QC) in testing is paramount. QC procedures for tests can be divided into two types. The first type, one that has been well researched, is QC for tests administered to large population groups on few administration dates using a small set of test forms (e.g., large-scale assessment). The second type is QC for tests, usually…

  10. Deep sea tests of a prototype of the KM3NeT digital optical module

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Ageron, M.; Aharonian, F.; Aiello, S.; Albert, A.; Ameli, F.; Anassontzis, E. G.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; de Asmundis, R.; Balasi, K.; Band, H.; Barbarino, G.; Barbarito, E.; Barbato, F.; Baret, B.; Baron, S.; Belias, A.; Berbee, E.; van den Berg, A. M.; Berkien, A.; Bertin, V.; Beurthey, S.; van Beveren, V.; Beverini, N.; Biagi, S.; Bianucci, S.; Billault, M.; Birbas, A.; Rookhuizen, H. Boer; Bormuth, R.; Bouche, V.; Bouhadef, B.; Bourlis, G.; Bouwhuis, M.; Bozza, C.; Bruijn, R.; Brunner, J.; Cacopardo, G.; Caillat, L.; Calamai, M.; Calvo, D.; Capone, A.; Caramete, L.; Caruso, F.; Cecchini, S.; Ceres, A.; Cereseto, R.; Champion, C.; Chateau, F.; Chiarusi, T.; Christopoulou, B.; Circella, M.; Classen, L.; Cocimano, R.; Colonges, S.; Coniglione, R.; Cosquer, A.; Costa, M.; Coyle, P.; Creusot, A.; Curtil, C.; Cuttone, G.; D'Amato, C.; D'Amico, A.; De Bonis, G.; De Rosa, G.; Deniskina, N.; Destelle, J-J.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti Hasankiadeh, Qader; Drakopoulou, E.; Drouhin, D.; Drury, L.; Durand, D.; Eberl, T.; Eleftheriadis, C.; Elsaesser, D.; Enzenhoefer, A.; Fermani, P.; Fusco, L. A.; Gajana, D.; Gal, T.; Galata, S.; Gallo, F.; Garufi, F.; Gebyehu, M.; Giordano, V.; Gizani, N.; Ruiz, R. Gracia; Graf, K.; Grasso, R.; Grella, G.; Grmek, A.; Habel, R.; van Haren, H.; Heid, T.; Heijboer, A.; Heine, E.; Henry, S.; Hernandez-Rey, J. J.; Herold, B.; Hevinga, M. A.; van der Hoek, M.; Hofestaedt, J.; Hogenbirk, J.; Hugon, C.; Hoessl, J.; Imbesi, M.; James, C.; Jansweijer, P.; Jochum, J.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Kappos, E.; Katz, U.; Kavatsyuk, O.; Keller, P.; Kieft, G.; Koffeman, E.; Kok, H.; Kooijman, P.; Koopstra, J.; Korporaal, A.; Kouchner, A.; Koutsoukos, S.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Le Provost, H.; Leisos, A.; Lenis, D.; Leonora, E.; Clark, M. Lindsey; Liolios, A.; Llorens Alvarez, C. D.; Loehner, H.; Lo Presti, D.; Louis, F.; Maccioni, E.; Mannheim, K.; Manolopoulos, K.; Margiotta, A.; Maris, O.; Markou, C.; Martinez-Mora, J. A.; Martini, A.; Masullo, R.; Michael, T.; Migliozzi, P.; Migneco, E.; Miraglia, A.; Mollo, C.; Mongelli, M.; Morganti, M.; Mos, S.; Moudden, Y.; Musico, P.; Musumeci, M.; Nicolaou, C.; Nicolau, C. A.; Orlando, A.; Orzelli, A.; Papageorgiou, K.; Papaikonomou, A.; Papaleo, R.; Pavalas, G. E.; Peek, H.; Pellegrino, C.; Pellegriti, M. G.; Perrina, C.; Petridou, C.; Piattelli, P.; Pikounis, K.; Popa, V.; Pradier, Th; Priede, M.; Puehlhofer, G.; Pulvirenti, S.; Racca, C.; Raffaelli, F.; Randazzo, N.; Rapidis, P. A.; Razis, P.; Real, D.; Resvanis, L.; Reubelt, J.; Riccobene, G.; Rovelli, A.; Royon, J.; Saldana, M.; Samtleben, D. F. E.; Sanguineti, M.; Santangelo, A.; Sapienza, P.; Savvidis, I.; Schmelling, J.; Schnabel, J.; Sedita, M.; Seitz, T.; Sgura, I.; Simeone, F.; Siotis, I.; Sipala, V.; Solazzo, M.; Spitaleri, A.; Spurio, M.; Stavropoulos, G.; Steijger, J.; Stolarczyk, T.; Stransky, D.; Taiuti, M.; Terreni, G.; Tezier, D.; Theraube, S.; Thompson, L. F.; Timmer, P.; Trapierakis, H. I.; Trasatti, L.; Trovato, A.; Tselengidou, M.; Tsirigotis, A.; Tzamarias, S.; Tzamariudaki, E.; Vallage, B.; Van Elewyck, V.; Vermeulen, J.; Vernin, P.; Viola, S.; Vivolo, D.; Werneke, P.; Wiggers, L.; Wilms, J.; de Wolf, E.; van Wooning, R. H. L.; Yatkin, K.; Zachariadou, K.; Zonca, E.; Zornoza, J. D.; Zuniga, J.; Zwart, A.

    2014-01-01

    The first prototype of a photo-detection unit of the future KM3NeT neutrino telescope has been deployed in the deepwaters of the Mediterranean Sea. This digital optical module has a novel design with a very large photocathode area segmented by the use of 31 three inch photomultiplier tubes. It has b

  11. A framework for discovering, designing, and testing microproteins to regulate synthetic transcriptional modules

    NARCIS (Netherlands)

    Fiume, Elisa; de Klein, Niek; Rhee, Seung Yon; Magnani, Enrico

    2016-01-01

    Transcription factors often form protein complexes and give rise to intricate transcriptional networks. The regulation of transcription factor multimerization plays a key role in the fine-tuning of the underlying transcriptional pathways and can be exploited to modulate synthetic transcriptional mod

  12. Start-up phase of the HELOKA-LP low pressure helium test facility for IFMIF irradiation modules

    Energy Technology Data Exchange (ETDEWEB)

    Schlindwein, Georg, E-mail: georg.schlindwein@kit.edu [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arbeiter, Frederik; Freund, Jana [Institute for Neutron Physics and Reactor Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) succesfully taken to operation at the end of 2009. Black-Right-Pointing-Pointer Verified that HELOKA-LP fulfils all requirements to test the High Flux Test Module (HFTM). Black-Right-Pointing-Pointer Some improvements could be done (e.g. reduction of power consumption, enhancement of control path parameters). Black-Right-Pointing-Pointer We obtained a chronological sequence of the helium gas impurity which is important for the International Fusion Irradiation Facility (IFMIF). - Abstract: As part of the Engineering Validation and Engineering Design Activities (EVEDA) for the International Fusion Materials Irradiation Facility (IFMIF) , it is foreseen to design and test a 1:1 scale prototype of the IFMIF High Flux Test Module (HFTM) . The module has been designed to be cooled by a low pressure helium gas flowing through minichannels to remove the nuclear heat. The Helium Loop Karlsruhe-Low Pressure (HELOKA-LP) has been designed to provide coolant at 1:1 HFTM operational conditions: massflow 12-120 g/s, inlet pressure 0.3-0.6 MPa, inlet temperature RT - 250 Degree-Sign C. A secondary objective is to use the experience gained with HELOKA-LP for the planning of the IFMIF helium cooling system. The facility has been put into operation in 2009, and has since then been in a test and optimization phase. It was proven, that the above mentioned requirements for the facility are achieved. The paper describes the process layout and components of the facility. The performance is characterized by the results of several steady state and transient benchmark tests. Typical start-up and transition times relevant for the operation mode in the IFMIF irradiation campaigns are obtained. Additionally first results on the impurity ingress and the cooling gas chemistry are described.

  13. Biomedical education for clinical engineers.

    Science.gov (United States)

    Langevin, Francois; Donadey, Alain; Hadjes, Pierre; Blagosklonov, Oleg

    2007-01-01

    Biomedical equipment Master's degree is recognized by the French Ministry of Health, since its creation in 1975 under the denomination of "Specialization for Hospital Biomedical Engineers". Since the new national status of technical staff in the public service by decree of September 5th of 1991, it allows to access directly to the level of Chief Hospital Engineer (first category, second class, by ordinance of October 23rd, 1992). Biomedical Engineers jobs in French hospitals are selected after an examination organized by the recruiting hospital. Master's graduates are most often the best qualified.

  14. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Science.gov (United States)

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. PMID:28223805

  15. A Comparative Analysis of Thermal Flow Sensing in Biomedical Applications

    CERN Document Server

    Khan, Baseerat; Kakkar, Vipan

    2016-01-01

    Flow sensors have diverse applications in the field of biomedical engineering and also in industries. Micromachining of flow sensors has accomplished a new goal when it comes to miniaturization. Due to the scaling in dimensions, power consumption, mass cost, sensitivity and integration with other modules such as wireless telemetry has improvised to a great extent. Thermal flow sensors find wide applications in biomedical such as in hydrocephalus shunts and drug delivery systems. Infrared thermal sensing is used for preclinical diagnosis of breast cancer, for identifying various neurological disorders and for monitoring various muscular movements. In this paper, various modes of thermal flow sensing and transduction methods with respect to different biomedical applications are discussed. Thermal flow sensing is given prime focus because of the simplicity in the design. Finally, a comparison of flow sensing technologies is also presented.

  16. Construction of a test platform for Test Blanket Module (TBM) systems integration and maintenance in ITER Port Cell #16

    Energy Technology Data Exchange (ETDEWEB)

    Vála, Ladislav, E-mail: ladislav.vala@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Reungoat, Mathieu, E-mail: mathieu.reungoat@cvrez.cz [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Vician, Martin [Centrum výzkumu Řež, Hlavní 130, 250 68 Husinec-Řež (Czech Republic); Poitevin, Yves; Ricapito, Italo; Zmitko, Milan; Panayotov, Dobromir [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • A non-nuclear, full size facility – TBM platform – is under construction in CVR. • It is designed for tests, optimization and validation of TBS maintenance operations. • It will allow testing and validation of specific maintenance tools and RH equipment. • It reproduces ITER Port Cell #16, as well as the TBS interfaces and main equipment. • The TBM platform will be available for full operation in the first half of 2016. - Abstract: This paper describes a project of a non-nuclear, 1:1 scale testing platform dedicated to tests, optimization and validation of integration and maintenance operations for the European TBM systems in the ITER Port Cell #16. This TBM platform is currently under construction in Centrum výzkumu Řež, Czech Republic. The facility is realized within the scope of the SUSEN project and its full operation is foreseen in the first half of 2016.

  17. Analysis using formal method and testing technique for the processor module for safety-critical application

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. Y.; Choi, B. J.; Song, H. J.; Hwang, D. Y.; Song, G. H.; Lee, H. [Korea University, Seoul (Korea, Republic of)

    2008-06-15

    This research is on help develop nuclear power plant control system, through the requirement specification and verification method development. As the result of applying the test method, a test standard was obtain through test documentation writing support and a test document reflecting the standard test activities based on the test standard. The specification and verification of the pCOS system and the unified testing documentation and execution helps the entire project to progress and enable us to achieve necessary documents and technology to develop a safety critical system.

  18. Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

    2013-08-01

    As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

  19. Design of a 500-kJ Capacitor Bank Module for EML Materials Testing

    Science.gov (United States)

    2005-06-01

    of a 200 MJ Pulsed Power System for a Naval Railgun Proof of Concept Facility”, 12th Symposium on Electromagnetic Launch Technology, May 25-28, 2004...DESIGN OF A 500-KJ CAPACITOR BANK MODULE FOR EML MATERIALS TESTING∗ J.M. Neriξ, T. Holt† Plasma Physics Division, Naval Research Laboratory... electromagnetic launcher (EML) for surface-fire support and other missions[1]. The EML system will need to have fire rates of 6-12 rounds per minute and

  20. Design, development and construction of an outdoor testing facility for semi-transparent photovoltaic modules

    OpenAIRE

    Olivieri, Lorenzo; Caamaño Martín, Estefanía; Olivieri, Francesca; Neila Gonzalez, Francisco Javier

    2013-01-01

    Building-integrated Photovoltaics (BIPV) is one of the most promising technologies enabling buildings to generate on-site part of their electricity needs while performing architectural functionalities. A clear example of BIPV products consists of semi-transparent photovoltaic modules (STPV), designed to replace the conventional glazing solutions in building façades. Accordingly, the active building envelope is required to perform multiple requirements such as provide solar shading to avoid ...

  1. Beam-loss-induced electrical stress test on CMS Silicon Strip Modules

    CERN Document Server

    Fahrer, M; Hartmann, F; Heier, S; MacPherson, A; Muller, T H; Weiler, T h

    2004-01-01

    Based on simulated LHC beam loss scenarios, fully depleted CMS silicon tracker modules and sensors were exposed to 42 ns-long beam spills of approximately 10**1**1 protons per spill at the PS at CERN. The ionisation dose was sufficient to short circuit the silicon sensors. The dynamic behaviour of bias voltage, leakage currents and voltages over coupling capacitors were monitored during the impact. Results of pre- and post-qualification as well as the dynamic behaviour are shown.

  2. Artificial Sight Basic Research, Biomedical Engineering, and Clinical Advances

    CERN Document Server

    Humayun, Mark S; Chader, Gerald; Greenbaum, Elias

    2008-01-01

    Artificial sight is a frontier area of modern ophthalmology combining the multidisciplinary skills of surgical ophthalmology, biomedical engineering, biological physics, and psychophysical testing. Many scientific, engineering, and surgical challenges must be surmounted before widespread practical applications can be realized. The goal of Artificial Sight is to summarize the state-of-the-art research in this exciting area, and to describe some of the current approaches and initiatives that may help patients in a clinical setting. The Editors are active researchers in the fields of artificial sight, biomedical engineering and biological physics. They have received numerous professional awards and recognition for their work. The artificial sight team at the Doheny Eye Institute, led by Dr. Mark Humayun, is a world leader in this area of biomedical engineering and clinical research. Key Features Introduces and assesses the state of the art for a broad audience of biomedical engineers, biophysicists, and clinical...

  3. Construction and Test of Full-Size Micromegas Modules for the ATLAS New Small Wheel Upgrade

    CERN Document Server

    Bortfeldt, Jonathan; The ATLAS collaboration

    2015-01-01

    In 2015 the first full size resistive-strip MicroMegas operational modules for the ATLAS New Small Wheel upgrade will be realized. The goal is to provide precision muon tracking with spatial resolution below 100 μm on trapezoidal detector areas between 2 and 3 m^2. The overall thickness of each detector modules is about 70 mm and the total number of read-out channels is of the order of 10^4. Each module consists of a quadruplet of four MicroMegas with 5 mm drift gaps intervaled with 2 read-out panels with anodes on both sides and 3 drift panels. The panels are realized as 11 mm thick stiffening sandwiches made of 10 mm thick honeycomb, 0.5 mm thick FR4 pcb material sheets as surfaces and aluminium frames. The active part of the read-out anodes consists of horizontal strips with 0.45 mm pitch. Two out of the four anode planes are built with stereo strips of identical pitch and stereo angles of ±1.5 degrees. A sequence of 128 μm height insulating pillars on the read-out planes allows the pretensioned microme...

  4. Electron Energy Resolution of the ATLAS TILECAL Modules with Fit Filter Method (July 2002 test beam)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2006-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. It is necessary to have confidence that the calorimeters will perform as expected. With the aim of understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron energy resolutions of the $EBM-$ (ANL-44), $EBM+$ (IFA-42) and $BM$ (JINR-55) Modules of the ATLAS Tile Calorimeter at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o $ and $\\eta$ scan from the July 2002 testbeam run data using the fit filter method of the PMT signal reconstruction. We have determined the statistical and constant terms for the electron ene...

  5. Electron Energy Resolution of the ATLAS TILECAL Modules with Flat Filter Method (July 2002 test beam)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2005-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. It is necessary to have confidence that the calorimeters will perform as expected. With the aim of understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron energy resolutions of the $EBM-$ (ANL-44), $EBM+$ (IFA-42) and $BM$ (JINR-55) Modules of the ATLAS Tile Calorimeter at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o $ and $\\eta$ scan from the July 2002 testbeam run data using the flat filter method of the PMT signal reconstruction. We have determined the statistical and constant terms for the electron en...

  6. Energy Calibration of the TILECAL Modules with the Fit Filter Method (July 2002 Test Beam Data)

    CERN Document Server

    Kulchitskii, Yu A; Vinogradov, V B

    2005-01-01

    The constructed ATLAS detector at the LHC will have the great physics discovery potential, in particular in the detection of a heavy Higgs boson. Calorimeters will play a crucial role in it. The important question of calorimetry is the calibration in the electromagnetic energy scale. With the aim of establishing of this scale and understanding of performance of the ATLAS Tile hadronic calorimeter to electrons 12\\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. Our work is devoted to the determination of the electromagnetic energy calibration constants of the EBM$-$ (ANL-44), EBM$+$ (IFA-42), BM (JINR-55) TILECAL modules at energies E = 10, 20, 50, 100 and 180 GeV and $\\theta = 20^o$ and $90^o$ and $\\eta$ scans on the basis of the July 2002 testbeam run data using the fit filter method of the PMT signal reconstruction. The o...

  7. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  8. Towards automated biomedical ontology harmonization.

    Science.gov (United States)

    Uribe, Gustavo A; Lopez, Diego M; Blobel, Bernd

    2014-01-01

    The use of biomedical ontologies is increasing, especially in the context of health systems interoperability. Ontologies are key pieces to understand the semantics of information exchanged. However, given the diversity of biomedical ontologies, it is essential to develop tools that support harmonization processes amongst them. Several algorithms and tools are proposed by computer scientist for partially supporting ontology harmonization. However, these tools face several problems, especially in the biomedical domain where ontologies are large and complex. In the harmonization process, matching is a basic task. This paper explains the different ontology harmonization processes, analyzes existing matching tools, and proposes a prototype of an ontology harmonization service. The results demonstrate that there are many open issues in the field of biomedical ontology harmonization, such as: overcoming structural discrepancies between ontologies; the lack of semantic algorithms to automate the process; the low matching efficiency of existing algorithms; and the use of domain and top level ontologies in the matching process.

  9. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  10. Fiber Attachment Module Experiment (FAME): Using a Multiplexed Miniature Hollow Fiber Membrane Bioreactor Solution for Rapid Process Testing

    Science.gov (United States)

    Lunn, Griffin; Wheeler, Raymond; Hummerick, Mary; Birmele, Michele; Richards, Jeffrey; Coutts, Janelle; Koss, Lawrence; Spencer, Lashelle.; Johnsey, Marissa; Ellis, Ronald

    Bioreactor research, even today, is mostly limited to continuous stirred-tank reactors (CSTRs). These are not an option for microgravity applications due to the lack of a gravity gradient to drive aeration as described by the Archimedes principle. This has led to testing of Hollow Fiber Membrane Bioreactors (HFMBs) for microgravity applications, including possible use for wastewater treatment systems for the International Space Station (ISS). Bioreactors and filtration systems for treating wastewater could avoid the need for harsh pretreatment chemicals and improve overall water recovery. However, the construction of these reactors is difficult and commercial off-the-shelf (COTS) versions do not exist in small sizes. We have used 1-L modular HFMBs in the past, but the need to perform rapid testing has led us to consider even smaller systems. To address this, we designed and built 125-mL, rectangular reactors, which we have called the Fiber Attachment Module Experiment (FAME) system. A polycarbonate rack of four square modules was developed with each module containing removable hollow fibers. Each FAME reactor is self-contained and can be easily plumbed with peristaltic and syringe pumps for continuous recycling of fluids and feeding, as well as fitted with sensors for monitoring pH, dissolved oxygen, and gas measurements similar to their larger counterparts. The first application tested in the FAME racks allowed analysis of over a dozen fiber surface treatments and three inoculation sources to achieve rapid reactor startup and biofilm attachment (based on carbon oxidation and nitrification of wastewater). With these miniature FAME reactors, data for this multi-factorial test were collected in duplicate over a six-month period; this greatly compressed time period required for gathering data needed to study and improve bioreactor performance.

  11. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  12. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  13. Biomedical waste in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, S.

    2000-07-01

    In its broadest sense, medical waste applies to solid or liquid waste generated in the diagnosis, treatment of immunization of human beings or animals in research, in the production or testing of biological material. Of all the wastes produced by hospitals, the World Health Organization estimated that 10 per cent of it is infectious and 5 per cent consists of hazardous chemicals such as methylchloride and formaldehyde. Of course, one of the major concerns is the transmission of human immunodeficiency virus (HIV) and hepatitis B or C viruses. If the medical waste is not properly managed, a high degree of pollution and public health risks exists, particularly if the medical waste is mixed with municipal solid waste and dumped in uncontrolled areas. In New Delhi, the daily medical waste generated is 60 metric tons. In 1989, the Bureau of Indian Standards, New Delhi published guidelines for the management of Solid Wastes-Hospitals. Some rules governing the classification of biomedical waste were published in 1997-98 by the Ministry of Environment and Forests. Recommendations by the author included the segregation of hospital wastes, the set up of common medical waste treatment facilities as well as the training of Municipality workers in the safe handling of medical wastes. 7 refs., 3 tabs.

  14. Biomedical ontologies: a functional perspective.

    Science.gov (United States)

    Rubin, Daniel L; Shah, Nigam H; Noy, Natalya F

    2008-01-01

    The information explosion in biology makes it difficult for researchers to stay abreast of current biomedical knowledge and to make sense of the massive amounts of online information. Ontologies--specifications of the entities, their attributes and relationships among the entities in a domain of discourse--are increasingly enabling biomedical researchers to accomplish these tasks. In fact, bio-ontologies are beginning to proliferate in step with accruing biological data. The myriad of ontologies being created enables researchers not only to solve some of the problems in handling the data explosion but also introduces new challenges. One of the key difficulties in realizing the full potential of ontologies in biomedical research is the isolation of various communities involved: some workers spend their career developing ontologies and ontology-related tools, while few researchers (biologists and physicians) know how ontologies can accelerate their research. The objective of this review is to give an overview of biomedical ontology in practical terms by providing a functional perspective--describing how bio-ontologies can and are being used. As biomedical scientists begin to recognize the many different ways ontologies enable biomedical research, they will drive the emergence of new computer applications that will help them exploit the wealth of research data now at their fingertips.

  15. Comparison of Size Modulation Standard Automated Perimetry and Conventional Standard Automated Perimetry with a 10-2 Test Program in Glaucoma Patients.

    Science.gov (United States)

    Hirasawa, Kazunori; Takahashi, Natsumi; Satou, Tsukasa; Kasahara, Masayuki; Matsumura, Kazuhiro; Shoji, Nobuyuki

    2017-08-01

    This prospective observational study compared the performance of size modulation standard automated perimetry with the Octopus 600 10-2 test program, with stimulus size modulation during testing, based on stimulus intensity and conventional standard automated perimetry, with that of the Humphrey 10-2 test program in glaucoma patients. Eighty-seven eyes of 87 glaucoma patients underwent size modulation standard automated perimetry with Dynamic strategy and conventional standard automated perimetry using the SITA standard strategy. The main outcome measures were global indices, point-wise threshold, visual defect size and depth, reliability indices, and test duration; these were compared between size modulation standard automated perimetry and conventional standard automated perimetry. Global indices and point-wise threshold values between size modulation standard automated perimetry and conventional standard automated perimetry were moderately to strongly correlated (p 33.40, p size modulation standard automated perimetry than with conventional standard automated perimetry, but the visual-field defect size was smaller (p size modulation-standard automated perimetry than on conventional standard automated perimetry. The reliability indices, particularly the false-negative response, of size modulation standard automated perimetry were worse than those of conventional standard automated perimetry (p size modulation standard automated perimetry than with conventional standard automated perimetry (p = 0.02). Global indices and the point-wise threshold value of the two testing modalities correlated well. However, the potential of a large stimulus presented at an area with a decreased sensitivity with size modulation standard automated perimetry could underestimate the actual threshold in the 10-2 test protocol, as compared with conventional standard automated perimetry.

  16. Health Monitoring of Offshore Wind Turbines Online Fault Detection and Identification Module Test Case: Pitch Offset

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    LACobserver is a model based health monitoring (HM) system for wind turbines (WTGs) which provides an intuitive engineering link between load and strength parameters. The present work demonstrates a newly developed LACobserver Fault Detection and Identification (FDI) module for online detection...... of pitch offset and corresponding root causes. Blade-to-blade pitch offset slowly degrade the WTG performance and results in lower WTG annual energy production and higher structural loads. Thus, a FDI strategy will increase wind turbine efficiency, performance and operational lifetime....

  17. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  18. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  19. Full load testing in the platform module prior to tow-out: A case history of subsynchronous instability

    Science.gov (United States)

    Fulton, J. W.

    1984-01-01

    An electric motor driven centrifugal compressor to supply gas for further compression and reinjection on a petroleum production platform in the North Sea was examined. The compressor design, raised concerns about susceptibility to subsynchronous instability. Log decrement, aerodynamic features, and the experience of other compressors with similar ratios of operating to critical speed ratio versus gas density led to the decision to full load test. Mixed hydrocarbon gas was chosen for the test to meet discharge temperature restrictions. The module was used as the test site. Subsynchronous vibrations made the compressor inoperable above approximately one-half the rated discharge pressure of 14500 kPa. Modifications, which includes shortening the bearing span, change of leakage inlet flow direction on the back to back labyrinth, and removal of the vaned diffusers on all stages were made simultaneously. The compressor is operating with satisfactory vibration levels.

  20. Biosphere 2 test module: A ground-based sunlight-driven prototype of a closed ecological life support system

    Science.gov (United States)

    Nelson, Mark; Leigh, Linda; Alling, Abigail; MacCallum, Taber; Allen, John; Alvarez-Romo, Norberto

    Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber (``lung'') permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality.

  1. Monitoring of polymeric membrane fouling in hollow fiber module using ultrasonic nondestructive testing

    Institute of Scientific and Technical Information of China (English)

    LIU Jing-xia; LI Jian-xin; CHEN Xue-mei; ZHANG Yu-zhong

    2006-01-01

    This study describes the development of novel protocols extending the real-time ultrasonic reflectometry(UTDR) for the detection of membrane fouling in hollow fiber module during ultrafiltration(UF) of oily water treatment. A specially designed acoustic sensor with a frequency of 2.5 MHz was used. The hollow fiber membranes used were polysulphone(PSf) UF membranes with MWCO 40 kDa. The wastewaters with three different oily concentrations of 100,500 and 1 000 mg/L were investigated. Diesel oil was utilized as the primary foulant. The results show that the permeate flux declines with operation time and its value becomes lower with the increase of the oily concentration in wastewater. It is found that ultrasonic measurement can detect the fouling and cleaning processes. A new signal analysis protocol-ultrasonic reflected energy was developed. Ultrasonic reflected energy obtained indicates the deposition of oily layer as a function of operation time and its removal after cleaning. The overall flux decline is reasonably correlated with the changes in ultrasonic reflected energy. This research provides the evidence that the ultrasonic reflectometry technique is capable of monitoring membrane fouling and cleaning in hollow fiber modules.

  2. Implementation and testing of a desert dust module in a regional climate model

    Directory of Open Access Journals (Sweden)

    A. S. Zakey

    2006-01-01

    Full Text Available In an effort to improve our understanding of aerosol impacts on climate, we implement a desert dust module within a regional climate model (RegCM. The dust module includes emission, transport, gravitational settling, wet and dry removal and calculations of dust optical properties. The coupled RegCM-dust model is used to simulate two dust episodes observed over the Sahara region (a northeastern Africa dust outbreak, and a west Africa-Atlantic dust outbreak observed during the SHADE "Saharan Dust Experiment", as well as a three month simulation over an extended domain covering the Africa-Europe sector. Comparisons with satellite and local aerosol optical depth measurements shows that the model captures the main spatial (both horizontal and vertical and temporal features of the dust distribution. The main model deficiency occurs in the representation of certain dynamical patterns observed during the SHADE case which is associated with an active easterly wave that contributed to the generation of the dust outbreak. The model appears suitable to conduct long term simulations of the effects of Saharan dust on African and European climate.

  3. James Webb Space Telescope Integrated Science Instrument Module Thermal Vacuum Thermal Balance Test Campaign at NASA's Goddard Space Flight Center

    Science.gov (United States)

    Glazer, Stuart; Comber, Brian (Inventor)

    2016-01-01

    The James Webb Space Telescope is a large infrared telescope with a 6.5-meter primary mirror, designed as a successor to the Hubble Space Telescope when launched in 2018. Three of the four science instruments contained within the Integrated Science Instrument Module (ISIM) are passively cooled to their operational temperature range of 36K to 40K with radiators, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. Thermal-vacuum testing of the flight science instruments at the ISIM element level has taken place in three separate highly challenging and extremely complex thermal tests within a gaseous helium-cooled shroud inside Goddard Space Flight Centers Space Environment Simulator. Special data acquisition software was developed for these tests to monitor over 1700 flight and test sensor measurements, track over 50 gradients, component rates, and temperature limits in real time against defined constraints and limitations, and guide the complex transition from ambient to final cryogenic temperatures and back. This extremely flexible system has proven highly successful in safeguarding the nearly $2B science payload during the 3.5-month-long thermal tests. Heat flow measurement instrumentation, or Q-meters, were also specially developed for these tests. These devices provide thermal boundaries o the flight hardware while measuring instrument heat loads up to 600 mW with an estimated uncertainty of 2 mW in test, enabling accurate thermal model correlation, hardware design validation, and workmanship verification. The high accuracy heat load measurements provided first evidence of a potentially serious hardware design issue that was subsequently corrected. This paper provides an overview of the ISIM-level thermal-vacuum tests and thermal objectives; explains the thermal test configuration and thermal balances; describes special measurement instrumentation and monitoring and control software; presents key test thermal results

  4. Beliefs,Anxiety,Motivation in English Language Learning and Its Pedagogical Implication for Module Advancement Teaching and Testing

    Institute of Scientific and Technical Information of China (English)

    颜泓

    2015-01-01

    It was realized that teaching methods were only exterior factors, and what to a large extent exerted determinative effect on the learners were their inner factors.Therefore, the focus of the foreign language teaching research shifted from“how to teach” to“how to learn” and from studying“teachers” to doing research on“students”.This article briefly indicates the significance of beliefs, anxiety and motivation in English learning. Thus, the author gets the implications for module advancement teaching and testing.

  5. Performance of the CMS 2S $p_T$ module prototype using CBC2 readout at beam tests

    CERN Document Server

    Roy Chowdhury, Suvankar

    2017-01-01

    As the LHC will enter into its high luminosity phase\\,(HL-LHC), operating at a luminosity of $5\\rm{\\mbox{-}}7.5\\times10^{34}~\\rm cm^{-2}\\rm s^{-1}$, the CMS experiment will replace the Run 2 tracker with a new one which will be able to sustain the increased number of collisions per bunch crossing, which can be as high as 200. The tracker information will be used in the Level-1 trigger to reject low $p_T$ tracks. In this paper, the performance of the modules of the proposed outer tracker in test beams is reported.

  6. A risk-based framework for biomedical data sharing.

    Science.gov (United States)

    Dankar, Fida K; Badji, Radja

    2017-02-01

    The problem of biomedical data sharing is a form of gambling; on one hand it incurs the risk of privacy violations and on the other it stands to profit from knowledge discovery. In general, the risk of granting data access to a user depends heavily upon the data requested, the purpose for the access, the user requesting the data (user motives) and the security of the user's environment. While traditional manual biomedical data sharing processes (based on institutional review boards) are lengthy and demanding, the automated ones (known as honest broker systems) disregard the individualities of different requests and offer "one-size-fits-all" solutions to all data requestors. In this manuscript, we propose a conceptual risk-aware data sharing system; the system brings the concept of risk, from all contextual information surrounding a data request, into the data disclosure decision module. The decision module, in turn, imposes mitigation measures to counter the calculated risk.

  7. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Alphus D. Wilson

    2011-01-01

    Full Text Available The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry.

  8. Instructional Topics in Educational Measurement (ITEMS) Module: Using Automated Processes to Generate Test Items

    Science.gov (United States)

    Gierl, Mark J.; Lai, Hollis

    2013-01-01

    Changes to the design and development of our educational assessments are resulting in the unprecedented demand for a large and continuous supply of content-specific test items. One way to address this growing demand is with automatic item generation (AIG). AIG is the process of using item models to generate test items with the aid of computer…

  9. A Long-Pulse Modulator for the TESLA Test Facility (TTF)

    CERN Document Server

    Kaesler, W

    2004-01-01

    The long-pulse (1.6 ms) klystron modulator for TTF is a hardtube pulser using a Bouncer-circuit for droop compensation. It is built up with new advanced components representing industrial standards. The on-/off switch is a rugged 12 kV IGCT-stack with a fast 4kA turn-off capability. The 100 kJ storage capacitor bank contains only three capacitors with self-healing, segmented PP-foil technology. A new 100 kA solid-state switch based on light triggered thyristors (LTT) replaced the standard ignitrons as crowbar switches. The 300 kW high voltage power supply is based on modern switched mode technology.

  10. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jiali Zhang

    2010-06-01

    Full Text Available Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1 enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2 the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3 synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy.

  11. Chitosan Modification and Pharmaceutical/Biomedical Applications

    Science.gov (United States)

    Zhang, Jiali; Xia, Wenshui; Liu, Ping; Cheng, Qinyuan; Tahirou, Talba; Gu, Wenxiu; Li, Bo

    2010-01-01

    Chitosan has received much attention as a functional biopolymer for diverse applications, especially in pharmaceutics and medicine. Our recent efforts focused on the chemical and biological modification of chitosan in order to increase its solubility in aqueous solutions and absorbability in the in vivo system, thus for a better use of chitosan. This review summarizes chitosan modification and its pharmaceutical/biomedical applications based on our achievements as well as the domestic and overseas developments: (1) enzymatic preparation of low molecular weight chitosans/chitooligosaccharides with their hypocholesterolemic and immuno-modulating effects; (2) the effects of chitin, chitosan and their derivatives on blood hemostasis; and (3) synthesis of a non-toxic ion ligand—D-Glucosaminic acid from Oxidation of D-Glucosamine for cancer and diabetes therapy. PMID:20714418

  12. Cryogenic optical test planning using the Optical Telescope Element Simulator with the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Reichard, Timothy A.; Bond, Nicholas A.; Greeley, Bradford W.; Malumuth, Eliot M.; Melendez, Marcio; Shiri, Ron; Alves de Oliveira, Catarina; Antonille, Scott R.; Birkmann, Stephan; Davis, Clinton; Dixon, William V.; Martel, André R.; Miskey, Cherie L.; Ohl, Raymond G.; Sabatke, Derek; Sullivan, Joseph

    2016-09-01

    NASA's James Webb Space Telescope (JWST) is a 6.5 m diameter, segmented, deployable telescope for cryogenic infrared space astronomy ( 40 K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SIs), including a guider. The SI and guider units are integrated to the ISIM structure and optically tested at NASA Goddard Space Flight Center as an instrument suite using a telescope simulator (Optical Telescope Element SIMulator; OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a 1.5m diameter powered mirror. The SIs are aligned to the flight structure's coordinate system under ambient, clean room conditions using optomechanical metrology and customized interfaces. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors and metrology in six degrees of freedom. SI performance, including focus, pupil shear, pupil roll, boresight, wavefront error, and image quality, is evaluated at the operating temperature using OSIM. The comprehensive optical test plans include drafting OSIM source configurations for thousands of exposures ahead of the start of a cryogenic test campaign. We describe how we predicted the performance of OSIM light sources illuminating the ISIM detectors to aide in drafting these optical tests before a test campaign began. We also discuss the actual challenges and successes of those exposure predictions encountered during a test campaign to fulfill the demands of the ISIM optical performance verification.

  13. \\title{Test beam results of the first CMS\\\\double-sided strip module prototypes\\\\using the CBC2 read-out chip}

    CERN Document Server

    Harb, Ali; Hauk, Johannes

    2016-01-01

    In November 2013 the first 2S-$p_{T}$ module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2~to 4 GeV. In this paper the test setup and the results are presented.

  14. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  15. Optical Readout in a Multi-Module System Test for the ATLAS Pixel Detector

    CERN Document Server

    Flick, T; Gerlach, P; Kersten, S; Mättig, P; Kirichu, S N; Reeves, K; Richter, J; Schultes, J; Flick, Tobias; Becks, Karl-Heinz; Gerlach, Peter; Kersten, Susanne; Maettig, Peter; Kirichu, Simon Nderitu; Reeves, Kendall; Richter, Jennifer; Schultes, Joachim

    2006-01-01

    The innermost part of the ATLAS experiment at the LHC, CERN, will be a pixel detector. The command messages and the readout data of the detector are transmitted over an optical data path. The readout chain consists of many components which are produced at several locations around the world, and must work together in the pixel detector. To verify that these parts are working together as expected a system test has been built up. In this paper the system test setup and the operation of the readout chain is described. Also, some results of tests using the final pixel detector readout chain are given.

  16. Cooperative effort between Consorcio European Spallation Source--Bilbao and Oak Ridge National Laboratory spallation neutron source for manufacturing and testing of the JEMA-designed modulator system

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, David E [ORNL

    2017-01-02

    The JEMA modulator was originally developed for the European Spallation Source (ESS) when Spain was under consideration as a location for the ESS facility. Discussions ensued and the Spallation Neutron Source Research Accelerator Division agreed to form a collaboration with ESS-Bilbao (ESS-B) consortium to provide services for specifying the requirements for a version of the modulator capable of operating twelve 550 kW klystrons, monitoring the technical progress on the contract with JEMA, installing and commissioning the modulator at SNS, and performing a 30 day full power test. This work was recently completed, and this report discusses those activities with primary emphasis on the installation and testing activities.

  17. Functional design and implementation with on-line programmable technology in optical fiber communication pulse code modulation test system

    Science.gov (United States)

    Xu, Yuan; Ding, Huan; Gao, Youtang

    2010-10-01

    In order to complete the functional design in the fiber optical communication pulse code modulation test system, taking advantage of CPLD / FPGA and SOPC technology, software solutions used to design system hardware features and control functions, thereby the whole system could attain optimisation in the logic control as well as encoding and decoding functional designs on the motherboard, enabling this system fulfill the capacities varying from simple digital simulation transmission modulate to the high speed fiber optical communication network information encoding and decoding functions. Simultaneously the application of logarithmic pressure companding technique, PCM encoding and decoding system to improve the small signal quantizing SNR(Signal-to-Noise Ratio), TP3067 adopting A rate thirteen broken lines to carry on signal pressure companding. When the signal at a certain stage, the quantizing SNR is invariable(as signal receives uniform quantization in this phase, therefore the quantizing SNR drops along with signal amplititude decreasing). Test results are as follows: ideal various signal encoding and decoding system waveforms, high performance parameters , achieve the desired designing aim, a entirely new approach to realize different kinds of information encoding and decoding model building and implementation, saving development costs, improving design efficiency, satisfactory actual results, stable operation.

  18. Testing Modules for Potential-Induced Degradation - A Status Update of IEC 62804 (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.

    2014-03-01

    Stresses and degradation rates for the 25 degrees C with foil and the 60 degrees C/85% RH damp heat tests are compared, the Illumination factor on PID rate is evaluated, and measurement techniques and stress levels are discussed.

  19. Procedure for developing experimental designs for accelerated tests for service-life prediction. [for solar cell modules

    Science.gov (United States)

    Thomas, R. E.; Gaines, G. B.

    1978-01-01

    Recommended design procedures to reduce the complete factorial design by retaining information on anticipated important interaction effects, and by generally giving up information on unconditional main effects are discussed. A hypothetical photovoltaic module used in the test design is presented. Judgments were made of the relative importance of various environmental stresses such as UV radiation, abrasion, chemical attack, temperature, mechanical stress, relative humidity and voltage. Consideration is given to a complete factorial design and its graphical representation, elimination of selected test conditions, examination and improvement of an engineering design, and parametric study. The resulting design consists of a mix of conditional main effects and conditional interactions and represents a compromise between engineering and statistical requirements.

  20. Performance Testing of a Photocatalytic Oxidation Module for Spacecraft Cabin Atmosphere Revitalization

    Science.gov (United States)

    Perry, Jay L.; Abney, Morgan B.; Frederick, Kenneth R.; Scott, Joseph P.; Kaiser, Mark; Seminara, Gary; Bershitsky, Alex

    2011-01-01

    Photocatalytic oxidation (PCO) is a candidate process technology for use in high volumetric flow rate trace contaminant control applications in sealed environments. The targeted application for PCO as applied to crewed spacecraft life support system architectures is summarized. Technical challenges characteristic of PCO are considered. Performance testing of a breadboard PCO reactor design for mineralizing polar organic compounds in a spacecraft cabin atmosphere is described. Test results are analyzed and compared to results reported in the literature for comparable PCO reactor designs.

  1. MAPI: a software framework for distributed biomedical applications

    Directory of Open Access Journals (Sweden)

    Karlsson Johan

    2013-01-01

    Full Text Available Abstract Background The amount of web-based resources (databases, tools etc. in biomedicine has increased, but the integrated usage of those resources is complex due to differences in access protocols and data formats. However, distributed data processing is becoming inevitable in several domains, in particular in biomedicine, where researchers face rapidly increasing data sizes. This big data is difficult to process locally because of the large processing, memory and storage capacity required. Results This manuscript describes a framework, called MAPI, which provides a uniform representation of resources available over the Internet, in particular for Web Services. The framework enhances their interoperability and collaborative use by enabling a uniform and remote access. The framework functionality is organized in modules that can be combined and configured in different ways to fulfil concrete development requirements. Conclusions The framework has been tested in the biomedical application domain where it has been a base for developing several clients that are able to integrate different web resources. The MAPI binaries and documentation are freely available at http://www.bitlab-es.com/mapi under the Creative Commons Attribution-No Derivative Works 2.5 Spain License. The MAPI source code is available by request (GPL v3 license.

  2. Nanoceramic Matrices: Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Willi Paul

    2006-01-01

    Full Text Available Natural bone consisted of calcium phosphate with nanometer-sized needle-like crystals of approximately 5-20 nm width by 60 nm length. Synthetic calcium phosphates and Bioglass are biocompatible and bioactive as they bond to bone and enhance bone tissue formation. This property is attributed to their similarity with the mineral phase of natural bone except its constituent particle size. Calcium phosphate ceramics have been used in dentistry and orthopedics for over 30 years because of these properties. Several studies indicated that incorporation of growth hormones into these ceramic matrices facilitated increased tissue regeneration. Nanophase calcium phosphates can mimic the dimensions of constituent components of natural tissues; can modulate enhanced osteoblast adhesion and resorption with long-term functionality of tissue engineered implants. This mini review discusses some of the recent developments in nanophase ceramic matrices utilized for bone tissue engineering.

  3. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  4. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  5. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    Science.gov (United States)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  6. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  7. Testing of the stability of intensity modulated beams generated with dynamic multileaf collimation, applied to the MM50 racetrack microtron.

    Science.gov (United States)

    Dirkx, M L; Heijmen, B J

    2000-12-01

    Recently, we have published a method for the calculation of required leaf trajectories to generate optimized intensity modulated x-ray beams by means of dynamic multileaf collimation [Phys. Med. Biol. 43, 1171-1184 (1998)]. For the MM50 Racetrack Microtron it has been demonstrated that the dosimetric accuracy of this method, in combination with the dose calculation algorithm of the Cadplan 3D treatment planning system, is adequate for a clinical application (within 2% or 0.2 cm). Prior to initiating patient treatment with dynamic multileaf collimation (DMLC), tests have been performed to investigate the stability of DMLC fields generated at the MM50, (i) in time, (ii) subject to gantry rotation and (iii) in case of treatment interrupts, e.g., caused by an error detected by the treatment machine. The stability of relative dose profiles, normalized to a reference point in a relatively flat part of the modulated beam profile, was assessed from measurements with an electronic portal imaging device (EPID), with a linear diode array attached to the collimator and with film. The dose in the reference point was monitored using an ionization chamber. Tests were performed for several intensity modulated fields using 10 and 25 MV photon beams. Based on film measurements for sweeping 0.1 cm leaf gaps it was concluded that in an 80 days period the variation in leaf positioning was within 0.05 cm, without requiring any recalibration. For a uniform 10x10 cm2 field, realized dynamically by a scanning 0.4x10 cm2 slit beam, a maximum variation in slit width of 0.01 cm was derived from ionization chamber measurements, both in time and for gantry rotation. For a clinical example, the dose in the reference point reproduced within 0.2% (1 SD) over a period of 100 days. Apart from regions with very large dose gradients, variations in the relative beam profiles measured with the EPID were generally less than 1% (1 SD). For different gantry angles the dose profiles also reproduced within 1

  8. Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-01

    This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

  9. Biomedical applications of magnetic particles

    CERN Document Server

    Mefford, Thompson

    2017-01-01

    Magnetic particles are increasingly being used in a wide variety of biomedical applications. Written by a team of internationally respected experts, this book provides an up-to-date authoritative reference for scientists and engineers. The first section presents the fundamentals of the field by explaining the theory of magnetism, describing techniques to synthesize magnetic particles, and detailing methods to characterize magnetic particles. The second section describes biomedical applications, including chemical sensors and cellular actuators, and diagnostic applications such as drug delivery, hyperthermia cancer treatment, and magnetic resonance imaging contrast.

  10. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  11. Space station common module thermal management: Design and construction of a test bed

    Science.gov (United States)

    Barile, R. G.

    1986-01-01

    In this project, a thermal test bed was designed, simulated, and planned for construction. The thermal system features interior and exterior thermal loads and interfacing with the central-radiator thermal bus. Components of the test bed include body mounted radiator loop with interface heat exchangers (600 Btu/hr); an internal loop with cabin air-conditioning and cold plates (3400 Btu/hr); interface heat exchangers to the central bus (13,000 Btu/hr); and provisions for new technology including advanced radiators, thermal storage, and refrigeration. The apparatus will be mounted in a chamber, heated with lamps, and tested in a vacuum chamber with LN2-cooled walls. Simulation of the test bed was accomplished using a DEC PRO 350 computer and the software package TK! olver. Key input variables were absorbed solar radiation and cold plate loads. The results indicate temperatures on the two loops will be nominal when the radiation and cold plate loads are in the range of 25% to 75% of peak loads. If all loads fall to zero, except the cabin air system which was fixed, the radiator fluid will drop below -100 F and may cause excessive pressure drop. If all loads reach 100%, the cabin air temperature could rise to 96 F.

  12. Rapid prototyping of centrifugal microfluidic modules for point of care blood testing

    CSIR Research Space (South Africa)

    Madzivhandila, Phophi

    2016-11-01

    Full Text Available We present modular centrifugal microfluidic devices that enable a series of blood tests to be performed towards a full blood count. The modular approach allows for rapid prototyping of device components in a generic format to complete different...

  13. [Flow field test on the tangential section of polypropylene tubular membrane module annular gap in rotating linear tangential flow].

    Science.gov (United States)

    Wang, Chengduan; Chen, Wenmei; Li, Jianming; Jiang, Guangming

    2002-07-01

    A new type of polypropylene tubular membrane apparatus of rotating cross flow was designed to study experimentally the flow field characteristics of the tangential section of the membrane annular gap. The authors designed rotary linear tangential flow tubular membrane separator and its test system for the first time. Through the system, the flow field of rotary linear tangential flow with the advanced Particle Image Velocimetry (PIV) was tested for the first time. A lot of streamlines and vorticity maps of the tangential section of separator in different operation conditions were obtained. The velocity distribution characteristics were analyzed quantitatively: 1. At non-vortex area, no matter how the operation parameters change, the velocity near to rotary tangential flow entrance was higher than the velocity far from entrance at the same radial coordinates. At vortex area, generally the flow velocity of inner vortex was lower than the outer vortex. At the vortex center, the velocity was lowest, the tangential velocity were equal to zero generally. At the vortex center zone, the tangential velocity was less than the axial velocity. 2. Under test operations, the tangential velocity and axial velocity of vortices borders are 1-2 times of average axial velocity of membrane module annular gap. The maximum tangential velocity and axial velocity of ellipse vortices were 2-6 times of average axial velocity of membrane module annular gap. 3. The vortices that are formed on the tangential section, there existed mass transfer between inner and outer parts of fluid. Much fluid of outer vortices got into the inner ones, which was able to prevent membrane tube from particles blocking up very soon.

  14. Calibration of the modulation transfer function of surface profilometers with binary pseudo-random test standards: expanding the application range

    Energy Technology Data Exchange (ETDEWEB)

    Yashchuk, Valeriy V.; Anderson, Erik H.; Barber, Samuel K.; Bouet, Nathalie; Cambie, Rossana; Conley, Raymond; McKinney, Wayne R.; Takacs, Peter Z.; Voronov, Dmitriy L.

    2011-03-14

    A modulation transfer function (MTF) calibration method based on binary pseudo-random (BPR) gratings and arrays [Proc. SPIE 7077-7 (2007), Opt. Eng. 47, 073602 (2008)] has been proven to be an effective MTF calibration method for a number of interferometric microscopes and a scatterometer [Nucl. Instr. and Meth. A616, 172 (2010)]. Here we report on a further expansion of the application range of the method. We describe the MTF calibration of a 6 inch phase shifting Fizeau interferometer. Beyond providing a direct measurement of the interferometer's MTF, tests with a BPR array surface have revealed an asymmetry in the instrument's data processing algorithm that fundamentally limits its bandwidth. Moreover, the tests have illustrated the effects of the instrument's detrending and filtering procedures on power spectral density measurements. The details of the development of a BPR test sample suitable for calibration of scanning and transmission electron microscopes are also presented. Such a test sample is realized as a multilayer structure with the layer thicknesses of two materials corresponding to BPR sequence. The investigations confirm the universal character of the method that makes it applicable to a large variety of metrology instrumentation with spatial wavelength bandwidths from a few nanometers to hundreds of millimeters.

  15. Design description and validation results for the IFMIF High Flux Test Module as outcome of the EVEDA phase

    Directory of Open Access Journals (Sweden)

    F. Arbeiter

    2016-12-01

    Full Text Available During the Engineering Validation and Engineering Design Activities (EVEDA phase (2007-2014 of the International Fusion Materials Irradiation Facility (IFMIF, an advanced engineering design of the High Flux Test Module (HFTM has been developed with the objective to facilitate the controlled irradiation of steel samples in the high flux area directly behind the IFMIF neutron source. The development process addressed included manufacturing techniques, CAD, neutronic, thermal-hydraulic and mechanical analyses complemented by a series of validation activities. Validation included manufacturing of 1:1 parts and mockups, test of prototypes in the FLEX and HELOKA-LP helium loops of KIT for verification of the thermal and mechanical properties, and irradiation of specimen filled capsule prototypes in the BR2 test reactor. The prototyping activities were backed by several R&D studies addressing focused issues like handling of liquid NaK (as filling medium and insertion of Small Specimen Test Technique (SSTT specimens into the irradiation capsules. This paper provides an up-todate design description of the HFTM irradiation device, and reports on the achieved performance criteria related to the requirements. Results of the validation activities are accounted for and the most important issues for further development are identified.

  16. Binary pseudorandom test standard to determine the modulation transfer function of optical microscopes

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Erik; Trolinger, James D.; Lacey, Ian; Anderson, Erik H.; Artemiev, Nikolay A.; Babin, Sergey; Cabrini, Stefano; Calafiore, Guiseppe; Chan, Elaine R.; McKinney, Wayne R.; Peroz, Christophe; Takacs, Peter Z.; Yashchuk, Valeriy V.

    2015-09-01

    This work reports on the development of a binary pseudo-random test sample optimized to calibrate the MTF of optical microscopes. The sample consists of a number of 1-D and 2-D patterns, with different minimum sizes of spatial artifacts from 300 nm to 2 microns. We describe the mathematical background, fabrication process, data acquisition and analysis procedure to return spatial frequency based instrument calibration. We show that the developed samples satisfy the characteristics of a test standard: functionality, ease of specification and fabrication, reproducibility, and low sensitivity to manufacturing error. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  17. Pressure Cycling Fatigue Tests of F-111 Crew Module Glass Transparencies

    Science.gov (United States)

    1977-03-01

    and R.I. Model 4079 Thyratron Power Regulators. The tem- perature of the gas leaving the heat exchanger was constantly monitored during the test. During...time-temperature profiles for each condition were generated on a Research Inc. (R.I.) Model 5300 Data Trak Programmer. In conjunction with this...function generator, a R.I. Model 4080 Recorder- Controller, Model 4078 Ignitron Power Regulators and Conoflow Pneumatic Servovalves coupled with Fisher

  18. Bimodal modulation by nicotine of anxiety in the social interaction test: role of the dorsal hippocampus.

    Science.gov (United States)

    File, S E; Kenny, P J; Ouagazzal, A M

    1998-12-01

    In conditions generating moderate levels of anxiety in the social interaction test (low light, unfamiliar arena or high light, familiar arena), parenteral administration of nicotine had bimodal actions, low doses (0.01 and 0.1 mg/kg i.p.) had anxiolytic effects and high doses (0.5 and 1.0 mg/kg i.p.) had anxiogenic effects. In test conditions where anxiety was lowest (low light, familiar arena) and highest (high light, unfamiliar arena), nicotine was without effect after intraperitoneal or hippocampal administration. Thus, nicotine plays a modulatory role in which the activity of other neurotransmitters is crucial to its expression. After bilateral administration to the dorsal hippocampus, nicotine (0.1-8.0 microg) had anxiogenic effects in conditions of moderate anxiety; mecamylamine (30 ng) was silent in these conditions, indicating no intrinsic tone. Our results show that the dorsal hippocampus is one area that can mediate anxiogenic effects in the social interaction test, but the brain region mediating anxiolytic effects remains to be identified.

  19. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  20. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    ... Technologists in Lagos Universities: Meeting Modern Standards in Biomedical Research. ... science terms; 6) their use of the Internet for professional information. ... SOTA biomedical science needs adequate financial investment for the ...

  1. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  2. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of ... and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular ...

  3. National Institute of Biomedical Imaging and Bioengineering

    Science.gov (United States)

    ... Health & Human Services National Institutes of Health Creating Biomedical Technologies to Improve Health En Español | Site Map | ... 2016 VIEW MORE NEWS AND HIGHLIGHTS Design by Biomedical Undergraduate Teams Challenge RSS LISTSERV YOUTUBE FACEBOOK TWITTER ...

  4. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  5. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  6. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  7. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  8. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  9. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  10. Thermal-mechanical and thermal-hydraulic integrated study of the Helium-Cooled Lithium Lead Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Chiovaro, P., E-mail: pg.chiovaro@din.unipa.it [Dipartimento di Ingegneria Nucleare, Universita di Palermo, Palermo (Italy); Di Maio, P.A.; Giammusso, R.; Lupo, Q.; Vella, G. [Dipartimento di Ingegneria Nucleare, Universita di Palermo, Palermo (Italy)

    2010-12-15

    The Helium-Cooled Lithium Lead Test Blanket Module (HCLL-TBM) is one of the two TBM to be installed in an ITER equatorial port since day 1 of operation, with the specific aim to investigate the main concept functionalities and issues such as high efficiency helium cooling, resistance to thermo-mechanical stresses, manufacturing techniques, as well as tritium transport, magneto-hydrodynamics effects and corrosion. In particular, in order to show a DEMO-relevant thermo-mechanical and thermal-hydraulic behavior, the HCLL-TBM has to meet several requirements especially as far as its coolant thermofluid-dynamic conditions and its thermal-mechanical field are concerned. The present paper is focused on the assessment of the HCLL-TBM thermal-mechanical performances under both nominal and accidental load conditions, by adopting a computational approach based on the Finite Element Method. A realistic 3D finite element model of the whole HCLL-TBM, in the horizontal first wall design has been set up, consisting of about 597,000 elements and 767,000 nodes. In particular, since the thermal fields of both the module and the coolant are strictly coupled, the helium flow domain has been modeled too and a thermal contact model has been set up to properly simulate the convective heat transfer between the structure wall and the coolant. Pure conductive heat transfer has been assumed within the Pb-Li eutectic alloy of the breeder units. The volumetric density of the nuclear deposited power, recently calculated at Department of Nuclear Engineering of the University of Palermo by the MCNP 4C code, has been applied as distributed thermal load in order to assess the potential influence on the module thermo-mechanical performances of the markedly non-uniform poloidal and toroidal distributions that have been predicted within the Segment Box. Different loading scenarios have been considered as to the heat flux onto the module First Wall. Steady state and transient thermal-mechanical analyses

  11. On Biomedical Research Policy in the Future

    Science.gov (United States)

    1989-01-01

    0 ON BIOMEDICAL RESEARCH POLICY IN THE FUTURE Albert P. Williams January 1989 DTIC ELECTE P-7520 "’T,, . The RAND Corporation Papers are issued by...BIOMEDICAL RESEARCH POLICY IN THE FUTURE[l] Mr. Walden, members of the Science Policy Task Force, I am honored to be invited to appear on this panel and...to offer my thoughts on future biomedical research policy . My perspective is that of an outsider with a longstanding interest in federal biomedical

  12. Publishing priorities of biomedical research funders

    OpenAIRE

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishin...

  13. Application of the IEAF-2001 activation data library to activation analyses of the IFMIF high flux test module

    CERN Document Server

    Fischer, U; Leichtle, D; Simakov, S P; Moellendorff, U V; Konobeev, A; Korovin, Y; Pereslavtsev, P; Schmuck, I

    2002-01-01

    A complete activation data library IEAF-2001 (intermediate energy activation file) has been developed in standard ENDF-6 format with neutron-induced activation cross sections for 679 target nuclides from Z=1 (hydrogen) to Z=84 (polonium) and incident neutron energies up to 150 MeV. Using the NJOY processing code, an IEAF-2001 working library has been prepared in a 256 energy group structure for enabling activation analyses of the International Fusion Material Irradiation Facility (IFMIF) D-Li neutron source. This library was applied to the activation analysis of the IFMIF high flux test module using the recent Analytical and Laplacian Adaptive Radioactivity Analysis activation code which is capable of handling the variety of reaction channels open in the energy domain above 20 MeV. The IEAF-2001 activation library was thus shown to be suitable for activation analyses in fusion technology and intermediate energy applications such as the IFMIF D-Li neutron source.

  14. International Fusion Material Irradiation Facility (IFMIF) neutron source term simulation and neutronics analyses of the high flux test module

    CERN Document Server

    Simakov, S P; Heinzel, V; Moellendorff, U V

    2002-01-01

    The report describes the new results of the development work performed at Forschungszentrum Karlsruhe on the neutronics of the International Fusion Materials Irradiation Facility (IFMIF). An important step forward has been done in the simulation of neutron production of the deuteron-lithium source using the Li(d,xn) reaction cross sections from evaluated data files. The developed Monte Carlo routine and d-Li reaction data newly evaluated at INPE Obninsk have been verified against available experimental data on the differential neutron yield from deuteron-bombarded thick lithium targets. With the modified neutron source three-dimensional distributions of neutron and photon fluxes, displacement and gas production rates and nuclear heating inside the high flux test module (HFTM) were calculated. In order to estimate the uncertainty resulting from the evaluated data, two independent libraries, recently released by INPE and LANL, have been used in the transport calculations. The proposal to use a reflector around ...

  15. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  16. Comparison of size modulation and conventional standard automated perimetry with the 24-2 test protocol in glaucoma patients

    Science.gov (United States)

    Hirasawa, Kazunori; Shoji, Nobuyuki; Kasahara, Masayuki; Matsumura, Kazuhiro; Shimizu, Kimiya

    2016-05-01

    This prospective randomized study compared test results of size modulation standard automated perimetry (SM-SAP) performed with the Octopus 600 and conventional SAP (C-SAP) performed with the Humphrey Field Analyzer (HFA) in glaucoma patients. Eighty-eight eyes of 88 glaucoma patients underwent SM-SAP and C-SAP tests with the Octopus 600 24-2 Dynamic and HFA 24-2 SITA-Standard, respectively. Fovea threshold, mean defect, and square loss variance of SM-SAP were significantly correlated with the corresponding C-SAP indices (P < 0.001). The false-positive rate was slightly lower, and false-negative rate slightly higher, with SM-SAP than C-SAP (P = 0.002). Point-wise threshold values obtained with SM-SAP were moderately to strongly correlated with those obtained with C-SAP (P < 0.001). The correlation coefficients of the central zone were significantly lower than those of the middle to peripheral zone (P = 0.031). The size and depth of the visual field (VF) defect were smaller (P = 0.039) and greater (P = 0.043), respectively, on SM-SAP than on C-SAP. Although small differences were observed in VF sensitivity in the central zone, the defect size and depth and the reliability indices between SM-SAP and C-SAP, global indices of the two testing modalities were well correlated.

  17. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  18. Supporting the Creation and Publication of Reviewed and Tested Teaching Modules through the InTeGrate Project

    Science.gov (United States)

    Bruckner, M. Z.; Birnbaum, S. J.; Bralower, T. J.; Egger, A. E.; Fox, S.; Gosselin, D. C.; Iverson, E. A. R.; Manduca, C. A.; Mcconnell, D. A.; Steer, D. N.; Taber, J. J.

    2016-12-01

    InTeGrate is dedicated to providing robust curricular materials that increase Earth literacy among undergraduate students. As of August 2016, 14 modules that use an interdisciplinary approach to teach about Earth-related sustainability issues across the curriculum have been published, and 19 courses and modules are undergoing final revisions. Materials are designed for undergraduate courses and have been tested in a variety of disciplines including geoscience, engineering, humanities, ethics, and Spanish language courses. The materials were developed, tested, revised, and reviewed using a two-year, highly scaffolded process that involves meeting a series of checkpoints, and is supported by a team of experts who provide guidance and formative feedback throughout the process. A series of webinars also supported teams in the development process. Author teams comprise 3-6 faculty members from at least three different institutions. Authors work collaboratively in a templated webspace designed specifically for creating materials, and representatives from the InTeGrate leadership, assessment, and web teams support each group of authors. This support team provides guidance and feedback on content, pedagogy, and web layout as authors develop materials. Authors attend two face-to-face meetings, one at the beginning of the process and another after materials are piloted in authors' classes. These meetings serve to initially orient authors to the development process, including the rubric that will guide their work, and in making revisions following the piloting phase of the project. Authors report that the meetings also provide professional development experience wherein they learn about pedagogy from each other and team leaders. The bulk of the materials development occurs remotely, with teams meeting regularly via teleconference as they follow the project timeline. All materials undergo review against the Materials Design and Refinement Rubric to ensure they meet project

  19. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-03-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs.Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA.Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself.Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes.Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  20. New roles & responsibilities of hospital biomedical engineering.

    Science.gov (United States)

    Frisch, P H; Stone, B; Booth, P; Lui, W

    2014-01-01

    Over the last decade the changing healthcare environment has required hospitals and specifically Biomedical Engineering to critically evaluate, optimize and adapt their operations. The focus is now on new technologies, changes to the environment of care, support requirements and financial constraints. Memorial Sloan Kettering Cancer Center (MSKCC), an NIH-designated comprehensive cancer center, has been transitioning to an increasing outpatient care environment. This transition is driving an increase in-patient acuity coupled with the need for added urgency of support and response time. New technologies, regulatory requirements and financial constraints have impacted operating budgets and in some cases, resulted in a reduction in staffing. Specific initiatives, such as the Joint Commission's National Patient Safety Goals, requirements for an electronic medical record, meaningful use and ICD10 have caused institutions to reevaluate their operations and processes including requiring Biomedical Engineering to manage new technologies, integrations and changes in the electromagnetic environment, while optimizing operational workflow and resource utilization. This paper addresses the new and expanding responsibilities and approach of Biomedical Engineering organizations, specifically at MSKCC. It is suggested that our experience may be a template for other organizations facing similar problems. Increasing support is necessary for Medical Software - Medical Device Data Systems in the evolving wireless environment, including RTLS and RFID. It will be necessary to evaluate the potential impact on the growing electromagnetic environment, on connectivity resulting in the need for dynamic and interactive testing and the growing demand to establish new and needed operational synergies with Information Technology operations and other operational groups within the institution, such as nursing, facilities management, central supply, and the user departments.

  1. Efficient sequential compression of multi-channel biomedical signals.

    Science.gov (United States)

    Capurro, Ignacio; Lecumberry, Federico; Martin, Alvaro; Ramirez, Ignacio; Rovira, Eugenio; Seroussi, Gadiel

    2016-06-21

    This work proposes lossless and near-lossless compression algorithms for multi-channel biomedical signals. The algorithms are sequential and efficient, which makes them suitable for low-latency and low-power signal transmission applications. We make use of information theory and signal processing tools (such as universal coding, universal prediction, and fast online implementations of multivariate recursive least squares), combined with simple methods to exploit spatial as well as temporal redundancies typically present in biomedical signals. The algorithms are tested with publicly available electroencephalogram and electrocardiogram databases, surpassing in all cases the current state of the art in near-lossless and lossless compression ratios.

  2. MI 4010 Thermoelectric Modules.

    Science.gov (United States)

    The report covers the design justification, physical specification and characterization of the MI 4010 module . The purpose of the contract was to...demonstrate the capability to fabricate pieceparts, process into assemblies, and test thermoelectric modules equivalent to the module used in the Hand...Held Thermal Viewer. The completed modules were also subjected to limited demonstration tests of reliability and useful life.

  3. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  4. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  5. Measurement of Velocity Profiles in a scaled Transparent Test Blanket Module

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Korea has developed two kinds of TBM for ITER; a Helium cooled solid breeder (HCSB) TBM and a Helium cooled molten lithium (HCML) TBM, respectively. Under the HCML TBM project, a 1/6 scaled mock-up of the TBM FW has been fabricated in Korea Atomic Energy Research Institute (KAERI). The size of the scaled mock-up is 260 mm height and 444 mm width. As coolant channels in the mock-up, there are rectangular shape of 10 channels with 10 mm height and 20 mm width. The scaled mock-up was manufactured by hot isostatic pressing bonding method using SS316L. Three components of the scaled mock-up were prepared; a front part of cooling channel 10 mm height with 20 mm width, a front cover plate, and a back plate. The front plate and the cover were bonded by welding, and the welded part and the back plate are attached by HIP process. A pair of manifolds, to distribute the coolant uniformly into 10 channels of the scaled mock-up, were designed and fabricated. The designed manifolds were then welded in inlet and outlet positions of the mock-up. To measure the flow distribution in each channel, the ultrasonic flowmeter (UFM) was used and the values were compared to a conventional flowmeter. Before the flow distribution test of the scaled mock-up, a calibration procedure was conducted with a single channel mock-up using the UFM and the flowmeter. The result showed a good agreement between the UFM and the flowmeter values in the single channel. The same test procedure conducted on the scaled mock-up; the velocity of each channel was measured by the UFM and total mass flow rate was measured with the flowmeter. The estimated velocities distributed from the manifold were simulated by ANSYS-CFX. However, there was a discrepancy between the measured and the simulated values. The current manifold could not provide uniform flow rate to the each channel or there would be a measurement error using the UFM in the specified mock-up. This means that the UFM measurement method should be validated

  6. Statistics a biomedical introduction

    CERN Document Server

    Brown, Byron Wm

    2009-01-01

    CHAPTER 1: Introduction 1 CHAPTER 2: Elementary Rules of Probability 13 CHAPTER 3: Populations, Samples, and the Distribution of the Sample Mean 37 1. Populations and Distributions 38 2. Sampling from Finite Populations 64 3. The Distribution of the Sample Mean 72 CHAPTER 4: Analysis of Matched Pairs Using Sample Means 85 1. A Confidence Interval for the Treatment Effect 86 2. A Hypothesis Test for the Treatment Effect 96 3. Determining the Sample Size 102 CHAPTER 5: Analysis of the Two-Sample Location Problem Using Sample Means 109 1. A Confidence Interval for the Diffe

  7. Current status of technology development for fabrication of Indian Test Blanket Module (TBM) of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T., E-mail: tjk@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Rajendra Kumar, E. [TBM Division, Institute for Plasma Research (IPR), Bhat, Gandhinagar 382428 (India)

    2014-10-15

    Highlights: • Status of technology developments for Indian TBM to be installed in ITER is presented. • Procedure development for EB, laser and laser-hybrid welding of RAFM steel presented. • Filler wires for RAFM steel for TIG, NG-TIG and laser-hybrid welding have been developed. • Feasibility of production of channel plate by HIP technology has been demonstrated. - Abstract: Ever since India decided to install its Lead-Lithium Ceramic Breeder (LLCB) TBM in ITER, various technologies for fabrication of Indian TBM are being pursued by IPR and IGCAR, in collaboration with various research laboratories in India. Welding consumables for joining India specific RAFM steels (IN-RAFMS), procedures for hot isostatic pressing, electron beam welding, laser and laser-hybrid welding have been developed. Considering the complex nature and limited access available for inspection, innovative inspection procedures that involved use of phased array ultrasonic and C-scan imaging are also being pursued. This paper presents the current status of these developments and provides a roadmap for the future activities planned in realizing Indian TBM for testing in ITER.

  8. Estimation of the two-dimensional presampled modulation transfer function of digital radiography devices using one-dimensional test objects.

    Science.gov (United States)

    Wells, Jered R; Dobbins, James T

    2012-10-01

    The modulation transfer function (MTF) of medical imaging devices is commonly reported in the form of orthogonal one-dimensional (1D) measurements made near the vertical and horizontal axes with a slit or edge test device. A more complete description is found by measuring the two-dimensional (2D) MTF. Some 2D test devices have been proposed, but there are some issues associated with their use: (1) they are not generally available; (2) they may require many images; (3) the results may have diminished accuracy; and (4) their implementation may be particularly cumbersome. This current work proposes the application of commonly available 1D test devices for practical and accurate estimation of the 2D presampled MTF of digital imaging systems. Theory was developed and applied to ensure adequate fine sampling of the system line spread function for 1D test devices at orientations other than approximately vertical and horizontal. Methods were also derived and tested for slit nonuniformity correction at arbitrary angle. Techniques were validated with experimental measurements at ten angles using an edge test object and three angles using a slit test device on an indirect-detection flat-panel system [GE Revolution XQ∕i (GE Healthcare, Waukesha, WI)]. The 2D MTF was estimated through a simple surface fit with interpolation based on Delaunay triangulation of the 1D edge-based MTF measurements. Validation by synthesis was also performed with simulated images from a hypothetical direct-detection flat-panel device. The 2D MTF derived from physical measurements yielded an average relative precision error of 0.26% for frequencies below the cutoff (2.5 mm(-1)) and approximate circular symmetry at frequencies below 4 mm(-1). While slit analysis generally agreed with the results of edge analysis, the two showed subtle differences at frequencies above 4 mm(-1). Slit measurement near 45° revealed radial asymmetry in the MTF resulting from the square pixel aperture (0.2 mm × 0

  9. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  10. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  11. [Application of elastin in biomedical materials].

    Science.gov (United States)

    Chang, Decai; Wang, Xiaoli; Hou, Xin; Yao, Kangde

    2008-12-01

    Elastin is a natural biomedical material of great potential. Being endowed with the special crosslinking and hydrophobic structure, elastin retains many good properties such as good elasticity, ductibility, biocompatibility, biodegradability and so on. Nowadays, elastin as a material, which is gradually attracting people' s attention in the biomedical materials field, has been used as tissue engineering scaffolds, derma substitutes and other biomedical materials. In this context, a systematic review on the characteristics of elastin as a biomedical material and on the actuality of its application is presented. Future developments of elastin in the field of biomedical applications are also discussed.

  12. Modulated CMOS camera for fluorescence lifetime microscopy.

    Science.gov (United States)

    Chen, Hongtao; Holst, Gerhard; Gratton, Enrico

    2015-12-01

    Widefield frequency-domain fluorescence lifetime imaging microscopy (FD-FLIM) is a fast and accurate method to measure the fluorescence lifetime of entire images. However, the complexity and high costs involved in construction of such a system limit the extensive use of this technique. PCO AG recently released the first luminescence lifetime imaging camera based on a high frequency modulated CMOS image sensor, QMFLIM2. Here we tested and provide operational procedures to calibrate the camera and to improve the accuracy using corrections necessary for image analysis. With its flexible input/output options, we are able to use a modulated laser diode or a 20 MHz pulsed white supercontinuum laser as the light source. The output of the camera consists of a stack of modulated images that can be analyzed by the SimFCS software using the phasor approach. The nonuniform system response across the image sensor must be calibrated at the pixel level. This pixel calibration is crucial and needed for every camera settings, e.g. modulation frequency and exposure time. A significant dependency of the modulation signal on the intensity was also observed and hence an additional calibration is needed for each pixel depending on the pixel intensity level. These corrections are important not only for the fundamental frequency, but also for the higher harmonics when using the pulsed supercontinuum laser. With these post data acquisition corrections, the PCO CMOS-FLIM camera can be used for various biomedical applications requiring a large frame and high speed acquisition.

  13. Solanum paniculatum L. leaf and fruit extracts: assessment of modulation of cytotoxicity and genotoxicity by micronucleus test in mice.

    Science.gov (United States)

    Vieira, Pabline Marinho; Paula, José Realino; Chen-Chen, Lee

    2010-12-01

    Solanum paniculatum L. is a plant species widespread throughout tropical America, especially in the Brazilian Savanna region. It is used in Brazil for culinary purposes and in folk medicine to treat liver and gastric dysfunctions, as well as hangovers. Previous studies with S. paniculatum ethanolic leaf extract (ELE) or ethanolic fruit extract (EFE) demonstrated that they have no genotoxic activity meant either in the micronucleus test in mice or in the phage induction SOS Inductest in bacterial strains; however, cytotoxicity was demonstrated in both tests. Because of the spread use of this plant as a therapeutic resource and food, the present study aimed at evaluating the modulator effects of S. paniculatum ELE or EFE against mitomycin C (MMC) using the mouse bone marrow micronucleus test. This short-term test was used to detect the acute effects of responsive erythropoiesis after 24- and 48-hour exposure periods. Swiss-Webster mice were orally treated with three different concentrations (100, 200, or 300 mg/kg) of ELE or EFE simultaneously with a single dose of MMC (4 mg/kg i.p.). Antigenotoxicity was evaluated using the frequency of micronucleated polychromatic erythrocytes (MNPCEs), whereas anticytotoxicity was assessed by the polychromatic/normochromatic erythrocyte ratio. Our results demonstrated that neither the ELE nor EFE of S. paniculatum protected cells against the cytotoxic action of MMC. Nevertheless, the present study showed the antimutagenic effect of ELE after a 24-hour treatment (reduction in the frequencies of MNPCEs after a 48-hour treatment with ELE can be due to toxicity) and no antimutagenic action of the EFE treatment against the aneugenic and/or clastogenic activities of MMC.

  14. Temperature-dependency analysis and correction methods of in-situ power-loss estimation for crystalline silicon modules undergoing potential-induced degradation stress testing

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2015-01-01

    We propose a method of in-situ characterization of the photovoltaic module power at standard test conditions using superposition of the dark current-voltage (I-V) curve measured at elevated stress temperature during potential-induced degradation (PID) testing. PID chamber studies were performed...... duration and cost, avoids stress transients while ramping to and from the stress temperature, eliminates flash testing except at the initial and final data points, and enables significantly faster and more detailed acquisition of statistical data for future application of various statistical reliability...... on several crystalline silicon module designs to determine the extent to which the temperature dependency of maximum power is affected by the degradation of the modules. The results using the superposition principle show a mismatch between the power degradation measured at stress temperature and the power...

  15. Performance test of dual modulator polarimeters in two different configurations for magneto-optic measurement of fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Kenji [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)], E-mail: 05m19220@nr.titech.ac.jp; Akiyama, Tsuyoshi [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki-shi, Gifu 509-5292 (Japan); Azuma, Yoshifumi; Tsuji-Iio, Shunji; Tsutsui, Hiroaki; Shimada, Ryuichi [Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2007-10-15

    We proposed and tested a new configuration of a magneto-optic polarimeter with a pair of photoelastic modulators (PEMs). In the new configuration, the number of optical components including PEMs can be much smaller than that in a conventional one with PEMs. This paper describes the results of performance test and comparisons to the conventional configuration. The dependences on the light source (a He-Ne laser, 632.8 nm and a superluminescent diode, SLD, 822 nm) are also discussed. The polarization angle can be measured and angle resolution comparable to those in the conventional one was obtained. Angle resolution of 0.002 deg. and 0.07 deg. with a response time of 10 ms was achieved at an incident polarization angle of about 0 deg. and 21 deg., respectively. The resolution of 0.07 deg. corresponds to 7 G when a 40-mm-long ZnSe sensing rod is used. Linearity of the measured angle against the real one degraded, especially with He-Ne laser, increasing the numbers of the mirrors for beam transmission. On the other hand, the resolution is insensitive to the number of mirrors. Good long-time stability was confirmed with the SLD but a little deterioration was found with the He-Ne laser in the two configurations.

  16. Simplified pilot module development and testing within the ATLAS PanDA Pilot 2.0 Project

    CERN Document Server

    Drizhuk, Daniil; The ATLAS collaboration

    2016-01-01

    The Production and Distributed Analysis (PanDA) system has been developed to meet ATLAS production and analysis requirements for a data-driven workload management system capable of operating at the LHC data processing scale. The PanDA pilot is one of the major components in the PanDA system. It runs on a worker node and takes care of setting up the environment, fetching and pushing data to storage, getting jobs from the PanDA server and executing them. The original PanDA Pilot was designed over 10 years ago and has since then grown organically. Large parts of the original pilot code base are now getting old and are difficult to maintain. Incremental changes and refactoring have been pushed to the limit, and the time is now right for a fresh start, informed by a decade of experience, with the PanDA Pilot 2.0 Project. To create a testing environment for module development and automated unit and functional testing for next generation pilot tasks, a simple pilot version was developed. It resembles the basic workf...

  17. European infrastructures for R&D and test of superconducting radio-frequency cavities and cryo-modules

    CERN Document Server

    Weingarten, W

    2011-01-01

    The volume is copyright CERN and can be distributed under CC-BY license. The need for a European facility to build and test superconducting RF accelerating structures and cryo‐modules (SRF test facility) was extensively discussed during the preparation of EuCARD [1,2]. It comprised a distributed network of equipment across Europe to be assessed and, if needed, completed by hardware. It also addressed the quest for a deeper basic understanding, a better control and optimisation of the manufacture of superconducting RF structures with the aim of a substantial improvement of the accelerating gradient, a reduction of its spread and a cost minimisation. However, consequent to EU budget restrictions, the proposal was not maintained. Instead, a more detailed analysis was requested by a sub‐task inside the EuCARD Network [3] AccNet ‐ RFTech [4]. The main objective of this “SRF sub‐task” consists of intensifying a collaborative effort between European accelerator labs. The aim focused on planning and later...

  18. Recent Developments in the Alignment and Test Plans for the James Webb Space Telescope Integrated Science Instrument Module

    Science.gov (United States)

    Ohl, Raymond

    2008-01-01

    The James Webb Space Telescope (JWST) is a 6.6m diameter, segmented, deployable telescope for cryogenic IR space astronomy (approximately 40K). The JWST Observatory architecture includes the Optical Telescope Element (OTE) and the Integrated Science Instrument Module (ISIM) element that contains four science instruments (SI) including a Guider. The SIs and Guider are mounted to a composite metering structure with outer dimensions of 2.1 x 2.2 x 1.9m. The SI and Guider units are integrated to the ISIM structure and optically tested at NASA/Goddard Space Flight Center as an instrument suite using an OTE SIMulator (OSIM). OSIM is a high-fidelity, cryogenic JWST telescope simulator that features a approximately 1.5m diameter powered mirror. The SIs are aligned to the structure's coordinate system under ambient, clean room conditions using laser tracker and theodolite metrology. Temperature-induced mechanical SI alignment and structural changes are measured using a photogrammetric measurement system at ambient and cryogenic temperatures. OSIM is aligned to the ISIM mechanical coordinate system at the cryogenic operating temperature via internal mechanisms and feedback from alignment sensors in six degrees of freedom. SI performance, including focus, pupil shear and wavefront error, is evaluated at the operating temperature using OSIM. We present an updated plan for the assembly and ambient and cryogenic optical alignment, test and verification of the ISIM element.

  19. A CONDITIONAL RANDOM FIELDS APPROACH TO BIOMEDICAL NAMED ENTITY RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Named entity recognition is a fundamental task in biomedical data mining. In this letter, a named entity recognition system based on CRFs (Conditional Random Fields) for biomedical texts is presented. The system makes extensive use of a diverse set of features, including local features, full text features and external resource features. All features incorporated in this system are described in detail,and the impacts of different feature sets on the performance of the system are evaluated. In order to improve the performance of system, post-processing modules are exploited to deal with the abbreviation phenomena, cascaded named entity and boundary errors identification. Evaluation on this system proved that the feature selection has important impact on the system performance, and the post-processing explored has an important contribution on system performance to achieve better results.

  20. Stimulus-responsive polymeric nanoparticles for biomedical applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Polymeric nanoparticles with unique properties are regarded as the most promising materials for biomedical applications including drug delivery and in vitro/in vivo imaging.Among them,stimulus-responsive polymeric nanoparticles,usually termed as "intelligent" nanoparticles,could undergo structure,shape,and property changes after being exposed to external signals including pH,temperature,magnetic field,and light,which could be used to modulate the macroscopical behavior of the nanoparticles.This paper reviews the recent progress in stimulus-responsive nanoparticles used for drug delivery and in vitro/in vivo imaging,with an emphasis on double/multiple stimulus-responsive systems and their biomedical applications.

  1. Wireless plataforms for the monitoring of biomedical variables

    Energy Technology Data Exchange (ETDEWEB)

    Bianco, Roman; Laprovitta, AgustIn; Misa, Alberto; Toselli, Eduardo; Castagnola, Juan Luis [Laboratory of Communications and Electronics, Catholic University of Cordoba (Argentina)

    2007-11-15

    The present paper aims to analyze and to compare two wireless platforms for the monitoring of biomedical variables. They must obtain the vital signals of the patients, transmit them through a radio frequency bond and centralize them for their process, storage and monitoring in real time. The implementation of this system permit us to obtain two important benefits; The patient will enjoy greater comfort during the internment, and the doctors will be able to know the state of the biomedical variables of each patient, in simultaneous form. In order to achieve the objective of this work, two communication systems for wireless transmissions data were developed and implemented. The CC1000 transceiver was used in the first system and the Bluetooth module was used in the other system.

  2. Biocompatible silicon wafer bonding for biomedical microdevices

    Science.gov (United States)

    Hansford, Derek; Desai, Tejal A.; Tu, Jay K.; Ferrari, Mauro

    1998-03-01

    In this paper,several candidate bonding materials are reviewed for use in biomedical microdevices. These include poly propylmethacrylate (PPMA), poly methylmethacrylate (PMMA), a copolymer of poly methacrylate and two types of silicone gels. They were evaluated based on their cytotoxicity and bond strength, as well as several other qualitative assessments. The cytotoxicity was determined through a cell growth assay protocol in which cells were grown on the various substrate and their growth was compared to cells grown on control substrate. The adhesive strength was assessed by using a pressurized plate test in which the adhesive interface was pressurized to failure. All of the substrate were found to be non-cytotoxic in an inert manner except for the industrial silicone adhesive gel. The adhesive strengths of the various materials are compared to each other and to previously published adhesive strengths. All of the materials were found to have a sufficient bonding strength for biomedical applications, but several other factors were determined that limit the use of each material.

  3. Biomedical Applications of Biodegradable Polyesters

    Directory of Open Access Journals (Sweden)

    Iman Manavitehrani

    2016-01-01

    Full Text Available The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

  4. Carbon nanotubes: engineering biomedical applications.

    Science.gov (United States)

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  5. Performance Comparison of Four SolarWorld Module Technologies at the US DOE Regional Test Center in New Mexico: November 2016 - March 2017.

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lave, Matthew Samuel [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.

  6. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research.

  7. New biomedical applications of radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  8. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  9. Biomedical Applications of Biodegradable Polyesters

    OpenAIRE

    Iman Manavitehrani; Ali Fathi; Hesham Badr; Sean Daly; Ali Negahi Shirazi; Fariba Dehghani

    2016-01-01

    The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have be...

  10. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  11. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  12. The Ontology for Biomedical Investigations.

    Directory of Open Access Journals (Sweden)

    Anita Bandrowski

    Full Text Available The Ontology for Biomedical Investigations (OBI is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI and Phenotype Attribute and Trait Ontology (PATO without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT. The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org providing details on the people, policies, and issues being

  13. ISIFC - dual Biomedical Engineering School.

    Science.gov (United States)

    Butterlin, Nadia; Soto-Romero, Georges; Duffaud, Jacques; Blagosklonov, Oleg

    2007-01-01

    The Superior Institute for Biomedical Engineering (ISIFC), created in 2001, is part of the Franche-Comté University and is accredited by the French Ministry of National Education. Its originality lies in its innovative course of studies, which trains engineers in the scientific and medical fields to get both competencies. The Institute therefore collaborates with the University Hospital Centre of Besançon (CHU), biomedical companies and National Research Centres (CNRS and INSERM). The dual expertise trainees will have acquired at the end of their 3 years course covers medical and biological skills, scientific and Technical expertises. ISIFC engineers answer to manufacturer needs for skilled scientific and technical staff in instrumentation and techniques adapted to diagnosis, therapeutics and medical control, as well as the needs of potential users for biomedical devices, whether they are doctors, hospital staff, patients, laboratories, etc... Both the skills and the knowledge acquired by an ISIFC engineer will enable him/her to fulfil functions of study, research and development in the industrial sector.

  14. Biomedical applications of nanodiamond (Review)

    Science.gov (United States)

    Turcheniuk, K.; Mochalin, Vadym N.

    2017-06-01

    The interest in nanodiamond applications in biology and medicine is on the rise over recent years. This is due to the unique combination of properties that nanodiamond provides. Small size (∼5 nm), low cost, scalable production, negligible toxicity, chemical inertness of diamond core and rich chemistry of nanodiamond surface, as well as bright and robust fluorescence resistant to photobleaching are the distinct parameters that render nanodiamond superior to any other nanomaterial when it comes to biomedical applications. The most exciting recent results have been related to the use of nanodiamonds for drug delivery and diagnostics—two components of a quickly growing area of biomedical research dubbed theranostics. However, nanodiamond offers much more in addition: it can be used to produce biodegradable bone surgery devices, tissue engineering scaffolds, kill drug resistant microbes, help us to fight viruses, and deliver genetic material into cell nucleus. All these exciting opportunities require an in-depth understanding of nanodiamond. This review covers the recent progress as well as general trends in biomedical applications of nanodiamond, and underlines the importance of purification, characterization, and rational modification of this nanomaterial when designing nanodiamond based theranostic platforms.

  15. A low-cost biomedical signal transceiver based on a Bluetooth wireless system.

    Science.gov (United States)

    Fazel-Rezai, Reza; Pauls, Mark; Slawinski, David

    2007-01-01

    Most current wireless biomedical signal transceivers use range-limiting communication. This work presents a low-cost biomedical signal transceiver that uses Bluetooth wireless technology. The design is implemented in a modular form to be adaptable to different types of biomedical signals. The signal front end obtains and processes incoming signals, which are then transmitted via a microcontroller and wireless module. Near real-time receive software in LabVIEW was developed to demonstrate the system capability. The completed transmitter prototype successfully transmits ECG signals, and is able to simultaneously send multiple signals. The sampling rate of the transmitter is fast enough to send up to thirteen ECG signals simultaneously, with an error rate below 0.1% for transmission exceeding 65 meters. A low-cost wireless biomedical transceiver has many applications, such as real-time monitoring of patients with a known condition in non-clinical settings.

  16. 石英MEMS陀螺检测模块的测试方法研究%Study on Testing Methods of Detection Module of the Quartz MEMS Gyroscope

    Institute of Scientific and Technical Information of China (English)

    朱振忠; 王清亮; 李世国; 张锐; 苏永川; 蒋昭兴

    2012-01-01

    提出了一种石英微机械(MEMS)陀螺检测模块的测试方法和测试系统方案.该方法仅将检测模块的输入/输出端口接入测试系统,无需其他位置的信号注入和引出,即可实现增益、相位、频带、阻尼等电路特性的测试和标定,适用于生产过程对检测模块的快速测试及研制过程对检测模块的性能分析.%A testing method and a test system scheme for the detection module of quartz MEMS gyroscope is proposed in this paper. The test and calibration of the circuit parameters such as gain,phase, bandwidth and damping ratio can be carried out only by connecting the input/output port of the detection module with the test system and no need of input and output of other position signals. The methods is suitable for the fast testing of detection module of quartz MEMS gyroscope during the production process and the performance analysis of the detection module during the development of quartz MEMS gyroscope.

  17. Environmental aging in polycrystalline-Si photovoltaic modules: comparison of chamber-based accelerated degradation studies with field-test data

    Science.gov (United States)

    Lai, T.; Biggie, R.; Brooks, A.; Potter, B. G.; Simmons-Potter, K.

    2015-09-01

    Lifecycle degradation testing of photovoltaic (PV) modules in accelerated-degradation chambers can enable the prediction both of PV performance lifetimes and of return-on-investment for installations of PV systems. With degradation results strongly dependent on chamber test parameters, the validity of such studies relative to fielded, installed PV systems must be determined. In the present work, accelerated aging of a 250 W polycrystalline silicon module is compared to real-time performance degradation in a similar polycrystalline-silicon, fielded, PV technology that has been operating since October 2013. Investigation of environmental aging effects are performed in a full-scale, industrial-standard environmental chamber equipped with single-sun irradiance capability providing illumination uniformity of 98% over a 2 x 1.6 m area. Time-dependent, photovoltaic performance (J-V) is evaluated over a recurring, compressed night-day cycle providing representative local daily solar insolation for the southwestern United States, followed by dark (night) cycling. This cycle is synchronized with thermal and humidity environmental variations that are designed to mimic, as closely as possible, test-yard conditions specific to a 12 month weather profile for a fielded system in Tucson, AZ. Results confirm the impact of environmental conditions on the module long-term performance. While the effects of temperature de-rating can be clearly seen in the data, removal of these effects enables the clear interpretation of module efficiency degradation with time and environmental exposure. With the temperature-dependent effect removed, the normalized efficiency is computed and compared to performance results from another panel of similar technology that has previously experienced identical climate changes in the test yard. Analysis of relative PV module efficiency degradation for the chamber-tested system shows good comparison to the field-tested system with ~2.5% degradation following

  18. Personality Module. Test Booklet. Test Items for Booklets 1, 2, 3=Modulo de personalidad. Libro de prueba. Itemes de prueba para los libros 1, 2, 3.

    Science.gov (United States)

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  19. Economic Organization Module. Test Booklet. Test Items for Booklets 1, 2, 3=Libro de prueba. Modulo de organizacion economica. Itemes de prueba para los libros 1, 2, 3.

    Science.gov (United States)

    California State Univ., Los Angeles. National Dissemination and Assessment Center.

    The booklet is part of a grade 10-12 social studies series produced for bilingual education. The series consists of six major thematic modules, with four to five booklets in each. The interdisciplinary modules are based on major ideas and designed to help students understand some major human problems and make sound, responsive decisions to improve…

  20. [327] Biomedical Research Deferred in the Aftermath of the Apollo Fire: Impact to Progress in Human Spaceflight

    Science.gov (United States)

    Charles, John B.

    2017-01-01

    Before Apollo fire, early Apollo missions were expected to continue pattern established in Gemini program of accommodating significant scientific and biological experimentation, including human biomedical studies, during flights. Apollo1 and Apollo2, both 2-week engineering test flights, were to carry almost as many biomedical studies as Gemini 7, a 2-week medical test mission.

  1. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  2. The center for causal discovery of biomedical knowledge from big data.

    Science.gov (United States)

    Cooper, Gregory F; Bahar, Ivet; Becich, Michael J; Benos, Panayiotis V; Berg, Jeremy; Espino, Jeremy U; Glymour, Clark; Jacobson, Rebecca Crowley; Kienholz, Michelle; Lee, Adrian V; Lu, Xinghua; Scheines, Richard

    2015-11-01

    The Big Data to Knowledge (BD2K) Center for Causal Discovery is developing and disseminating an integrated set of open source tools that support causal modeling and discovery of biomedical knowledge from large and complex biomedical datasets. The Center integrates teams of biomedical and data scientists focused on the refinement of existing and the development of new constraint-based and Bayesian algorithms based on causal Bayesian networks, the optimization of software for efficient operation in a supercomputing environment, and the testing of algorithms and software developed using real data from 3 representative driving biomedical projects: cancer driver mutations, lung disease, and the functional connectome of the human brain. Associated training activities provide both biomedical and data scientists with the knowledge and skills needed to apply and extend these tools. Collaborative activities with the BD2K Consortium further advance causal discovery tools and integrate tools and resources developed by other centers.

  3. Modelling of 3D fields due to ferritic inserts and test blanket modules in toroidal geometry at ITER

    Science.gov (United States)

    Liu, Yueqiang; Äkäslompolo, Simppa; Cavinato, Mario; Koechl, Florian; Kurki-Suonio, Taina; Li, Li; Parail, Vassili; Saibene, Gabriella; Särkimäki, Konsta; Sipilä, Seppo; Varje, Jari

    2016-06-01

    Computations in toroidal geometry are systematically performed for the plasma response to 3D magnetic perturbations produced by ferritic inserts (FIs) and test blanket modules (TBMs) for four ITER plasma scenarios: the 15 MA baseline, the 12.5 MA hybrid, the 9 MA steady state, and the 7.5 MA half-field helium plasma. Due to the broad toroidal spectrum of the FI and TBM fields, the plasma response for all the n  =  1-6 field components are computed and compared. The plasma response is found to be weak for the high-n (n  >  4) components. The response is not globally sensitive to the toroidal plasma flow speed, as long as the latter is not reduced by an order of magnitude. This is essentially due to the strong screening effect occurring at a finite flow, as predicted for ITER plasmas. The ITER error field correction coils (EFCC) are used to compensate the n  =  1 field errors produced by FIs and TBMs for the baseline scenario for the purpose of avoiding mode locking. It is found that the middle row of the EFCC, with a suitable toroidal phase for the coil current, can provide the best correction of these field errors, according to various optimisation criteria. On the other hand, even without correction, it is predicted that these n  =  1 field errors will not cause substantial flow damping for the 15 MA baseline scenario.

  4. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection

    Science.gov (United States)

    Cristofani, Edison; Friederich, Fabian; Wohnsiedler, Sabine; Matheis, Carsten; Jonuscheit, Joachim; Vandewal, Marijke; Beigang, René

    2014-03-01

    The sub-terahertz (THz) frequency band has proved to be a noteworthy option for nondestructive testing (NDT) of nonmetal aeronautics materials. Composite structures or laminates can be inspected for foreign objects (water or debris), delaminations, debonds, etc., using sub-THz sensors during the manufacturing process or maintenance. Given the harmless radiation to the human body of this frequency band, no special security measures are needed for operation. Moreover, the frequency-modulated continuous-wave sensor used in this study offers a very light, compact, inexpensive, and high-performing solution. An automated two-dimensional scanner carrying three sensors partially covering the 70- to 320-GHz band is operated, using two complementary measurement approaches: conventional focused imaging, where focusing lenses are used; and synthetic aperture (SA) or unfocused wide-beam imaging, for which lenses are no longer needed. Conventional focused imagery offers finer spatial resolutions but imagery is depth-limited due to the beam waist effect, whereas SA measurements allow imaging of thicker samples with depth-independent but coarser spatial resolutions. The present work is a compendium of a much larger study and describes the key technical aspects of the proposed imaging techniques and reports on results obtained from human-made samples (A-sandwich, C-sandwich, solid laminates) which include diverse defects and damages typically encountered in aeronautics multilayered structures. We conclude with a grading of the achieved results in comparison with measurements performed by other NDT techniques on the same samples.

  5. Is the conditioned pain modulation paradigm reliable? A test-retest assessment using the nociceptive withdrawal reflex.

    Directory of Open Access Journals (Sweden)

    José A Biurrun Manresa

    Full Text Available The aim of this study was to determine the reliability of the conditioned pain modulation (CPM paradigm assessed by an objective electrophysiological method, the nociceptive withdrawal reflex (NWR, and psychophysical measures, using hypothetical sample sizes for future studies as analytical goals. Thirty-four healthy volunteers participated in two identical experimental sessions, separated by 1 to 3 weeks. In each session, the cold pressor test (CPT was used to induce CPM, and the NWR thresholds, electrical pain detection thresholds and pain intensity ratings after suprathreshold electrical stimulation were assessed before and during CPT. CPM was consistently detected by all methods, and the electrophysiological measures did not introduce additional variation to the assessment. In particular, 99% of the trials resulted in higher NWR thresholds during CPT, with an average increase of 3.4 mA (p<0.001. Similarly, 96% of the trials resulted in higher electrical pain detection thresholds during CPT, with an average increase of 2.2 mA (p<0.001. Pain intensity ratings after suprathreshold electrical stimulation were reduced during CPT in 84% of the trials, displaying an average decrease of 1.5 points in a numeric rating scale (p<0.001. Under these experimental conditions, CPM reliability was acceptable for all assessment methods in terms of sample sizes for potential experiments. The presented results are encouraging with regards to the use of the CPM as an assessment tool in experimental and clinical pain. Trial registration: Clinical Trials.gov NCT01636440.

  6. Development and evaluation of test stations for the quality assurance of the silicon micro-strip detector modules for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poettgens, M.

    2007-11-22

    CMS (Compact Muon Solenoid) is one of four large-scale detectors which will be operated at the LHC (Large Hadron Collider) at the European Laboratory for Particle Physics (CERN). For the search for new physics the reconstruction of the collision products and their properties is essential. In the innermost part of the CMS detector the traces of ionizing particles are measured utilizing a silicon tracker. A large fraction of this detector is equipped with silicon micro-strip modules which provide a precise space resolution in 1-dimension. A module consists of a sensor for detection of particles, the corresponding read-out electronics (hybrid) and a mechanical support structure. Since the 15,148 modules, which will be installed in the silicon micro-strip detector, have a total sensitive surface area of about 198 m{sup 2}, the inner tracker of CMS is the largest silicon tracking detector, which has ever been built. While the sensors and hybrids are produced in industry, the construction of the modules and the control of the quality is done by the members of the 21 participating institutes. Since the access to the silicon micro-strip tracker will be very limited after the installation in the CMS detector the installed modules must be of high quality. For this reason the modules are thoroughly tested and the test results are uploaded to a central database. By the development of a read-out system and the corresponding software the III. Physikalisches Institut made an important contribution for the electrical and functional quality control of hybrids and modules. The read-out system provides all features for the operation and test of hybrids and modules and stands out due to high reliability and simple handling. Because a very user-friedly and highly automated software it became the official test tool and was integrated in various test stands. The test stands, in which the read-out system is integrated in, are described and the tests which are implemented in the

  7. Collaboration for cooperative work experience programs in biomedical engineering education.

    Science.gov (United States)

    Krishnan, Shankar

    2010-01-01

    Incorporating cooperative education modules as a segment of the undergraduate educational program is aimed to assist students in gaining real-life experience in the field of their choice. The cooperative work modules facilitate the students in exploring different realistic aspects of work processes in the field. The track records for cooperative learning modules are very positive. However, it is indeed a challenge for the faculty developing Biomedical Engineering (BME) curriculum to include cooperative work experience or internship requirements coupled with a heavy course load through the entire program. The objective of the present work is to develop a scheme for collaborative co-op work experience for the undergraduate training in the fast-growing BME programs. A few co-op/internship models are developed for the students pursuing undergraduate BME degree. The salient features of one co-op model are described. The results obtained support the proposed scheme. In conclusion, the cooperative work experience will be an invaluable segment in biomedical engineering education and an appropriate model has to be selected to blend with the overall training program.

  8. Evaluation of alpha7 nicotinic acetylcholine receptor agonists and positive allosteric modulators using the parallel oocyte electrophysiology test station.

    Science.gov (United States)

    Malysz, John; Grønlien, Jens H; Timmermann, Daniel B; Håkerud, Monika; Thorin-Hagene, Kirsten; Ween, Hilde; Trumbull, Jonathan D; Xiong, Yongli; Briggs, Clark A; Ahring, Philip K; Dyhring, Tino; Gopalakrishnan, Murali

    2009-08-01

    Neuronal acetylcholine receptors (nAChRs) of the alpha7 subtype are ligand-gated ion channels that are widely distributed throughout the central nervous system and considered as attractive targets for the treatment of various neuropsychiatric and neurodegenerative diseases. Both agonists and positive allosteric modulators (PAMs) are being developed as means to enhance the function of alpha7 nAChRs. The in vitro characterization of alpha7 ligands, including agonists and PAMs, relies on multiple technologies, but only electrophysiological measurements assess the channel activity directly. Traditional electrophysiological approaches utilizing two-electrode voltage clamp or patch clamp in isolated cells have very low throughput to significantly impact drug discovery. Abbott (Abbott Park, IL) has developed a two-electrode voltage clamp-based system, the Parallel Oocyte Electrophysiology Test Station (POETs()), that allows for the investigation of ligand-gated ion channels such as alpha7 nAChRs in a higher-throughput manner. We describe the utility of this technology in the discovery of selective alpha7 agonists and PAMs. With alpha7 agonists, POETs experiments involved both single- and multiple-point concentration-response testing revealing diverse activation profiles (zero efficacy desensitizing, partial, and full agonists). In the characterization of alpha7 PAMs, POETs testing has served as a reliable primary or secondary screen identifying compounds that fall into distinct functional types depending on the manner in which current potentiation occurred. Type I PAMs (eg, genistein, NS1738, and 5-hydroxyindole) increase predominantly the peak amplitude response, type II PAMs affect the peak current and current decay (eg, PNU-120,596 and 4-(naphthalen-1-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-8-sulfonamide), and anothertype slowing the current decay kinetics in the absence of increases in the peak current. In summary, POETs technology allows for significant

  9. Multiple energy synchrotron biomedical imaging system

    Science.gov (United States)

    Bassey, B.; Martinson, M.; Samadi, N.; Belev, G.; Karanfil, C.; Qi, P.; Chapman, D.

    2016-12-01

    A multiple energy imaging system that can extract multiple endogenous or induced contrast materials as well as water and bone images would be ideal for imaging of biological subjects. The continuous spectrum available from synchrotron light facilities provides a nearly perfect source for multiple energy x-ray imaging. A novel multiple energy x-ray imaging system, which prepares a horizontally focused polychromatic x-ray beam, has been developed at the BioMedical Imaging and Therapy bend magnet beamline at the Canadian Light Source. The imaging system is made up of a cylindrically bent Laue single silicon (5,1,1) crystal monochromator, scanning and positioning stages for the subjects, flat panel (area) detector, and a data acquisition and control system. Depending on the crystal’s bent radius, reflection type, and the horizontal beam width of the filtered synchrotron radiation (20-50 keV) used, the size and spectral energy range of the focused beam prepared varied. For example, with a bent radius of 95 cm, a (1,1,1) type reflection and a 50 mm wide beam, a 0.5 mm wide focused beam of spectral energy range 27 keV-43 keV was obtained. This spectral energy range covers the K-edges of iodine (33.17 keV), xenon (34.56 keV), cesium (35.99 keV), and barium (37.44 keV) some of these elements are used as biomedical and clinical contrast agents. Using the developed imaging system, a test subject composed of iodine, xenon, cesium, and barium along with water and bone were imaged and their projected concentrations successfully extracted. The estimated dose rate to test subjects imaged at a ring current of 200 mA is 8.7 mGy s-1, corresponding to a cumulative dose of 1.3 Gy and a dose of 26.1 mGy per image. Potential biomedical applications of the imaging system will include projection imaging that requires any of the extracted elements as a contrast agent and multi-contrast K-edge imaging.

  10. International field testing of the psychometric properties of an EORTC quality of life module for oral health: the EORTC QLQ-OH15.

    Science.gov (United States)

    Hjermstad, Marianne J; Bergenmar, Mia; Bjordal, Kristin; Fisher, Sheila E; Hofmeister, Dirk; Montel, Sébastien; Nicolatou-Galitis, Ourania; Pinto, Monica; Raber-Durlacher, Judith; Singer, Susanne; Tomaszewska, Iwona M; Tomaszewski, Krzysztof A; Verdonck-de Leeuw, Irma; Yarom, Noam; Winstanley, Julie B; Herlofson, Bente B

    2016-09-01

    This international EORTC validation study (phase IV) is aimed at testing the psychometric properties of a quality of life (QoL) module related to oral health problems in cancer patients. The phase III module comprised 17 items with four hypothesized multi-item scales and three single items. In phase IV, patients with mixed cancers, in different treatment phases from 10 countries completed the EORTC QLQ-C30, the QLQ-OH module, and a debriefing interview. The hypothesized structure was tested using combinations of classical test theory and item response theory, following EORTC guidelines. Test-retest assessments and responsiveness to change analysis (RCA) were performed after 2 weeks. Five hundred seventy-two patients (median age 60.3, 54 % females) were analyzed. Completion took EORTC module QLQ-OH15 is a short, well-accepted assessment tool focusing on oral problems and QoL to improve clinical management. ClinicalTrials.gov Identifier: NCT01724333.

  11. Viability of Construct Validity of the Speaking Modules of International Language Examinations (IELTS vs. TOEFL iBT): Evidence from Iranian Test-Takers

    Science.gov (United States)

    Zahedi, Keivan; Shamsaee, Saeedeh

    2012-01-01

    The aim of the present research is to examine the viability of the construct validity of the speaking modules of two internationally recognized language proficiency examinations, namely IELTS and TOEFL iBT. High-stake standardized tests play a crucial and decisive role in determining the future academic life of many people. Overall obtained scores…

  12. Viability of Construct Validity of the Speaking Modules of International Language Examinations (IELTS vs. TOEFL iBT): Evidence from Iranian Test-Takers

    Science.gov (United States)

    Zahedi, Keivan; Shamsaee, Saeedeh

    2012-01-01

    The aim of the present research is to examine the viability of the construct validity of the speaking modules of two internationally recognized language proficiency examinations, namely IELTS and TOEFL iBT. High-stake standardized tests play a crucial and decisive role in determining the future academic life of many people. Overall obtained scores…

  13. AMS at the ANU including biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fifield, L.K.; Allan, G.L.; Cresswell, R.G.; Ophel, T.R. [Australian National Univ., Canberra, ACT (Australia); King, S.J.; Day, J.P. [Manchester Univ. (United Kingdom). Dept. of Chemistry

    1993-12-31

    An extensive accelerator mass spectrometry program has been conducted on the 14UD accelerator at the Australian National University since 1986. In the two years since the previous conference, the research program has expanded significantly to include biomedical applications of {sup 26}Al and studies of landform evolution using isotopes produced in situ in surface rocks by cosmic ray bombardment. The system is now used for the measurement of {sup 10}Be, {sup 14}C, {sup 26}Al, {sup 36}Cl, {sup 59}Ni and {sup 129}I, and research is being undertaken in hydrology, environmental geochemistry, archaeology and biomedicine. On the technical side, a new test system has permitted the successful off-line development of a high-intensity ion source. A new injection line to the 14UD has been established and the new source is now in position and providing beams to the accelerator. 4 refs.

  14. Securing a biomedical communications future: thinking strategically.

    Science.gov (United States)

    Stein, D

    1985-11-01

    Ensuring continued growth and viability of the biomedical communication function has become a critical task of the biomedical communications director. Thinking strategically is a cognitive process which assists a director in visualizing programs and tactics which meet clients needs, creates competitive advantages for the biomedical communications unit and builds on existing unit strengths. Thinking strategically can be divided into five phases: strategic vision, strategy development, strategic plan implementation, strategic plan dissemination, and strategic plan evaluation. Each sequence leads the biomedical communications director through a process designed to increase the effectiveness of the biomedical unit and to meet the challenges posed by an environment characterized by diminished financial, material, and human resources as well as respond to threats and opportunities posed by increased competition in the biomedical communications product and marketplace.

  15. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  16. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Calculation and Test of 150V Direct Switch Modulator Model%150V直流开关调制器模型的计算和测试

    Institute of Scientific and Technical Information of China (English)

    陶小平; RüdigerKaiser

    2004-01-01

    In order to get some experience to build a new modulator for DESY TESLA Test Facility (TTF), a 150V direct switch long pulse modulator has been designed. Compared to the modulator solution currently used at TTF, the new proposed one has some advantages. Part of the simulation calculation of the 150V direct switch modulator is given in this paper. At the same time, a 150V modulator model was constructed and measured. The test results show that the output voltage flat-top ripple is only ±0.53%.%为了德国电子同步辐射加速器(DESY)的TESLA测试设备(TTF)研制新型调制器积累一些必要的经验,设计了一种150V的直流开关长脉冲调制器模型. 与TESLA测试设备上正在使用的调制器相比,这种新的方案有许多优势. 本文给出了这种调制器电路的部分模拟计算结果;同时,完成了调制器模型的建立和实验测试,测试结果显示输出电压波形的平顶抖动仅为±0.53%.

  18. The integral pulse frequency modulation model with time-varying threshold: application to heart rate variability analysis during exercise stress testing.

    Science.gov (United States)

    Bailón, Raquel; Laouini, Ghailen; Grao, César; Orini, Michele; Laguna, Pablo; Meste, Olivier

    2011-03-01

    In this paper, an approach for heart rate variability analysis during exercise stress testing is proposed based on the integral pulse frequency modulation (IPFM) model, where a time-varying threshold is included to account for the nonstationary mean heart rate. The proposed technique allows the estimation of the autonomic nervous system (ANS) modulating signal using the methods derived for the IPFM model with constant threshold plus a correction, which is shown to be needed to take into account the time-varying mean heart rate. On simulations, this technique allows the estimation of the ANS modulation on the heart from the beat occurrence time series with lower errors than the IPFM model with constant threshold (1.1% ± 1.3% versus 15.0% ± 14.9%). On an exercise stress testing database, the ANS modulation estimated by the proposed technique is closer to physiology than that obtained from the IPFM model with constant threshold, which tends to overestimate the ANS modulation during the recovery and underestimate it during the initial rest.

  19. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  20. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  1. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  2. Semiconductor microlasers with intracavity microfluidics for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Gourley, P.L.; McDonald, A.E.

    1997-03-01

    Microfabricated electro-optical-mechanical systems are expected to play an important role in future biomedical, biochemical and environmental technologies. Semiconductor photonic materials and devices are attractive components of such systems because of their ability to generate, transmit, modulate, and detect light. In this paper the authors report investigations of light-emitting semiconductor/glass microcavities filled with simple fluids. They examine surface tension for transporting liquids into the intracavity space and study the influence of the liquid on the spectral emission of the microcavity.

  3. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  4. Review of Biomedical Image Processing

    Directory of Open Access Journals (Sweden)

    Ciaccio Edward J

    2011-11-01

    Full Text Available Abstract This article is a review of the book: 'Biomedical Image Processing', by Thomas M. Deserno, which is published by Springer-Verlag. Salient information that will be useful to decide whether the book is relevant to topics of interest to the reader, and whether it might be suitable as a course textbook, are presented in the review. This includes information about the book details, a summary, the suitability of the text in course and research work, the framework of the book, its specific content, and conclusions.

  5. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  6. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  7. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  8. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  9. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  10. Test beam results of the first CMS double-sided strip module prototypes using the CBC2 read-out chip

    Science.gov (United States)

    Harb, Ali; Mussgiller, Andreas; Hauk, Johannes

    2017-02-01

    The CMS Binary Chip (CBC) is a prototype version of the front-end read-out ASIC to be used in the silicon strip modules of the CMS outer tracking detector during the high luminosity phase of the LHC. The CBC is produced in 130 nm CMOS technology and bump-bonded to the hybrid of a double layer silicon strip module, the so-called 2S-pT module. It has 254 input channels and is designed to provide on-board trigger information to the first level trigger system of CMS, with the capability of cluster-width discrimination and high-pT track identification. In November 2013 the first 2S-pT module prototypes equipped with the CBC chips were put to test at the DESY-II test beam facility. Data were collected exploiting a beam of positrons with an energy ranging from 2 to 4 GeV. In this paper the test setup and the results are presented.

  11. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  12. Biomedical information retrieval across languages.

    Science.gov (United States)

    Daumke, Philipp; Markü, Kornél; Poprat, Michael; Schulz, Stefan; Klar, Rüdiger

    2007-06-01

    This work presents a new dictionary-based approach to biomedical cross-language information retrieval (CLIR) that addresses many of the general and domain-specific challenges in current CLIR research. Our method is based on a multilingual lexicon that was generated partly manually and partly automatically, and currently covers six European languages. It contains morphologically meaningful word fragments, termed subwords. Using subwords instead of entire words significantly reduces the number of lexical entries necessary to sufficiently cover a specific language and domain. Mediation between queries and documents is based on these subwords as well as on lists of word-n-grams that are generated from large monolingual corpora and constitute possible translation units. The translations are then sent to a standard Internet search engine. This process makes our approach an effective tool for searching the biomedical content of the World Wide Web in different languages. We evaluate this approach using the OHSUMED corpus, a large medical document collection, within a cross-language retrieval setting.

  13. Reviewing manuscripts for biomedical journals.

    Science.gov (United States)

    Garmel, Gus M

    2010-01-01

    Writing for publication is a complex task. For many professionals, producing a well-executed manuscript conveying one's research, ideas, or educational wisdom is challenging. Authors have varying emotions related to the process of writing for scientific publication. Although not studied, a relationship between an author's enjoyment of the writing process and the product's outcome is highly likely. As with any skill, practice generally results in improvements. Literature focused on preparing manuscripts for publication and the art of reviewing submissions exists. Most journals guard their reviewers' anonymity with respect to the manuscript review process. This is meant to protect them from direct or indirect author demands, which may occur during the review process or in the future. It is generally accepted that author identities are masked in the peer-review process. However, the concept of anonymity for reviewers has been debated recently; many editors consider it problematic that reviewers are not held accountable to the public for their decisions. The review process is often arduous and underappreciated, one reason why biomedical journals acknowledge editors and frequently recognize reviewers who donate their time and expertise in the name of science. This article describes essential elements of a submitted manuscript, with the hopes of improving scientific writing. It also discusses the review process within the biomedical literature, the importance of reviewers to the scientific process, responsibilities of reviewers, and qualities of a good review and reviewer. In addition, it includes useful insights to individuals who read and interpret the medical literature.

  14. ENLIGHT and LEIR biomedical facility.

    Science.gov (United States)

    Dosanjh, M; Cirilli, M; Navin, S

    2014-07-01

    Particle therapy (including protons and carbon ions) allows a highly conformal treatment of deep-seated tumours with good accuracy and minimal dose to surrounding tissues, compared to conventional radiotherapy using X-rays. Following impressive results from early phase trials, over the last decades particle therapy in Europe has made considerable progress in terms of new institutes dedicated to charged particle therapy in several countries. Particle therapy is a multidisciplinary subject that involves physicists, biologists, radio-oncologists, engineers and computer scientists. The European Network for Light Ion Hadron Therapy (ENLIGHT) was created in response to the growing needs of the European community to coordinate such efforts. A number of treatment centres are already operational and treating patients across Europe, including two dual ion (protons and carbon ions) centres in Heidelberg (the pioneer in Europe) and Pavia. However, much more research needs to be carried out and beamtime is limited. Hence there is a strong interest from the biomedical research community to have a facility with greater access to relevant beamtime. Such a facility would facilitate research in radiobiology and the development of more accurate techniques of dosimetry and imaging. The Low Energy Ion Ring (LEIR) accelerator at CERN presents such an opportunity, and relies partly on CERN's existing infrastructure. The ENLIGHT network, European Commission projects under the ENLIGHT umbrella and the future biomedical facility are discussed.

  15. Superhydrophobic materials for biomedical applications.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Certainty rating in pre-and post-tests of study modules in an online clinical pharmacy course - A pilot study to evaluate teaching and learning.

    Science.gov (United States)

    Luetsch, Karen; Burrows, Judith

    2016-10-14

    Graduate and post-graduate education for health professionals is increasingly delivered in an e-learning environment, where automated, continuous formative testing with integrated feedback can guide students' self-assessment and learning. Asking students to rate the certainty they assign to the correctness of their answers to test questions can potentially provide deeper insights into the success of teaching, with test results informing course designers whether learning outcomes have been achieved. It may also have implications for decision making in clinical practice. A study of pre-and post-tests for five study modules was designed to evaluate the teaching and learning within a pharmacotherapeutic course in an online postgraduate clinical pharmacy program. Certainty based marking of multiple choice questions (MCQ) was adapted for formative pre- and post-study module testing by asking students to rate their certainty of correctness of MCQ answers. Paired t-tests and a coding scheme were used to analyse changes in answers and certainty between pre-and post-tests. A survey evaluated students' experience with the novel formative testing design. Twenty-nine pharmacists enrolled in the postgraduate program participated in the study. Overall 1315 matched pairs of MCQ answers and certainty ratings between pre- and post-module tests were available for evaluation. Most students identified correct answers in post-tests and increased their certainty compared to pre-tests. Evaluation of certainty ratings in addition to correctness of answers identified MCQs and topic areas for revision to course designers. A survey of students showed that assigning certainty ratings to their answers assisted in structuring and focusing their learning throughout online study modules, facilitating identification of areas of uncertainty and gaps in their clinical knowledge. Adding certainty ratings to MCQ answers seems to engage students with formative testing and feedback and focus their

  17. Using Google blogs and discussions to recommend biomedical resources: a case study.

    Science.gov (United States)

    Reed, Robyn B; Chattopadhyay, Ansuman; Iwema, Carrie L

    2013-01-01

    This case study investigated whether data gathered from discussions within the social media provide a reliable basis for a biomedical resources recommendation system. Using a search query to mine text from Google Blogs and Discussions, a ranking of biomedical resources was determined based on those most frequently mentioned. To establish quality, these results were compared with rankings by subject experts. An overall agreement between the frequency of social media discussions and subject expert recommendations was observed when identifying key bioinformatics and consumer health resources. Testing the method in more than one biomedical area implies this procedure could be employed across different subjects.

  18. Comparing image compression methods in biomedical applications

    Directory of Open Access Journals (Sweden)

    Libor Hargas

    2004-01-01

    Full Text Available Compression methods suitable for image processing are described in this article in biomedical applications. The compression is often realized by reduction of irrelevance or redundancy. There are described lossless and lossy compression methods which can be use for compress of images in biomedical applications and comparison of these methods based on fidelity criteria.

  19. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  20. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.