WorldWideScience

Sample records for biomedical shape-memory polymer

  1. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  2. Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.

    Science.gov (United States)

    Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay

    2018-05-17

    A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.

  3. Shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Bearinger, Jane P.

    2017-08-29

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  4. Shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  5. Shape memory polymer medical device

    Science.gov (United States)

    Maitland, Duncan [Pleasant Hill, CA; Benett, William J [Livermore, CA; Bearinger, Jane P [Livermore, CA; Wilson, Thomas S [San Leandro, CA; Small, IV, Ward; Schumann, Daniel L [Concord, CA; Jensen, Wayne A [Livermore, CA; Ortega, Jason M [Pacifica, CA; Marion, III, John E.; Loge, Jeffrey M [Stockton, CA

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  6. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen; Chopra, Madhur; Archer, Lynden A.

    2011-01-01

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers

  7. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  8. Post polymerization cure shape memory polymers

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Hearon, II, Michael Keith; Bearinger, Jane P.

    2017-01-10

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  9. Post polymerization cure shape memory polymers

    Science.gov (United States)

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  10. Nanoparticle Netpoints for Shape-Memory Polymers

    KAUST Repository

    Agarwal, Praveen

    2011-08-02

    Forget-me-not: Nanoparticle fillers in shape-memory polymers usually improve mechanical properties at the expense of shape-memory performance. A new approach overcomes these drawbacks by cross-linking the functionalized poly(ethylene glycol) tethers on silica nanoparticles (see picture). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Resistively heated shape memory polymer device

    Energy Technology Data Exchange (ETDEWEB)

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2017-09-05

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  12. Resistively heated shape memory polymer device

    Energy Technology Data Exchange (ETDEWEB)

    Marion, III, John E.; Bearinger, Jane P.; Wilson, Thomas S.; Maitland, Duncan J.

    2016-10-25

    A resistively heated shape memory polymer device is made by providing a rod, sheet or substrate that includes a resistive medium. The rod, sheet or substrate is coated with a first shape memory polymer providing a coated intermediate unit. The coated intermediate unit is in turn coated with a conductive material providing a second intermediate unit. The second coated intermediate unit is in turn coated with an outer shape memory polymer. The rod, sheet or substrate is exposed and an electrical lead is attached to the rod, sheet or substrate. The conductive material is exposed and an electrical lead is attached to the conductive material.

  13. Biodegradable Shape Memory Polymers in Medicine.

    Science.gov (United States)

    Peterson, Gregory I; Dobrynin, Andrey V; Becker, Matthew L

    2017-11-01

    Shape memory materials have emerged as an important class of materials in medicine due to their ability to change shape in response to a specific stimulus, enabling the simplification of medical procedures, use of minimally invasive techniques, and access to new treatment modalities. Shape memory polymers, in particular, are well suited for such applications given their excellent shape memory performance, tunable materials properties, minimal toxicity, and potential for biodegradation and resorption. This review provides an overview of biodegradable shape memory polymers that have been used in medical applications. The majority of biodegradable shape memory polymers are based on thermally responsive polyesters or polymers that contain hydrolyzable ester linkages. These materials have been targeted for use in applications pertaining to embolization, drug delivery, stents, tissue engineering, and wound closure. The development of biodegradable shape memory polymers with unique properties or responsiveness to novel stimuli has the potential to facilitate the optimization and development of new medical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Guide wire extension for shape memory polymer occlusion removal devices

    Science.gov (United States)

    Maitland, Duncan J [Pleasant Hill, CA; Small, IV, Ward; Hartman, Jonathan [Sacramento, CA

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  15. Strategic design and fabrication of acrylic shape memory polymers

    Science.gov (United States)

    Park, Ju Hyuk; Kim, Hansu; Ryoun Youn, Jae; Song, Young Seok

    2017-08-01

    Modulation of thermomechanics nature is a critical issue for an optimized use of shape memory polymers (SMPs). In this study, a strategic approach was proposed to control the transition temperature of SMPs. Free radical vinyl polymerization was employed for tailoring and preparing acrylic SMPs. Transition temperatures of the shape memory tri-copolymers were tuned by changing the composition of monomers. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analyses were carried out to evaluate the chemical structures and compositions of the synthesized SMPs. The thermomechanical properties and shape memory performance of the SMPs were also examined by performing dynamic mechanical thermal analysis. Numerical simulation based on a finite element method provided consistent results with experimental cyclic shape memory tests of the specimens. Transient shape recovery tests were conducted and optical transparence of the samples was identified. We envision that the materials proposed in this study can help develop a new type of shape-memory devices in biomedical and aerospace engineering applications.

  16. High-Temperature Shape Memory Polymers

    Science.gov (United States)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  17. Shape memory polymer foams for endovascular therapies

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Thomas S.; Maitland, Duncan J.

    2017-03-21

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  18. Shape memory polymer foams for endovascular therapies

    Science.gov (United States)

    Wilson, Thomas S [Castro Valley, CA; Maitland, Duncan J [Pleasant Hill, CA

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  19. Shape memory polymers based on uniform aliphatic urethane networks

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T S; Bearinger, J P; Herberg, J L; Marion III, J E; Wright, W J; Evans, C L; Maitland, D J

    2007-01-19

    Aliphatic urethane polymers have been synthesized and characterized, using monomers with high molecular symmetry, in order to form amorphous networks with very uniform supermolecular structures which can be used as photo-thermally actuable shape memory polymers (SMPs). The monomers used include hexamethylene diisocyanate (HDI), trimethylhexamethylenediamine (TMHDI), N,N,N{prime},N{prime}-tetrakis(hydroxypropyl)ethylenediamine (HPED), triethanolamine (TEA), and 1,3-butanediol (BD). The new polymers were characterized by solvent extraction, NMR, XPS, UV/VIS, DSC, DMTA, and tensile testing. The resulting polymers were found to be single phase amorphous networks with very high gel fraction, excellent optical clarity, and extremely sharp single glass transitions in the range of 34 to 153 C. Thermomechanical testing of these materials confirms their excellent shape memory behavior, high recovery force, and low mechanical hysteresis (especially on multiple cycles), effectively behaving as ideal elastomers above T{sub g}. We believe these materials represent a new and potentially important class of SMPs, and should be especially useful in applications such as biomedical microdevices.

  20. AC Electric Field Activated Shape Memory Polymer Composite

    Science.gov (United States)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  1. Development of Morphing Structures for Aircraft Using Shape Memory Polymers

    National Research Council Canada - National Science Library

    Khan, Fazeel J

    2008-01-01

    ...), aerospace structures. In particular, shape memory polymers (SMP) in filled and unfilled form have been investigated with particular emphasis on the recovery time and force as the materials undergo transformation...

  2. Reconfigurable photonic crystals enabled by pressure-responsive shape-memory polymers

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Taylor, Curtis; Basile, Vito; Jiang, Peng

    2015-01-01

    Smart shape-memory polymers can memorize and recover their permanent shape in response to an external stimulus (for example, heat). They have been extensively exploited for a wide spectrum of applications ranging from biomedical devices to aerospace morphing structures. However, most of the existing shape-memory polymers are thermoresponsive and their performance is hindered by heat-demanding programming and recovery steps. Although pressure is an easily adjustable process variable such as temperature, pressure-responsive shape-memory polymers are largely unexplored. Here we report a series of shape-memory polymers that enable unusual ‘cold' programming and instantaneous shape recovery triggered by applying a contact pressure at ambient conditions. Moreover, the interdisciplinary integration of scientific principles drawn from two disparate fields—the fast-growing photonic crystal and shape-memory polymer technologies—enables fabrication of reconfigurable photonic crystals and simultaneously provides a simple and sensitive optical technique for investigating the intriguing shape-memory effects at nanoscale. PMID:26074349

  3. Fabrication and characterization of shape memory polymers at small-scales

    Science.gov (United States)

    Wornyo, Edem

    The objective of this research is to thoroughly investigate the shape memory effect in polymers, characterize, and optimize these polymers for applications in information storage systems. Previous research effort in this field concentrated on shape memory metals for biomedical applications such as stents. Minimal work has been done on shape memory polymers; and the available work on shape memory polymers has not characterized the behaviors of this category of polymers fully. Copolymer shape memory materials based on diethylene glycol dimethacrylate (DEGDMA) crosslinker, and tert butyl acrylate (tBA) monomer are designed. The design encompasses a careful control of the backbone chemistry of the materials. Characterization methods such as dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC); and novel nanoscale techniques such as atomic force microscopy (AFM), and nanoindentation are applied to this system of materials. Designed experiments are conducted on the materials to optimize spin coating conditions for thin films. Furthermore, the recovery, a key for the use of these polymeric materials for information storage, is examined in detail with respect to temperature. In sum, the overarching objectives of the proposed research are to: (i) Design shape memory polymers based on polyethylene glycol dimethacrylate (PEGDMA) and diethylene glycol dimethacrylate (DEGDMA) crosslinkers, 2-hydroxyethyl methacrylate (HEMA) and tert-butyl acrylate monomer (tBA). (ii) Utilize dynamic mechanical analysis (DMA) to comprehend the thermomechanical properties of shape memory polymers based on DEGDMA and tBA. (iii) Utilize nanoindentation and atomic force microscopy (AFM) to understand the nanoscale behavior of these SMPs, and explore the strain storage and recovery of the polymers from a deformed state. (iv) Study spin coating conditions on thin film quality with designed experiments. (iv) Apply neural networks and genetic algorithms to optimize these systems.

  4. Photonic shape memory polymer with stable multiple colors

    NARCIS (Netherlands)

    Moirangthem, M.; Engels, T.A.P.; Murphy, J.; Bastiaansen, C.W.M.; Schenning, A.P.H.J.

    2017-01-01

    A photonic shape memory polymer film that shows large color response (∼155 nm) in a wide temperature range has been fabricated from a semi-interpenetrating network of a cholesteric polymer and poly(benzyl acrylate). The large color response is achieved by mechanical embossing of the photonic film

  5. Shape-memory polymer foam device for treating aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Jason M.; Benett, William J.; Small, Ward; Wilson, Thomas S.; Maitland, Duncan J; Hartman, Jonathan

    2017-05-30

    A system for treating an aneurysm in a blood vessel or vein, wherein the aneurysm has a dome, an interior, and a neck. The system includes a shape memory polymer foam in the interior of the aneurysm between the dome and the neck. The shape memory polymer foam has pores that include a first multiplicity of pores having a first pore size and a second multiplicity of pores having a second pore size. The second pore size is larger than said first pore size. The first multiplicity of pores are located in the neck of the aneurysm. The second multiplicity of pores are located in the dome of the aneurysm.

  6. Systematic Development Strategy for Smart Devices Based on Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Andrés Díaz Lantada

    2017-10-01

    Full Text Available Shape-memory polymers are outstanding “smart” materials, which can perform important geometrical changes, when activated by several types of external stimuli, and which can be applied to several emerging engineering fields, from aerospace applications, to the development of biomedical devices. The fact that several shape-memory polymers can be structured in an additive way is an especially noteworthy advantage, as the development of advanced actuators with complex geometries for improved performance can be achieved, if adequate design and manufacturing considerations are taken into consideration. Present study presents a review of challenges and good practices, leading to a straightforward methodology (or integration of strategies, for the development of “smart” actuators based on shape-memory polymers. The combination of computer-aided design, computer-aided engineering and additive manufacturing technologies is analyzed and applied to the complete development of interesting shape-memory polymer-based actuators. Aspects such as geometrical design and optimization, development of the activation system, selection of the adequate materials and related manufacturing technologies, training of the shape-memory effect, final integration and testing are considered, as key processes of the methodology. Current trends, including the use of low-cost 3D and 4D printing, and main challenges, including process eco-efficiency and biocompatibility, are also discussed and their impact on the proposed methodology is considered.

  7. High actuation properties of shape memory polymer composite actuator

    International Nuclear Information System (INIS)

    Basit, A; L’Hostis, G; Durand, B

    2013-01-01

    The shape memory polymers (SMPs) possess two shapes: permanent shape and temporary shape. This property leads to replacement of shape memory alloys by SMPs in various applications. In this work, two properties, namely structure activeness and the shape memory property of ‘controlled behavior composite material (CBCM)’ plate and its comparison with the conventional symmetrical composite plate (SYM), are studied. The SMPC plates (CBCM and SYM) are manufactured using epoxy resin with a thermal glass transition temperature (T g ) of 130 °C. The shape memory properties of these composites are investigated (under three-point bending test) and compared by deforming them to the same displacement. Three types of recoveries are conducted: unconstrained recovery, constrained recovery, and partial recovery under load. It is found that by coupling the structure activeness (due to its asymmetry) and its shape memory property, higher activated displacement is obtained during the unconstrained recovery. Also, at a lower recovery temperature (90 °C) than the fixing temperature, a recovery close to 100% is obtained for CBCM, whereas for SYM it is only 25%. During constrained recovery, CBCM produces five times larger recovery force than SYM. In addition, higher actuation properties are demonstrated by calculating recovered work and recovery percentages during partial recovery under load. (paper)

  8. Shape memory polymer cellular solid design for medical applications

    International Nuclear Information System (INIS)

    De Nardo, L; Bertoldi, S; Tanzi, M C; Farè, S; Haugen, H J

    2011-01-01

    Shape memory polymers (SMPs) are an emerging class of active materials whose response can be easily tailored via modifications of the molecular parameters and optimization of the transformation processes. In this work, we originally demonstrated that a correct coupling of polymer transformation processes (co-extrusion with chemical blowing agents, salt co-extrusion/particulate leaching, solvent casting/particulate leaching) and SMPs allows one to obtain porous structures with a broad spectrum of morphological properties resulting in tunable thermo-mechanical and shape recovery properties. Such a wide range of properties could fulfil the specifications of medical applications in which the use of SMP-based foams can be envisaged

  9. Ultra Low Density Shape Memory Polymer Foams With Tunable Physicochemical Properties for Treatment of intracranial Aneurysms

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, Pooja [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Shape memory polymers (SMPs) are a rapidly emerging class of smart materials that can be stored in a deformed temporary shape, and can actively return to their original shape upon application of an external stimulus such as heat, pH or light. This behavior is particularly advantageous for minimally invasive biomedical applications comprising embolic/regenerative scaffolds, as it enables a transcatheter delivery of the device to the target site. The focus of this work was to exploit this shape memory behavior of polyurethanes, and develop an efficient embolic SMP foam device for the treatment of intracranial aneurysms.In summary, this work reports a novel family of ultra low density polymer foams which can be delivered via a minimally invasive surgery to the aneurysm site, actuated in a controlled manner to efficiently embolize the aneurysm while promoting physiological fluid/blood flow through the reticulated/open porous structure, and eventually biodegrade leading to complete healing of the vasculature.

  10. Shape memory polymer hybrids of SBS/dl-PLA and their shape memory effects

    International Nuclear Information System (INIS)

    Zhang, Heng; Chen, Zhi; Zheng, Zheng; Zhu, Xiaomin; Wang, Haitao

    2013-01-01

    The hybrids of styrene-butadiene-styrene tri-block copolymer (SBS) and amorphous poly(dl-lactic acid) (dl-PLA) are found to exhibit shape memory effects, which gives an example of a dual-domain shape memory system consisting of an elastic domain and a thermo-switch domain. The dual-domain manner in this hybrid is studied by means of differential scanning calorimetry (DSC) and scanning electron microscope (SEM). Subsequently, the tensile test clarifies the interactions of the two domains on shape memory effects. As an elastic domain, SBS offers good shape recovery when its content exceeds 50 wt%. As a thermo-switch domain, dl-PLA triggers the shape memory effect at ca. 55 °C and offers good shape fixing when the content exceeds 30 wt%. An easy-to-do and easy-to-know feature of the hybrid is that the optimization of shape memory effect can be achieved by generating bicontinous phases of SBS and dl-PLA, in which the dl-PLA content ranges from 30 to 70 wt%. -- Highlights: ► The composite materials of SBS and amorphous dl-PLA were prepared by blending. ► A continuous domain was observed with the increasing content of dl-PLA. ► The composites exhibited shape memory effects.

  11. Shape memory and actuation behavior of semicrystalline polymer networks

    International Nuclear Information System (INIS)

    Bothe, Martin

    2014-01-01

    Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a 'programming' procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such actuation

  12. Shape memory and actuation behavior of semicrystalline polymer networks

    Energy Technology Data Exchange (ETDEWEB)

    Bothe, Martin

    2014-07-01

    Shape memory polymers (SMPs) can change their shape on application of a suitable stimulus. To enable such behavior, a 'programming' procedure fixes a deformation, yielding a stable temporary shape. In thermoresponsive SMPs, subsequent heating triggers entropy-elastic recovery of the initial shape. An additional shape change on cooling, i.e. thermoreversible two-way actuation, can be stimulated by a crystallization phenomenon. In this thesis, cyclic thermomechanical measurements systematically determined (1) the shape memory and (2) the actuation behavior under constant load as well as under stress-free conditions. Chemically cross-linked, star-shaped polyhedral oligomeric silsesquioxane polyurethane (SPOSS-PU) hybrid polymer networks and physically cross-linked poly(ester urethane) (PEU) block copolymers were investigated around the melting and crystallization temperatures of their polyester soft segments. (1) The SPOSS-PUs showed excellent shape fixities and recoverabilities of almost 100% at high cross-linking density, while PEUs exhibited pronounced shape memory properties at increased soft segment content. Furthermore, two-fold programmed SPOSS-PU specimens were able to recover their initial shape in two thermally separated events. Even a neck, which formed during deformation of SPOSS-PUs with high soft segment content, was reversed. (2) In PEUs, globally oriented crystallization on cooling drove expansion of the sample, in particular at high soft segment content and after application of a strong deformation. Melting reversed that orientation; the PEU sample contracted and thereby completed the thermoreversible actuation cycle. Under load, multiple polymorphic phase transitions enabled two successive expansion and contraction steps, while under stress-free conditions various geometric shape changes, including the increase and decrease of PEU sample length and thickness as well as twisting and untwisting could be experimentally witnessed. Such

  13. Shape memory polymers from benzoxazine-modified epoxy

    International Nuclear Information System (INIS)

    Rimdusit, Sarawut; Lohwerathama, Montha; Dueramae, Isala; Hemvichian, Kasinee; Kasemsiri, Pornnapa

    2013-01-01

    Novel shape memory polymers (SMPs) were prepared from benzoxazine-modified epoxy resin. Specimens consisting of aromatic epoxy (E), aliphatic epoxy (N), Jeffamine D230 (D) and BA-a benzoxazine monomer (B) were evaluated. The mole ratio of D/B was used as a mixed curing agent for an epoxy system with a fixed E/N. The effects of BA-a content on the thermal, mechanical and shape memory properties of epoxy-based shape memory polymers (SMPs) were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), flexural test and shape recovery test. The results revealed that the obtained SMPs exhibited a higher flexural strength and flexural modulus than those of the unmodified epoxy-based SMP at room temperature and at 20 ° C above glass transition temperature (T g ). The presence of 1 mol BA-a as a curing agent provided the specimen with the highest T g , i.e. about 72 ° C higher than that of epoxy-based SMP cured by Jeffamine D230. All SMP samples needed only a few minutes to fully recover to their original shape. The samples exhibited high shape fixity (98–99%) and shape recovery ratio (90–100%). In addition, the recovery stress values increased with increasing BA-a mole ratio from 20 to 38 kPa, when BA-a up to 1 mol ratio was added. All of the SMP samples exhibited only minimum change in their flexural strength at the end of a 100 recovery cycles test. (paper)

  14. Shape memory-based tunable resistivity of polymer composites

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongsheng, E-mail: hongshengluo@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhou, Xingdong; Ma, Yuanyuan [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Yi, Guobin, E-mail: ygb116@163.com [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Cheng, Xiaoling [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Zhu, Yong [Shanghai Hiend Polyurethane Inc., No. 389, Jinshan District, Shanghai (China); Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang [Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China)

    2016-02-15

    Graphical abstract: Hybrid nanofillers of the CNTs and AgNPs were embedded into a shape memory polyurethane. The composites exhibited tunable conduction, which could be facially tailored by the compositions and the thermal–mechanical programming. - Highlights: • Electrically conductive polymer composites in bi-layer structure were fabricated. • The CNTs/AgNPs layer had influence on the mechanics and thermal transitions. • The conductivity could be facially tailored via a thermo-mechanical programming. • The AgNPs contents enlarged the gauge factor of the resistivity–strain curves. • Tunneling theory was suitable for simulating the strain-dependent behaviors. - Abstract: A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (R{sub s}) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The R{sub s}–strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent R{sub s} was disclosed. The findings provided a new avenue to tailor the conductivity

  15. Electroactive thermoset shape memory polymer nanocomposite filled with nanocarbon powders

    International Nuclear Information System (INIS)

    Leng, Jinsong; Lan, Xin; Liu, Yanju; Du, Shanyi

    2009-01-01

    This paper concerns an electroactive thermoset styrene-based shape memory polymer (SMP) nanocomposite filled with nanosized (30 nm) carbon powders. With an increase of the incorporated nanocarbon powders of the SMP composite, its glass transition temperature (T g ) decreases and storage modulus increases. Due to the high micro-porosity and homogeneous distributions of nanocarbon powders in the SMP matrix, the SMP composite shows good electrical conductivity with a percolation of about 3.8%. This percolation threshold is slightly lower than that of many other carbon-based conductive polymer composites. Consequently, due to the relatively high electrical conductivity, a sample filled with 10 vol% nanocarbon powders shows a good electroactive shape recovery performance heating by a voltage of 30 V above a transition temperature of 56–69 °C

  16. An Internally Heated Shape Memory Polymer Dry Adhesive

    Directory of Open Access Journals (Sweden)

    Jeffrey Eisenhaure

    2014-08-01

    Full Text Available A conductive epoxy-based shape memory polymer (SMP is demonstrated using carbon black (CB as a dopant for the purpose of creating an SMP dry adhesive system which can internally generate the heat required for activation. The electrical and mechanical properties of the CB/SMP blends for varying dopant concentrations are characterized. A composite adhesive is created to minimize surface contact resistance to conductive tape acting as electrodes, while maintaining bulk resistivity required for heat generation due to current flow. The final adhesive can function on flat or curved surfaces. As a demonstration, a 25 mm wide by 45 mm long dry adhesive strip is shown to heat evenly from an applied voltage, and can easily hold a mass in excess of 6 kg when bonded to a spherical concave glass surface using light pressure at 75 °C.

  17. Plant oil-based shape memory polymer using acrylic monolith

    Directory of Open Access Journals (Sweden)

    T. Tsujimoto

    2015-09-01

    Full Text Available This article deals with the synthesis of a plant oil-based material using acrylic monolith. An acrylic monolith bearing oxirane groups was prepared via simple technique that involved the dissolution of poly(glycidyl methacrylate-comethyl methacrylate (PGMA in ethanolic – aqueous solution by heating and subsequent cooling. The PGMA monolith had topologically porous structure, which was attributed to the phase separation of the polymer solution. The PGMA monolith was impregnated by epoxidized soybean oil (ESO containing thermally-latent catalyst, and the subsequent curing produced a crosslinked material with relatively good transparency. The Young’s modulus and the tensile strength of polyESO/PGMA increased compared with the ESO homopolymer. The strain at break of polyESO/PGMA was larger than that of the ESO homopolymer and crosslinked PGMA. Furthermore, polyESO/PGMA exhibited good shape memory-recovery behavior.

  18. Infrared thermographic analysis of shape memory polymer during cyclic loading

    International Nuclear Information System (INIS)

    Staszczak, Maria; Pieczyska, Elżbieta A; Maj, Michał; Kukla, Dominik; Tobushi, Hisaaki

    2016-01-01

    In this paper we present the effects of thermomechanical couplings occurring in polyurethane shape memory polymer subjected to cyclic tensile loadings conducted at various strain rates. Stress–strain characteristics were elaborated using a quasistatic testing machine, whereas the specimen temperature changes accompanying the deformation process were obtained with an infrared camera. We demonstrate a tight correlation between the mechanical and thermal results within the initial loading stage. The polymer thermomechanical behaviour in four subsequent loading-unloading cycles and the influence of the strain rate on the stress and the related temperature changes were also examined. In the range of elastic deformation the specimen temperature drops below the initial level due to thermoelastic effect whereas at the higher strains the temperature always increased, due to the dissipative deformation mechanisms. The difference in the characteristics of the specimen temperature has been applied to determine a limit of the polymer reversible deformation and analyzed for various strain rates. It was shown that at the higher strain rates higher values of the stress and temperature changes are obtained, which are related to higher values of the polymer yield points. During the cyclic loading a significant difference between the first and the second cycle was observed. The subsequent loading-unloading cycles demonstrated similar sharply shaped stress and temperature profiles and gradually decrease in values. (paper)

  19. Morphological and mechanical analysis of electrospun shape memory polymer fibers

    Energy Technology Data Exchange (ETDEWEB)

    Budun, Sinem [Institute of Pure and Applied Science, Marmara University, 34722 Istanbul (Turkey); İşgören, Erkan [Textile Technology, Technical Education Faculty, Marmara University, 34722 Istanbul (Turkey); Erdem, Ramazan, E-mail: ramazanerdem@akdeniz.edu.tr [Textile Technologies, Serik G-S. Sural Vocational School of Higher Education, Akdeniz University, 07500 Antalya (Turkey); Yüksek, Metin [Textile Engineering, Technology Faculty, Marmara University, 34722 Istanbul (Turkey)

    2016-09-01

    Highlights: • Fiber morphology of PU based shape memory fibers varied especially with polymer concentration and applied voltage. • The smallest diameter (381 ± 165 nm) and almost uniform (without bead) fibers were belonged to the sample Y10K30 with a feeding rate of 1 ml/h and an applied voltage of 30 kV at 24.5 cm distance. • All calculated shape fixity results were above 80% and the best value (92 ± 4%) was obtained for Y10K30. • All gained shape recovery results were determined above 100% and the highest measurement (130 ± 4%) was belonged to Y15K39. • The greatest tensile property was obtained for Y10K30 (14.7 ± 3.2 MPa) in machine direction and for Y10K39 (12.9 ± 0.8 MPa) in transverse direction. Y15K39 (411 ± 24%) and Y20K30 (402 ± 34%) possessed the highest elongation results compared with the other electrospun webs. - Abstract: Shape memory block co-polymer Polyurethane (PU) fibers were fabricated by electrospinning technique. Four different solution concentrations (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.%) were prepared by using Tetrahydrofuran (THF)/N,N-dimethylformamide (DMF) (50:50, v/v) as solvents, and three different voltages (30 kV, 35 kV and 38.9 kV) were determined for the electrospinning process. Solution properties were explored in terms of viscosity and electrical conductivity. It was observed that as the polymer concentration increased in the solution, the conductivity declined. Morphological characteristics of the obtained fibers were analyzed through Scanning Electron Microscopy (SEM) measurements. Findings indicated that fiber morphology varied especially with polymer concentration and applied voltage. Obtained fiber diameter ranged from 112 ± 34 nm to 2046 ± 654 nm, respectively. DSC analysis presented that chain orientation of the polymer increased after electrospinning process. Shape fixity and shape recovery calculations were realized. The best shape fixity value (92 ± 4%) was obtained for Y10K30 and the highest shape

  20. Triple shape memory polymers by 4D printing

    Science.gov (United States)

    Bodaghi, M.; Damanpack, A. R.; Liao, W. H.

    2018-06-01

    This article aims at introducing triple shape memory polymers (SMPs) by four-dimensional (4D) printing technology and shaping adaptive structures for mechanical/bio-medical devices. The main approach is based on arranging hot–cold programming of SMPs with fused decomposition modeling technology to engineer adaptive structures with triple shape memory effect (SME). Experiments are conducted to characterize elasto-plastic and hyper-elastic thermo-mechanical material properties of SMPs in low and high temperatures at large deformation regime. The feasibility of the dual and triple SMPs with self-bending features is demonstrated experimentally. It is advantageous in situations either where it is desired to perform mechanical manipulations on the 4D printed objects for specific purposes or when they experience cold programming inevitably before activation. A phenomenological 3D constitutive model is developed for quantitative understanding of dual/triple SME of SMPs fabricated by 4D printing in the large deformation range. Governing equations of equilibrium are established for adaptive structures on the basis of the nonlinear Green–Lagrange strains. They are then solved by developing a finite element approach along with an elastic-predictor plastic-corrector return map procedure accomplished by the Newton–Raphson method. The computational tool is applied to simulate dual/triple SMP structures enabled by 4D printing and explore hot–cold programming mechanisms behind material tailoring. It is shown that the 4D printed dual/triple SMPs have great potential in mechanical/bio-medical applications such as self-bending gripers/stents and self-shrinking/tightening staples.

  1. Component assembly with shape memory polymer fastener for microrobots

    International Nuclear Information System (INIS)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm −2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components. (paper)

  2. Component assembly with shape memory polymer fastener for microrobots

    Science.gov (United States)

    Kim, Ji-Suk; Lee, Dae-Young; Koh, Je-Sung; Jung, Gwang-Pil; Cho, Kyu-Jin

    2014-01-01

    Adhesives are generally used for the assembly of microrobots, whereas bolts, screws, or rivets are used for larger robots. Although adhesives are easy to apply, lightweight, and small, they cannot be used for repeated assembly and disassembly of parts. In this paper, we present a novel microfastener composed of a polyurethane-based shape memory polymer (SMP) that is lightweight and small but that is easily detached for disassembly. This was achieved by using the shape recovery and modulus change of the SMP. A sheet of macromolded SMP was laser machined into an I-beam-shaped rivet, and notches were added to the structure to prevent stress concentration. Pull-off tests showed that, as the notch radius increased, the disengagement strength of the rivet fastener decreased and the reusability increased. Through the elastoplastic model, a single SMP rivet was calculated to have maximum disengagement strength of 150 N cm-2 in the elastic range, depending on the notch radius. The fasteners were applied to a jumping microrobot. The legs and body were assembled with ten fasteners, which showed no permanent deformation after impact during jumping movements. The legs were easily replaced with ones of different stiffness by heating the engaged sites to make the fasteners compliant and detachable. The proposed detachable SMP microfasteners are particularly useful for testing the isolated performance of microrobot components to determine the optimal designs for these components.

  3. Virtual Treatment of Basilar Aneurysms Using Shape Memory Polymer Foam

    Science.gov (United States)

    Ortega, J.M.; Hartman, J.; Rodriguez, J.N.; Maitland, D.J.

    2013-01-01

    Numerical simulations are performed on patient-specific basilar aneurysms that are treated with shape memory polymer (SMP) foam. In order to assess the post-treatment hemodynamics, two modeling approaches are employed. In the first, the foam geometry is obtained from a micro-CT scan and the pulsatile blood flow within the foam is simulated for both Newtonian and non-Newtonian viscosity models. In the second, the foam is represented as a porous media continuum, which has permeability properties that are determined by computing the pressure gradient through the foam geometry over a range of flow speeds comparable to those of in vivo conditions. Virtual angiography and additional post-processing demonstrate that the SMP foam significantly reduces the blood flow speed within the treated aneurysms, while eliminating the high-frequency velocity fluctuations that are present within the pre-treatment aneurysms. An estimation of the initial locations of thrombus formation throughout the SMP foam is obtained by means of a low fidelity thrombosis model that is based upon the residence time and shear rate of blood. The Newtonian viscosity model and the porous media model capture similar qualitative trends, though both yield a smaller volume of thrombus within the SMP foam. PMID:23329002

  4. 3D Printing of Shape Memory Polymers for Flexible Electronic Devices.

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    The formation of 3D objects composed of shape memory polymers for flexible electronics is described. Layer-by-layer photopolymerization of methacrylated semicrystalline molten macromonomers by a 3D digital light processing printer enables rapid fabrication of complex objects and imparts shape memory functionality for electrical circuits. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interventional Application of Shape Memory Polymer Foam Final Report CRADA No. TC-02067-03

    Energy Technology Data Exchange (ETDEWEB)

    Maitland, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metzger, M. F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-27

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and Sierra Interventions, LLC, to develop shape memory polymer foam devices for treating hemorrhagic stroke.

  6. Shape recovery and irrecoverable strain control in polyurethane shape-memory polymer

    International Nuclear Information System (INIS)

    Tobushi, Hisaaki; Ejiri, Yoshihiro; Hayashi, Syunichi; Hoshio, Kazumasa

    2008-01-01

    In shape-memory polymers, large strain can be fixed at a low temperature and thereafter recovered at a high temperature. If the shape-memory polymer is held at a high temperature for a long time, the irrecoverable strain can attain a new intermediate shape between the shape under the maximum stress and the primary shape. Irrecoverable strain control can be applied to the fabrication of a shape-memory polymer element with a complex shape in a simple method. In the present study, the influence of the strain-holding conditions on the shape recovery and the irrecoverable strain control in polyurethane shape-memory polymer is investigated by tension test of a film and three-point bending test of a sheet. The higher the shape-holding temperature and the longer the shape-holding time, the higher the irrecoverable strain rate. The equation that expresses the characteristics of the irrecoverable strain control is formulated

  7. PCL-PLLA Semi-IPN Shape Memory Polymers (SMPs): Degradation and Mechanical Properties.

    Science.gov (United States)

    Woodard, Lindsay N; Page, Vanessa M; Kmetz, Kevin T; Grunlan, Melissa A

    2016-12-01

    Thermoresponsive shape memory polymers (SMPs) based on poly(ε-caprolactone) (PCL) whose shape may be actuated by a transition temperature (T trans ) have shown utility for a variety of biomedical applications. Important to their utility is the ability to modulate mechanical and degradation properties. Thus, in this work, SMPs are formed as semi-interpenetrating networks (semi-IPNs) comprised of a cross-linked PCL diacrylate (PCL-DA) network and thermoplastic poly(l-lactic acid) (PLLA). The semi-IPN uniquely allows for requisite crystallization of both PCL and PLLA. The influence of PLLA (PCL:PLLA wt% ratio) and PCL-DA molecular weight (n) on film properties are investigated. PCL-PLLA semi-IPNs are able to achieve enhanced mechanical properties and accelerated rates of degradation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.

    Science.gov (United States)

    Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin

    2018-03-01

    Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasma immersion ion implantation of polyurethane shape memory polymer: Surface properties and protein immobilization

    Science.gov (United States)

    Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin

    2017-09-01

    Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.

  10. Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys

    International Nuclear Information System (INIS)

    Kim, J.I.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Miyazaki, S.

    2005-01-01

    Shape memory characteristics of Ti-22Nb-(2-8)Zr(at.%) biomedical alloys were investigated by using tensile tests and X-ray diffraction (XRD) measurement. The alloy ingots were fabricated by an arc melting method. The ingots were cold-rolled by a reduction up to 95% in thickness at room temperature. All the alloys were solution-treated at 1173 K for 1.8 ks. The alloys subjected to the solution treatment exhibited large elongations ranging between 28 and 40%. The martensitic transformation temperature decreased by 38 K with 1 at.% increase of Zr content. The maximum recovered strain of 4.3% was obtained in the Ti-22Nb-4Zr(at.%) alloy. Ti-22Nb-(2-4)Zr(at.%) and Ti-22Nb-6Zr(at.%) alloys exhibited stable shape memory effect and superelastic behavior at room temperature, respectively

  11. Preparation and characterization of shape memory composite foams with interpenetrating polymer networks

    International Nuclear Information System (INIS)

    Yao, Yongtao; Zhou, Tianyang; Yang, Cheng; Leng, Jinsong; Liu, Yanju

    2016-01-01

    The present study reports a feasible approach of fabricating shape memory composite foams with an interpenetrating polymer network (IPN) based on polyurethane (PU) and shape memory epoxy resin (SMER) via a simultaneous polymerization technique. The PU component is capable of constructing a foam structure and the SMER is grafted on the PU network to offer its shape memory property in the final IPN foams. A series of IPN foams without phase separation were produced due to good compatibility and a tight chemical interaction between PU and SMER components. The relationships of the geometry of the foam cell were investigated via varying compositions of PU and SMER. The physical property and shape memory property were also evaluated. The stimulus temperature of IPN shape memory composite foams, glass temperature (T g ), could be tunable by varying the constituents and T g of PU and SMER. The mechanism of the shape memory effect of IPN foams has been proposed. The shape memory composite foam with IPN developed in this study has the potential to extend its application field. (paper)

  12. Constitutive model for a stress- and thermal-induced phase transition in a shape memory polymer

    International Nuclear Information System (INIS)

    Guo, Xiaogang; Liu, Liwu; Liu, Yanju; Zhou, Bo; Leng, Jinsong

    2014-01-01

    Recently, increasing applications of shape memory polymers have pushed forward the development of appropriate constitutive models for smart materials such as the shape memory polymer. During the heating process, the phase transition, which is a continuous time-dependent process, happens in the shape memory polymer, and various individual phases will form at different configuration temperatures. In addition, these phases can generally be divided into two parts: the frozen and active phase (Liu Y et al 2006 Int. J. Plast. 22 279–313). During the heating or cooling process, the strain will be stored or released with the occurring phase transition between these two parts. Therefore, a shape memory effect emerges. In this paper, a new type of model was developed to characterize the variation of the volume fraction in a shape memory polymer during the phase transition. In addition to the temperature variation, the applied stress was also taken as a significant influence factor on the phase transition. Based on the experimental results, an exponential equation was proposed to describe the relationship between the stress and phase transition temperature. For the sake of describing the mechanical behaviors of the shape memory polymer, a three-dimensional constitutive model was established. Also, the storage strain, which was the key factor of the shape memory effect, was also discussed in detail. Similar to previous works, we first explored the effect of applied stress on storage strain. Through comparisons with the DMA and the creep experimental results, the rationality and accuracy of the new phase transition and constitutive model were finally verified. (paper)

  13. Novel Shape-Memory Polymer with Two Transition Temperature Based on Two Different Memory Mechanism

    Institute of Scientific and Technical Information of China (English)

    Liu Guoqin; Ding Xiaobing; Cao Yiping; Zheng Zhaohui; Peng Yuxing

    2004-01-01

    As an important kind of intelligent materials, shape-memory materials have been received increasing attention on account of their interesting properties and potential applications in recent years. Particularly, the rise of shape-memory polymers by far surpasses well-known metallic shape-memory alloys in their shape-memory properties. The advantages of polymers compared to other materials are their easier availability and their wide range of mechanical and physical properties. The polymers designed to exhibit a shape-memory effect require two components on the molecular level: crosslinks to determine the permanent shape and switching segments with Ttrans to fix the temporary shape. Up to now almost all papers on shape-memory polymers introduce switching segments with the covalent linking method. On the other hand, only several cases concern non-covalent interaction. However, the research works mentioned above is based on a single Ttrans (i.e., Tm or Tg).Following our previous work, here, we first report a novel kind of polymer consisted of PMMA-PEG semi-interpenetrating polymer networks (semi-IPN), which exhibiting independently two shape memory effects based on Tm and Tg, respectively. This result can also extend the shape memory polymer categories from one Ttrans to two Ttrans, and the combination of Tm and Tg give rise to an extremely excellent shape-memory effect.Two different shape memory behaviors of this material based on two transition temperatures were evaluated by bending test as follows: a straight strip of the specimen was folded at a temperature above Ttrans and kept in this shape. The so-deformed sample was cooled down to a temperature Tlow< Ttrans and the deforming stress were released. When the sample was heated up to the measuring temperature Thigh > Ttrans, it recovered its initial shape. The deformation angle θ f varied as a function of time and the ratio of the recovery was defined as θ f /180. The PMMA-PEG polymer behaved as a hard plastic

  14. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Science.gov (United States)

    Govindarajan, Tina; Shandas, Robin

    2018-01-01

    Shape Memory Polymers (SMPs) are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA) and Poly(ethylene glycol) dimethacrylate (PEGDMA) were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA), contact angle studies, and atomic force microscopy (AFM) were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC) attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices. PMID:29707382

  15. Shape Memory Polymers Containing Higher Acrylate Content Display Increased Endothelial Cell Attachment

    Directory of Open Access Journals (Sweden)

    Tina Govindarajan

    2017-11-01

    Full Text Available Shape Memory Polymers (SMPs are smart materials that can recall their shape upon the application of a stimulus, which makes them appealing materials for a variety of applications, especially in biomedical devices. Most prior SMP research has focused on tuning bulk properties; studying surface effects of SMPs may extend the use of these materials to blood-contacting applications, such as cardiovascular stents, where surfaces that support rapid endothelialization have been correlated to stent success. Here, we evaluate endothelial attachment onto the surfaces of a family of SMPs previously developed in our group that have shown promise for biomedical devices. Nine SMP formulations containing varying amounts of tert-Butyl acrylate (tBA and Poly(ethylene glycol dimethacrylate (PEGDMA were analyzed for endothelial cell attachment. Dynamic mechanical analysis (DMA, contact angle studies, and atomic force microscopy (AFM were used to verify bulk and surface properties of the SMPs. Human umbilical vein endothelial cell (HUVEC attachment and viability was verified using fluorescent methods. Endothelial cells preferentially attached to SMPs with higher tBA content, which have rougher, more hydrophobic surfaces. HUVECs also displayed an increased metabolic activity on these high tBA SMPs over the course of the study. This class of SMPs may be promising candidates for next generation blood-contacting devices.

  16. Shape Recovery with Concomitant Mechanical Strengthening of Amphiphilic Shape Memory Polymers in Warm Water

    International Nuclear Information System (INIS)

    Zhang, Ben; DeBartolo, Janae E.; Song, Jie

    2017-01-01

    Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.

  17. Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals.

    Science.gov (United States)

    Liu, Ye; Li, Ying; Yang, Guang; Zheng, Xiaotong; Zhou, Shaobing

    2015-02-25

    In this study, we developed a thermoresponsive and water-responsive shape-memory polymer nanocomposite network by chemically cross-linking cellulose nanocrystals (CNCs) with polycaprolactone (PCL) and polyethylene glycol (PEG). The nanocomposite network was fully characterized, including the microstructure, cross-link density, water contact angle, water uptake, crystallinity, thermal properties, and static and dynamic mechanical properties. We found that the PEG[60]-PCL[40]-CNC[10] nanocomposite exhibited excellent thermo-induced and water-induced shape-memory effects in water at 37 °C (close to body temperature), and the introduction of CNC clearly improved the mechanical properties of the mixture of both PEG and PCL polymers with low molecular weights. In addition, Alamar blue assays based on osteoblasts indicated that the nanocomposites possessed good cytocompatibility. Therefore, this thermoresponsive and water-responsive shape-memory nanocomposite could be potentially developed into a new smart biomaterial.

  18. Experimental and modelling studies of the shape memory properties of amorphous polymer network composites

    International Nuclear Information System (INIS)

    Arrieta, J S; Diani, J; Gilormini, P

    2014-01-01

    Shape memory polymer composites (SMPCs) have become an important way to leverage improvements in the development of applications featuring shape memory polymers (SMPs). In this study, an amorphous SMP matrix has been filled with different types of reinforcements. An experimental set of results is presented and then compared to three-dimensional (3D) finite-element simulations. Thermomechanical shape memory cycles were performed in uniaxial tension. The fillers effect was studied in stress-free and constrained-strain recoveries. Experimental observations indicate complete shape recovery and put in evidence the increased sensitivity of constrained length stress recoveries to the heating ramp on the tested composites. The simulations reproduced a simplified periodic reinforced composite and used a model for the matrix material that has been previously tested on regular SMPs. The latter combines viscoelasticity at finite strain and time-temperature superposition. The simulations easily allow representation of the recovery properties of a reinforced SMP. (paper)

  19. Direct Writing of Three-Dimensional Macroporous Photonic Crystals on Pressure-Responsive Shape Memory Polymers.

    Science.gov (United States)

    Fang, Yin; Ni, Yongliang; Leo, Sin-Yen; Wang, Bingchen; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2015-10-28

    Here we report a single-step direct writing technology for making three-dimensional (3D) macroporous photonic crystal patterns on a new type of pressure-responsive shape memory polymer (SMP). This approach integrates two disparate fields that do not typically intersect: the well-established templating nanofabrication and shape memory materials. Periodic arrays of polymer macropores templated from self-assembled colloidal crystals are squeezed into disordered arrays in an unusual shape memory "cold" programming process. The recovery of the original macroporous photonic crystal lattices can be triggered by direct writing at ambient conditions using both macroscopic and nanoscopic tools, like a pencil or a nanoindenter. Interestingly, this shape memory disorder-order transition is reversible and the photonic crystal patterns can be erased and regenerated hundreds of times, promising the making of reconfigurable/rewritable nanooptical devices. Quantitative insights into the shape memory recovery of collapsed macropores induced by the lateral shear stresses in direct writing are gained through fundamental investigations on important process parameters, including the tip material, the critical pressure and writing speed for triggering the recovery of the deformed macropores, and the minimal feature size that can be directly written on the SMP membranes. Besides straightforward applications in photonic crystal devices, these smart mechanochromic SMPs that are sensitive to various mechanical stresses could render important technological applications ranging from chromogenic stress and impact sensors to rewritable high-density optical data storage media.

  20. Characterization of origami shape memory metamaterials (SMMM) made of bio-polymer blends

    Science.gov (United States)

    Kshad, Mohamed Ali E.; Naguib, Hani E.

    2016-04-01

    Shape memory materials (SMMs) are materials that can return to their virgin state and release mechanically induced strains by external stimuli. Shape memory polymers (SMPs) are a class of SMMs that show a high shape recoverability and which have attractive potential for structural applications. In this paper, we experimentally study the shape memory effect of origami based metamaterials. The main focus is on the Muira origami metamaterials. The fabrication technique used to produce origami structure is direct molding where all the geometrical features are molded from thermally virgin polymers without post folding of flat sheets. The study shows experimental investigations of shape memory metamaterials (SMMMs) made of SMPs that can be used in different applications such as medicine, robotics, and lightweight structures. The origami structure made from SMP blends, activated with uniform heating. The effect of blend composition on the shape memory behavior was studied. Also the influence of the thermomechanical and the viscoelastic properties of origami unit cell on the activation process have been discussed, and stress relaxation and shape recovery were investigated. Activation process of the unit cell has been demonstrated.

  1. Experimental study of thermo-mechanical behavior of a thermosetting shape-memory polymer

    Science.gov (United States)

    Liu, Ruoxuan; Li, Yunxin; Liu, Zishun

    2018-01-01

    The thermo-mechanical behavior of shape-memory polymers (SMPs) serves for the engineering applications of SMPs. Therefore the understanding of thermo-mechanical behavior of SMPs is of great importance. This paper investigates the influence of loading rate and loading level on the thermo-mechanical behavior of a thermosetting shape-memory polymer through experimental study. A series of cyclic tension tests and shape recovery tests at different loading conditions are performed to study the strain level and strain rate effect. The results of tension tests show that the thermosetting shape-memory polymer will behave as rubber material at temperature lower than the glass transition temperature (Tg) and it can obtain a large shape fix ratio at cyclic loading condition. The shape recovery tests exhibit that loading rate and loading level have little effect on the beginning and ending of shape recovery process of the thermosetting shape-memory polymer. Compared with the material which is deformed at temperature higher than Tg, the material deformed at temperature lower than Tg behaves a bigger recovery speed.

  2. Characterizing and modeling the free recovery and constrained recovery behavior of a polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J

    2011-01-01

    In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data

  3. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA

    Science.gov (United States)

    Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei

    2018-01-01

    In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.

  4. COMMUNICATION: Toward a self-deploying shape memory polymer neuronal electrode

    Science.gov (United States)

    Sharp, Andrew A.; Panchawagh, Hrishikesh V.; Ortega, Alicia; Artale, Ryan; Richardson-Burns, Sarah; Finch, Dudley S.; Gall, Ken; Mahajan, Roop L.; Restrepo, Diego

    2006-12-01

    The widespread application of neuronal probes for chronic recording of brain activity and functional stimulation has been slow to develop partially due to long-term biocompatibility problems with existing metallic and ceramic probes and the tissue damage caused during probe insertion. Stiff probes are easily inserted into soft brain tissue but cause astrocytic scars that become insulating sheaths between electrodes and neurons. In this communication, we explore the feasibility of a new approach to the composition and implantation of chronic electrode arrays. We demonstrate that softer polymer-based probes can be inserted into the olfactory bulb of a mouse and that slow insertion of the probes reduces astrocytic scarring. We further present the development of a micromachined shape memory polymer probe, which provides a vehicle to self-deploy an electrode at suitably slow rates and which can provide sufficient force to penetrate the brain. The deployment rate and composition of shape memory polymer probes can be tailored by polymer chemistry and actuator design. We conclude that it is feasible to fabricate shape memory polymer-based electrodes that would slowly self-implant compliant conductors into the brain, and both decrease initial trauma resulting from implantation and enhance long-term biocompatibility for long-term neuronal measurement and stimulation.

  5. Drug-releasing shape-memory polymers - the role of morphology, processing effects, and matrix degradation.

    Science.gov (United States)

    Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2013-09-01

    Shape-memory polymers (SMPs) have gained interest for temporary drug-release systems that should be anchored in the body by self-sufficient active movements of the polymeric matrix. Based on the so far published scientific literature, this review highlights three aspects that require particular attention when combining SMPs with drug molecules: i) the defined polymer morphology as required for the shape-memory function, ii) the strong effects that processing conditions such as drug-loading methodologies can have on the drug-release pattern from SMPs, and iii) the independent control of drug release and degradation by their timely separation. The combination of SMPs with a drug-release functionality leads to multifunctional carriers that are an interesting technology for pharmaceutical sciences and can be further expanded by new materials such as thermoplastic SMPs or temperature-memory polymers. Experimental studies should include relevant molecules as (model) drugs and provide a thermomechanical characterization also in an aqueous environment, report on the potential effect of drug type and loading levels on the shape-memory functionality, and explore the potential correlation of polymer degradation and drug release.

  6. Reconfigurable Photonic Crystals Enabled by Multistimuli-Responsive Shape Memory Polymers Possessing Room Temperature Shape Processability.

    Science.gov (United States)

    Fang, Yin; Leo, Sin-Yen; Ni, Yongliang; Wang, Junyu; Wang, Bingchen; Yu, Long; Dong, Zhe; Dai, Yuqiong; Basile, Vito; Taylor, Curtis; Jiang, Peng

    2017-02-15

    Traditional shape memory polymers (SMPs) are mostly thermoresponsive, and their applications in nano-optics are hindered by heat-demanding programming and recovery processes. By integrating a polyurethane-based shape memory copolymer with templating nanofabrication, reconfigurable/rewritable macroporous photonic crystals have been demonstrated. This SMP coupled with the unique macroporous structure enables unusual all-room-temperature shape memory cycles. "Cold" programming involving microscopic order-disorder transitions of the templated macropores is achieved by mechanically deforming the macroporous SMP membranes. The rapid recovery of the permanent, highly ordered photonic crystal structure from the temporary, disordered configuration can be triggered by multiple stimuli including a large variety of vapors and solvents, heat, and microwave radiation. Importantly, the striking chromogenic effects associated with these athermal and thermal processes render a sensitive and noninvasive optical methodology for quantitatively characterizing the intriguing nanoscopic shape memory effects. Some critical parameters/mechanisms that could significantly affect the final performance of SMP-based reconfigurable photonic crystals including strain recovery ratio, dynamics and reversibility of shape recovery, as well as capillary condensation of vapors in macropores, which play a crucial role in vapor-triggered recovery, can be evaluated using this new optical technology.

  7. Thermally responsive polymer systems for self-healing, reversible adhesion and shape memory applications

    Science.gov (United States)

    Luo, Xiaofan

    Responsive polymers are "smart" materials that are capable of performing prescribed, dynamic functions under an applied stimulus. In this dissertation, we explore several novel design strategies to develop thermally responsive polymers and polymer composites for self-healing, reversible adhesion and shape memory applications. In the first case described in Chapters 2 and 3, a thermally triggered self-healing material was prepared by blending a high-temperature epoxy resin with a thermoplastic polymer, poly(epsilon-caprolactone) (PCL). The initially miscible system undergoes polymerization induced phase separation (PIPS) during the curing of epoxy and yields a variety of compositionally dependent morphologies. At a particular PCL loading, the cured blend displays a "bricks-and-mortar" morphology in which epoxy exists as interconnected spheres ("bricks") within a continuous PCL matrix ("mortar"). A heat induced "bleeding" phenomenon was observed in the form of spontaneous wetting of all free surfaces by the molten PCL, and is attributed to the volumetric thermal expansion of PCL above its melting point in excess of epoxy brick expansion, which we term differential expansive bleeding (DEB). This DEB is capable of healing damage such as cracks. In controlled self-healing experiments, heating of a cracked specimen led to PCL bleeding from the bulk that yields a liquid layer bridging the crack gap. Upon cooling, a "scar" composed of PCL crystals was formed at the site of the crack, restoring a significant portion of mechanical strength. We further utilized DEB to enable strong and thermally-reversible adhesion of the material to itself and to metallic substrates, without any requirement for macroscopic softening or flow. After that, Chapters 4--6 present a novel composite strategy for the design and fabrication of shape memory polymer composites. The basic approach involves physically combining two or more functional components into an interpenetrating fiber

  8. Intelligent structures based on the improved activation of shape memory polymers using Peltier cells

    International Nuclear Information System (INIS)

    Díaz Lantada, Andrés; Lafont Morgado, Pilar; Muñoz Sanz, José Luis; Muñoz García, Julio; Munoz-Guijosa, Juan Manuel; Echávarri Otero, Javier

    2010-01-01

    This study is focused on obtaining intelligent structures manufactured from shape memory polymers possessing the ability to change their geometry in successive or 'step-by-step' actions. This objective has been reached by changing the conventionally used shape memory activation systems (heating resistance, laser or induction heating). The solution set out consists in using Peltier cells as a heating system capable of heating (and activating) a specific zone of the device in the first activation, while the opposite zone keeps its original geometry. By carefully reversing the polarity of the electrical supply to the Peltier cell, in the second activation, the as yet unchanged zone is activated while the already changed zone in the first activation remains unaltered. We have described the criteria for the selection, calibration and design of this alternative heating (activation) system based on the thermoelectric effect, together with the development of different 'proof of concept' prototypes that have enabled us to validate the concepts put forward, as well as suggest future improvements for 'intelligent' shape memory polymer-based devices

  9. Description of the shape memory effect of radiation-modified polymers under thermomechanical action

    International Nuclear Information System (INIS)

    Chernous, D.A.; Shil'ko, S.V.; Pleskachevskij, Yu.M.

    2004-01-01

    The 'shape memory' effect of crystallizing polymer materials is simulated. The polymer is considered to be an inhomogeneous medium with a moving boundary (temperature-dependent phase composition). Using a model based on the 'frozen strain' hypothesis, the temperature dependences of stresses under isometric heating and cooling have been obtained. On the basis of the known data on the influence of gamma-irradiation on the thermomechanical characteristics the dependences of thermorelaxation and thermoshrinkage stresses on the absorbed dose for high-density polyethylene have been found. (Authors)

  10. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  11. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    Science.gov (United States)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  12. Powder Metallurgy Fabrication of Porous 51(at.%)Ni-Ti Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.

    2018-05-01

    The effect of time and temperature on the microwave sintering of 51(at.%)Ni-Ti shape memory alloys (SMAs) was investigated in the current research. Furthermore, the microstructure, mechanical properties, and bio-corrosion properties were analyzed based on the sintering conditions. The results revealed that the sintering condition of 700 °C for 15 min produced a part with coherent surface survey that does not exhibit gross defects. Increasing the sintering time and temperature created defects on the outer surface, while reducing the temperature to 550 °C severely affected the mechanical properties. The microstructure of these samples showed two regions of Ni-rich region and Ti-rich region between them Ti2Ni, NiTi, and Ni3Ti phases. The differential scanning calorimeter (DSC) curves of Ni-Ti samples exhibited a multi-step phase transformation B19'-R-B2 during heating and cooling. An increase in the sintering temperature from 550 to 700 °C was found to increase the fracture strength significantly and decreased the fracture strain slightly. Reducing the sintering temperature from 700 to 550 °C severely affected the corrosion behaviors of 51%Ni-Ti SMAs. This research aims to select the optimum parameters to produce Ni-Ti alloys with desired microstructure, mechanical properties, and corrosion behaviors for biomedical applications.

  13. Computational Modeling of Shape Memory Polymer Origami that Responds to Light

    Science.gov (United States)

    Mailen, Russell William

    Shape memory polymers (SMPs) transform in response to external stimuli, such as infrared (IR) light. Although SMPs have many applications, this investigation focuses on their use as actuators in self-folding origami structures. Ink patterned on the surface of the SMP sheet absorbs thermal energy from the IR light, which produces localized heating. The material shrinks wherever the activation temperature is exceeded and can produce out-of-plane deformation. The time and temperature dependent response of these SMPs provides unique opportunities for developing complex three-dimensional (3D) structures from initially flat sheets through self-folding origami, but the application of this technique requires predicting accurately the final folded or deformed shape. Furthermore, current computational approaches for SMPs do not fully couple the thermo-mechanical response of the material. Hence, a proposed nonlinear, 3D, thermo-viscoelastic finite element framework was formulated to predict deformed shapes for different self-folding systems and compared to experimental results for self-folding origami structures. A detailed understanding of the shape memory response and the effect of controllable design parameters, such as the ink pattern, pre-strain conditions, and applied thermal and mechanical fields, allows for a predictive understanding and design of functional, 3D structures. The proposed modeling framework was used to obtain a fundamental understanding of the thermo-mechanical behavior of SMPs and the impact of the material behavior on hinged self-folding. These predictions indicated how the thermal and mechanical conditions during pre-strain significantly affect the shrinking and folding response of the SMP. Additionally, the externally applied thermal loads significantly influenced the folding rate and maximum bending angle. The computational framework was also adapted to understand the effects of fully coupling the thermal and mechanical response of the material

  14. A stress-induced phase transition model for semi-crystallize shape memory polymer

    Science.gov (United States)

    Guo, Xiaogang; Zhou, Bo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-03-01

    The developments of constitutive models for shape memory polymer (SMP) have been motivated by its increasing applications. During cooling or heating process, the phase transition which is a continuous time-dependent process happens in semi-crystallize SMP and the various individual phases form at different temperature and in different configuration. Then, the transformation between these phases occurred and shape memory effect will emerge. In addition, stress applied on SMP is an important factor for crystal melting during phase transition. In this theory, an ideal phase transition model considering stress or pre-strain is the key to describe the behaviors of shape memory effect. So a normal distributed model was established in this research to characterize the volume fraction of each phase in SMP during phase transition. Generally, the experiment results are partly backward (in heating process) or forward (in cooling process) compared with the ideal situation considering delay effect during phase transition. So, a correction on the normal distributed model is needed. Furthermore, a nonlinear relationship between stress and phase transition temperature Tg is also taken into account for establishing an accurately normal distributed phase transition model. Finally, the constitutive model which taking the stress as an influence factor on phase transition was also established. Compared with the other expressions, this new-type model possesses less parameter and is more accurate. For the sake of verifying the rationality and accuracy of new phase transition and constitutive model, the comparisons between the simulated and experimental results were carried out.

  15. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application

    International Nuclear Information System (INIS)

    Ahmad, Manzoor; Luo Jikui; Miraftab, Mohsen

    2012-01-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.

  16. Feasibility study of polyurethane shape-memory polymer actuators for pressure bandage application.

    Science.gov (United States)

    Ahmad, Manzoor; Luo, Jikui; Miraftab, Mohsen

    2012-02-01

    The feasibility of laboratory-synthesized polyurethane-based shape-memory polymer (SMPU) actuators has been investigated for possible application in medical pressure bandages where gradient pressure is required between the ankle and the knee for treatment of leg ulcers. In this study, using heat as the stimulant, SMPU strip actuators have been subjected to gradual and cyclic stresses; their recovery force, reproducibility and reusability have been monitored with respect to changes in temperature and circumference of a model leg, and the stress relaxation at various temperatures has been investigated. The findings suggest that SMPU actuators can be used for the development of the next generation of pressure bandages.

  17. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    Science.gov (United States)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-12-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (Tg). Shape-memory polymer maintains its shape after it has cooled below Tg and returns to a predefined shape when subsequently heated above Tg. The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet.

  18. Pneumatic artificial rubber muscle using shape-memory polymer sheet with embedded electrical heating wire

    International Nuclear Information System (INIS)

    Takashima, Kazuto; Sugitani, Kazuhiro; Morimoto, Naohiro; Sakaguchi, Seiya; Noritsugu, Toshiro; Mukai, Toshiharu

    2014-01-01

    Shape-memory polymer (SMP) can be deformed by applying a small load above its glass transition temperature (T g ). Shape-memory polymer maintains its shape after it has cooled below T g and returns to a predefined shape when subsequently heated above T g . The reversible change in the elastic modulus between the glassy and rubbery states of an SMP can be on the order of several hundred times. Based on the change in stiffness of the SMP in relation to the change in temperature, the present study attempts to evaluate the application of the SMP to soft actuators of a robot. In order to control the temperature of the SMP, we developed an SMP sheet with an embedded electrical heating wire. We formed a uniform, thin SMP sheet without air bubbles using a heat press. The SMP sheet with a heating wire can be heated quickly and can be maintained at a constant temperature. Moreover, the effects of the embedded wire on the mechanical properties in bending and tensile tests were small. Then, we applied the SMP sheet with the embedded electrical heating wire to a pneumatic artificial rubber muscle. The enhanced versatility of SMP sheet applications is demonstrated through a series of experiments conducted using a prototype. The initial shape and bending displacement of the pneumatic artificial rubber muscle can be changed by controlling the temperature of the SMP sheet. (paper)

  19. Frequency-controlled wireless shape memory polymer microactuator for drug delivery application.

    Science.gov (United States)

    Zainal, M A; Ahmad, A; Mohamed Ali, M S

    2017-03-01

    This paper reports the wireless Shape-Memory-Polymer actuator operated by external radio frequency magnetic fields and its application in a drug delivery device. The actuator is driven by a frequency-sensitive wireless resonant heater which is bonded directly to the Shape-Memory-Polymer and is activated only when the field frequency is tuned to the resonant frequency of heater. The heater is fabricated using a double-sided Cu-clad Polyimide with much simpler fabrication steps compared to previously reported methods. The actuation range of 140 μm as the tip opening distance is achieved at device temperature 44 °C in 30 s using 0.05 W RF power. A repeatability test shows that the actuator's average maximum displacement is 110 μm and standard deviation of 12 μm. An experiment is conducted to demonstrate drug release with 5 μL of an acidic solution loaded in the reservoir and the device is immersed in DI water. The actuator is successfully operated in water through wireless activation. The acidic solution is released and diffused in water with an average release rate of 0.172 μL/min.

  20. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  1. Two-way actuation behavior of shape memory polymer/elastomer core/shell composites

    International Nuclear Information System (INIS)

    Kang, Tae-Hyung; Lee, Jeong-Min; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Wook

    2012-01-01

    Semi-crystalline shape memory polymers (SMPs) show net two-way shape memory (2W-SM) behavior under constant stresses by the recoverable creep strain upon heating and stress-induced crystallization under the application of creep stress upon cooling. The applied constant stress is the key factor in this 2W-SM behavior. A core/shell structure is manufactured for the purpose of imparting a constant stress upon SMPs. An SMP in film or fiber form is dipped into a solution of an elastomer, photoinitiator, and curing agent and then dried out. After this dip coating process is repeatedly carried out, the SMP/elastomer core/shell composite is deformed into a temporary shape after being heated up above the transition temperature of the SMP. Under constant strain conditions, the composite is cooled down, after which the shell elastomer is cured using ultraviolet light. Then, the SMP/elastomer core/shell composite extends and contracts upon cooling and heating, respectively, without any external load. This cyclic deformation behavior is characterized, demonstrating that the current method offers a simple macroscopic processing technique to manufacture 2W-SM polymer composites. (paper)

  2. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  3. Fabrication and properties of shape-memory polymer coated with conductive nanofiber paper

    Science.gov (United States)

    Lu, Haibao; Liu, Yanju; Gou, Jan; Leng, Jinsong

    2009-07-01

    A unique concept of shape-memory polymer (SMP) nanocomposites making up of carbon nanofiber paper was explored. The essential element of this method was to design and fabricate nanopaper with well-controlled and optimized network structure of carbon nanofibers. In this study, carbon nanofiber paper was prepared under ultrasonicated processing and vapor press method, while the dispersion of nanofiber was treated by BYK-191 dispersant. The morphologies of carbon nanofibers within the paper were characterized with scanning electron microscopy (SEM). In addition, the thermomechanical properties of SMP coated with carbon nanofiber paper were measured by the dynamic mechanical thermal analysis (DMTA). It was found that the glass transition temperature and thermomechanical properties of nanocomposites were strongly determined by the dispersion of polymer in conductive paper. Subsequently, the electrical conductivity of conductive paper and nanocomposites were measured, respectively. And experimental results revealed that the conductive properties of nanocoposites were significantly improved by carbon nanopaper, resulting in actuation driven by electrical resistive heating.

  4. Nanoscale indent formation in shape memory polymers using a heated probe tip

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States); Wornyo, E [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Gall, K [Department of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); King, W P [Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801 (United States)

    2007-07-18

    This paper presents experimental investigation of nanoscale indentation formation in shape memory polymers. The polymers were synthesized by photopolymerizing a tert-butyl acrylate (tBA) monomer with a poly(ethylene glycol dimethacrylate) (PEGDMA) crosslinker. The concentration and the molecular weight of the crosslinker were varied to produce five polymers with tailored properties. Nanoscale indentations were formed on the polymer surfaces by using a heated atomic force microscope (AFM) cantilever at various temperatures near or above the glass transition (between 84 and 215 deg. C) and a range of heating durations from 100 {mu}s to 8 ms. The images of the indents were obtained with the same probe tip at room temperature. The contact pressure, a measure of transient hardness, was derived from the indentation height data as a function of time and temperature for different polymers. With increasing crosslinker molecular weight and decreasing crosslinker concentration, the contact pressures decreased at a fixed maximum load due to increased crosslink spacing in the polymer system. The results provide insight into the nanoscale response of these novel materials.

  5. Multi-shape active composites by 3D printing of digital shape memory polymers.

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  6. Influences of poly (vinyl alcohol molecular weight and carbon nanotubes on radiation crosslinking shape memory polymers

    Directory of Open Access Journals (Sweden)

    Aamer A.M. Alfayyadh

    2017-06-01

    Full Text Available Polyvinyl alcohol (PVA of two molecular weights was used to prepare shape memory polymers based on chemical-crosslinking by glutaraldehyde. The chemical-crosslinking was done in the presence of 2-carboxyethyl acrylate oligomers (CEA and nano-filler [multi-wall carbon nanotubes (MWCNT and functionalized carbon nanotubes (MWCNT-NH2] followed by radiation-induced crosslinking. The analysis of the material revealed an increase in the gel fraction and a significant reduction in swelling of the nanocomposite material that was crosslinked with both glutaraldehyde and ionizing radiation. The radiation crosslinked nanocomposites demonstrated approximately a 90% gelation over a range of 50–300 kGy irradiation doses. The scanning electron microscopy (SEM analysis showed a homogeneous distribution of nanocomposites in the composite matrix. The thermal properties of radiation crosslinked (PVA/CEA and (PVA-CEA-nano-fillers were investigated by a thermogravimetric analysis (TGA. The mechanical properties were examined via dynamic mechanical analysis (DMA which showed significant variation because of the addition of nanocomposites. This radiation crosslinked materials show good shape memory behavior that may be useful in many applications based on the range of temperatures at which Tan δ appears.

  7. Multi-shape active composites by 3D printing of digital shape memory polymers

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  8. Temperature dependent evolution of wrinkled single-crystal silicon ribbons on shape memory polymers.

    Science.gov (United States)

    Wang, Yu; Yu, Kai; Qi, H Jerry; Xiao, Jianliang

    2017-10-25

    Shape memory polymers (SMPs) can remember two or more distinct shapes, and thus can have a lot of potential applications. This paper presents combined experimental and theoretical studies on the wrinkling of single-crystal Si ribbons on SMPs and the temperature dependent evolution. Using the shape memory effect of heat responsive SMPs, this study provides a method to build wavy forms of single-crystal silicon thin films on top of SMP substrates. Silicon ribbons obtained from a Si-on-insulator (SOI) wafer are released and transferred onto the surface of programmed SMPs. Then such bilayer systems are recovered at different temperatures, yielding well-defined, wavy profiles of Si ribbons. The wavy profiles are shown to evolve with time, and the evolution behavior strongly depends on the recovery temperature. At relatively low recovery temperatures, both wrinkle wavelength and amplitude increase with time as evolution progresses. Finite element analysis (FEA) accounting for the thermomechanical behavior of SMPs is conducted to study the wrinkling of Si ribbons on SMPs, which shows good agreement with experiment. Merging of wrinkles is observed in FEA, which could explain the increase of wrinkle wavelength observed in the experiment. This study can have important implications for smart stretchable electronics, wrinkling mechanics, stimuli-responsive surface engineering, and advanced manufacturing.

  9. Biodegradable shape-memory block co-polymers for fast self-expandable stents.

    Science.gov (United States)

    Xue, Liang; Dai, Shiyao; Li, Zhi

    2010-11-01

    Block co-polymers PCTBVs (M(n) of 36,300-65,300 g/mol, T(m) of 39-40 and 142 degrees C) containing hyperbranched three-arm poly(epsilon-caprolactone) (PCL) as switching segment and microbial polyester PHBV as crystallizable hard segment were designed as biodegradable shape-memory polymer (SMP) for fast self-expandable stent and synthesized in 96% yield by the reaction of three-arm PCL-triol (M(n) of 4200 g/mol, T(m) of 47 degrees C) with methylene diphenyl 4,4'-diisocyanate isocynate (MDI) to form the hyperbrached MDI-linked PCL (PTCM; M(n) of 25,400 g/mol and a T(m) of 38 degrees C), followed by further polymerization with PHBV-diol (M(n) of 2200 g/mol, T(m) of 137 and 148 degrees C). The polymers were characterized by (1)H NMR, GPC, DSC, tensile test, and cyclic thermomechanical tensile test. PCTBVs showed desired thermal properties, mechanical properties, and ductile nature. PCTBV containing 25 wt% PHBV (PCTBV-25) demonstrated excellent shape-memory property at 40 degrees C, with R(f) of 94%, R(r) of 98%, and shape recovery within 25s. PCTBV-25 was also shown as a safe material with good biocompatibility by cytotoxicity tests and cell growth experiments. The stent made from PCTBV-25 film showed nearly complete self-expansion at 37 degrees C within only 25 s, which is much better and faster than the best known self-expandable stents. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Coarse-grained simulation of molecular mechanisms of recovery in thermally activated shape-memory polymers

    Science.gov (United States)

    Abberton, Brendan C.; Liu, Wing Kam; Keten, Sinan

    2013-12-01

    Thermally actuated shape-memory polymers (SMPs) are capable of being programmed into a temporary shape and then recovering their permanent reference shape upon exposure to heat, which facilitates a phase transition that allows dramatic increase in molecular mobility. Experimental, analytical, and computational studies have established empirical relations of the thermomechanical behavior of SMPs that have been instrumental in device design. However, the underlying mechanisms of the recovery behavior and dependence on polymer microstructure remain to be fully understood for copolymer systems. This presents an opportunity for bottom-up studies through molecular modeling; however, the limited time-scales of atomistic simulations prohibit the study of key performance metrics pertaining to recovery. In order to elucidate the effects of phase fraction, recovery temperature, and deformation temperature on shape recovery, here we investigate the shape-memory behavior in a copolymer model with coarse-grained potentials using a two-phase molecular model that reproduces physical crosslinking. Our simulation protocol allows observation of upwards of 90% strain recovery in some cases, at time-scales that are on the order of the timescale of the relevant relaxation mechanism (stress relaxation in the unentangled soft-phase). Partial disintegration of the glassy phase during mechanical deformation is found to contribute to irrecoverable strain. Temperature dependence of the recovery indicates nearly full elastic recovery above the trigger temperature, which is near the glass-transition temperature of the rubbery switching matrix. We find that the trigger temperature is also directly correlated with the deformation temperature, indicating that deformation temperature influences the recovery temperatures required to obtain a given amount of shape recovery, until the plateau regions overlap above the transition region. Increasing the fraction of glassy phase results in higher strain

  11. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    Science.gov (United States)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  12. Magnetic Resonance Flow Velocity and Temperature Mapping of a Shape Memory Polymer Foam Device

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Gjersing, E; Herberg, J L; Wilson, T S; Maitland, D J

    2008-10-29

    Interventional medical devices based on thermally responsive shape memory polymer (SMP) are under development to treat stroke victims. The goals of these catheter-delivered devices include re-establishing blood flow in occluded arteries and preventing aneurysm rupture. Because these devices alter the hemodynamics and dissipate thermal energy during the therapeutic procedure, a first step in the device development process is to investigate fluid velocity and temperature changes following device deployment. A laser-heated SMP foam device was deployed in a simplified in vitro vascular model. Magnetic resonance imaging (MRI) techniques were used to assess the fluid dynamics and thermal changes associated with device deployment. Spatial maps of the steady-state fluid velocity and temperature change inside and outside the laser-heated SMP foam device were acquired. Though non-physiological conditions were used in this initial study, the utility of MRI in the development of a thermally-activated SMP foam device has been demonstrated.

  13. Solvent-Free Patterning of Colloidal Quantum Dot Films Utilizing Shape Memory Polymers

    Directory of Open Access Journals (Sweden)

    Hohyun Keum

    2017-01-01

    Full Text Available Colloidal quantum dots (QDs with properties that can be tuned by size, shape, and composition are promising for the next generation of photonic and electronic devices. However, utilization of these materials in such devices is hindered by the limited compatibility of established semiconductor processing techniques. In this context, patterning of QD films formed from colloidal solutions is a critical challenge and alternative methods are currently being developed for the broader adoption of colloidal QDs in functional devices. Here, we present a solvent-free approach to patterning QD films by utilizing a shape memory polymer (SMP. The high pull-off force of the SMP below glass transition temperature (Tg in conjunction with the conformal contact at elevated temperatures (above Tg enables large-area, rate-independent, fine patterning while preserving desired properties of QDs.

  14. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    Science.gov (United States)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  15. Monitoring static shape memory polymers using a fiber Bragg grating as a vector-bending sensor

    Science.gov (United States)

    Li, Peng; Yan, Zhijun; Zhou, Kaiming; Zhang, Lin; Leng, Jinsong

    2013-01-01

    We propose and demonstrate a technique for monitoring the recovery deformation of the shape-memory polymers (SMP) using a surface-attached fiber Bragg grating (FBG) as a vector-bending sensor. The proposed sensing scheme could monitor the pure bending deformation for the SMP sample. When the SMP sample undergoes concave or convex bending, the resonance wavelength of the FBG will have red-shift or blue-shift according to the tensile or compressive stress gradient along the FBG. As the results show, the bending sensitivity is around 4.07 nm/cm-1. The experimental results clearly indicate that the deformation of such an SMP sample can be effectively monitored by the attached FBG not just for the bending curvature but also the bending direction.

  16. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    Science.gov (United States)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  17. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    OpenAIRE

    Tsai De-Chang; Chiang Chen-Hsueh

    2015-01-01

    This study primarily involved using a vacuum arc remelting (VAR) process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%). An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processi...

  18. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  19. Vacuum Arc Melting Processes for Biomedical Ni-Ti Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Tsai De-Chang

    2015-01-01

    Full Text Available This study primarily involved using a vacuum arc remelting (VAR process to prepare a nitinol shape-memory alloy with distinct ratios of alloy components (nitinol: 54.5 wt% to 57 wt%. An advantage of using the VAR process is the adoption of a water-cooled copper crucible, which effectively prevents crucible pollution and impurity infiltration. Optimising the melting production process enables control of the alloy component and facilitates a uniformly mixed compound during subsequent processing. This study involved purifying nickel and titanium and examining the characteristics of nitinol alloy after alloy melt, including its microstructure, mechanical properties, phase transition temperature, and chemical components.

  20. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-04-18

    The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light

  1. Synergistic effect of carbon nanofiber and sub-micro filamentary nickel nanostrand on the shape memory polymer nanocomposite

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Du, Shanyi; Gou, Jihua

    2011-01-01

    This work studies the synergistic effect of carbon nanofiber (CNF) and sub-micro filamentary nickel nanostrand on the thermal and electrical properties, as well as the electro-active shape memory behavior, of a shape memory polymer (SMP) nanocomposite. The combination of electrical CNF and electromagnetic nickel nanostrand is used to render insulating thermo-responsive SMPs conductive. Subsequently, the shape memory behavior of the SMP can be activated by the electrical resistive heating. It is shown that sub-micro filamentary nickel-coated nanostrands significantly improved the electrical conductivity to facilitate the actuation of the SMP nanocomposite despite the low nanostrand volume content and low electrical voltage. Also the CNFs are blended with the SMP resin to facilitate the dispersion of nanostrands and improve the thermal conductivity to accelerate the electro- and thermo-active responses

  2. The impact of shape memory test on degradation profile of a bioresorbable polymer.

    Science.gov (United States)

    Musioł, Marta; Jurczyk, Sebastian; Kwiecień, Michał; Smola-Dmochowska, Anna; Domański, Marian; Janeczek, Henryk; Włodarczyk, Jakub; Klim, Magdalena; Rydz, Joanna; Kawalec, Michał; Sobota, Michał

    2018-05-01

    The semicrystalline poly(L-lactide) (PLLA) belongs to the materials with shape memory effect (SME) and as a bioresorbable and biocompatible polymer it have found many applications in medical and pharmaceutical field. Assessment of the SME impact on the polymer degradation profile plays crucial role in applications such as drug release systems or in regenerative medicine. Herein, the results of in vitro degradation studies of PLLA samples after SME full test cycle are presented. The samples were loaded and deformed in two manners: progressive and non-progressive. The performed experiments illustrate also influence of the material mechanical damages, caused e.g. during incorrect implantation of PLLA product, on hydrolytic degradation profile. Apparently, degradation profiles are significantly different for the material which was not subjected to the deformation and the deformed ones. The materials after deformation of 50% (in SME cycle) was characterized by non-reversible morphology changes. The effect was observed in deformed samples during the SME test which were carried out ten times. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  4. Artificial muscles made of chiral two-way shape memory polymer fibers

    Science.gov (United States)

    Yang, Qianxi; Fan, Jizhou; Li, Guoqiang

    2016-10-01

    In this work, we demonstrate the unusual improvement of the tensile actuation of hierarchically chiral structured artificial muscle made of two-way shape memory polymer (2W-SMP) fiber. Experimental results show that the chemically cross-linked poly(ethylene-co-vinyl acetate) 2W-SMP fibers possess an average negative coefficient of thermal expansion (NCTE) that is at least one order higher than that of the polyethylene fiber used previously. As expected, the increase in axial thermal contraction of the precursor fiber leads to an increase in the recovered torque ( 4.4 Nmm ) of the chiral fiber and eventually in the tensile actuation of the twisted-then-coiled artificial muscle ( 67.81 ±1.82 % ). A mechanical model based on Castigliano's second theorem is proposed, and the calculated result is consistent with the experimental result (64.17% tensile stroke). The model proves the significance of the NCTE and the recovered torque on tensile actuation of the artificial muscle and can be used as a guidance for the future design.

  5. Shape memory polymer nanocomposites for application of multiple-field active disassembly: experiment and simulation.

    Science.gov (United States)

    Carrell, John; Zhang, Hong-Chao; Wang, Shiren; Tate, Derrick

    2013-11-19

    Active disassembly (AD) uses innovative materials that can perform a designed disassembly action by the application of an external field. AD provides improvements over current disassembly processes by limiting machine or manual labor and enabling batch processing for end-of-life products. With improved disassembly operations, more reuse of components and purer recycling streams may be seen. One problem with AD, however, has been with the single-field actuation because of the probability of accidental disassembly. This presentation will discuss the application of shape memory polymer (SMP) nanocomposites in a new AD process. This novel AD process requires multiple-field actuation of the SMP nanocomposite fastener. In the analysis of this AD process, thermal and magnetic field tests were performed on the SMP nanocomposite. From these tests, finite-element analysis was performed to model and simulate the multiple-field AD process. The results of the simulations provide performance variables for the AD process and show a better performance time for the SMP nanocomposite fastener than for a comparable SMP fastener.

  6. The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams

    International Nuclear Information System (INIS)

    Yu, Ya-Jen; Hearon, Keith; Maitland, Duncan J; Wilson, Thomas S

    2011-01-01

    The effect of moisture absorption on the glass transition temperature (T g ) and the stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood-contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To the best of our knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T g of the foam, with a maximum water uptake shifting the T g from 67 to 5 °C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h

  7. Shape memory polymers and their composites in aerospace applications: a review

    International Nuclear Information System (INIS)

    Liu, Yanju; Du, Haiyang; Liu, Liwu; Leng, Jinsong

    2014-01-01

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace. (topical review)

  8. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates

    Science.gov (United States)

    Yuan, Chao; Ding, Zhen; Wang, T. J.; Dunn, Martin L.; Qi, H. Jerry

    2017-10-01

    This paper studies a novel method to fabricate three-dimensional (3D) structure from 2D thermo-responsive shape memory polymer (SMP)/elastomer bilayer laminate. In this method, the shape change is actuated by the thermal mismatch strain between the SMP and the elastomer layers upon heating. However, the glass transition behavior of the SMP locks the material into a new 3D shape that is stable even upon cooling. Therefore, the second shape becomes a new permanent shape of the laminate. A theoretical model that accounts for the temperature-dependent thermomechanical behavior of the SMP material and thermal mismatch strain between the two layers is developed to better understand the underlying physics. Model predictions and experiments show good agreement and indicate that the theoretical model can well predict the bending behavior of the bilayer laminate. The model is then used in the optimal design of geometrical configuration and material selection. The latter also illustrates the requirement of thermomechanical behaviors of the SMP to lock the shape. Based on the fundamental understandings, several self-folding structures are demonstrated by the bilayer laminate design.

  9. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    International Nuclear Information System (INIS)

    Roberts, R C; Wu, J; Li, D C; Hau, N Y; Chang, Y H; Feng, S P

    2014-01-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm 2 with stable metal performance

  10. Increasing dimension of structures by 4D printing shape memory polymers via fused deposition modeling

    Science.gov (United States)

    Hu, G. F.; Damanpack, A. R.; Bodaghi, M.; Liao, W. H.

    2017-12-01

    The main objective of this paper is to introduce a 4D printing method to program shape memory polymers (SMPs) during fabrication process. Fused deposition modeling (FDM) as a filament-based printing method is employed to program SMPs during depositing the material. This method is implemented to fabricate complicated polymeric structures by self-bending features without need of any post-programming. Experiments are conducted to demonstrate feasibility of one-dimensional (1D)-to 2D and 2D-to-3D self-bending. It is shown that 3D printed plate structures can transform into masonry-inspired 3D curved shell structures by simply heating. Good reliability of SMP programming during printing process is also demonstrated. A 3D macroscopic constitutive model is established to simulate thermo-mechanical features of the printed SMPs. Governing equations are also derived to simulate programming mechanism during printing process and shape change of self-bending structures. In this respect, a finite element formulation is developed considering von-Kármán geometric nonlinearity and solved by implementing iterative Newton-Raphson scheme. The accuracy of the computational approach is checked with experimental results. It is demonstrated that the theoretical model is able to replicate the main characteristics observed in the experiments. This research is likely to advance the state of the art FDM 4D printing, and provide pertinent results and computational tool that are instrumental in design of smart materials and structures with self-bending features.

  11. Understanding Graphics on a Scalable Latching Assistive Haptic Display Using a Shape Memory Polymer Membrane.

    Science.gov (United States)

    Besse, Nadine; Rosset, Samuel; Zarate, Juan Jose; Ferrari, Elisabetta; Brayda, Luca; Shea, Herbert

    2018-01-01

    We present a fully latching and scalable 4 × 4 haptic display with 4 mm pitch, 5 s refresh time, 400 mN holding force, and 650 μm displacement per taxel. The display serves to convey dynamic graphical information to blind and visually impaired users. Combining significant holding force with high taxel density and large amplitude motion in a very compact overall form factor was made possible by exploiting the reversible, fast, hundred-fold change in the stiffness of a thin shape memory polymer (SMP) membrane when heated above its glass transition temperature. Local heating is produced using an addressable array of 3 mm in diameter stretchable microheaters patterned on the SMP. Each taxel is selectively and independently actuated by synchronizing the local Joule heating with a single pressure supply. Switching off the heating locks each taxel into its position (up or down), enabling holding any array configuration with zero power consumption. A 3D-printed pin array is mounted over the SMP membrane, providing the user with a smooth and room temperature array of movable pins to explore by touch. Perception tests were carried out with 24 blind users resulting in 70 percent correct pattern recognition over a 12-word tactile dictionary.

  12. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    Science.gov (United States)

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Modelling of loading, stress relaxation and stress recovery in a shape memory polymer.

    Science.gov (United States)

    Sweeney, J; Bonner, M; Ward, I M

    2014-09-01

    A multi-element constitutive model for a lactide-based shape memory polymer has been developed that represents loading to large tensile deformations, stress relaxation and stress recovery at 60, 65 and 70°C. The model consists of parallel Maxwell arms each comprising neo-Hookean and Eyring elements. Guiu-Pratt analysis of the stress relaxation curves yields Eyring parameters. When these parameters are used to define the Eyring process in a single Maxwell arm, the resulting model yields at too low a stress, but gives good predictions for longer times. Stress dip tests show a very stiff response on unloading by a small strain decrement. This would create an unrealistically high stress on loading to large strain if it were modelled by an elastic element. Instead it is modelled by an Eyring process operating via a flow rule that introduces strain hardening after yield. When this process is incorporated into a second parallel Maxwell arm, there results a model that fully represents both stress relaxation and stress dip tests at 60°C. At higher temperatures a third arm is required for valid predictions. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  14. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation

    Science.gov (United States)

    Lu, Haibao; Lei, Ming; Zhao, Chao; Xu, Ben; Leng, Jinsong; Fu, Y. Q.

    2015-04-01

    An effective resistive Joule heating approach was conducted to improve the electrical actuation and shape-recovery performance of a shape memory polymer (SMP) nanocomposite. Two types of gold (Au) film patterns were deposited to be used as electrodes to drive thermal-responsive SMPs and achieve a uniform temperature distribution during electro-activated shape recovery. Furthermore, the sensing capability of the Au electrode to both mechanical and thermal stimuli applied to the SMP nanocomposite was experimentally investigated and theoretically analyzed. It was found that the change in the electrical resistance of the Au electrode could be used as an indication of shape-recovery performance. The linear response of the electrical resistance to strain was identified mainly due to the opening/closing of microcracks and their propagations in the Au electrodes during out-of-plane deformations. With an increment of thermomechanical bending cycles, the electrical resistance was increased exponentially, but it returned back to the original reading when the SMP nanocomposite returned back to its permanent shape. Finally, the flexible Au electrode enabled the actuation of the SMP nanocomposite under an electric voltage of 13.4 V, with an improved shape-recovery performance and temperature distribution.

  15. A self-healing 3D woven fabric reinforced shape memory polymer composite for impact mitigation

    International Nuclear Information System (INIS)

    Nji, Jones; Li, Guoqiang

    2010-01-01

    In this paper, a three-dimensional (3D) woven fabric reinforced shape memory polymer composite for impact mitigation was proposed, fabricated, programmed using a three-step strain-controlled thermomechanical cycle at a pre-strain level of 5% and machined to two groups of specimens (G1 and G2) with dimensions 152.4 mm × 101.6 mm × 12.7 mm. The specimens were impact tested, transversely, centrally and repeatedly with 32 and 42 J of energy. G1 specimens were healed after each impact until perforation occurred. G2 specimens were not healed after each impact and served as controls. At 32 J impact energy, G2 specimens were perforated at the 9th impact while G1 specimens lasted until the 15th impact; at 42 J impact energy, G2 specimens were perforated at the 5th impact while G1 specimens were perforated at the 7th impact. Visual inspection, C-scan, and scanning electron microscopy techniques were used to evaluate damage, failure modes, and healing efficiency

  16. The Influence of Water and Solvent Uptake on Functional Properties of Shape-Memory Polymers

    Directory of Open Access Journals (Sweden)

    Ehsan Ghobadi

    2018-01-01

    Full Text Available In this contribution, diffusion of water, acetone, and ethanol into a polymer matrix has been studied experimentally and numerically by finite element approaches. Moreover, the present study reports an assessment of different thermomechanical conditions of the shape-memory (SM performance, for example, stress- or strain-holding times in stress- or strain-controlled thermomechanical cycles and the effect of maximum strain. According to the results presented here, the uptake of acetone in Estane is much higher than ethanol and follows classical Fickian diffusion. Further, a series of thermomechanical measurements conducted on dry and physically (hydrolytically aged polyether urethanes revealed that incorporation of water seems to have an appreciable impact on the shape recovery ratios which can be attributed to the additional physical crosslinks. However, no obvious difference in shape fixation of dry and physically (hydrolytically aged samples could be recognized. Furthermore, by decreasing the strain-holding time, shape recovery improves significantly. Moreover, the shape fixity is found to be independent of holding time. The shape recovery ratio decreased dramatically with an increase in the stress-holding time.

  17. Biomedical engineering in design and application of nitinol stents with shape memory effect

    Science.gov (United States)

    Ryklina, E. P.; Khmelevskaya, I. Y.; Morozova, Tamara V.; Prokoshkin, S. D.

    1996-04-01

    Our studies in the field of endosurgery in collaboration with the physicians of the National Research Center of Surgery of the Academy of Medical Sciences are carried out beginning in 1983. These studies laid the foundation for the new direction of X-ray surgery--X-ray Nitinol stenting of vessels and tubular structures. X-ray nitinol stents are unique self-fixing shells based on the shape memory effect and superelasticity of nickel-titanium alloys self- reconstructed under human body temperature. Applied for stenting of arteries in cases of stenosis etc., bile ducts in cases of benign and malignant stenoses, digestive tract in cases of oesophageal cancer and cervical canal uterus in cases of postsurgical atresiss and strictures of uterine. The purpose of stenting is restoration of the shape of artery or tubular structure by a cylinder frame formation. The especially elaborated original method of stenting allows to avoid the traditional surgical operation, i.e. the stenting is performed without blood, narcosis and surgical knife. The stent to be implanted is transported into the affected zone through the puncture under the X-ray control. Clinical applications of X-ray endovascular stenting has been started in March 1984. During this period nearly 400 operations on stenting have been performed on femoral, iliac, brachio-cephalic, subclavian arteries, bile ducts, tracheas, digestive tract and cervical canal uterus.

  18. A semi-analytical study on helical springs made of shape memory polymer

    International Nuclear Information System (INIS)

    Baghani, M; Naghdabadi, R; Arghavani, J

    2012-01-01

    In this paper, the responses of shape memory polymer (SMP) helical springs under axial force are studied both analytically and numerically. In the analytical solution, we first derive the response of a cylindrical tube under torsional loadings. This solution can be used for helical springs in which both the curvature and pitch effects are negligible. This is the case for helical springs with large ratios of the mean coil radius to the cross sectional radius (spring index) and also small pitch angles. Making use of this solution simplifies the analysis of the helical springs to that of the torsion of a straight bar with circular cross section. The 3D phenomenological constitutive model recently proposed for SMPs is also reduced to the 1D shear case. Thus, an analytical solution for the torsional response of SMP tubes in a full cycle of stress-free strain recovery is derived. In addition, the curvature effect is added to the formulation and the SMP helical spring is analyzed using the exact solution presented for torsion of curved SMP tubes. In this modified solution, the effect of the direct shear force is also considered. In the numerical analysis, the 3D constitutive equations are implemented in a finite element program and a full cycle of stress-free strain recovery of an SMP (extension or compression) helical spring is simulated. Analytical and numerical results are compared and it is shown that the analytical solution gives accurate stress distributions in the cross section of the helical SMP spring besides the global load–deflection response. Some case studies are presented to show the validity of the presented analytical method. (paper)

  19. Formation of biodegradated polymers as components of future composite materials on the basis of shape memory alloy of medical appointment

    Science.gov (United States)

    Nasakina, E. O.; Baikin, A. S.; Sergiyenko, K. V.; Kaplan, M. A.; Konushkin, S. V.; Yakubov, A. D.; Izvin, A. V.; Sudarchikova, M. A.; Sevost’yanov, M. A.; Kolmakov, A. G.

    2018-04-01

    The processes of formation of polymer polylactide or polyglycylidactide films for the subsequent creation of a layered composite with a biodegradable layer on the basis of a nickel-free shape memory alloy TiNbTaZr are studied. The structure of the samples was determined using an SEM. The correspondence of morphology of surfaces of and the substrate itself is noted. High adhesion of the polymer to the future basis of the developed composite material is supposed. The formed films is homogeneous and amorphous throughout the polymer volume. By varying the volume of solutions, it is possible to obtain films of a given thickness for any type of polymer, its molecular weight, and the solution concentration of the polymer in chloroform. Poly (glycolide-lactide) should be more plastic than polylactide.

  20. Demonstration of a multiscale modeling technique: prediction of the stress–strain response of light activated shape memory polymers

    International Nuclear Information System (INIS)

    Beblo, Richard V; Weiland, Lisa Mauck

    2010-01-01

    Presented is a multiscale modeling method applied to light activated shape memory polymers (LASMPs). LASMPs are a new class of shape memory polymer (SMPs) being developed for adaptive structures applications where a thermal stimulus is undesirable. LASMP developmental emphasis is placed on optical manipulation of Young's modulus. A multiscale modeling approach is employed to anticipate the soft and hard state moduli solely on the basis of a proposed molecular formulation. Employing such a model shows promise for expediting down-selection of favorable formulations for synthesis and testing, and subsequently accelerating LASMP development. An empirical adaptation of the model is also presented which has applications in system design once a formulation has been identified. The approach employs rotational isomeric state theory to build a molecular scale model of the polymer chain yielding a list of distances between the predicted crosslink locations, or r-values. The r-values are then fitted with Johnson probability density functions and used with Boltzmann statistical mechanics to predict stress as a function of the strain of the phantom polymer network. Empirical adaptation for design adds junction constraint theory to the modeling process. Junction constraint theory includes the effects of neighboring chain interactions. Empirical fitting results in numerically accurate Young's modulus predictions. The system is modular in nature and thus lends itself well to being adapted to other polymer systems and development applications

  1. Shape memory polymers: A mesoscale model of the internal mechanism leading to the SM phenomena

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav

    24 2008, č. 9 (2008), s. 1533-1548 ISSN 0749-6419 Institutional research plan: CEZ:AV0Z20710524 Keywords : Shape memory * Polymeric materials * Analytical functions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.875, year: 2008

  2. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  3. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  4. Chemical cross-linking of polypropylenes towards new shape memory polymers.

    Science.gov (United States)

    Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C

    2015-04-01

    In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The effect of addition of various elements on properties of NiTi-based shape memory alloys for biomedical application

    Science.gov (United States)

    Kök, Mediha; Ateş, Gonca

    2017-04-01

    In biomedical applications, NiTi and NiTi-based alloys that show their shape memory effects at body temperature are preferred. In this study, the purpose is to produce NiTi and NiTi-based alloys with various chemical rates and electron concentrations and to examine their various physical properties. N45Ti55, Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Sn, Co) alloys were produced in an arc melter furnace in this study. After the homogenization of these alloys, the martensitic phase transformation temperatures were determined with differential-scanner calorimeter. The transformation temperature was found to be below the 37 ° C (body temperature) in Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys; and the transformation temperature of the N45Ti55, Ni48Ti51Sn alloys was found to be over 37 ° C . Then, the micro and crystal structure analyses of the alloys were made, and it was determined that Ni45Ti50Cr2.5Cu2.5, Ni48Ti51X (X=Mn, Co) alloys, which were in austenite phase at room temperature, included B2 (NiTi) phase and Ti2Ni precipitation phase, and the alloys that were in the martensite phase at room temperature included B19ı (NiTi) phase and Ti2Ni phase. The common phase in both alloy groups is the Ti2Ni phase, and this type of phase is generally seen in NiTi alloys that are rich in titanium (Ti-rich).

  6. A phenomenological model for the chemo-responsive shape memory effect in amorphous polymers undergoing viscoelastic transition

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min

    2013-01-01

    We present a phenomenological approach to study the viscoelastic transition and working mechanism of the chemo-responsive shape memory effect (SME) in amorphous shape memory polymers (SMPs). Both the copolymerization viscosity model and Doolittle equation are initially applied to quantitatively identify the influential factors behind the chemo-responsive SME in the SMPs exposure to a right solvent. After this, the Williams–Landel–Ferry (WLF) equation is employed to couple the viscosity (η), time–temperature shift factor (α τ ) and glass transition temperature (T g ) in amorphous polymers. By means of combining the WLF and Arrhenius equations together, the inductively decreased transition temperature is confirmed as the driving force for the chemo-responsive SME. Finally, a phenomenological viscoelastic model is proposed and then verified by the available experimental data reported in the literature and then compared with the simulation results of a semi-empirical model. This phenomenological model is expected to provide a powerful simulation tool for theoretical prediction and experimental substantiation of the chemo-responsive SME in amorphous SMPs by viscoelastic transition. (paper)

  7. Radiation-crosslinking of shape memory polymers based on poly(vinyl alcohol) in the presence of carbon nanotubes

    Science.gov (United States)

    Basfar, A. A.; Lotfy, S.

    2015-01-01

    Shape memory polymers based on poly(vinyl alcohol) (SM-PVA) in the presence of 2-carboxyethyl acrylate oligomers (CEA) and multi-wall carbon nanotubes (MWCNTs) crosslinked by ionizing radiation were investigated. Chemical-crosslinking of PVA by glutaraldehyde in the presence of CEA and MWCNTs was also studied. The swelling and gel fraction of the radiation-crosslinked SM-PVA and chemically crosslinked systems were evaluated. Analysis of the swelling and gel fraction revealed a significant reduction in swelling and an increase in the gel fraction of the material that was chemically crosslinked with glutaraldehyde. The radiation-crosslinked SM-PVA demonstrated 100% gelation at an irradiation dose of 50 kGy. In addition, radiation-crosslinked SM-PVA exhibited good temperature responsive shape-memory behavior. A scanning electron microscopy (SEM) analysis was performed. The thermal properties of radiation-crosslinked SM-PVA were investigated by a thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The ability of the material to return or store energy (E‧), to its ability to lose energy (E″), and the ratio of these effects (Tanδ), which is called damping were examined via DMA. The temperature of Tanδ in the radiation-crosslinked SM-PVA decreased significantly by 6 and 13 °C as a result of the addition of MWCNTs. In addition, the temperature of Tanδ for SM-PVA increased as the irradiation dose increased. These radiation-crosslinked SM-PVA materials show promising shape-memory behavior based on the range of temperatures at which Tanδ appears.

  8. A ‘frozen volume’ transition model and working mechanism for the shape memory effect in amorphous polymers

    Science.gov (United States)

    Lu, Haibao; Wang, Xiaodong; Yao, Yongtao; Qing Fu, Yong

    2018-06-01

    Phenomenological models based on frozen volume parameters could well predict shape recovery behavior of shape memory polymers (SMPs), but the physical meaning of using the frozen volume parameters to describe thermomechanical properties has not been well-established. In this study, the fundamental working mechanisms of the shape memory effect (SME) in amorphous SMPs, whose temperature-dependent viscoelastic behavior follows the Eyring equation, have been established with the considerations of both internal stress and its resulted frozen volume. The stress-strain constitutive relation was initially modeled to quantitatively describe effects of internal stresses at the macromolecular scale based on the transient network theory. A phenomenological ‘frozen volume’ model was then established to characterize the macromolecule structure and SME of amorphous SMPs based on a two-site stress-relaxation model. Effects of the internal stress, frozen volume and strain rate on shape memory behavior and thermomechanical properties of the SMP were investigated. Finally, the simulation results were compared with the experimental results reported in the literature, and good agreements between the theoretical and experimental results were achieved. The novelty and key differences of our newly proposed model with respect to the previous reports are (1). The ‘frozen volume’ in our study is caused by the internal stress and governed by the two-site model theory, thus has a good physical meaning. (2). The model can be applied to characterize and predict both the thermal and thermomechanical behaviors of SMPs based on the constitutive relationship with internal stress parameters. It is expected to provide a power tool to investigate the thermomechanical behavior of the SMPs, of which both the macromolecular structure characteristics and SME could be predicted using this ‘frozen volume’ model.

  9. Intraoral Temperature Triggered Shape-Memory Effect and Sealing Capability of A Transpolyisoprene-Based Polymer

    Directory of Open Access Journals (Sweden)

    Gakuji Tsukada

    2015-11-01

    Full Text Available In dentistry, pure gutta-percha (trans-1,4-polyisoprene (TPI is widely used as a main component of root canal filling materials. TPI has an interesting shape memory formed through cross-linking, and this characteristic is expected to be very effective for development of novel dental treatments; in particular, modification of the shape recovery temperature to the intraoral temperature (37 °C will enhance the applicability of the shape-memory effect of TPI in root canal filling. In this study, trial test specimens consisting of varying proportions of TPI, cis-polyisoprene, zinc oxide, stearic acid, sulfur and dicumyl peroxide were prepared and the temperature dependence of their shape recovery, recovery stress and relaxation modulus were measured. Additionally, their sealing abilities were tested using glass tubing and a bovine incisor. As the ratio of cross-linking agent in the specimens increased, a decrease in recovery temperature and an increase in recovery stress and recovery speed were observed. In addition, the test specimen containing the highest concentration of cross-linking agent showed superior sealing ability under a thermal stimulus of 37 °C in both sealing ability tests.

  10. Spider-silk-like shape memory polymer fiber for vibration damping

    International Nuclear Information System (INIS)

    Yang, Qianxi; Li, Guoqiang

    2014-01-01

    In this study, the static and dynamic properties of shape memory polyurethane (SMPU) fiber are reported and compared to those of spider dragline silk. Although the polymeric fiber has a lower strength compared to spider dragline silks (0.2–0.3 GPa versus 1.1 GPa), it possesses much higher toughness (276–289 MJ m −3 versus 160 MJ m −3 ), due to its excellent extensibility. The dynamic mechanical tests reveal that SMPU fiber has a high damping capacity (tan δ = 0.10–0.35) which is comparable to or even higher than that of spider silks (tan δ = 0.15). In addition, we found that, different programming methods change the shape memory and damping properties of the fiber in different ways and cold-drawing programming is more advocated in structural applications. These results suggest that the SMPU fiber has similar vibration damping and mechanical properties as spider silk, and may find applications in lightweight engineering structures. (paper)

  11. Sustainable shape memory polymers based on epoxidized natural rubber cured by zinc ferulate via oxa-Michael reaction

    Directory of Open Access Journals (Sweden)

    Xuhui Zhang

    2015-10-01

    Full Text Available Although various shape memory polymers (SMPs or diverse applications have been widely reported, the SMPs based on rubbers have been rarely realized due to the low triggering temperature of rubbers. In another aspect, the SMPs based on sustainable substances are highly desired for the growing shortage in fossil resources. In the present study, we accordingly developed the sustainable SMPs with tunable triggering temperature, based on natural rubber (NR and ferulic acid (FA as the raw materials. Specifically, the SMPs are based on a crosslinked network of epoxidized natural rubber (ENR crosslinked by in situ formed zinc ferulate (ZDF via oxa-Michael reaction. The excellent shape memory effect (SME is found in these SMPs, as evidenced by the high fixity/recovery ratio and the tunable triggering temperature. With the incorporation of natural halloysite nanotubes (HNTs, the stress and recovery rate of the SMPs are found to be tunable, which widens the application of this kind of SMPs. The combination of adoption of sustainable raw materials, and the excellent and tunable SME makes these SMPs potentially useful in many applications, such as various actuators and heat-shrinkable package materials.

  12. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    Directory of Open Access Journals (Sweden)

    Tianyu Fang

    2017-05-01

    Full Text Available Shape-memory polymers (SMPs selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA monomer, ethylene glycol dimethylacrylate (EGDMA as a cross-linker, and organic complexes of Yb(TTA2AAPhen or Nd(TTA2AAPhen containing a reactive ligand of acrylic acid (AA were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA2AAPhen and Nd(TTA2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.

  13. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    International Nuclear Information System (INIS)

    El-Tahan, M; Dawood, M; Song, G

    2015-01-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements. (paper)

  14. An electrical-heating and self-sensing shape memory polymer composite incorporated with carbon fiber felt

    International Nuclear Information System (INIS)

    Gong, Xiaobo; Leng, Jinsong; Liu, Liwu; Liu, Yanju

    2016-01-01

    Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures. (paper)

  15. Dually actuated triple shape memory polymers of cross-linked polycyclooctene-carbon nanotube/polyethylene nanocomposites.

    Science.gov (United States)

    Wang, Zhenwen; Zhao, Jun; Chen, Min; Yang, Minhao; Tang, Luyang; Dang, Zhi-Min; Chen, Fenghua; Huang, Miaoming; Dong, Xia

    2014-11-26

    In this work, electrically and thermally actuated triple shape memory polymers (SMPs) of chemically cross-linked polycyclooctene (PCO)-multiwalled carbon nanotube (MWCNT)/polyethylene (PE) nanocomposites with co-continuous structure and selective distribution of fillers in PCO phase are prepared. We systematically studied not only the microstructure including morphology and fillers' selective distribution in one phase of the PCO/PE blends, but also the macroscopic properties including thermal, mechanical, and electrical properties. The co-continuous window of the immiscible PCO/PE blends is found to be the volume fraction of PCO (vPCO) of ca. 40-70 vol %. The selective distribution of fillers in one phase of co-continuous blends is obtained by a masterbatch technique. The prepared triple SMP materials show pronounced triple shape memory effects (SMEs) on the dynamic mechanical thermal analysis (DMTA) and the visual observation by both thermal and electric actuations. Such polyolefin samples with well-defined microstructure, electrical actuation, and triple SMEs might have potential applications as, for example, multiple autochoke elements for engines, self-adjusting orthodontic wires, and ophthalmic devices.

  16. A 1D thermomechanical network transition constitutive model coupled with multiple structural relaxation for shape memory polymers

    Science.gov (United States)

    Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu

    2018-03-01

    A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.

  17. Design of Fatigue Resistant Heusler-strengthened PdTi-based Shape Memory Alloys for Biomedical Applications

    Science.gov (United States)

    Frankel, Dana J.

    The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs

  18. The quintuple-shape memory effect in electrospun nanofiber membranes

    Science.gov (United States)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  19. The quintuple-shape memory effect in electrospun nanofiber membranes

    International Nuclear Information System (INIS)

    Zhang, Fenghua; Zhang, Zhichun; Lu, Haibao; Leng, Jinsong; Liu, Yanju

    2013-01-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future. (paper)

  20. Effects of thermo-mechanical behavior and hinge geometry on folding response of shape memory polymer sheets

    Science.gov (United States)

    Mailen, Russell W.; Dickey, Michael D.; Genzer, Jan; Zikry, Mohammed

    2017-11-01

    Shape memory polymer (SMP) sheets patterned with black ink hinges change shape in response to external stimuli, such as absorbed thermal energy from an infrared (IR) light. The geometry of these hinges, including size, orientation, and location, and the applied thermal loads significantly influence the final folded shape of the sheet, but these variables have not been fully investigated. We perform a systematic study on SMP sheets to fundamentally understand the effects of single and double hinge geometries, hinge orientation and spacing, initial temperature, heat flux intensity, and pattern width on the folding behavior. We have developed thermo-viscoelastic finite element models to characterize and quantify the stresses, strains, and temperatures as they relate to SMP shape changes. Our predictions indicate that hinge orientation can be used to reduce the total bending angle, which is the angle traversed by the folding face of the sheet. Two parallel hinges increase the total bending angle, and heat conduction between the hinges affects the transient folding response. IR intensity and initial temperatures can also influence the transient folding behavior. These results can provide guidelines to optimize the transient folding response and the three-dimensional folded structure obtained from self-folding polymer origami sheets that can be applied for myriad applications.

  1. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  2. Active vortex generator deployed on demand by size independent actuation of shape memory alloy wires integrated in fiber reinforced polymers

    Science.gov (United States)

    Hübler, M.; Nissle, S.; Gurka, M.; Wassenaar, J.

    2016-04-01

    Static vortex generators (VGs) are installed on different aircraft types. They generate vortices and interfuse the slow boundary layer with the fast moving air above. Due to this energizing, a flow separation of the boundary layer can be suppressed at high angles of attack. However the VGs cause a permanently increased drag over the whole flight cycle reducing the cruise efficiency. This drawback is currently limiting the use of VGs. New active VGs, deployed only on demand at low speed, can help to overcome this contradiction. Active hybrid structures, combining the actuation of shape memory alloys (SMA) with fiber reinforced polymers (FRP) on the materials level, provide an actuation principle with high lightweight potential and minimum space requirements. Being one of the first applications of active hybrid structures from SMA and FRP, these active vortex generators help to demonstrate the advantages of this new technology. A new design approach and experimental results of active VGs are presented based on the application of unique design tools and advanced manufacturing approaches for these active hybrid structures. The experimental investigation of the actuation focuses on the deflection potential and the dynamic response. Benchmark performance data such as a weight of 1.5g and a maximum thickness of only 1.8mm per vortex generator finally ensure a simple integration in the wing structure.

  3. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    Science.gov (United States)

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  4. Shape-memory properties of magnetically active triple-shape nanocomposites based on a grafted polymer network with two crystallizable switching segments

    Directory of Open Access Journals (Sweden)

    A. Lendlein

    2012-01-01

    Full Text Available Thermo-sensitive shape-memory polymers (SMP, which are capable of memorizing two or more different shapes, have generated significant research and technological interest. A triple-shape effect (TSE of SMP can be activated e.g. by increasing the environmental temperature (Tenv, whereby two switching temperatures (Tsw have to be exceeded to enable the subsequent shape changes from shape (A to shape (B and finally the original shape (C. In this work, we explored the thermally and magnetically initiated shape-memory properties of triple-shape nanocomposites with various compositions and particle contents using different shape-memory creation procedures (SMCP. The nanocomposites were prepared by the incorporation of magnetite nanoparticles into a multiphase polymer network matrix with grafted polymer network architecture containing crystallizable poly(ethylene glycol (PEG side chains and poly(ε-caprolactone (PCL crosslinks named CLEGC. Excellent triple-shape properties were achieved for nanocomposites with high PEG weight fraction when two-step programming procedures were applied. In contrast, single-step programming resulted in dual-shape properties for all investigated materials as here the temporary shape (A was predominantly fixed by PCL crystallites.

  5. Facile fabrication of uniaxial nanopatterns on shape memory polymer substrates using a complete bottom-up approach

    Science.gov (United States)

    Chen, Zhongbi; Krishnaswamy, Sridhar

    2014-03-01

    In earlier work, we have demonstrated an assisted self-assembly fabrication method for unidirectional submicron patterns using pre-programmed shape memory polymers (SMP) as the substrate in an organic/inorganic bilayer structure. In this paper, we propose a complete bottom-up method for fabrication of uniaxial wrinkles whose wavelength is below 300 nm. The method starts with using the aforementioned self-assembled bi-layer wrinkled surface as the template to make a replica of surface wrinkles on a PDMS layer which is spin-coated on a pre-programmed SMP substrate. When the shape recovery of the substrate is triggered by heating it to its transition temperature, the substrate has been programmed in such a way that it shrinks uniaxially to return to its permanent shape. Consequently, the wrinkle wavelength on PDMS reduces accordingly. A subsequent contact molding process is carried out on the PDMS layer spin-coated on another pre-programmed SMP substrate, but using the wrinkled PDMS surface obtained in the previous step as the master. By activating the shape recovery of the substrate, the wrinkle wavelength is further reduced a second time in a similar fashion. Our experiments showed that the starting wavelength of 640 nm decreased to 290 nm after two cycles of recursive molding. We discuss the advantages and limitations of our recursive molding approach compared to the prevalent top-down fabrication methods represented by lithography. The present study is expected to o er a simple and cost-e ective fabrication method of nano-scale uniaxial wrinkle patterns with the potential for large-scale mass-production.

  6. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  7. Enhanced photomechanical response of a Ni-Ti shape memory alloy coated with polymer-based photothermal composites

    Science.gov (United States)

    Perez-Zúñiga, M. G.; Sánchez-Arévalo, F. M.; Hernández-Cordero, J.

    2017-10-01

    A simple way to enhance the activation of shape memory effects with light in a Ni-Ti alloy is demonstrated. Using polydimethylsiloxane-carbon nanopowder (PDMS+CNP) composites as coatings, the one-way shape memory effect (OWSME) of the alloy can be triggered using low power IR light from a laser diode. The PDMS+CNP coatings serve as photothermal materials capable to absorb light, and subsequently generate and dissipate heat in a highly efficient manner, thereby reducing the optical powers required for triggering the OWSME in the Ni-Ti alloy. Experimental results with a cantilever flexural test using both, bare Ni-Ti and coated samples, show that the PDMS+CNP coatings perform as thermal boosters, and therefore the temperatures required for phase transformation in the alloy can be readily obtained with low laser powers. It is also shown that the two-way shape memory effect (TWSME) can be set in the Ni-Ti alloy through cycling the TWSME by simply modulating the laser diode signal. This provides a simple means for training the material, yielding a light driven actuator capable to provide forces in the mN range. Hence, the use of photothermal coatings on Ni-Ti shape memory alloys may offer new possibilities for developing light-controlled smart actuators.

  8. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    Science.gov (United States)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  9. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    Science.gov (United States)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-15

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  10. Forming of shape memory composite structures

    DEFF Research Database (Denmark)

    Santo, Loredana; Quadrini, Fabrizio; De Chiffre, Leonardo

    2013-01-01

    A new forming procedure was developed to produce shape memory composite structures having structural composite skins over a shape memory polymer core. Core material was obtained by solid state foaming of an epoxy polyester resin with remarkably shape memory properties. The composite skin consisted...... of a two-layer unidirectional thermoplastic composite (glass filled polypropylene). Skins were joined to the foamed core by hot compression without any adhesive: a very good adhesion was obtained as experimental tests confirmed. The structure of the foam core was investigated by means of computer axial...... tomography. Final shape memory composite panels were mechanically tested by three point bending before and after a shape memory step. This step consisted of a compression to reduce the panel thickness up to 60%. At the end of the bending test the panel shape was recovered by heating and a new memory step...

  11. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    Science.gov (United States)

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  13. Polymer/metal nanocomposites for biomedical applications.

    Science.gov (United States)

    Zare, Yasser; Shabani, Iman

    2016-03-01

    Polymer/metal nanocomposites consisting of polymer as matrix and metal nanoparticles as nanofiller commonly show several attractive advantages such as electrical, mechanical and optical characteristics. Accordingly, many scientific and industrial communities have focused on polymer/metal nanocomposites in order to develop some new products or substitute the available materials. In the current paper, characteristics and applications of polymer/metal nanocomposites for biomedical applications are extensively explained in several categories including strong and stable materials, conductive devices, sensors and biomedical products. Moreover, some perspective utilizations are suggested for future studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Analysis of the finite deformation response of shape memory polymers: II. 1D calibration and numerical implementation of a finite deformation, thermoelastic model

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part II of this work presents the calibration of a previously developed thermoelastic constitutive model which is capable of handling finite deformations. The model is proposed in a general three-dimensional framework; however, this work focuses on reducing the model to one dimension and subsequently calibrating the model using experimental data obtained in part I. The one-dimensional numerical implementation of the model is presented, including the handling of the system of nonlinear equations and the integral term resulting from the constitutive model. The model is then used to predict the uniaxial shape memory effect. Results indicate good agreement between the model predictions and the experimental results, but the predictions do not capture the irrecoverable deformation present at the end of recovery

  15. Effect of Cross-linking Density on Creep and Recovery Behavior in Epoxy-Based Shape Memory Polymers (SMEPs) for Structural Applications

    Science.gov (United States)

    Rao, Kavitha V.; Ananthapadmanabha, G. S.; Dayananda, G. N.

    2016-12-01

    Epoxy-based shape memory polymers (SMEPs) are gaining importance in the area of aerospace structures due to their high strength and stiffness which is a primary requirement for an SMEP in structural applications. The understanding of viscoelastic behavior of SMEPs is very essential to assess their shape memory effect. In the present work, three types of SMEPs with varying cross-linking densities were developed by curing an aromatic epoxy resin with aliphatic amines. Glass transition temperature ( T g) was measured for these SMEPs using advanced rheometric expansion system, and from the T g measurements, a range of temperatures from glassy to rubbery regimes were chosen. At selected temperatures, creep-recovery tests were performed in order to evaluate the viscoelastic behavior of SMEPs and also to investigate the effect of temperature on creep-recovery. Further, a three-parameter viscoelastic model (Zener) was used to fit the data obtained from experiments. Model parameters like moduli of the springs and viscosity of the dashpot were evaluated by curve fitting. Results revealed that Zener model was well suited to describe the viscoelastic behavior of SMEPs as a function of test temperatures.

  16. Quantitative separation of the influence of hydrogen bonding of ethanol/water mixture on the shape recovery behavior of polyurethane shape memory polymer

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Min Huang, Wei; Fu, Y Q

    2014-01-01

    A thermally responsive polyurethane shape memory polymer (SMP) can be actuated in water through a hydrogen bonding interaction between water and the SMP. In this work, we present a comprehensive approach to quantify the hydrogen bonding on the shape recovery behavior of a polyurethane SMP. The stimuli response to the hydrogen bonding of the polyurethane SMP was investigated in ethanol/water mixtures by varying the water content. It was found that depending on the water content, the SMP features a critical hydrogen bonding strength associated with its shape recovery behavior. The Hildebrand solubility parameter theory was employed to quantitatively identify and separate the hydrogen bonding effect of the ethanol/water mixture on the shape recovery ratio and the time. Furthermore, a phenomenological model was developed to predict the glass transition temperature and the shape recovery time of a polyurethane SMP and was verified by the available experimental results. (paper)

  17. Shape memory materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Compared with piezoelectric ceramics and magnetostrictive materials, the shape memory materials possess larger recoverable strain and recovery stress but slower response to external field. It is expected that the magneto-shape memory materials may develop considerable strain as well as rapid and precise shape control. Pseudoelasticity and shape memory effect (SME) resulted from martensitic transformation and its reverse transformation in shape memory materials were generally described. The requirements of appearing the shape memory effect in materials and the criteria for thermoelastic martensitic transformation were given. Some aspects concerning characteristics of martensitic transformation, and factors affecting SME in Ni-Ti, Cu-Zn-Al and Fe-Mn-Si based alloys as well as ZrO2 containing ceramics were briefly reviewed. Thermodynamic calculation of Ms temperature as function of grain size and parent ordering in Cu-Zn-Al was presented. The works on prediction of Ms in Fe-Mn-Si based alloys and in ZrO2-CeO2 were mentioned. Magnetic shape memory materials were briefly introduced.

  18. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. On the origin of the Vogel–Fulcher–Tammann law in the thermo-responsive shape memory effect of amorphous polymers

    International Nuclear Information System (INIS)

    Lu, Haibao; Huang, Wei Min

    2013-01-01

    All amorphous shape memory polymers (SMPs) are featured by their relaxation behavior above and below the switching transition temperature (T SW ). Above T SW , the glass transition and secondary transition merge together, resulting in the cooperative (α) movement in polymer macromolecules. Below T SW , movement is non-cooperative (β). In this study, three thermodynamic constitutive frameworks for the shape recovery behavior in amorphous SMPs are proposed based on the Arrhenius, Vogel–Fulcher–Tammann (VFT) and Bässler laws, respectively, and incorporated with parameters (stress, strain and relaxation time) as functions of temperature. The relaxation times of α and β movements satisfy the VFT and Arrhenius laws, respectively. The simulation is compared with the available experimental results reported in the literature for verification. The VFT law is found to be better than the other models, and is able to provide an accurate prediction for the temperature dependent relaxation behavior, from the Arrhenius behavior below, to the Williams–Landel–Ferry behavior above T SW . (paper)

  20. Shape memory effect alloys

    International Nuclear Information System (INIS)

    Koshimizu, S.

    1992-01-01

    Although the pseudo- or super-elasticity phenomena and the shape memory effect were known since the 1940's, the enormous curiosity and the great interest to their practical applications emerged with the development of the NITINOL alloy (Nickel-Titanium Naval Ordance Laboratory) by the NASA during the 1960's. This fact marked the appearance of a new class of materials, popularly known as shape memory effect alloys (SMEA). The objective of this work is to present a state-of-the-art of the development and applications for the SMEA. (E.O.)

  1. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  2. Magnetic shape memory behaviour

    International Nuclear Information System (INIS)

    Brown, P.J.; Gandy, A.P.; Ishida, K.; Kainuma, R.; Kanomata, T.; Matsumoto, M.; Morito, H.; Neumann, K.-U.; Oikawa, K.; Ouladdiaf, B.; Ziebeck, K.R.A.

    2007-01-01

    Materials that can be transformed at one temperature T F , then cooled to a lower temperature T M and plastically deformed and on heating to T F regain their original shape are currently receiving considerable attention. In recovering their shape the alloys can produce a displacement or a force, or a combination of the two. Such behaviour is known as the shape memory effect and usually takes place by change of temperature or applied stress. For many applications the transformation is not sufficiently rapid or a change in temperature/pressure not appropriate. As a result, considerable effort is being made to find a ferromagnetic system in which the effect can be controlled by an applied magnetic field. The results of recent experiments on ferromagnetic shape memory compounds aimed at understanding the underlying mechanism will be reviewed

  3. Shape memory alloy actuator

    Science.gov (United States)

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  4. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  5. Shape Memory Polymer Composites of Poly(styrene-b-butadiene-b-styrene Copolymer/Liner Low Density Polyethylene/Fe3O4 Nanoparticles for Remote Activation

    Directory of Open Access Journals (Sweden)

    Yongkun Wang

    2016-11-01

    Full Text Available Magnetically sensitive shape memory poly(styrene-b-butadiene-b-styrene copolymer (SBS/liner low density polyethylene (LLDPE composites filled with various contents of Fe3O4 nanoparticles were prepared. The influence of the Fe3O4 nanoparticles content on the thermal properties, mechanical properties, fracture morphology, magnetic behavior, and shape memory effect of SBS/LLDPE/Fe3O4 composites was systematically studied in this paper. The results indicated that homogeneously dispersed Fe3O4 nanoparticles ensured the uniform heat generation and transfer in the alternating magnetic field, and endowed the SBS/LLDPE/Fe3O4 composites with an excellent magnetically responsive shape memory effect. When the shape memory composites were in the alternating magnetic field (f = 60 kHz, H = 21.21 kA·m−1, the best shape recovery ratio reached 99%, the shape retention ratio reached 99.4%, and the shape recovery speed increased significantly with the increment of Fe3O4 nanoparticles. It is anticipated that tagging products with this novel shape memory composite is helpful for the purpose of an intravascular delivery system in Micro-Electro-Mechanical System (MEMS devices.

  6. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  7. Towards 4D Printed Scaffolds for Tissue Engineering : Exploiting 3D Shape Memory Polymers to Deliver Time-Controlled Stimulus on Cultured Cells

    NARCIS (Netherlands)

    Hendrikson, Wilhelmus J.; Rouwkema, Jeroen; Clementi, Federico; van Blitterswijk, Clemens; Farè, Silvia; Moroni, Lorenzo

    2017-01-01

    Tissue engineering needs innovative solutions to better fit the requirements of a minimally invasive approach, providing at the same time instructive cues to cells. The use of shape memory polyurethane has been investigated by producing 4D scaffolds via additive manufacturing technology. Scaffolds

  8. Shape-Memory PVDF Exhibiting Switchable Piezoelectricity.

    Science.gov (United States)

    Hoeher, Robin; Raidt, Thomas; Novak, Nikola; Katzenberg, Frank; Tiller, Joerg C

    2015-12-01

    In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%. Programming upon rolling induces the transformation from the nonelectroactive α-phase to the piezoelectric β-phase. The highest β-phase content is found to be 83% for a programming strain of 200% affording a d33 value of -30 pm V(-1). This is in good accordance with literature known values for piezoelectric properties. Thermal triggering this material does not only result in a shape change but also renders the material nonelectroactive. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Shape memory of polyurethanes with silver nanoparticles

    International Nuclear Information System (INIS)

    Monteiro, Fernanda M.A.; Souza, Patterson P. de; Pereira, Iaci M.; Silva, Livio B.J. da; Orefice, Rodrigo L.

    2011-01-01

    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol -1 ) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO 3 and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  10. Effect of in vitro degradation of poly(D,L-lactide)/beta-tricalcium composite on its shape-memory properties.

    Science.gov (United States)

    Zheng, Xiaotong; Zhou, Shaobing; Yu, Xiongjun; Li, Xiaohong; Feng, Bo; Qu, Shuxin; Weng, Jie

    2008-07-01

    The in vitro degradation characteristic and shape-memory properties of poly(D,L-lactide) (PDLLA)/beta-tricalcium phosphate (beta-TCP) composites were investigated because of their wide application in biomedical fields. In this article, PDLLA and crystalline beta-TCP were compounded and interesting shape-memory behaviors of the composite were first investigated. Then, in vitro degradation of the PDLLA/beta-TCP composites with weight ratios of 1:1, 2:1, and 3:1 was performed in phosphate buffer saline solution (PBS) (154 mM, pH 7.4) at 37 degrees C. The effect of in vitro degradation time for PDLLA/beta-TCP composites on shape-memory properties was studied by scanning electron microscopy, differential scanning calorimetry, gel permeation chromatography, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The changes of structural morphology, glass transition temperature (T(g)), molecular weight, and weight loss of composites matrix and pH change of degradation medium indicated that shape-memory effects at different degradation time were nonlinearly influenced because of the breaking down of polymer chain and the formation of degradation products. Furthermore, the results from XRD and FTIR implied that the degradation products, for example, hydroxyapatite (HA), calcium hydrogen phosphate (CaHPO(4)), and calcium pyrophosphate (Ca(2)P(2)O(7)) phases also had some effects on shape-memory properties during the degradation. 2007 Wiley Periodicals, Inc.

  11. Ferromagnetic shape memory materials

    Science.gov (United States)

    Tickle, Robert Jay

    Ferromagnetic shape memory materials are a new class of active materials which combine the properties of ferromagnetism with those of a diffusionless, reversible martensitic transformation. These materials have been the subject of recent study due to the unusually large magnetostriction exhibited in the martensitic phase. In this thesis we report the results of experiments which characterize the magnetic and magnetomechanical properties of both austenitic and martensitic phases of ferromagnetic shape memory material Ni2MnGa. In the high temperature cubic phase, anisotropy and magnetostriction constants are determined for a range of temperatures from 50°C down to the transformation temperature, with room temperature values of K1 = 2.7 +/- 104 ergs/cm3 and lambda100 = -145 muepsilon. In the low temperature tetragonal phase, the phenomenon of field-induced variant rearrangement is shown to produce anomalous results when traditional techniques for determining anisotropy and magnetostriction properties are employed. The requirement of single variant specimen microstructure is explained, and experiments performed on such a specimen confirm a uniaxial anisotropy within each martensitic variant with anisotropy constant Ku = 2.45 x 106 ergs/cm3 and a magnetostriction constant of lambdasv = -288 +/- 73 muepsilon. A series of magnetomechanical experiments investigate the effects of microstructure bias, repeated field cycling, varying field ramp rate, applied load, and specimen geometry on the variant rearrangement phenomenon in the martensitic phase. In general, the field-induced strain is found to be a function of the variant microstructure. Experiments in which the initial microstructure is biased towards a single variant state with an applied load generate one-time strains of 4.3%, while those performed with a constant bias stress of 5 MPa generate reversible strains of 0.5% over a period of 50 cycles. An increase in the applied field ramp rate is shown to reduce the

  12. Ti-Ni-based shape memory alloys as smart materials

    International Nuclear Information System (INIS)

    Otsuka, K.; Xu, Y.; Ren, X.

    2003-01-01

    Smart materials consist of three principal materials, ferroelectrics, shape memory alloys (SMA) and electro-active polymers (EAP). Among these SMAs, especially Ti-Ni-based alloys are important, since only they can provide large recoverable strains and high recovery stress. In the present paper the unique characteristics of Ti-Ni-based shape memory alloys are reviewed on an up-to-date basis with the aim of their applications to smart materials and structures. (orig.)

  13. Bifurcations and Crises in a Shape Memory Oscillator

    Directory of Open Access Journals (Sweden)

    Luciano G. Machado

    2004-01-01

    Full Text Available The remarkable properties of shape memory alloys have been motivating the interest in applications in different areas varying from biomedical to aerospace hardware. The dynamical response of systems composed by shape memory actuators presents nonlinear characteristics and a very rich behavior, showing periodic, quasi-periodic and chaotic responses. This contribution analyses some aspects related to bifurcation phenomenon in a shape memory oscillator where the restitution force is described by a polynomial constitutive model. The term bifurcation is used to describe qualitative changes that occur in the orbit structure of a system, as a consequence of parameter changes, being related to chaos. Numerical simulations show that the response of the shape memory oscillator presents period doubling cascades, direct and reverse, and crises.

  14. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  16. The MDI-Mediated Lateral Crosslinking of Polyurethane Copolymer and the Impact on Tensile Properties and Shape Memory Effect

    International Nuclear Information System (INIS)

    Chung, Yong Chan; Chung, Hyang Mi; Choi, Jae Won; Chun, Byoung Chul

    2012-01-01

    The maximum stress and strain at break remained high and stable after MDI-mediated crosslinking. Similarly, shape recovery and shape retention tests also showed excellent and reproducible results. The MDI-mediated crosslinking was responsible for the interesting tensile and shape memory results. Therefore, it was demonstrated in this investigation that the allophanate type crosslinking, unlike previous misleading information, was possible under the mild reaction conditions. Polyurethane (PU) has long been investigated due to its excellent mechanical properties, shape memory effect, and biocompatibility, and was grafted with pendant functional groups to tailor the polymer characteristics without affecting their basic structure. Actually, polyethyleneglycol has been grafted to polyurethane to improve biocompatibility in biomedical applications, and low temperature flexibility could be improved by the pendant naphthol group grafted to PU. In the field of shape memory polyurethane, mechanical and shape memory properties could be improved by terminal crosslinking with glycerol, pentaerythritol, and dextrin. Alternatively, a flexible crosslinking method was devised to demonstrate both high mechanical strength and shape recovery

  17. Shape Memory Alloys (Part II: Classification, Production and Application

    Directory of Open Access Journals (Sweden)

    I. Ivanic

    2014-09-01

    breakdown at low stress levels. The technologies for production of shape memory alloys are induction melting, vacuum melting, vacuum arc melting, following hot and cold working (forging, rolling, wire drawing. In addition, rapid solidification methods, like melt spinning and continuous casting have been developed. These methods are characterized by high cooling rates. High cooling rates allow very short time for diffusion processes and may lead to extremely fine microstructure, better homogeneity etc. SMAs have found applications in many areas due to their thermomechanical and thermoelectrical properties (biomedical applications, engineering industry, electrical industry. In this paper, a review of shape memory alloys, properties and applications of mentioned materials is presented.

  18. Recent Advances in Glycerol Polymers: Chemistry and Biomedical Applications

    Science.gov (United States)

    Zhang, Heng

    2015-01-01

    Glycerol polymers are attracting increased attention due to the diversity of polymer compositions and architectures available. This article provides a brief chronological review on the current status of these polymers along with representative examples of their use for biomedical applications. First, we describe the underlying chemistry of glycerol, which provides access to a range of monomers for subsequent polymerizations. We then review the various synthetic methodologies to prepare glycerol-based polymers including polyethers, polycarbonates, polyesters, and so forth. Next, we describe several biomedical applications where glycerol polymers are being investigated including carriers for drug delivery, sealants or coatings for tissue repair, and agents possessing antibacterial activity. Fourth, we describe the growing market opportunity for the use of polymers in medicine. Finally we conclude and summarize the findings, as well as discuss potential opportunities for continued research efforts. PMID:25308354

  19. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  20. Magneto-active shape memory composites by incorporating ferromagnetic microparticles in a thermo-responsive polyalkenamer

    International Nuclear Information System (INIS)

    Cuevas, J M; German, L; Iturrondobeitia, M; Alonso, J; Laza, J M; Vilas, J L; León, L M

    2009-01-01

    Covalently crosslinked semi-crystalline polyalkenamer-based shape memory polymers (SMPs) were prepared and characterized. Thermal and thermo-mechanical properties of thermo-sensitive polymers manufactured by melt compounding were investigated, and shape memory features demonstrated. For remote activation of shape recovery properties, electromagnetic inductive heating of a series of iron-based ferromagnetic microparticles was evaluated for subsequent incorporation into a shape memory polymeric matrix. The inductive heating capacity of micro-sized iron-filled polyalkenamers with different volume fraction contents was optimized and a comparison of thermo-mechanical properties of filled and unfilled shape memory polymeric networks was performed. Electromagnetically triggered shape memory properties of easily formed composites were documented and shape memory recovery rates comparable to those obtained by conventional heating methods were demonstrated for further research and design of new types of applications

  1. Modeling the behaviour of shape memory materials under large deformations

    Science.gov (United States)

    Rogovoy, A. A.; Stolbova, O. S.

    2017-06-01

    In this study, the models describing the behavior of shape memory alloys, ferromagnetic materials and polymers have been constructed, using a formalized approach to develop the constitutive equations for complex media under large deformations. The kinematic and constitutive equations, satisfying the principles of thermodynamics and objectivity, have been derived. The application of the Galerkin procedure to the systems of equations of solid mechanics allowed us to obtain the Lagrange variational equation and variational formulation of the magnetostatics problems. These relations have been tested in the context of the problems of finite deformation in shape memory alloys and ferromagnetic materials during forward and reverse martensitic transformations and in shape memory polymers during forward and reverse relaxation transitions from a highly elastic to a glassy state.

  2. Polymer and polymer-hybrid nanoparticles from synthesis to biomedical applications

    CERN Document Server

    Rangelov, Stanislav

    2013-01-01

    Polymeric and hybrid nanoparticles have received increased scientific interest in terms of basic research as well as commercial applications, promising a variety of uses for nanostructures in fields including bionanotechnology and medicine. Condensing the relevant research into a comprehensive reference, Polymer and Polymer-Hybrid Nanoparticles: From Synthesis to Biomedical Applications covers an array of topics from synthetic procedures and macromolecular design to possible biomedical applications of nanoparticles and materials based on original and unique polymers. The book presents a well-r

  3. Phase-Change Thermoplastic Elastomer Blends for Tunable Shape Memory by Physical Design

    Energy Technology Data Exchange (ETDEWEB)

    Mineart, Kenneth P.; Tallury, Syamal S.; Li, Tao; Lee, Byeongdu; Spontak, Richard J.

    2016-12-14

    Shape-memory polymers (SMPs) change shape upon exposure to an environmental stimulus.1-3 They are of considerable importance in the ongoing development of stimuli-responsive biomedical4,5 and deployable6 devices, and their function depends on the presence of two components.7 The first provides mechanical rigidity to ensure retention of one or more temporary strain states and also serves as a switch capable of releasing a temporary strain state. The second, a network-forming component, is required to restore the polymer to a prior strain state upon stimulation. In thermally-activated SMPs, the switching element typically relies on a melting or glass transition temperature,1-3,7 and broad or multiple switches permit several temporary strain states.8-10 Chemical integration of network-forming and switching species endows SMPs with specific properties.8,10,11 Here, we demonstrate that phase-change materials incorporated into network-forming macromolecules yield shape-memory polymer blends (SMPBs) with physically tunable switching temperatures and recovery kinetics for use in multi-responsive laminates and shape-change electronics.

  4. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    Science.gov (United States)

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  5. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  6. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  7. Surface Modification of Polymer Substrates for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Oldřich Neděla

    2017-09-01

    Full Text Available While polymers are widely utilized materials in the biomedical industry, they are rarely used in an unmodified state. Some kind of a surface treatment is often necessary to achieve properties suitable for specific applications. There are multiple methods of surface treatment, each with their own pros and cons, such as plasma and laser treatment, UV lamp modification, etching, grafting, metallization, ion sputtering and others. An appropriate treatment can change the physico-chemical properties of the surface of a polymer in a way that makes it attractive for a variety of biological compounds, or, on the contrary, makes the polymer exhibit antibacterial or cytotoxic properties, thus making the polymer usable in a variety of biomedical applications. This review examines four popular methods of polymer surface modification: laser treatment, ion implantation, plasma treatment and nanoparticle grafting. Surface treatment-induced changes of the physico-chemical properties, morphology, chemical composition and biocompatibility of a variety of polymer substrates are studied. Relevant biological methods are used to determine the influence of various surface treatments and grafting processes on the biocompatibility of the new surfaces—mammalian cell adhesion and proliferation is studied as well as other potential applications of the surface-treated polymer substrates in the biomedical industry.

  8. Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate-b-Poly(Propylene Glycol-b-Poly(γ-Benzyl-l-Glutamate

    Directory of Open Access Journals (Sweden)

    Lin Gu

    2017-12-01

    Full Text Available Shape memory polymers (SMPs have attracted much attention as an important class of stimuli-responsive materials for biomedical applications. For SMP-based biomaterials, in addition to suitable shape recovery performances, their mechanical properties, biodegradability, biocompatibility, and sterilizability needs to be considered. Polypeptides can satisfy the requirements outlined above. However, there are few reports on shape memory polypeptides. In this paper, shape memory poly(γ-benzyl-l-glutamate (PBLG-PPG-PBLG was synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA with poly(propylene glycol bis(2-aminopropyl ether as the macroinitiator. 1H Nuclear Magnetic Resonance (NMR and Fourier-Transform Infrared Spectroscopy (FTIR were used to characterize the structure of the obtained PBLG-PPG-PBLG. The FTIR analysis showed that PBLG-PPG-PBLG has α-helical and β-sheet structures. PBLG-PPG-PBLG has good shape memory properties, its shape recovery time is less than 120 s, and its shape recovery rate is 100%. In this study, we reported a simple synthetic method to obtain intelligent polypeptide materials, which will be used in many biomedical applications.

  9. Tailored high performance shape memory epoxy–silica nanocomposites. Structure design

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Donato, Ricardo Keitel; Matějka, Libor

    2016-01-01

    Roč. 7, č. 3 (2016), s. 560-572 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GAP108/12/1459 Institutional support: RVO:61389013 Keywords : shape-memory polymer * epoxy-silica nanocomposite * shape-memory effect Subject RIV: CD - Macromolecular Chemistry Impact factor: 5.375, year: 2016

  10. 3D Printed Photoresponsive Devices Based on Shape Memory Composites.

    Science.gov (United States)

    Yang, Hui; Leow, Wan Ru; Wang, Ting; Wang, Juan; Yu, Jiancan; He, Ke; Qi, Dianpeng; Wan, Changjin; Chen, Xiaodong

    2017-09-01

    Compared with traditional stimuli-responsive devices with simple planar or tubular geometries, 3D printed stimuli-responsive devices not only intimately meet the requirement of complicated shapes at macrolevel but also satisfy various conformation changes triggered by external stimuli at the microscopic scale. However, their development is limited by the lack of 3D printing functional materials. This paper demonstrates the 3D printing of photoresponsive shape memory devices through combining fused deposition modeling printing technology and photoresponsive shape memory composites based on shape memory polymers and carbon black with high photothermal conversion efficiency. External illumination triggers the shape recovery of 3D printed devices from the temporary shape to the original shape. The effect of materials thickness and light density on the shape memory behavior of 3D printed devices is quantified and calculated. Remarkably, sunlight also triggers the shape memory behavior of these 3D printed devices. This facile printing strategy would provide tremendous opportunities for the design and fabrication of biomimetic smart devices and soft robotics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The morphing properties of a vascular shape memory composite

    International Nuclear Information System (INIS)

    Cortes, P; Kubas, G; Terzak, J; Phillips, D; Baur, J W

    2014-01-01

    This work investigates the fabrication, experimentation, testing, and modeling of shape memory composites consisting of two-way shape memory alloy (SMA) tubes embedded in a shape memory polymer (SMP) matrix. The hybrid system here investigated is thermally activated via internal transport of thermal fluids through the SMA vascular system. The resulting shape memory composite (SMC) combines the high modulus and high specific actuation force of SMAs with the strong shape fixing and variable stiffness of SMPs to create a light-weight composite capable of controllably and rapidly achieving two shape memory states. Specifically, a 25° thermally induced out-of-plane bending state is achieved with a 2% volume fraction of SMA in the composite after 2 min of being activated by an internal thermal fluid. Here, while the thermal structural design of the SMC was not optimized and the thermal cycling was significantly restricted by the low thermal conduction of the SMP, the deflection of the composite was within 20% of the expected value modeled by the thermal–mechanical finite element analysis (FEA) here performed. The close agreement between the experimental performance and the modeled composite response suggests that morphing composites based on SMAs and SMPs are promising structures for adaptive applications. (paper)

  12. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  13. Degradability of Polymers for Implantable Biomedical Devices

    Science.gov (United States)

    Lyu, SuPing; Untereker, Darrel

    2009-01-01

    Many key components of implantable medical devices are made from polymeric materials. The functions of these materials include structural support, electrical insulation, protection of other materials from the environment of the body, and biocompatibility, as well as other things such as delivery of a therapeutic drug. In such roles, the stability and integrity of the polymer, over what can be a very long period of time, is very important. For most of these functions, stability over time is desired, but in other cases, the opposite–the degradation and disappearance of the polymer over time is required. In either case, it is important to understand both the chemistry that can lead to the degradation of polymers as well as the kinetics that controls these reactions. Hydrolysis and oxidation are the two classes of reactions that lead to the breaking down of polymers. Both are discussed in detail in the context of the environmental factors that impact the utility of various polymers for medical device applications. Understanding the chemistry and kinetics allows prediction of stability as well as explanations for observations such as porosity and the unexpected behavior of polymeric composite materials in some situations. In the last part, physical degradation such interfacial delamination in composites is discussed. PMID:19865531

  14. Fluorinated Polymers as Smart Materials for Advanced Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Vanessa F. Cardoso

    2018-02-01

    Full Text Available Fluorinated polymers constitute a unique class of materials that exhibit a combination of suitable properties for a wide range of applications, which mainly arise from their outstanding chemical resistance, thermal stability, low friction coefficients and electrical properties. Furthermore, those presenting stimuli-responsive properties have found widespread industrial and commercial applications, based on their ability to change in a controlled fashion one or more of their physicochemical properties, in response to single or multiple external stimuli such as light, temperature, electrical and magnetic fields, pH and/or biological signals. In particular, some fluorinated polymers have been intensively investigated and applied due to their piezoelectric, pyroelectric and ferroelectric properties in biomedical applications including controlled drug delivery systems, tissue engineering, microfluidic and artificial muscle actuators, among others. This review summarizes the main characteristics, microstructures and biomedical applications of electroactive fluorinated polymers.

  15. Thermoplastic shape-memory polyurethanes based on natural oils

    International Nuclear Information System (INIS)

    Saralegi, Ainara; Eceiza, Arantxa; Corcuera, Maria Angeles; Johan Foster, E; Weder, Christoph

    2014-01-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure–property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80–100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties. (paper)

  16. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    International Nuclear Information System (INIS)

    Yu Xiongjun; Zhou Shaobing; Zheng Xiaotong; Guo Tao; Xiao Yu; Song Botao

    2009-01-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m -1 . The nanocomposite is composed of crosslinked poly(ε-caprolactone) (c-PCL) and Fe 3 O 4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe 3 O 4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe 3 O 4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe 3 O 4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  17. Thermomechanical macroscopic model of shape memory alloys

    International Nuclear Information System (INIS)

    Volkov, A.E.; Sakharov, V.Yu.

    2003-01-01

    The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru

  18. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jérémy

    2017-03-27

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  19. Shape-Memory Behavior of Polylactide/Silica Ionic Hybrids

    KAUST Repository

    Odent, Jé ré my; Raquez, Jean-Marie; Samuel, Cé dric; Barrau, Sophie; Enotiadis, Apostolos; Dubois, Philippe; Giannelis, Emmanuel P.

    2017-01-01

    Commercial polylactide (PLA) was converted and endowed with shape-memory properties by synthesizing ionic hybrids based on blends of PLA with imidazolium-terminated PLA and poly[ε-caprolactone-co-d,l-lactide] (P[CL-co-LA]) and surface-modified silica nanoparticles. The electrostatic interactions assist with the silica nanoparticle dispersion in the polymer matrix. Since nanoparticle dispersion in polymers is a perennial challenge and has prevented nanocomposites from reaching their full potential in terms of performance we expect this new design will be exploited in other polymers systems to synthesize well-dispersed nanocomposites. Rheological measurements of the ionic hybrids are consistent with the formation of a network. The ionic hybrids are also much more deformable compared to the neat PLA. More importantly, they exhibit shape-memory behavior with fixity ratio Rf ≈ 100% and recovery ratio Rr = 79%, for the blend containing 25 wt % im-PLA and 25 wt % im-P[CL-co-LA] and 5 wt % of SiO2–SO3Na. Dielectric spectroscopy and dynamic mechanical analysis show a second, low-frequency relaxation attributed to strongly immobilized polymer chains on silica due to electrostatic interactions. Creep compliance tests further suggest that the ionic interactions prevent permanent slippage in the hybrids which is most likely responsible for the significant shape-memory behavior observed.

  20. Shape memory thermal conduction switch

    Science.gov (United States)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  1. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes.

    Science.gov (United States)

    Petrović, Zoran S; Milić, Jelena; Zhang, Fan; Ilavsky, Jan

    2017-07-14

    Novel fast response shape-memory polyurethanes were prepared from bio-based polyols, diphenyl methane diisocyanate and butane diol for the first time. The bio-based polyester polyols were synthesized from 9-hydroxynonanoic acid, a product obtained by ozonolysis of fatty acids extracted from soy oil and castor oil. The morphology of polyurethanes was investigated by synchrotron ultra-small angle X-ray scattering, which revealed the inter-domain spacing between the hard and soft phases, the degree of phase separation, and the level of intermixing between the hard and soft phases. We also conducted thorough investigations of the thermal, mechanical, and dielectric properties of the polyurethanes, and found that high crystallization rate of the soft segment gives these polyurethanes unique properties suitable for shape-memory applications, such as adjustable transition temperatures, high degree of elastic elongations, and good mechanical strength. These materials are also potentially biodegradable and biocompatible, therefore suitable for biomedical and environmental applications.

  2. Shape-memory polymers and multifunctional composites

    National Research Council Canada - National Science Library

    Leng, Jinsong; Du, Shanyi

    2010-01-01

    ... and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright materi...

  3. Nanocellulose in Polymer Composites and Biomedical: Research and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yuan [ORNL; Tekinalp, Halil L [ORNL; Peter, William H [ORNL; Eberle, Cliff [ORNL; Naskar, Amit K [ORNL; Ozcan, Soydan [ORNL

    2014-01-01

    Nanocellulose materials are nano-sized cellulose fibers or crystals that are produced by bacteria or derived from plants. These materials exhibit exceptional strength characteristics, light weight, transparency, and excellent biocompatibility. Compared to some other nanomaterials, nanocellulose is renewable and less expensive to produce. As such, a wide range of applications for nanocellulose has been envisioned. Most extensively studied areas include polymer composites and biomedical applications. Cellulose nanofibrils and nanocrystals have been used to reinforce both thermoplastic and thermoset polymers. Given the hydrophilic nature of these materials, the interfacial properties with most polymers are often poor. Various surface modification procedures have thus been adopted to improve the interaction between polymer matrix and cellulose nanofibrils or nanocrystals. In addition, the applications of nanocellulose as biomaterials have been explored including wound dressing, tissue repair, and medical implants. Nanocellulose materials for wound healing and periodontal tissue recovery have become commercially available, demonstrating the great potential of nanocellulose as a new generation of biomaterials. In this review, we highlight the applications of nanocellulose as reinforcing fillers for composites and the effect of surface modification on the mechanical properties as well as the application as biomaterials.

  4. Applications of shape memory alloys in Japan

    International Nuclear Information System (INIS)

    Asai, M.; Suzuki, Y.

    2000-01-01

    In Japan, a first application of shape memory TiNi alloy was a moving flap in an air-conditioner which was developed as sensing function of shape memory alloy at Matsushista Electric Industrial Co. Then, shape memory utilized in a coffee maker, an electric rice-cooker, a thermal mixing valve and etc. were commercialized in Japan. And brassiere wires, a guide wire for medical treatment, an antenna for portable telephone and others were commercialized utilizing superelasticity. At the same time with these commercial products, there was not only progress in fabrication technology to effect accurate transformation temperature, but also the discovery of small hysteresis alloy such as R-phase or TiNiCu alloy and low transformation temperature alloy such as TiNiFe, TiNiV and TiNiCo alloys. Therefore the shape memory alloy market has expanded widely to electric appliances, automobile, residence, medical care and other field today. (orig.)

  5. Shape Memory Alloy Adaptive Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will demonstrate and scale up an innovative manufacturing process that yields aerospace grade shape memory alloy (SMA) solids and periodic...

  6. A slant type shape memory alloy

    International Nuclear Information System (INIS)

    Kanada, T.; Enokizono, M.

    2000-01-01

    A heat-treated Fe-based shape memory alloy (SMA) has compatible properties, magnetization and shape memory effect (SME). Since SME depends on the heat treatment conditions (temperature and time), we produced a slant-type SMA that has a gradient SME value in the longitudinal direction of the specimen. It is obvious that sheet specimen is superior to wire because the value of SME as a slant SME shows greater efficiency than that of wire

  7. In situ temperature tunable pores of shape memory polyurethane membranes

    International Nuclear Information System (INIS)

    Ahn, Joon-Sung; Yu, Woong-Ryeol; Youk, Ji Ho; Ryu, Hee Youk

    2011-01-01

    Conventional shape memory polymers, such as shape memory polyurethanes (SMPU), can exhibit net two-way shape memory behavior (2WSM), i.e., upon heating and subsequent cooling, their macroscopic shapes change reversibly under an applied bias load. This paper is aimed at reporting similar 2WSM behavior, especially by focusing on the size of nanopores/micropores in SMPU membranes, i.e., the size of the pores can be reversibly changed by up to about 300 nm upon repeated heating and cooling. The SMPU membranes were prepared by electrospinning and elongated at temperatures higher than the transition temperature of the SMPU. Under the constant stress, the size change of the pores in the membranes was measured by applying cyclic temperature change. It was observed that the pore size changed from 150 to 440 nm according to the temperature change, demonstrating that the SMPU membrane can be utilized as a smart membrane to selectively separate substances according to their sizes by just controlling temperature

  8. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    Science.gov (United States)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X. Q.

    2013-12-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures.

  9. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  10. Properties and medical applications of shape memory alloys.

    Science.gov (United States)

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications.

  11. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  12. Polylactide-based polyurethane shape memory nanocomposites (Fe3O4/PLAUs) with fast magnetic responsiveness

    International Nuclear Information System (INIS)

    Gu, Shu-Ying; Jin, Sheng-Peng; Gao, Xie-Feng; Mu, Jian

    2016-01-01

    Polylactide-based polyurethane shape memory nanocomposites (Fe 3 O 4 /PLAUs) with fast magnetic responsiveness are presented. For the purpose of fast response and homogeneous dispersion of magnetic nanoparticles, oleic acid was used to improve the dispersibility of Fe 3 O 4 nanoparticles in a polymer matrix. A homogeneous distribution of Fe 3 O 4 nanoparticles in the polymer matrix was obtained for nanocomposites with low Fe 3 O 4 loading content. A small agglomeration was observed for nanocomposites with 6 wt% and 9 wt% loading content, leading to a small decline in the mechanical properties. PLAU and its nanocomposites have glass transition around 52 °C, which can be used as the triggering temperature. PLAU and its nanocomposites have shape fixity ratios above 99%, shape recovery ratios above 82% for the first cycle and shape recovery ratios above 91% for the second cycle. PLAU and its nanocomposites also exhibit a fast water bath or magnetic responsiveness. The magnetic recovery time decreases with an increase in the loading content of Fe 3 O 4 nanoparticles due to an improvement in heating performance for increased weight percentage of fillers. The nanocomposites have fast responses in an alternating magnetic field and have potential application in biomedical areas such as intravascular stent. (paper)

  13. A bidirectional shape memory alloy folding actuator

    International Nuclear Information System (INIS)

    Paik, Jamie K; Wood, Robert J

    2012-01-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype. (paper)

  14. Shape Memory of Human Red Blood Cells

    OpenAIRE

    Fischer, Thomas M.

    2004-01-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spher...

  15. Shape memory system with integrated actuation using embedded particles

    Science.gov (United States)

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  16. Polydopamine Particle-Filled Shape-Memory Polyurethane Composites with Fast Near-Infrared Light Responsibility.

    Science.gov (United States)

    Yang, Li; Tong, Rui; Wang, Zhanhua; Xia, Hesheng

    2018-03-25

    A new kind of fast near-infrared (NIR) light-responsive shape-memory polymer composites was prepared by introducing polydopamine particles (PDAPs) into commercial shape-memory polyurethane (SMPU). The toughness and strength of the polydopamine-particle-filled polyurethane composites (SMPU-PDAPs) were significantly enhanced with the addition of PDAPs due to the strong interface interaction between PDAPs and polyurethane segments. Owing to the outstanding photothermal effect of PDAPs, the composites exhibit a rapid light-responsive shape-memory process in 60 s with a PDAPs content of 0.01 wt%. Due to the excellent dispersion and convenient preparation method, PDAPs have great potential to be used as high-efficiency and environmentally friendly fillers to obtain novel photoactive functional polymer composites. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Shape memory of human red blood cells.

    Science.gov (United States)

    Fischer, Thomas M

    2004-05-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.

  18. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  19. Polymers in regenerative medicine biomedical applications from nano- to macro-structures

    CERN Document Server

    Monleon Pradas, Manuel

    2015-01-01

    Biomedical applications of Polymers from Scaffolds toNanostructures The ability of polymers to span wide ranges of mechanicalproperties and morph into desired shapes makes them useful for avariety of applications, including scaffolds, self-assemblingmaterials, and nanomedicines. With an interdisciplinary list ofsubjects and contributors, this book overviews the biomedicalapplications of polymers and focuses on the aspect of regenerativemedicine. Chapters also cover fundamentals, theories, and tools forscientists to apply polymers in the following ways: Matrix protein interactions with synthe

  20. Shape memory behavior of single and polycrystalline nickel rich nickel titanium alloys

    Science.gov (United States)

    Kaya, Irfan

    NiTi is the most commonly used shape memory alloy (SMA) and has been widely used for bio-medical, electrical and mechanical applications. Nickel rich NiTi shape memory alloys are coming into prominence due to their distinct superelasticity and shape memory properties as compared to near equi-atomic NiTi shape memory alloys. Besides, their lower density and higher work output than steels makes these alloys an excellent candidate for aerospace and automotive industry. Shape memory properties and phase transformation behavior of high Ni-rich Ni54Ti46 (at.%) polycrystals and Ni-rich Ni 51Ti49 (at.%) single-crystals are determined. Their properties are sensitive to heat treatments that affect the phase transformation behavior of these alloys. Phase transformation properties and microstructure were investigated in aged Ni54Ti46 alloys with differential scanning calorimetry (DSC) and transmission electron microscopy (TEM) to reveal the precipitation characteristics and R-phase formation. It was found that Ni54Ti46 has the ability to exhibit perfect superelasticity under high stress levels (~2 GPa) with 4% total strain after 550°C-3h aging. Stress independent R-phase transformation was found to be responsible for the change in shape memory behavior with stress. The shape memory responses of [001], [011] and [111] oriented Ni 51Ti49 single-crystals alloy were reported under compression to reveal the orientation dependence of their shape memory behavior. It has been found that transformation strain, temperatures and hysteresis, Classius-Clapeyron slopes, critical stress for plastic deformation are highly orientation dependent. The effects of precipitation formation and compressive loading at selected temperatures on the two-way shape memory effect (TWSME) properties of a [111]- oriented Ni51Ti49 shape memory alloy were revealed. Additionally, aligned Ni4Ti3 precipitates were formed in a single crystal of Ni51Ti49 alloy by aging under applied compression stress along the

  1. Elastomeric networks based on trimethylene carbonate polymers for biomedical applications : physical properties and degradation behaviour

    NARCIS (Netherlands)

    Bat, E.

    2010-01-01

    The number of applications for biomedical technologies is ever-increasing, and there is a need to develop new materials with properties that can conform to the requirements of a specific application. Synthetic polymers are of great importance in the biomedical field as they can be designed to

  2. Shape memory and superelastic behavior of Ti-7.5Nb-4Mo-1Sn alloy

    International Nuclear Information System (INIS)

    Zhang, D.C.; Lin, J.G.; Jiang, W.J.; Ma, M.; Peng, Z.G.

    2011-01-01

    Research highlights: → A Ti-based shape memory alloy, Ti-7.5Nb-4Mo-1Sn, was designed. → The martensitic transformation start temperature of the alloy, M s , is 261 K. → The alloy exhibits good shape memory and superelastic behaviors. → The alloy also shows a good superelastic stability at room temperature. → The Ti-5Mo-7.5Nb-1Sn alloy has a potential application as a biomedical material. -- Abstract: In the present work, a Ti-based shape memory alloy with the composition of Ti-7.5Nb-4Mo-1Sn was designed based on the d-electron orbit theory. The shape memory and superelastic behavior of the alloy were investigated. It is found that the martensitic transformation temperature of the alloy is near 261 K. The tensile and the thermal cycling testing results show that the alloy exhibits the stable shape memory effect and superelasticity at room temperature. The maximum recovered strain of the alloy is 4.83%.

  3. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  4. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    Science.gov (United States)

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  5. Design of shape memory alloy (SMA) actuators

    CERN Document Server

    Rao, Ashwin; Reddy, J N

    2015-01-01

    This short monograph presents an analysis and design methodology for shape memory alloy (SMA) components such as wires, beams, and springs for different applications. The solid-solid, diffusionless phase transformations in thermally responsive SMA allows them to demonstrate unique characteristics like superelasticity and shape memory effects. The combined sensing and actuating capabilities of such materials allows them to provide a system level response by combining multiple functions in a single material system. In SMA, the combined mechanical and thermal loading effects influence the functionality of such materials. The aim of this book is to make the analysis of these materials accessible to designers by developing a "strength of materials" approach to the analysis and design of such SMA components inspired from their various applications with a review of various factors influencing the design process for such materials.

  6. Constitutive Models for Shape Memory Alloy Polycrystals

    Science.gov (United States)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  7. Quasistatic isothermal evolution of shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Frigeri, S.; Krejčí, Pavel; Stefanelli, U.

    2011-01-01

    Roč. 21, č. 12 (2011), s. 2409-2432 ISSN 0218-2025 R&D Projects: GA ČR GAP201/10/2315 Institutional research plan: CEZ:AV0Z10190503 Keywords : shape memory alloys * quasistatic evolution Subject RIV: BA - General Mathematics Impact factor: 1.635, year: 2011 http://www.worldscinet.com/m3as/21/2112/S0218202511005787.html

  8. Thermoinduced plastic flow and shape memory effects

    Directory of Open Access Journals (Sweden)

    Xiao Heng

    2011-01-01

    Full Text Available We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials.

  9. Shape-memory effect of nanocomposites based on liquid-crystalline elastomers

    Science.gov (United States)

    Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.

    2016-05-01

    In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.

  10. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    Science.gov (United States)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  11. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    Science.gov (United States)

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  12. Thermomechanical behavior of a two-way shape memory composite actuator

    International Nuclear Information System (INIS)

    Ge, Qi; Westbrook, Kristofer K; Dunn, Martin L; Jerry Qi, H; Mather, Patrick T

    2013-01-01

    Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design. (paper)

  13. On the thermomechanical deformation of silver shape memory nanowires

    International Nuclear Information System (INIS)

    Park, Harold S.; Ji, Changjiang

    2006-01-01

    We present an analysis of the uniaxial thermomechanical deformation of single-crystal silver shape memory nanowires using atomistic simulations. We first demonstrate that silver nanowires can show both shape memory and pseudoelastic behavior, then perform uniaxial tensile loading of the shape memory nanowires at various deformation temperatures, strain rates and heat transfer conditions. The simulations show that the resulting mechanical response of the shape memory nanowires depends strongly upon the temperature during deformation, and can be fundamentally different from that observed in bulk polycrystalline shape memory alloys. The energy and temperature signatures of uniaxially loaded silver shape memory nanowires are correlated to the observed nanowire deformation, and are further discussed in comparison to bulk polycrystalline shape memory alloy behavior

  14. Shape Memory Properties and Enzymatic Degradability of Poly(ε-caprolactone)-Based Polyurethane Urea Containing Phenylalanine-Derived Chain Extender.

    Science.gov (United States)

    Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong

    2018-04-24

    Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Shape memory alloys as damping materials

    International Nuclear Information System (INIS)

    Humbeeck, J. van

    2000-01-01

    Shape memory alloys are gaining an increased interest as passive as well as active damping materials. This damping ability when applied in structural elements can lead to a better noise control, improved life time and even better performance of the envisaged tools. By passive damping, it is understood that the material converts a significant part of unwanted mechanical energy into heat. This mechanical energy can be a (resonance) vibration, impact loading or shock waves. This high damping capacity finds its origin in the thermoelastic martensitic phase due to the hysteretic mobility of martensite-variants or different phase interfaces. The damping capacity increases with increasing amplitude of the applied vibration or impact and is almost frequency independent. Special interest exists moreover for damping extreme large displacements by applying the mechanical hysteresis performed during pseudoelastic loading. This aspect is nowadays very strongly studied as a tool for protecting buildings against earthquakes in seismic active regions. Active damping can be obtained in hybrid composites by controlling the recovery stresses or strains of embedded shape memory alloy wires. This controls the internal energy fo a structure which allows controlled modal modification and tuning of the dynamical properties of structural elements. But also impact damage, acoustic radiation, dynamic shape control can be actively controlled. As a consequence improved fatigue-resistance, better performance and a longer lifetime of the structural elements can be obtained. (orig.)

  16. Joint made of shape memory alloy

    International Nuclear Information System (INIS)

    Amano, Kazuo; Enomoto, Kunio

    1998-01-01

    The present invention provides a joint which is less loosen even if it is used under a circumference undergoing heat cycles such as in a nuclear power plant. Namely, a liner shape has a structure different between the right-to-left, which is different from existent right and left symmetrical shape. A groove is formed on the side of pipeline to be connected, and upon joint connection, the liner is pushed into the groove formed on the pipeline to connect them by the force caused upon transformation of the shape memory alloy. In the joint having such a structure, the clamping force of the joint is less reduced by the effects of heat cycles. Even when the clamping force is reduced by some or other causes, the joint is not dropped off from the pipeline. Even when the joint made of a shape memory alloy of a type using a liner is used as a joint for connecting longitudinal pipelines of a nuclear power plant, the reliability and the safety can be maintained. (I.S.)

  17. Isothermal recovery rates in shape memory polyurethanes

    International Nuclear Information System (INIS)

    Azra, Charly; Plummer, Christopher J G; Månson, Jan-Anders E

    2011-01-01

    This work compares the time dependence of isothermal shape recovery in thermoset and thermoplastic shape memory polyurethanes (SMPUs) with comparable glass transition temperatures. In each case, tensile tests have been used to quantify the influence of various thermo-mechanical programming parameters (deformation temperature, recovery temperature, and stress and storage times following the deformation step) on strain recovery under zero load (free recovery) and stress recovery under fixed strain (constrained recovery). It is shown that the duration of the recovery event may be tuned over several decades of time with an appropriate choice of programming parameters, but that there is a trade-off between the rate of shape recovery and the recoverable stress level. The results are discussed in terms of the thermal characteristics of the SMPUs in the corresponding temperature range as characterized by modulated differential scanning calorimetry and dynamic mechanical analysis, with the emphasis on the role of the effective width of the glass transition temperature and the stability of the network that gives rise to the shape memory effect. (fast track communication)

  18. Polydopamine--a nature-inspired polymer coating for biomedical science.

    Science.gov (United States)

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  19. Thin film shape memory alloys for optical sensing applications

    International Nuclear Information System (INIS)

    Fu, Y Q; Luo, J K; Huang, W M; Flewitt, A J; Milne, W I

    2007-01-01

    Based on shape memory effect of the sputtered thin film shape memory alloys, different types of micromirror structures were designed and fabricated for optical sensing application. Using surface micromachining, TiNi membrane mirror structure has been fabricated, which can be actuated based on intrinsic two-way shape memory effect of the free-standing TiNi film. Using bulk micromachining, TiNi/Si and TiNi/Si 3 N 4 microcantilever mirror structures were fabricated

  20. Shape memory effect and super elasticity. Its dental applications.

    Science.gov (United States)

    Kotian, R

    2001-01-01

    The shape memory alloys are quite fascinating materials characterized by a shape memory effect and super elasticity which ordinary metals do not have. This unique behaviour was first found in a Au-47.5 at % Cd alloy in 1951, and was published in 1963 by the discovery of Ti-Ni alloy. Shape memory alloys now being practically used as new functional alloys for various dental and medical applications.

  1. Shape-Memory-Alloy Actuator For Flight Controls

    Science.gov (United States)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  2. Using Ternary Alloy Additions to Engineer Nitinol Shape Memory Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — Improving travel capabilities is essential in order to further investigative space exploration. For aerospace applications, weight savings is essential. Shape memory...

  3. Shape Memory Alloy-Based Periodic Cellular Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I effort will develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular structures...

  4. The Effect of Shape Memory on Red Blood Cell Motions

    Science.gov (United States)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  5. Additive Manufacturing of Shape Memory Alloys

    Science.gov (United States)

    Van Humbeeck, Jan

    2018-04-01

    Selective Laser Melting (SLM) is an additive manufacturing production process, also called 3D printing, in which functional, complex parts are produced by selectively melting patterns in consecutive layers of powder with a laser beam. The pattern the laser beam is following is controlled by software that calculates the pattern by slicing a 3D CAD model of the part to be constructed. Apart from SLM, also other additive manufacturing techniques such as EBM (Electron Beam Melting), FDM (Fused Deposition Modelling), WAAM (Wire Arc Additive Manufacturing), LENS (Laser Engineered Net Shaping such as Laser Cladding) and binder jetting allow to construct complete parts layer upon layer. But since more experience of AM of shape memory alloys is collected by SLM, this paper will overview the potentials, limits and problems of producing NiTi parts by SLM.

  6. Rotor Embedded with Shape Memory Alloy Wires

    Directory of Open Access Journals (Sweden)

    K. Gupta

    2000-01-01

    Full Text Available In the present analysis, the fundamental natural frequency of a Jeffcott and a two-mass rotor with fibre reinforced composite shaft embedded with shape memory alloy (SMA wires is evaluated by Rayleigh's procedure. The flexibility of rotor supports is taken into account. The effect of three factors, either singly or in combination with each other, on rotor critical speed is studied. The three factors are: (i increase in Young's modulus of SMA (NITINOL wires when activated, (ii tension in wires because of phase recovery stresses, and (iii variation of support stiffness by three times because of activation of SMA in rotor supports. It is shown by numerical examples that substantial variation in rotor critical speeds can be achieved by a combination of these factors which can be effectively used to avoid resonance during rotor coast up/down.

  7. Micromechanical modelling of shape memory alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y.F.; Wang, X.M.; Yue, Z.F. [School of Mechanic, Civil Engineering and Architecture, Northwestern Polytechnical University, Xian, 710072 (China)

    2004-03-01

    An isothermal finite element method (FEM) model has been applied to study the behavior of two kinds of shape memory alloy (SMA) composites. For SMA-fiber reinforced normal metal composites, the FEM analysis shows that the mechanical behavior of the composites depends on the SMA volume fraction. For normal metal-fiber reinforced SMA matrix composites, the SMA phase transformation is affected by the increasing Young's modulus of the metal fiber. The phase transformation was also treated using a simple numerical analysis, which assumes that there are uniform stresses and strains distributions in the fiber and the matrix respectively. It is found that there is an obvious difference between the FEM analysis and the simple numerical assessment. Only FEM can provide reasonable predictions of phase transformations in SMA/normal metal composites. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  8. Development of microactuators from shape memory alloys

    International Nuclear Information System (INIS)

    Kohl, M.

    2002-04-01

    Shape memory alloys (SMAs) have the fascinating property of shape recovery, which is associated with the generation of high energy densities. Nowadays, they are already used in several very successful applications. Within the last 10 years, SMA devices have entered also the field of microsystems technology. The present report gives an overview on the current state-of-the-art. For the examples of SMA microvalves and SMA linear actuators, the microactuator development is described from the idea to the prototype in comprehensive breadth. The breadth of research and development activities on SMA microactuators presently ranges from pure scientific topics of materials research to technological problems, e.g. of micromachining, integration and contacting. Further key aspects of development are three-dimensional models for the handling of complex SMA actuator geometries and coupled simulation routines in order to take multifunctional properties into account. For actuator design, mechanical and thermal optimization criteria are introduced, whose systematic implementation allows an optimum use of the shape memory effect. Some of the presented prototypes are already competitive components. One example are normally-open SMA microvalves driven by SMA foil actuators of 20 μm thickness, which are counted among the smallest microvalves and which still are able to control pressures and flows comparable to other valve concepts. Due to their modular design they can be combined with other microfluidic components in a flexible way for realization of fluidic microsystems. Another example are SMA microgrippers, a further development of SMA linear actuators, which presently outperform other microgrippers of comparable size with respect to gripping force and stroke. (orig.)

  9. In-situ gelling polymers for biomedical applications

    CERN Document Server

    2015-01-01

    This book presents the research involving in situ gelling polymers and can be used as a guidebook for academics, industrialists and postgraduates interested in this area. This work summaries the academic contributions from the top authorities in the field and explore the fundamental principles of in situ gelling polymeric networks, along with examples of their major applications. This book aims to provide an up-to-date resource of in situ gelling polymer research.

  10. Biomedical applications of polymers derived by reversible addition - fragmentation chain-transfer (RAFT).

    Science.gov (United States)

    Fairbanks, Benjamin D; Gunatillake, Pathiraja A; Meagher, Laurence

    2015-08-30

    RAFT- mediated polymerization, providing control over polymer length and architecture as well as facilitating post polymerization modification of end groups, has been applied to virtually every facet of biomedical materials research. RAFT polymers have seen particularly extensive use in drug delivery research. Facile generation of functional and telechelic polymers permits straightforward conjugation to many therapeutic compounds while synthesis of amphiphilic block copolymers via RAFT allows for the generation of self-assembled structures capable of carrying therapeutic payloads. With the large and growing body of literature employing RAFT polymers as drug delivery aids and vehicles, concern over the potential toxicity of RAFT derived polymers has been raised. While literature exploring this complication is relatively limited, the emerging consensus may be summed up in three parts: toxicity of polymers generated with dithiobenzoate RAFT agents is observed at high concentrations but not with polymers generated with trithiocarbonate RAFT agents; even for polymers generated with dithiobenzoate RAFT agents, most reported applications call for concentrations well below the toxicity threshold; and RAFT end-groups may be easily removed via any of a variety of techniques that leave the polymer with no intrinsic toxicity attributable to the mechanism of polymerization. The low toxicity of RAFT-derived polymers and the ability to remove end groups via straightforward and scalable processes make RAFT technology a valuable tool for practically any application in which a polymer of defined molecular weight and architecture is desired. Copyright © 2015. Published by Elsevier B.V.

  11. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    OpenAIRE

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were inc...

  12. Two-way shape memory behavior of shape memory polyurethanes with a bias load

    International Nuclear Information System (INIS)

    Hong, Seok Jin; Yu, Woong-Ryeol; Youk, Ji Ho

    2010-01-01

    Thermo-responsive shape memory polyurethane (SMPU) is a smart material that can respond to external heat by changing its macroscopic shape from a temporary configuration to a memorized permanent one. The temporary shape can be processed using mechanical forces above a certain temperature (the transition temperature) and can be maintained until the material acquires a certain thermal energy. Thereafter, the material will recover its memorized permanent shape. However, it is unclear what will occur if the thermal energy is then dissipated, i.e., the material temperature decreases. There are two possibilities: the material will respond to the dissipated energy, resulting in another macroscopic shape change; or nothing will happen beyond the thermal contraction. The former is called two-way shape memory (TWSM) behavior and the latter is called one-way shape memory behavior. This paper reports novel findings showing that TWSM behavior can be imparted to SMPUs using a thermo-mechanical treatment, i.e., imposing a constant stress on them after their temporary shaping. A series of experiments were carried out to characterize the TWSM behavior of SMPUs and to explain its mechanism

  13. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    International Nuclear Information System (INIS)

    Artemenko, A.; Kylián, O.; Choukourov, A.; Gordeev, I.; Petr, M.; Vandrovcová, M.; Polonskyi, O.; Bačáková, L.; Slavinska, D.; Biederman, H.

    2012-01-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: ► Effect of common sterilization methods on three kinds of plasma polymers is studied. ► Physical, chemical and bioresponsive properties of plasma polymers are analyzed. ► Changes induced by sterilization depend strongly on type of the plasma polymer.

  14. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Artemenko, A. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Kylian, O., E-mail: ondrej.kylian@gmail.com [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Choukourov, A.; Gordeev, I.; Petr, M. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Vandrovcova, M. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Polonskyi, O. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic); Bacakova, L. [Institute of Physiology, Academy of Sciences of the Czech Republic, Department of Growth and Differentiation of Cell Populations, Videnska 1083, 142 20, Prague 4 (Czech Republic); Slavinska, D.; Biederman, H. [Charles University in Prague, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holesovickach 2, 180 00 Prague (Czech Republic)

    2012-10-01

    This study is focused on the evaluation of resistance of plasma polymers toward common sterilization techniques, i.e. property important for possible use of such materials in biomedical applications. Three kinds of plasma polymers having different bioadhesive natures were studied: plasma polymerized poly(ethylene oxide), fluorocarbon plasma polymers, and nitrogen-rich plasma polymers. These plasma polymers were subjected to dry heat, autoclave and UV radiation treatment. Their physical, chemical and bioresponsive properties were determined by means of different techniques (ellipsometry, atomic force microscopy, wettability measurements, X-ray photoelectron spectroscopy and biological tests with osteoblast-like cells MG63). The results clearly show that properties of thin films of plasma polymers may be significantly altered by a sterilization process. Moreover, observed changes induced by selected sterilization methods were found to depend strongly on the sterilized plasma polymer. - Highlights: Black-Right-Pointing-Pointer Effect of common sterilization methods on three kinds of plasma polymers is studied. Black-Right-Pointing-Pointer Physical, chemical and bioresponsive properties of plasma polymers are analyzed. Black-Right-Pointing-Pointer Changes induced by sterilization depend strongly on type of the plasma polymer.

  15. Piezoelectric Polymer Ultrasound Transducers and Its Biomedical Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kang Lyeol; Cao, Yanggang [Department of Physics, Pukyong National University, Busan (Korea, Republic of)

    2012-10-15

    PVDF(poly vinylidene fluoride) and P(VDF-TrFE)(poly vinylidene fluoride-tetrafluoroethylene) are the typical piezoelectric polymers with unique properties. Even they are inferior to conventional piezoelectric ceramics PZT in electromechanical conversion efficiency and interior loss, though they are superior in receiving sensitivity and frequency bandwidth. Their acoustic impedances are relatively close to water or biological tissue and it is easier to make thin film than other piezoelectric materials. Furthermore, the film is so flexible that it is easy to attach on a complex surface. Those properties are suitable for the ultrasound transducers which are useful for medical and biological application, so that various types of polymer transducers have been developed. In this paper, several important considerations for design and fabrication of piezoelectric polymer transducers were described and their effect on the transducer performance were demonstrated through the KLM model analysis. Then, it was briefly reviewed about the structures of the polymer transducers developed for obtaining images as well as the characteristics of the images in several important medical and biological application fields.

  16. Selective micro metallization of polymers for biomedical and medical application

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    Integration of micro/nano metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Some of these combinations have been known for years and other combinations or methods are ve...

  17. Laser Welding of Shape Memory Alloys

    Science.gov (United States)

    Oliveira, Joao Pedro de Sousa

    Joining of shape memory alloys is of great importance for both functional and structural applications as it can provide an increased design flexibility. In this work similar NiTi/NiTi, CuAlMn/CuAlMn and dissimilar NiTi/Ti6Al4V joints were produced by Nd:YAG laser. For the NiTi/NiTi joints the effect of process parameters (namely the heat input) on the superelastic and shape memory effects of the joints was assessed and correlated to its microstructure. Microstructural analysis was performed by means of X-ray diffraction using synchrotron radiation, which allowed for fine probing of the welded material. It was noticed the presence of martensite in the thermally affected regions, while the base material remained fully austenitic. The mechanisms for the formation of martensite, at room temperature, due to the welding procedure are presented and the influence of this phase on the functional properties of the joints is discussed. Additionally, the residual stresses were determined using synchrotron X-ray diffraction. For the dissimilar NiTi/Ti6Al4V joints, a Niobium interlayer was used to prevent the formation undesired brittle intermetallic compounds. Additionally, it was observed that positioning of the laser beam was of significant importance to obtain a sound joint. The mechanisms responsible for the joint formation are discussed based on observations with advanced characterization techniques, such as transmission electron microscopy. At the NiTi/Nb interface, an eutectic reaction promotes joining of the two materials, while at the Ti6Al4V/Nb interface fusion and, subsequent solidification of the Ti6Al4V was responsible for joining. Short distance diffusion of Nb to the fusion zone of Ti6Al4V was observed. Although fracture of the dissimilar welded joints occurred at a stress lower than the minimum required for the stress induced transformation, an improvement on the microstructure and mechanical properties, relatively to existing literature, was obtained. Finally

  18. Thermomechanical fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Lagoudas, D C; Kumar, P K; Miller, D A; Rong, L

    2009-01-01

    As shape memory alloys (SMAs) gain popularity as high energy density actuators, one characteristic that becomes particularly important is the thermomechanical transformation fatigue life, in addition to maximum transformation strain and stability of actuation cycles. In this paper, a novel test frame design and testing protocol are discussed, for investigating the thermally activated transformation fatigue characteristics of SMAs under various applied loads for both complete and partial phase transformation. A Ni 50 Ti 40 Cu 10 (at.%) SMA was chosen for this investigation and the effects of various heat treatments on the transformation temperatures and the transformation fatigue lives of actuators were studied. For selected heat treatments, the evolution of recoverable and irrecoverable strains up to failure under different applied stress levels was studied in detail. The influence of complete and partial transformation on the fatigue life is also presented. The irrecoverable strain accumulation as a function of the number of cycles to failure for different stress levels is presented by a relationship similar to the Manson–Coffin law for both partial and complete transformations

  19. Microplane modelling of shape memory alloys

    International Nuclear Information System (INIS)

    Kadkhodaei, M; Salimi, M; Rajapakse, R K N D; Mahzoon, M

    2007-01-01

    A three-dimensional (3D) constitutive model based on a statically constrained microplane theory with volumetric-deviatoric split is proposed for polycrystalline shape memory alloys (SMAs) under multiaxial loading paths. Microplane governing equations are 1D stress-strain relations for normal and shear stresses on each microplane, in which suitable relationships between the microscopic and macroscopic quantities are considered so that switching between elastic and inelastic local responses automatically occurs according to the macroscopic response of SMA without additional constraint. Shear stress on each microplane is expressed by the resultant shear component within the plane to overcome directional bias and to prevent the appearance of shear strain in a pure axial loading or axial strain in a pure shear loading while microplane formulations based on two shear directions may predict such impractical results. The behaviour of SMA under simple and complicated loadings has been studied. In nonproportional loading paths, the model shows interaction between stress components, as well as deviation from normality. Predicted results from the model are in good agreement with those of the existing theoretical and experimental investigations

  20. High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  1. High-strength shape memory steels alloyed with nitrogen

    International Nuclear Information System (INIS)

    Ullakko, K.; Jakovenko, P.T.; Gavriljuk, V.G.

    1996-01-01

    Since shape memory effect in Fe-Mn-Si systems was observed, increasing attention has been paid to iron based shape memory alloys due to their great technological potential. Properties of Fe-Mn-Si shape memory alloys have been improved by alloying with Cr, Ni, Co and C. A significant improvement on shape memory, mechanical and corrosion properties is attained by introducing nitrogen in Fe-Mn-Si based systems. By increasing the nitrogen content, strength of the matrix increases and the stacking fault energy decreases, which promote the formation of stress induced martensite and decrease permanent slip. The present authors have shown that nitrogen alloyed shape memory steels exhibit recoverable strains of 2.5--4.2% and recovery stresses of 330 MPa. In some cases, stresses over 700 MPa were attained at room temperature after cooling a constrained sample. Yield strengths of these steels can be as high as 1,100 MPa and tensile strengths over 1,500 MPa with elongations of 30%. In the present study, effect of nitrogen alloying on shape memory and mechanical properties of Fe-Mn-Si, Fe-Mn-Si-Cr-Ni and Fe-Mn-Cr-Ni-V alloys is studied. Nitrogen alloying is shown to exhibit a beneficial effect on shape memory properties and strength of these steels

  2. The effect of bacterial cellulose on the shape memory behavior of polyvinyl alcohol nanocomposite hydrogel

    Science.gov (United States)

    Pirahmadi, Pegah; Kokabi, Mehrdad

    2018-01-01

    Most research on shape memory polymers has been confined to neat polymers in their dry state, while, some hydrogel networks are known for their shape memory properties. Hydrogels have low glass transition temperatures which are below 100°C depend on the content of water. But they are usually weak and brittle, and not suitable for structural applications due to their low mechanical strengths because of these materials have large amount of water (>50%), so they could not remember original shape perfectly. Bacterial cellulose nanofibers with perfect properties such as high water holding capacity, high crystallinity, high tensile strength and good biocompatibility can dismiss all the drawbacks. In the present study, polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel prepared by repetitive freezing-thawing method. The bacterial cellulose was used as reinforcement to improve the mechanical properties and stimuli response. Differential scanning calorimetry was employed to obtain the glass transition temperature. Nanocomposite morphology was characterized by field-emission scanning electron microscopy and mechanical properties were investigated by standard tensile test. Finally, the effect of bacterial cellulose nanofiber on shape memory behavior of polyvinyl alcohol/bacterial cellulose nanocomposite hydrogel was investigated. It is found that switching temperature of this system is the glass transition temperature of the nano domains formed within the system. The results also show increase of shape recovery, and shape recovery speed due to presence of bacterial cellulose.

  3. Inter-crosslinking network gels having both shape memory and high ductility

    Science.gov (United States)

    Amano, Yoshitaka; Hidema, Ruri; Furukawa, Hidemitsu

    2012-04-01

    Medical treatment for injuries should be easy and quick in many accidents. Plasters or bandages are frequently used to wrap and fix injured parts. If plasters or bandages have additional smart functions, such as cooling, removability and repeatability, they will be much more useful and effective. Here we propose innovative biocompatible materials, that is, nontoxic high-strength shape-memory gels as novel smart medical materials. These smart gels were prepared from two monomers (DMAAm and SA), a polymer (HPC), and an inter-crosslinking agent (Karenz-MOI). In the synthesis of the gels, 1) a shape-memory copolymer network is made from the DMAAm and the SA, and 2) the copolymer and the HPC are crosslinked by the Karenz-MOI. Thus the crosslinking points are connected only between the different polymers. This is our original technique of developing a new network structure of gels, named Inter-Crosslinking Network (ICN). The ICN gels achieve high ductility, going up to 700% strain in tensile tests, while the ICN gels contain about 44% water. Moreover the SA has temperature dependence due to its crystallization properties; thus the ICN gels obtain shape memory properties and are named ICN-SMG. While the Young's modulus of the ICN-SMG is large below their crystallization temperature and the gels behave like plastic materials, the modulus becomes smaller above the temperature and the gels turn back to their original shape.

  4. Bio-degradable highly fluorescent conjugated polymer nanoparticles for bio-medical imaging applications.

    Science.gov (United States)

    Repenko, Tatjana; Rix, Anne; Ludwanowski, Simon; Go, Dennis; Kiessling, Fabian; Lederle, Wiltrud; Kuehne, Alexander J C

    2017-09-07

    Conjugated polymer nanoparticles exhibit strong fluorescence and have been applied for biological fluorescence imaging in cell culture and in small animals. However, conjugated polymer particles are hydrophobic and often chemically inert materials with diameters ranging from below 50 nm to several microns. As such, conjugated polymer nanoparticles cannot be excreted through the renal system. This drawback has prevented their application for clinical bio-medical imaging. Here, we present fully conjugated polymer nanoparticles based on imidazole units. These nanoparticles can be bio-degraded by activated macrophages. Reactive oxygen species induce scission of the conjugated polymer backbone at the imidazole unit, leading to complete decomposition of the particles into soluble low molecular weight fragments. Furthermore, the nanoparticles can be surface functionalized for directed targeting. The approach opens a wide range of opportunities for conjugated polymer particles in the fields of medical imaging, drug-delivery, and theranostics.Conjugated polymer nanoparticles have been applied for biological fluorescence imaging in cell culture and in small animals, but cannot readily be excreted through the renal system. Here the authors show fully conjugated polymer nanoparticles based on imidazole units that can be bio-degraded by activated macrophages.

  5. Near-infrared (NIR) emitting conjugated polymers for biomedical applications (Presentation Recording)

    Science.gov (United States)

    Repenko, Tatjana; Kuehne, Alexander J. C.

    2015-10-01

    Fluorescent biomedical markers of today such as dye-infiltrated colloids, microgels and quantum dots suffer from fast bleaching, lack surface functionality (for targets or pharmaceutical agents) and potentially leach heavy metals in case of quantum dots (e.g. Cd). By contrast, conjugated polymer particles are non-cytotoxic, exhibit reduced bleaching, as the entire particle consists of fluorophore, they are hydrophobic and show high quantum yields. Consequently, conjugated polymer particles represent ideal materials for biological applications and imaging. However currently, conjugated polymer particles for biomedical imaging usually lack near-infrared (NIR) emission and are polydisperse. Fluorescent agents with emission in the NIR spectrum are interesting for biomedical applications due to their low photo-damage towards biological species and the ability of NIR radiation to penetrate deep into biological tissue.. I will present the development and synthesis of new conjugated polymers particles with fluorescence in the NIR spectral region for bio-imaging and clinical diagnosis. The particle synthesis proceeds in a one-step Pd or Ni-catalyzed dispersion polymerization of functional NIR emitters. The resulting monodisperse conjugated polymer particles are obtained as a dispersion in a non-hazardous solvent. Different sizes in the sub-micrometer range with a narrow size distribution can be produced. Furthermore biological recognition motifs can be easily attached to the conjugated polymers via thiol-yne click-chemistry providing specific tumor targeting without quenching of the fluorescence. References [1] Kuehne AJC, Gather MC, Sprakel J., Nature Commun. 2012, 3, 1088. [2] Repenko T, Fokong S, De Laporte L, Go D, Kiessling F, Lammers T, Kuehne AJC.,Chem Commun 2015, accepted.

  6. Self-folding origami: shape memory composites activated by uniform heating

    International Nuclear Information System (INIS)

    Tolley, Michael T; Felton, Samuel M; Aukes, Daniel; Wood, Robert J; Miyashita, Shuhei; Rus, Daniela

    2014-01-01

    Self-folding is an approach used frequently in nature for the efficient fabrication of structures, but is seldom used in engineered systems. Here, self-folding origami are presented, which consist of shape memory composites that are activated with uniform heating in an oven. These composites are rapidly fabricated using inexpensive materials and tools. The folding mechanism based on the in-plane contraction of a sheet of shape memory polymer is modeled, and parameters for the design of composites that self-fold into target shapes are characterized. Four self-folding shapes are demonstrated: a cube, an icosahedron, a flower, and a Miura pattern; each of which is activated in an oven in less than 4 min. Self-sealing is also investigated using hot melt adhesive, and the resulting structures are found to bear up to twice the load of unsealed structures. (paper)

  7. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non- Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  8. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  9. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting.

    Science.gov (United States)

    Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad

    2017-04-01

    Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  11. Magnetic Shape Memory Alloy Actuator for Instrument Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a simple actuator based on magnetic shape memory alloy (MSMA), a novel new family of crystalline materials which exhibit strain deformation...

  12. Shape Memory Effect Actuators from Chlorides, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Shape Change Technologies is developing a radical new technique for the fabrication of Shape Memory alloys, such as TiNi and its ternary alloys of Hf, Zr, and Cu....

  13. Shape Memory Alloy-Based Periodic Cellular Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II effort will continue to develop and demonstrate an innovative shape memory alloy (SMA) periodic cellular structural technology. Periodic cellular...

  14. Using Shape Memory Alloys: A Dynamic Data Driven Approach

    KAUST Repository

    Douglas, Craig C.; Calo, Victor M.; Cerwinsky, Derrick; Deng, Li; Efendiev, Yalchin R.

    2013-01-01

    Shape Memory Alloys (SMAs) are capable of changing their crystallographic structure due to changes of either stress or temperature. SMAs are used in a number of aerospace devices and are required in some devices in exotic environments. We

  15. Simulation of Dislocation and Transformation Plasticity in Shape Memory Alloys

    National Research Council Canada - National Science Library

    Volkov, Alexander

    1999-01-01

    A model of deformation of shape memory alloys has been developed. It takes into account deformation due to the phase transformation and plastic deformation, produced by an external stress or by inter-phase stresses...

  16. Dynamics of Shape Memory Alloy Systems, Phase 2

    Science.gov (United States)

    2015-12-22

    Nonlinear Dynamics and Chaos in Systems with Discontinuous Support Using a Switch Model”, DINAME 2005 - XI International Conference on Dynamic Problems in...AFRL-AFOSR-CL-TR-2016-0003 Dynamics of Shape Memory Alloy Systems , Phase 2 Marcelo Savi FUNDACAO COORDENACAO DE PROJETOS PESQUISAS E EEUDOS TECNOL...release. 2 AFOSR FINAL REPORT Grant Title: Nonlinear Dynamics of Shape Memory Alloy Systems , Phase 2 Grant #: FA9550-11-1-0284 Reporting Period

  17. Laser welding of Ti-Ni type shape memory alloy

    International Nuclear Information System (INIS)

    Hirose, Akio; Araki, Takao; Uchihara, Masato; Honda, Keizoh; Kondoh, Mitsuaki.

    1990-01-01

    The present study was undertaken to apply the laser welding to the joining of a shape memory alloy. Butt welding of a Ti-Ni type shape memory alloy was performed using 10 kW CO 2 laser. The laser welded specimens showed successfully the shape memory effect and super elasticity. These properties were approximately identical with those of the base metal. The change in super elasticity of the welded specimen during tension cycling was investigated. Significant changes in stress-strain curves and residual strain were not observed in the laser welded specimen after the 50-time cyclic test. The weld metal exhibited the celler dendrite. It was revealed by electron diffraction analysis that the phase of the weld metal was the TiNi phase of B2 structure which is the same as the parent phase of base metal and oxide inclusions crystallized at the dendrite boundary. However, oxygen contamination in the weld metal by laser welding did not occur because there was almost no difference in oxygen content between the base metal and the weld metal. The transformation temperatures of the weld metal were almost the same as those of the base metal. From these results, laser welding is applicable to the joining of the Ti-Ni type shape memory alloy. As the application of laser welding to new shape memory devices, the multiplex shape memory device of welded Ti-50.5 at % Ni and Ti-51.0 at % Ni was produced. The device showed two-stage shape memory effects due to the difference in transformation temperature between the two shape memory alloys. (author)

  18. The industrial applications of shape memory alloys in North America

    International Nuclear Information System (INIS)

    Mc Schetky D, L.

    2000-01-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  19. Application of Shape Memory Alloys in Seismic Isolation: A Review

    Directory of Open Access Journals (Sweden)

    Shaghayegh Alvandi

    2014-12-01

    Full Text Available In the last two decades, there has been an increasing interest in structural engineering control methods. Shape memory alloys and seismic isolation systems are examples of passive control systems that use of any one alone, effectively improve the seismic performance of the structure. Characteristics such as large strain range without any residual deformation, high damping capacity, excellent re-centering, high resistance to fatigue and corrosion and durability have made shape memory alloy an effective damping device or part of base isolators. A unique characteristic of shape memory alloys is in recovering residual deformations even after strong ground excitations. Seismic isolation is a device to lessen earthquake damage prospects. In the latest research studies, shape memory alloy is utilized in combination with seismic isolation system and their results indicate the effectiveness of the application of them to control the response of the structures. This paper reviews the findings of research studies on base isolation system implemented in the building and/or bridge structures by including the unique behavior of shape memory alloys. This study includes the primary information about the characteristic of the isolation system as well as the shape memory material. The efficiency and feasibility of the two mechanisms are also presented by few cases in point.

  20. The industrial applications of shape memory alloys in North America

    Energy Technology Data Exchange (ETDEWEB)

    Mc Schetky D, L. [Memry Corp., Brookfield, CT (United States)

    2000-07-01

    Literature in the recent past on shape memory effect alloys dwelt principally on the physical metallurgy, crystallography and kinetics of the shape memory phenomenon. By contrast, we now have books and conference proceedings devoted to the engineering aspects of SMAs, their technology and application. The dominant role SMAs now play in the field of medical and orthodontic devices is well documented and will be reviewed by others in this conference. In this paper we will discuss the commercial applications for shape memory alloy devices in the North American market; applications which are in many cases also produced in European countries and Japan. The early success of shape memory alloy couplings for joining tubing and pipe in the late 1960's was not followed by other large volume applications until the advent of shape memory eyeglass frames, brassiere underwires and cellular phone antennas. Many other applications have now evolved into mature markets and these will be reviewed. In addition to the many commercial applications cited, there are a number of other fields in which shape memory alloys are destined to play a major role; these include smart materials and adaptive structures, MEMS devices, infrastructure systems and electrical power generation and distribution. These applications are being developed with private and government funding and will also be briefly discussed. (orig.)

  1. Interferometric microstructured polymer optical fiber ultrasound sensor for optoacoustic endoscopic imaging in biomedical applications

    DEFF Research Database (Denmark)

    Gallego, Daniel; Sáez-Rodríguez, David; Webb, David

    2014-01-01

    to conventional piezoelectric transducers. These kind of sensors, made of biocompatible polymers, are good candidates for the sensing element in an optoacoustic endoscope because of its high sensitivity, its shape and its non-brittle and non-electric nature. The acoustic sensitivity of the intrinsic fiber optic......We report a characterization of the acoustic sensitivity of microstructured polymer optical fiber interferometric sensors at ultrasonic frequencies from 100kHz to 10MHz. The use of wide-band ultrasonic fiber optic sensors in biomedical ultrasonic and optoacoustic applications is an open alternative...... interferometric sensors depends strongly of the material which is composed of. In this work we compare experimentally the intrinsic ultrasonic sensitivities of a PMMA mPOF with other three optical fibers: a singlemode silica optical fiber, a single-mode polymer optical fiber and a multimode graded...

  2. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    Science.gov (United States)

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  4. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    Directory of Open Access Journals (Sweden)

    Javed Alam

    2014-10-01

    Full Text Available A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA was first plasticized by epoxidized linseed oil (ELO in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %, with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC, tensile test, and thermo gravimetric analysis (TGA. Scanning electron microscopy (SEM and atomic force microscopy (AFM were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  5. Thermomechanical characterization of thiol-epoxy shape memory thermosets for mechanical actuators design

    Science.gov (United States)

    Belmonte, Alberto; Fernández-Francos, Xavier; De la Flor, Silvia

    2018-02-01

    In this paper, shape-memory "thiol-epoxy" polymers are synthesized and characterized as potential thermomechanical actuators. Their thermomechanical properties are investigated through dynamo mechanical and tensile analyses and related to their network structural properties by using "thiol" and "epoxy" compounds of different functionality and structure. Their mechanical properties (resistance at break, elongation limits and strain energy) are related to their shape-memory response under free-recovery conditions and partially-constrained conditions, thus, establishing the connection between network relaxation (free-recovery) with the work output capabilities (partially-constrained). Results show high mechanical performance, achieving high elongation at break values (up to 100%) and stress at break values (up to 50 MPa). The shape-memory experiments reveal strong dependence of the programming conditions and network structure on the recovery efficiency at free-conditions, whereas under partially-constrained conditions, the controlling factors are the mechanical limits at high temperature. Moreover, some recommendations to achieve the maximum work output efficiency for a given operational design of a thermomechanical actuator are deduced.

  6. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators

    International Nuclear Information System (INIS)

    Raja, Mohan; Shanmugharaj, A.M.; Ryu, Sung Hun; Subha, J.

    2011-01-01

    Highlights: → Polyurethane based on pristine and metal (Ag and Cu) nanoparticle decorated CNTs nanocomposites are prepared through melt blending process. → The electrical, mechanical, dynamic mechanical, thermal conductivity and electro active shape memory properties of the PU nanocomposites were investigated. → The influence of metal nanoparticle decorated CNTs showed significant improvement in their all properties to compare to pristine CNTs. → Electro active shape memory studies of the PU/M-CNTs nanocomposites reveal extraordinary recoverability of its shape at lower applied dc voltages. - Abstract: Polymer nanocomposites based on thermoplastic polyurethane (PU) elastomer and metal nanoparticle (Ag and Cu) decorated multiwall carbon nanotubes (M-CNTs) were prepared through melt mixing process and investigated for its mechanical, dynamic mechanical and electro active shape memory properties. Structural characterization and morphological characterization of the PU nanocomposites were done using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Morphological characterization revealed better dispersion of M-CNTs in the polyurethane, which is attributed to the improved interaction between the M-CNTs and polyurethane. Loading of the metal nanoparticle coated carbon nanotubes resulted in the significant improvement on the mechanical properties such as tensile strength of the PU composites in comparison to the pristine carbon nanotubes (P-CNTs). Dynamic mechanical analysis showed that the glass transition temperature (Tg) of the polyurethane increases slightly with increasing loading of both pristine and metal nanoparticle functionalized carbon nanotubes. The metal nanoparticles decorated carbon nanotubes also showed significant improvement in the thermal and electrical conductivity of the PU/M-CNTs nanocomposites. Shape memory studies of the PU/M-CNTs nanocomposites exhibit remarkable recoverability of its shape at lower applied dc voltages.

  7. Constitutive modeling of SMA SMP multifunctional high performance smart adaptive shape memory composite

    International Nuclear Information System (INIS)

    Jarali, Chetan S; Raja, S; Upadhya, A R

    2010-01-01

    Materials design involving the thermomechanical constitutive modeling of shape memory alloy (SMA) and shape memory polymer (SMP) composites is a key topic in the development of smart adaptive shape memory composites (SASMC). In this work, a constitutive model for SASMC is developed. First, a one-dimensional SMA model, which can simulate the pseudoelastic (PE) and shape memory effects (SME) is presented. Subsequently, a one-dimensional SMP model able to reproduce the SME is addressed. Both SMA and SMP models are based on a single internal state variable, namely the martensite fraction and the frozen fraction, which can be expressed as a function of temperature. A consistent form of the analytical solution for the SMP model is obtained using the fourth-order Runge–Kutta method. Finally, the SASMC constitutive model is proposed, following two analytical homogenization approaches. One approach is based on an equivalent inclusion method and the other approach is the rule of mixtures. The SMA and SMP constitutive models are validated independently with experimental results. However, the validation of the composite model is performed using the two homogenization approaches and a close agreement in results is observed. Results regarding the isothermal and thermomechanical stress–strain responses are analyzed as a function of SMA volume fraction. Further, it is concluded that the proposed composite model is able to reproduce consistently the overall composite response by taking into consideration not only the phase transformations, variable modulus and transformation stresses in SMA but also the variable modulus, the evolution of stored strain and thermal strain in the SMP

  8. A review of shape memory material’s applications in the offshore oil and gas industry

    Science.gov (United States)

    Patil, Devendra; Song, Gangbing

    2017-09-01

    The continuously increasing demand for oil and gas and the depleting number of new large reservoir discoveries have made it necessary for the oil and gas industry to investigate and design new, improved technologies that unlock new sources of energy and squeeze more from existing resources. Shape memory materials (SMM), with their remarkable properties such as the shape memory effect (SME), corrosion resistance, and superelasticity have shown great potential to meet these demands by significantly improving the functionality and durability of offshore systems. Shape memory alloy (SMA) and shape memory polymer (SMP) are two types of most commonly used SMM’s and are ideally suited for use over a range of robust engineering applications found within the oil and gas industry, such as deepwater actuators, valves, underwater connectors, seals, self-torqueing fasteners and sand management. The potential high strain and high force output of the SME of SMA can be harnessed to create a lightweight, solid state alternative to conventional hydraulic, pneumatic or motor based actuator systems. The phase transformation property enables the SMA to withstand erosive stresses, which is useful for minimizing the effect of erosion often experienced by downhole devices. The superelasticity of the SMA provides good energy dissipation, and can overcome the various defects and limitations suffered by conventional passive damping methods. The higher strain recovery during SME makes SMP ideal for developments of packers and sand management in downhole. The increasing number of SMM related research papers and patents from oil and gas industry indicate the growing research interest of the industry to implement SMM in offshore applications. This paper reviews the recent developments and applications of SMM in the offshore oil and gas industry.

  9. Deposition of Chitosan Layers on NiTi Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kowalski P.

    2015-04-01

    Full Text Available The NiTi shape memory alloys have been known from their application in medicine for implants as well as parts of medical devices. However, nickel belongs to the family of elements, which are toxic. Apart from the fact that nickel ions are bonded with titanium into intermetallic phase, their presence may cause allergy. In order to protect human body against release of nickel ions a surface of NiTi alloy can be modified with use of titanium nitrides, oxides or diamond-like layers. On the one hand the layers can play protective role but on the other hand they may influence shape memory behavior. Too stiff or too brittle layer can lead to limiting or completely blocking of the shape recovery. It was the reason to find more elastic covers for NiTi surface protection. This feature is characteristic for polymers, especially, biocompatible ones, which originate in nature. In the reported paper, the chitosan was applied as a deposited layer on surface of the NiTi shape memory alloy. Due to the fact that nature of shape memory effect is sensitive to thermo and/or mechanical treatments, the chitosan layer was deposited with use of electrophoresis carried out at room temperature. Various deposition parameters were checked and optimized. In result of that thin chitosan layer (0.45µm was received on the NiTi alloy surface. The obtained layers were characterized by means of chemical and phase composition, as well as surface quality. It was found that smooth, elastic surface without cracks and/or inclusions can be produced applying 10V and relatively short deposition time - 30 seconds.

  10. Use of Atomic Oxygen for Increased Water Contact Angles of Various Polymers for Biomedical Applications

    Science.gov (United States)

    deGroh, Kim; Berger, Lauren; Roberts, Lily

    2009-01-01

    The purpose of this study was to determine the effect of atomic oxygen (AO) exposure on the hydrophilicity of nine different polymers for biomedical applications. Atomic oxygen treatment can alter the chemistry and morphology of polymer surfaces, which may increase the adhesion and spreading of cells on Petri dishes and enhance implant growth. Therefore, nine different polymers were exposed to atomic oxygen and water-contact angle, or hydrophilicity, was measured after exposure. To determine whether hydrophilicity remains static after initial atomic oxygen exposure, or changes with higher fluence exposures, the contact angles between the polymer and water droplet placed on the polymer s surface were measured versus AO fluence. The polymers were exposed to atomic oxygen in a 100-W, 13.56-MHz radio frequency (RF) plasma asher, and the treatment was found to significantly alter the hydrophilicity of non-fluorinated polymers. Pristine samples were compared with samples that had been exposed to AO at various fluence levels. Minimum and maximum fluences for the ashing trials were set based on the effective AO erosion of a Kapton witness coupon in the asher. The time intervals for ashing were determined by finding the logarithmic values of the minimum and maximum fluences. The difference of these two values was divided by the desired number of intervals (ideally 10). The initial desired fluence was then multiplied by this result (2.37), as was each subsequent desired fluence. The flux in the asher was determined to be approximately 3.0 x 10(exp 15) atoms/sq cm/sec, and each polymer was exposed to a maximum fluence of 5.16 x 10(exp 20) atoms/sq cm.

  11. Prospect of Ti-Ni shape memory alloy applied in reactor structures

    International Nuclear Information System (INIS)

    Duan Yuangang

    1995-01-01

    Shape memory effect mechanism, physical property, composition, manufacturing process and application in mechanical structure of Ti-Ni shape memory alloy are introduced. Applications of Ti-Ni shape memory alloy in reactor structure are prospected and some necessary technical conditions of shape memory alloy applied in the reactor structure are put forward initially

  12. pH-Responsive Shape Memory Poly(ethylene glycol)-Poly(ε-caprolactone)-based Polyurethane/Cellulose Nanocrystals Nanocomposite.

    Science.gov (United States)

    Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing

    2015-06-17

    In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.

  13. Fabrication Process and Reliability Evaluation of Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Joon Hyun

    2001-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and A16061 were used as reinforcing material and mix, respectively. In this study, TiNi/A16061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at the boundary between TiNi fiber and Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effect. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/A16061 shape memory alloy composite at high temperature

  14. Modeling of mechanical properties for ferrous shape memory alloy

    International Nuclear Information System (INIS)

    Wada, Manabu; Ide, Yusuke; Mizote, Shinichiro; Naoi, Hisashi; Tsukimori, Kazuyuki

    2002-08-01

    In order to acquire technical data that are necessary for manufacture and design of the simulation test device for analyzing the core mechanics of Fast Breeder Reactor, ferrous shape memory alloy of Fe-28%Mn-6%Si-5%Cr is melted, forged and heat-treated. The microstructures are austenite. The specimens are deformed of up to 16% work-strain by tensile and compressive test, resulting in appearance of epsilon-martensite that is induced by stress. Then, heating at 673K for 10 minutes causes austenitic transformation from epsilon-martensite and shape memory strains are measured. We also investigate shape memory character of specimens, which are given, so called 'training treatment' of 5% pre-strain and recovery heat treatment. As a result, there is little difference between tensile and compressive test without training treatment and shape memory strain is 2% after being given 5% work-strain and recovery heat treatment. On the other hand, training treatment is remarkable and shape memory strain reaches to 3.7% after 5% work-strain. We analyze shape recovery character of this alloy specimen at three-point bending by using finite element method, and indicate possibility that its deformation behavior can be estimated from mechanical properties' data obtained at tensile and compressive test. (author)

  15. Factors influencing shape memory effect and phase transformation behaviour of Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Li, H.; Dunne, D.; Kennon, N.

    1999-01-01

    The objective of this research work was to investigate the factors influencing the shape memory effect and phase transformation behaviour of three Fe-Mn-Si based shape memory alloys: Fe-28Mn-6Si, Fe-13Mn-5Si-10Cr-6Ni and Fe-20Mn-6Si-7Cr-1Cu. The research results show that the shape memory capacity of Fe-Mn-Si based shape memory alloys varies with annealing temperature, and this effect can be explained in terms of the effect of annealing on γ ε transformation. The nature and concentration of defects in austenite are strongly affected by annealing conditions. A high annealing temperature results in a low density of stacking faults, leading to a low nucleation rate during stress induced γ→ε transformation. The growth of ε martensite plates is favoured rather than the formation of new ε martensite plates. Coarse martensite plates produce high local transformation strains which can be accommodated by local slip deformation, leading to a reduction in the reversibility of the martensitic transformation and to a degradation of the shape memory effect. Annealing at low temperatures (≤673 K) for reasonable times does not eliminate complex defects (dislocation jogs, kinks and vacancy clusters) created by hot and cold working strains. These defects can retard the movement and rearrangement of Shockley partial dislocations, i.e. suppress γ→ε transformation, also leading to a degradation of shape memory effect. Annealing at about 873 K was found to be optimal to form the dislocation structures which are favourable for stress induced martensitic transformation, thus resulting in the best shape memory behaviour. (orig.)

  16. First Principles Modelling of Shape Memory Alloys Molecular Dynamics Simulations

    CERN Document Server

    Kastner, Oliver

    2012-01-01

    Materials sciences relate the macroscopic properties of materials to their microscopic structure and postulate the need for holistic multiscale research. The investigation of shape memory alloys is a prime example in this regard. This particular class of materials exhibits strong coupling of temperature, strain and stress, determined by solid state phase transformations of their metallic lattices. The present book presents a collection of simulation studies of this behaviour. Employing conceptually simple but comprehensive models, the fundamental material properties of shape memory alloys are qualitatively explained from first principles. Using contemporary methods of molecular dynamics simulation experiments, it is shown how microscale dynamics may produce characteristic macroscopic material properties. The work is rooted in the materials sciences of shape memory alloys and  covers  thermodynamical, micro-mechanical  and crystallographical aspects. It addresses scientists in these research fields and thei...

  17. Understanding the shape-memory alloys used in orthodontics.

    Science.gov (United States)

    Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.

  18. Thermoelastic properties on Cu-Zn-Al shape memory springs

    Directory of Open Access Journals (Sweden)

    Carlos Augusto do Nascimento Oliveira

    2010-06-01

    Full Text Available This paper present a thermomechanical study of actuators in form of helical springs made from shape memory alloy wires that can work as actuator and/or as sensor. These abilities are due to the martensitic transformation. This transformation is a diffusionless phase transition that occurs by a cooperative atomic rearrange mechanism. In this work, helical spring actuators were manufactured from Cu-Zn-Al shape memory alloy wires. The springs were submitted to constant tensile loads and thermal cycles. This procedure allows to determine thermoelastic properties of the shape memory springs. Thermomechanical properties were analyzed during 50 thermal cycles in the temperature range from 20 to 130 °C. Results of variations in critical transformation temperatures, thermoelastic strain and thermal hysteresis are discussed based on defects rearrangement and martensitic transformation theory.

  19. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    Science.gov (United States)

    Padula, Santo A., II (Inventor)

    2016-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  20. Cyclic degradation of antagonistic shape memory actuated structures

    International Nuclear Information System (INIS)

    Sofla, A Y N; Elzey, D M; Wadley, H N G

    2008-01-01

    Antagonistic shape memory actuated structures exploit opposing pairs of one-way shape memory alloy (SMA) linear actuators to create devices capable of a fully reversible response. Unlike many conventional reversible SMA devices they do not require bias force components (springs) to return them to their pre-actuated configuration. However, the repeated use of SMA antagonistic devices results in the accumulation of plastic strain in the actuators which can diminish their actuation stroke. We have investigated this phenomenon and the effect of shape memory alloy pre-strain upon it for near equi-atomic NiTi actuators. We find that the degradation eventually stabilizes during cycling. A thermomechanical treatment has been found to significantly reduce degradation in cyclic response of the actuators

  1. Formability of Annealed Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, K. J.; Su, J. Y.; Chang, C. H.

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its application, this study attempts to investigate the strength and cold formability of its sheet blank, which is annealed at various temperatures, by hardness test and by Erichsen-like cupping test. As a result, the higher the annealing temperature, the lower the hardness, the lower the maximum punch load as the sheet blank fractured, and the lower the Erichsen-like index or the lower the formability. In general, the Ni-Ti sheet after annealing has an Erichsen-like index between 8 mm and 9 mm. This study has also confirmed via DSC that the Ni-Ti shape memory alloy possesses the austenitic phase and shows the superelasticity at room temperature.

  2. Characterization and design of antagonistic shape memory alloy actuators

    International Nuclear Information System (INIS)

    Georges, T; Brailovski, V; Terriault, P

    2012-01-01

    Antagonistic shape memory actuators use opposing shape memory alloy (SMA) elements to create devices capable of producing differential motion paths and two-way mechanical work in a very efficient manner. There is no requirement for additional bias elements to ‘re-arm’ the actuators and allow repetitive actuation. The work generation potential of antagonistic shape memory actuators is determined by specific SMA element characteristics and their assembly conditions. In this study, the selected SMA wires are assembled in antagonistic configuration and characterized using a dedicated test bench to evaluate their stress–strain characteristics as a function of the number of cycles. Using these functional characteristics, a so-called ‘working envelope’ is built to assist in the design of such an actuator. Finally, the test bench is used to simulate a real application of an antagonistic actuator (case study). (paper)

  3. Cold Forming of Ni-Ti Shape Memory Alloy Sheet

    Science.gov (United States)

    Fann, Kaung-Jau; Su, Jhe-Yung

    2018-03-01

    Ni-Ti shape memory alloy has two specific properties, superelasiticity and shape memory effect, and thus is widely applied in diverse industries. To extend its further application, this study attempts to investigate the feasibility of cold forming its sheet blank especially under a bi-axial tensile stress state. Not only experiments but also a Finite Element Analysis (FEA) with DEFORM 2D was conducted in this study. The material data for FEA was accomplished by the tensile test. An Erichsen-like cupping test was performed as well to determine the process parameter for experiment setup. As a result of the study, the Ni-Ti shape memory alloy sheet has a low formability for cold forming and shows a relative large springback after releasing the forming load.

  4. Development of an engineering model for ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Tani, Yoshiaki; Todaka, Takashi; Enokizono, Masato

    2008-01-01

    This paper presents a relationship among stress, temperature and magnetic properties of a ferromagnetic shape memory alloy. In order to derive an engineering model of ferromagnetic shape memory alloys, we have developed a measuring system of the relationship among stress, temperature and magnetic properties. The samples used in this measurement are Fe68-Ni10-Cr9-Mn7-Si6 wt% ferromagnetic shape memory alloy. They are thin ribbons made by rapid cooling in air. In the measurement, the ribbon sample is inserted into a sample holder winding consisting of the B-coil and compensation coils, and magnetized in an open solenoid coil. The ribbon is stressed with attachment weights and heated with a heating wire. The specific susceptibility was increased by applying tension, and slightly increased by heating below the Curie temperature

  5. Periodic Cellular Structure Technology for Shape Memory Alloys

    Science.gov (United States)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  6. Fe-Mn-Si based shape memory alloys

    International Nuclear Information System (INIS)

    Hsu, T.Y.

    2000-01-01

    Characteristics of martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys are briefly reviewed. By analyzing the influences of constituents and treatments on shape memory effect (SME) in Fe-Mn-Si, the main factors controlling SME are summarized as austenite strengthening, stacking fault energy (probability) and antiferromagnetic temperature. Contribution of thermomechanical training to SME is introduced. The Fe-Mn-Si-RE (rare earth elements) and Fe-Mn-Si-Cr-N alloys are recommended as two novel shape memory alloys with superior SME. (orig.)

  7. Simulation of the plastic deformation of shape-memory alloys

    International Nuclear Information System (INIS)

    Likhachev, V.A.; Puschtschajenko, O.V.

    1997-01-01

    On the basis of the structural analytical theory of durability a mathematical model is developed which describes mechanical properties of shape memory metals. The influence of dislocation glide on martensitic nonelasticity is investigated. Results of numerical modeling show, that within the framework of the model such shape memory phenomena, as pseudo-elasticity in martensite and austenite, deformation cycles (also in a incomplete temperature interval) or the two-way effect can be well described. The two-way effect was simulated assuming inheritence of the effective fields strain in martensite and austenite. (orig.)

  8. Magnetocaloric effect in Heusler shape-memory alloys

    International Nuclear Information System (INIS)

    Planes, A.; Manosa, Ll.; Moya, X.; Krenke, T.; Acet, M.; Wassermann, E.F.

    2007-01-01

    We present a comparative study of the magnetocaloric properties of Ni-Mn-X Heusler shape-memory alloys with X=Ga, Sn and In. In these materials, the magnetocaloric effect is a consequence of the magnetostructural coupling that enables the magnetic shape-memory properties. We show that inverse magnetocaloric effects can occur in these materials. The origin of this anomalous behavior is different in stoichiometric Ni 2 MnGa and in Ni-Mn-Sn/In. In the former case it is related to the strong uniaxial magnetic anisotropy of the martensitic phase, while in the later it is an intrinsic effect associated with an incipient antiferromagnetism

  9. Neutron irradiation effect on thermomechanical properties of shape memory alloys

    International Nuclear Information System (INIS)

    Abramov, V.Ya.; Ionajtis, R.R.; Kotov, V.V.; Loguntsev, E.N.; Ushakov, V.P.

    1996-01-01

    Alloys of Ti-Ni, Ti-Ni-Pd, Fe-Mn-Si, Mn-Cu-Cr, Mn-Cu, Cu-Al-Mn, Cu-Al-Ni systems are investigated after irradiation in IVV-2M reactor at various temperatures with neutron fluence of 10 19 - 10 20 cm -2 . The degradation of shape memory effect in titanium nickelide base alloys is revealed after irradiation. Mn-Cu and Mn-Cu-Cr alloys show the best results. Trends in shape memory alloy behaviour depending on irradiation temperature are found. A consideration is given to the possibility of using these alloys for components of power reactor control and protection systems [ru

  10. Novel Nitric Oxide (NO)-Releasing Polymers and Their Biomedical Applications

    Science.gov (United States)

    Brisbois, Elizabeth J.

    Two common factors that can cause complications with indwelling biomedical devices are thrombus and infection. Nitric oxide (NO) is known to be a potent inhibitor of platelet activation and adhesion. Healthy endothelial cells exhibit a NO flux into the bloodstream of 0.5˜4x10-10 mol cm -2 min-1. In addition, NO that is released within the sinus cavities and by neutrophils/macrophages functions as a potent natural antimicrobial agent. Therefore, polymer materials that release NO are expected to have similar anti-thrombotic and antimicrobial properties. In this dissertation work, two novel approaches to achieving long-term NO release from polymers were studied and evaluated for their potential biomedical applications. In the first approach, S-nitroso-N -acetypenicillamine (SNAP)-doped polymers were studied for potential hemocompatibility. The SNAP-doped Elast-eon E2As (block copolymer of poly(dimethylsiloxane) and polyurethane) creates an inexpensive polymer that can locally deliver physiologically relevant levels of NO (via thermal and photochemical reactions). SNAP was also found to be surprisingly stable in the E2As polymer during shelf-life stability and ethylene oxide sterilization studies. The SNAP/E2As polymer was coated on the inner walls of extracorporeal circulation (ECC) circuits and was found to preserve the platelet count at ˜100% of baseline and reduce thrombus area after 4 h blood flow in a rabbit model. The SNAP/E2As polymer was also used to fabricate NO-releasing catheters that were implanted in sheep veins for 7 d. The SNAP/E2As catheters significantly reduced the amount of thrombus and bacterial adhesion (in comparison to E2As control catheters). In the second approach, the NO release from diazeniumdiolated dibutylhexanediamine (DBHD/N2 O 2)-doped polymers was significantly improved using various poly(lactic-co-glycolic acid) (PLGA) additives. Using acid-capped PLGA additives was found to cause high initial bursts of NO, while using an ester

  11. Study of Organosilicon Plasma Polymer Used in Composite Layers with Biomedical Application

    International Nuclear Information System (INIS)

    Radeva, E.; Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Iacob, E.; Vanzetti, L.; Dimitrova, R.; Krasteva, N.; Spassov, T.

    2010-01-01

    In this work we study the ability of plasma polymer (PP) films obtained from hexamethyldisiloxane (HMDS) on silica glass (SG) to induce hydroxyapatite (HA)-based composite layers from a mixture of simulated body fluid (SBF) and clear solution of detonation nanodiamond (DND) by a biomimetic process. The grown composites (PPHMDS/HADND) were studied by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and Rutherford backscattering (RBS) techniques. FTIR spectra of the PPHMDS indicated diminishing of the polymer characteristic bands when the polymer is immersed in DND clear solution. Furthermore, after sample immersion in the SBF-DND mixture, the FTIR spectra showed the presence of carbonate-containing HA through the characteristic vibration modes of P-O in the phosphate group and C-O in the carbonate group. The formation of HA layers, rich in silica and/or carbon was confirmed by RBS and SEM. The cell viability measured after 7 days on the polymer surface is more then 95% for all samples. The results show that the PPHMDS is promising as a substrate for growing HA/DND layers and that the materials obtained are biocompatible. The variations of plasma polymerization conditions and modification of the composite layers will aid in using such materials for biomedical applications.

  12. Cavitation erosion of Ti-Ni shape memory alloy deposited coatings and Fe base shape memory alloy solid

    International Nuclear Information System (INIS)

    Hattori, Shuji; Fujisawa, Seiji; Owa, Tomonobu

    2007-01-01

    In this study, cavitation erosion tests were carried out by using thermal spraying and deposition of Ti-Ni shape memory alloy for the surface coating. The results show the test speciment of Ti-Ni thermal spraying has many initial defects, so that the erosion resistance is very low. The erosion resistance of Ti-Ni deposit is about 5-10 times higher than that of SUS 304, thus erosion resistance of Ti-Ni deposit is better than that of Ti-Ni thermal spraying. The cavitation erosion tests were carried out by using Fe-Mn-Si with shape memory and gunmetal with low elastic modulus. The erosion resistance of Fe-Mn-Si shape memory alloy solid is about 9 times higher than that of SUS 304. The erosion resistance of gunmetal is almost the same as SUS 304, because the test specimen of gunmetal has many small defects on the original surface. (author)

  13. Martensitic transformations and the shape memory effect in Ti-Zr-Nb-Al high-temperature shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Yu, Zhiguo; Xiong, Chengyang [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Qu, Wentao; Yuan, Bifei [School of Mechanical Engineering, Xi’an Shiyou University, Xi’an 710065 (China); Wang, Zhenguo [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China); Li, Yan, E-mail: liyan@buaa.edu.cn [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China); Key Laboratory of Aerospace Materials and Performance (Ministry of Education), Beihang University, Beijing 100191 (China)

    2017-01-02

    The microstructures, phase transformations, mechanical properties and shape memory effect of Ti-20Zr-10Nb-xAl (x=1, 2, 3, 4 at%) alloys were investigated. The X-ray diffraction results show that the alloys are composed of a single martensitic α″-phase and that the corresponding unit cell volume decreases with increasing Al content. The reverse martensitic transformation start temperature (A{sub s}) of the Ti-20Zr-10Nb-Al alloy is 534 K and decreases with increasing Al content. The addition of Al results in solid solution strengthening and grain refinement strengthening, thus improving the mechanical properties and the shape memory effect of the Ti-20Zr-10 Nb-xAl alloys. The Ti-20Zr-10Nb-3Al alloy shows the greatest shape memory strain (3.2%) and the largest tensile strain (17.6%) as well as a very high tensile strength (886 MPa).

  14. Shape memory of polyurethanes with silver nanoparticles; Propriedade memoria de forma de poliuretanos com nanoparticulas de prata

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol{sup -1}) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO{sub 3} and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  15. Tunable shape memory behaviors of poly(ethylene vinyl acetate) achieved by adding poly(L-lactide)

    International Nuclear Information System (INIS)

    Zhang, Zhi-xing; Liao, Fei; He, Zhen-zhen; Yang, Jing-hui; Huang, Ting; Zhang, Nan; Wang, Yong; Gao, Xiao-ling

    2015-01-01

    In this work, different contents of poly(L-lactide) (PLLA) (20–50 wt%) were introduced into poly(ethylene vinyl acetate) (EVA) to prepare the samples with a tunable shape memory behavior. Morphological characterization demonstrated that with increasing PLLA content from 20 to 50 wt%, the blend morphology changed from sea-island structure to cocontinuous structure. In all the samples, PLLA was amorphous and it did not affect the crystallization of polyethylene part in the EVA component. The presence of PLLA greatly enhanced the storage modulus of samples, especially at relatively low temperatures. The shape memory behaviors of samples were systematically investigated and the results demonstrated that the EVA/PLLA blends exhibited a tunable shape memory effect. On one hand, PLLA accelerated the shape fixation and enhanced the fixity ratio of samples. On the other hand, PLLA reduced the dependence of shape fixity of samples on fixity temperatures. Specifically, for the first time, a critical recovery temperature was observed for the immiscible shape memory polymer blends. In this work, the critical recovery temperature was about 53 °C. At recovery temperature below the critical value, the blends exhibited smaller recovery ratios compared with the pure EVA, however, at recovery temperature above 53 °C, the blends exhibited higher recovery ratios. (paper)

  16. Development of polymer-biomolecule core-shell particles for biomedical applications

    Science.gov (United States)

    Suthiwangcharoen, Nisaraporn

    Developing efficient strategies to introduce biomolecules around polymeric nanoparticles (NPs) is critical for targeted delivery of therapeutic or diagnostic agents. Although polymeric NPs have been well established, problems such as toxicity, stability, and immunoresistance remain potential concerns. The first part of this dissertation focuses on the development of nanosized targeted drug delivery vehicle in cancer chemotherapy. The vehicle was created by the self-assembly of folate-grafted filamentous bacteriophage M13 with poly(caprolactone- b-2-vinylpyridine) while doxorubicin, the antitumor drugs, was successfully loaded in the interior of the vehicles. These particles offer unique properties of being able to selectively target tumor cells while appearing to be safe and non-toxic to normal cells. Although they have shown great prospects in many biomedical applications, less is known about the interactions between biomolecules and polymers. The next part of the dissertation focuses on the self-assembly of proteins and polymers to create polymer-protein core-shell nanoparticles (PPCS-NPs). Several proteins with different isoelectric points and molecular weights were employed to demonstrate a versatility of our assembly method while a series of esterified derivatives of poly(2-hydroxyethyl methacrylate) (pHEMA) were synthesized to evaluate the interaction between proteins and polymers. Our data indicated that the polymers containing pyridine residues can successfully assemble with proteins, and the mechanism is mainly governed by hydrogen bonding and the hydrophobic/hydrophilic interactions. This in turn helps retaining proteins' folding conformation and functionality, which are also demonstrated in the in vitro/in vivo cellular uptake of the PPCS-NPs in endothelial cells. The last part of the dissertation focuses on the self-assembly of the bienzyme-polymer NPs. Glucose oxidase (GOX) together with horseradish peroxidase (HRP) were employed to construct bienzyme

  17. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  18. Phase stability of CuAlMn shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Novák, Václav

    2004-01-01

    Roč. 378, - (2004), s. 216-221 ISSN 0921-5093 Institutional research plan: CEZ:AV0Z1010914 Keywords : CuAlMn * shape memory alloys * martensitic transformation * - stress -strain tests * tension-compression cycling * history dependent phenomena Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.445, year: 2004

  19. Fabrication of shape memory natural rubber using palmitic acid

    Directory of Open Access Journals (Sweden)

    Jeff Sze-Hua Wee

    2017-10-01

    Full Text Available This paper investigates the practicability of fabricating a shape memory natural rubber with the use of palmitic acid as the swelling agent. Strips of natural rubber samples were swollen in molten palmitic acid at 75 °C. Equilibrium swelling of natural rubber with palmitic acid was found to occur at approximately 50 min of swelling time. Under cooling effect, the palmitic acid crystallized to form a percolated crystalline platelet network. These networks allow fabricated shape memory natural rubber (SMNR to deform and recover its shape at a temperature above the melting point of palmitic acid. Under controlled uniaxial stress, the natural rubber sample with 0 parts per hundred rubber (phr carbon black loading exhibits fixity and recovery of 80 ± 10%. Motivation of this research is primarily on practicability of palmitic acid to be used as a swelling agent for shape memory properties. Results show that palmitic acid is a relatively good swelling agent to induce shape memory properties into natural rubber.

  20. A three-dimensional constitutive model for shape memory alloy

    International Nuclear Information System (INIS)

    Zhou, Bo; Yoon, Sung-Ho; Leng, Jin-Song

    2009-01-01

    Shape memory alloy (SMA) has a wide variety of practical applications due to its unique super-elasticity and shape memory effect. It is of practical interest to establish a constitutive model which predicts its phase transformation and mechanical behaviors. In this paper, a new three-dimensional phase transformation equation, which predicts the phase transformation behaviors of SMA, is developed based on the results of a differential scanning calorimetry (DSC) test. It overcomes both limitations: that Zhou's phase transformation equations fail to describe the phase transformation from twinned martensite to detwinned martensite of SMA and Brinson's phase transformation equation fails to express the influences of phase transformation peak temperatures on the phase transformation behaviors of SMA. A new three-dimensional constitutive equation, which predicts the mechanical behaviors associated with the super-elasticity and shape memory effect of SMA, is developed on the basis of thermodynamics and solid mechanics. Results of numerical simulations show that the new constitutive model, which includes the new phase transformation equation and constitutive equation, can predict the phase transformation and mechanical behaviors associated with the super-elasticity and shape memory effect of SMA precisely and comprehensively. It is proved that Brinson's constitutive model of SMA can be considered as one special case of the new constitutive model

  1. Polynomial constitutive model for shape memory and pseudo elasticity

    International Nuclear Information System (INIS)

    Savi, M.A.; Kouzak, Z.

    1995-01-01

    This paper reports an one-dimensional phenomenological constitutive model for shape memory and pseudo elasticity using a polynomial expression for the free energy which is based on the classical Devonshire theory. This study identifies the main characteristics of the classical theory and introduces a simple modification to obtain better results. (author). 9 refs., 6 figs

  2. Magnetic shape memory effect at 1.7 K

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Kopecký, Vít; Sozinov, A.; Straka, L.

    2013-01-01

    Roč. 103, č. 7 (2013), "072405-1"-"072405-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : shape memory alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013 http://dx.doi.org/10.1063/1.4817941

  3. Experimental analyses of dynamical systems involving shape memory alloys

    DEFF Research Database (Denmark)

    Enemark, Søren; Savi, Marcelo A.; Santos, Ilmar F.

    2015-01-01

    The use of shape memory alloys (SMAs) in dynamical systems has an increasing importance in engineering especially due to their capacity to provide vibration reductions. In this regard, experimental tests are essential in order to show all potentialities of this kind of systems. In this work, SMA ...

  4. Background of two characteristic features of shape memory phenomena

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav; Vokoun, David

    2006-01-01

    Roč. 17, č. 6 (2006), s. 511-520 ISSN 1045-389X Institutional research plan: CEZ:AV0Z20710524 Keywords : shape memory * moduli * threshold stress Subject RIV: JM - Building Engineering Impact factor: 1.276, year: 2006

  5. Investigation of shape memory alloy honeycombs by means of a micromechanical analysis

    International Nuclear Information System (INIS)

    Freed, Yuval; Aboudi, Jacob; Gilat, Rivka

    2008-01-01

    Shape memory alloy (SMA) honeycombs are promising new smart materials which may be used for light-weight structures, biomedical implants, actuators and active structures. In this study, the behavior of several SMA honeycomb structures is investigated by means of a continuum-based thermomechanically coupled micromechanical analysis. To this end, macroscopic inelastic stress–strain responses of several topologies are investigated, both for pseudoelasticity and for shape memory effect. It was found that the triangular topology exhibits the best performance. In addition, the initial transformation surfaces are presented for all possible combinations of applied in-plane stresses. A special two-phase microstructure that is capable of producing an overall negative coefficient of thermal expansion is suggested and studied. In this configuration, in which one of the phases is a SMA, residual strains are being generated upon recovery. Here, the negative coefficient of thermal expansion appears to be associated with a larger amount of residual strain upon recovery. Furthermore, a two-dimensional SMA re-entrant topology that generates a negative in-plane Poisson's ratio is analyzed, and the effect of the full thermomechanical coupling is examined. Finally, the response of a particular three-dimensional microstructure is studied

  6. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-01-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  7. Laser Shock Wave-Assisted Patterning on NiTi Shape Memory Alloy Surfaces

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Seyitliyev, Dovletgeldi; Kholikov, Khomidkohodza; Thomas, Zachary; Er, Ali O.; Li, Peizhen; Karaca, Haluk E.; San, Omer

    2018-03-01

    Shape memory alloys (SMAs) are a unique class of smart materials and they were employed in various applications in engineering, biomedical, and aerospace technologies. Here, we report an advanced, efficient, and low-cost direct imprinting method with low environmental impact to create thermally controllable surface patterns. Patterned microindents were generated on Ni50Ti50 (at. %) SMAs using an Nd:YAG laser with 1064 nm wavelength at 10 Hz. Laser pulses at selected fluences were focused on the NiTi surface and generated pressure pulses of up to a few GPa. Optical microscope images showed that surface patterns with tailorable sizes can be obtained. The depth of the patterns increases with laser power and irradiation time. Upon heating, the depth profile of SMA surfaces changed where the maximum depth recovery ratio of 30% was observed. Recovery ratio decreased and stabilized when the number of pulses and thus the well depth were further increased. A numerical simulation of pressure evolution in shape memory alloys showed a good agreement with the experimental results. The stress wave closely followed the rise time of the laser pulse to its peak value and initial decay. Rapid attenuation and dispersion of the stress wave were found in our simulation.

  8. Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming

    International Nuclear Information System (INIS)

    Cui, J; Kratz, K; Lendlein, A

    2010-01-01

    Various composites have been prepared to improve the mechanical properties of shape-memory polymers (SMPs) or to incorporate new functionalities (e.g. magneto-sensitivity) in polymer matrices. In this paper, we systematically investigated the influence of the programming temperature T prog and the applied strain ε m as parameters of the shape-memory creation procedure (SMCP) on the shape-memory properties of an amorphous polyether urethane and radio-opaque composites thereof. Recovery under stress-free conditions was quantified by the shape recovery rate R r and the switching temperature T sw , while the maximum recovery stress σ max was determined at the characteristic temperature T σ,max under constant strain conditions. Excellent shape-memory properties were achieved in all experiments with R r values in between 80 and 98%. σ max could be tailored from 0.4 to 3.7 MPa. T sw and T σ,max could be systematically adjusted from 33 to 71 °C by variation of T prog for each investigated sample. The investigated radio-opaque shape-memory composites will form the material basis for mechanically active scaffolds, which could serve as an intelligent substitute for the extracellular matrix to study the influence of mechanical stimulation of tissue development

  9. Thermo-mechanical properties of polystyrene-based shape memory nanocomposites

    NARCIS (Netherlands)

    Xu, B.; Fu, Y.Q.; Ahmad, M.; Luo, J.K.; Huang, W.M.; Kraft, A.; Reuben, R.; Pei, Y.T.; Chen, Zhenguo; Hosson, J.Th.M. De

    2010-01-01

    Shape memory nanocomposites were fabricated using chemically cross-linked polystyrene (PS) copolymer as a matrix and different nanofillers (including alumina, silica and clay) as the reinforcing agents. Their thermo-mechanical properties and shape memory effects were characterized. Experimental

  10. Anodic Fabrication of Ti-Ni-O Nanotube Arrays on Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2014-04-01

    Full Text Available Surface modification with oxide nanostructures is one of the efficient ways to improve physical or biomedical properties of shape memory alloys. This work reports a fabrication of highly ordered Ti-Ni-O nanotube arrays on Ti-Ni alloy substrates through pulse anodization in glycerol-based electrolytes. The effects of anodization parameters and the annealing process on the microstructures and surface morphology of Ti-Ni-O were studied using scanning electron microscope and Raman spectroscopy. The electrolyte type greatly affected the formation of nanotube arrays. A formation of anatase phase was found with the Ti-Ni-O nanotube arrays annealed at 450 °C. The oxide nanotubes could be crystallized to rutile phase after annealing treatment at 650 °C. The Ti-Ni-O nanotube arrays demonstrated an excellent thermal stability by keeping their nanotubular structures up to 650 °C.

  11. Thermomechanical model for NiTi shape memory wires

    International Nuclear Information System (INIS)

    Frost, M; Sedlák, P; Sippola, M; Šittner, P

    2010-01-01

    A simple one-dimensional rate-independent model is proposed. It is able to capture responses of a NiTi shape memory alloy wire element to mechanical and thermal loadings. Since the model takes into account martensitic phase transformation as well as deformation processes in the martensite, both shape memory effects and pseudoelasticity can be simulated. The model introduces non-hysteretic transformation strain. Particular attention was paid to description of partial loading cycles. By changing the input parameters the model can be adapted to various types of NiTi-based materials. The model was implemented in the finite element code Abaqus as a User routine and several simulations were performed to validate the implementation

  12. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    Science.gov (United States)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  13. Mechanical design of a shape memory alloy actuated prosthetic hand.

    Science.gov (United States)

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  14. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    Science.gov (United States)

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices.

  15. Application of shape memory alloys in bolted flanged connections

    International Nuclear Information System (INIS)

    Zhu Shichun; Lu Xiaofeng

    2009-01-01

    The Shape Memory Effect (SME) and super elasticity of the Shape Memory Alloys (SMA) can make up the clamping force decreasing caused by the creep and relaxation behavior in Bolted Flanged Connections (BFC), and improve the reliability of the BFC. Advances in the research of SMA in BFC home and abroad is summarized in this paper. The application prospects of Ti-Ni-Pd, Ti-Ni-Hf, Fe-Mn-Si, Cu-Al-Ni and Ni-Al-Mn in the BFC are also discussed. It is considered that the compressive characteristics of the parent phase of SMA should be studied further for the application of SMA to BFC besides the design of sealing structure. When more basic research data is accumulated, BFC with high sealing performance for the critical engineering applications can be developed based on the comprehensive consideration of the stability and reliability of the clamping force. (authors)

  16. Shape-memory effect in Ti-Nb alloys

    International Nuclear Information System (INIS)

    Peradze, T.; Berikashvili, T.; Chelidze, T.; Gorgadze, K.; Bochorishvili, M.; Taktakishvili, M.

    2009-01-01

    The work deals with the investigation of the binary alloy of titanium with niobium and is aimed at demonstrating the functional-mechanical possibilities of Ti-Nb alloys from the viewpoint of their potential application in practice. The shape-memory effect, super elasticity and reactive stress in alloys of Ti-Nb system were studied. It turned out that the work carried out expanded the interval of Nb content in the investigated alloys from 25.9 to 33.1 wt%. The shape recovery made up not less than 90% at the deformation of 6-8%. The reactive stress reached 350-450 MPa. In the alloys under study another (high-temperature) shape-memory effect was found, and the influence of hydrogen and oxygen on the inelastic properties of alloys was studied. (author)

  17. Bioinspired Soft Actuation System Using Shape Memory Alloys

    OpenAIRE

    Cianchetti, Matteo; Licofonte, Alessia; Follador, Maurizio; Rogai, Francesco; Laschi, Cecilia

    2014-01-01

    Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SM...

  18. PROPERTY DATABASE FOR THE DEVELOPMENT OF SHAPE MEMORY ALLOY APPLICATIONS

    OpenAIRE

    Tang , W.; CederstrÖm , J.; SandstrÖm , R.

    1991-01-01

    Important points involving the selection of shape memory alloy (SMA) application projects are discussed. The development of a property database for SMA is initiated. Both conventional data as well as characteristics which are unique for SMA are stored. As an application example of the database SMA-SELECT, important properties for Ti-Ni alloys near equi-atomic composition, such as temperature window width for superelasticity (SE), stress rate, critical yield stress, and their interaction have ...

  19. A sharp interface evolutionary model for shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Knüpfer, H.; Kružík, Martin

    2016-01-01

    Roč. 96, č. 11 (2016), s. 1347-1355 ISSN 0044-2267 R&D Projects: GA ČR GA14-15264S Institutional support: RVO:67985556 Keywords : Polyconvexity * shape memory materials * rate-independent problems Subject RIV: BA - General Mathematics Impact factor: 1.332, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kruzik-0465809.pdf

  20. The role of adaptive martensite in magnetic shape memory alloys

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Rößler, U.K.; Gruner, M.E.; Heczko, Oleg; Schultz, L.; Fähler, S.

    2012-01-01

    Roč. 14, č. 8 (2012), s. 562-581 ISSN 1438-1656 Grant - others:AVČR(CZ) M100100913 Institutional research plan: CEZ:AV0Z10100520 Keywords : Ni-Mn-Ga * magnetic shape memory alloy * ferromagnetic martensite * modulated structure * adaptive phase * mobility of twin boundary Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.608, year: 2012

  1. Magnetic shape-memory alloys: thermomechanical modelling and analysis

    Czech Academy of Sciences Publication Activity Database

    Roubíček, Tomáš; Stefanelli, U.

    2014-01-01

    Roč. 26, č. 6 (2014), s. 783-810 ISSN 0935-1175 R&D Projects: GA ČR GAP201/10/0357 Institutional support: RVO:61388998 Keywords : magnetic shape- memory alloys * martensitic phase transformation * ferro/paramagnetic phase transformation Subject RIV: BA - General Mathematics Impact factor: 1.779, year: 2014 http://link.springer.com/article/10.1007/s00161-014-0339-8#

  2. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  3. Magnetic shape memory effect and highly mobile twin boundaries

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg

    2014-01-01

    Roč. 30, č. 13 (2014), s. 1559-1578 ISSN 0267-0836 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetic shape memory effect * ferromagnetic martensite * twinning * magnetically induced reorientation * reviews Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.995, year: 2014 http://dx.doi.org/10.1179/1743284714Y.0000000599

  4. Orthodontic applications of a superelastic shape-memory alloy model

    International Nuclear Information System (INIS)

    Glendenning, R.W.; Enlow, R.L.

    2000-01-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  5. Shape memory effects, thermal expansion and B19' martensite texture in titanium nickelide

    International Nuclear Information System (INIS)

    Zel'dovich, V.I.; Sobyanina, G.A.; Rinkevich, O.S.; Gundyrev, V.M.

    1996-01-01

    The influence of plastic deformation by tension and cold rolling on shape memory effect, reverse shape memory effect, thermal expansion and texture state of martensite in titanium nickelide is under study. The relationship of thermal expansion coefficient to the value of strain during direct and reverse shape memory effect is established

  6. Bio-based hyperbranched thermosetting polyurethane/triethanolamine functionalized multi-walled carbon nanotube nanocomposites as shape memory materials.

    Science.gov (United States)

    Kalita, Hemjyoti; Karak, Niranjan

    2014-07-01

    Here, bio-based shape memory polymers have generated immense interest in recent times. Here, Bio-based hyperbranched polyurethane/triethanolamine functionalized multi-walled carbon nanotube (TEA-f-MWCNT) nanocomposites were prepared by in-situ pre-polymerization technique. The Fourier transform infrared spectroscopy and the transmission electron microscopic studies showed the strong interfacial adhesion and the homogeneous distribution of TEA-f-MWCNT in the polyurethane matrix. The prepared epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.5-34.5 MPa), scratch hardness (3.0-7.5 kg) and thermal stability (241-288 degrees C). The nanocomposites showed excellent shape fixity and shape recovery. The shape recovery time decreases (24-10 s) with the increase of TEA-f-MWCNT content in the nanocomposites. Thus the studied nanocomposites have potential to be used as advanced shape memory materials.

  7. Comparing the cyclic behavior of concrete cylinders confined by shape memory alloy wire or steel jackets

    International Nuclear Information System (INIS)

    Park, Joonam; Choi, Eunsoo; Kim, Hong-Taek; Park, Kyoungsoo

    2011-01-01

    Shape memory alloy (SMA) wire jackets for concrete are distinct from conventional jackets of steel or fiber reinforced polymer (FRP) since they provide active confinement which can be easily achieved due to the shape memory effect of SMAs. This study uses NiTiNb SMA wires of 1.0 mm diameter to confine concrete cylinders with the dimensions of 300 mm × 150 mm (L × D). The NiTiNb SMAs have a relatively wider temperature hysteresis than NiTi SMAs; thus, they are more suitable for the severe temperature-variation environments to which civil structures are exposed. Steel jackets of passive confinement are also prepared in order to compare the cyclic behavior of actively and passively confined concrete cylinders. For this purpose, monotonic and cyclic compressive loading tests are conducted to obtain axial and circumferential strain. Both strains are used to estimate the volumetric strains of concrete cylinders. Plastic strains from cyclic behavior are also estimated. For the cylinders jacketed by NiTiNb SMA wires, the monotonic axial behavior differs from the envelope of cyclic behavior. The plastic strains of the actively confined concrete show a similar trend to those of passive confinement. This study proposed plastic strain models for concrete confined by SMA wire or steel jackets. For the volumetric strain, the active jackets of NiTiNb SMA wires provide more energy dissipation than the passive jacket of steel

  8. Nonlinear dynamics of a nonsmooth shape memory alloy oscillator

    International Nuclear Information System (INIS)

    Cardozo dos Santos, Bruno; Amorim Savi, Marcelo

    2009-01-01

    In the last years, there is an increasing interest in nonsmooth system dynamics motivated by different applications including rotor dynamics, oil drilling and machining. Besides, shape memory alloys (SMAs) have been used in various applications exploring their high dissipation capacity related to their hysteretic behavior. This contribution investigates the nonlinear dynamics of shape memory alloy nonsmooth systems considering a linear oscillator with a discontinuous support built with an SMA element. A constitutive model developed by Paiva et al. [Paiva A, Savi MA, Braga AMB, Pacheco PMCL. A constitutive model for shape memory alloys considering tensile-compressive asymmetry and plasticity. Int J Solids Struct 2005;42(11-12):3439-57] is employed to describe the thermomechanical behavior of the SMA element. Numerical investigations show results where the SMA discontinuous support can dramatically change the system dynamics when compared to those associated with a linear elastic support system. A parametric study is of concern showing the system behavior for different system characteristics, forcing excitation and also gaps. These results show that smart materials can be employed in different kinds of mechanical systems exploring some of the remarkable properties of these alloys.

  9. Self-healing bolted joint employing a shape memory actuator

    Science.gov (United States)

    Muntges, Daniel E.; Park, Gyuhae; Inman, Daniel J.

    2001-08-01

    This paper is a report of an initial investigation into the active control of preload in the joint using a shape memory actuator around the axis of the bolt shaft. Specifically, the actuator is a cylindrical Nitinol washer that expands axially when heated, according to the shape memory effect. The washer is actuated in response to an artificial decrease in torque. Upon actuation, the stress generated by its axial strain compresses the bolted members and creates a frictional force that has the effect of generating a preload and restoring lost torque. In addition to torque wrenches, the system in question was monitored in all stages of testing using piezoelectric impedance analysis. Impedance analysis drew upon research techniques developed at Center for Intelligent Material Systems and Structures, in which phase changes in the impedance of a self-sensing piezoceramic actuator correspond to changes in joint stiffness. Through experimentation, we have documented a successful actuation of the shape memory element. Due to complexity of constitutive modeling, qualitative analysis by the impedance method is used to illustrate the success. Additional considerations encountered in this initial investigation are made to guide further thorough research required for the successful commercial application of this promising technique.

  10. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    Science.gov (United States)

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-05

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Thermodynamic modelling of shape memory behaviour: some examples

    International Nuclear Information System (INIS)

    Stalmans, R.; Humbeeck, J. van; Delaey, L.

    1995-01-01

    This paper gives a general view of a recently developed thermodynamic model of the thermoelastic martensitic transformation. Unlike existing empirical, mathematical or thermodynamic models, this generalised thermodynamic model can be used to understand and describe quantitatively the overall thermomechanical behaviour of polycrystalline shape memory alloys. Important points of difference between this and previous thermodynamic models are that the contributions of the stored elastic energy and of the crystal defects are also included. In addition, the mathematical approach and the assumptions in this model are selected in such a way that the calculations yield close approximations of the real behaviour and that the final mathematical equations are relatively simple. Several illustrations indicate that this model, in contrast to other models, can be used to understand the shape memory behaviour of complex cases. As an example of quantitative calculations, it is shown that this modelling can be an effective tool in the ''design'' of multifunctional materials consisting of shape memory elements embedded in matrix materials. (orig.)

  12. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    Science.gov (United States)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  13. Enhanced mechanical properties of linear segmented shape memory poly(urethane-urea) by incorporating flexible PEG400 and rigid piperazine

    Science.gov (United States)

    Zhang, Xiao-Yan; Ma, Yu-Fei; Li, Yong-Gang; Wang, Pin-Pin; Wang, Yuan-Liang; Luo, Yan-Feng

    2012-12-01

    The goal of this study is to design and synthesize a linear segmented shape memory poly(urethane-urea) (SMPUU) that possesses near-body-temperature shape memory temperature ( T tran) and enhanced mechanical properties by incorporating flexible poly(ethylene glycol) 400 (PEG400) to form poly(D,L-lactic acid)-based macrodiols (PDLLA-PEG400-PDLLA) and then rigid piperazine (PPZ) as a chain extender to form the desired SMPUUs (PEG400-PUU-PPZ). PEG400 increased M n while maintaining a lower T g of PDLLA-PEG400-PDLLA, which together with PPZ improved the mechanical properties of PEG400-PUU-PPZ. The obtained optimum SMPUU with enhanced mechanical properties ( σ y = 24.28 MPa; ɛ f = 698%; U f = 181.5 MJ/m3) and a T g of 40.62°C exhibited sound shape memory properties as well, suggesting a promising SMPUU for in vivo biomedical applications.

  14. Electrochemically deposited conducting polymers for reliable biomedical interfacing materials: Formulation, mechanical characterization, and failure analysis

    Science.gov (United States)

    Qu, Jing

    Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel

  15. On the shape memory of red blood cells

    Science.gov (United States)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped

  16. α-Amino acid containing degradable polymers as functional biomaterials: rational design, synthetic pathway, and biomedical applications.

    Science.gov (United States)

    Sun, Huanli; Meng, Fenghua; Dias, Aylvin A; Hendriks, Marc; Feijen, Jan; Zhong, Zhiyuan

    2011-06-13

    Currently, biomedical engineering is rapidly expanding, especially in the areas of drug delivery, gene transfer, tissue engineering, and regenerative medicine. A prerequisite for further development is the design and synthesis of novel multifunctional biomaterials that are biocompatible and biologically active, are biodegradable with a controlled degradation rate, and have tunable mechanical properties. In the past decades, different types of α-amino acid-containing degradable polymers have been actively developed with the aim to obtain biomimicking functional biomaterials. The use of α-amino acids as building units for degradable polymers may offer several advantages: (i) imparting chemical functionality, such as hydroxyl, amine, carboxyl, and thiol groups, which not only results in improved hydrophilicity and possible interactions with proteins and genes, but also facilitates further modification with bioactive molecules (e.g., drugs or biological cues); (ii) possibly improving materials biological properties, including cell-materials interactions (e.g., cell adhesion, migration) and degradability; (iii) enhancing thermal and mechanical properties; and (iv) providing metabolizable building units/blocks. In this paper, recent developments in the field of α-amino acid-containing degradable polymers are reviewed. First, synthetic approaches to prepare α-amino acid-containing degradable polymers will be discussed. Subsequently, the biomedical applications of these polymers in areas such as drug delivery, gene delivery and tissue engineering will be reviewed. Finally, the future perspectives of α-amino acid-containing degradable polymers will be evaluated.

  17. TiAu based shape memory alloys for high temperature applications

    International Nuclear Information System (INIS)

    Wadood, Abdul; Yamabe-Mitarai, Yoko; Hosoda, Hideki

    2014-01-01

    TiAu (equiatomic) exhibits phase transformaion from B2 (ordered bcc) to thermo-elastic orthorhombic B19 martensite at about 875K and thus TiAu is categorized as high temperature shape memory alloy. In this study, recent research and developments related to TiAu based high temperature shape memory alloys will be discussed in the Introduction part. Then some results of our research group related to strengthening of TiAu based high temperature shape memory alloys will be presented. Potential of TiAu based shape memory alloys for high temperature shape memory materials applications will also be discussed

  18. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.

    Science.gov (United States)

    Gu, Li; Faig, Allison; Abdelhamid, Dalia; Uhrich, Kathryn

    2014-10-21

    Various therapeutics exhibit unfavorable physicochemical properties or stability issues that reduce their in vivo efficacy. Therefore, carriers able to overcome such challenges and deliver therapeutics to specific in vivo target sites are critically needed. For instance, anticancer drugs are hydrophobic and require carriers to solubilize them in aqueous environments, and gene-based therapies (e.g., siRNA or pDNA) require carriers to protect the anionic genes from enzymatic degradation during systemic circulation. Polymeric micelles, which are self-assemblies of amphiphilic polymers (APs), constitute one delivery vehicle class that has been investigated for many biomedical applications. Having a hydrophobic core and a hydrophilic shell, polymeric micelles have been used as drug carriers. While traditional APs are typically comprised of nondegradable block copolymers, sugar-based amphiphilic polymers (SBAPs) synthesized by us are comprised of branched, sugar-based hydrophobic segments and a hydrophilic poly(ethylene glycol) chain. Similar to many amphiphilic polymers, SBAPs self-assemble into polymeric micelles. These nanoscale micelles have extremely low critical micelle concentrations offering stability against dilution, which occurs with systemic administration. In this Account, we illustrate applications of SBAPs for anticancer drug delivery via physical encapsulation within SBAP micelles and chemical conjugation to form SBAP prodrugs capable of micellization. Additionally, we show that SBAPs are excellent at stabilizing liposomal delivery systems. These SBAP-lipid complexes were developed to deliver hydrophobic anticancer therapeutics, achieving preferential uptake in cancer cells over normal cells. Furthermore, these complexes can be designed to electrostatically complex with gene therapies capable of transfection. Aside from serving as a nanocarrier, SBAPs have also demonstrated unique bioactivity in managing atherosclerosis, a major cause of cardiovascular

  19. Flexible shape-memory scaffold for minimally invasive delivery of functional tissues

    Science.gov (United States)

    Montgomery, Miles; Ahadian, Samad; Davenport Huyer, Locke; Lo Rito, Mauro; Civitarese, Robert A.; Vanderlaan, Rachel D.; Wu, Jun; Reis, Lewis A.; Momen, Abdul; Akbari, Saeed; Pahnke, Aric; Li, Ren-Ke; Caldarone, Christopher A.; Radisic, Milica

    2017-10-01

    Despite great progress in engineering functional tissues for organ repair, including the heart, an invasive surgical approach is still required for their implantation. Here, we designed an elastic and microfabricated scaffold using a biodegradable polymer (poly(octamethylene maleate (anhydride) citrate)) for functional tissue delivery via injection. The scaffold’s shape memory was due to the microfabricated lattice design. Scaffolds and cardiac patches (1 cm × 1 cm) were delivered through an orifice as small as 1 mm, recovering their initial shape following injection without affecting cardiomyocyte viability and function. In a subcutaneous syngeneic rat model, injection of cardiac patches was equivalent to open surgery when comparing vascularization, macrophage recruitment and cell survival. The patches significantly improved cardiac function following myocardial infarction in a rat, compared with the untreated controls. Successful minimally invasive delivery of human cell-derived patches to the epicardium, aorta and liver in a large-animal (porcine) model was achieved.

  20. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2016-04-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37 °C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  1. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.

    Science.gov (United States)

    Boire, Timothy C; Gupta, Mukesh K; Zachman, Angela L; Lee, Sue Hyun; Balikov, Daniel A; Kim, Kwangho; Bellan, Leon M; Sung, Hak-Joon

    2015-09-01

    Thermo-responsive shape memory polymers (SMPs) can be programmed to fit into small-bore incisions and recover their functional shape upon deployment in the body. This property is of significant interest for developing the next generation of minimally-invasive medical devices. To be used in such applications, SMPs should exhibit adequate mechanical strengths that minimize adverse compliance mismatch-induced host responses (e.g. thrombosis, hyperplasia), be biodegradable, and demonstrate switch-like shape recovery near body temperature with favorable biocompatibility. Combinatorial approaches are essential in optimizing SMP material properties for a particular application. In this study, a new class of thermo-responsive SMPs with pendant, photocrosslinkable allyl groups, x%poly(ε-caprolactone)-co-y%(α-allyl carboxylate ε-caprolactone) (x%PCL-y%ACPCL), are created in a robust, facile manner with readily tunable material properties. Thermomechanical and shape memory properties can be drastically altered through subtle changes in allyl composition. Molecular weight and gel content can also be altered in this combinatorial format to fine-tune material properties. Materials exhibit highly elastic, switch-like shape recovery near 37°C. Endothelial compatibility is comparable to tissue culture polystyrene (TCPS) and 100%PCL in vitro and vascular compatibility is demonstrated in vivo in a murine model of hindlimb ischemia, indicating promising suitability for vascular applications. With the ongoing thrust to make surgeries minimally-invasive, it is prudent to develop new biomaterials that are highly compatible and effective in this workflow. Thermo-responsive shape memory polymers (SMPs) have great potential for minimally-invasive applications because SMP medical devices (e.g. stents, grafts) can fit into small-bore minimally-invasive surgical devices and recover their functional shape when deployed in the body. To realize their potential, it is imperative to devise

  2. An overview of applications of the mesomechanical approach to shape memory phenomena – completed by a new application to two-way shape memory

    Czech Academy of Sciences Publication Activity Database

    Kafka, Vratislav

    19 2008, č. 1 (2008), s. 3-17 ISSN 1045-389X Institutional research plan: CEZ:AV0Z20710524 Keywords : shape memory * mesomechanics * two-way shape memory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.293, year: 2008

  3. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.

    Science.gov (United States)

    Shirole, Anuja; Sapkota, Janak; Foster, E Johan; Weder, Christoph

    2016-03-01

    The present study aimed at developing new thermally responsive shape-memory composites, that were fabricated by compacting mats of electrospun poly(vinyl alcohol) (PVA) fibers and sheets of a thermoplastic polyether block amide elastomer (PEBA). This design was based on the expectation that the combination of the rubber elasticity of the PEBA matrix and the mechanical switching exploitable through the reversible glass transition temperature (Tg) of the PVA filler could be combined to create materials that display shape memory characteristics as an emergent effect. Dynamic mechanical analyses (DMA) show that, upon introduction of 10-20% w/w PVA fibers, the room-temperature storage modulus (E') increased by a factor of 4-5 in comparison to the neat PEBA, and they reveal a stepwise reduction of E' around the Tg of PVA (85 °C). This transition could indeed be utilized to fix a temporary shape and recover the permanent shape. At low strain, the fixity was 66 ± 14% and the recovery was 98 ± 2%. Overall, the data validate a simple and practical strategy for the fabrication of shape memory composites that involves a melt compaction process and employs two commercially available polymers.

  4. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    controlled delivery applications of larger molecular size compounds. The starch based hydrogels, polymers and nanoparticles developed in this work have shown great potentials for controlled drug delivery and biomedical imaging applications.

  5. Shape memory properties in NiTi alloys

    International Nuclear Information System (INIS)

    Airoldi, G.; Vicentini, B.; Ranucci, T.; Rivolta, B.

    1991-01-01

    Mechanical properties of shape memory NiTi alloys are here examined in the frame of literature's results. The operating temperature respect to the intrinsic transformation temperatures explains thoroughly the different stress-strain behaviour, ascribed to different deformation mechanisms acting and to their interplay. Attention is moreover paid to the stress-strain behaviour consequent to a different physical state (martensite phase or parent phase), obtained within the hysteresis cycle, at the same temperature. Evidence of oriented variants, selected by the applied stress, is also given

  6. Implement of Shape Memory Alloy Actuators in a Robotic Hand

    Directory of Open Access Journals (Sweden)

    Daniel Amariei

    2006-10-01

    Full Text Available This paper was conceived to present the ideology of utilizing advanced actuators to design and develop innovative, lightweight, powerful, compact, and as much as possible dexterous robotic hands. The key to satisfying these objectives is the use of Shape Memory Alloys (SMAs to power the joints of the robotic hand. The mechanical design of a dexterous robotic hand, which utilizes non-classical types of actuation and information obtained from the study of biological systems, is presented in this paper. The type of robotic hand described in this paper will be utilized for applications requiring low weight, power, compactness, and dexterity.

  7. Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

    Science.gov (United States)

    Padula, Santo

    2013-01-01

    This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

  8. Coupled magnetoelastic waves in ferromagnetic shape-memory alloys

    Science.gov (United States)

    Bar'Yakhtar, V. G.; Danilevich, A. G.; L'Vov, V. A.

    2011-10-01

    The theory of the spectra of coupled magnetoelastic waves in ferromagnetic shape-memory alloys (FSMA) is developed. The possibility of an abnormally strong coupling of spin waves with the soft elastic mode at approaching the martensitic transformation (MT) temperature is disclosed. In particular the magnetoelastic waves in Ni-Mn-Ga single crystals are considered. A considerable (by an order of magnitude) reduction of the shear elastic modulus and an appropriate lowering of the transversal velocity of sound in the applied magnetic field are predicted. Optimum conditions for the experimental observation of the predicted effects are specified.

  9. Martensitic transformation in Co-based ferromagnetic shape memory alloy

    Czech Academy of Sciences Publication Activity Database

    Kopeček, Jaromír; Yokaichiya, F.; Laufek, F.; Jarošová, Markéta; Jurek, Karel; Drahokoupil, Jan; Sedláková-Ignácová, Silvia; Molnár, Peter; Heczko, Oleg

    2012-01-01

    Roč. 122, č. 3 (2012), s. 475-477 ISSN 0587-4246. [International Symposium on Physics of Materials, ISPMA /12./. Praha, 04.09.2011-08.09.2011] R&D Projects: GA ČR(CZ) GA101/09/0702; GA ČR GAP107/10/0824; GA AV ČR IAA100100920 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : microstructure * shape memory alloys * neutron diffraction * cobalt alloys Subject RIV: JG - Metallurgy Impact factor: 0.531, year: 2012

  10. Orthodontic applications of a superelastic shape-memory alloy model

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, R.W.; Enlow, R.L. [Otago Univ., Dunedin (New Zealand). Dept. of Math. and Stat.; Hood, J.A.A. [Dept. of Oral Sciences and Orthodontics, Univ. of Otago, Dunedin (New Zealand)

    2000-07-01

    During orthodontic treatment, dental appliances (braces) made of shape memory alloys have the potential to provide nearly uniform low level stresses to dentitions during tooth movement over a large range of tooth displacement. In this paper we model superelastic behaviour of dental appliances using the finite element method and constitutive equations developed by F. Auricchio et al. Results of the mathematical model for 3-point bending and several promising 'closing loop' designs are compared with laboratory results for the same configurations. (orig.)

  11. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    Science.gov (United States)

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  12. Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Amelia Yilin Lee

    2017-10-01

    Full Text Available The rapid development of additive manufacturing and advances in shape memory materials have fueled the progress of four-dimensional (4D printing. With the right external stimulus, the need for human interaction, sensors, and batteries will be eliminated, and by using additive manufacturing, more complex devices and parts can be produced. With the current understanding of shape memory mechanisms and with improved design for additive manufacturing, reversibility in 4D printing has recently been proven to be feasible. Conventional one-way 4D printing requires human interaction in the programming (or shape-setting phase, but reversible 4D printing, or two-way 4D printing, will fully eliminate the need for human interference, as the programming stage is replaced with another stimulus. This allows reversible 4D printed parts to be fully dependent on external stimuli; parts can also be potentially reused after every recovery, or even used in continuous cycles—an aspect that carries industrial appeal. This paper presents a review on the mechanisms of shape memory materials that have led to 4D printing, current findings regarding 4D printing in alloys and polymers, and their respective limitations. The reversibility of shape memory materials and their feasibility to be fabricated using three-dimensional (3D printing are summarized and critically analyzed. For reversible 4D printing, the methods of 3D printing, mechanisms used for actuation, and strategies to achieve reversibility are also highlighted. Finally, prospective future research directions in reversible 4D printing are suggested.

  13. Surface treatment of NiTi shape memory alloy by modified advanced oxidation process

    Institute of Scientific and Technical Information of China (English)

    CHU Cheng-lin; WANG Ru-meng; YIN Li-hong; PU Yue-pu; DONG Yin-sheng; GUO Chao; SHENG Xiao-bo; LIN Ping-hua; CHU Paul-K

    2009-01-01

    A modified advanced oxidation process(AOP) utilizing a UV/electrochemically-generated peroxide system was used to fabricate titania films on chemically polished NiTi shape memory alloy(SMA). The microstructure and biomedical properties of the film were characterized by scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS), inductively-coupled plasma mass spectrometry(ICPMS), hemolysis analysis, and blood platelet adhesion test. It is found that the modified AOP has a high processing effectiveness and can result in the formation of a dense titania film with a Ni-free zone near its top surface. In comparison, Ni can still be detected on the outer NiTi surface by the conventional AOP using the UV/H2O2 system. The depth profiles of O, Ni, Ti show that the film possesses a smooth graded interface structure next to the NiTi substrate and this structure enhances the mechanical stability of titania film. The titania film can dramatically reduce toxic Ni ion release and also improve the hemolysis resistance and thromboresistance of biomedical NiTi SMA.

  14. Performance characteristics of shape memory alloy and its applications for fusion technology

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Watanabe, Kenji

    1987-01-01

    As a shape memory alloy, Au-Cd alloy was found in 1951. Thereafter, also in In-Tl alloy, shape memory effect was found. The U.S. Naval Ordinance Laboratory developed Ni-Ti alloy, and published in 1965 as NITINOL. As Cu group shape memory alloys, there are Cu-Zn-Al alloy, Cu-Al-Be alloy and Cu-Al-Ni alloy. Recently, iron group shape memory alloy was published. In 1975, 'Shape memory effect and its application' symposium, in 1978, 'NITINOL heat engine international conference', and in 1982 and 1986, 'Martensite transformation international conference' were held, and the method of the proper use of shape memory alloys and the problems of the alloys themselves such as fatigue have been gradually clarified. In this report, the fundamental action characteristics of shape memory alloys are discribed from the viewpoint of the application, and the possibility of applying these characteristics to nuclear fusion devices and the advantage obtained as the result are explained. Shape memory effect and pseudo-elasticity, reversible shape memory effect, the thermodynamic behavior of shape memory alloys, transformation temperature range and using temperature range and so on are described. (Kako, I.)

  15. Experimental and numerical investigations of shape memory alloy helical springs

    International Nuclear Information System (INIS)

    Aguiar, Ricardo A A; Pacheco, Pedro M C L; Savi, Marcelo A

    2010-01-01

    Shape memory alloys (SMAs) belong to the class of smart materials and have been used in numerous applications. Solid phase transformations induced either by stress or temperature are behind the remarkable properties of SMAs that motivate the concept of innovative smart actuators for different purposes. The SMA element used in these actuators can assume different forms and a spring is an element usually employed for this aim. This contribution deals with the modeling, simulation and experimental analysis of SMA helical springs. Basically, a one-dimensional constitutive model is assumed to describe the SMA thermomechanical shear behavior and, afterwards, helical springs are modeled by considering a classical approach for linear-elastic springs. A numerical method based on the operator split technique is developed. SMA helical spring thermomechanical behavior is investigated through experimental tests performed with different thermomechanical loadings. Shape memory and pseudoelastic effects are treated. Numerical simulations show that the model results are in close agreement with those obtained by experimental tests, revealing that the proposed model captures the general thermomechanical behavior of SMA springs

  16. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    Science.gov (United States)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  17. Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation

    Directory of Open Access Journals (Sweden)

    Simone Pittaccio

    2015-05-01

    Full Text Available Shape memory alloys (SMAs are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE, shape memory effect (SME and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous.

  18. A Shape Memory Alloy Application for Compact Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Salvatore Ameduri

    2016-05-01

    Full Text Available Shape memory alloys materials, SMA, offer several advantages that designers can rely on such as the possibility of transmitting large forces and deformations, compactness, and the intrinsic capability to absorb loads. Their use as monolithic actuators, moreover, can lead to potential simplifications of the system, through a reduction of number of parts and the removal of many free play gaps among mechanics. For these reasons, technological aerospace research is focusing on this kind of technology more and more, even though fatigue life, performance degradation, and other issues are still open. In the work at hand, landing gear for unmanned aerial vehicles, UAV, is presented, integrated with shape memory alloys springs as actuation devices. A conceptual prototype has been realized to verify the system ability in satisfying specs, in terms of deployment and retraction capability. Starting from the proposed device working principle and the main design parameters identification, the design phase is faced, setting those parameters to meet weight, deployment angle, energy consumption, and available room requirements. Then, system modeling and performance prediction is performed and finally a correlation between numerical and experimental results is presented.

  19. Titanium-nickel shape memory alloys development in Taiwan

    International Nuclear Information System (INIS)

    Wu, S. K.; Lin, H. C.

    1997-01-01

    In Taiwan, many groups engage in the development of TiNi SMAs. The two-stage martensitic transformations of B2 R-phase B19' and B2 B19 B19' have been clarified for both TiNi binary and ternary alloys. The deformation behaviours have been investigated by cold-rolling, hot-rolling and wire drawing. Both shape memory effect and pseudoelasticity can be improved by some thermo-mechanical treatments. The damping characteristics of TiNi and TiNiX SMAs have also been systematically studied. Both B19'/B19 martensite (M) and R-phase (R) have high damping capacities due to stress induced movement of twin boundaries. Meanwhile, the addition of third elements, Fe and Cu, can largely increase the damping capacity. Recently, some high temperature shape memory alloys of TiNiPd and TiNiAu SMAs and thin films of TiNi and TiNiX alloys have also been intensively studied in Taiwan. All these potential investigations on the TiNi SMAs in Taiwan have attracted much attention and their important characteristics will be applied widely in the near future. (author)

  20. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    International Nuclear Information System (INIS)

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed

  1. Fatigue and retention properties of shape memory piezoelectric actuator with non-180° domain switching

    International Nuclear Information System (INIS)

    Kadota, Y; Morita, T

    2012-01-01

    A shape memory piezoelectric actuator can maintain a piezoelectric displacement without an operating voltage. It has two stable strain states at zero voltage: a poled state and a depoled state. The driving principle of the shape memory piezoelectric actuator is based on reorientation of the non-180° domains in the ferroelectric materials. In this study, a unimorph shape memory piezoelectric actuator with a soft lead zirconate titanate was fabricated. The fatigue and retention properties of this shape memory piezoelectric actuator were investigated. The fatigue behavior of the actuator in the early stages is considered to be closely related to the domain stabilization process. Continuous cycle fatigue tests revealed that the shape memory piezoelectric actuator continues to operate even after 10 6 cycles. Retention measurements revealed that the depoled state of the actuator was more stable than the poled state. The drift in the actuator displacement over one year was estimated to be less than 10% of the initial shape memory displacement. (paper)

  2. Role of samarium additions on the shape memory behavior of iron based alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad; Kang, Kisuk

    2011-01-01

    Research highlights: → The effect of samarium contents on shape memory behavior has been studied. → Addition of samarium increases the strength, c/a ratio and ε (hcp martensite). → Addition of samarium retards the nucleation of α (bcc martensite). → Improvement in shape memory effect with the increase in samarium contents. - Abstract: The effect of samarium contents on shape memory behavior of iron based shape memory alloys has been studied. It is found that the strength of the alloys increases with the increase in samarium contents. This effect can be attributed to the solid solution strengthening of austenite by samarium addition. It is also noticed that the shape memory effect increases with the increase in samarium contents. This improvement in shape memory effect presumably can be regarded as the effect of improvement in strength, increase in c/a ratio and obstruction of nucleation of α in the microstructure.

  3. Phase Transformation and Shape Memory Effect of Ti-Pd-Pt-Zr High-Temperature Shape Memory Alloys

    Science.gov (United States)

    Yamabe-Mitarai, Yoko; Takebe, Wataru; Shimojo, Masayuki

    2017-12-01

    To understand the potential of high-temperature shape memory alloys, we have investigated the phase transformation and shape memory effect of Ti-(50 - x)Pt- xPd-5Zr alloys ( x = 0, 5, and 15 at.%), which present the B2 structure in the austenite phase and B19 structure in the martensite phase. Their phase transformation temperatures are very high; A f and M f of Ti-50Pt are 1066 and 1012 °C, respectively. By adding Zr and Pd, the phase transition temperatures decrease, ranging between 804 and 994 °C for A f and 590 and 865 °C for M f. Even at the high phase transformation temperature, a maximum recovery ratio of 70% was obtained for one cycle in a thermal cyclic test. A work output of 1.2 J/cm3 was also obtained. The recovery ratio obtained by the thermal cyclic test was less than 70% because the recovery strain was training effect was also investigated.

  4. Thermal processing of polycrystalline NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Frick, Carl P.; Ortega, Alicia M.; Tyber, Jeffrey; Maksound, A.El.M.; Maier, Hans J.; Liu Yinong; Gall, Ken

    2005-01-01

    The objective of this study is to examine the effect of heat treatment on polycrystalline Ti-50.9 at.% Ni in hot-rolled and cold-drawn states. In particular, we examine microstructure, transformation temperatures as well as mechanical behavior in terms of both uniaxial monotonic testing and instrumented Vickers micro-indentation. The results constitute a fundamental understanding of the effect of heat treatment on thermal/stress-induced martensite and resistance to plastic flow in NiTi, all of which are critical for optimizing the mechanical properties. The high temperature of the hot-rolling process caused recrystallization, recovery, and hindered precipitate formation, essentially solutionizing the NiTi. The subsequent cold-drawing-induced a high density of dislocations and martensite. Heat treatments were carried out on hot-rolled, as well as, hot-rolled then cold-drawn materials at various temperatures for 1.5 h. Transmission Electron Microscopy observations revealed that Ti 3 Ni 4 precipitates progressively increased in size and changed their interface with the matrix from being coherent to incoherent with increasing heat treatment temperature. Accompanying the changes in precipitate size and interface coherency, transformation temperatures were observed to systematically shift, leading to the occurrence of the R-phase and multiple-stage transformations. Room temperature stress-strain tests illustrated a variety of mechanical responses for the various heat treatments, from pseudoelasticity to shape memory. The changes in stress-strain behavior are interpreted in terms of shifts in the primary martensite transformation temperatures, rather then the occurrence of the R-phase transformation. The results confirm that Ti 3 Ni 4 precipitates can be used to elicit a desired isothermal stress-strain behavior in polycrystalline NiTi. Instrumented micro-indention tests revealed that Martens (Universal) Hardness values are more dependent on the resistance to dislocation

  5. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    International Nuclear Information System (INIS)

    Pogrebnjak, A D; Bratushka, S N; Beresnev, V M; Levintant-Zayonts, N

    2013-01-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references

  6. Ductile shape memory alloys of the Cu-Al-Mn system

    International Nuclear Information System (INIS)

    Kainuma, R.; Takahashi, S.; Ishida, K.

    1995-01-01

    Cu-Al-Mn shape memory alloys with enhanced ductility have been developed by decreasing the degree of order in the β parent phase. Cu-Al-Mn alloys with Al contents lower than 18% exhibit good ductility with elongations of about 15% and excellent cold-workability arising from a lower degree of order in the Heusler (L21) β 1 parent phase, without any loss in their shape memory behavior. In this paper the mechanical and shape memory characteristics, such as the cold-workability, the Ms temperatures, the shape memory effect and the pseudo-elasticity of such ductile Cu-Al-Mn alloys are presented. (orig.)

  7. Dynamical Jumps in a Shape Memory Alloy Oscillator

    Directory of Open Access Journals (Sweden)

    H. S. Oliveira

    2014-01-01

    Full Text Available The dynamical response of systems with shape memory alloy (SMA elements presents a rich behavior due to their intrinsic nonlinear characteristic. SMA’s nonlinear response is associated with both adaptive dissipation related to hysteretic behavior and huge changes in properties caused by phase transformations. These characteristics are attracting much technological interest in several scientific and engineering fields, varying from medical to aerospace applications. An important characteristic associated with dynamical response of SMA system is the jump phenomenon. Dynamical jumps result in abrupt changes in system behavior and its analysis is essential for a proper design of SMA systems. This paper discusses the nonlinear dynamics of a one degree of freedom SMA oscillator presenting pseudoelastic behavior and dynamical jumps. Numerical simulations show different aspects of this kind of behavior, illustrating its importance for a proper understanding of nonlinear dynamics of SMA systems.

  8. Thermomechanical model for NiTi shape memory wires

    Czech Academy of Sciences Publication Activity Database

    Frost, Miroslav; Sedlák, Petr; Sippola, M.; Šittner, Petr

    2010-01-01

    Roč. 19, č. 9 (2010), s. 1-10 ISSN 0964-1726 R&D Projects: GA MŠk(CZ) 1M06031; GA ČR(CZ) GA106/09/1573; GA ČR(CZ) GP106/09/P302; GA ČR GAP108/10/1296 Institutional research plan: CEZ:AV0Z20760514; CEZ:AV0Z10100520 Keywords : shape memory alloys * modeling * proportional loading Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.094, year: 2010 http://apps.isiknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=U2fe5mHN9p3gHClCdF1&page=1&doc=1

  9. Hysteresis behaviour of thermoelastic alloys: some shape memory alloys models

    International Nuclear Information System (INIS)

    Lexcellent, C.; Torra, V.; Raniecki, B.

    1993-01-01

    The hysteretic behaviour of shape memory alloys (SMA) needs a more and more thin analysis because of its importance for technological applications. The comparison between different approaches allows to explicite the specifity of every model (macroscopic approach, micro-macro level, local description, phenomenological approach) and their points of convergence. On one hand, a thermodynamic treatment with a free energy expression as a mixing rule of each phase (parent or austenite phase and martensite) by adding a coupling term: the configurational energy, allowes modelling of material hysteresis loops. On the other hand, a phenomenological treatment based on a local investigation of two single crystals with a visualisation of microscopic parameters allows to perceive the phase transition mechanisms (nucleation, growth). All the obtained results show the importance of entropy production (or of the definition of the configurational energy term) for the correct description of hysteresis loops (subloops or external). (orig.)

  10. Cellular Shape Memory Alloy Structures: Experiments & Modeling (Part 1)

    Science.gov (United States)

    2012-08-01

    High -­‐ temperature  SMAs 24 Braze  Joint  between  two  wrought  pieces  of  a  Ni24.5Pd25Ti50.5  HTSMA   (HTSMA  from...process  can  be  used   to  join  other  metal  alloys  and   high -­‐ temperature   SMAs 25 Cellular  Shape  Memory...20 30 40 50 60 910 3 4 8 5 2 T (°C) Shape memory & superelasticity 1 0 e (%) (GPa) 6 7 A NiTi wire

  11. Cyclic deformation of NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Liu Yong; Van Humbeeck, J.; Xie Zeliang

    1999-01-01

    Recently, there is an increasing interest in applying the high damping capacity of shape memory alloys (SMAs). The purpose is to explore the feasibility of those materials for the protection of buildings and other civil constructions as a result of earthquake damages. So far, few experimental results have been reported concerning the mechanical cyclic behaviour of SMAs in their martensitic state (ferroelastic). In the present work, the experimental results on the mechanical behaviour of martensitic NiTi SMAs under tension-compression cyclic deformation up to strains of ±4% are summarized with major attention to the damping capacity, characteristic stresses and strains as a function of deformation cycles. Effect of strain rate, strain amplitude and annealing condition on the martensite damping is summarized. Explanation of the cyclic hardening and cyclic softening phenomenon is proposed based on TEM observations. (orig.)

  12. Shape Memory Alloy Actuator Design: CASMART Collaborative Best Practices

    Science.gov (United States)

    Benafan, Othmane; Brown, Jeff; Calkins, F. Tad; Kumar, Parikshith; Stebner, Aaron; Turner, Travis; Vaidyanathan, Raj; Webster, John; Young, Marcus L.

    2011-01-01

    Upon examination of shape memory alloy (SMA) actuation designs, there are many considerations and methodologies that are common to them all. A goal of CASMART's design working group is to compile the collective experiences of CASMART's member organizations into a single medium that engineers can then use to make the best decisions regarding SMA system design. In this paper, a review of recent work toward this goal is presented, spanning a wide range of design aspects including evaluation, properties, testing, modeling, alloy selection, fabrication, actuator processing, design optimization, controls, and system integration. We have documented each aspect, based on our collective experiences, so that the design engineer may access the tools and information needed to successfully design and develop SMA systems. Through comparison of several case studies, it is shown that there is not an obvious single, linear route a designer can adopt to navigate the path of concept to product. SMA engineering aspects will have different priorities and emphasis for different applications.

  13. Electromagnetic heating of a shape memory alloy translator

    Science.gov (United States)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  14. Using Shape Memory Alloys: A Dynamic Data Driven Approach

    KAUST Repository

    Douglas, Craig C.

    2013-06-01

    Shape Memory Alloys (SMAs) are capable of changing their crystallographic structure due to changes of either stress or temperature. SMAs are used in a number of aerospace devices and are required in some devices in exotic environments. We are developing dynamic data driven application system (DDDAS) tools to monitor and change SMAs in real time for delivering payloads by aerospace vehicles. We must be able to turn on and off the sensors and heating units, change the stress on the SMA, monitor on-line data streams, change scales based on incoming data, and control what type of data is generated. The application must have the capability to be run and steered remotely as an unmanned feedback control loop.

  15. Shape memory alloy fracture as a deployment actuator

    International Nuclear Information System (INIS)

    Buban, Darrick M; Frantziskonis, George N

    2013-01-01

    The paper reports an experimental investigation into using shape memory alloy (SMA) as a deployment actuator. SMA specimens were heated and pulled to failure or pulled and heated to failure, thus developing an environmental and structural operating envelope for application as deployment mechanisms. The experimental results strongly suggest that SMAs can be implemented as deployment actuators. Recorded data shows that SMA fracture is possible over a wide range of temperatures and strains, filling a material performance gap not found in the literature. The obtained information allows design engineers to appropriately size SMAs given the design requirements for achieving the desired deployment effects. The major conclusion of the reported work is that SMAs as actuators are strong competitors to typical existing deployment efforts that use explosive or non-explosive actuators having implementation drawbacks such as the expense associated with special handling and the volume encountered in mounting the devices. (paper)

  16. [NITINOL shape memory staple for osteosynthesis of the scaphoid].

    Science.gov (United States)

    Winkel, Reiner; Schlageter, Michael

    2009-11-01

    Reconstruction of the scaphoid with use of NITINOL shape "memory" staples. Unstable fractures and nonunion of the middle third of the scaphoid, which need open reduction and internal fixation from palmar. The staples can only be used, if the arms of the staples can be inserted parallel to and at a distance of 3 mm to the fracture line. Allergy to nickel. Cases in which the arms of the staple cannot be inserted parallel to and at best 3 mm apart from the fracture line. In fractures, open reduction of the scaphoid through a palmar approach. If necessary, interposition of a bone graft and Kirschner wire transfixation. Drilling of the drill holes parallel and at a distance of 3 mm to the fracture line. Insertion of the NITINOL staple. In nonunion, excision of the fibrous nonunion, refreshening of the fracture surfaces, interposition of a bone graft and, if needed, fixation with a Kirschner wire. Drilling of the drill holes for the NITINOL staple and insertion of the staple. Within a few minutes the warming-up staple contracts and thereby compresses the scaphoid. Immobilization in a short cast with thumb support for 6 weeks. Control for bone healing by radiographs or computed tomography. Staples, which do not cause hardware problems, are not removed. Kirschner wires are removed after bone healing. From October 1995 to December 2006, the authors used NITINOL staples for 65 osteosyntheses of the scaphoid. Indications were 15 unstable fractures, 47 nonunions, and three partial necroses. 61 out of 65 scaphoids healed without further surgery, three of the 61 patients showed a delayed healing. Two of the four nonunions were related to the use of the NITINOL staples. Seven staples were removed, one for loosening. NITINOL shape memory staples have proven to be very helpful for osteosynthesis in fractures and nonunion of the scaphoid, if the prerequisites are given for their use.

  17. Shape memory alloy resetable spring lift for pedestrian protection

    Science.gov (United States)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  18. Incremental dynamic analysis of concrete moment resisting frames reinforced with shape memory composite bars

    International Nuclear Information System (INIS)

    Zafar, Adeel; Andrawes, Bassem

    2012-01-01

    Fiber reinforced polymer (FRP) reinforcing bars have been used in concrete structures as an alternative to conventional steel reinforcement, in order to overcome corrosion problems. However, due to the linear behavior of the commonly used reinforcing fibers, they are not considered in structures which require ductility and damping characteristics. The use of superelastic shape memory alloy (SMA) fibers with their nonlinear elastic behavior as reinforcement in the composite could potentially provide a solution for this problem. Small diameter SMA wires are coupled with polymer matrix to produce SMA–FRP composite, which is sought in this research as reinforcing bars. SMA–FRP bars are sought in this study to enhance the seismic performance of reinforced concrete (RC) moment resisting frames (MRFs) in terms of reducing their residual inter-story drifts while still maintaining the elastic characteristics associated with conventional FRP. Three story one bay and six story two bay RC MRF prototype structures are designed with steel, SMA–FRP and glass–FRP reinforcement. The incremental dynamic analysis technique is used to investigate the behaviors of the two frames with the three different reinforcement types under a suite of ground motion records. It is found that the frames with SMA–FRP composite reinforcement exhibit higher performance levels including lower residual inter-story drifts, high energy dissipation and thus lower damage, which are important for structures in highly seismic zones. (paper)

  19. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.

    Science.gov (United States)

    Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry

    2018-03-07

    3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.

  20. Shape memory effect of Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals

    International Nuclear Information System (INIS)

    Inagaki, Hirosuke

    1992-01-01

    Factors affecting the shape memory effect in Fe-14% Mn-6% Si-9% Cr-6% Ni alloy polycrystals were studied in detail. It was found that the shape memory effect in this alloy was most influenced by the amount of deformation. With increasing amount of deformation, the shape memory effect diminished appreciably. Although the fraction of the initial dimensional change that could be restored was about 45% in the specimen strained by 4%, only 21% of the initial dimensional change was recovered in the specimen strained by 9%. Temperatures of deformation were found to be also an important factor that affected the shape memory effect. The maximum shape memory effect was observed in the specimens strained at temperatures between the M s and M d temperatures. In this alloy, however, specimens strained at temperatures below the M s temperature indicated a relatively large shape memory effect, too. It was further found that the shape memory effect was appreciably intensified by repeated straining and annealing, especially when straining was performed at 500deg C. It was suggested that the shape memory effect in Fe base alloys was strongly influenced by the dislocation substructure present in the starting material. (orig.) [de

  1. Nonlinear dynamics of a pseudoelastic shape memory alloy system - theory and experiment

    DEFF Research Database (Denmark)

    Enemark, Søren; A Savi, M.; Santos, Ilmar

    2014-01-01

    In this work, a helical spring made from a pseudoelastic shape memory alloy was embedded in a dynamic system also composed of a mass, a linear spring and an excitation system. The mechanical behaviour of shape memory alloys is highly complex, involving hysteresis, which leads to damping capabilit...

  2. Modelling, characterisation and uncertainties of stabilised pseudoelastic shape memory alloy helical springs

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, M. A.

    2016-01-01

    The thermo-mechanical behaviour of pseudoelastic shape memory alloy helical springs is of concern discussing stabilised and cyclic responses. Constitutive description of the shape memory alloy is based on the framework developed by Lagoudas and co-workers incorporating two modifications related t...

  3. Vibration control of a flexible rotor suspended by shape memory alloy wires

    DEFF Research Database (Denmark)

    Alves, Marco Túlio Santana; Steffen Jr., Valder; Castro dos Santos, Marina

    2018-01-01

    The present contribution is devoted to the study of the influence of shape memory alloys on the dynamic behavior of flexible rotors. In this sense, a suspension composed by pseudoelastic shape memory alloy wires that are connected to a rotor-bearing test rig was designed. To evaluate the performa...

  4. Scoliosis correction with shape-memory metal : results of an experimental study

    NARCIS (Netherlands)

    Elstrodt, JA; Veldhuizen, AG; van Horn, [No Value

    The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis

  5. Multi-scale analysis of the fatigue of shape memory alloys

    International Nuclear Information System (INIS)

    Zheng, Lin

    2016-01-01

    Shape Memory Alloy (SMA) is a typical smart material having many applications from aerospace industry, mechanical and civil engineering, to biomedical devices, where the material's fatigue is a big concern. One of the challenging issues in studying the fatigue behaviors of SMA polycrystals is the interaction between the material damage and the martensitic phase transformation which takes place in a macroscopic homogeneous mode or a heterogeneous mode (forming macroscopic patterns (Luders-like bands) due to the localized deformations and localized heating/cooling). Such pattern formation and evolution imply the governing physical mechanisms in the material system such as the fatigue process, but there is still no fatigue study of SMAs by tracing the macro-band patterns and the local material responses. To bridge this gap, systematic tensile fatigue experiments are conducted on pseudo-elastic NiTi polycrystalline strips by in-situ optical observation on the band-pattern evolutions and by tracing the deformation history of the cyclic phase transformation zones where fatigue failure occurs. These experimental results help to better understand the stress- and frequency-dependent fatigue behaviors. Particularly, it is found that the local residual strain rather than the structural nominal/global residual strain is a good indicator on the material's damage leading to the fatigue failure, which is important for understanding and modeling the fatigue process in SMAs. (author)

  6. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    Science.gov (United States)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  7. Shape memory alloys applied to improve rotor-bearing system dynamics - an experimental investigation

    DEFF Research Database (Denmark)

    Enemark, Søren; Santos, Ilmar; Savi, Marcelo A.

    2015-01-01

    passing through critical speeds. In this work, the feasibility of applying shape memory alloys to a rotating system is experimentally investigated. Shape memory alloys can change their stiffness with temperature variations and thus they may change system dynamics. Shape memory alloys also exhibit...... perturbations and mass imbalance responses of the rotor-bearing system at different temperatures and excitation frequencies are carried out to determine the dynamic behaviour of the system. The behaviour and the performance in terms of vibration reduction and system adaptability are compared against a benchmark...... configuration comprised by the same system having steel springs instead of shape memory alloy springs. The experimental results clearly show that the stiffness changes and hysteretic behaviour of the shape memory alloys springs alter system dynamics both in terms of critical speeds and mode shapes. Vibration...

  8. Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

    Science.gov (United States)

    Böttcher, J.; Jahn, M.; Tatzko, S.

    2017-12-01

    Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.

  9. Influence of Structure and Microstructure on Deformation Localization and Crack Growth in NiTi Shape Memory Alloys

    Science.gov (United States)

    Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine

    2018-04-01

    Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.

  10. Effects of benzoxazine resin on property enhancement of shape memory epoxy: A dual function of benzoxazine resin as a curing agent and a stable network segment

    Directory of Open Access Journals (Sweden)

    T. Tanpitaksit

    2015-09-01

    Full Text Available An ability of bisphenol-A/aniline based benzoxazine resin (BA-a to simultaneously acts as a curing agent and a stable or rigid network segment for shape memory epoxy, i.e. a two component system, is demonstrated. This significantly simplifies a formulation of present shape memory epoxy systems, i.e. a three or four component system. A suitable content of BA-a in the aliphatic epoxy (NGDE/polybenzoxazine (PBA-a samples for good shape memory performance is in a range of 30 to 50 mol%. The storage modulus of the obtained NGDE/PBA-a shape memory polymers (SMPs was increased from 3.57 GPa for 30 mol% BA-a content to 4.50 GPa for 50 mol% BA-a content. Glass transition temperature of the sample was also substantially increased with increasing BA-a fraction, i.e. from 51°C to 140°C. Flexural modulus and strength at room temperature of the samples at 50 mol% BA-a were found to be as high as 3.97 GPa and 132 MPa compared to the maximum values of 2.54 GPa and 100 MPa of SMP based on cyanate ester-epoxy. All samples exhibited a high value of shape fixity close to 100%. A presence of the BA-a in the samples also imparted a greater recovery stress ranging from 0.25 to 1.59 MPa. Consequently, the obtained NGDE/PBA-a copolymers are highly attractive for shape memory materials to be used in a broader range of applications particularly at elevated temperature and a higher recovery stress value.

  11. Thermo-Mechanical Behavior and Shakedown of Shape Memory Alloy Cable Structures

    Science.gov (United States)

    Biggs, Daniel B.

    Shape memory alloys (SMAs) are a versatile class of smart materials that exhibit adaptive properties which have been applied to solve engineering problems in wide-ranging fields from aerospace to biomedical engineering. Yet there is a lack of understanding of the fundamental nature of SMAs in order to effectively apply them to challenging problems within these engineering fields. Stranding fine NiTi wires into a cable form satisfies the demands of many aerospace and civil engineering applications which require actuators to withstand large tensile loads. The impact of increased bending and twisting in stranded NiTi wire structures, as well as introducing contact mechanics to the unstable phase transformation is not well understood, and this work aims to fill that void. To study the scalability of NiTi cables, thermo-mechanical characterization tests are conducted on cables much larger than those previously tested. These cables are found to have good superelastic properties and repeatable cyclic behavior with minimal induced plasticity. The behavior of additional cables, which have higher transition temperatures that can be used in a shape memory mode as thermo-responsive, high force actuator elements, are explored. These cables are found to scale up the performance of straight wire by maintaining an equivalent work output. Moreover, this work investigates the degradation of the thermal actuation of SMA wires through novel stress-temperature paths, discovering several path dependent behaviors of transformation-induced plasticity. The local mechanics of NiTi cable structures are explored through experiments utilizing digital image correlation, revealing new periodic transformation instabilities. Finite element simulations are presented, which indicate that the instabilities are caused by friction and relative sliding between wires in a cable. Finally, a study of the convective heat transfer of helical wire involving a suite of wind tunnel experiments, numerical

  12. In vitro corrosion behaviour of Ti-Nb-Sn shape memory alloys in Ringer's physiological solution.

    Science.gov (United States)

    Rosalbino, F; Macciò, D; Scavino, G; Saccone, A

    2012-04-01

    The nearly equiatomic Ni-Ti alloy (Nitinol) has been widely employed in the medical and dental fields owing to its shape memory or superelastic properties. The main concern about the use of this alloy derives form the fact that it contains a large amount of nickel (55% by mass), which is suspected responsible for allergic, toxic and carcinogenic reactions. In this work, the in vitro corrosion behavior of two Ti-Nb-Sn shape memory alloys, Ti-16Nb-5Sn and Ti-18Nb-4Sn (mass%) has been investigated and compared with that of Nitinol. The in vitro corrosion resistance was assessed in naturally aerated Ringer's physiological solution at 37°C by corrosion potential and electrochemical impedance spectroscopy (EIS) measurements as a function of exposure time, and potentiodynamic polarization curves. Corrosion potential values indicated that both Ni-Ti and Ti-Nb-Sn alloys undergo spontaneous passivation due to spontaneously formed oxide film passivating the metallic surface, in the aggressive environment. It also indicated that the tendency for the formation of a spontaneous oxide is greater for the Ti-18Nb-5Sn alloy. Significantly low anodic current density values were obtained from the polarization curves, indicating a typical passive behaviour for all investigated alloys, but Nitinol exhibited breakdown of passivity at potentials above approximately 450 mV(SCE), suggesting lower corrosion protection characteristics of its oxide film compared to the Ti-Nb-Sn alloys. EIS studies showed high impedance values for all samples, increasing with exposure time, indicating an improvement in corrosion resistance of the spontaneous oxide film. The obtained EIS spectra were analyzed using an equivalent electrical circuit representing a duplex structure oxide film, composed by an outer and porous layer (low resistance), and an inner barrier layer (high resistance) mainly responsible for the alloys corrosion resistance. The resistance of passive film present on the metals' surface

  13. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  14. Martensitic phase transformation in shape-memory alloys

    International Nuclear Information System (INIS)

    Golestaneh, A.A.

    1979-01-01

    Isothermal studies are described of the shape-recovery phenomenon, stress-strain behavior, electrical resistivity and thermo-electric power associated with the martensite-parent phase reaction in the Ni-Ti shape-memory alloys. The energy-balance equation that links the reaction kinetics with the strain energy change during the cooling-deforming and heating cycle is analyzed. The strain range in which the Clausius-Clapeyron equation satisfactorily describes this reaction is determined. A large change in the Young's modulus of the specimen is found to be associated with the M → P reaction. A hysteresis loop in the resistivity-temperature plot is found and related to the anomaly in the athermal resistivity changes during cyclic M → P → M transformation. An explanation for the resistivity anomaly is offered. The M structure is found to be electrically negative relative to the P structure. A thermal emf of greater than or equal to 0.12 mV is found at the M-P interface

  15. On the Fracture Response of Shape Memory Alloy Actuators

    Science.gov (United States)

    Jape, Sameer; Parrinello, Antonino; Baxevanis, Theocharis; Lagoudas, Dimitris C.

    In this paper, the effect of global thermo-mechanically-induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to thermal actuation under isobaric, plane strain, mode I loading. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. Analysis of the static crack shows that, as compared to constant mechanical loading, the energy release rate during cooling increases by approximately an order of magnitude. This increase is attributed to the stress redistribution at the crack-tip induced by global phase transformation during cooling. Crack growth during actuation is assumed to occur when the crack-tip energy release rate reaches a material specific critical value. Fracture toughening behavior is observed during crack growth and is mainly associated with the energy dissipated by the progressively occurring phase transformation close to the moving crack tip. Lastly, the effect of crack configuration on fracture toughness enhancement in the large-scale transformation problem is studied. Numerical results for static cracks in compact tensile and three-point bending SMA specimens are reported and a comparison of fracture toughening during thermal actuation in the semi-infinite crack configuration with the compact tensile and three-point bending geometries is presented.

  16. Shape memory effects in a uranium + 14 at. % niobium alloy

    International Nuclear Information System (INIS)

    Vandermeer, R.A.; Ogle, J.C.; Snyder, W.B. Jr.

    1978-01-01

    There is a class of alloys that, on cooling from elevated temperatures, experience a martensitic phase change. Some of these, when stressed in the martensitic state to an apparently plastic strain, recover their predeformed shape simply by heating. This striking shape recovery is known as the ''shape memory effect'' (SME). Up to a certain limiting strain, epsilon/sub L/, 100% shape recovery may be accomplished. This memory phenomenon seems to be attributable to the thermoelastic nature of and deformational modes associated with the phase transformation in the alloy. Thus, shape recovery results when a stress-biased martensite undergoes a heat-activated reversion back to the parent phase from which it originated. There are uranium alloys that demonstrate SME-behavior. Uranium-rich, uranium--niobium alloys were the first to be documented; New experimental observations of SME in a polycrystalline uranium--niobium alloy are presented. This alloy can exhibit a two-way memory under cetain circumstances. Additional indirect evidence is presented suggesting that the characteristics of the accompanying phase transformation in this alloy meet the criteria or ''selection rules'' deemed essential for SME

  17. Hydrodynamic characterization of a passive shape memory alloy valve

    International Nuclear Information System (INIS)

    Waddell, A M; Punch, J; Stafford, J; Jeffers, N

    2014-01-01

    Next generation high-performance electronics will have large heat fluxes (>10 2 W/cm 2 ) and an alternative approach to traditional air cooling is required. An attractive solution is micro-channel cooling and micro-valves will be required for refined flow control in the supporting micro-fluidic systems. A NiTi Shape Memory Alloy (SMA) micro-valve design was hydrodynamically characterized in this work to obtain the valve loss coefficient (K) from pressure measurements. The hydrodynamic characterization was important as in the flow regime of the micro-fluidic system K is sensitive to Reynolds number (Re) and geometry. Static replicas of the SMA valve geometry were studied for low Reynolds numbers (110 – 220) in a 1x1 mm CSA miniature channel. The loss coefficients were found to be sensitive to flow rate and decreased rapidly with an increase in Re. The SMA valve was compared to a similar gate micro-valve and loss across both valves was of the same order of magnitude. The valve loss coefficients obtained in this work are important parameters in the modeling and design of micro-fluidic cooling systems.

  18. Martensitic transformation, shape memory effects, and other curious mechanical effects

    International Nuclear Information System (INIS)

    Vandermeer, R.A.

    1982-01-01

    The objective of this paper is to review tutorially the subject of martensitic transformations in uranium alloys emphasizing their role in the shape memory effect (SME). We examine first what a martensitic transformation is, illustrating some of its characteristics with specific examples. As well as being athermal in nature, as expected, data are presented indicating that martensitic transformations in some uranium alloys also have a strong isothermal component. In addition, a few alloys are known to exhibit thermoelastic martensitic reactions. The SME, which is associated with these, is defined and demonstrated graphically with data from a uranium-6 wt % niobium alloy. Some of the important variables influencing SME behavior are described. Specifically, these are reheat temperature, amount of deformation, crystal structure, and composition. A mechanism for SME is postulated and the association with martensitic transformation is detailed. A self-induced shape instability in the uranium-7.5 wt % niobium-2.5 wt % zirconium alloy with a rationalization of the behavior in terms of texture and lattice parameter change during aging is reviewed and discussed. 24 figures

  19. Bioinspired Soft Actuation System Using Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    Matteo Cianchetti

    2014-07-01

    Full Text Available Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA springs used as soft actuators, a specific arrangement of such SMA springs is presented, which is combined with a flexible braided sleeve featuring a conical shape and a motor-driven cable. This robot arm is able to perform tasks in water such as grasping, multi-bending gestures, shortening and elongation along its longitudinal axis. The whole structure of the arm is described in detail and experimental results on workspace, bending and grasping capabilities and generated forces are presented. Moreover, this paper demonstrates that it is possible to realize a self-contained octopus-like robotic arm with no rigid parts, highly adaptable and suitable to be mounted on underwater vehicles. Its softness allows interaction with all types of objects with very low risks of damage and limited safety issues, while at the same time producing relatively high forces when necessary.

  20. Modiolus-Hugging Intracochlear Electrode Array with Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Kyou Sik Min

    2013-01-01

    Full Text Available In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA- embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications.

  1. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    Science.gov (United States)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  2. A cycloidal wobble motor driven by shape memory alloy wires

    International Nuclear Information System (INIS)

    Hwang, Donghyun; Higuchi, Toshiro

    2014-01-01

    A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor. (paper)

  3. Thermal responses of shape memory alloy artificial anal sphincters

    Science.gov (United States)

    Luo, Yun; Takagi, Toshiyuki; Matsuzawa, Kenichi

    2003-08-01

    This paper presents a numerical investigation of the thermal behavior of an artificial anal sphincter using shape memory alloys (SMAs) proposed by the authors. The SMA artificial anal sphincter has the function of occlusion at body temperature and can be opened with a thermal transformation induced deformation of SMAs to solve the problem of severe fecal incontinence. The investigation of its thermal behavior is of great importance in terms of practical use in living bodies as a prosthesis. In this work, a previously proposed phenomenological model was applied to simulate the thermal responses of SMA plates that had undergone thermally induced transformation. The numerical approach for considering the thermal interaction between the prosthesis and surrounding tissues was discussed based on the classical bio-heat equation. Numerical predictions on both in vitro and in vivo cases were verified by experiments with acceptable agreements. The thermal responses of the SMA artificial anal sphincter were discussed based on the simulation results, with the values of the applied power and the geometric configuration of thermal insulation as parameters. The results obtained in the present work provided a framework for the further design of SMA artificial sphincters to meet demands from the viewpoint of thermal compatibility as prostheses.

  4. Pseudo-creep in Shape Memory Alloy Wires and Sheets

    Science.gov (United States)

    Russalian, V. R.; Bhattacharyya, A.

    2017-10-01

    Interruption of loading during reorientation and isothermal pseudoelasticity in shape memory alloys with a strain arrest ( i.e., holding strain constant) results in a time-dependent evolution in stress or with a stress arrest ( i.e., holding stress constant) results in a time-dependent evolution in strain. This phenomenon, which we term as pseudo-creep, is similar to what was reported in the literature three decades ago for some traditional metallic materials undergoing plastic deformation. In a previous communication, we reported strain arrest of isothermal pseudoelastic loading, isothermal pseudoelastic unloading, and reorientation in NiTi wires as well as a rate-independent phase diagram. In this paper, we provide experimental results of the pseudo-creep phenomenon during stress arrest of isothermal pseudoelasticity and reorientation in NiTi wires as well as strain arrest of isothermal pseudoelasticity and reorientation in NiTi sheets. Stress arrest in NiTi wires accompanied by strain accumulation or recovery is studied using the technique of multi-video extensometry. The experimental results were used to estimate the amount of mechanical energy needed to evolve the wire from one microstructural state to another during isothermal pseudoelastic deformation and the difference in energies between the initial and the final rest state between which the aforementioned evolution has occurred.

  5. Shape Memory Alloy (SMA)-Based Launch Lock

    Science.gov (United States)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  6. Experimental characterization of shape memory alloy actuator cables

    Science.gov (United States)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  7. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    Science.gov (United States)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  8. Synergistic effect of Ag nanoparticle-decorated graphene oxide and carbon fiber on electrical actuation of polymeric shape memory nanocomposites

    International Nuclear Information System (INIS)

    Lu, Haibao; Leng, Jinsong; Du, Shanyi; Liang, Fei; Gou, Jihua

    2014-01-01

    This study reports an effective approach of significantly improving electrical properties and recovery performance of shape memory polymer (SMP) nanocomposite, of which its shape recovery was triggered by electrically resistive Joule heating. Reduced graphene oxide (GOs) self-assembled and grafted onto carbon fiber, were used to enhance the interfacial bonding with the SMP matrix via van der Waals force and covalent bond, respectively. A layer of Ag nanoparticles was synthesized from Ag + solution and chemically deposited onto GO assemblies. These Ag nanoparticles were expected to bridge the gap between GO and improve the electrical conductivity. The experimental results reveal that the electrical conductivity of the SMP nanocomposite was significantly improved via the synergistic effect between Ag nanoparticle-decorated GO and carbon fiber. Finally, the electrically induced shape memory effect of the SMP nanocomposite was achieved, and the temperature distribution in the SMP nanocomposites was recorded and monitored. An effective approach was demonstrated to produce the electro-activated SMP nanocomposites and the resistive Joule heating was viable at a low electrical voltage below 10 V. (paper)

  9. Strengthening of Fe-Mn-Si based shape memory alloys by grain size refinement

    International Nuclear Information System (INIS)

    Sato, A.; Masuya, T.; Kumai, S.; Inoue, A.

    2000-01-01

    Degree of the shape memory effect was measured either by bending, tensile and compression tests in the temperature range 77∝300 K. The yield stress increased substantially by the grain size refinement, yet maintaining a good shape memory effect. In addition to usual mentioned slow strain rate tests (about 10 -3 s -1 ), shape deformation was given at high strain rate (10 3 s -1 ) by hammering, in order to induce fine structure. It is also found that the shape memory effect under an opposing force was improved by the high-speed deformation. (orig.)

  10. Shape memory and pseudoelastic properties of Fe-Mn-Si and Ti-Ni based alloys

    International Nuclear Information System (INIS)

    Guenin, G.

    1997-01-01

    The aim of this presentation is to analyse and discuss some recent advances in shape memory and pseudoelastic properties of different alloys. Experimental work in connection with theoretical ones will be reviewed. The first part is devoted to the microstructural origin of shape memory properties of Fe-Mn-Si based alloys (γ-ε transformation); the second part is a synthetic analysis of the effects of thermomechanical treatments on shape memory and pseudoelastic effects in Ti-Ni alloys, with some focus on the behaviour of the R phase introduced. (orig.)

  11. Developing prospects of NiAlMn high temperature shape memory alloy

    International Nuclear Information System (INIS)

    Zou Min

    1999-01-01

    The reason and information on high temperature shape memory alloy research are introduced briefly Also, referring to some experimental reports on NiAlMn high temperature shape memory alloy, it is pointed out that ductility and memory property of this alloy can be improved by adapting proper composition and procedure to control its microstructure. Meanwhile, the engineering details must be considered when NiAlMn high temperature shape memory alloy being developed so as to resolve the problems of its practical use

  12. Functional Characterization of a Novel Shape Memory Alloy

    Science.gov (United States)

    Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.

    2014-07-01

    A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.

  13. Shape memory alloy wire-based smart natural rubber bearing

    International Nuclear Information System (INIS)

    Hedayati Dezfuli, F; Shahria Alam, M

    2013-01-01

    In this study, two types of smart elastomeric bearings are presented using shape memory alloy (SMA) wires. Due to the unique characteristics of SMAs, such as the superelastic effect and the recentering capability, the residual deformation in SMA-based natural rubber bearings (SMA-NRBs) is significantly reduced whereas the energy dissipation capacity is increased. Two different configurations of SMA wires incorporated in elastomeric bearings are considered. The effect of several parameters, including the shear strain amplitude, the type of SMA, the aspect ratio of the base isolator, the thickness of SMA wire, and the amount of pre-strain in the wires on the performance of SMA-NRBs is investigated. Rubber bearings are composed of natural rubber layers bonded to steel shims as reinforcement. Results show that ferrous SMA wire, FeNiCuAlTaB, with 13.5% superelastic strain and a very low austenite finish temperature (−62 °C), is the best candidate to be used in SMA-NRBs subjected to high shear strain amplitudes. In terms of the lateral flexibility and wire strain level, the smart rubber bearing with a cross configuration of SMA wires is more efficient. Moreover, the cross configuration can be implemented in high-aspect-ratio elastomeric bearings since the strain induced in the wire does not exceed the superelastic range. When cross SMA wires with 2% pre-strain are used in a smart NRB, the dissipated energy is increased by 74% and the residual deformation is decreased by 15%. (paper)

  14. Shape memory alloy actuation for a variable area fan nozzle

    Science.gov (United States)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  15. Effect of electrothermal annealing on the transformation behavior of TiNi shape memory alloy and two-way shape memory spring actuated by direct electrical current

    International Nuclear Information System (INIS)

    Wang, Z.G.; Zu, X.T.; Feng, X.D.; Zhu, S.; Deng, J.; Wang, L.M.

    2004-01-01

    In this work, the effect of electrothermal annealing on the transformation characterization of TiNi shape memory alloy and the electrothermal actuating characteristics of a two-way shape memory effect (TWSME) extension spring were investigated with direct electrical current. The results showed that with increasing direct electrical current density, the B2→R-phase transformation shifts to a lower temperature and R-phase→B19' shifts to a higher temperature in the cooling process. When annealing electrical current density reached 12.2 A/mm 2 , the R-phase disappeared and austenite transformed into martensite directly. The electrothermal annealing was an effective method of heat treatment in a selected part of shape memory alloy device. The electrothermal actuating characteristics of a TWSME spring showed that the time response and the maximum elongation greatly depended on the magnitude of the electrical current

  16. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  17. Shape Memory Alloy Cryogenic Transfer Coupling for Space Depot Docking Operations

    Data.gov (United States)

    National Aeronautics and Space Administration — The technical objective of the proposed effort is to establish the feasibility of using shape memory alloy (SMA) actuators for selected components of the automatic...

  18. Radiation Resistant, Reconfigurable, Shape Memory Metal Rubber Space Arrays, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic has demonstrated that Shape Memory Metal RubberTM (SM-MR) adaptive skins exhibit reconfigurable and durable RF properties. It is hypothesized that such...

  19. Synthesis and evaluation of ageing effect on Cu–Al–Be–Mn quaternary Shape Memory Alloys

    Directory of Open Access Journals (Sweden)

    A.G. Shivasiddaramiah

    2016-09-01

    Full Text Available Copper based shape memory alloy exhibits high transformation temperature and ability to differ the achieved properties through alloying additions. A quaternary Cu–Al–Be–Mn shape memory alloys of 0.2–0.4 wt% of manganese, 0.4–0.5 wt% of Beryllium and 10–14 wt% of aluminium with remaining copper, showing β-phase at higher temperature and show shape memory effect when quenching to lower temperatures, SMA's were prepared by induction melting. The objective is to study the effect of thermal ageing at different temperatures Af (above austenitic phase finish temperature and at different time on shape memory effect and transformation temperatures. The aged specimens or SMA's were studied by DSC, OM and hardness measurements. The results from this study help to find the applications in different thermal conditions.

  20. Radioactive material package closures with the use of shape memory alloys

    International Nuclear Information System (INIS)

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described

  1. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    Science.gov (United States)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  2. Vacuum Plasma Spray Formed High Transition Temperature Shape Memory Alloys, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Smart materials control of aero-surfaces based on shape memory alloys (SMA) is seeing increased use for improving of future subsonic fixed wing aircraft aero-surface...

  3. Reversibility in martensitic transformation and shape memory in high Mn ferrous alloys

    International Nuclear Information System (INIS)

    Tomota, Y.

    2000-01-01

    The reversibility of austenite (γ : fcc) epsilon (ε : hcp) martensitic transformation and shape memory effect in high Mn ferrous alloys are discussed. A particular emphasis is put on the ε → γ reverse transformation behavior in two poly-crystalline alloys, Fe-24Mn and Fe-24Mn-6Si, where the latter exhibits excellent shape memory while the former shows poor memory although their forward γ → ε transformation behavior is quite similar. TEM in situ observations have revealed that the motion of Shockley partial dislocations during ε → γ reverse transformation is different from each other in these two alloys. The influence of alloying elements on the shape memory effect can be related to solid solution hardening of austenite, suggesting an important role of internal stress. The effect of training on enhancing the shape memory is explained by such an internal stress distribution associated with the formation of very thin, i.e., nano-scale ε/γ lamellae. (orig.)

  4. Miniature High Force, Long Stroke Linear Shape Memory Alloy Actuators, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Shape Memory Alloys (SMAs) are metal alloys (Nickel-Titanium, for example) that change shape when heated. When drawn and processed in wire form, the shape change is...

  5. Near Net Shape Fabrication Technology for Shape Memory Alloy Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I effort proposes to develop an innovative, affordable processing route for larger-sized shape memory alloy (SMA) components. Despite significant...

  6. An Introduction to a Porous Shape Memory Alloy Dynamic Data Driven Application System

    KAUST Repository

    Douglas, Craig C.; Efendiev, Yalchin; Popov, Peter; Calo, Victor M.

    2012-01-01

    Shape Memory Alloys are capable of changing their crystallographic structure due to changes of temperature and/or stress. Our research focuses on three points: (1) Iterative Homogenization of Porous SMAs: Development of a Multiscale Model of porous

  7. Polymeric Shape-Memory Micro-Patterned Surface for Switching Wettability with Temperature

    Directory of Open Access Journals (Sweden)

    Nuria García-Huete

    2015-09-01

    Full Text Available An innovative method to switch the wettability of a micropatterned polymeric surface by thermally induced shape memory effect is presented. For this purpose, first polycyclooctene (PCO is crosslinked with dycumil peroxide (DCP and its melting temperature, which corresponds with the switching transition temperature (Ttrans, is measured by Dynamic Mechanical Thermal Analysis (DMTA in tension mode. Later, the shape memory behavior of the bulk material is analyzed under different experimental conditions employing a cyclic thermomechanical analysis (TMA. Finally, after creating shape memory micropillars by laser ablation of crosslinked thermo-active polycyclooctene (PCO, shape memory response and associated effect on water contact angle is analyzed. Thus, deformed micropillars cause lower contact angle on the surface from reduced roughness, but the original hydrophobicity is restored by thermally induced recovery of the original surface structure.

  8. A Preisach type model for temperature driven hysteresis memory erasure in shape memory materials

    OpenAIRE

    Kopfová, J.; Krejčí, P. (Pavel)

    2011-01-01

    We establish the well-posedness and thermodynamic consistency of a variational inequality modeling temperature-induced memory erasure in shape memory materials. It is shown that the input-output operator is continuous with respect to uniform convergence.

  9. A Homogenized Free Energy Model for Hysteresis in Thin-film Shape Memory Alloys

    National Research Council Canada - National Science Library

    Massad, Jordan E; Smith, Ralph C

    2004-01-01

    Thin-film shape memory alloys (SMAs) have become excellent candidates for microactuator fabrication in MEMS due to their capability to achieve very high work densities, produce large deformations, and generate high stresses...

  10. Processing and Characterization of NiTi Shape Memory Alloy Particle Reinforced Sn-In Solders

    National Research Council Canada - National Science Library

    Chung, Kohn C

    2006-01-01

    .... In previous work, it was proposed that reinforcement of solder by NiTi shape memory alloy particles to form smart composite solder reduces the inelastic strain of the solder and hence, may enhance...

  11. Atomistic characterization of pseudoelasticity and shape memory in NiTi nanopillars

    International Nuclear Information System (INIS)

    Zhong Yuan; Gall, Ken; Zhu Ting

    2012-01-01

    Molecular dynamics simulations are performed to study the atomistic mechanisms governing the pseudoelasticity and shape memory in nickel–titanium (NiTi) nanostructures. For a 〈1 1 0〉 – oriented nanopillar subjected to compressive loading–unloading, we observe either a pseudoelastic or shape memory response, depending on the applied strain and temperature that control the reversibility of phase transformation and deformation twinning. We show that irreversible twinning arises owing to the dislocation pinning of twin boundaries, while hierarchically twinned microstructures facilitate the reversible twinning. The nanoscale size effects are manifested as the load serration, stress plateau and large hysteresis loop in stress–strain curves that result from the high stresses required to drive the nucleation-controlled phase transformation and deformation twinning in nanosized volumes. Our results underscore the importance of atomistically resolved modeling for understanding the phase and deformation reversibilities that dictate the pseudoelasticity and shape memory behavior in nanostructured shape memory alloys.

  12. A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys

    International Nuclear Information System (INIS)

    Gu, Q.; Humbeeck, J. van; Delaey, L.

    1994-01-01

    The martensitic transformation and the shape memory effect in Fe-Mn-Si alloys received great attention recently due to its potential commercial value. In this paper, the mechanisms for the martensitic transformation and various parameters influencing the shape memory effect like alloy composition, applied stress, prestrain, crystal orientation, temperature, grain size, pre-existing martensite, thermal cycling and training etc. are reviewed and discussed. (orig.)

  13. Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parameterization

    DEFF Research Database (Denmark)

    Langelaar, Matthijs; Yoon, Gil Ho; Kim, Yoon Young

    2005-01-01

    This paper presents the first application of topology optimization to the design of shape memory alloy actuators. Shape memory alloys (SMA’s) exhibit strongly nonlinear, temperature-dependent material behavior. The complexity in the constitutive behavior makes the topology design of SMA structure......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....

  14. Stress Relaxation Of Superelastic Shape Memory Alloy Under Bending And Torsional Load

    Directory of Open Access Journals (Sweden)

    Sakib Tanvir

    2017-04-01

    Full Text Available Stress Relaxation of Superelastic Shape memory NiTi Alloy under bending and torsion is uncommon in literature. Therefore experimental set up has been devised and test results are obtained for superelastic SMA.Unlike the other common engineering materials superelastic SMA it gives dramatic reduction in stress. In this paper therefore results of stress relaxation of superelastic shape memory alloy under bending and torsion are presented graphically and interpreted in terms of stress induced martensitic transformation.

  15. FABRICATION OF Cu-Al-Ni SHAPE MEMORY THIN FILM BY THERMAL EVOPRATION

    OpenAIRE

    Özkul, İskender; Canbay, Canan Aksu; Tekataş, Ayşe

    2017-01-01

    Among the functional, materials shape memory alloysare important because of their unique properties. So, these materials haveattracted more attention to be used in micro/nano electronic andelectromechanic systems. In this work, thermal evaporation method has been usedto produce CuAlNi shape memory alloy thin film. The produced CuAlNi thin filmhas been characterized and the presence of the martensite phase wasinvestigated and compared with the CuAlNi alloy sample. CuAlNi shape memoryalloy thin...

  16. Effect of Ternary Addition of Iron on Shape Memory Characteristics of Cu-Al Alloys

    Science.gov (United States)

    Raju, T. N.; Sampath, V.

    2011-07-01

    The effect of alloying Cu-Al alloys with Fe on their transformation temperatures and shape memory properties was investigated by differential scanning calorimetry and bend test. It was found that the minor additions of iron resulted in change of transformation temperatures and led to excellent shape memory properties of the alloys. Since the transformation temperatures are high, they are an ideal choice for high-temperature applications.

  17. Scoliosis correction with shape-memory metal: results of an experimental study

    OpenAIRE

    Wever, D.; Elstrodt, J.; Veldhuizen, A.; v Horn, J.

    2001-01-01

    The biocompatibility and functionality of a new scoliosis correction device, based on the properties of the shape-memory metal nickel-titanium alloy, were studied. With this device, the shape recovery forces of a shape-memory metal rod are used to achieve a gradual three-dimensional scoliosis correction. In the experimental study the action of the new device was inverted: the device was used to induce a scoliotic curve instead of correcting one. Surgical procedures were performed in six pigs....

  18. Phases stability of shape memory alloys Cu based under irradiation

    International Nuclear Information System (INIS)

    Zelaya, Maria Eugenia

    2006-01-01

    The effects of irradiation on the relative phase stability of phases related by a martensitic transformation in copper based shape memory alloys were studied in this work.Different kind of particles and energies were employed in the irradiation experiments.The first kind of irradiation was performed with 2,6 MeV electrons, the second one with 170 keV and 300 keV Cu ions and the third one with swift heavy ions (Kr, Xe, Au) with energies between 200 and 600 MeV.Stabilization of the 18 R martensite in Cu-Zn-Al-Ni induced by electron irradiation was studied.The results were compared to those of the stabilization induced by quenching and ageing in the same alloy, and the ones obtained by irradiation in 18 R-Cu-Zn-Al alloys.The effects of Cu irradiation over b phase were analyzed with several electron microscopy techniques including: scanning electron microscopy (S E M), high resolution electron microscopy (H R E M), micro diffraction and X-ray energy dispersive spectroscopy (E D S). Structural changes in Cu-Zn-Al b phase into a closed packed structure were induced by Cu ion implantation.The closed packed structures depend on the irradiation fluence.Based on these results, the interface between these structures (closed packed and b) and the stability of disordered phases were analyzed. It was also compared the evolution of long range order in the Cu-Zn-Al and in the Cu-Zn-Al-Ni b phase as a function of fluence.The evolution of the g phase was also compared. Both results were discussed in terms of the mobility of irradiation induced point defects.Finally, the effects induced by swift heavy ions in b phase and 18 R martensite were studied. The results of the irradiation in b phase were qualitatively similar to those produced by irradiation with lower energies. On the contrary, nano metric defects were found in the irradiated 18 R martensite.These defects were characterized by H R E M.The characteristic contrast of the defects was associated to a local change in the

  19. Knowledge and method base for shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Welp, E.G.; Breidert, J. [Ruhr-University Bochum, Institute of Engineering Design, 44780 Bochum (Germany)

    2004-05-01

    It is often impossible for design engineers to decide whether it is possible to use shape memory alloys (SMA) for a particular task. In case of a decision to use SMA for product development, design engineers normally do not know in detail how to proceed in a correct and beneficial way. In order to support design engineers who have no previous knowledge about SMA and to assist in the transfer of results from basic research to industrial practice, an essential knowledge and method base has been developed. Through carefully conducted literature studies and patent analysis material and design information could be collected. All information is implemented into a computer supported knowledge and method base that provides design information with a particular focus on the conceptual and embodiment design phase. The knowledge and method base contains solution principles and data about effects, material and manufacturing as well as design guidelines and calculation methods for dimensioning and optimization. A browser-based user interface ensures that design engineers have immediate access to the latest version of the knowledge and method base. In order to ensure a user friendly application, an evaluation with several test users has been carried out. Reactions of design engineers from the industrial sector underline the need for support related to knowledge on SMA. (Abstract Copyright [2004], Wiley Periodicals, Inc.) [German] Fuer Konstrukteure ist es haeufig schwierig zu entscheiden, ob sich der Einsatz von Formgedaechtnislegierungen (FGL) fuer eine bestimmte Aufgabe eignet. Fuer den Fall, dass FGL fuer die Produktentwicklung genutzt werden sollen, besitzen Ingenieure zumeist nur unzureichende Detailkenntnisse, um Formgedaechtnislegierungen richtig und in vorteilhafter Weise anwenden zu koennen. Zur Unterstuetzung von Konstrukteuren, die ueber kein Vorwissen und keine Erfahrungen zu FGL verfuegen und zum Transfer von Forschungsergebnissen in die industrielle Praxis, ist eine

  20. Thermomechanical behavior of Fe-Mn-Si-Cr-Ni shape memory alloys modified with samarium

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F. Ahmad

    2009-01-01

    The deformation and training behavior of Fe-14Mn-3Si-10Cr-5Ni (wt.%) shape memory alloys containing samarium addition has been studied in the iron-based shape memory alloys. It is noticed that thermomechanical treatment (training) has significant influence on proof stress, critical stress and shape memory behavior of the alloys. The improvement in shape memory behavior can be attributed to the decrease in the proof stress and critical stress which facilitates the formation of ε (hcp martensite). It is also observed that alloy 2 containing samarium undergoes less softening as compared to alloy 1 with training which inhibits the formation of α (bcc martensite) and thus enhances the shape memory behavior. The excessive thermomechanical treatment with increase in the training cycle has led to the formation of α (bcc martensite) along with ε (hcp martensite) in the alloy 1 which appeared to have decline in the shape memory effect. This has been demonstrated by the examination of microstructure and identification of α (bcc martensite) martensite in the alloy 1 as compared to alloy 2

  1. Nonlinear Model of Pseudoelastic Shape Memory Alloy Damper Considering Residual Martensite Strain Effect

    Directory of Open Access Journals (Sweden)

    Y. M. Parulekar

    2012-01-01

    Full Text Available Recently, there has been increasing interest in using superelastic shape memory alloys for applications in seismic resistant-design. Shape memory alloys (SMAs have a unique property by which they can recover their original shape after experiencing large strains up to 8% either by heating (shape memory effect or removing stress (pseudoelastic effect. Many simplified shape memory alloy models are suggested in the past literature for capturing the pseudoelastic response of SMAs in passive vibration control of structures. Most of these models do not consider the cyclic effects of SMA's and resulting residual martensite deformation. Therefore, a suitable constitutive model of shape memory alloy damper which represents the nonlinear hysterical dynamic system appropriately is essential. In this paper a multilinear hysteretic model incorporating residual martensite strain effect of pseudoelastic shape memory alloy damper is developed and experimentally validated using SMA wire, based damper device. A sensitivity analysis is done using the proposed model along with three other simplified SMA models. The models are implemented on a steel frame representing an SDOF system and the comparison of seismic response of structure with all the models is made in the numerical study.

  2. A poly(glycerol sebacate) based photo/thermo dual curable biodegradable and biocompatible polymer for biomedical applications.

    Science.gov (United States)

    Wang, Min; Lei, Dong; Liu, Zenghe; Chen, Shuo; Sun, Lijie; Lv, Ziying; Huang, Peng; Jiang, Zhongxing; You, Zhengwei

    2017-10-01

    Due to its biomimetic mechanical properties to soft tissues, excellent biocompatibility and biodegradability, poly (glycerol sebacate) (PGS) has emerged as a representative bioelastomer and been widely used in biomedical engineering. However, the typical curing of PGS needs high temperature (>120 °C), high vacuum (>1 Torr), and long duration (>12 h), which limit its further applications. Accordingly, we designed, synthesized and characterized a photo/thermo dual curable polymer based on PGS. Treatment of PGS with 2-isocyanatoethyl methacrylate without additional reagents readily produced a methacrylated PGS (PGS-IM). Photo-curing of PGS-IM for 10 min at room temperature using salt leaching method efficiently produced porous scaffolds with a thickness up to 1 mm. PGS-IM was adapt to thermo-curing as well. The combination of photo and thermo curing provided a further way to modulate the properties of resultant porous scaffolds. Interestingly, photo-cured scaffolds exhibited hierarchical porous structures carrying extensive micropores with a diameter from several to hundreds micrometers. All the scaffolds showed good elasticity and biodegradability. In addition, PGS-IM exhibited good compatibility with L929 fibroblast cells. We expect this new PGS based biomaterial will have a wide range of biomedical applications.

  3. Microstructure, martensitic transformation, mechanical and shape memory properties of Ni–Co–Mn–In high-temperature shape memory alloys under different heat treatments

    International Nuclear Information System (INIS)

    Yang, Shuiyuan; Wang, Cuiping; Shi, Zhan; Wang, Jinming; Zhang, Jinbin; Huang, Yixiong; Liu, Xingjun

    2016-01-01

    The microstructure, martensitic transformation behavior, mechanical and shape memory properties of Ni 40 Co 10 Mn 41+x In 9−x (x=0, 2 and 4) high-temperature shape memory alloys annealed at 900 °C for 24 h or at 800 °C for 2 h were investigated, respectively. The tetragonal martensite phase and fcc γ phase are observed in all the studied alloys. The reversible martensitic transformation temperatures of the alloys increase with the increases of the electron concentration and the tetragonality of martensite phase. The amount of γ phase gradually increases with the decrease of In content, and much more γ phase in the alloys annealed at 900 °C results in slightly larger compressive fracture strain. Although the alloys with x=0 and 2 have a mass of γ phase, they still exhibit good shape memory properties. The amount of γ phase reaches about 20% in the alloy with x=0 after annealed at 900 °C, but a full recovery strain of 3.6% and a two-way shape memory effect of 0.8% can be obtained after two thermomechanical cycles.

  4. Effect of sterilization procedures on properties of plasma polymers relevant to biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Artemenko, A.; Kylián, O.; Choukourov, A.; Gordeev, I.; Petr, M.; Vandrovcová, Marta; Polonskyi, O.; Bačáková, Lucie; Slavínská, D.; Biederman, H.

    2012-01-01

    Roč. 520, č. 24 (2012), s. 7115-7124 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : plasma polymers * cell adhesion * effect of sterilization Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.604, year: 2012

  5. Self-restoring polymer brushes under tribological stress and the biomedical applications

    DEFF Research Database (Denmark)

    Røn, Troels; Javakhishvili, Irakli; Hvilsted, Søren

    2016-01-01

    For biological and mechanical systems involving moving parts, surface slipperiness is often a critical attribute for their optimal functions. Surface grafting with hydrophilic polymers is a powerful means to render materials slippery in aqueous environment. In “inverted grafting-to approach”, the...

  6. Casein and soybean protein-based thermoplastics and composites as alternative biodegradable polymers for biomedical applications

    NARCIS (Netherlands)

    Vaz, C.M.; Fossen, M.; Tuil, van R.F.; Graaf, de L.A.; Reis, R.L.; Cunha, A.M.

    2003-01-01

    This work reports on the development and characterization of novel meltable polymers and composites based on casein and soybean proteins. The effects of inert (Al2O3) and bioactive (tricalcium phosphate) ceramic reinforcements over the mechanical performance, water absorption, and bioactivity

  7. A comparative study of the cytotoxicity and corrosion resistance of nickel-titanium and titanium-niobium shape memory alloys.

    Science.gov (United States)

    McMahon, Rebecca E; Ma, Ji; Verkhoturov, Stanislav V; Munoz-Pinto, Dany; Karaman, Ibrahim; Rubitschek, Felix; Maier, Hans J; Hahn, Mariah S

    2012-07-01

    Nickel-titanium (NiTi) shape memory alloys (SMAs) are commonly used in a range of biomedical applications. However, concerns exist regarding their use in certain biomedical scenarios due to the known toxicity of Ni and conflicting reports of NiTi corrosion resistance, particularly under dynamic loading. Titanium-niobium (TiNb) SMAs have recently been proposed as an alternative to NiTi SMAs due to the biocompatibility of both constituents, the ability of both Ti and Nb to form protective surface oxides, and their superior workability. However, several properties critical to the use of TiNb SMAs in biomedical applications have not been systematically explored in comparison with NiTi SMAs. These properties include cytocompatibility, corrosion resistance, and alterations in alloy surface composition in response to prolonged exposure to physiological solutions. Therefore, the goal of the present work was to comparatively investigate these aspects of NiTi (49.2 at.% Ti) and TiNb (26 at.% Nb) SMAs. The results from the current studies indicate that TiNb SMAs are less cytotoxic than NiTi SMAs, at least under static culture conditions. This increased TiNb cytocompatibility was correlated with reduced ion release as well as with increased corrosion resistance according to potentio-dynamic tests. Measurements of the surface composition of samples exposed to cell culture medium further supported the reduced ion release observed from TiNb relative to NiTi SMAs. Alloy composition depth profiles also suggested the formation of calcium phosphate deposits within the surface oxide layers of medium-exposed NiTi but not of TiNb. Collectively, the present results indicate that TiNb SMAs may be promising alternatives to NiTi for certain biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications.

    Science.gov (United States)

    Park, Jongsung; Kim, Ji-Kwan; Patil, Swati J; Park, Jun-Kyu; Park, SuA; Lee, Dong-Weon

    2016-06-02

    This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm² and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone) stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  9. A Wireless Pressure Sensor Integrated with a Biodegradable Polymer Stent for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Jongsung Park

    2016-06-01

    Full Text Available This paper describes the fabrication and characterization of a wireless pressure sensor for smart stent applications. The micromachined pressure sensor has an area of 3.13 × 3.16 mm2 and is fabricated with a photosensitive SU-8 polymer. The wireless pressure sensor comprises a resonant circuit and can be used without the use of an internal power source. The capacitance variations caused by changes in the intravascular pressure shift the resonance frequency of the sensor. This change can be detected using an external antenna, thus enabling the measurement of the pressure changes inside a tube with a simple external circuit. The wireless pressure sensor is capable of measuring pressure from 0 mmHg to 230 mmHg, with a sensitivity of 0.043 MHz/mmHg. The biocompatibility of the pressure sensor was evaluated using cardiac cells isolated from neonatal rat ventricular myocytes. After inserting a metal stent integrated with the pressure sensor into a cardiovascular vessel of an animal, medical systems such as X-ray were employed to consistently monitor the condition of the blood vessel. No abnormality was found in the animal blood vessel for approximately one month. Furthermore, a biodegradable polymer (polycaprolactone stent was fabricated with a 3D printer. The polymer stent exhibits better sensitivity degradation of the pressure sensor compared to the metal stent.

  10. Studies on novel radiopaque methyl methacrylate: glycidyl methacrylate based polymer for biomedical applications.

    Science.gov (United States)

    Dawlee, S; Jayakrishnan, A; Jayabalan, M

    2009-12-01

    A new class of radiopaque copolymer using methyl methacrylate (MMA) and glycidyl methacrylate (GMA) monomers was synthesized and characterized. The copolymer was made radiopaque by the epoxide ring opening of GMA using the catalyst o-phenylenediamine and the subsequent covalent attachment of elemental iodine. The copolymer was characterized by Fourier transform infrared (FTIR) spectra, energy dispersive X-ray analysis using environmental scanning electron microscope (EDAX), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). X-ray visibility of the copolymer was checked by X-radiography. Blood compatibility and cytotoxicity of the newly synthesized copolymer were also evaluated. The iodinated copolymer was thermally stable, blood compatible, non-cytotoxic, and highly radiopaque. The presence of bulky iodine group created a new copolymer with modified properties for potential use in biomedical applications.

  11. Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys

    Science.gov (United States)

    Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.

    2018-04-01

    10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.

  12. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    International Nuclear Information System (INIS)

    Gómez-Cortés, J.F.; San Juan, J.; López, G.A.; Nó, M.L.

    2013-01-01

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO 2 and Si/Si 3 N 4 , was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiN X 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film

  13. Characterization of NiTi shape memory alloys using dual kriging interpolation

    International Nuclear Information System (INIS)

    Trochu, F.; Sacepe, N.; Volkov, O.; Turenne, S.

    1999-01-01

    A large number of industrial applications could benefit from the remarkable properties of shape memory alloys (SMA). The development of a general material law is the first important step before reliable design calculations of shape memory devices can be carried out. This paper presents a new phenomenological constitutive law based on dual kriging, which is a powerful mathematical tool used here as interpolation method to simulate the macroscopic mechanical behavior of shape memory alloys. From a set of experimental strain-temperature curves at constant loads, two deformation surfaces are constructed in the stress, strain and temperature space which describe the cooling and heating behaviors of the material for any stress. The response of a specimen subjected to complex thermomechanical loading can be calculated by dual kriging form a general 3-dimensional parametric solid constructed inside the hysteretic domain delimited by the main cooling and heating deformation surfaces. This approach presents the advantage of yielding immediately the explicit equation of any partial cycle inside the main hysteretic domain, thus yielding a general material law for shape memory alloys. Preliminary validation for a set of simple examples demonstrates the potential of this new model that includes in a single formulation superelasticity, rubber-like behavior and shape memory effect. (orig.)

  14. Evaluation on microscopic damage and fabrication process of shape memory alloy

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Choi, Il Kook; Park, Young Chul; Lee, Kyu Chang; Lee, Jun Hyun

    2002-01-01

    Shape memory alloy has been used to improve the tensile strength of composite by the occurrence of compressive residual stress in matrix using its shape memory effect. In order to fabricate shape memory alloy composite, TiNi alloy and Al6061 were used as reinforcing material and matrix, respectively. In this study, TiNi/Al6061 shape memory alloy composite was made by using hot press method. However, the specimen fabricated by this method had the bonding problem at tile boundary between TiNi fiber anti Al matrix when the load was applied to it. A cold rolling was imposed to the specimen to improve the bonding effort. It was found that tensile strength of specimen subjected to cold rolling was more increased than that of specimen which did not underwent cold rolling. In addition, acoustic emission technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite at high temperature.

  15. Synthesis and characterization of Cu–Al–Ni shape memory alloy multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Cortés, J.F. [Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); San Juan, J., E-mail: jose.sanjuan@ehu.es [Dpt. Física Materia Condensada, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain); López, G.A.; Nó, M.L. [Dpt. Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2013-10-01

    Among active materials, shape memory alloys are well recognized for their work output density. Because of that, these alloys have attracted much attention to be used in micro/nano electromechanical systems. In the present work, the electron beam evaporation technique has been used to growth, by a multilayer method, two shape memory alloy thin films with different Cu–Al–Ni composition. Multilayers have been further thermally treated to produce the alloys by solid solution diffusion. The produced multilayers have been characterized and the presence of the martensite phase in the obtained thin films was studied. Furthermore, the influence of two different coatings onto the Si substrates, namely Si/SiO{sub 2} and Si/Si{sub 3}N{sub 4}, was investigated. Mechanically stable, not detaching from the substrates, Cu–Al–Ni shape memory alloy thin films, about 1 micrometre thick, showing a martensitic transformation have been produced. - Highlights: ► Multilayer thin films of Cu–Al–Ni shape memory alloys produced by e-beam evaporation. ► SiN{sub X} 200 nm thick coating is good for high quality Cu–Al–Ni shape memory thin films. ► Thermal treatment renders Cu–Al–Ni multilayer in homogeneous martensite thin film.

  16. Transformation-Induced Creep and Creep Recovery of Shape Memory Alloy.

    Science.gov (United States)

    Takeda, Kohei; Tobushi, Hisaaki; Pieczyska, Elzbieta A

    2012-05-22

    If the shape memory alloy is subjected to the subloop loading under the stress-controlled condition, creep and creep recovery can appear based on the martensitic transformation. In the design of shape memory alloy elements, these deformation properties are important since the deflection of shape memory alloy elements can change under constant stress. The conditions for the progress of the martensitic transformation are discussed based on the kinetics of the martensitic transformation for the shape memory alloy. During loading under constant stress rate, temperature increases due to the stress-induced martensitic transformation. If stress is held constant during the martensitic transformation stage in the loading process, temperature decreases and the condition for the progress of the martensitic transformation is satisfied, resulting in the transformation-induced creep deformation. If stress is held constant during the reverse transformation stage in the unloading process, creep recovery appears due to the reverse transformation. The details for these thermomechanical properties are investigated experimentally for TiNi shape memory alloy, which is most widely used in practical applications. The volume fraction of the martensitic phase increases in proportion to an increase in creep strain.

  17. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    Science.gov (United States)

    Hikov, T.; Mitev, D.; Radeva, E.; Iglic, A.; Presker, R.; Daniel, M.; Sepitka, J.; Krasteva, N.; Keremidarska, M.; Cvetanov, I.; Pramatarova, L.

    2014-12-01

    The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties

  18. Studying the influence of nanodiamonds over the elasticity of polymer/nanodiamond composites for biomedical application

    International Nuclear Information System (INIS)

    Hikov, T; Iglic, A; Presker, R; Daniel, M; Sepitka, J; Krasteva, N; Keremidarska, M; Mitev, D; Radeva, E; Cvetanov, I; Pramatarova, L

    2014-01-01

    The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties

  19. Effect of titanium addition on shape memory effect and recovery stress of training-free cast Fe–Mn–Si–Cr–Ni shape memory alloys

    International Nuclear Information System (INIS)

    Wang, Gaixia; Peng, Huabei; Sun, Panpan; Wang, Shanling; Wen, Yuhua

    2016-01-01

    The shape memory effect and recovery stress of cast Fe–17.2Mn–5.28Si–9.8Cr–4.57Ni (18Mn) and Fe–17.5Mn–5.29Si–9.68Cr–4.2Ni–0.09Ti (18Mn–Ti) alloys have been investigated by optical microscopy, scanning electron microscopy (SEM), electron backscattering diffraction (EBSD), and resistivity–temperature curves. The cast 18Mn and 18Mn–Ti alloys solidified as the ferritic mode for which liquid phase fully transforms into primary δ ferrite. The role of titanium is to indirectly refine the austenite through refining the primary δ ferrite. In this case, the austenitic grains of the cast 18Mn alloy were much bigger than that of the cast 18Mn–Ti alloy, although the two alloys underwent δ→γ phase transformation. Grain refinement suppresses the stress-induced ε martensitic transformation, and thus the shape memory effect of the cast 18Mn–Ti alloy is worse than that of the cast 18Mn alloy. On the contrary, the maximum recovery stress and the recovery stress at room temperature are higher for the cast 18Mn–Ti alloy annealed at 1073 K for 30 min than for the cast 18Mn alloy annealed at 973 K for 30 min, because grain refinement suppresses the relaxation of recovery stress caused by the plastic deformation and the stress-induced ε martensitic transformation during cooling process. It is difficult to obtain the training-free cast Fe–Mn–Si based shape memory alloys with excellent shape memory effect and high recovery stress only by grain refinement.

  20. Development of On-line Monitoring System for Shape Memory Alloy Composite

    International Nuclear Information System (INIS)

    Lee, Jin Kyung; Park, Young Chul; Lee, Min Rae; Lee, Dong Hwa; Lee, Kyu Chang

    2003-01-01

    A hot press method was use for the optimal manufacturing condition for a shape memory alloy(SMA) composite. The bonding between the matrix and the reinforcement within the SMA composite by the hot press method was strengthened by cold rolling. In this study, the objective was to develop an on-line monitoring system for the prevention of the crack initiation and propagation by shape memory effort of SMA composite. Shape memory effect was used to prevent the SMA composite from cracking. For the system to be developed, an optimal hE parameter should be determined based on the degree of damage and crack initiation. When the SHA composite was heated by the plate heater attached at the composite, the propagating cracks appeared to be controlled by the compressive force of SMA

  1. Coaxial electrospun polyurethane core-shell nanofibers for shape memory and antibacterial nanomaterials

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available A novel kind of shape memory polyurethane (SMPU nanofibers with core-shell nanostructure is fabricated using coaxial electrospinning. Transmission electron microscopy (TEM and scanning electron microscopy (SEM results show that nanofibers with core-shell structure or bead-on-string structure can be electrospun successfully from the core solution of polycaprolactone based SMPU (CLSMPU and shell solution of pyridine containing polyurethane (PySMPU. In addition to the excellent shape memory effect with good shape fixity, excellent antibacterial activity against both gramnegative bacteria and gram-positive bacteria are achieved in the CLSMPU-PySMPU core-shell nanofiber. Finally, it is proposed that the antibacterial mechanism should be resulted from the PySMPU shell materials containing amido group in γ position and the high surface area per unit mass of nanofibers. Thus, the CLSMPU-PySMPU core shell nanofibers can be used as both shape memory nanomaterials and antibacterial nanomaterials.

  2. Pseudo-elasticity and shape memory effect on the TiNiCoV alloy

    International Nuclear Information System (INIS)

    Hsu, S.E.; Yeh, M.T.; Hsu, I.C.; Chang, S.K.; Dai, Y.C.; Wang, J.Y.

    2000-01-01

    Unlike most of the structural intermetallic compound, TiNi is an exceptional case of inherent ductility. Besides its amusing behavior of high damping capacity due to martensitic transformation, the duel properties of shape memory and pseudo-elasticity co-exhibited in the same V and Co-modified TiNi-SMA at various temperature will attract another attention in modern manufacturing technology. The objective of this paper is to investigate the pseudo-elasticity and strain rate effect on TiNiCoV-SMA. The presence of dual behavior of super-elasticity and shape memory effect is technological significant for application of advanced materials on the structural component. An illustration of application of TiNiCoV shape memory alloy on the face of golf club head will be presented in this paper. (orig.)

  3. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    International Nuclear Information System (INIS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Liu, Yanju; Leng, Jinsong; Xu, Ben; Fu, Yongqing

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ϵ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin–based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix. (paper)

  4. Shape memory alloy fixator system for suturing tissue in minimal access surgery.

    Science.gov (United States)

    Xu, W; Frank, T G; Stockham, G; Cuschieri, A

    1999-01-01

    A new technique for suturing human tissue is described in which tissue closure is achieved by means of small fixators made from shape memory alloy. The aim of the development is to provide an alternative to thread suturing in minimal access surgery, which is quicker and requires less skill to achieve the required suturing quality. The design of the fixators is described in terms of the thermal shape recovery of shape memory alloy and a novel form of finite element analysis, which uses a nonlinear elastic element for the material property. Thermal analysis of the fixators and surrounding tissue is used to predict the temperature distribution during and after the application of electric current heating. This was checked in an in vitro experiment, which confirmed that deployment caused no detectable collateral damage to surrounding tissue. In vivo animal studies on the use of the shape memory alloy fixator for suturing tissue are ongoing to establish safety and healing effects.

  5. Narrow thermal hysteresis of NiTi shape memory alloy thin films with submicrometer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Huilong; Hamilton, Reginald F., E-mail: rfhamilton@psu.edu; Horn, Mark W. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-09-15

    NiTi shape memory alloy (SMA) thin films were fabricated using biased target ion beam deposition (BTIBD), which is a new technique for fabricating submicrometer-thick SMA thin films, and the capacity to exhibit shape memory behavior was investigated. The thermally induced shape memory effect (SME) was studied using the wafer curvature method to report the stress-temperature response. The films exhibited the SME in a temperature range above room temperature and a narrow thermal hysteresis with respect to previous reports. To confirm the underlying phase transformation, in situ x-ray diffraction was carried out in the corresponding phase transformation temperature range. The B2 to R-phase martensitic transformation occurs, and the R-phase transformation is stable with respect to the expected conversion to the B19′ martensite phase. The narrow hysteresis and stable R-phase are rationalized in terms of the unique properties of the BTIBD technique.

  6. Thermodynamic assessment of the stabilization effect in deformed shape memory alloy martensite

    International Nuclear Information System (INIS)

    Kato, Hiroyuki; Yasuda, Yohei; Sasaki, Kazuaki

    2011-01-01

    When a martensitic shape memory alloy is deformed, the reverse transformation occurs at higher temperature than that of undeformed martensite. This is a typical case of the stabilization effect of martensite that is commonly observed in shape memory alloys. Regarding previous results measured by electric resistance and/or dilatometoric methods in NiTi and CuAlNi shape memory alloys, this study has performed calorimetric measurement in these alloys in order to re-examine the stabilization effect in terms of thermodynamics. Experimental evidence for appreciable changes in the reverse transformation temperature due to variant change of the martensite is presented. The elastic energy stored in the deformed martensite and the irreversible energy dissipated during the reverse transformation are estimated from the transformation temperatures, the stress-strain curves of the martensite and the latent heat of transformation. The temperatures of the reverse martensitic transformation have been related to these energies in explicit form.

  7. Investigation of shape memory of red blood cells using optical tweezers and quantitative phase microscopy

    Science.gov (United States)

    Cardenas, Nelson; Mohanty, Samarendra K.

    2012-03-01

    RBC has been shown to possess shape memory subsequent to shear-induced shape transformation. However, this property of RBC may not be generalized to all kinds of stresses. Here, we report our observation on the action of radiation pressure forces on RBC's shape memory using optical manipulation and quantitative phase microscopy (OMQPM). QPM, based on Mach-Zehnder interferrometry, allowed measurement of dynamic changes of shape of RBC in optical tweezers at different trapping laser powers. In high power near-infrared optical tweezers (>200mW), the RBC was found to deform significantly due to optical forces. Upon removal of the tweezers, hysteresis in recovering its original resting shape was observed. In very high power tweezers or long-term stretching events, shape memory was almost erased. This irreversibility of the deformation may be due to temperature rise or stress-induced phase transformation of lipids in RBC membrane.

  8. Effect of adding Si on shape memory effect in Co-Ni alloy system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Weimin [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China); Liu Yan [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Jiang Bohong [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: bhjiang@sjtu.edu.cn; Zhou Pingnan [School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2006-11-25

    In this paper, the effect of adding Si to Co-31.5 mass% Ni alloys on fcc-hcp martensitic transformation is investigated. The Co-Ni-Si ternary alloys with different amount of Si from 1 to 5 mass% were prepared. The stacking fault probability of Co-Ni-Si polycrystalline alloys were determined by X-ray diffraction profile analysis and compared with the binary Co-Ni alloy. The results show that the stacking fault probability of the fcc phase of alloys increases with increasing Si content. The effect of Si on phase transformation and shape memory behavior is evaluated. The experimental results show that both the critical strength and the shape memory effect of the ternary alloys will increase by the addition of Si. The improvement mechanism of the shape memory effect by adding Si to binary Co-Ni alloys is discussed.

  9. Powder metallurgy of NiTi-alloys with defined shape memory properties

    International Nuclear Information System (INIS)

    Bram, M.; Ahmad-Khanlou, A.; Buchkremer, H.P.; Stoever, D.

    2001-01-01

    The aim of the present work is the development of fabrication processes for NiTi shape memory alloys by powder metallurgical means. The starting materials used were prealloyed powders as well as elemental powder mixtures. Three techniques seem to be very promising for shaping of NiTi compacts. Hot Isostatic Pressing (HIP) has been examined for the production of dense semi-finished components. A promising technique for the production of dense and porous coatings with an increased wear resistance is Vacuum Plasma Spraying (VPS). Metal Injection Moulding (MIM) is especially suitable for near-net shape fabrication of small components with a complex geometry considering that large numbers of units have to be produced for compensating high tool and process costs. Subsequently, thermal treatments are required to establish defined shape memory properties. The reproducibility and stability of the shape memory effect are main aspects thinking about a production of NiTi components in an industrial scale. (author)

  10. A Constitutive Description for Shape Memory Alloys with the Growth of Martensite Band

    Directory of Open Access Journals (Sweden)

    Weiguo Li

    2014-01-01

    Full Text Available Based on the experimental results and the finite element analysis, a constitutive model is proposed for two phase shape memory alloys by introducing a compensative volumetric strain into a constrained relationship between the two phases, accounting for the reduced constraint due to the growth of martensite band. The pseudoelasticity of NiTi shape memory alloy micro-tube, subjected to pure tension, is analyzed and compared with the experimental results. It can be seen that the pseudoelastic behavior, especially the phenomena of a stress drop during tension processes, can be well described with the proposed model. The proposed model separates the complicated constitutive behavior of a shape memory alloy (SMA into simple responses arising respectively from its two phases, taking into account laminar microstructure, the thickness of martensite phase and the interaction between the two phases, and provides an easy but comprehensive method for the description of the constitutive behavior of SMAs under complex thermomechanical loading.

  11. Fast Response, Open-Celled Porous, Shape Memory Effect Actuators with Integrated Attachments

    Science.gov (United States)

    Jardine, Andrew Peter (Inventor)

    2015-01-01

    This invention relates to the exploitation of porous foam articles exhibiting the Shape Memory Effect as actuators. Each foam article is composed of a plurality of geometric shapes, such that some geometric shapes can fit snugly into or around rigid mating connectors that attach the Shape Memory foam article intimately into the load path between a static structure and a moveable structure. The foam is open-celled, composed of a plurality of interconnected struts whose mean diameter can vary from approximately 50 to 500 microns. Gases and fluids flowing through the foam transfer heat rapidly with the struts, providing rapid Shape Memory Effect transformations. Embodiments of porous foam articles as torsional actuators and approximately planar structures are disposed. Simple, integral connection systems exploiting the ability to supply large loads to a structure, and that can also supply hot and cold gases and fluids to effect rapid actuation are also disposed.

  12. Combining thermodynamic principles with Preisach models for superelastic shape memory alloy wires

    International Nuclear Information System (INIS)

    Doraiswamy, S; Rao, A; Srinivasa, A R

    2011-01-01

    We present a simple model for simulating the response of a superelastic shape memory alloy wire based on the thermodynamics of irreversible processes, which can simulate the full thermomechanical response including internal hysteresis loops, at different temperatures, with minimal data input. The key idea is to separate the dissipative response and the elastic response of shape memory alloys using a Gibbs potential based formulation, and then use a Preisach model for the dissipative part of the response. This enables better handling of the features observed in the superelastic response such as those due to changes in temperature and internal hysteresis loops. We compare the predicted response with experiments performed on 0.75 mm NiTi shape memory alloy wires at three different temperatures

  13. Improving the Performance of Electrically Activated NiTi Shape Memory Actuators by Pre-Aging

    Science.gov (United States)

    Rathmann1, Christian; Fleczok1, Benjamin; Otibar1, Dennis; Kuhlenkötter, Bernd

    2017-06-01

    Shape memory alloys possess an array of unique functional properties which are influenced by a complex interaction of different factors. Due to thermal sensitivity, slight changes in temperature may cause the properties to change significantly. This poses a huge challenge especially for the use of shape memory alloys as actuators. The displacement is the key performance indicator, which has to be of equal or better quality compared to conventional actuators. One problem of shape memory alloys is the change in functional fatigue in the first cycles, which makes it rather difficult to design the actuator. Therefore, the reduction of this shakedown effect is crucial. For this reason, this paper investigates the effect of electrical heat treatment as a method for pre-aging. This topic has so far been little investigated so that the investigations focus on identifying important factors and effects by using the design of experiments.

  14. Transformation behavior and shape memory properties of Ti50Ni15Pd25Cu10 high temperature shape memory alloy at various aging temperatures

    International Nuclear Information System (INIS)

    Rehman, Saif ur; Khan, Mushtaq; Nusair Khan, A.; Ali, Liaqat; Zaman, Sabah; Waseem, Muhammad; Ali, Liaqat; Jaffery, Syed Husain Imran

    2014-01-01

    This research presents an insight into the effect of various aging temperatures on the microstructure, hardness, phase transformation behavior and shape memory properties of Ti 50 Ni 15 Pd 25 Cu 10 high temperature shape memory alloy. The aging temperature was varied from 350 °C to 750 °C, whereas the shape memory properties were evaluated at 100–500 MPa. It was observed that the mentioned properties were strongly dependent on the aging temperatures. Based on the results obtained from scanning electron microscopy, X-ray diffractometry, microhardness testing, differential scanning calorimetry and thermomechanical testing, the aging temperatures can be divided into three ranges. At low aging temperatures (350 °C and below), the properties of the alloy remained the same as were found for solution treated sample, however at intermediate aging temperatures (400–600 °C) the properties of the alloy were changed significantly. Due to the formation of precipitates, the hardness was increased, whereas the phase transformation temperatures and work output were decreased considerably. The recovery ratio was found to be improved for intermediate aging temperatures. At high aging temperatures (650 °C and above), the hardness was decreased and the phase transformation temperatures were increased. Phase transformation temperature at the aging temperature of 750 °C was found to be increased significantly as compared to solution treated sample

  15. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments.

    Science.gov (United States)

    Ninan, Elizabeth; Berzins, David W

    2013-01-01

    Recently introduced into the market are shape memory nickel-titanium (NiTi) rotary files. The objective of this study was to investigate the torsion and bending properties of shape memory files (CM Wire, HyFlex CM, and Phoenix Flex) and compare them with conventional (ProFile ISO and K3) and M-Wire (GT Series X and ProFile Vortex) NiTi files. Sizes 20, 30, and 40 (n = 12/size/taper) of 0.02 taper CM Wire, Phoenix Flex, K3, and ProFile ISO and 0.04 taper HyFlex CM, ProFile ISO, GT Series X, and Vortex were tested in torsion and bending per ISO 3630-1 guidelines by using a torsiometer. All data were statistically analyzed by analysis of variance and the Tukey-Kramer test (P = .05) to determine any significant differences between the files. Significant interactions were present among factors of size and file. Variability in maximum torque values was noted among the shape memory files brands, sometimes exhibiting the greatest or least torque depending on brand, size, and taper. In general, the shape memory files showed a high angle of rotation before fracture but were not statistically different from some of the other files. However, the shape memory files were more flexible, as evidenced by significantly lower bending moments (P < .008). Shape memory files show greater flexibility compared with several other NiTi rotary file brands. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Influence of alloying elements on the corrosion properties of shape memory stainless steels

    International Nuclear Information System (INIS)

    Della Rovere, C.A.; Alano, J.H.; Silva, R.; Nascente, P.A.P.; Otubo, J.; Kuri, S.E.

    2012-01-01

    Highlights: ► The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape-memory stainless steels (SMSSs) were compared with those of a type 304 (SS 304) austenitic stainless steel. ► A considerably high Si content (about 40 at%) is present in the anodic passive films formed on SMSSs in 0.5 M H 2 SO 4 solution. ► The high protectiveness of the anodic passive film formed on SMSSs in 0.5 M H 2 SO 4 solution results from a protective film consisting of a (Fe, Cr)–mixed silicate. ► The SMSSs exhibited higher corrosion resistance than SS 304 in highly oxidizing environments. ► The SMSSs showed poor corrosion resistance in 3.5% NaCl solution compared to that of SS 304. - Abstract: The corrosion properties of three Fe–Mn–Si–Cr–Ni–(Co) shape memory stainless steels were studied based on X-ray photoelectron spectroscopy (XPS) analyses, immersion and polarization tests. The test results were compared with those of a type 304 austenitic stainless steel. The XPS analyses indicated substantial Si content in the anodic passive films formed on shape memory stainless steels in sulfuric acid solution and that the high protectiveness of these films results from a protective film consisting of a (iron, chromium)–mixed silicate. The corrosion rate of the shape memory stainless steels in boiling nitric acid solution was lower than that of austenitic stainless steel. The high silicon content was found to play an important role in the corrosion behavior of these shape memory alloys in highly oxidizing environments. Due to their high manganese content, the shape memory stainless steels showed poor corrosion behavior in 3.5% sodium chloride solution when compared with austenitic stainless steel.

  17. Shape memory effect in Fe-Mn-Ni-Si-C alloys with low Mn contents

    Energy Technology Data Exchange (ETDEWEB)

    Min, X.H., E-mail: MIN.Xiaohua@nims.go.jp [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Sawaguchi, T.; Ogawa, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Maruyama, T. [Awaji Materia Co., Ltd. 2-3-13, Kanda ogawamachi, Chiyoda, Tokyo 101-0052 (Japan); Yin, F.X. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Tsuzaki, K. [National Institute for Materials Science, Tsukuba 305-0047 (Japan); Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-0047 (Japan)

    2011-06-15

    Highlights: {yields} A class of new Fe-Mn-Ni-Si-C shape memory alloys with low Mn contents has been designed. {yields} A Mn content for the onset of the {alpha}' martensite is less than 13 mass%, and the {epsilon} martensite still exists in the alloy with a 9 mass% Mn. {yields} The shape recovery strain decreases considerably when the Mn content is reduced from 13 to 11 mass%. {yields} The sudden decrease in the shape recovery strain is mainly caused by the formation of {alpha}' martensite. - Abstract: An attempt was made to develop a new Fe-Mn-Si-based shape memory alloy from a Fe-17Mn-6Si-0.3C (mass%) shape memory alloy, which was previously reported to show a superior shape memory effect without any costly training treatment, by lowering its Mn content. The shape memory effect and the phase transformation behavior were investigated for the as-solution treated Fe-(17-2x)Mn-6Si-0.3C-xNi (x = 0, 1, 2, 3, 4) polycrystalline alloys. The shape recovery strain exceeded 2% in the alloys with x = 0-2, which is sufficient for an industrially applicable shape memory effect; however, it suddenly decreased in the alloys between x = 2 and 3 although the significant shape recovery strain still exceeded 1%. In the alloys with x = 3 and 4, X-ray diffraction analysis and transmission electron microscope observation revealed the existence of {alpha}' martensite, which forms at the intersection of the {epsilon} martensite plates and suppresses the crystallographic reversibility of the {gamma} austenite to {epsilon} martensitic transformation.

  18. Microstructure, mechanical and functional properties of NiTi-based shape memory ribbons

    International Nuclear Information System (INIS)

    Mehrabi, K.; Bruncko, M.; Kneissl, A.C.

    2012-01-01

    Highlights: ► Melt-spun samples exhibited martensite structure and shape memory effects immediately after processing at room temperature. ► Using a new etchant and interference contrast, it is possible to reveal the fine microstructures and grain boundaries. ► The martensite structure in NiTi is very fine, and nano-sized twin boundaries could be revealed using TEM only. ► Two-way effects have been successfully introduced by different thermomechanical training methods in NiTi, NiTiCu and NiTiW alloys, which can be used for several applications, e.g. microsensors and microactuators. - Abstract: The present work has been aimed to study the microstructures, functional properties and the influence of different thermomechanical training methods on the two-way shape memory effect in NiTi-based melt-spun ribbons. In order to get small-dimensioned shape memory alloys (SMAs) with good functional and mechanical properties, a rapid solidification technique was employed. Their fracture and elasticity characteristics have been determined, as well as shape memory properties by thermomechanical cycling. The ribbons were trained under tensile and bending deformation by thermal cycling through the phase transformation temperature range. The results displayed that all different training methods were effective in developing a two-way shape memory effect (TWSME). The influence of copper (5–25 at.% Cu) and tungsten (2 at.% W) on the microstructure, and the functional and mechanical behavior of NiTi thin ribbons was also investigated. All samples show a shape memory effect immediately after processing without further heat treatment. The melt-spun ribbons were trained under constant strain (bending and tensile deformation) by thermal cycling through the phase transformation temperature range. The addition of copper was effective to narrow the transformation hysteresis. The W addition has improved the TWSME stability of the NiTi alloys and mechanical properties. Results about

  19. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices

    International Nuclear Information System (INIS)

    McManamon, Colm; Silva, Johann P. de; Delaney, Paul; Morris, Michael A.; Cross, Graham L.W.

    2016-01-01

    With this rise in surgical procedures it is important to focus on the mobility and safety of the patient and reduce the infections that are associated with hip replacements. We examine the mechanical properties of gentamicin sulphate as a model antimicrobial layer for titanium-alloy based prosthetic hips to help prevent methicillin-resistant Staphylococcus aureus infection after surgery. A top layer of poly(lactic-co-glycolic acid) is added to maintain the properties of the gentamicin sulphate as well as providing a drug delivery system. Through the use of nanoindentation and micro-scratch techniques it is possible to determine the mechanical and adhesive properties of this system. Nanoindentation determined the modulus values for the poly(lactic-co-glycolic acid) and gentamicin sulphate materials to be 8.9 and 5.2 GPa, respectively. Micro-scratch established that the gentamicin sulphate layer is strongly adhered to the Ti alloy and forces of 30 N show no cohesive or adhesive failure. It was determined that the poly(lactic-co-glycolic acid) is ductile in nature and delaminates from the gentamicin sulphate layer of at 0.5 N. - Highlights: • Biomedical bilayer for prosthetic implant to reduce patient pain and increase patient mobility • The characterisation of the materials shows that the materials are in accordance with FDA regulations. • The mechanical properties of the gentamicin suggest that it is well adhered to the substrate. • The PLGA layer delaminates at lower forces allowing the gentamicin to fight infection.

  20. Characteristics, interactions and coating adherence of heterogeneous polymer/drug coatings for biomedical devices

    Energy Technology Data Exchange (ETDEWEB)

    McManamon, Colm [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Silva, Johann P. de [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Delaney, Paul [Department of Chemistry, Supercritical Fluid Centre and Materials Section, University College Cork, Cork (Ireland); Morris, Michael A. [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); Department of Chemistry, Supercritical Fluid Centre and Materials Section, University College Cork, Cork (Ireland); Cross, Graham L.W., E-mail: crossg@tcd.ie [Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2 (Ireland); School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2016-02-01

    With this rise in surgical procedures it is important to focus on the mobility and safety of the patient and reduce the infections that are associated with hip replacements. We examine the mechanical properties of gentamicin sulphate as a model antimicrobial layer for titanium-alloy based prosthetic hips to help prevent methicillin-resistant Staphylococcus aureus infection after surgery. A top layer of poly(lactic-co-glycolic acid) is added to maintain the properties of the gentamicin sulphate as well as providing a drug delivery system. Through the use of nanoindentation and micro-scratch techniques it is possible to determine the mechanical and adhesive properties of this system. Nanoindentation determined the modulus values for the poly(lactic-co-glycolic acid) and gentamicin sulphate materials to be 8.9 and 5.2 GPa, respectively. Micro-scratch established that the gentamicin sulphate layer is strongly adhered to the Ti alloy and forces of 30 N show no cohesive or adhesive failure. It was determined that the poly(lactic-co-glycolic acid) is ductile in nature and delaminates from the gentamicin sulphate layer of at 0.5 N. - Highlights: • Biomedical bilayer for prosthetic implant to reduce patient pain and increase patient mobility • The characterisation of the materials shows that the materials are in accordance with FDA regulations. • The mechanical properties of the gentamicin suggest that it is well adhered to the substrate. • The PLGA layer delaminates at lower forces allowing the gentamicin to fight infection.