WorldWideScience

Sample records for biomedical sciences lead

  1. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  2. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Biomedical Science Technologists in Lagos Universities: Meeting ...

    African Journals Online (AJOL)

    Biomedical Science Technologists in Lagos Universities: Meeting Modern Standards ... like to see in biomedical science in Nigeria; 5) their knowledge of ten state-of-the-arts ... KEY WORDS: biomedical science, state-of-the-arts, technical staff ...

  4. Egyptian Journal of Biomedical Sciences

    African Journals Online (AJOL)

    The Egyptian Journal of Biomedical Sciences publishes in all aspects of biomedical research sciences. Both basic and clinical research papers are welcomed. Vol 23 (2007). DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. Table of Contents. Articles. Phytochemical And ...

  5. Archives: Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    Items 1 - 20 of 20 ... Archives: Journal of Medical and Biomedical Sciences. Journal Home > Archives: Journal of Medical and Biomedical Sciences. Log in or Register to get access to full text downloads.

  6. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  7. USSR report: life sciences. Biomedical and behavioral sciences

    International Nuclear Information System (INIS)

    1982-09-01

    Studies in life sciences, biomedical sciences, and behavioral sciences are reported. The following fields of interest were studied: agricultural biology, biochemistry, biotechnology, environment effects, medical demography, medicine, microbiology, physiology, radiation biology, and human factors engineering. For individual titles, see N82-33989 through N82-33994

  8. Building the biomedical data science workforce.

    Science.gov (United States)

    Dunn, Michelle C; Bourne, Philip E

    2017-07-01

    This article describes efforts at the National Institutes of Health (NIH) from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K) training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  9. Building the biomedical data science workforce.

    Directory of Open Access Journals (Sweden)

    Michelle C Dunn

    2017-07-01

    Full Text Available This article describes efforts at the National Institutes of Health (NIH from 2013 to 2016 to train a national workforce in biomedical data science. We provide an analysis of the Big Data to Knowledge (BD2K training program strengths and weaknesses with an eye toward future directions aimed at any funder and potential funding recipient worldwide. The focus is on extramurally funded programs that have a national or international impact rather than the training of NIH staff, which was addressed by the NIH's internal Data Science Workforce Development Center. From its inception, the major goal of BD2K was to narrow the gap between needed and existing biomedical data science skills. As biomedical research increasingly relies on computational, mathematical, and statistical thinking, supporting the training and education of the workforce of tomorrow requires new emphases on analytical skills. From 2013 to 2016, BD2K jump-started training in this area for all levels, from graduate students to senior researchers.

  10. Journal of Medical and Biomedical Sciences

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The Journal of Medical and Biomedical Science publishes original, novel, peer-reviewed reports that pertain to medical and allied health sciences; confirmatory reports of previously ...

  11. Research groups in biomedical sciences. Some recommendations

    Directory of Open Access Journals (Sweden)

    Ricardo Cardona

    2015-07-01

    Full Text Available Despite the growing number of scientific publications reflecting a greater number of people interested in the biomedical sciences, many research groups disappear secondary to poor internal organization. From the review of the available literature, we generate a series of recommendations that may be useful for the creation of a research group or to improve the productivity of an existing group. Fluid communication between its members with a common overall policy framework allows the creation of a good foundation that will lead to the consolidation of the group.

  12. Enhancing Diversity in Biomedical Data Science.

    Science.gov (United States)

    Canner, Judith E; McEligot, Archana J; Pérez, María-Eglée; Qian, Lei; Zhang, Xinzhi

    2017-01-01

    The gap in educational attainment separating underrepresented minorities from Whites and Asians remains wide. Such a gap has significant impact on workforce diversity and inclusion among cross-cutting Biomedical Data Science (BDS) research, which presents great opportunities as well as major challenges for addressing health disparities. This article provides a brief description of the newly established National Institutes of Health Big Data to Knowledge (BD2K) diversity initiatives at four universities: California State University, Monterey Bay; Fisk University; University of Puerto Rico, Río Piedras Campus; and California State University, Fullerton. We emphasize three main barriers to BDS careers (ie, preparation, exposure, and access to resources) experienced among those pioneer programs and recommendations for possible solutions (ie, early and proactive mentoring, enriched research experience, and data science curriculum development). The diversity disparities in BDS demonstrate the need for educators, researchers, and funding agencies to support evidence-based practices that will lead to the diversification of the BDS workforce.

  13. Nigerian Journal of Health and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    Biomedical Engineering Biotechnology in relation to Medicine Clinical Sciences Dental Sciences Environment and Health Health Economics and Management Health Information Management Hygiene and Health Education Legal Aspects of Healthcare Medical Education Nursing Sciences Pharmaceutical Sciences

  14. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  15. Science communication in the field of fundamental biomedical research (editorial).

    Science.gov (United States)

    Illingworth, Sam; Prokop, Andreas

    2017-10-01

    The aim of this special issue on science communication is to inspire and help scientists who are taking part or want to take part in science communication and engage with the wider public, clinicians, other scientists or policy makers. For this, some articles provide concise and accessible advice to individual scientists, science networks, or learned societies on how to communicate effectively; others share rationales, objectives and aims, experiences, implementation strategies and resources derived from existing long-term science communication initiatives. Although this issue is primarily addressing scientists working in the field of biomedical research, much of it similarly applies to scientists from other disciplines. Furthermore, we hope that this issue will also be used as a helpful resource by academic science communicators and social scientists, as a collection that highlights some of the major communication challenges that the biomedical sciences face, and which provides interesting case studies of initiatives that use a breadth of strategies to address these challenges. In this editorial, we first discuss why we should communicate our science and contemplate some of the different approaches, aspirations and definitions of science communication. We then address the specific challenges that researchers in the biomedical sciences are faced with when engaging with wider audiences. Finally, we explain the rationales and contents of the different articles in this issue and the various science communication initiatives and strategies discussed in each of them, whilst also providing some information on the wide range of further science communication activities in the biomedical sciences that could not all be covered here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  17. Nigerian Journal of Health and Biomedical Sciences

    African Journals Online (AJOL)

    The Nigerian Journal of Health and Biomedical Sciences is a multidisciplinary and peer-reviewed journal. This journal was established to meet the challenges of health care delivery in the 21st century in Nigeria and other countries with similar setting in the ever-changing world of science and technology. The health care ...

  18. Some Aspects of the State-of-the-Arts in Biomedical Science ...

    African Journals Online (AJOL)

    Summary: In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a ...

  19. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  20. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  1. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  2. Citizen Science for Mining the Biomedical Literature

    Directory of Open Access Journals (Sweden)

    Ginger Tsueng

    2016-12-01

    Full Text Available Biomedical literature represents one of the largest and fastest growing collections of unstructured biomedical knowledge. Finding critical information buried in the literature can be challenging. To extract information from free-flowing text, researchers need to: 1. identify the entities in the text (named entity recognition, 2. apply a standardized vocabulary to these entities (normalization, and 3. identify how entities in the text are related to one another (relationship extraction. Researchers have primarily approached these information extraction tasks through manual expert curation and computational methods. We have previously demonstrated that named entity recognition (NER tasks can be crowdsourced to a group of non-experts via the paid microtask platform, Amazon Mechanical Turk (AMT, and can dramatically reduce the cost and increase the throughput of biocuration efforts. However, given the size of the biomedical literature, even information extraction via paid microtask platforms is not scalable. With our web-based application Mark2Cure (http://mark2cure.org, we demonstrate that NER tasks also can be performed by volunteer citizen scientists with high accuracy. We apply metrics from the Zooniverse Matrices of Citizen Science Success and provide the results here to serve as a basis of comparison for other citizen science projects. Further, we discuss design considerations, issues, and the application of analytics for successfully moving a crowdsourcing workflow from a paid microtask platform to a citizen science platform. To our knowledge, this study is the first application of citizen science to a natural language processing task.

  3. Scientific conference at the Department of Biomedical Sciences, Russian Academy of Medical Sciences

    International Nuclear Information System (INIS)

    Rybakova, M.N.

    1997-01-01

    Review of reports at the scientific conference of the department of biomedical sciences of the Russian Academy of Medical Sciences, held in April, 1997, on the topic of Novel techniques in biomedical studied. Attention was paid to the creation and uses of rapid diagnosis instruments in micro devices, to the development of electron-photon, immuno enzyme and radionuclide techniques and their realization in automatic special equipment. Delay of native industry in creation of scientific-capacious highly efficient products, especially in the field of radiodiagnosis and instruments for laboratory studies was marked

  4. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... biomedical, behavioral and clinical science research. The panel meetings will be open to the public for...

  5. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical...) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the...

  6. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  7. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    Moody, J.B.

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  8. Translational science matters: forging partnerships between biomedical and behavioral science to advance the public's health.

    Science.gov (United States)

    Mensah, George A; Czajkowski, Susan M

    2018-03-29

    The prevention and effective treatment of many chronic diseases such as cardiovascular disease, cancer and diabetes are dependent on behaviors such as not smoking, adopting a physically-active lifestyle, eating a healthy diet, and adhering to prescribed medical and behavioral regimens. Yet adoption and maintenance of these behaviors pose major challenges for individuals, their families and communities, as well as clinicians and health care systems. These challenges can best be met through the integration of the biomedical and behavioral sciences that is achieved by the formation of strategic partnerships between researchers and practitioners in these disciplines to address pressing clinical and public health problems. The National Institutes of Health has supported a number of clinical trials and research initiatives that demonstrate the value of biomedical and behavioral science partnerships in translating fundamental discoveries into significant improvements in health outcomes. We review several such examples of collaborations between biomedical and behavioral researchers, describe key initiatives focused on advancing a transdisciplinary translational perspective, and outline areas which require insights, tools and findings from both the biomedical and behavioral sciences to advance the public's health.

  9. Facilities available for biomedical science research in the public universities in Lagos, Nigeria.

    Science.gov (United States)

    John, T A

    2010-03-01

    Across the world, basic medical scientists and physician scientists work on common platforms in state-of-the-arts laboratories doing translational research that occasionally results in bedside application. Biotechnology industries capitalise on useful findings for colossal profit.1 In Nigeria and the rest of Africa, biomedical science has not thrived and the contribution of publications to global high impact journals is low.2 This work investigated facilities available for modern biomedical research in Lagos public universities to extract culprit factors. The two public universities in Lagos, Nigeria were investigated by a cross sectional questionnaire survey of the technical staff manning biomedical science departments. They were asked about availability of 47 modern biomedical science research laboratory components such as cold room and microscopes and six research administration components such as director of research and grants administration. For convenient basic laboratory components such as autoclaves and balances, 50% responses indicated "well maintained and always functional" whereas for less convenient complex, high maintenance, state-of-the-arts equipment 19% responses indicated "well maintained and always functional." Respondents indicated that components of modern biomedical science research administration were 44% of expectation. The survey reveal a deficit in state-of the-arts research equipment and also a deficit in high maintenance, expensive equipment indicating that biomedical science in the investigated environment lacks the momentum of global trends and also lacks buoyant funding. In addition, administration supporting biomedical science is below expectation and may also account for the low contributions of research articles to global high impact journals.

  10. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  11. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  12. Journal of Medical and Biomedical Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Journal of Medical and Biomedical Science publishes original, novel, peer-reviewed reports that pertain to medical and allied health sciences; confirmatory reports of previously described phenomena that either contain a novel finding or are of such magnitude to enhance the field; as well as laboratory or ...

  13. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  14. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  15. An information technology emphasis in biomedical informatics education.

    Science.gov (United States)

    Kane, Michael D; Brewer, Jeffrey L

    2007-02-01

    Unprecedented growth in the interdisciplinary domain of biomedical informatics reflects the recent advancements in genomic sequence availability, high-content biotechnology screening systems, as well as the expectations of computational biology to command a leading role in drug discovery and disease characterization. These forces have moved much of life sciences research almost completely into the computational domain. Importantly, educational training in biomedical informatics has been limited to students enrolled in the life sciences curricula, yet much of the skills needed to succeed in biomedical informatics involve or augment training in information technology curricula. This manuscript describes the methods and rationale for training students enrolled in information technology curricula in the field of biomedical informatics, which augments the existing information technology curriculum and provides training on specific subjects in Biomedical Informatics not emphasized in bioinformatics courses offered in life science programs, and does not require prerequisite courses in the life sciences.

  16. e-Science platform for translational biomedical imaging research: running, statistics, and analysis

    Science.gov (United States)

    Wang, Tusheng; Yang, Yuanyuan; Zhang, Kai; Wang, Mingqing; Zhao, Jun; Xu, Lisa; Zhang, Jianguo

    2015-03-01

    In order to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment, we had designed an e-Science platform for biomedical imaging research and application cross multiple academic institutions and hospitals in Shanghai and presented this work in SPIE Medical Imaging conference held in San Diego in 2012. In past the two-years, we implemented a biomedical image chain including communication, storage, cooperation and computing based on this e-Science platform. In this presentation, we presented the operating status of this system in supporting biomedical imaging research, analyzed and discussed results of this system in supporting multi-disciplines collaboration cross-multiple institutions.

  17. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board; Notice of Meetings; Amendment The... Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development...

  18. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.

  19. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B. (comps.)

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program. (KRM)

  20. Application of infrared to biomedical sciences

    CERN Document Server

    Etehadtavakol, Mahnaz

    2017-01-01

    The book covers the latest updates in the application of infrared to biomedical sciences, a non-invasive, contactless, safe and easy approach imaging of skin and tissue temperatures. Its diagnostic procedure allows practitioners to identify the locations of abnormal chemical and blood vessel activity such as angiogenesis in body tissue. Its non-invasive approach works by applying the technology of the infrared camera and state-of-the-art software, where high-resolution digital infrared imaging technology benefits highly from enhanced image production, standardized image interpretation protocols, computerized comparison and storage, and sophisticated image enhancement and analysis. The book contains contributions from global prominent scientists in the area of infrared applications in biomedical studies. The target audience includes academics, practitioners, clinicians and students working in the area of infrared imaging in biomedicine.

  1. Important techniques in today's biomedical science research that ...

    African Journals Online (AJOL)

    olayemitoyin

    Keywords: Techniques, Biomedical Science, PhD, Research. ©Physiological Society ..... in mind that to publish a good scientific research paper in a high ..... New. Table 6. Key statistical methods and software utilized in the 33 research articles ...

  2. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-11-07

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research..., behavioral, and clinical science research. The panel meetings will be open to the public for approximately...

  3. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  4. Important techniques in today's biomedical science research that ...

    African Journals Online (AJOL)

    The need for best evidence has driven researchers into multidisciplinary, collaborative approaches which have become mainstay in today's biomedical science. The multidisciplinary and collaborative approaches to research in research-intensive academic medical centres in the USA and in other countries of affluence has ...

  5. Synergies and Distinctions between Computational Disciplines in Biomedical Research: Perspective from the Clinical and Translational Science Award Programs

    Science.gov (United States)

    Bernstam, Elmer V.; Hersh, William R.; Johnson, Stephen B.; Chute, Christopher G.; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark; Miller, Perry; DiLaura, Robert P.; Overcash, Marc; Lehmann, Harold P.; Eichmann, David; Athey, Brian D.; Scheuermann, Richard H.; Anderson, Nick; Starren, Justin B.; Harris, Paul A.; Smith, Jack W.; Barbour, Ed; Silverstein, Jonathan C.; Krusch, David A.; Nagarajan, Rakesh; Becich, Michael J.

    2010-01-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally-oriented groups including information technology (IT) professionals, computer scientists and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays and sub-optimal results. Although written from the perspective of clinical and translational science award (CTSA) programs within academic medical centers, the paper addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  6. The use of AMS to the biomedical sciences

    International Nuclear Information System (INIS)

    Vogel, J.S.

    1991-04-01

    The Center for Accelerator Mass Spectroscopy (AMS) began making AMS measurements in 1989. Biomedical experiments were originally limited by sample preparation techniques, but we expect the number of biomedical samples to increase five-fold. While many of the detailed techniques for making biomedical measurements resemble those used in other fields, biological tracer experiments differ substantially from the observational approaches of earth science investigators. The role of xenobiotius in initiating mutations in cells is of particular interest. One measure of the damage caused to the genetic material is obtained by counting the number of adducts formed by a chemical agent at a given dose. AMS allows direct measurement of the number of adducts through stoichiometric quantification of the 14 C label attached to the DNA after exposure to a labelled carcinogen. Other isotopes of interest include tritium, 36 Cl, 79 SE, 41 Ca, 26 Al and 129 I. Our experiments with low dose environmental carcinogens reflect the protocols which will become a common part of biomedical AMS. In biomedical experiments, the researcher defines the carbon to be analyzed through dissection and/or chemical purification; thus the sample is ''merely'' combusted and graphitized at the AMS facility. However, since biomedical samples can have a 14 C range of five orders of magnitude, preparation of graphite required construction of a special manifold to prevent cross-contamination. Additionally, a strain of 14 C-depleted C57BL/6 mice is being developed to further reduce background in biomedical experiments. AMS has a bright and diverse future in radioisotope tracing. Such work requires a dedicated amalgamation of AMS scientists and biomedical researchers who will redesign experimental protocols to maximize the AMS technique and minimize the danger of catastrophic contamination. 18 refs., 4 figs., 1 tab

  7. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  8. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    Moody, J.B.

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  9. Polydopamine--a nature-inspired polymer coating for biomedical science.

    Science.gov (United States)

    Lynge, Martin E; van der Westen, Rebecca; Postma, Almar; Städler, Brigitte

    2011-12-01

    Polymer coatings are of central importance for many biomedical applications. In the past few years, poly(dopamine) (PDA) has attracted considerable interest for various types of biomedical applications. This feature article outlines the basic chemistry and material science regarding PDA and discusses its successful application from coatings for interfacing with cells, to drug delivery and biosensing. Although many questions remain open, the primary aim of this feature article is to illustrate the advent of PDA on its way to become a popular polymer for bioengineering purposes.

  10. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  11. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research... Crowne Plaza Clinical Research Program December 3, 2010 *VA Central Office Mental Hlth & Behav Sci-A...

  12. [Dendrimers in biomedical sciences and nanotechnology].

    Science.gov (United States)

    Sekowski, Szymon; Miłowska, Katarzyna; Gabryelak, Teresa

    2008-12-30

    Dendrimers are relatively new, hyper-branched polymers that have many interesting abilities. Dendrimers could be used, for example, as drug or gene carriers, contrast agents, sensors for different metal ions, and in developing innovation technology. These spherical polymers are also characterized by pharmacological activity against different bacterial and viral diseases. Dendrimers are currently being intensively investigated as anti-prion and anti-amyloid fibril agents. They can be used to build specific dendrimer films to be applied in modern technology. This review describes different uses of dendrimer particles in biomedical sciences and nanotechnology and shows advantages of their application.

  13. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-04-06

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research.... Neurobiology-D June 10, 2011 Crowne Plaza DC/Silver Spring. Clinical Research Program June 13, 2011 VA Central...

  14. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical... panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... & Behav Sci-A June 7, 2010 L'Enfant Plaza Hotel. Clinical Research Program June 9, 2010 *VA Central Office...

  15. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    Pawar, S.H.; Khyalappa, R.J.; Yakhmi, J.V.

    2009-01-01

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  16. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... Science Research and Development Services Scientific Merit Review Board Panel for Eligibility, Notice of... and Clinical Science Research and Development Services Scientific Merit Review Board will meet on... medical specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  17. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  18. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  19. Causal Inference for Statistics, Social, and Biomedical Sciences: An Introduction

    Science.gov (United States)

    Imbens, Guido W.; Rubin, Donald B.

    2015-01-01

    Most questions in social and biomedical sciences are causal in nature: what would happen to individuals, or to groups, if part of their environment were changed? In this groundbreaking text, two world-renowned experts present statistical methods for studying such questions. This book starts with the notion of potential outcomes, each corresponding…

  20. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    The Sierra Leone Journal of Biomedical Research publishes papers in all fields of Medicine and Allied Health Sciences including Basic Medical Sciences, Clinical Sciences, Dental Sciences, Behavioural Sciences, Biomedical Engineering, Molecular Biology, Pharmaceutical Sciences, Biotechnology in relation to Medicine, ...

  1. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  2. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... DEPARTMENT OF VETERANS AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit Review Board, Notice of Meeting Amendment The... Development and Clinical Science Research and Development Services Scientific Merit Review Board have changed...

  3. Globalization and changing trends of biomedical research output.

    Science.gov (United States)

    Conte, Marisa L; Liu, Jing; Schnell, Santiago; Omary, M Bishr

    2017-06-15

    The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research.

  4. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  5. Globalization and changing trends of biomedical research output

    Science.gov (United States)

    Conte, Marisa L.; Liu, Jing; Omary, M. Bishr

    2017-01-01

    The US continues to lead the world in research and development (R&D) expenditures, but there is concern that stagnation in federal support for biomedical research in the US could undermine the leading role the US has played in biomedical and clinical research discoveries. As a readout of research output in the US compared with other countries, assessment of original research articles published by US-based authors in ten clinical and basic science journals during 2000 to 2015 showed a steady decline of articles in high-ranking journals or no significant change in mid-ranking journals. In contrast, publication output originating from China-based investigators, in both high- and mid-ranking journals, has steadily increased commensurate with significant growth in R&D expenditures. These observations support the current concerns of stagnant and year-to-year uncertainty in US federal funding of biomedical research. PMID:28614799

  6. Data science, learning, and applications to biomedical and health sciences.

    Science.gov (United States)

    Adam, Nabil R; Wieder, Robert; Ghosh, Debopriya

    2017-01-01

    The last decade has seen an unprecedented increase in the volume and variety of electronic data related to research and development, health records, and patient self-tracking, collectively referred to as Big Data. Properly harnessed, Big Data can provide insights and drive discovery that will accelerate biomedical advances, improve patient outcomes, and reduce costs. However, the considerable potential of Big Data remains unrealized owing to obstacles including a limited ability to standardize and consolidate data and challenges in sharing data, among a variety of sources, providers, and facilities. Here, we discuss some of these challenges and potential solutions, as well as initiatives that are already underway to take advantage of Big Data. © 2017 New York Academy of Sciences.

  7. [Biomedical informatics].

    Science.gov (United States)

    Capurro, Daniel; Soto, Mauricio; Vivent, Macarena; Lopetegui, Marcelo; Herskovic, Jorge R

    2011-12-01

    Biomedical Informatics is a new discipline that arose from the need to incorporate information technologies to the generation, storage, distribution and analysis of information in the domain of biomedical sciences. This discipline comprises basic biomedical informatics, and public health informatics. The development of the discipline in Chile has been modest and most projects have originated from the interest of individual people or institutions, without a systematic and coordinated national development. Considering the unique features of health care system of our country, research in the area of biomedical informatics is becoming an imperative.

  8. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  9. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  10. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  11. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  12. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  13. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  14. Journal of Biomedical Investigation: Editorial Policies

    African Journals Online (AJOL)

    Journal of Biomedical Investigation: Editorial Policies. Journal Home ... The focus of the Journal of Biomedical Research is to promote interdisciplinary research across all Biomedical Sciences. It publishes ... Business editor – Sam Meludu.

  15. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  16. Patterns of biomedical science production in a sub-Saharan research center

    Directory of Open Access Journals (Sweden)

    Agnandji Selidji T

    2012-03-01

    Full Text Available Abstract Background Research activities in sub-Saharan Africa may be limited to delegated tasks due to the strong control from Western collaborators, which could lead to scientific production of little value in terms of its impact on social and economic innovation in less developed areas. However, the current contexts of international biomedical research including the development of public-private partnerships and research institutions in Africa suggest that scientific activities are growing in sub-Saharan Africa. This study aims to describe the patterns of clinical research activities at a sub-Saharan biomedical research center. Methods In-depth interviews were conducted with a core group of researchers at the Medical Research Unit of the Albert Schweitzer Hospital from June 2009 to February 2010 in Lambaréné, Gabon. Scientific activities running at the MRU as well as the implementation of ethical and regulatory standards were covered by the interview sessions. Results The framework of clinical research includes transnational studies and research initiated locally. In transnational collaborations, a sub-Saharan research institution may be limited to producing confirmatory and late-stage data with little impact on economic and social innovation. However, ethical and regulatory guidelines are being implemented taking into consideration the local contexts. Similarly, the scientific content of studies designed by researchers at the MRU, if local needs are taken into account, may potentially contribute to a scientific production with long-term value on social and economic innovation in sub-Saharan Africa. Conclusion Further research questions and methods in social sciences should comprehensively address the construction of scientific content with the social, economic and cultural contexts surrounding research activities.

  17. Luminescent nanodiamonds for biomedical applications.

    Science.gov (United States)

    Say, Jana M; van Vreden, Caryn; Reilly, David J; Brown, Louise J; Rabeau, James R; King, Nicholas J C

    2011-12-01

    In recent years, nanodiamonds have emerged from primarily an industrial and mechanical applications base, to potentially underpinning sophisticated new technologies in biomedical and quantum science. Nanodiamonds are relatively inexpensive, biocompatible, easy to surface functionalise and optically stable. This combination of physical properties are ideally suited to biological applications, including intracellular labelling and tracking, extracellular drug delivery and adsorptive detection of bioactive molecules. Here we describe some of the methods and challenges for processing nanodiamond materials, detection schemes and some of the leading applications currently under investigation.

  18. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  19. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  20. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists

  1. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  2. Compliance with National Ethics Requirements for Human-Subject Research in Non-biomedical Sciences in Brazil: A Changing Culture?

    Science.gov (United States)

    de Albuquerque Rocha, Karina; Vasconcelos, Sonia M R

    2018-02-06

    Ethics regulation for human-subject research (HSR) has been established for about 20 years in Brazil. However, compliance with this regulation is controversial for non-biomedical sciences, particularly for human and social sciences (HSS), the source of a recent debate at the National Commission for Research Ethics. We hypothesized that for these fields, formal requirements for compliance with HSR regulation in graduate programs, responsible for the greatest share of Brazilian science, would be small in number. We analyzed institutional documents (collected from June 2014 to May 2015) from 171 graduate programs at six prestigious Brazilian universities in São Paulo and Rio de Janeiro, the states that fund most of the science conducted in Brazil. Among these programs, 149 were in HSS. The results suggest that non-compliance with standard regulation seems to be the rule in most of these programs. The data may reflect not only a resistance from scientists in these fields to comply with standard regulations for ethics in HSR but also a disciplinary tradition that seems prevalent when it comes to research ethics in HSR. However, recent encounters between Brazilian biomedical and non-biomedical scientists for debates over ethics in HSR point to a changing culture in the approach to research ethics in the country.

  3. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  4. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine.

  5. A Novel Multiple Choice Question Generation Strategy: Alternative Uses for Controlled Vocabulary Thesauri in Biomedical-Sciences Education.

    Science.gov (United States)

    Lopetegui, Marcelo A; Lara, Barbara A; Yen, Po-Yin; Çatalyürek, Ümit V; Payne, Philip R O

    2015-01-01

    Multiple choice questions play an important role in training and evaluating biomedical science students. However, the resource intensive nature of question generation limits their open availability, reducing their contribution to evaluation purposes mainly. Although applied-knowledge questions require a complex formulation process, the creation of concrete-knowledge questions (i.e., definitions, associations) could be assisted by the use of informatics methods. We envisioned a novel and simple algorithm that exploits validated knowledge repositories and generates concrete-knowledge questions by leveraging concepts' relationships. In this manuscript we present the development and validation of a prototype which successfully produced meaningful concrete-knowledge questions, opening new applications for existing knowledge repositories, potentially benefiting students of all biomedical sciences disciplines.

  6. Challenges of medical and biological engineering and science

    Energy Technology Data Exchange (ETDEWEB)

    Magjarevic, R [University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb (Croatia)

    2004-07-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science.

  7. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    Magjarevic, R.

    2004-01-01

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  8. [Biomedical engineering today : An overview from the viewpoint of the German Biomedical Engineering Society].

    Science.gov (United States)

    Schlötelburg, C; Becks, T; Stieglitz, T

    2010-08-01

    Biomedical engineering is characterized by the interdisciplinary co-operation of technology, science, and ways of thinking, probably more than any other technological area. The close interaction of engineering and information sciences with medicine and biology results in innovative products and methods, but also requires high standards for the interdisciplinary transfer of ideas into products for patients' benefits. This article describes the situation of biomedical engineering in Germany. It displays characteristics of the medical device industry and ranks it with respect to the international market. The research landscape is described as well as up-to-date research topics and trends. The national funding situation of research in biomedical engineering is reviewed and existing innovation barriers are discussed.

  9. Design of e-Science platform for biomedical imaging research cross multiple academic institutions and hospitals

    Science.gov (United States)

    Zhang, Jianguo; Zhang, Kai; Yang, Yuanyuan; Ling, Tonghui; Wang, Tusheng; Wang, Mingqing; Hu, Haibo; Xu, Xuemin

    2012-02-01

    More and more image informatics researchers and engineers are considering to re-construct imaging and informatics infrastructure or to build new framework to enable multiple disciplines of medical researchers, clinical physicians and biomedical engineers working together in a secured, efficient, and transparent cooperative environment. In this presentation, we show an outline and our preliminary design work of building an e-Science platform for biomedical imaging and informatics research and application in Shanghai. We will present our consideration and strategy on designing this platform, and preliminary results. We also will discuss some challenges and solutions in building this platform.

  10. Statistics and Biomedical Informatics in Forensic Sciences

    Czech Academy of Sciences Publication Activity Database

    Zvárová, Jana

    2009-01-01

    Roč. 20, č. 6 (2009), s. 743-750 ISSN 1180-4009. [TIES 2007. Annual Meeting of the International Environmental Society /18./. Mikulov, 16.08.2007-20.08.2007] Institutional research plan: CEZ:AV0Z10300504 Keywords : biomedical informatics * biomedical statistics * genetic information * forensic dentistry Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.000, year: 2009

  11. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  12. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  13. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  14. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  15. Handbook of photonics for biomedical engineering

    CERN Document Server

    Kim, Donghyun; Somekh, Michael

    2017-01-01

    Nanophotonics has emerged rapidly into technological mainstream with the advent and maturity of nanotechnology available in photonics and enabled many new exciting applications in the area of biomedical science and engineering that were unimagined even a few years ago with conventional photonic engineering techniques. Handbook of Nanophotonics in Biomedical Engineering is intended to be a reliable resource to a wealth of information on nanophotonics that can inspire readers by detailing emerging and established possibilities of nanophotonics in biomedical science and engineering applications. This comprehensive reference presents not only the basics of nanophotonics but also explores recent experimental and clinical methods used in biomedical and bioengineering research. Each peer-reviewed chapter of this book discusses fundamental aspects and materials/fabrication issues of nanophotonics, as well as applications in interfaces, cell, tissue, animal studies, and clinical engineering. The organization provides ...

  16. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    Science.gov (United States)

    Eijsvogels, Thijs M H; van den Brand, Tessa L; Hopman, Maria T E

    2013-11-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade age and examination preference on this score. Data were collected for 452 first-year medical and biomedical science students during three distinct course examinations: one examination with EMQ only, one with MCQ only and one mixed examination (including EMQ and MCQ). Logistic regression analysis revealed that MCQ examination was 3 times better in identifying poor students compared with EMQ (RR 3.0, CI 2.0-4.5), whereas EMQ better detected excellent students (average grade ≥8) (RR 1.93, CI 1.47-2.53). Mixed examination had comparable characteristics to MCQ. Sex and examination preference did not impact the score of the student. Students ≥20 years had a 4-fold higher risk ratio of obtaining a poor grade (<6) compared with students ≤18 years old (RR 4.1, CI 2.1-8.0). Given the strong discriminative capacity of MCQ examinations to identify poor students, we recommend the use of this type of examination during the propaedeutic phase of medicine and biomedical science study programmes, in the light of the binding study advice.

  17. An engineering paradigm in the biomedical sciences: Knowledge as epistemic tool.

    Science.gov (United States)

    Boon, Mieke

    2017-10-01

    In order to deal with the complexity of biological systems and attempts to generate applicable results, current biomedical sciences are adopting concepts and methods from the engineering sciences. Philosophers of science have interpreted this as the emergence of an engineering paradigm, in particular in systems biology and synthetic biology. This article aims at the articulation of the supposed engineering paradigm by contrast with the physics paradigm that supported the rise of biochemistry and molecular biology. This articulation starts from Kuhn's notion of a disciplinary matrix, which indicates what constitutes a paradigm. It is argued that the core of the physics paradigm is its metaphysical and ontological presuppositions, whereas the core of the engineering paradigm is the epistemic aim of producing useful knowledge for solving problems external to the scientific practice. Therefore, the two paradigms involve distinct notions of knowledge. Whereas the physics paradigm entails a representational notion of knowledge, the engineering paradigm involves the notion of 'knowledge as epistemic tool'. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Getsi, J.A.

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  19. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Getsi, J.A. (comps.)

    1982-07-01

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives. (JGB)

  20. Citizen Science and Biomedical Research: Implications for Bioethics Theory and Practice

    Directory of Open Access Journals (Sweden)

    Chris W Callaghan

    2016-10-01

    Full Text Available Certain trends in scientific research have important relevance to bioethics theory and practice. A growing stream of literature relates to increasing transparency and inclusivity of populations (stakeholders in scientific research, from high volume data collection, synthesis, and analysis to verification and ethical scrutiny. The emergence of this stream of literature has implications for bioethics theory and practice. This paper seeks to make explicit these streams of literature and to relate these to bioethical issues, through consideration of certain extreme examples of scientific research where bioethical engagement is vital. Implications for theory and practice are derived, offering useful insights derived from multidisciplinary theory. Arguably, rapidly developing fields of citizen science such as informing science and others seeking to maximise stakeholder involvement in both research and bioethical engagement have emerged as a response to these types of issues; radically enhanced stakeholder engagement in science may herald a new maximally inclusive and transparent paradigm in bioethics based on lessons gained from exposure to increasingly uncertain ethical contexts of biomedical research.

  1. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-12-29

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  2. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  3. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  4. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  5. Theory and experiment in biomedical science

    Science.gov (United States)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani

  6. Biomedical Engineering | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  7. Biomedical semantics in the Semantic Web.

    Science.gov (United States)

    Splendiani, Andrea; Burger, Albert; Paschke, Adrian; Romano, Paolo; Marshall, M Scott

    2011-03-07

    The Semantic Web offers an ideal platform for representing and linking biomedical information, which is a prerequisite for the development and application of analytical tools to address problems in data-intensive areas such as systems biology and translational medicine. As for any new paradigm, the adoption of the Semantic Web offers opportunities and poses questions and challenges to the life sciences scientific community: which technologies in the Semantic Web stack will be more beneficial for the life sciences? Is biomedical information too complex to benefit from simple interlinked representations? What are the implications of adopting a new paradigm for knowledge representation? What are the incentives for the adoption of the Semantic Web, and who are the facilitators? Is there going to be a Semantic Web revolution in the life sciences?We report here a few reflections on these questions, following discussions at the SWAT4LS (Semantic Web Applications and Tools for Life Sciences) workshop series, of which this Journal of Biomedical Semantics special issue presents selected papers from the 2009 edition, held in Amsterdam on November 20th.

  8. Proceedings of the thirty third annual conference of Indian Association of Biomedical Scientists and international symposium

    International Nuclear Information System (INIS)

    2012-01-01

    This symposium was an important forum for scientists, research scholars and business leaders to gather and exchange ideas about most dynamic scientific developments in the area of health care. Biomedical research has a major impact on the society and its well-being. It is an exciting as well as challenging field because there is scope of doing clinical research and translational research. Because of its nature and scope, biomedical research can answer medical questions leading to the discovery of diagnosis, treatment, and prevention of diseases that cause illness and health. Current trends in the area of biomedical science are discussed in the conference. Papers relevant to INIS are indexed separately

  9. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  10. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  11. Open access publishing in the biomedical sciences: could funding agencies accelerate the inevitable changes?

    Science.gov (United States)

    Glover, Steven William; Webb, Anne; Gleghorn, Colette

    2006-09-01

    Open access is making a noticeable impact on access to information. In 2005, many major research funders, including the Wellcome Trust, National Institutes for Health (NIH), and the Research Councils UK (RCUK), set out their position in a number of statements. Of particular note was the stipulation that authors receiving grants must deposit their final manuscript in an open access forum within 6-12 months of publication. The paper will look at the open access position statements issued by some of the major funding bodies in the biomedical sciences. The paper will also look at the models used by publishers to provide open or delayed access, such as Oxford Open from Oxford University Press, HighWire Press' delayed access policy, BioMed Central, and Public Library of Science (PLoS). There are now over 1.2 million articles in PubMed that are freely accessible via publishers' websites.(1) Could funding agencies accelerate the move to open access? The list of funding agencies supporting open access is growing. The National Institutes for Health and the Wellcome Trust have been joined by many of the world's major funders in biomedical research whose goal it is to make their research findings available with no barriers.

  12. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Multimedia

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  13. Space life and biomedical sciences in support of the global exploration roadmap and societal development

    Science.gov (United States)

    Evetts, S. N.

    2014-08-01

    The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.

  14. Biomedical engineering and society: policy and ethics.

    Science.gov (United States)

    Flexman, J A; Lazareck, L

    2007-01-01

    Biomedical engineering impacts health care and contributes to fundamental knowledge in medicine and biology. Policy, such as through regulation and research funding, has the potential to dramatically affect biomedical engineering research and commercialization. New developments, in turn, may affect society in new ways. The intersection of biomedical engineering and society and related policy issues must be discussed between scientists and engineers, policy-makers and the public. As a student, there are many ways to become engaged in the issues surrounding science and technology policy. At the University of Washington in Seattle, the Forum on Science Ethics and Policy (FOSEP, www.fosep.org) was started by graduate students and post-doctoral fellows interested in improving the dialogue between scientists, policymakers and the public and has received support from upper-level administration. This is just one example of how students can start thinking about science policy and ethics early in their careers.

  15. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  16. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  17. Cloud computing applications for biomedical science: A perspective.

    Science.gov (United States)

    Navale, Vivek; Bourne, Philip E

    2018-06-01

    Biomedical research has become a digital data-intensive endeavor, relying on secure and scalable computing, storage, and network infrastructure, which has traditionally been purchased, supported, and maintained locally. For certain types of biomedical applications, cloud computing has emerged as an alternative to locally maintained traditional computing approaches. Cloud computing offers users pay-as-you-go access to services such as hardware infrastructure, platforms, and software for solving common biomedical computational problems. Cloud computing services offer secure on-demand storage and analysis and are differentiated from traditional high-performance computing by their rapid availability and scalability of services. As such, cloud services are engineered to address big data problems and enhance the likelihood of data and analytics sharing, reproducibility, and reuse. Here, we provide an introductory perspective on cloud computing to help the reader determine its value to their own research.

  18. Biomedical Science Ph.D. Career Interest Patterns by Race/Ethnicity and Gender.

    Directory of Open Access Journals (Sweden)

    Kenneth D Gibbs

    Full Text Available Increasing biomedical workforce diversity remains a persistent challenge. Recent reports have shown that biomedical sciences (BMS graduate students become less interested in faculty careers as training progresses; however, it is unclear whether or how the career preferences of women and underrepresented minority (URM scientists change in manners distinct from their better-represented peers. We report results from a survey of 1500 recent American BMS Ph.D. graduates (including 276 URMs that examined career preferences over the course of their graduate training experiences. On average, scientists from all social backgrounds showed significantly decreased interest in faculty careers at research universities, and significantly increased interest in non-research careers at Ph.D. completion relative to entry. However, group differences emerged in overall levels of interest (at Ph.D. entry and completion, and the magnitude of change in interest in these careers. Multiple logistic regression showed that when controlling for career pathway interest at Ph.D. entry, first-author publication rate, faculty support, research self-efficacy, and graduate training experiences, differences in career pathway interest between social identity groups persisted. All groups were less likely than men from well-represented (WR racial/ethnic backgrounds to report high interest in faculty careers at research-intensive universities (URM men: OR 0.60, 95% CI: 0.36-0.98, p = 0.04; WR women: OR: 0.64, 95% CI: 0.47-0.89, p = 0.008; URM women: OR: 0.46, 95% CI: 0.30-0.71, p<0.001, and URM women were more likely than all other groups to report high interest in non-research careers (OR: 1.93, 95% CI: 1.28-2.90, p = 0.002. The persistence of disparities in the career interests of Ph.D. recipients suggests that a supply-side (or "pipeline" framing of biomedical workforce diversity challenges may limit the effectiveness of efforts to attract and retain the best and most

  19. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  20. Navigating the Path to a Biomedical Science Career

    Science.gov (United States)

    Zimmerman, Andrea McNeely

    The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career path navigation. Therefore, the purpose of this study was to understand the process through which biomedical PhD scientists are trained and supported for navigating future career paths. In addition, the study sought to determine whether career development support efforts and opportunities should be redesigned to account for the proportion of PhD scientists following non-academic career pathways. Guided by the social cognitive career theory (SCCT) framework this study sought to answer the following central research question: How does a southeastern tier 1 research university train and support its biomedical PhD scientists for navigating their career paths? Key findings are: Many factors influence PhD scientists' career sector preference and job search process, but the most influential were relationships with faculty, particularly the mentor advisor; Planned activities are a significant aspect of the training process and provide skills for career success; and Planned activities provided skills necessary for a career, but influential factors directed the career path navigated. Implications for practice and future research are discussed.

  1. International Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The International Journal of Medicine and Biomedical Research (IJMBR) is a peer-reviewed ... useful to researchers in all aspects of Clinical and Basic Medical Sciences including Anatomical Sciences, Biochemistry, Dentistry, Genetics, ...

  2. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  3. Are Graduate Students Rational? Evidence from the Market for Biomedical Scientists

    Science.gov (United States)

    Blume-Kohout, Margaret E.; Clack, John W.

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that “cobweb” expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships. PMID:24376573

  4. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  6. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Brand, T.L. van den; Hopman, M.T.E.

    2013-01-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade <6), moderate (grade 6-8) and excellent

  7. Malaysian Journal of Medical Sciences Striving towards Visibility

    Science.gov (United States)

    GHAZLI, Nur Farahin; ABDULLAH, Jafri Malin

    2013-01-01

    The Malaysian Journal of Medical Sciences has in its 25 years “Silver Jubilee” achieved another milestone of being visible to the biomedical community when it was accepted in PubMed. The journal aim to increase its readership so as to increase impact in the biomedical field amongst its Asian readers despite having a high rejection rate. This was done to maintain quality of the manuscripts published over the years. PubMed listing should enable more manuscripts to be cited as its the leading biomedical journal for the Asian community. PMID:24043990

  8. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  9. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1997-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  10. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  11. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  12. NDE in biomedical engineering

    International Nuclear Information System (INIS)

    Bhagwat, Aditya; Kumar, Pradeep

    2015-01-01

    Biomedical Engineering (BME) is an interdisciplinary field, marking the conjunction of Medical and Engineering disciplines. It combines the design and problem solving skills of engineering with medical and biological sciences to advance health care treatment, including diagnosis, monitoring, and therapy

  13. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  14. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study.

    Science.gov (United States)

    Williams, Simon N; Thakore, Bhoomi K; McGee, Richard

    2016-01-01

    Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career "coaching" intervention for PhD students in the biomedical sciences. To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students' goal of being future biomedical science faculty. Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students' research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Coaching can be an important way to address the lack of structured career development that students receive in their home training

  15. Mentoring Interventions for Underrepresented Scholars in Biomedical and Behavioral Sciences: Effects on Quality of Mentoring Interactions and Discussions

    Science.gov (United States)

    Lewis, Vivian; Martina, Camille A.; McDermott, Michael P.; Chaudron, Linda; Trief, Paula M.; LaGuardia, Jennifer G.; Sharp, Daryl; Goodman, Steven R.; Morse, Gene D.; Ryan, Richard M.

    2017-01-01

    Mentors rarely receive education about the unique needs of underrepresented scholars in the biomedical and behavioral sciences. We hypothesized that mentor-training and peer-mentoring interventions for these scholars would enrich the perceived quality and breadth of discussions between mentor-protégé dyads (i.e., mentor-protégé pairs). Our…

  16. Big Biomedical data as the key resource for discovery science

    Energy Technology Data Exchange (ETDEWEB)

    Toga, Arthur W.; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W.; Price, Nathan D.; Glusman, Gustavo; Heavner, Benjamin D.; Dinov, Ivo D.; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-07-21

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an “-ome to home” approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center’s computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson’s and Alzheimer’s.

  17. Biomedical neutron research at the Californium User Facility for Neutron Science

    International Nuclear Information System (INIS)

    Martin, R.C.; Byrne, T.E.; Miller, L.F.

    1998-01-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252 Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252 Cf sources. Three projects at the CUF that demonstrate the versatility of 252 Cf for biological and biomedical neutron-based research are described: future establishment of a 252 Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252 Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy. (author)

  18. VII Latin American Congress on Biomedical Engineering

    CERN Document Server

    Bustamante, John; Sierra, Daniel

    2017-01-01

    This volume presents the proceedings of the CLAIB 2016, held in Bucaramanga, Santander, Colombia, 26, 27 & 28 October 2016. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL), offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies to bring together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth.

  19. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-06-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs. Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA. Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself. Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes. Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  20. Leading Change in the Primary Science Curriculum

    Science.gov (United States)

    Waller, Nicky; Baker, Chris

    2014-01-01

    Nicky Waller and Chris Baker believe that change can be a good thing and explain how their training has helped others to adjust to the new science curriculum. In September 2013, teachers across England received the definitive version of the new primary curriculum "Leading Change in the Primary Science Curriculum." This course aimed to…

  1. Biomedical ontologies: toward scientific debate.

    Science.gov (United States)

    Maojo, V; Crespo, J; García-Remesal, M; de la Iglesia, D; Perez-Rey, D; Kulikowski, C

    2011-01-01

    Biomedical ontologies have been very successful in structuring knowledge for many different applications, receiving widespread praise for their utility and potential. Yet, the role of computational ontologies in scientific research, as opposed to knowledge management applications, has not been extensively discussed. We aim to stimulate further discussion on the advantages and challenges presented by biomedical ontologies from a scientific perspective. We review various aspects of biomedical ontologies going beyond their practical successes, and focus on some key scientific questions in two ways. First, we analyze and discuss current approaches to improve biomedical ontologies that are based largely on classical, Aristotelian ontological models of reality. Second, we raise various open questions about biomedical ontologies that require further research, analyzing in more detail those related to visual reasoning and spatial ontologies. We outline significant scientific issues that biomedical ontologies should consider, beyond current efforts of building practical consensus between them. For spatial ontologies, we suggest an approach for building "morphospatial" taxonomies, as an example that could stimulate research on fundamental open issues for biomedical ontologies. Analysis of a large number of problems with biomedical ontologies suggests that the field is very much open to alternative interpretations of current work, and in need of scientific debate and discussion that can lead to new ideas and research directions.

  2. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  3. Practical radiation shielding for biomedical research

    International Nuclear Information System (INIS)

    Klein, R.C.; Reginatto, M.; Party, E.; Gershey, E.L.

    1990-01-01

    This paper reports on calculations which exist for estimating shielding required for radioactivity; however, they are often not applicable for the radionuclides and activities common in biomedical research. A variety of commercially available Lucite shields are being marketed to the biomedical community. Their advertisements may lead laboratory workers to expect better radiation protection than these shields can provide or to assume erroneously that very weak beta emitters require extensive shielding. The authors have conducted a series of shielding experiments designed to simulate exposures from the amounts of 32 P, 51 Cr and 125 I typically used in biomedical laboratories. For most routine work, ≥0.64 cm of Lucite covered with various thicknesses of lead will reduce whole-body occupational exposure rates of < 1mR/hr at the point of contact

  4. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  5. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  6. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  7. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  8. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  9. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2016-06-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules . Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist . Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes , are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: ( i ) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and ( ii ) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is

  10. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  11. KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences.

    Science.gov (United States)

    Ernst, Patrick; Siu, Amy; Weikum, Gerhard

    2015-05-14

    Biomedical knowledge bases (KB's) have become important assets in life sciences. Prior work on KB construction has three major limitations. First, most biomedical KBs are manually built and curated, and cannot keep up with the rate at which new findings are published. Second, for automatic information extraction (IE), the text genre of choice has been scientific publications, neglecting sources like health portals and online communities. Third, most prior work on IE has focused on the molecular level or chemogenomics only, like protein-protein interactions or gene-drug relationships, or solely address highly specific topics such as drug effects. We address these three limitations by a versatile and scalable approach to automatic KB construction. Using a small number of seed facts for distant supervision of pattern-based extraction, we harvest a huge number of facts in an automated manner without requiring any explicit training. We extend previous techniques for pattern-based IE with confidence statistics, and we combine this recall-oriented stage with logical reasoning for consistency constraint checking to achieve high precision. To our knowledge, this is the first method that uses consistency checking for biomedical relations. Our approach can be easily extended to incorporate additional relations and constraints. We ran extensive experiments not only for scientific publications, but also for encyclopedic health portals and online communities, creating different KB's based on different configurations. We assess the size and quality of each KB, in terms of number of facts and precision. The best configured KB, KnowLife, contains more than 500,000 facts at a precision of 93% for 13 relations covering genes, organs, diseases, symptoms, treatments, as well as environmental and lifestyle risk factors. KnowLife is a large knowledge base for health and life sciences, automatically constructed from different Web sources. As a unique feature, KnowLife is harvested from

  12. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  13. Biomedical research applications

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    The biomedical research Panel believes that the Calutron facility at Oak Ridge is a national and international resource of immense scientific value and of fundamental importance to continued biomedical research. This resource is essential to the development of new isotope uses in biology and medicine. It should therefore be nurtured by adequate support and operated in a way that optimizes its services to the scientific and technological community. The Panel sees a continuing need for a reliable supply of a wide variety of enriched stable isotopes. The past and present utilization of stable isotopes in biomedical research is documented in Appendix 7. Future requirements for stable isotopes are impossible to document, however, because of the unpredictability of research itself. Nonetheless we expect the demand for isotopes to increase in parallel with the continuing expansion of biomedical research as a whole. There are a number of promising research projects at the present time, and these are expected to lead to an increase in production requirements. The Panel also believes that a high degree of priority should be given to replacing the supplies of the 65 isotopes (out of the 224 previously available enriched isotopes) no longer available from ORNL

  14. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  15. Bridging the social and the biomedical: engaging the social and political sciences in HIV research.

    Science.gov (United States)

    Kippax, Susan C; Holt, Martin; Friedman, Samuel R

    2011-09-27

    This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologies (such as HIV treatments, HIV testing, viral load testing, male circumcision, microbicides, and pre-and post-exposure prophylaxis) on sexual cultures, drug practices, relationships and social networks in different cultural, economic and political contexts. The supplement is also concerned with how we might examine the relationship between HIV prevention and treatment, understand the social and political mobilization required to tackle HIV, and sustain the range of disciplinary approaches needed to inform and guide responses to the global pandemic. The six articles included in the supplement demonstrate the value of fostering high quality social and political research to inform, guide and challenge our collaborative responses to HIV/AIDS.

  16. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  17. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  18. Biomedical journals in Republic of Macedonia: the current state.

    Science.gov (United States)

    Polenakovic, Momir; Danevska, Lenche

    2014-01-01

    Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.

  19. Innovations in Biomedical Engineering 2016

    CERN Document Server

    Tkacz, Ewaryst; Paszenda, Zbigniew; Piętka, Ewa

    2017-01-01

    This book presents the proceedings of the “Innovations in Biomedical Engineering IBE’2016” Conference held on October 16–18, 2016 in Poland, discussing recent research on innovations in biomedical engineering. The past decade has seen the dynamic development of more and more sophisticated technologies, including biotechnologies, and more general technologies applied in the area of life sciences. As such the book covers the broadest possible spectrum of subjects related to biomedical engineering innovations. Divided into four parts, it presents state-of-the-art achievements in: • engineering of biomaterials, • modelling and simulations in biomechanics, • informatics in medicine • signal analysis The book helps bridge the gap between technological and methodological engineering achievements on the one hand and clinical requirements in the three major areas diagnosis, therapy and rehabilitation on the other.

  20. Determination of death: Metaphysical and biomedical discourse.

    Science.gov (United States)

    Jakušovaitė, Irayda; Luneckaitė, Žydrunė; Peičius, Eimantas; Bagdonaitė, Živilė; Riklikienė, Olga; Stankevičius, Edgaras

    2016-01-01

    The prominence of biomedical criteria relying on brain death reduces the impact of metaphysical, anthropological, psychosocial, cultural, religious, and legal aspects disclosing the real value and essence of human life. The aim of this literature review is to discuss metaphysical and biomedical approaches toward death and their complimentary relationship in the determination of death. A critical appraisal of theoretical and scientific evidence and legal documents supported analytical discourse. In the metaphysical discourse of death, two main questions about what human death is and how to determine the fact of death clearly separate the ontological and epistemological aspects of death. During the 20th century, various understandings of human death distinguished two different approaches toward the human: the human is a subject of activities or a subject of the human being. Extinction of the difference between the entities and the being, emphasized as rational-logical instrumentation, is not sufficient to understand death thoroughly. Biological criteria of death are associated with biological features and irreversible loss of certain cognitive capabilities. Debating on the question "Does a brain death mean death of a human being?" two approaches are considering: the body-centrist and the mind-centrist. By bridging those two alternatives human death appears not only as biomedical, but also as metaphysical phenomenon. It was summarized that a predominance of clinical criteria for determination of death in practice leads to medicalization of death and limits the holistic perspective toward individual's death. Therefore, the balance of metaphysical and biomedical approaches toward death and its determination would decrease the medicalization of the concept of death. Copyright © 2016 The Lithuanian University of Health Sciences. Production and hosting by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  2. 76 FR 38650 - Draft Integrated Science Assessment for Lead

    Science.gov (United States)

    2011-07-01

    ... Science Assessment for Lead AGENCY: Environmental Protection Agency. ACTION: Notice of extension of public... Lead'' (EPA/600/R-10/075A). The original Federal Register notice announcing the public comment period... review of the National Ambient Air Quality Standards (NAAQS) for Lead. DATES: The public comment period...

  3. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  4. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  5. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  6. Radiosynthesis and in vitro evaluation of the polystyrene particles as a promising probe in biomedical sciences

    International Nuclear Information System (INIS)

    Chen Jianmin; Tan Mingguang; Wu Yuanfang; Zhang Guilin; Li Yan

    2005-01-01

    Polystyrene particles with precise monodisperse particle size distributions ranging from 20nm to 90μm is now commercially available and it has very useful and versatile applications in many life sciences research fields. A simple direct labeling method was used to synthesis the iodinated ultrafine polystyrene particles. The assay of X-ray photoelectron spectroscopy(XPS) as well as Fourier Transform Infrared Spectroscopy (FTIR) indicated the formation of stable covalent bond to aryl group of the polymer particles. The purified radiosynthesis product was incubated with serum of rat, and then evaluated by in vitro stability test. The result showed that radioiodinated ultrafine polystyrene particles were largely unmetablized at 2 hours post-exposure, indicating the potential useful application of this widely used polymer particles as a promising probe in biomedical and pharmaceutical sciences.

  7. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Exploring the consequences of combining medical students with and without a background in biomedical sciences.

    Science.gov (United States)

    Ellaway, Rachel H; Bates, Amanda; Girard, Suzanne; Buitenhuis, Deanna; Lee, Kyle; Warton, Aidan; Russell, Steve; Caines, Jill; Traficante, Eric; Graves, Lisa

    2014-07-01

    Medical schools have tended to admit students with strong backgrounds in the biomedical sciences. Previous studies have shown that those with backgrounds in the social sciences can be as successful in medical school as those with science backgrounds. However, the experience of being a 'non-science' student over time has not been well described. A mixed-methods study was developed and run with the aim of elucidating the personal experiences of science and non-science students at our institution. Data were generated from a student survey that focused on participants' self-identification as science or non-science students, and on their sense of preparedness and stress, and from a series of student focus groups exploring participants' experiences of science and non-science issues in all aspects of their training. Descriptive statistics were generated for structured survey data. Focus group data and unstructured survey data were analysed to identify common themes. End-of-module and end-of-year examination data for the four class cohorts in the programme were also analysed to compare science and non-science student performance over time. There were clear differences between the experiences and performance of science and non-science students. We found dichotomies in students' self-reported sense of preparedness and stress levels, and marked differences in their examination performance, which diminished over time to converge around the third year of their studies. Combining science and non-science students in the same class affected the students to different extents and in different ways. The potential disruption of mixing science and non-science students diminished as their levels of performance converged. The psychosocial stress experienced by non-science students and the challenges it posed, in both their academic and their personal lives, have implications for how such students should be supported, and how curricula can be configured to afford quality learning for all

  9. An entrepreneurial training model to enhance undergraduate training in biomedical research.

    Science.gov (United States)

    Kamangar, Farin; Silver, Gillian; Hohmann, Christine; Hughes-Darden, Cleo; Turner-Musa, Jocelyn; Haines, Robert Trent; Jackson, Avis; Aguila, Nelson; Sheikhattari, Payam

    2017-01-01

    Undergraduate students who are interested in biomedical research typically work on a faculty member's research project, conduct one distinct task (e.g., running gels), and, step by step, enhance their skills. This "apprenticeship" model has been helpful in training many distinguished scientists over the years, but it has several potential drawbacks. For example, the students have limited autonomy, and may not understand the big picture, which may result in students giving up on their goals for a research career. Also, the model is costly and may greatly depend on a single mentor. The NIH Building Infrastructure Leading to Diversity (BUILD) Initiative has been established to fund innovative undergraduate research training programs and support institutional and faculty development of the recipient university. The training model at Morgan State University (MSU), namely " A S tudent- C entered En trepreneurship D evelopment training model" (ASCEND), is one of the 10 NIH BUILD-funded programs, and offers a novel, experimental "entrepreneurial" training approach. In the ASCEND training model, the students take the lead. They own the research, understand the big picture, and experience the entire scope of the research process, which we hypothesize will lead to a greater sense of self-efficacy and research competency, as well as an enhanced sense of science identity. They are also immersed in environments with substantial peer support, where they can exchange research ideas and share experiences. This is important for underrepresented minority students who might have fewer role models and less peer support in conducting research. In this article, we describe the MSU ASCEND entrepreneurial training model's components, rationale, and history, and how it may enhance undergraduate training in biomedical research that may be of benefit to other institutions. We also discuss evaluation methods, possible sustainability solutions, and programmatic challenges that can affect all

  10. Sierra Leone Journal of Biomedical Research

    African Journals Online (AJOL)

    MHRL

    Sierra Leone Journal of Biomedical Research. (A publication of the College of Medicine and Allied Health Sciences, University of Sierra Leone). ©Sierra Leone Journal .... was used to. She seemed to have had a change of mind after ingesting.

  11. Biomedical Science Undergraduate Major: A New Pathway to Advance Research and the Health Professions.

    Science.gov (United States)

    Gunn, John S; Ledford, Cynthia H; Mousetes, Steven J; Grever, Michael R

    2018-01-01

    Many students entering professional degree programs, particularly M.D., Ph.D., and M.D./Ph.D., are not well prepared regarding the breadth of scientific knowledge required, communication skills, research experience, reading and understanding the scientific literature, and significant shadowing (for M.D.-related professions). In addition, physician scientists are a needed and necessary part of the academic research environment but are dwindling in numbers. In response to predictions of critical shortages of clinician investigators and the lack of proper preparation as undergraduates for these professions, the Biomedical Science (BMS) undergraduate major was created at The Ohio State University to attract incoming college freshmen with interests in scientific research and the healthcare professions. The intent of this major was to graduate an elite cohort of highly talented individuals who would pursue careers in the healthcare professions, biomedical research, or both. Students were admitted to the BMS major through an application and interview process. Admitted cohorts were small, comprising 22 to 26 students, and received a high degree of individualized professional academic advising and mentoring. The curriculum included a minimum of 4 semesters (or 2 years) of supervised research experience designed to enable students to gain skills in clinical and basic science investigation. In addition to covering the prerequisites for medicine and advanced degrees in health professions, the integrated BMS coursework emphasized research literacy as well as skills related to work as a healthcare professional, with additional emphasis on independent learning, teamwork to solve complex problems, and both oral and written communication skills. Supported by Ohio State's Department of Internal Medicine, a unique clinical internship provided selected students with insights into potential careers as physician scientists. In this educational case report, we describe the BMS

  12. Harnessing supramolecular peptide nanotechnology in biomedical applications

    OpenAIRE

    Chan, Kiat Hwa; Lee, Wei Hao; Zhuo, Shuangmu; Ni, Ming

    2017-01-01

    Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedic...

  13. Education and research in biomedical engineering of the Budapest University of Technology and Economics.

    Science.gov (United States)

    Benyó, Z

    2006-03-01

    Biomedical Engineering is a relatively new interdisciplinary science. This review paper presents the biomedical engineering activity, which is carried out at the Budapest University of Technology and Economics (BUTE) and its partner institutions. In the first parts the main goals and the curriculum of the Biomedical Engineering Education Program is presented. The second part of the paper summarizes the most important biomedical engineering researches most of them carried out in the Biomedical Engineering Laboratory of BUTE.

  14. Repeat: a framework to assess empirical reproducibility in biomedical research

    Directory of Open Access Journals (Sweden)

    Leslie D. McIntosh

    2017-09-01

    Full Text Available Abstract Background The reproducibility of research is essential to rigorous science, yet significant concerns of the reliability and verifiability of biomedical research have been recently highlighted. Ongoing efforts across several domains of science and policy are working to clarify the fundamental characteristics of reproducibility and to enhance the transparency and accessibility of research. Methods The aim of the proceeding work is to develop an assessment tool operationalizing key concepts of research transparency in the biomedical domain, specifically for secondary biomedical data research using electronic health record data. The tool (RepeAT was developed through a multi-phase process that involved coding and extracting recommendations and practices for improving reproducibility from publications and reports across the biomedical and statistical sciences, field testing the instrument, and refining variables. Results RepeAT includes 119 unique variables grouped into five categories (research design and aim, database and data collection methods, data mining and data cleaning, data analysis, data sharing and documentation. Preliminary results in manually processing 40 scientific manuscripts indicate components of the proposed framework with strong inter-rater reliability, as well as directions for further research and refinement of RepeAT. Conclusions The use of RepeAT may allow the biomedical community to have a better understanding of the current practices of research transparency and accessibility among principal investigators. Common adoption of RepeAT may improve reporting of research practices and the availability of research outputs. Additionally, use of RepeAT will facilitate comparisons of research transparency and accessibility across domains and institutions.

  15. Functional supramolecular polymers for biomedical applications.

    Science.gov (United States)

    Dong, Ruijiao; Zhou, Yongfeng; Huang, Xiaohua; Zhu, Xinyuan; Lu, Yunfeng; Shen, Jian

    2015-01-21

    As a novel class of dynamic and non-covalent polymers, supramolecular polymers not only display specific structural and physicochemical properties, but also have the ability to undergo reversible changes of structure, shape, and function in response to diverse external stimuli, making them promising candidates for widespread applications ranging from academic research to industrial fields. By an elegant combination of dynamic/reversible structures with exceptional functions, functional supramolecular polymers are attracting increasing attention in various fields. In particular, functional supramolecular polymers offer several unique advantages, including inherent degradable polymer backbones, smart responsiveness to various biological stimuli, and the ease for the incorporation of multiple biofunctionalities (e.g., targeting and bioactivity), thereby showing great potential for a wide range of applications in the biomedical field. In this Review, the trends and representative achievements in the design and synthesis of supramolecular polymers with specific functions are summarized, as well as their wide-ranging biomedical applications such as drug delivery, gene transfection, protein delivery, bio-imaging and diagnosis, tissue engineering, and biomimetic chemistry. These achievements further inspire persistent efforts in an emerging interdisciplin-ary research area of supramolecular chemistry, polymer science, material science, biomedical engineering, and nanotechnology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress.

    Science.gov (United States)

    Platt, Matthew B; Platt, Manu O

    2013-11-27

    From the travel ban on people living with HIV (PLHIV) to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981-2010). We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Breakthroughs in biomedical science did associate with the number and types of HIV/AIDS bills introduced

  17. The art and science of selecting graduate students in the biomedical sciences: Performance in doctoral study of the foundational sciences.

    Science.gov (United States)

    Park, Hee-Young; Berkowitz, Oren; Symes, Karen; Dasgupta, Shoumita

    2018-01-01

    The goal of this study was to investigate associations between admissions criteria and performance in Ph.D. programs at Boston University School of Medicine. The initial phase of this project examined student performance in the classroom component of a newly established curriculum named "Foundations in Biomedical Sciences (FiBS)". Quantitative measures including undergraduate grade point average (GPA), graduate record examination (GRE; a standardized, computer-based test) scores for the verbal (assessment of test takers' ability to analyze, evaluate, and synthesize information and concepts provided in writing) and quantitative (assessment of test takers' problem-solving ability) components of the examination, previous research experience, and competitiveness of previous research institution were used in the study. These criteria were compared with competencies in the program defined as students who pass the curriculum as well as students categorized as High Performers. These data indicated that there is a significant positive correlation between FiBS performance and undergraduate GPA, GRE scores, and competitiveness of undergraduate institution. No significant correlations were found between FiBS performance and research background. By taking a data-driven approach to examine admissions and performance, we hope to refine our admissions criteria to facilitate an unbiased approach to recruitment of students in the life sciences and to share our strategy to support similar goals at other institutions.

  18. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program

  19. Building integrated pathways to independence for diverse biomedical researchers: Project Pathways, the BUILD program at Xavier University of Louisiana.

    Science.gov (United States)

    Foroozesh, Maryam; Giguette, Marguerite; Morgan, Kathleen; Johanson, Kelly; D'Amour, Gene; Coston, Tiera; Wilkins-Green, Clair

    2017-01-01

    Xavier University of Louisiana is a historically Black and Catholic university that is nationally recognized for its science, technology, engineering and mathematics (STEM) curricula. Approximately 73% of Xavier's students are African American, and about 77% major in the biomedical sciences. Xavier is a national leader in the number of STEM majors who go on to receive M.D. degrees and Ph.D. degrees in science and engineering. Despite Xavier's advances in this area, African Americans still earn about 7.5% of the Bachelor's degrees, less than 8% of the Master's degrees, and less than 5% of the doctoral degrees conferred in STEM disciplines in the United States. Additionally, although many well-prepared, highly-motivated students are attracted by Xavier's reputation in the sciences, many of these students, though bright and capable, come from underperforming public school systems and receive substandard preparation in STEM disciplines. The purpose of this article is to describe how Xavier works to overcome unequal education backgrounds and socioeconomic challenges to develop student talent through expanding biomedical training opportunities and build on an established reputation in science education. The National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS)-funded BUILD (Building Infrastructure Leading to Diversity) Program at Xavier University of Louisiana, Project Pathways , is a highly-innovative program designed to broaden the career interests of students early on, and to engage them in activities that entice them to continue their education towards biomedical research careers. Project strategies involve a transformation of Xavier's academic and non-academic programs through the redesign, supplementation and integration of academic advising, tutoring, career services, personal counseling, undergraduate research training, faculty research mentoring, and development of new biomedical and research skills courses. The Program also

  20. A study to assess the knowledge and practice on bio-medical waste ...

    African Journals Online (AJOL)

    Background: The proper handling and disposal of bio-medical waste is very imperative. Unfortunately, laxity and lack of adequate knowledge and practice on bio-medical waste disposal leads to staid health and environment apprehension. Aim: To assess the knowledge and practice on bio-medical waste management ...

  1. Citation Analysis for Biomedical and Health Sciences Journals Published in Korea.

    Science.gov (United States)

    Oh, Juyeon; Chang, Hyejung; Kim, Jung A; Choi, Mona; Park, Ziyoung; Cho, Yoonhee; Lee, Eun-Gyu

    2017-07-01

    A citation analysis of biomedical and health sciences journals was conducted based on their enlistment in journal databases to identify the factors contributing to the citation metrics. Among the 1,219 academic journals managed by the National Center for Medical Information and Knowledge at the Korea Centers for Disease Control and Prevention, 556 journals were included for analysis as of July 2016. The characteristics of the journals include history years, publication media, language, open-access policy as well as the status enlisted in international and domestic databases, such as Science Citation Index (SCI), Scopus, Medline, PubMed Central, Embase, and Korea Citation Index (KCI). Six bibliometric measures were collected from SCI, Scopus, and KCI as of 2015, the most recent disclosure year. Analyses of group differences and influential factors were conducted using t -tests, Mann-Whitney tests, and multiple regression. Journal characteristics, such as history years, publication media, and open-access policy, were not significant factors influencing global or domestical citation of the journals. However, global citations were higher for SCI and Medline enlisted journals than for their counterparts. Among KCI journals, the KCI impact factors of journals published in English only were lower. Efforts by journals to be enlisted in international databases, especially in SCI and Medline, are critical to enhance their global circulation. However, articles published in English only hinder the use of domestic researchers. Different strategies are required for enhancing international and domestic readerships.

  2. Promising iron oxide-based magnetic nanoparticles in biomedical engineering.

    Science.gov (United States)

    Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Vo, Toi Van; Lee, Beom-Jin

    2012-12-01

    For the past few decades biomedical engineering has imprinted its significant impact on the map of science through its wide applications on many other fields. An important example obviously proving this fact is the versatile application of magnetic nanoparticles in theranostics. Due to preferable properties such as biocompatibility, non-toxicity compared to other metal derivations, iron oxide-based magnetic nanoparticles was chosen to be addressed in this review. Aim of this review is to give the readers a whole working window of these magnetic nanoparticles in the current context of science. Thus, preparation of magnetic iron oxide nanoparticles with the so-far techniques, methods of characterizing the nanoparticles as well as their most recent biomedical applications will be stated.

  3. The potential improvement of team-working skills in Biomedical and Natural Science students using a problem-based learning approach

    Directory of Open Access Journals (Sweden)

    Forough L. Nowrouzian

    2013-08-01

    Full Text Available Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled. This development requires that students gain experience of team-work before they start their professional career. Students working in teams this may increase productivity, confidence, innovative capacity and improvement of interpersonal skills. Problem-based learning (PBL is an instructional approach focusing on real analytical problems as a means of training an analytical scientist. PBL may have a positive impact on team-work skills that are important for undergraduates and postgraduates to enable effective collaborative work. This survey of the current literature explores the development of the team-work skills in Biomedical Science students using PBL.

  4. Democratizing data science through data science training.

    Science.gov (United States)

    Van Horn, John Darrell; Fierro, Lily; Kamdar, Jeana; Gordon, Jonathan; Stewart, Crystal; Bhattrai, Avnish; Abe, Sumiko; Lei, Xiaoxiao; O'Driscoll, Caroline; Sinha, Aakanchha; Jain, Priyambada; Burns, Gully; Lerman, Kristina; Ambite, José Luis

    2018-01-01

    The biomedical sciences have experienced an explosion of data which promises to overwhelm many current practitioners. Without easy access to data science training resources, biomedical researchers may find themselves unable to wrangle their own datasets. In 2014, to address the challenges posed such a data onslaught, the National Institutes of Health (NIH) launched the Big Data to Knowledge (BD2K) initiative. To this end, the BD2K Training Coordinating Center (TCC; bigdatau.org) was funded to facilitate both in-person and online learning, and open up the concepts of data science to the widest possible audience. Here, we describe the activities of the BD2K TCC and its focus on the construction of the Educational Resource Discovery Index (ERuDIte), which identifies, collects, describes, and organizes online data science materials from BD2K awardees, open online courses, and videos from scientific lectures and tutorials. ERuDIte now indexes over 9,500 resources. Given the richness of online training materials and the constant evolution of biomedical data science, computational methods applying information retrieval, natural language processing, and machine learning techniques are required - in effect, using data science to inform training in data science. In so doing, the TCC seeks to democratize novel insights and discoveries brought forth via large-scale data science training.

  5. Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    The Journal of Medicine and Biomedical Research is published by the College of Medical Sciences, University of Benin to encourage research into primary health care. The journal will publish original research articles, reviews, editorials, commentaries, case reports and letters to the editor. Articles are welcome in all ...

  6. Superhydrophobic Materials for Biomedical Applications

    Science.gov (United States)

    Colson, Yolonda L.; Grinstaff, Mark W.

    2016-01-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air state at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors’ future perspectives on the utility of superhydrophobic surfaces for biomedical applications. PMID:27449946

  7. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research.

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E; Altintas, Ilkay

    2017-05-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC is an e-learning platform that empowers the biomedical community to develop, launch and share open training materials. It deploys hands-on software training toolboxes through virtualization technologies such as Amazon EC2 and Virtualbox. The BBDTC facilitates migration of courses across other course management platforms. The framework encourages knowledge sharing and content personalization through the playlist functionality that enables unique learning experiences and accelerates information dissemination to a wider community.

  8. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences.

    Science.gov (United States)

    Gazley, J Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E; Keller, Jill; Campbell, Patricia B; McGee, Richard

    2014-10-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical sciences. For our analysis, we developed and used a theoretical framework which integrates concepts from identity-in-practice literature with Bourdieu's formulation of cultural capital and also examined the impact of racial, ethnic, and gender identities on education and career trajectories. Five patterns of identity work for expected engagement with PREP grew out of our analysis: Credential Seekers, PI Aspirants, Path Builders, Discipline Changers, and Interest Testers. These patterns illuminate differences in perceptions of doing, being , and becoming within science; external and internal foci of identity work; and expectations for institutional and embodied cultural capital. Our findings show that preparing for graduate education is more complex than acquiring a set of credentials as it is infused with identity work which facilitates readiness beyond preparation . This deeper understanding of individual agency and perceptions allows us to shift the focus away from a deficit model where institutions and programs attempt to "fix" students, and to offer implications for programs designed to support college graduates aspiring to become scientists.

  9. Leveraging the national cyberinfrastructure for biomedical research.

    Science.gov (United States)

    LeDuc, Richard; Vaughn, Matthew; Fonner, John M; Sullivan, Michael; Williams, James G; Blood, Philip D; Taylor, James; Barnett, William

    2014-01-01

    In the USA, the national cyberinfrastructure refers to a system of research supercomputer and other IT facilities and the high speed networks that connect them. These resources have been heavily leveraged by scientists in disciplines such as high energy physics, astronomy, and climatology, but until recently they have been little used by biomedical researchers. We suggest that many of the 'Big Data' challenges facing the medical informatics community can be efficiently handled using national-scale cyberinfrastructure. Resources such as the Extreme Science and Discovery Environment, the Open Science Grid, and Internet2 provide economical and proven infrastructures for Big Data challenges, but these resources can be difficult to approach. Specialized web portals, support centers, and virtual organizations can be constructed on these resources to meet defined computational challenges, specifically for genomics. We provide examples of how this has been done in basic biology as an illustration for the biomedical informatics community.

  10. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  11. [An analysis of Spanish biomedical journals by the impact factor].

    Science.gov (United States)

    Baños, J E; Casanovas, L; Guardiola, E; Bosch, F

    1992-06-13

    One of the most frequently used parameters for evaluating scientific publications is that of impact factor (IF) published in the Science Citation Index-Journal Citation Reports (SCI-JCR) which evaluates the number of citations a journal receives on behalf of other journals. The present study analyzed the Spanish biomedical journals included in the SCI-JCR by the IF. The IF were obtained from the SCI-JCR (1980-89). The journals were evaluated by the IF and the weighted impact factor (WIF) calculated according to WIF = (IF/MIF) x 100 in which MIF = maximum IF of the considered area. Nine Spanish biomedical journals were included in the SCI-JCR, four being basic sciences (Histology and Histopathology, Inmunología, Methods and Findings in Experimental and Clinical Pharmacology, Revista Española de Fisiología) and five clinical journals (Allergologia et Immunopathologia, Medicina Clínica, Nefrología, Revista Española de las Enfermedades del Aparato Digestivo, Revista Clínica Española). Their IF were much lower than the most important journals in each area with the mean (+/- standard deviation) being 0.21 +/- 0.22 (range 0.016-0.627). The mean WIF was 2.88 +/- 4.07 (0.16-12.82). The journals of basic sciences had higher IF and WIF than the clinical journals (p less than 0.05). Only the four journals of basic sciences were included in the SCI. Four journals, those of basic sciences, are preferentially or exclusively published in English and other five are published in Spanish. The differences in IF among these groups were not significant (p = 0.06) while those of WIF were significant (p less than 0.05). The number of Spanish biomedical journals in the SCI-JCR has risen from 1 in 1980 to 9 in 1989 with IF which have evolved variably. In mind of impact factor, the contribution of Spanish journals is low, with that of biomedical sciences being higher than that of clinical journals. Language and inclusion in the Science Citation Index may explain, at least in part

  12. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  13. Advancing community stakeholder engagement in biomedical HIV prevention trials: principles, practices and evidence.

    Science.gov (United States)

    Newman, Peter A; Rubincam, Clara

    2014-12-01

    Community stakeholder engagement is foundational to fair and ethically conducted biomedical HIV prevention trials. Concerns regarding the ethical engagement of community stakeholders in HIV vaccine trials and early terminations of several international pre-exposure prophylaxis trials have fueled the development of international guidelines, such as UNAIDS' good participatory practice (GPP). GPP aims to ensure that stakeholders are effectively involved in all phases of biomedical HIV prevention trials. We provide an overview of the six guiding principles in the GPP and critically examine them in relation to existing social and behavioral science research. In particular, we highlight the challenges involved in operationalizing these principles on the ground in various global contexts, with a focus on low-income country settings. Increasing integration of social science in biomedical HIV prevention trials will provide evidence to advance a science of community stakeholder engagement to support ethical and effective practices informed by local realities and sociocultural differences.

  14. Bayes' theorem: A paradigm research tool in biomedical sciences ...

    African Journals Online (AJOL)

    One of the most interesting applications of the results of probability theory involves estimating unknown probability and making decisions on the basis of new (sample) information. Biomedical scientists often use the Bayesian decision theory for the purposes of computing diagnostic values such as sensitivity and specificity ...

  15. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  16. Recent progress in biomedical applications of magnetic nanoparticles

    KAUST Repository

    Giouroudi, Ioanna

    2010-06-01

    Magnetic nanoparticles have been proposed for biomedical applications for several years. Various research groups worldwide have focused on improving their synthesis, their characterization techniques and the specific tailoring of their properties. Yet, it is the recent, impressive advances in nanotechnology and biotechnology which caused the breakthrough in their successful application in biomedicine. This paper aims at reviewing some current biomedical applications of magnetic nanoparticles as well as some recent patents in this field. Special emphasis is placed on i) hyperthermia, ii) therapeutics iii) diagnostics. Future prospects are also discussed. © 2010 Bentham Science Publishers Ltd.

  17. New ethical challenges in science and technology

    International Nuclear Information System (INIS)

    NONE

    2001-01-01

    The published research features some of the nation's leading scientists and engineers, as well as science policy experts, and discusses a wide range of issues and topics. These include the economic and social pressure impacting biomedical research, the impossibility of predicting all the behaviors of increasingly complex, engineered systems, a look at the new federal guidelines for misconduct and new wrinkles on faculty conflicts of interest

  18. Collective intelligence for translational medicine: Crowdsourcing insights and innovation from an interdisciplinary biomedical research community.

    Science.gov (United States)

    Budge, Eleanor Jane; Tsoti, Sandra Maria; Howgate, Daniel James; Sivakumar, Shivan; Jalali, Morteza

    2015-01-01

    Translational medicine bridges the gap between discoveries in biomedical science and their safe and effective clinical application. Despite the gross opportunity afforded by modern research for unparalleled advances in this field, the process of translation remains protracted. Efforts to expedite science translation have included the facilitation of interdisciplinary collaboration within both academic and clinical environments in order to generate integrated working platforms fuelling the sharing of knowledge, expertise, and tools to align biomedical research with clinical need. However, barriers to scientific translation remain, and further progress is urgently required. Collective intelligence and crowdsourcing applications offer the potential for global online networks, allowing connection and collaboration between a wide variety of fields. This would drive the alignment of biomedical science with biotechnology, clinical need, and patient experience, in order to deliver evidence-based innovation which can revolutionize medical care worldwide. Here we discuss the critical steps towards implementing collective intelligence in translational medicine using the experience of those in other fields of science and public health.

  19. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  20. Human factors design for the BMIT biomedical beamlines

    International Nuclear Information System (INIS)

    Miller, C Denise; Wysokinski, Tomasz W; Belev, George; Chapman, L Dean

    2013-01-01

    Operation of a biomedical beamline poses a unique set of operational and instrumentation challenges for a synchrotron facility. From proper handling and care of live animals and animal tissues, to a user community drawn primarily from the medical and veterinary realms, the work of a biomedical beamline is unique when compared to other beamlines. At the Biomedical Imaging and Therapy (BMIT) beamlines at Canadian Light Source (CLS), operation of the beamlines is geared towards our user community of medical personnel, in addition to basic science researchers. Human factors considerations have been incorporated wherever possible on BMIT, including in the design of software and hardware, as well as ease-of-use features of beamline control stations and experiment hutches. Feedback from users continues to drive usability improvements to beamline operations.

  1. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future. © 2015 American Society for Nutrition.

  2. Biomedical applications using low temperature plasma technology

    International Nuclear Information System (INIS)

    Dai Xiujuan; Jiang Nan

    2006-01-01

    Low temperature plasma technology and biomedicine are two different subjects, but the combination of the two may play a critical role in modern science and technology. The 21 st century is believed to be a biotechnology century. Plasma technology is becoming a widely used platform for the fabrication of biomaterials and biomedical devices. In this paper some of the technologies used for material surface modification are briefly introduced. Some biomedical applications using plasma technology are described, followed by suggestions as to how a bridge between plasma technology and biomedicine can be built. A pulsed plasma technique that is used for surface functionalization is discussed in detail as an example of this kind of bridge or combination. Finally, it is pointed out that the combination of biomedical and plasma technology will be an important development for revolutionary 21st century technologies that requires different experts from different fields to work together. (authors)

  3. Role of institutional climate in fostering diversity in biomedical research workforce: a case study.

    Science.gov (United States)

    Butts, Gary C; Hurd, Yasmin; Palermo, Ann-Gel S; Delbrune, Denise; Saran, Suman; Zony, Chati; Krulwich, Terry A

    2012-01-01

    This article reviews the barriers to diversity in biomedical research and describes the evolution of efforts to address climate issues to enhance the ability to attract, retain, and develop underrepresented minorities, whose underrepresentation is found both in science and medicine, in the graduate-school biomedical research doctoral programs (PhD and MD/PhD) at Mount Sinai School of Medicine. We also describe the potential beneficial impact of having a climate that supports diversity and inclusion in the biomedical research workforce. The Mount Sinai School of Medicine diversity-climate efforts are discussed as part of a comprehensive plan to increase diversity in all institutional programs: PhD, MD/PhD, and MD, and at the residency, postdoctoral fellow, and faculty levels. Lessons learned from 4 decades of targeted programs and activities at the Mount Sinai School of Medicine may be of value to other institutions interested in improving diversity in the biomedical science and academic medicine workforce. © 2012 Mount Sinai School of Medicine.

  4. Ranking Iranian biomedical research centers according to H-variants (G, M, A, R) in Scopus and Web of Science.

    Science.gov (United States)

    Mahmudi, Zoleikha; Tahamtan, Iman; Sedghi, Shahram; Roudbari, Masoud

    2015-01-01

    We conducted a comprehensive bibliometrics analysis to calculate the H, G, M, A and R indicators for all Iranian biomedical research centers (IBRCs) from the output of ISI Web of Science (WoS) and Scopus between 1991 and 2010. We compared the research performance of the research centers according to these indicators. This was a cross-sectional and descriptive-analytical study, conducted on 104 Iranian biomedical research centers between August and September 2011. We collected our data through Scopus and WoS. Pearson correlation coefficient between the scientometrics indicators was calculated using SPSS, version 16. The mean values of all indicators were higher in Scopus than in WoS. Drug Applied Research Center of Tabriz University of Medical Sciences had the highest number of publications in both WoS and Scopus databases. This research center along with Royan Institute received the highest number of citations in both Scopus and WoS, respectively. The highest correlation was seen between G and R (.998) in WoS and between G and R (.990) in Scopus. Furthermore, the highest overlap of the 10 top IBRCs was between G and H in WoS (100%) and between G-R (90%) and H-R (90%) in Scopus. Research centers affiliated to the top ranked Iranian medical universities obtained a better position with respect to the studied scientometrics indicators. All aforementioned indicators are important for ranking bibliometrics studies as they refer to different attributes of scientific output and citation aspects.

  5. Biomedical research applications of electromagnetically separated enriched stable isotopes

    International Nuclear Information System (INIS)

    Lambrecht, R.M.

    1982-01-01

    The current and projected annual requirements through 1985 for stable isotopes enriched by electromagnetic separation methods were reviewed for applications in various types of biomedical research: (1) medical radiosotope production, labeled compounds, and potential radiopharmaceuticals; (2) nutrition, food science, and pharmacology; (3) metallobiochemistry and environmental toxicology; (4) nuclear magnetic resonance, electron paramagnetic resonance, and Moessbauer spectroscopy in biochemical, biophysical, and biomedical research; and (5) miscellaneous advances in radioactive and non-radioactive tracer technology. Radioisotopes available from commercial sources or routinely used in clinical nuclear medicine were excluded. Priorities and summaries are based on statements in the references and from answers to a survey conducted in the fall of 1981. Current requirements for enriched stable isotopes in biomedical research are not being satisfied. Severe shortages exist for 26 Mg, 43 Ca, 70 Zn, 76 Se, 78 Se, 102 Pd, 111 Cd, 113 Cd, and 190 Os. Many interesting and potentially important investigations in biomedical research require small quantities of specific elements at high isotopic enrichments

  6. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  7. Computer Science, Biology and Biomedical Informatics academy: Outcomes from 5 years of Immersing High-school Students into Informatics Research.

    Science.gov (United States)

    King, Andrew J; Fisher, Arielle M; Becich, Michael J; Boone, David N

    2017-01-01

    The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM) pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  8. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  9. Evaluating a Chat Reference Service at the University of South Alabama's Baugh Biomedical Library

    Science.gov (United States)

    Clanton, Clista C.; Staggs, Geneva B.; Williams, Thomas L.

    2006-01-01

    The University of South Alabama's Baugh Biomedical Library recently initiated a chat reference service targeted at distance education students in the biomedical sciences. After one year of service, the library conducted an evaluation of the chat reference to assess the success of this mode of reference service. Both traditional reference and…

  10. Biomedical engineering and the whitaker foundation: a thirty-year partnership.

    Science.gov (United States)

    Katona, Peter G

    2006-06-01

    The Whitaker Foundation, established in 1976, will close in 2006. It will have made awards totaling 805 million US dollars, with over 710 million US dollars in biomedical engineering. Close to 1,500 faculty members received research grants to help them establish academic careers in biomedical engineering, and over 400 graduate students received fellowship support. The Foundation also supported the enhancement or establishment of educational programs in biomedical engineering, especially encouraging the formation of departments. The number of biomedical engineering departments almost tripled during the past 10 years, now numbering close to 75. Leveraging of grants enabled the construction of 13 new buildings. With the field firmly established, the grant program supporting new faculty members will be the one missed the most. New opportunities, however, are emerging as interdisciplinary research is being embraced by both public and private funding sources. The life sciences will be increasingly incorporated into all areas of engineering, and it is expected that such "biofication" will pose both opportunities and challenges to biomedical engineering.

  11. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  12. Stimuli-responsive magnetic particles for biomedical applications.

    Science.gov (United States)

    Medeiros, S F; Santos, A M; Fessi, H; Elaissari, A

    2011-01-17

    In recent years, magnetic nanoparticles have been studied due to their potential applications as magnetic carriers in biomedical area. These materials have been increasingly exploited as efficient delivery vectors, leading to opportunities of use as magnetic resonance imaging (MRI) agents, mediators of hyperthermia cancer treatment and in targeted therapies. Much attention has been also focused on "smart" polymers, which are able to respond to environmental changes, such as changes in the temperature and pH. In this context, this article reviews the state-of-the art in stimuli-responsive magnetic systems for biomedical applications. The paper describes different types of stimuli-sensitive systems, mainly temperature- and pH sensitive polymers, the combination of this characteristic with magnetic properties and, finally, it gives an account of their preparation methods. The article also discusses the main in vivo biomedical applications of such materials. A survey of the recent literature on various stimuli-responsive magnetic gels in biomedical applications is also included. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Multi-scale biomedical systems: measurement challenges

    International Nuclear Information System (INIS)

    Summers, R

    2016-01-01

    Multi-scale biomedical systems are those that represent interactions in materials, sensors, and systems from a holistic perspective. It is possible to view such multi-scale activity using measurement of spatial scale or time scale, though in this paper only the former is considered. The biomedical application paradigm comprises interactions that range from quantum biological phenomena at scales of 10-12 for one individual to epidemiological studies of disease spread in populations that in a pandemic lead to measurement at a scale of 10+7. It is clear that there are measurement challenges at either end of this spatial scale, but those challenges that relate to the use of new technologies that deal with big data and health service delivery at the point of care are also considered. The measurement challenges lead to the use, in many cases, of model-based measurement and the adoption of virtual engineering. It is these measurement challenges that will be uncovered in this paper. (paper)

  14. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    International Nuclear Information System (INIS)

    Meurer, Maria Ines; Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton; Nobre, Luiz Felipe; Oliveira, Marilia Gerhardt de; Silva, Daniela Nascimento

    2008-01-01

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  15. Materials Science & Engineering | Classification | College of Engineering &

    Science.gov (United States)

    Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  16. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2004-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  17. Ethical Medical and Biomedical Practice in Health Research in Africa

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ethical Medical and Biomedical Practice in Health Research in Africa ... of research studies that do not conform with international ethical standards and ... Journal articles ... IDRC congratulates first cohort of Women in Climate Change Science ...

  18. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Osteoporosis Research Center and Department of Biomedical Sciences, Creighton University, Omaha, NE 68131, ...

  19. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    Science.gov (United States)

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  20. How to Search, Write, Prepare and Publish the Scientific Papers in the Biomedical Journals

    Science.gov (United States)

    Masic, Izet

    2011-01-01

    This article describes the methodology of preparation, writing and publishing scientific papers in biomedical journals. given is a concise overview of the concept and structure of the System of biomedical scientific and technical information and the way of biomedical literature retreival from worldwide biomedical databases. Described are the scientific and professional medical journals that are currently published in Bosnia and Herzegovina. Also, given is the comparative review on the number and structure of papers published in indexed journals in Bosnia and Herzegovina, which are listed in the Medline database. Analyzed are three B&H journals indexed in MEDLINE database: Medical Archives (Medicinski Arhiv), Bosnian Journal of Basic Medical Sciences and Medical Gazette (Medicinki Glasnik) in 2010. The largest number of original papers was published in the Medical Archives. There is a statistically significant difference in the number of papers published by local authors in relation to international journals in favor of the Medical Archives. True, the Journal Bosnian Journal of Basic Medical Sciences does not categorize the articles and we could not make comparisons. Journal Medical Archives and Bosnian Journal of Basic Medical Sciences by percentage published the largest number of articles by authors from Sarajevo and Tuzla, the two oldest and largest university medical centers in Bosnia and Herzegovina. The author believes that it is necessary to make qualitative changes in the reception and reviewing of papers for publication in biomedical journals published in Bosnia and Herzegovina which should be the responsibility of the separate scientific authority/ committee composed of experts in the field of medicine at the state level. PMID:23572850

  1. How to search, write, prepare and publish the scientific papers in the biomedical journals.

    Science.gov (United States)

    Masic, Izet

    2011-06-01

    This article describes the methodology of preparation, writing and publishing scientific papers in biomedical journals. given is a concise overview of the concept and structure of the System of biomedical scientific and technical information and the way of biomedical literature retreival from worldwide biomedical databases. Described are the scientific and professional medical journals that are currently published in Bosnia and Herzegovina. Also, given is the comparative review on the number and structure of papers published in indexed journals in Bosnia and Herzegovina, which are listed in the Medline database. Analyzed are three B&H journals indexed in MEDLINE database: Medical Archives (Medicinski Arhiv), Bosnian Journal of Basic Medical Sciences and Medical Gazette (Medicinki Glasnik) in 2010. The largest number of original papers was published in the Medical Archives. There is a statistically significant difference in the number of papers published by local authors in relation to international journals in favor of the Medical Archives. True, the Journal Bosnian Journal of Basic Medical Sciences does not categorize the articles and we could not make comparisons. Journal Medical Archives and Bosnian Journal of Basic Medical Sciences by percentage published the largest number of articles by authors from Sarajevo and Tuzla, the two oldest and largest university medical centers in Bosnia and Herzegovina. The author believes that it is necessary to make qualitative changes in the reception and reviewing of papers for publication in biomedical journals published in Bosnia and Herzegovina which should be the responsibility of the separate scientific authority/ committee composed of experts in the field of medicine at the state level.

  2. Web of Science, Scopus, and Google Scholar citation rates: a case study of medical physics and biomedical engineering: what gets cited and what doesn't?

    Science.gov (United States)

    Trapp, Jamie

    2016-12-01

    There are often differences in a publication's citation count, depending on the database accessed. Here, aspects of citation counts for medical physics and biomedical engineering papers are studied using papers published in the journal Australasian physical and engineering sciences in medicine. Comparison is made between the Web of Science, Scopus, and Google Scholar. Papers are categorised into subject matter, and citation trends are examined. It is shown that review papers as a group tend to receive more citations on average; however the highest cited individual papers are more likely to be research papers.

  3. Laser surface texturing of polymers for biomedical applications

    Science.gov (United States)

    Riveiro, Antonio; Maçon, Anthony L. B.; del Val, Jesus; Comesaña, Rafael; Pou, Juan

    2018-02-01

    Polymers are materials widely used in biomedical science because of their biocompatibility, and good mechanical properties (which, in some cases, are similar to those of human tissues); however, these materials are, in general, chemically and biologically inert. Surface characteristics, such as topography (at the macro-, micro, and nanoscale), surface chemistry, surface energy, charge or wettability are interrelated properties, and they cooperatively influence the biological performance of materials when used for biomedical applications. They regulate the biological response at the implant/tissue interface (e.g., influencing the cell adhesion, cell orientation, cell motility, etc.). Several surface processing techniques have been explored to modulate these properties for biomedical applications. Despite their potentials, these methods have limitations that prevent their applicability. In this regard, laser-based methods, in particular laser surface texturing (LST), can be an interesting alternative. Different works have showed the potentiality of this technique to control the surface properties of biomedical polymers and enhance their biological performance; however, more research is needed to obtain the desired biological response. This work provides a general overview of the basics and applications of LST for the surface modification of polymers currently used in the clinical practice (e.g. PEEK, UHMWPE, PP, etc.). The modification of roughness, wettability, and their impact on the biological response is addressed to offer new insights on the surface modification of biomedical polymers.

  4. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  5. Full text clustering and relationship network analysis of biomedical publications.

    Science.gov (United States)

    Guan, Renchu; Yang, Chen; Marchese, Maurizio; Liang, Yanchun; Shi, Xiaohu

    2014-01-01

    Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP) to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  6. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  7. Low statistical power in biomedical science: a review of three human research domains

    Science.gov (United States)

    Dumas-Mallet, Estelle; Button, Katherine S.; Boraud, Thomas; Gonon, Francois

    2017-01-01

    Studies with low statistical power increase the likelihood that a statistically significant finding represents a false positive result. We conducted a review of meta-analyses of studies investigating the association of biological, environmental or cognitive parameters with neurological, psychiatric and somatic diseases, excluding treatment studies, in order to estimate the average statistical power across these domains. Taking the effect size indicated by a meta-analysis as the best estimate of the likely true effect size, and assuming a threshold for declaring statistical significance of 5%, we found that approximately 50% of studies have statistical power in the 0–10% or 11–20% range, well below the minimum of 80% that is often considered conventional. Studies with low statistical power appear to be common in the biomedical sciences, at least in the specific subject areas captured by our search strategy. However, we also observe evidence that this depends in part on research methodology, with candidate gene studies showing very low average power and studies using cognitive/behavioural measures showing high average power. This warrants further investigation. PMID:28386409

  8. Radiochemicals in biomedical research

    International Nuclear Information System (INIS)

    Evans, E.A.; Oldham, K.G.

    1988-01-01

    This volume describes the role of radiochemicals in biomedical research, as tracers in the development of new drugs, their interaction and function with receptor proteins, with the kinetics of binding of hormone - receptor interactions, and their use in cancer research and clinical oncology. The book also aims to identify future trends in this research, the main objective of which is to provide information leading to improvements in the quality of life, and to give readers a basic understanding of the development of new drugs, how they function in relation to receptor proteins and lead to a better understanding of the diagnosis and treatment of cancers. (author)

  9. CDIO Experiences in Biomedical Engineering: Preparing Spanish Students for the Future of Medicine and Medical Device Technology

    OpenAIRE

    Díaz Lantada, Andrés; Serrano Olmedo, José Javier; Ros Felip, Antonio; Jiménez Fernández, Javier; Muñoz García, Julio; Claramunt Alonso, Rafael; Carpio Huertas, Jaime

    2016-01-01

    Biomedical engineering is one of the more recent fields of engineering, aimed at the application of engineering principles, methods and design concepts to medicine and biology for healthcare purposes, mainly as a support for preventive, diagnostic or therapeutic tasks. Biomedical engineering professionals are expected to achieve, during their studies and professional practice, considerable knowledge of both health sciences and engineering. Studying biomedical engineering programmes, or combin...

  10. Maximizing the return on taxpayers' investments in fundamental biomedical research.

    Science.gov (United States)

    Lorsch, Jon R

    2015-05-01

    The National Institute of General Medical Sciences (NIGMS) at the U.S. National Institutes of Health has an annual budget of more than $2.3 billion. The institute uses these funds to support fundamental biomedical research and training at universities, medical schools, and other institutions across the country. My job as director of NIGMS is to work to maximize the scientific returns on the taxpayers' investments. I describe how we are optimizing our investment strategies and funding mechanisms, and how, in the process, we hope to create a more efficient and sustainable biomedical research enterprise.

  11. Harnessing supramolecular peptide nanotechnology in biomedical applications

    Directory of Open Access Journals (Sweden)

    Chan KH

    2017-02-01

    Full Text Available Kiat Hwa Chan,1 Wei Hao Lee,2 Shuangmu Zhuo,3 Ming Ni3 1Division of Science, Yale-NUS College, Singapore; 2Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA; 3Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China Abstract: The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1 nanofibrils in biomaterials that can interact with cells, 2 nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3 nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected. Keywords: peptides, self-assembly, nanotechnology

  12. Computer science, biology and biomedical informatics academy: outcomes from 5 years of immersing high-school students into informatics research

    Directory of Open Access Journals (Sweden)

    Andrew J King

    2017-01-01

    Full Text Available The University of Pittsburgh's Department of Biomedical Informatics and Division of Pathology Informatics created a Science, Technology, Engineering, and Mathematics (STEM pipeline in 2011 dedicated to providing cutting-edge informatics research and career preparatory experiences to a diverse group of highly motivated high-school students. In this third editorial installment describing the program, we provide a brief overview of the pipeline, report on achievements of the past scholars, and present results from self-reported assessments by the 2015 cohort of scholars. The pipeline continues to expand with the 2015 addition of the innovation internship, and the introduction of a program in 2016 aimed at offering first-time research experiences to undergraduates who are underrepresented in pathology and biomedical informatics. Achievements of program scholars include authorship of journal articles, symposium and summit presentations, and attendance at top 25 universities. All of our alumni matriculated into higher education and 90% remain in STEM majors. The 2015 high-school program had ten participating scholars who self-reported gains in confidence in their research abilities and understanding of what it means to be a scientist.

  13. Biomedical engineering principles of modern cochlear implants and recent surgical innovations.

    Science.gov (United States)

    Eshraghi, Adrien A; Gupta, Chhavi; Ozdamar, Ozcan; Balkany, Thomas J; Truy, Eric; Nazarian, Ronen

    2012-11-01

    This review covers the most recent clinical and surgical advances made in the development and application of cochlear implants (CIs). In recent years, dramatic progress has been made in both clinical and basic science aspect of cochlear implantation. Today's modern CI uses multi-channel electrodes with highly miniaturized powerful digital processing chips. This review article describes the function of various components of the modern multi-channel CIs. A selection of the most recent clinical and surgical innovations is presented. This includes the preliminary results with electro-acoustic stimulation or hybrid devices and ongoing basic science research that is focused on the preservation of residual hearing post-implantation. The result of an original device that uses a binaural stimulation mode with a single implanted receiver/stimulator is also presented. The benefit and surgical design of a temporalis pocket technique for the implant's receiver stimulator is discussed. Advances in biomedical engineering and surgical innovations that lead to an increasingly favorable clinical outcome and to an expansion of the indication of CI surgery are presented and discussed. Copyright © 2012 Wiley Periodicals, Inc.

  14. Mentoring Interventions for Underrepresented Scholars in Biomedical and Behavioral Sciences: Effects on Quality of Mentoring Interactions and Discussions.

    Science.gov (United States)

    Lewis, Vivian; Martina, Camille A; McDermott, Michael P; Chaudron, Linda; Trief, Paula M; LaGuardia, Jennifer G; Sharp, Daryl; Goodman, Steven R; Morse, Gene D; Ryan, Richard M

    2017-01-01

    Mentors rarely receive education about the unique needs of underrepresented scholars in the biomedical and behavioral sciences. We hypothesized that mentor-training and peer-mentoring interventions for these scholars would enrich the perceived quality and breadth of discussions between mentor-protégé dyads (i.e., mentor-protégé pairs). Our multicenter, randomized study of 150 underrepresented scholar-mentor dyads compared: 1) mentor training, 2) protégé peer mentoring, 3) combined mentor training and peer mentoring, and 4) a control condition (i.e., usual practice of mentoring). In this secondary analysis, the outcome variables were quality of dyad time and breadth of their discussions. Protégé participants were graduate students, fellows, and junior faculty in behavioral and biomedical research and healthcare. Dyads with mentor training were more likely than those without mentor training to have discussed teaching and work-life balance. Dyads with peer mentoring were more likely than those without peer mentoring to have discussed clinical care and career plans. The combined intervention dyads were more likely than controls to perceive that the quality of their time together was good/excellent. Our study supports the value of these mentoring interventions to enhance the breadth of dyad discussions and quality of time together, both important components of a good mentoring relationship. © 2017 V. Lewis et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Wearable and Implantable Mechanical Energy Harvesters for Self-Powered Biomedical Systems.

    Science.gov (United States)

    Hinchet, Ronan; Kim, Sang-Woo

    2015-08-25

    In this issue of ACS Nano, Tang et al. investigate the ability of a triboelectric nanogenerator (TENG) to self-power a low-level laser cure system for osteogenesis by studying the efficiency of a bone remodeling laser treatment that is powered by a skin-patch-like TENG instead of a battery. We outline this field by highlighting the motivations for self-powered biomedical systems and by discussing recent progress in nanogenerators. We note the overlap between biomedical devices and TENGs and their dawning synergy, and we highlight key prospects for future developments. Biomedical systems should be more autonomous. This advance could improve their body integration and fields of action, leading to new medical diagnostics and treatments. However, future self-powered biomedical systems will need to be more flexible, biocompatible, and biodegradable. These advances hold the promise of enabling new smart autonomous biomedical systems and contributing significantly to the Internet of Things.

  16. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  17. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  18. Career development in Bioengineering/Biomedical Engineering: a student's roadmap.

    Science.gov (United States)

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/biomedical engineering education has progressed since the late 1950s and is still evolving in leading academic institutions worldwide. Today, Bioengineering/Biomedical Engineering is acclaimed as one of the most reputable fields within the global arena, and will likely be the catalyst for any future breakthroughs in Medicine and Biology. This paper provides a set of strategies and recommendations to be pursued by individuals aiming at planning and developing careers in this field. The paper targets the international student contemplating bioengineering/biomedical engineering as a career, with an underlying emphasis on the student within developing and transitional countries where career guidance is found deficient. The paper also provides a comprehensive definition of the field and an enumeration of its subdivisions.

  19. Perspective: fostering biomedical literacy among America's youth: how medical simulation reshapes the strategy.

    Science.gov (United States)

    Gordon, James A; Oriol, Nancy E

    2008-05-01

    Medicine is a uniquely powerful platform for teaching science and ethics, technology and humanity, life and death. Yet, society has historically limited medical education to a select few, and only after an advanced course of premedical studies. In an era when biomedical literacy is increasingly viewed as a national imperative, the authors hypothesized that advanced instruction in medicine could be intellectually transformative among a broad range of young people. Using high-fidelity patient simulators, a group of college and high school students was immersed in a weeklong course designed to replicate the practice of modern medicine. On the basis of the students' reported experiences, the authors feel that patient simulation can foster forceful interest in the life sciences at an early age. Such efforts could catalyze a significant expansion of interest in biomedical science among students nationwide.

  20. Use of Laboratory Animals in Biomedical and Behavioral Research

    National Research Council Canada - National Science Library

    1988-01-01

    ... of Laboratory Animals in Biomedical and Behavioral Research Commission on Life Sciences National Research Council Institute of Medicine NATIONAL ACADEMY PRESS Washington, D.C. 1988 Copyrightoriginal retained, the be not from cannot book, paper original however, for version formatting, authoritative the typesetting-specific created from the as publ...

  1. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  2. African Journals Online: Environmental Sciences

    African Journals Online (AJOL)

    Items 1 - 28 of 28 ... African Journals Online: Environmental Sciences ... Anthropology, Technology, Computer Science & Engineering, Veterinary Science ... and Metabolism (AJEM) is a biomedical peer-reviewed journal with international circulation. ... AFRREV STECH: An International Journal of Science and Technology.

  3. Institute for Scientific Information-indexed biomedical journals of Saudi Arabia

    Science.gov (United States)

    Rohra, Dileep K.; Rohra, Vikram K.; Cahusac, Peter

    2016-01-01

    Objectives: To compare the journal impact factor (JIF) and Eigenfactor score (ES) of Institute for Scientific Information (ISI)-indexed biomedical journals published from the Kingdom of Saudi Arabia (KSA) over the last 8 years. Methods: This is a retrospective study, conducted at Alfaisal University, Riyadh, KSA from January to March 2016. The Journal Citation Reports of ISI Web of Knowledge were accessed, and 6 Saudi biomedical journals were included for analysis. Results: All Saudi journals have improved their IF compared with their baseline. However, the performance of the Journal of Pharmaceutical Sciences and Neurosciences has been exceptionally good. The biggest improvement in percent growth in JIF was seen in the Saudi Pharmaceutical Journal (approximately 887%) followed by Neurosciences (approximately 462%). Interestingly, the ES of all biomedical journals, except Saudi Journal of Gastroenterology and Saudi Medical Journal, increased over the years. The greatest growth in ES (more than 5 fold) was noted for Neurosciences and Saudi Pharmaceutical Journal. Conclusion: This study shows that the overall quality of all Saudi biomedical journals has improved in the last 8 years. PMID:27761565

  4. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  5. The fully integrated biomedical engineering programme at Eindhoven University of Technology

    NARCIS (Netherlands)

    Slaaf, D.W.; Genderen, van M.H.P.

    2009-01-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a

  6. Student engagement in biomedical courses : studies in technology-enhanced seminar learning

    NARCIS (Netherlands)

    Bouwmeester, RAM

    2016-01-01

    Academic medical and biomedical curricula are designed to educate future academics contributing to new developments in science, clinical practice and society. During undergraduate programs student training is typically focused on acquisition of knowledge and understanding of these interdisciplinary

  7. DNA-encoded libraries - an efficient small molecule discovery technology for the biomedical sciences.

    Science.gov (United States)

    Kunig, Verena; Potowski, Marco; Gohla, Anne; Brunschweiger, Andreas

    2018-06-27

    DNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds. They are screened on proteins by an efficient, generic assay based on Darwinian principles of selection. To date, selection of DNA-encoded libraries allowed for the identification of numerous bioactive compounds. Some of these compounds uncovered hitherto unknown allosteric binding sites on target proteins; several compounds proved their value as chemical biology probes unraveling complex biology; and the first examples of clinical candidates that trace their ancestry to a DNA-encoded library were reported. Thus, DNA-encoded libraries proved their value for the biomedical sciences as a generic technology for the identification of bioactive drug-like molecules numerous times. However, large scale experiments showed that even the selection of billions of compounds failed to deliver bioactive compounds for the majority of proteins in an unbiased panel of target proteins. This raises the question of compound library design.

  8. Information sources in biomedical science and medical journalism: methodological approaches and assessment.

    Science.gov (United States)

    Miranda, Giovanna F; Vercellesi, Luisa; Bruno, Flavia

    2004-09-01

    Throughout the world the public is showing increasing interest in medical and scientific subjects and journalists largely spread this information, with an important impact on knowledge and health. Clearly, therefore, the relationship between the journalist and his sources is delicate: freedom and independence of information depend on the independence and truthfulness of the sources. The new "precision journalism" holds that scientific methods should be applied to journalism, so authoritative sources are a common need for journalists and scientists. We therefore compared the individual classifications and methods of assessing of sources in biomedical science and medical journalism to try to extrapolate scientific methods of evaluation to journalism. In journalism and science terms used to classify sources of information show some similarities, but their meanings are different. In science primary and secondary classes of information, for instance, refer to the levels of processing, but in journalism to the official nature of the source itself. Scientists and journalists must both always consult as many sources as possible and check their authoritativeness, reliability, completeness, up-to-dateness and balance. In journalism, however, there are some important differences and limits: too many sources can sometimes diminish the quality of the information. The sources serve a first filter between the event and the journalist, who is not providing the reader with the fact, but with its projection. Journalists have time constraints and lack the objective criteria for searching, the specific background knowledge, and the expertise to fully assess sources. To assist in understanding the wealth of sources of information in journalism, we have prepared a checklist of items and questions. There are at least four fundamental points that a good journalist, like any scientist, should know: how to find the latest information (the sources), how to assess it (the quality and

  9. Mixed Methods in Biomedical and Health Services Research

    Science.gov (United States)

    Curry, Leslie A.; Krumholz, Harlan M.; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to the general readership of peer-reviewed biomedical and health services journals. Furthermore, existing guidelines for publishing mixed methods studies are not well known or applied by researchers and journal editors. Accordingly, this paper is intended to serve as a concise, practical resource for readers interested in core principles and practices of mixed methods research. We briefly describe mixed methods approaches and present illustrations from published biomedical and health services literature, including in cardiovascular care, summarize standards for the design and reporting of these studies, and highlight four central considerations for investigators interested in using these methods. PMID:23322807

  10. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  11. [Metrology research on biomedical engineering publications from China in recent years].

    Science.gov (United States)

    Yu, Lu; Su, Juan; Wang, Ying; Sha, Xianzheng

    2014-12-01

    The present paper is to evaluate the scientific research level and development trends of biomedical engineering in China using metrology analysis on Chinese biomedical engineering scientific literatures. Pubmed is used to search the biomedical engineering publications in recent 5 years which are indexed by Science Citation Index, and the number and cited times of these publications and the impact factor of the journals are analyzed. The results show that comparing with the world, although the number of the publication in China has increased in recent 5 years, there is still much room for improvement. Among Chinese mainland, Hongkong and Taiwan, Chinese mainland maintains the obvious advantage in this subject, but Hongkong has the highest average cited number. Shanghai and Beijing have better research ability than other areas in Chinese mainland.

  12. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Directory of Open Access Journals (Sweden)

    Matthew Nisbet

    Full Text Available As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  13. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  14. Understanding Public Opinion in Debates over Biomedical Research: Looking beyond Political Partisanship to Focus on Beliefs about Science and Society

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M.

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed. PMID:24558393

  15. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  16. How Technicians Can Lead Science Improvements in Any School: A Small-Scale Study in England

    Science.gov (United States)

    Jones, Beth; Quinnell, Simon

    2015-01-01

    This article describes how seven schools in England improved their science provision by focusing on the professional development of their science technicians. In September 2013, the Gatsby Charitable Foundation funded the National Science Learning Centre to lead a project connecting secondary schools with experienced senior science technicians…

  17. How Do Interaction Experiences Influence Doctoral Students’ Academic Pursuits in Biomedical Research?

    Science.gov (United States)

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B.; Andriole, Dorothy A.; Wathington, Heather D.; Tai, Robert H.

    2014-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students’ persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit. PMID:26166928

  18. How Do Interaction Experiences Influence Doctoral Students' Academic Pursuits in Biomedical Research?

    Science.gov (United States)

    Kong, Xiaoqing; Chakraverty, Devasmita; Jeffe, Donna B; Andriole, Dorothy A; Wathington, Heather D; Tai, Robert H

    2013-01-01

    This exploratory qualitative study investigated how doctoral students reported their personal and professional interaction experiences that they believed might facilitate or impede their academic pursuits in biomedical research. We collected 19 in-depth interviews with doctoral students in biomedical research from eight universities, and we based our qualitative analytic approach on the work of Miles and Huberman. The results indicated that among different sources and types of interaction, academic and emotional interactions from family and teachers in various stages essentially affected students' persistence in the biomedical science field. In addition, co-mentorship among peers, departmental environment, and volunteer experiences were other essential factors. This study also found related experiences among women and underrepresented minority students that were important to their academic pursuit.

  19. Biomedical infertility care in Sub-Saharan Africa: what is going on?

    NARCIS (Netherlands)

    Gerrits, G.J.E.; Slager, E.

    2011-01-01

    Infertility treatments, including the use of advanced reproductive technologies (ARTs), are nowadays provided at several places in sub-Saharan Africa. This article, which is based on a review of (scarce) social science studies, gives insight into the way biomedical infertility care is provided,

  20. Accelerating Biomedical Discoveries through Rigor and Transparency.

    Science.gov (United States)

    Hewitt, Judith A; Brown, Liliana L; Murphy, Stephanie J; Grieder, Franziska; Silberberg, Shai D

    2017-07-01

    Difficulties in reproducing published research findings have garnered a lot of press in recent years. As a funder of biomedical research, the National Institutes of Health (NIH) has taken measures to address underlying causes of low reproducibility. Extensive deliberations resulted in a policy, released in 2015, to enhance reproducibility through rigor and transparency. We briefly explain what led to the policy, describe its elements, provide examples and resources for the biomedical research community, and discuss the potential impact of the policy on translatability with a focus on research using animal models. Importantly, while increased attention to rigor and transparency may lead to an increase in the number of laboratory animals used in the near term, it will lead to more efficient and productive use of such resources in the long run. The translational value of animal studies will be improved through more rigorous assessment of experimental variables and data, leading to better assessments of the translational potential of animal models, for the benefit of the research community and society. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  1. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John D; Blanchard, Susan M

    2005-01-01

    Under the direction of John Enderle, Susan Blanchard and Joe Bronzino, leaders in the field have contributed chapters on the most relevant subjects for biomedical engineering students. These chapters coincide with courses offered in all biomedical engineering programs so that it can be used at different levels for a variety of courses of this evolving field. Introduction to Biomedical Engineering, Second Edition provides a historical perspective of the major developments in the biomedical field. Also contained within are the fundamental principles underlying biomedical engineering design, analysis, and modeling procedures. The numerous examples, drill problems and exercises are used to reinforce concepts and develop problem-solving skills making this book an invaluable tool for all biomedical students and engineers. New to this edition: Computational Biology, Medical Imaging, Genomics and Bioinformatics. * 60% update from first edition to reflect the developing field of biomedical engineering * New chapters o...

  2. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    Science.gov (United States)

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  3. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1985-01-28

    M. Zubkova and N. Z. Zagorskaya, Central Scientific Research Institute of Resort Therapy and Physiotherapy , Moscow] [Text] In order to describe...USSR Academy of Medical Sciences, Kiev [Abstract] The wide use of oxygen therapy in geriatric practice and the reported side effects and occasional

  4. Career Fairs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering Biomedical Engineering Industry Advisory Council Civil & Environmental Engineering Civil &

  5. Awareness and Practice on Biomedical Waste Management among ...

    African Journals Online (AJOL)

    Background: The proper handling and disposal of Bio-medical waste (BMW) is very imperative. There are well defined set rules for handling BMW worldwide. Unfortunately, laxity and lack of adequate training and awareness in execution of these rules leads to staid health and environment apprehension. Objective: To ...

  6. Patient participation in decision making on biomedical research: changing the network

    NARCIS (Netherlands)

    Caron - Flinterman, J.F.; Broerse, J.E.W.; Bunders - Aelen, J.G.F.

    2007-01-01

    Participation of end users in decision-making on science is increasingly practiced, as witnessed by the growing body of scientific literature on case evaluations. In the biomedical field, however, end-user participation in decision-making is rare. Some scholars argue that because patients are

  7. Biomedical optics centers: forty years of multidisciplinary clinical translation for improving human health

    Science.gov (United States)

    Tromberg, Bruce J.; Anderson, R. Rox; Birngruber, Reginald; Brinkmann, Ralf; Berns, Michael W.; Parrish, John A.; Apiou-Sbirlea, Gabriela

    2016-12-01

    Despite widespread government and public interest, there are significant barriers to translating basic science discoveries into clinical practice. Biophotonics and biomedical optics technologies can be used to overcome many of these hurdles, due, in part, to offering new portable, bedside, and accessible devices. The current JBO special issue highlights promising activities and examples of translational biophotonics from leading laboratories around the world. We identify common essential features of successful clinical translation by examining the origins and activities of three major international academic affiliated centers with beginnings traceable to the mid-late 1970s: The Wellman Center for Photomedicine (Mass General Hospital, USA), the Beckman Laser Institute and Medical Clinic (University of California, Irvine, USA), and the Medical Laser Center Lübeck at the University of Lübeck, Germany. Major factors driving the success of these programs include visionary founders and leadership, multidisciplinary research and training activities in light-based therapies and diagnostics, diverse funding portfolios, and a thriving entrepreneurial culture that tolerates risk. We provide a brief review of how these three programs emerged and highlight critical phases and lessons learned. Based on these observations, we identify pathways for encouraging the growth and formation of similar programs in order to more rapidly and effectively expand the impact of biophotonics and biomedical optics on human health.

  8. Contribution of Electrochemistry to the Biomedical and Pharmaceutical Analytical Sciences.

    Science.gov (United States)

    Kauffmann, Jean-Michel; Patris, Stephanie; Vandeput, Marie; Sarakbi, Ahmad; Sakira, Abdul Karim

    2016-01-01

    All analytical techniques have experienced major progress since the last ten years and electroanalysis is also involved in this trend. The unique characteristics of phenomena occurring at the electrode-solution interface along with the variety of electrochemical methods currently available allow for a broad spectrum of applications. Potentiometric, conductometric, voltammetric and amperometric methods are briefly reviewed with a critical view in terms of performance of the developed instrumentation with special emphasis on pharmaceutical and biomedical applications.

  9. The Software Ontology (SWO): a resource for reproducibility in biomedical data analysis, curation and digital preservation.

    Science.gov (United States)

    Malone, James; Brown, Andy; Lister, Allyson L; Ison, Jon; Hull, Duncan; Parkinson, Helen; Stevens, Robert

    2014-01-01

    Biomedical ontologists to date have concentrated on ontological descriptions of biomedical entities such as gene products and their attributes, phenotypes and so on. Recently, effort has diversified to descriptions of the laboratory investigations by which these entities were produced. However, much biological insight is gained from the analysis of the data produced from these investigations, and there is a lack of adequate descriptions of the wide range of software that are central to bioinformatics. We need to describe how data are analyzed for discovery, audit trails, provenance and reproducibility. The Software Ontology (SWO) is a description of software used to store, manage and analyze data. Input to the SWO has come from beyond the life sciences, but its main focus is the life sciences. We used agile techniques to gather input for the SWO and keep engagement with our users. The result is an ontology that meets the needs of a broad range of users by describing software, its information processing tasks, data inputs and outputs, data formats versions and so on. Recently, the SWO has incorporated EDAM, a vocabulary for describing data and related concepts in bioinformatics. The SWO is currently being used to describe software used in multiple biomedical applications. The SWO is another element of the biomedical ontology landscape that is necessary for the description of biomedical entities and how they were discovered. An ontology of software used to analyze data produced by investigations in the life sciences can be made in such a way that it covers the important features requested and prioritized by its users. The SWO thus fits into the landscape of biomedical ontologies and is produced using techniques designed to keep it in line with user's needs. The Software Ontology is available under an Apache 2.0 license at http://theswo.sourceforge.net/; the Software Ontology blog can be read at http://softwareontology.wordpress.com.

  10. Three-dimensional biomedical imaging

    International Nuclear Information System (INIS)

    Robb, R.A.

    1985-01-01

    Scientists in biomedical imaging provide researchers, physicians, and academicians with an understanding of the fundamental theories and practical applications of three-dimensional biomedical imaging methodologies. Succinct descriptions of each imaging modality are supported by numerous diagrams and illustrations which clarify important concepts and demonstrate system performance in a variety of applications. Comparison of the different functional attributes, relative advantages and limitations, complementary capabilities, and future directions of three-dimensional biomedical imaging modalities are given. Volume 1: Introductions to Three-Dimensional Biomedical Imaging Photoelectronic-Digital Imaging for Diagnostic Radiology. X-Ray Computed Tomography - Basic Principles. X-Ray Computed Tomography - Implementation and Applications. X-Ray Computed Tomography: Advanced Systems and Applications in Biomedical Research and Diagnosis. Volume II: Single Photon Emission Computed Tomography. Position Emission Tomography (PET). Computerized Ultrasound Tomography. Fundamentals of NMR Imaging. Display of Multi-Dimensional Biomedical Image Information. Summary and Prognostications

  11. Improving "lab-on-a-chip" techniques using biomedical nanotechnology: a review.

    Science.gov (United States)

    Gorjikhah, Fatemeh; Davaran, Soodabeh; Salehi, Roya; Bakhtiari, Mohsen; Hasanzadeh, Arash; Panahi, Yunes; Emamverdy, Masumeh; Akbarzadeh, Abolfazl

    2016-11-01

    Nanotechnology and its applications in biomedical sciences principally in molecular nanodiagnostics are known as nanomolecular diagnostics, which provides new options for clinical nanodiagnostic techniques. Molecular nanodiagnostics are a critical role in the development of personalized medicine, which features point-of care performance of diagnostic procedure. This can to check patients at point-of-care facilities or in remote or resource-poor locations, therefore reducing checking time from days to minutes. In this review, applications of nanotechnology suited to biomedicine are discussed in two main class: biomedical applications for use inside (such as drugs, diagnostic techniques, prostheses, and implants) and outside the body (such as "lab-on-a-chip" techniques). A lab-on-a-chip (LOC) is a tool that incorporates numerous laboratory tasks onto a small device, usually only millimeters or centimeters in size. Finally, are discussed the applications of biomedical nanotechnology in improving "lab-on-a-chip" techniques.

  12. Spacelab Life Sciences Research Panel

    Science.gov (United States)

    Sulzman, Frank; Young, Laurence R.; Seddon, Rhea; Ross, Muriel; Baldwin, Kenneth; Frey, Mary Anne; Hughes, Rod

    2000-01-01

    This document describes some of the life sciences research that was conducted on Spacelab missions. Dr. Larry Young, Director of the National Space Biomedical Research Institute, provides an overview of the Life Sciences Spacelabs.

  13. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  14. Science at the interstices: an evolution in the academy.

    Science.gov (United States)

    Balser, Jeffrey R; Baruchin, Andrea

    2008-09-01

    Biomedical science is at an evolutionary turning point. Many of the rate-limiting steps to realizing the next generation of personalized, highly targeted diagnostics and therapeutics rest at the interstices between biomedical science and the classic, university-based disciplines, such as physics, mathematics, computational science, engineering, social sciences, business, and law. Institutes, centers, or other entities created to foster interdisciplinary science are rapidly forming to tackle these formidable challenges, but they are plagued with substantive barriers, born of traditions, processes, and culture, which impede scientific progress and endanger success. Without a more seamless interdisciplinary framework, academic health centers will struggle to move transformative advances in technology into the foundation of biomedical science, and the equally challenging advancement of models that effectively integrate new molecular diagnostics and therapies into the business and social fabric of our population will be similarly hampered. At the same time, excess attention on rankings tied to competition for National Institutes of Health and other federal funds adversely encourages academic medical centers (AMCs) and universities to hoard, rather than share, resources effectively and efficiently. To fully realize their discovery potential, AMCs must consider a substantive realignment relative to one another, as well as with their associated universities, as the academy looks toward innovative approaches to provide a more supportive foundation for the emergent biomedical research enterprise. The authors discuss potential models that could serve to lower barriers to interdisciplinary science, promoting a new synergy between AMCs and their parent universities.

  15. MATLAB for Engineering and the Life Sciences

    CERN Document Server

    Tranquillo, Joseph

    2011-01-01

    In recent years, the life sciences have embraced simulation as an important tool in biomedical research. Engineers are also using simulation as a powerful step in the design process. In both arenas, Matlab has become the gold standard. It is easy to learn, flexible, and has a large and growing userbase. MATLAB for Engineering and the Life Sciences is a self-guided tour of the basic functionality of MATLAB along with the functions that are most commonly used in biomedical engineering and other life sciences. Although the text is written for undergraduates, graduate students and academics, those

  16. Mixed Methods in Biomedical and Health Services Research

    OpenAIRE

    Curry, Leslie A.; Krumholz, Harlan M.; O’Cathain, Alicia; Plano Clark, Vicki L.; Cherlin, Emily; Bradley, Elizabeth H.

    2013-01-01

    Mixed methods studies, in which qualitative and quantitative methods are combined in a single program of inquiry, can be valuable in biomedical and health services research, where the complementary strengths of each approach can yield greater insight into complex phenomena than either approach alone. Although interest in mixed methods is growing among science funders and investigators, written guidance on how to conduct and assess rigorous mixed methods studies is not readily accessible to th...

  17. Science, biomedical technology and biolaw.

    Science.gov (United States)

    Furnica, Cristina; Scripcaru, Calin

    2009-01-01

    Starting from legislative recognition of the grounding principles of human rights, the authors describe and comment upon the Council of Europe's Convention on human rights and human dignity confronted with scientific discoveries and also upon the Oviedo Convention of 1997 for the protection of Human Rights and dignity of the human being with regard to the application of biology and medicine. The authors specify that, given the promise made by Romania to observe international obligations, the Romanian law no. 2/1998 on organ and tissue transplantation abrogates the stipulations of the law 3-1978 and also includes 9 appendices which, being part of the law, guarantee in addition the observance of its provisions. All these regulations on the relationship between science and human rights have determined an evolution from the fatality of natural risks to current compensations, as an expression of human solidarity. They have determined the transition from social and vocational paternalism to personal autonomy and personal guarantees of independence and freedom. All these developments are faithfully reflected by comparative legislation on the use of life science outcomes on persons as they presently are. This is also reflected in Romanian legislation concerning tissue and organ transplantation and in mental health legislation.

  18. About | College of Engineering & Applied Science

    Science.gov (United States)

    ; Applied Science Powerful Ideas. Proven Results. Search for: Go This site All UWM Search Site Menu Skip to Degree Completion Program Graduate Programs Master of Science Programs Concentration in Biomedical Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on

  19. The biomedical disciplines and the structure of biomedical and clinical knowledge.

    Science.gov (United States)

    Nederbragt, H

    2000-11-01

    The relation between biomedical knowledge and clinical knowledge is discussed by comparing their respective structures. The knowledge of a disease as a biological phenomenon is constructed by the interaction of facts and theories from the main biomedical disciplines: epidemiology, diagnostics, clinical trial, therapy development and pathogenesis. Although these facts and theories are based on probabilities and extrapolations, the interaction provides a reliable and coherent structure, comparable to a Kuhnian paradigma. In the structure of clinical knowledge, i.e. knowledge of the patient with the disease, not only biomedical knowledge contributes to the structure but also economic and social relations, ethics and personal experience. However, the interaction between each of the participating "knowledges" in clinical knowledge is not based on mutual dependency and accumulation of different arguments from each, as in biomedical knowledge, but on competition and partial exclusion. Therefore, the structure of biomedical knowledge is different from that of clinical knowledge. This difference is used as the basis for a discussion in which the place of technology, evidence-based medicine and the gap between scientific and clinical knowledge are evaluated.

  20. USSR Report, Life Sciences Biomedical and Behavioral Sciences

    Science.gov (United States)

    1984-02-02

    chromosome composition . Couch grass chromosomes were identified in the substituted state in the hybrid’s endosperm. Phytophathological study showed...the Director of the Laboratory of Enzyme Chemistry of the institute, Doctor of Chemical Sciences, Yuozas Kulis told us: It is known that, in the... nucleolus by 35%. The corresponding values for the large neutrons were 50%, 36%, and 35%, respectively. These changes may reflect the greater metabolic

  1. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  2. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  3. Effects of environmental lead pollution on blood lead and sex hormone levels among occupationally exposed group in an E-waste dismantling area.

    Science.gov (United States)

    Yang, Yan; Lu, Xiao Song; Li, Ding Long; Yu, Yun Jiang

    2013-06-01

    To study the effects of environmental multi-media lead pollution on blood lead and sex hormone levels among lead exposed males engaged in E-waste dismantling, and the correlation between confounding factors and sex hormone levels. An E-waste dismantling area in Taizhou of Zhejiang Province was selected as the research site. One hundred and fifty two samples were collected from the groundwater, soil, rice, corn, chicken, and pork in the dismantling area. The effects of the multi-media lead pollution on the male blood lead and sex hormone levels of FSH, LH, and T, as well as the correlation with confounding factors, were studied. The blood lead concentrations in the males aged under 31, from 31 to 45 and from 46 to 60 were 98.55, 100.23, and 101.45 μg/L, respectively. Of all the environmental media lead exposures, the groundwater, rice and soil were main contributing factors to the lead accumulation in humans. FSH and LH levels increased with the age while the T levels decreased with the age instead. There was a significant correlation between the FSH and LH levels and wearing masks. There was correlation between the FSH, LH, and T levels, and the mean values of lead concentrations in environmental media, and the sex hormone levels were correlated with the confounding factor of wearing masks. Copyright © 2013 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  4. Cross-Cultural Communication Training for Students in Multidisciplinary Research Area of Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Shigehiro Hashimoto

    2014-08-01

    Full Text Available Biomedical Engineering makes multidisciplinary research area, which includes biology, medicine, engineering and others. Communication training is important for students, who have a potential to develop Biomedical Engineering. Communication is not easy in a multidisciplinary research area, because each area has its own background of thinking. Because each nation has its own background of culture, on the other hand, international communication is not easy, either. A cross-cultural student program has been designed for communication training in the multidisciplinary research area. Students from a variety of backgrounds of research area and culture have joined in the program: mechanical engineering, material science, environmental engineering, science of nursing, dentist, pharmacy, electronics, and so on. The program works well for communication training in the multidisciplinary research area of biomedical engineering. Foreign language and digital data give students chance to study several things: how to make communication precisely, how to quote previous data. The experience in the program helps students not only understand new idea in the laboratory visit, but also make a presentation in the international research conference. The program relates to author's several experiences: the student internship abroad, the cross-cultural student camp, multi PhD theses, various affiliations, and the creation of the interdisciplinary department.

  5. Conference on medical physics and biomedical engineering

    International Nuclear Information System (INIS)

    2013-01-01

    Due to the rapid technological development in the world today, the role of physics in modern medicine is of great importance. The frequent use of equipment that produces ionizing radiation further increases the need for radiation protection, complicated equipment requires technical support, the diagnostic and therapeutic methods impose the highest professionals in the field of medical physics. Thus, medical physics and biomedical engineering have become an inseparable part of everyday medical practice. There are a certain number of highly qualified and dedicated professionals in medical physics in Macedonia who committed themselves to work towards resolving medical physics issues. In 2000 they established the first and still only professional Association for Medical Physics and Biomedical Engineering (AMPBE) in Macedonia; a one competent to cope with problems in the fields of medicine, which applies methods of physics and biomedical engineering to medical procedures in order to develop tools essential to the physicians that will ultimately lead to improve the quality of medical practice in general. The First National Conference on Medical Physics and Biomedical Engineering was organized by the AMPBE in 2007. The idea was to gather all the professionals working in medical physics and biomedical engineering in one place in order to present their work and increase the collaboration among them. Other involved professions such as medical doctors, radiation technologists, engineers and professors of physics at the University also took part and contributed to the success of the conference. As a result, the Proceedings were published in Macedonian, with summaries in English. In order to further promote the medical physics amongst the scientific community in Macedonia, our society decided to organize The Second Conference on Medical Physics and Biomedical Engineering in November 2010. Unlike the first, this one was with international participation. This was very suitable

  6. Data Analysis and Data Mining: Current Issues in Biomedical Informatics

    Science.gov (United States)

    Bellazzi, Riccardo; Diomidous, Marianna; Sarkar, Indra Neil; Takabayashi, Katsuhiko; Ziegler, Andreas; McCray, Alexa T.

    2011-01-01

    Summary Background Medicine and biomedical sciences have become data-intensive fields, which, at the same time, enable the application of data-driven approaches and require sophisticated data analysis and data mining methods. Biomedical informatics provides a proper interdisciplinary context to integrate data and knowledge when processing available information, with the aim of giving effective decision-making support in clinics and translational research. Objectives To reflect on different perspectives related to the role of data analysis and data mining in biomedical informatics. Methods On the occasion of the 50th year of Methods of Information in Medicine a symposium was organized, that reflected on opportunities, challenges and priorities of organizing, representing and analysing data, information and knowledge in biomedicine and health care. The contributions of experts with a variety of backgrounds in the area of biomedical data analysis have been collected as one outcome of this symposium, in order to provide a broad, though coherent, overview of some of the most interesting aspects of the field. Results The paper presents sections on data accumulation and data-driven approaches in medical informatics, data and knowledge integration, statistical issues for the evaluation of data mining models, translational bioinformatics and bioinformatics aspects of genetic epidemiology. Conclusions Biomedical informatics represents a natural framework to properly and effectively apply data analysis and data mining methods in a decision-making context. In the future, it will be necessary to preserve the inclusive nature of the field and to foster an increasing sharing of data and methods between researchers. PMID:22146916

  7. Livestock in biomedical research: history, current status and future prospective.

    Science.gov (United States)

    Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D

    2016-01-01

    Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.

  8. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  9. Training multidisciplinary biomedical informatics students: three years of experience.

    Science.gov (United States)

    van Mulligen, Erik M; Cases, Montserrat; Hettne, Kristina; Molero, Eva; Weeber, Marc; Robertson, Kevin A; Oliva, Baldomero; de la Calle, Guillermo; Maojo, Victor

    2008-01-01

    The European INFOBIOMED Network of Excellence recognized that a successful education program in biomedical informatics should include not only traditional teaching activities in the basic sciences but also the development of skills for working in multidisciplinary teams. A carefully developed 3-year training program for biomedical informatics students addressed these educational aspects through the following four activities: (1) an internet course database containing an overview of all Medical Informatics and BioInformatics courses, (2) a BioMedical Informatics Summer School, (3) a mobility program based on a 'brokerage service' which published demands and offers, including funding for research exchange projects, and (4) training challenges aimed at the development of multi-disciplinary skills. This paper focuses on experiences gained in the development of novel educational activities addressing work in multidisciplinary teams. The training challenges described here were evaluated by asking participants to fill out forms with Likert scale based questions. For the mobility program a needs assessment was carried out. The mobility program supported 20 exchanges which fostered new BMI research, resulted in a number of peer-reviewed publications and demonstrated the feasibility of this multidisciplinary BMI approach within the European Union. Students unanimously indicated that the training challenge experience had contributed to their understanding and appreciation of multidisciplinary teamwork. The training activities undertaken in INFOBIOMED have contributed to a multi-disciplinary BMI approach. It is our hope that this work might provide an impetus for training efforts in Europe, and yield a new generation of biomedical informaticians.

  10. Indicators for the dynamics of research organizations: A biomedical case study

    NARCIS (Netherlands)

    Braam, R.; van den Besselaar, P.A.A.

    2014-01-01

    This paper reports results on a bibliometric case study of the long-term development of research organizations, using an internationally leading biomedical institute as example. Using scientometric concepts, small group theory, organizational ecology, and process-based organizational theory, we

  11. Biomedical applications of electronic microscopy and elementary analysis with spectrometer of x rays

    International Nuclear Information System (INIS)

    Hernandez Chavarria, F.; Saenz, A.; Freer, E.

    2002-01-01

    The electronic microscopy has advanced from its invention 60 years ago and its application in biomedical sciences has been very big. Parallel to the development of new technology in this field and that has allowed to reach a resolution of 1,4 amstrong for the transmission microscope and from 30 to 70 amstrong for the racking microscope its has been adapted to these microscopes by other devices that allow to realize an elementary analysis of the sample that is being examined in the microscope. The advantage of this procedure is that the sample is being examined in the microscope in real time can be analyzed in his chemical composition without being destroyed. Additional it is possible to realize an analysis of the distribution of its elements in the whole sample. The application of this new method in the biological sciences is very wide. We can detect inorganic materials as the lead, arsenic, calcium, mercury, aluminium, etc. in different tissue of the body, obtained of biopsy or autopsy. A practical application is the analysis of the composition of vesiculary calculus or urinary determining in that way the physiopathogeny of the process. (Author) [es

  12. Journal of Medical Laboratory Science

    African Journals Online (AJOL)

    The Journal of Medical Laboratory Science is a Quarterly Publication of the Association of Medical Laboratory Scientists of Nigeria. It Publishes Original Research and Review Articles in All Fields of Biomedical Sciences and Laboratory Medicine, Covering Medical Microbiology, Medical Parasitology, Clinical Chemistry, ...

  13. Biological and biomedical aspects of genetically modified food.

    Science.gov (United States)

    Celec, Peter; Kukucková, Martina; Renczésová, Veronika; Natarajan, Satheesh; Pálffy, Roland; Gardlík, Roman; Hodosy, Július; Behuliak, Michal; Vlková, Barbora; Minárik, Gabriel; Szemes, Tomás; Stuchlík, Stanislav; Turna, Ján

    2005-12-01

    Genetically modified (GM) foods are the product of one of the most progressive fields of science-biotechnology. There are major concerns about GM foods in the public; some of them are reasonable, some of them are not. Biomedical risks of GM foods include problems regarding the potential allergenicity, horizontal gene transfer, but environmental side effects on biodiversity must also be recognized. Numerous methods have been developed to assess the potential risk of every GM food type. Benefits of the first generation of GM foods were oriented towards the production process and companies, the second generation of GM foods offers, on contrary, various advantages and added value for the consumer. This includes improved nutritional composition or even therapeutic effects. Recombinant probiotics and the principle of alternative gene therapy represent the latest approach of using GM organisms for biomedical applications. This article tries to summarize and to explain the problematic topic of GM food.

  14. NAMED ENTITY RECOGNITION FROM BIOMEDICAL TEXT -AN INFORMATION EXTRACTION TASK

    Directory of Open Access Journals (Sweden)

    N. Kanya

    2016-07-01

    Full Text Available Biomedical Text Mining targets the Extraction of significant information from biomedical archives. Bio TM encompasses Information Retrieval (IR and Information Extraction (IE. The Information Retrieval will retrieve the relevant Biomedical Literature documents from the various Repositories like PubMed, MedLine etc., based on a search query. The IR Process ends up with the generation of corpus with the relevant document retrieved from the Publication databases based on the query. The IE task includes the process of Preprocessing of the document, Named Entity Recognition (NER from the documents and Relationship Extraction. This process includes Natural Language Processing, Data Mining techniques and machine Language algorithm. The preprocessing task includes tokenization, stop word Removal, shallow parsing, and Parts-Of-Speech tagging. NER phase involves recognition of well-defined objects such as genes, proteins or cell-lines etc. This process leads to the next phase that is extraction of relationships (IE. The work was based on machine learning algorithm Conditional Random Field (CRF.

  15. A novel biomedical image indexing and retrieval system via deep preference learning.

    Science.gov (United States)

    Pang, Shuchao; Orgun, Mehmet A; Yu, Zhezhou

    2018-05-01

    The traditional biomedical image retrieval methods as well as content-based image retrieval (CBIR) methods originally designed for non-biomedical images either only consider using pixel and low-level features to describe an image or use deep features to describe images but still leave a lot of room for improving both accuracy and efficiency. In this work, we propose a new approach, which exploits deep learning technology to extract the high-level and compact features from biomedical images. The deep feature extraction process leverages multiple hidden layers to capture substantial feature structures of high-resolution images and represent them at different levels of abstraction, leading to an improved performance for indexing and retrieval of biomedical images. We exploit the current popular and multi-layered deep neural networks, namely, stacked denoising autoencoders (SDAE) and convolutional neural networks (CNN) to represent the discriminative features of biomedical images by transferring the feature representations and parameters of pre-trained deep neural networks from another domain. Moreover, in order to index all the images for finding the similarly referenced images, we also introduce preference learning technology to train and learn a kind of a preference model for the query image, which can output the similarity ranking list of images from a biomedical image database. To the best of our knowledge, this paper introduces preference learning technology for the first time into biomedical image retrieval. We evaluate the performance of two powerful algorithms based on our proposed system and compare them with those of popular biomedical image indexing approaches and existing regular image retrieval methods with detailed experiments over several well-known public biomedical image databases. Based on different criteria for the evaluation of retrieval performance, experimental results demonstrate that our proposed algorithms outperform the state

  16. Electroactive polymers for healthcare and biomedical applications

    Science.gov (United States)

    Bauer, Siegfried

    2017-04-01

    Electroactivity was noticed early in biological substances, including proteins, polynucleotides and enzymes, even piezoand pyroelectricity were found in wool, hair, wood, bone and tendon. Recently, ferroelectricity has been identified in a surprisingly large number of biologically relevant materials, including hydroxyapatite, aortic walls and elastin. Inspired by the variety of natural electroactive materials, a wealth of new elastomers and polymers were designed recently, including an all organic elastomer electret and self-healing dielectric elastomers. Let's further draw inspiration from nature and widen the utilization of electroactive polymers towards (mobile) healthcare and biomedical applications. Ferroelectrets, internally charged polymer foams with a strong piezoelectric thickness coefficient are employed in biomedical sensing, for example as blood pressure and pulse sensor, as vital signs monitor or for the detection of tonicclonic seizures. Piezo- and pyroelectric polymers are booming in printed electronics research. They provide electronic skin the ability to "feel" pressure and temperature changes, or to generate electrical energy from vibrations and motions, even from contractile and relaxation motions of the heart and lung. Dielectric elastomers are pioneered by StretchSense as wearable motion capture sensors, monitoring pressure, stretch, bend and shear, quantifying comfort in sports and healthcare. On the cellular level, electroactive polymer arrays are used to study mechanotransduction of individual cells. Ionic electroactive polymers show potential to be used in implantable electroactive biomedical devices. Already with the currently available science and technology, we are at the verge of witnessing the demonstration of truly complex bionic systems.

  17. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  18. Sagace: A web-based search engine for biomedical databases in Japan

    Directory of Open Access Journals (Sweden)

    Morita Mizuki

    2012-10-01

    Full Text Available Abstract Background In the big data era, biomedical research continues to generate a large amount of data, and the generated information is often stored in a database and made publicly available. Although combining data from multiple databases should accelerate further studies, the current number of life sciences databases is too large to grasp features and contents of each database. Findings We have developed Sagace, a web-based search engine that enables users to retrieve information from a range of biological databases (such as gene expression profiles and proteomics data and biological resource banks (such as mouse models of disease and cell lines. With Sagace, users can search more than 300 databases in Japan. Sagace offers features tailored to biomedical research, including manually tuned ranking, a faceted navigation to refine search results, and rich snippets constructed with retrieved metadata for each database entry. Conclusions Sagace will be valuable for experts who are involved in biomedical research and drug development in both academia and industry. Sagace is freely available at http://sagace.nibio.go.jp/en/.

  19. A Paradigm for the Next Millenium: Health Information Science.

    Science.gov (United States)

    Sadler, Lewis

    1991-01-01

    Described is a curriculum for a new multidisciplinary science-Health Information Science-that incorporates aspects of computer science, cognitive psychology, bioengineering, biomedical visualization, medicine, dentistry, anthropology, mathematics, library science, and the visual arts. The situation of the medical illustration profession is…

  20. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  1. Multiscale integration of -omic, imaging, and clinical data in biomedical informatics.

    Science.gov (United States)

    Phan, John H; Quo, Chang F; Cheng, Chihwen; Wang, May Dongmei

    2012-01-01

    This paper reviews challenges and opportunities in multiscale data integration for biomedical informatics. Biomedical data can come from different biological origins, data acquisition technologies, and clinical applications. Integrating such data across multiple scales (e.g., molecular, cellular/tissue, and patient) can lead to more informed decisions for personalized, predictive, and preventive medicine. However, data heterogeneity, community standards in data acquisition, and computational complexity are big challenges for such decision making. This review describes genomic and proteomic (i.e., molecular), histopathological imaging (i.e., cellular/tissue), and clinical (i.e., patient) data; it includes case studies for single-scale (e.g., combining genomic or histopathological image data), multiscale (e.g., combining histopathological image and clinical data), and multiscale and multiplatform (e.g., the Human Protein Atlas and The Cancer Genome Atlas) data integration. Numerous opportunities exist in biomedical informatics research focusing on integration of multiscale and multiplatform data.

  2. Biomedical informatics: we are what we publish.

    Science.gov (United States)

    Elkin, P L; Brown, S H; Wright, G

    2013-01-01

    . Greater understanding of the Biomedical Informatics Literature has the potential to lead to improved self-awareness for our field.

  3. Determination of death: Metaphysical and biomedical discourse

    Directory of Open Access Journals (Sweden)

    Irayda Jakušovaitė

    2016-01-01

    Full Text Available The prominence of biomedical criteria relying on brain death reduces the impact of metaphysical, anthropological, psychosocial, cultural, religious, and legal aspects disclosing the real value and essence of human life. The aim of this literature review is to discuss metaphysical and biomedical approaches toward death and their complimentary relationship in the determination of death. A critical appraisal of theoretical and scientific evidence and legal documents supported analytical discourse. In the metaphysical discourse of death, two main questions about what human death is and how to determine the fact of death clearly separate the ontological and epistemological aspects of death. During the 20th century, various understandings of human death distinguished two different approaches toward the human: the human is a subject of activities or a subject of the human being. Extinction of the difference between the entities and the being, emphasized as rational–logical instrumentation, is not sufficient to understand death thoroughly. Biological criteria of death are associated with biological features and irreversible loss of certain cognitive capabilities. Debating on the question “Does a brain death mean death of a human being?” two approaches are considering: the body-centrist and the mind-centrist. By bridging those two alternatives human death appears not only as biomedical, but also as metaphysical phenomenon. It was summarized that a predominance of clinical criteria for determination of death in practice leads to medicalization of death and limits the holistic perspective toward individual's death. Therefore, the balance of metaphysical and biomedical approaches toward death and its determination would decrease the medicalization of the concept of death.

  4. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Research Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Multimedia Software Laboratory Computer Science Nanotechnology for Sustainable Energy and Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  6. Eponyms in medical sciences: historical errors that lead to injustice

    OpenAIRE

    Jorge Eduardo Duque-Parra; John Barco-Ríos; Natalia Dávila-Alzate

    2018-01-01

    Introduction: Throughout history, eponyms have been used in medical sciences to designate anatomical structures although they do not provide any descriptive or functional information, which is equivalent to a mistake in the light of current thinking. Double and triple eponyms have been used to name the same structure, thus creating confusion that leads to believe that a discovery or description was made by several persons at the same time. Although eponyms have been abolished from anatomical ...

  7. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  8. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  9. "Partners in Science": A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-01-01

    "Partners in Science" is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves…

  10. Journal of Medicine and Biomedical Research - Vol 14, No 1 (2015)

    African Journals Online (AJOL)

    Journal of Medicine and Biomedical Research - Vol 14, No 1 (2015) ... Histopathological effects of oral and subcutaneous administration of Roselle Calyx ... Ameliorative effect of Vitamin C on lead induced hepatotoxicty in rats · EMAIL ... Effect of Hibiscus sabdariffa calyx extract on stressed rabbit plasma cholesterol status ...

  11. SciRide Finder: a citation-based paradigm in biomedical literature search.

    Science.gov (United States)

    Volanakis, Adam; Krawczyk, Konrad

    2018-04-18

    There are more than 26 million peer-reviewed biomedical research items according to Medline/PubMed. This breadth of information is indicative of the progress in biomedical sciences on one hand, but an overload for scientists performing literature searches on the other. A major portion of scientific literature search is to find statements, numbers and protocols that can be cited to build an evidence-based narrative for a new manuscript. Because science builds on prior knowledge, such information has likely been written out and cited in an older manuscript. Thus, Cited Statements, pieces of text from scientific literature supported by citing other peer-reviewed publications, carry significant amount of condensed information on prior art. Based on this principle, we propose a literature search service, SciRide Finder (finder.sciride.org), which constrains the search corpus to such Cited Statements only. We demonstrate that Cited Statements can carry different information to this found in titles/abstracts and full text, giving access to alternative literature search results than traditional search engines. We further show how presenting search results as a list of Cited Statements allows researchers to easily find information to build an evidence-based narrative for their own manuscripts.

  12. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Science and technology of biocompatible thin films for implantable biomedical devices.

    Energy Technology Data Exchange (ETDEWEB)

    Li, W.; Kabius, B.; Auciello, O.; Materials Science Division

    2010-01-01

    This presentation focuses on reviewing research to develop two critical biocompatible film technologies to enable implantable biomedical devices, namely: (1) development of bioinert/biocompatible coatings for encapsulation of Si chips implantable in the human body (e.g., retinal prosthesis implantable in the human eye) - the coating involves a novel ultrananocrystalline diamond (UNCD) film or hybrid biocompatible oxide/UNCD layered films; and (2) development of biocompatible films with high-dielectric constant and microfabrication process to produce energy storage super-capacitors embedded in the microchip to achieve full miniaturization for implantation into the human body.

  14. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields

    OpenAIRE

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn

    2017-01-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agricultur...

  15. A Perspective on Promoting Diversity in the Biomedical Research Workforce: The National Heart, Lung, and Blood Institute’s PRIDE Program

    OpenAIRE

    Boyington, Josephine E.A.; Maihle, Nita J.; Rice, Treva K.; Gonzalez, Juan E.; Hess, Caryl A.; Makala, Levi H.; Jeffe, Donna B.; Ogedegbe, Gbenga; Rao, Dabeeru C.; Dávila-Román, Victor G.; Pace, Betty S.; Jean-Louis, Girardin; Boutjdir, Mohamed

    2016-01-01

    Aspiring junior investigators from groups underrepresented in the biomedical sciences face various challenges as they pursue research independence. However, the biomedical research enterprise needs their participation to effectively address critical research issues such as health disparities and health inequities. In this article, we share a research education and mentoring initiative that seeks to address this challenge: Programs to Increase Diversity among Individuals Engaged in Health Rela...

  16. International Journal of Biological and Chemical Sciences: Editorial ...

    African Journals Online (AJOL)

    The International Journal of Biological and Chemical Sciences (IJBCS) is a journal ... IJBCS publishes original research papers, critical up-to-date and concise ... Department of Biomedical Sciences, College of Osteopathic Medicine, Ohio ...

  17. Analysis of uncertainty and variability in finite element computational models for biomedical engineering:characterization and propagation

    Directory of Open Access Journals (Sweden)

    Nerea Mangado

    2016-11-01

    Full Text Available Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  18. Analysis of Uncertainty and Variability in Finite Element Computational Models for Biomedical Engineering: Characterization and Propagation.

    Science.gov (United States)

    Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González

    2016-01-01

    Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.

  19. Fellowship | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Address: Centre for Biomedical Engineering, Indian Institute of Technology, ..... Bag, Dr Amulya Kumar ..... Specialization: Atmospheric Sciences, Global Change & Atmospheric Environment, Urban Air Pollution & Chemical-Climate Change, ...

  20. COEUS: "semantic web in a box" for biomedical applications.

    Science.gov (United States)

    Lopes, Pedro; Oliveira, José Luís

    2012-12-17

    As the "omics" revolution unfolds, the growth in data quantity and diversity is bringing about the need for pioneering bioinformatics software, capable of significantly improving the research workflow. To cope with these computer science demands, biomedical software engineers are adopting emerging semantic web technologies that better suit the life sciences domain. The latter's complex relationships are easily mapped into semantic web graphs, enabling a superior understanding of collected knowledge. Despite increased awareness of semantic web technologies in bioinformatics, their use is still limited. COEUS is a new semantic web framework, aiming at a streamlined application development cycle and following a "semantic web in a box" approach. The framework provides a single package including advanced data integration and triplification tools, base ontologies, a web-oriented engine and a flexible exploration API. Resources can be integrated from heterogeneous sources, including CSV and XML files or SQL and SPARQL query results, and mapped directly to one or more ontologies. Advanced interoperability features include REST services, a SPARQL endpoint and LinkedData publication. These enable the creation of multiple applications for web, desktop or mobile environments, and empower a new knowledge federation layer. The platform, targeted at biomedical application developers, provides a complete skeleton ready for rapid application deployment, enhancing the creation of new semantic information systems. COEUS is available as open source at http://bioinformatics.ua.pt/coeus/.

  1. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  2. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  3. Biomedical nanotechnology.

    Science.gov (United States)

    Hurst, Sarah J

    2011-01-01

    This chapter summarizes the roles of nanomaterials in biomedical applications, focusing on those highlighted in this volume. A brief history of nanoscience and technology and a general introduction to the field are presented. Then, the chemical and physical properties of nanostructures that make them ideal for use in biomedical applications are highlighted. Examples of common applications, including sensing, imaging, and therapeutics, are given. Finally, the challenges associated with translating this field from the research laboratory to the clinic setting, in terms of the larger societal implications, are discussed.

  4. The role of a creative "joint assignment" project in biomedical engineering bachelor degree education.

    Science.gov (United States)

    Jiehui Jiang; Yuting Zhang; Mi Zhou; Xiaosong Zheng; Zhuangzhi Yan

    2017-07-01

    Biomedical Engineering (BME) bachelor education aims to train qualified engineers who devote themselves to addressing biological and medical problems by integrating the technological, medical and biological knowledge. Design thinking and teamwork with other disciplines are necessary for biomedical engineers. In the current biomedical engineering education system of Shanghai University (SHU), however, such design thinking and teamwork through a practical project is lacking. This paper describes a creative "joint assignment" project in Shanghai University, China, which has provided BME bachelor students a two-year practical experience to work with students from multidisciplinary departments including sociology, mechanics, computer sciences, business and art, etc. To test the feasibility of this project, a twenty-month pilot project has been carried out from May 2015 to December 2016. The results showed that this pilot project obviously enhanced competitive power of BME students in Shanghai University, both in the capabilities of design thinking and teamwork.

  5. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  6. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  7. Pathophysiologic mechanisms of biomedical nanomaterials

    International Nuclear Information System (INIS)

    Wang, Liming; Chen, Chunying

    2016-01-01

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs

  8. Pathophysiologic mechanisms of biomedical nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.

  9. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  10. Biomedical informatics and translational medicine

    Directory of Open Access Journals (Sweden)

    Sarkar Indra

    2010-02-01

    Full Text Available Abstract Biomedical informatics involves a core set of methodologies that can provide a foundation for crossing the "translational barriers" associated with translational medicine. To this end, the fundamental aspects of biomedical informatics (e.g., bioinformatics, imaging informatics, clinical informatics, and public health informatics may be essential in helping improve the ability to bring basic research findings to the bedside, evaluate the efficacy of interventions across communities, and enable the assessment of the eventual impact of translational medicine innovations on health policies. Here, a brief description is provided for a selection of key biomedical informatics topics (Decision Support, Natural Language Processing, Standards, Information Retrieval, and Electronic Health Records and their relevance to translational medicine. Based on contributions and advancements in each of these topic areas, the article proposes that biomedical informatics practitioners ("biomedical informaticians" can be essential members of translational medicine teams.

  11. Measurement of OH, NO, O and N atoms in helium plasma jet for ROS/RNS controlled biomedical processes

    Science.gov (United States)

    Yonemori, Seiya; Kamakura, Taku; Ono, Ryo

    2014-10-01

    Atmospheric-pressure plasmas are of emerging interest for new plasma applications such as cancer treatment, cell activation and sterilization. In those biomedical processes, reactive oxygen/nitrogen species (ROS/RNS) are said that they play significant role. It is though that active species give oxidative stress and induce biomedical reactions. In this study, we measured OH, NO, O and N atoms using laser induced fluorescence (LIF) measurement and found that voltage polarity affect particular ROS. When negative high voltage was applied to the plasma jet, O atom density was tripled compared to the case of positive applied voltage. In that case, O atom density was around 3 × 1015 [cm-3] at maximum. In contrast, OH and NO density did not change their density depending on the polarity of applied voltage, measured as in order of 1013 and 1014 [cm-3] at maximum, respectively. From ICCD imaging measurement, it could be seen that negative high voltage enhanced secondary emission in plasma bullet propagation and it can affect the effective production of particular ROS. Since ROS/RNS dose can be a quantitative criterion to control plasma biomedical application, those measurement results is able to be applied for in vivo and in vitro plasma biomedical experiments. This study is supported by the Grant-in-Aid for Science Research by the Ministry of Education, Culture, Sport, Science and Technology.

  12. Blazing the trail essays by leading women in science

    CERN Document Server

    Ideal, Emma

    2013-01-01

    Name a famous scientist. Got one? Now name a famous physicist. Ok, now name a famous female physicist. Ok, now name a famous living female physicist. Stumped? In Blazing the Trail: Essays by Leading Women in Science, 35 highly successful physicists, engineers, and chemists share their personal histories, their passion for discovery, and their secrets for success with the next generation. Essayists candidly recount their experiences – both positive and negative – with an uplifting tone, focusing on lessons learned along the way. The combination of personal stories and advice sends a powerful message to all young women considering scientific careers: I did it, so can you. Here’s how.

  13. On exemplary scientific conduct regarding submission of manuscripts to biomedical informatics journals

    NARCIS (Netherlands)

    Miller, R. A.; Groth, T.; Hasman, A.; Safran, C.; Shortliffe, E. H.; Haux, R.; McCray, A. T.

    2006-01-01

    As the Editors of leading international biomedical informatics journals, the authors report on a recent pattern of improper manuscript submissions to journals in our field. As a guide for future authors, we describe ethical and pragmatic issues related to submitting work for peer-reviewed journal

  14. Use of systematic review to inform the infection risk for biomedical engineers and technicians servicing biomedical devices

    International Nuclear Information System (INIS)

    Smith, Anne-Louise

    2011-01-01

    Full text: Many microorganisms responsible for hospital acquired infections are able to stay viable on surfaces with no visible sign of contamination, in dry conditions and on non-porous surfaces. The infection risk to biomedical staff when servicing biomedical devices is not documented. An indirect approach has been used to examine the different aspects that will affect the risk of infection including a systematic review of microbial contamination and transmission relating to biomedical devices. A systematic review found 58% of biomedical devices have microbial contamination with 13% having at least one pathogenic organism. These microbes can persist for some months. Occupational-infections of biomedical service staff are low compared to other healthcare workers. A biomedical device with contaminated surface or dust was identified as the source of patient outbreaks in 13 papers. The cleaning agent most tested for removal of micro-organisms from devices was alcohol swabs, but sterile water swabs were also effective. However, manufacturers mainly recommend (74%) cleaning devices with water and detergent. Biomedical engineers and technicians have a small risk of being exposed to dangerous micro-organisms on most biomedical devices, but without skin breakage, this exposure is unlikely to cause ill-health. It is recommended that biomedical staff follow good infection control practices, wipe devices with detergent, sterile water or alcohol swabs as recommended by the manufacturer before working on them, and keep alcohol hand rubs accessible at all benches. (author)

  15. The Brazilian research and teaching center in biomedicine and aerospace biomedical engineering.

    Science.gov (United States)

    Russomano, T; Falcao, P F; Dalmarco, G; Martinelli, L; Cardoso, R; Santos, M A; Sparenberg, A

    2008-08-01

    The recent engagement of Brazil in the construction and utilization of the International Space Station has motivated several Brazilian research institutions and universities to establish study centers related to Space Sciences. The Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS) is no exception. The University initiated in 1993 the first degree course training students to operate commercial aircraft in South America (the School of Aeronautical Sciences. A further step was the decision to build the first Brazilian laboratory dedicated to the conduct of experiments in ground-based microgravity simulation. Established in 1998, the Microgravity Laboratory, which was located in the Instituto de Pesquisas Cientificas e Tecnologicas (IPCT), was supported by the Schools of Medicine, Aeronautical Sciences and Electrical Engineering/Biomedical Engineering. At the end of 2006, the Microgravity Laboratory became a Center and was transferred to the School of Engineering. The principal activities of the Microgravity Centre are the development of research projects related to human physiology before, during and after ground-based microgravity simulation and parabolic flights, to aviation medicine in the 21st century and to aerospace biomedical engineering. The history of Brazilian, and why not say worldwide, space science should unquestionably go through PUCRS. As time passes, the pioneering spirit of our University in the aerospace area has become undeniable. This is due to the group of professionals, students, technicians and staff in general that have once worked or are still working in the Center of Microgravity, a group of faculty and students that excel in their undeniable technical-scientific qualifications.

  16. The Fu Foundation School of Engineering & Applied Science - Columbia

    Science.gov (United States)

    Engineering Mechanics Computer Science Earth and Environmental Engineering Electrical Engineering Industrial Engineering & Applied Science - Columbia University Admissions Undergraduates Graduates Distance Learning Physics and Applied Mathematics Biomedical Engineering Chemical Engineering Civil Engineering and

  17. The medical science DMZ: a network design pattern for data-intensive medical science

    Energy Technology Data Exchange (ETDEWEB)

    Peisert, Sean [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Davis, CA (United States). Dept. of computer Science; Corporation for Education Network Initiatives in California (CENIC), Berkeley, CA (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet; Barnett, William [Indiana Univ., Indianapolis, IN (United States). Indiana Clinical and Translational Sciences Inst., Regenstrief Inst.; Balas, Edward [Indiana Univ., Bloomington, IN (United States). Global Research Network Operations Center; Cuff, James [Harvard Univ., Cambridge, MA (United States). Research Computing; Grossman, Robert L. [Univ. of Chicago, IL (United States). Center for Data Intensive Science; Berman, Ari [BioTeam, Middleton, MA (United States); Shankar, Anurag [Indiana Univ., Bloomington, IN (United States). Pervasive Technology Inst.; Tierney, Brian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). ESnet

    2017-10-06

    We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations.High-end networking, packet-filter firewalls, network intrusion-detection systems.We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs.The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows.By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high

  18. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Science.gov (United States)

    2010-11-10

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9224-7] Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of Workshop... (NAAQS) for Lead (Pb), EPA is announcing that a workshop to evaluate initial draft materials for the Pb...

  19. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.

    Science.gov (United States)

    Jácome, Alberto G; Fdez-Riverola, Florentino; Lourenço, Anália

    2016-07-01

    Text mining and semantic analysis approaches can be applied to the construction of biomedical domain-specific search engines and provide an attractive alternative to create personalized and enhanced search experiences. Therefore, this work introduces the new open-source BIOMedical Search Engine Framework for the fast and lightweight development of domain-specific search engines. The rationale behind this framework is to incorporate core features typically available in search engine frameworks with flexible and extensible technologies to retrieve biomedical documents, annotate meaningful domain concepts, and develop highly customized Web search interfaces. The BIOMedical Search Engine Framework integrates taggers for major biomedical concepts, such as diseases, drugs, genes, proteins, compounds and organisms, and enables the use of domain-specific controlled vocabulary. Technologies from the Typesafe Reactive Platform, the AngularJS JavaScript framework and the Bootstrap HTML/CSS framework support the customization of the domain-oriented search application. Moreover, the RESTful API of the BIOMedical Search Engine Framework allows the integration of the search engine into existing systems or a complete web interface personalization. The construction of the Smart Drug Search is described as proof-of-concept of the BIOMedical Search Engine Framework. This public search engine catalogs scientific literature about antimicrobial resistance, microbial virulence and topics alike. The keyword-based queries of the users are transformed into concepts and search results are presented and ranked accordingly. The semantic graph view portraits all the concepts found in the results, and the researcher may look into the relevance of different concepts, the strength of direct relations, and non-trivial, indirect relations. The number of occurrences of the concept shows its importance to the query, and the frequency of concept co-occurrence is indicative of biological relations

  20. The Role of Scientific Communication Skills in Trainees’ Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D.; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees’ intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees’ intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  1. Bioethical Principles of Biomedical Research Involving Animals

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2011-08-01

    Full Text Available A major requirement both of national and international ethical codes for human experimentation, and of national legislation in many cases, is that new substances or devices should not be used for the first time on human beings unless previous tests on animals have provided a reasonable presumption of their safety. That is so called: Good Clinical Praxis (GCP. There are two international ethical codes intended principally for the guidance of countries or institutions that have not yet formulated their own ethical requirements for human experimentation: The Declaration of Helsinki of the World Medical Association and The Proposed International Guidelines for Biomedical Research Involving Human Subjects of the Council for International Organizations of Medical Sciences and the World Health Organization[1].Animal experimentation is fundamental to the biomedical sciences, not only for the advancement of specific vital processes, but also for the improvement of methods of prevention, diagnosis, and treatment of disease both in man and in animals. The use of animals is also indispensable for testing the potency and safety of biological substances used in human and veterinary medicine, as well as for determining the toxicity of the rapidly growing number of molecules that never existed before in nature and which may represent a hazard to health. This extensive exploitation by man of animals implies philosophical and moral problems that are not peculiar to their use for scientific purposes, and there are no objective ethical criteria by which to judge claims and counterclaims in such matters[2]. However, there is a consensus that „deliberate cruelty is repugnant”.While many countries have general laws or regulations imposing penalties for ill-treatment of animals, relatively few make specific provision for their use for scientific purposes. Because of differing legal systems and cultural backgrounds there are varying approaches to the use of

  2. Biomedical text mining for research rigor and integrity: tasks, challenges, directions.

    Science.gov (United States)

    Kilicoglu, Halil

    2017-06-13

    An estimated quarter of a trillion US dollars is invested in the biomedical research enterprise annually. There is growing alarm that a significant portion of this investment is wasted because of problems in reproducibility of research findings and in the rigor and integrity of research conduct and reporting. Recent years have seen a flurry of activities focusing on standardization and guideline development to enhance the reproducibility and rigor of biomedical research. Research activity is primarily communicated via textual artifacts, ranging from grant applications to journal publications. These artifacts can be both the source and the manifestation of practices leading to research waste. For example, an article may describe a poorly designed experiment, or the authors may reach conclusions not supported by the evidence presented. In this article, we pose the question of whether biomedical text mining techniques can assist the stakeholders in the biomedical research enterprise in doing their part toward enhancing research integrity and rigor. In particular, we identify four key areas in which text mining techniques can make a significant contribution: plagiarism/fraud detection, ensuring adherence to reporting guidelines, managing information overload and accurate citation/enhanced bibliometrics. We review the existing methods and tools for specific tasks, if they exist, or discuss relevant research that can provide guidance for future work. With the exponential increase in biomedical research output and the ability of text mining approaches to perform automatic tasks at large scale, we propose that such approaches can support tools that promote responsible research practices, providing significant benefits for the biomedical research enterprise. Published by Oxford University Press 2017. This work is written by a US Government employee and is in the public domain in the US.

  3. Project Alexander the Great: a study on the world proliferation of bioengineering/biomedical engineering education.

    Science.gov (United States)

    Abu-Faraj, Ziad O

    2008-01-01

    Bioengineering/Biomedical Engineering is considered amongst the most reputable fields within the global arena, and will likely be the primer for any future breakthroughs in Medicine and Biology. Bioengineering/biomedical engineering education has evolved since late 1950s and is undergoing advancement in leading academic institutions worldwide. This paper delineates an original study on the world proliferation of bioengineering/biomedical engineering education and bears the name 'Project Alexander the Great'. The initial step of the project was to survey all 10448 universities, recognized by the International Association of Universities, spread among the 193 member states of the United Nations within the six continents. The project aims at identifying, disseminating, and networking, through the world-wide-web, those institutions of higher learning that provide bioengineering/biomedical engineering education. The significance of this project is multifold: i) the inception of a web-based 'world-map' in bioengineering/biomedical engineering education for the potential international student desiring to pursue a career in this field; ii) the global networking of bioengineering/biomedical engineering academic/research programs; iii) the promotion of first-class bioengineering/biomedical engineering education and the catalysis of global proliferation of this field; iv) the erection of bridges among educational institutions, industry, and professional societies or organizations involved in Bioengineering/Biomedical Engineering; and v) the catalysis in the establishment of framework agreements for cooperation among the identified institutions offering curricula in this field. This paper presents the results obtained from Africa and North America. The whole project is due to be completed by 2009.

  4. Annals of Medical and Health Sciences Research

    African Journals Online (AJOL)

    The journal covers technical and clinical studies related to health, ethical and social issues in field of all aspects of medicine (Basic and Clinical), Health Sciences, Nursing, Medical Laboratory Sciences, Medical Radiography and Rehabilitation, Pharmacy, Biomedical Engineering, etc. Articles with clinical interest and ...

  5. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  6. Annual tendency of research papers used ICR mice as experimental animals in biomedical research fields.

    Science.gov (United States)

    Kim, Ji Eun; Nam, Jung Hoon; Cho, Joon Young; Kim, Kil Soo; Hwang, Dae Youn

    2017-06-01

    Institute of Cancer Research (ICR) mice have been widely used in various research fields including toxicology, oncology, pharmacology, and pharmaceutical product safety testing for decades. However, annual tendency of research papers involving ICR mice in various biomedical fields has not been previously analyzed. In this study, we examined the numbers of papers that used ICR mice as experimental animals in the social science, natural science, engineering, medicine-pharmacy, marine agriculture-fishery, and art-kinesiology fields by analyzing big data. Numbers of ICR mouse-used papers gradually increased from 1961 to 2014, but small decreases were observed in 2015 and 2016. The largest number of ICR-used papers were published in the medicine-pharmacy field, followed by natural science and art-kinesiology fields. There were no ICR mouse-used papers in other fields. Furthermore, ICR mice have been widely employed in cell biology studies within the natural science field as well as in biochemistry and pathology in the medicine-pharmacy field. Few ICR mouse-used papers were published in exercise biochemistry and exercise nutrition in the art-kinesiology field. Regardless in most fields, the total numbers of published papers involving ICR mice were higher in 2014 than in other years, although the numbers in some fields including dentistry, veterinary science, and dermatology were high in 2016. Taken together, the present study shows that various ICR stocks, including Korl:ICR mice, are widely employed as experimental animals in various biomedical research fields.

  7. Disparities in HIV knowledge and attitudes toward biomedical interventions among the non-medical HIV workforce in the United States.

    Science.gov (United States)

    Copeland, Raniyah M; Wilson, Phill; Betancourt, Gabriela; Garcia, David; Penner, Murray; Abravanel, Rebecca; Wong, Eric Y; Parisi, Lori D

    2017-12-01

    Non-medical, community-based workers play a critical role in supporting people living with (or at risk of acquiring) HIV along the care continuum. The biomedical nature of promising advances in HIV prevention, such as pre-exposure prophylaxis and treatment-as-prevention, requires frontline workers to be knowledgeable about HIV science and treatment. This study was developed to: measure knowledge of HIV science and treatment within the HIV non-medical workforce, evaluate workers' familiarity with and attitudes toward recent biomedical interventions, and identify factors that may affect HIV knowledge and attitudes. A 62-question, web-based survey was completed in English or Spanish between 2012 and 2014 by 3663 US-based employees, contractors, and volunteers working in AIDS service organizations, state/local health departments, and other community-based organizations in a non-medical capacity. Survey items captured the following: respondent demographics, HIV science and treatment knowledge, and familiarity with and attitudes toward biomedical interventions. An average of 61% of HIV knowledge questions were answered correctly. Higher knowledge scores were associated with higher education levels, work at organizations that serve people living with HIV/AIDS or who are at a high risk of acquiring HIV, and longer tenure in the field. Lower knowledge scores were associated with non-Hispanic Black or Black race/ethnicity and taking the survey in Spanish. Similarly, subgroup analyses showed that respondents who were non-Hispanic Black or Hispanic (versus non-Hispanic white), as well as those located in the South (versus other regions) scored significantly lower. These subpopulations were also less familiar with and had less positive attitudes toward newer biomedical prevention interventions. Respondents who took the survey in Spanish (versus English) had lower knowledge scores and higher familiarity with, but generally less positive attitudes toward, biomedical interventions

  8. Next-generation science information network for leading-edge applications

    International Nuclear Information System (INIS)

    Urushidani, S.; Matsukata, J.

    2008-01-01

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines

  9. Next-generation science information network for leading-edge applications

    Energy Technology Data Exchange (ETDEWEB)

    Urushidani, S. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)], E-mail: urushi@nii.ac.jp; Matsukata, J. [National Institute of Informatics, 2-1-2 Hitotsubashi Chiyoda-ku, Tokyo 101-8430 (Japan)

    2008-04-15

    High-speed networks are definitely essential tools for leading-edge applications in many research areas, including nuclear fusion research. This paper describes a number of advanced features in the Japanese next-generation science information network, called SINET3, and gives researchers clues on the uses of advanced high-speed network for their applications. The network services have four categories, multiple layer transfer, enriched virtual private network, enhanced quality-of-service, and bandwidth on demand services, and comprise a versatile service platform. The paper also describes the network architecture and advanced networking capabilities that enable economical service accommodation and flexible network resource assignment as well as effective use of Japan's first 40-Gbps lines.

  10. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  11. [Master course in biomedical engineering].

    Science.gov (United States)

    Jobbágy, Akos; Benyó, Zoltán; Monos, Emil

    2009-11-22

    The Bologna Declaration aims at harmonizing the European higher education structure. In accordance with the Declaration, biomedical engineering will be offered as a master (MSc) course also in Hungary, from year 2009. Since 1995 biomedical engineering course has been held in cooperation of three universities: Semmelweis University, Budapest Veterinary University, and Budapest University of Technology and Economics. One of the latter's faculties, Faculty of Electrical Engineering and Informatics, has been responsible for the course. Students could start their biomedical engineering studies - usually in parallel with their first degree course - after they collected at least 180 ECTS credits. Consequently, the biomedical engineering course could have been considered as a master course even before the Bologna Declaration. Students had to collect 130 ECTS credits during the six-semester course. This is equivalent to four-semester full-time studies, because during the first three semesters the curriculum required to gain only one third of the usual ECTS credits. The paper gives a survey on the new biomedical engineering master course, briefly summing up also the subjects in the curriculum.

  12. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  13. College of Engineering & Applied Science

    Science.gov (United States)

    Computational Mechanics Laboratory Environmental Engineering Laboratory Geotechnical Engineering Laboratory Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  14. Reaping the benefits of biomedical research: partnerships required.

    Science.gov (United States)

    Portilla, Lili M; Alving, Barbara

    2010-06-09

    Reaping the benefits of investments in biomedical research can be achieved most efficiently through active collaboration among industry, academia, government, and nonprofit organizations. The National Institutes of Health (NIH) are exploring multiple ways in which to increase the efficiency of the translational process. Investigators involved in the NIH-funded Clinical and Translational Science Awards are developing public-private partnerships, addressing the barriers to collaboration, training the next generation of interdisciplinary team-oriented researchers, and producing open-source tools for collaboration. NIH is engaging with industry through the Foundation for the NIH and the Small Business Innovation Research Awards.

  15. Introduction to fiber optics: Sensors for biomedical applications.

    Science.gov (United States)

    Shah, R Y; Agrawal, Y K

    2011-01-01

    The paper focuses on the introduction of fiber optics, a fusion of science and engineering and describes the materials generally used for its construction along with the procedure used to design the fibers. It gives an idea of the materials used for the construction along with the pros and cons associated with them and various factors governing the emission of ultraviolet, infrared or visible radiations. The central core revolves around the applications of optical fibers in the medical and biomedical field and extending the use of the same in pharmaceutical industry as probes in quality control and dosage form analysis.

  16. [Popper's critical rationalism and the biomedical sciences].

    Science.gov (United States)

    Havlícek, J

    1993-11-08

    Popper's rationalism makes an important contribution of the 20th century philosophy to the methodology of natural sciences. Through its criterion of falsification, it enabled the scientists to take a critical but constructive view on hypotheses, conjectures and theories. This attitude found its application also in medicine.

  17. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. © 2015 C. Cameron et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  19. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  20. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications.

    Science.gov (United States)

    Luo, Zhentao; Zheng, Kaiyuan; Xie, Jianping

    2014-05-25

    Gold and silver nanoclusters or Au/Ag NCs with core sizes smaller than 2 nm have been an attractive frontier of nanoparticle research because of their unique physicochemical properties such as well-defined molecular structure, discrete electronic transitions, quantized charging, and strong luminescence. As a result of these unique properties, ultrasmall size, and good biocompatibility, Au/Ag NCs have great potential for a variety of biomedical applications, such as bioimaging, biosensing, antimicrobial agents, and cancer therapy. In this feature article, we will first discuss some critical biological considerations, such as biocompatibility and renal clearance, of Au/Ag NCs that are applied for biomedical applications, leading to some design criteria for functional Au/Ag NCs in the biological settings. According to these biological considerations, we will then survey some efficient synthetic strategies for the preparation of protein- and peptide-protected Au/Ag NCs with an emphasis on our recent contributions in this fast-growing field. In the last part, we will highlight some potential biomedical applications of these protein- and peptide-protected Au/Ag NCs. It is believed that with continued efforts to understand the interactions of biomolecule-protected Au/Ag NCs with the biological systems, scientists can largely realize the great potential of Au/Ag NCs for biomedical applications, which could finally pave their way towards clinical use.

  1. Publication ethics in biomedical journals from countries in Central and Eastern Europe.

    Science.gov (United States)

    Broga, Mindaugas; Mijaljica, Goran; Waligora, Marcin; Keis, Aime; Marusic, Ana

    2014-03-01

    Publication ethics is an important aspect of both the research and publication enterprises. It is particularly important in the field of biomedical science because published data may directly affect human health. In this article, we examine publication ethics policies in biomedical journals published in Central and Eastern Europe. We were interested in possible differences between East European countries that are members of the European Union (Eastern EU) and South-East European countries (South-East Europe) that are not members of the European Union. The most common ethical issues addressed by all journals in the region were redundant publication, peer review process, and copyright or licensing details. Image manipulation, editors' conflicts of interest and registration of clinical trials were the least common ethical policies. Three aspects were significantly more common in journals published outside the EU: statements on the endorsement of international editorial standards, contributorship policy, and image manipulation. On the other hand, copyright or licensing information were more prevalent in journals published in the Eastern EU. The existence of significant differences among biomedical journals' ethical policies calls for further research and active measures to harmonize policies across journals.

  2. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  3. Rotation Covariant Image Processing for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Henrik Skibbe

    2013-01-01

    Full Text Available With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  4. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  5. Laser ablation ICP-MS for quantitative biomedical applications

    International Nuclear Information System (INIS)

    Konz, Ioana; Fernandez, Beatriz; Fernandez, M.L.; Pereiro, Rosario; Sanz-Medel, Alfredo

    2012-01-01

    LA-ICP-MS allows precise, relatively fast, and spatially resolved measurements of elements and isotope ratios at trace and ultratrace concentration levels with minimal sample preparation. Over the past few years this technique has undergone rapid development, and it has been increasingly applied in many different fields, including biological and medical research. The analysis of essential, toxic, and therapeutic metals, metalloids, and nonmetals in biomedical tissues is a key task in the life sciences today, and LA-ICP-MS has proven to be an excellent complement to the organic MS techniques that are much more commonly employed in the biomedical field. In order to provide an appraisal of the fast progress that is occurring in this field, this review critically describes new developments for LA-ICP-MS as well as the most important applications of LA-ICP-MS, with particular emphasis placed on the quantitative imaging of elements in biological tissues, the analysis of heteroatom-tagged proteins after their separation and purification by gel electrophoresis, and the analysis of proteins that do not naturally have ICP-MS-detectable elements in their structures, thus necessitating the use of labelling strategies. (orig.)

  6. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, Thierry M.; Richardson, Laurie L.; Reynolds, T.L.; Willis, Bette L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  7. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  8. Eponyms in medical sciences: historical errors that lead to injustice

    Directory of Open Access Journals (Sweden)

    Jorge Eduardo Duque-Parra

    2018-01-01

    Full Text Available Introduction: Throughout history, eponyms have been used in medical sciences to designate anatomical structures although they do not provide any descriptive or functional information, which is equivalent to a mistake in the light of current thinking. Double and triple eponyms have been used to name the same structure, thus creating confusion that leads to believe that a discovery or description was made by several persons at the same time. Although eponyms have been abolished from anatomical terminology for over eight decades and still generate problems in communication and in the teachinglearning process, medical sciences professionals continue to use them. Objective: To analyze some examples of arbitrary assignment of eponyms in morphology that have led to historical errors and perpetuated them. Conclusion: Granting an eponym to an anatomical structure may not reflect the truth about the person who discovered it and may obey to arbitrary factors that induce possible historical errors and injustice. In addition, using them hinders communication between health professionals, as well as the teaching-learning process.

  9. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics. © 2013 Wiley Periodicals, Inc.

  10. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  11. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  12. Building a more diverse biomedical engineering workforce: Biomedical engineering at the university of the district of Columbia, a historically black college & university.

    Science.gov (United States)

    Thompson, Lara A; Adebayo, A Segun; Nian Zhang; Haghani, Sasan; Dowell, Kathleen; Shetty, Devdas

    2016-08-01

    Biomedical Engineering (BME) is a new, multidisciplinary, and rapidly growing field, however, the BME Workforce suffers from limited ethnic and gender diversity. Despite the demand and growth of this new field due to its public health importance, only 4 out of the 107 Historically Black Colleges and Universities (HBCUs) nationwide offers a Bachelor's of Science (B.S.) in Bio-Engineering related fields. In order to contribute to a growing BME Workforce, HBCUs need to react and offer more degree-programs relevant to BME. At the University of the District of Columbia (UDC), an HBCU and the District's only public institution for higher learning, we have recently established a new, degree program: Bachelor of Science in Biomedical Engineering (B.S. in BME) full-board approved in Fall 2014, with program activities initiated in Fall 2015. The educational goal of this program is to enhance the quality and diversity of the BME Workforce via student professional development, new and relevant BME courses, and BME scholarly activities (e.g., guest lectures and journal club sessions), ultimately to increase the number of ethnic minorities pursuing careers and degrees in BME. Through our program activities, we are aiming to meet the nation's demand to contribute to a diverse BME workforce, directed towards solving problems in human health. A secondary, but related goal, is to increase the diversity of STEM-related fields. This paper summarizes our initial, but encouraging, BME activity-related findings. However, this study will be longitudinal (on a multiple year time period) to observe the true outcomes of our initiative.

  13. Engineering excellence in breakthrough biomedical technologies: bioengineering at the University of California, Riverside.

    Science.gov (United States)

    Schultz, Jane S; Rodgers, V G J

    2012-07-01

    The Department of Bioengineering at the University of California, Riverside (UCR), was established in 2006 and is the youngest department in the Bourns College of Engineering. It is an interdisciplinary research engine that builds strength from highly recognized experts in biochemistry, biophysics, biology, and engineering, focusing on common critical themes. The range of faculty research interests is notable for its diversity, from the basic cell biology through cell function to the physiology of the whole organism, each directed at breakthroughs in biomedical devices for measurement and therapy. The department forges future leaders in bioengineering, mirroring the field in being energetic, interdisciplinary, and fast moving at the frontiers of biomedical discoveries. Our educational programs combine a solid foundation in bio logical sciences and engineering, diverse communication skills, and training in the most advanced quantitative bioengineering research. Bioengineering at UCR also includes the Bioengineering Interdepartmental Graduate (BIG) program. With its slogan Start-Grow-Be-BIG, it is already recognized for its many accomplishments, including being third in the nation in 2011 for bioengineering students receiving National Science Foundation graduate research fellowships as well as being one of the most ethnically inclusive programs in the nation.

  14. Optimization of behavioral, biobehavioral, and biomedical interventions the multiphase optimization strategy (MOST)

    CERN Document Server

    Collins, Linda M

    2018-01-01

    This book presents a framework for development, optimization, and evaluation of behavioral,  biobehavioral, and biomedical interventions.  Behavioral, biobehavioral, and biomedical interventions are programs with the objective of improving and maintaining human health and well-being, broadly defined, in individuals, families, schools, organizations, or communities.  These interventions may be aimed at, for example, preventing or treating disease, promoting physical and mental health, preventing violence, or improving academic achievement.   This volume introduces the Multiphase Optimization Strategy (MOST), pioneered at The Methodology Center at the Pennsylvania State University, as an alternative to the classical approach of relying solely on the randomized controlled trial (RCT).  MOST borrows heavily from perspectives taken and approaches used in engineering, and also integrates concepts from statistics and behavioral science, including the RCT.  As described in detail in this book, MOST consists of ...

  15. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    Science.gov (United States)

    Zulu, Joseph Mumba; Lisulo, Mpala Mwanza; Besa, Ellen; Kaonga, Patrick; Chisenga, Caroline C; Chomba, Mumba; Simuyandi, Michelo; Banda, Rosemary; Kelly, Paul

    2014-01-01

    Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent. Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views. Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention. Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  16. Improving validity of informed consent for biomedical research in Zambia using a laboratory exposure intervention.

    Directory of Open Access Journals (Sweden)

    Joseph Mumba Zulu

    Full Text Available Complex biomedical research can lead to disquiet in communities with limited exposure to scientific discussions, leading to rumours or to high drop-out rates. We set out to test an intervention designed to address apprehensions commonly encountered in a community where literacy is uncommon, and where complex biomedical research has been conducted for over a decade. We aimed to determine if it could improve the validity of consent.Data were collected using focus group discussions, key informant interviews and observations. We designed an intervention that exposed participants to a detailed demonstration of laboratory processes. Each group was interviewed twice in a day, before and after exposure to the intervention in order to assess changes in their views.Factors that motivated people to participate in invasive biomedical research included a desire to stay healthy because of the screening during the recruitment process, regular advice from doctors, free medical services, and trust in the researchers. Inhibiting factors were limited knowledge about samples taken from their bodies during endoscopic procedures, the impact of endoscopy on the function of internal organs, and concerns about the use of biomedical samples. The belief that blood can be used for Satanic practices also created insecurities about drawing of blood samples. Further inhibiting factors included a fear of being labelled as HIV positive if known to consult heath workers repeatedly, and gender inequality. Concerns about the use and storage of blood and tissue samples were overcome by a laboratory exposure intervention.Selecting a group of members from target community and engaging them in a laboratory exposure intervention could be a useful tool for enhancing specific aspects of consent for biomedical research. Further work is needed to determine the extent to which improved understanding permeates beyond the immediate group participating in the intervention.

  17. Publishing priorities of biomedical research funders

    Science.gov (United States)

    Collins, Ellen

    2013-01-01

    Objectives To understand the publishing priorities, especially in relation to open access, of 10 UK biomedical research funders. Design Semistructured interviews. Setting 10 UK biomedical research funders. Participants 12 employees with responsibility for research management at 10 UK biomedical research funders; a purposive sample to represent a range of backgrounds and organisation types. Conclusions Publicly funded and large biomedical research funders are committed to open access publishing and are pleased with recent developments which have stimulated growth in this area. Smaller charitable funders are supportive of the aims of open access, but are concerned about the practical implications for their budgets and their funded researchers. Across the board, biomedical research funders are turning their attention to other priorities for sharing research outputs, including data, protocols and negative results. Further work is required to understand how smaller funders, including charitable funders, can support open access. PMID:24154520

  18. The use and misuse of biomedical data: is bigger really better?

    Science.gov (United States)

    Hoffman, Sharona; Podgurski, Andy

    2013-01-01

    Very large biomedical research databases, containing electronic health records (EHR) and genomic data from millions of patients, have been heralded recently for their potential to accelerate scientific discovery and produce dramatic improvements in medical treatments. Research enabled by these databases may also lead to profound changes in law, regulation, social policy, and even litigation strategies. Yet, is "big data" necessarily better data? This paper makes an original contribution to the legal literature by focusing on what can go wrong in the process of biomedical database research and what precautions are necessary to avoid critical mistakes. We address three main reasons for approaching such research with care and being cautious in relying on its outcomes for purposes of public policy or litigation. First, the data contained in biomedical databases is surprisingly likely to be incorrect or incomplete. Second, systematic biases, arising from both the nature of the data and the preconceptions of investigators, are serious threats to the validity of research results, especially in answering causal questions. Third, data mining of biomedical databases makes it easier for individuals with political, social, or economic agendas to generate ostensibly scientific but misleading research findings for the purpose of manipulating public opinion and swaying policymakers. In short, this paper sheds much-needed light on the problems of credulous and uninformed acceptance of research results derived from biomedical databases. An understanding of the pitfalls of big data analysis is of critical importance to anyone who will rely on or dispute its outcomes, including lawyers, policymakers, and the public at large. The Article also recommends technical, methodological, and educational interventions to combat the dangers of database errors and abuses.

  19. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications

    OpenAIRE

    Wang, Yongzhong; Fan,Zhen; Shao,Lei; Kong,Xiaowei; Hou,Xianjuan; Tian,Dongrui; Sun,Ying; Xiao,Yazhong; Yu,Li

    2016-01-01

    Yongzhong Wang,1 Zhen Fan,2 Lei Shao,3 Xiaowei Kong,1 Xianjuan Hou,1 Dongrui Tian,1 Ying Sun,1 Yazhong Xiao,1 Li Yu4 1School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People’s Republic of China; 2Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of New Drugs and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, Shanghai, 4Department of Microbiolog...

  20. Reviewing Manuscripts for Biomedical Journals

    Science.gov (United States)

    Garmel, Gus M

    2010-01-01

    Writing for publication is a complex task. For many professionals, producing a well-executed manuscript conveying one's research, ideas, or educational wisdom is challenging. Authors have varying emotions related to the process of writing for scientific publication. Although not studied, a relationship between an author's enjoyment of the writing process and the product's outcome is highly likely. As with any skill, practice generally results in improvements. Literature focused on preparing manuscripts for publication and the art of reviewing submissions exists. Most journals guard their reviewers' anonymity with respect to the manuscript review process. This is meant to protect them from direct or indirect author demands, which may occur during the review process or in the future. It is generally accepted that author identities are masked in the peer-review process. However, the concept of anonymity for reviewers has been debated recently; many editors consider it problematic that reviewers are not held accountable to the public for their decisions. The review process is often arduous and underappreciated, one reason why biomedical journals acknowledge editors and frequently recognize reviewers who donate their time and expertise in the name of science. This article describes essential elements of a submitted manuscript, with the hopes of improving scientific writing. It also discusses the review process within the biomedical literature, the importance of reviewers to the scientific process, responsibilities of reviewers, and qualities of a good review and reviewer. In addition, it includes useful insights to individuals who read and interpret the medical literature. PMID:20740129

  1. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  2. Functionalized carbon nanotubes: biomedical applications

    Science.gov (United States)

    Vardharajula, Sandhya; Ali, Sk Z; Tiwari, Pooja M; Eroğlu, Erdal; Vig, Komal; Dennis, Vida A; Singh, Shree R

    2012-01-01

    Carbon nanotubes (CNTs) are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity. PMID:23091380

  3. A coherent graph-based semantic clustering and summarization approach for biomedical literature and a new summarization evaluation method.

    Science.gov (United States)

    Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol

    2007-11-27

    A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries.

  4. International symposium on Biomedical Data Infrastructure (BDI 2013)

    CERN Document Server

    Dhillon, Sarinder; Advances in biomedical infrastructure 2013

    2013-01-01

    Current Biomedical Databases are independently administered in geographically distinct locations, lending them almost ideally to adoption of intelligent data management approaches. This book focuses on research issues, problems and opportunities in Biomedical Data Infrastructure identifying new issues and directions for future research in Biomedical Data and Information Retrieval, Semantics in Biomedicine, and Biomedical Data Modeling and Analysis. The book will be a useful guide for researchers, practitioners, and graduate-level students interested in learning state-of-the-art development in biomedical data management.

  5. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  6. Defining Compensable Injury in Biomedical Research.

    Science.gov (United States)

    Larkin, Megan E

    2015-01-01

    Biomedical research provides a core social good by enabling medical progress. In the twenty-first century alone, this includes reducing transmission of HIV/AIDS, developing innovative therapies for cancer patients, and exploring the possibilities of personalized medicine. In order to continue to advance medical science, research relies on the voluntary participation of human subjects. Because research is inherently uncertain, unintended harm is an inevitable part of the research enterprise. Currently, injured research participants in the United States must turn to the “litigation lottery” of the tort system in search of compensation. This state of affairs fails research participants, who are too often left uncompensated for devastating losses, and makes the United States an outlier in the international community. In spite of forty years’ worth of Presidential Commissions and other respected voices calling for the development of a no-fault compensation system, no progress has been made to date. One of the reasons for this lack of progress is the failure to develop a coherent ethical basis for an obligation to provide compensation for research related injuries. This problem is exacerbated by the lack of a clear definition of “compensable injury” in the biomedical research context. This article makes a number of important contributions to the scholarship in this growing field. To begin, it examines compensation systems already in existence and concludes that there are four main definitional elements that must be used to define “compensable injury.” Next, it examines the justifications that have been put forth as the basis for an ethical obligation to provide compensation, and settles on retrospective nonmaleficence and distributive and compensatory justice as the most salient and persuasive. Finally, it uses the regulatory elements and the justifications discussed in the first two sections to develop a well-rounded definition of “compensable injury

  7. Biomedical and health informatics education and research at the Information Technology Institute in Egypt.

    Science.gov (United States)

    Hussein, R; Khalifa, A

    2011-01-01

    During the last decade, Egypt has experienced a revolution in the field of Information and Communication Technology (ICT) that has had a corresponding impact on the field of healthcare. Since 1993, the Information Technology Institute (ITI) has been leading the development of the Information Technology (IT) professional training and education in Egypt to produce top quality IT professionals who are considered now the backbone of the IT revolution in Egypt. For the past five years, ITI has been adopting the objective of building high caliber health professionals who can effectively serve the ever-growing information society. Academic links have been established with internationally renowned universities, e.g., Oregon Health and Science University (OHSU) in US, University of Leipzig in Germany, in addition those with the Egyptian Fellowship Board in order to enrich ITI Medical Informatics Education and Research. The ITI Biomedical and Health Informatics (BMHI) education and training programs target fresh graduates as well as life-long learners. Therefore, the program's learning objectives are framed within the context of the four specialization tracks: Healthcare Management (HCM), Biomedical Informatics Research (BMIR), Bioinformatics Professional (BIP), and Healthcare Professional (HCP). The ITI BMHI research projects tackle a wide-range of current challenges in this field, such as knowledge management in healthcare, providing tele-consultation services for diagnosis and treatment of infectious diseases for underserved regions in Egypt, and exploring the cultural and educational aspects of Nanoinformatics. Since 2006, ITI has been positively contributing to develop the discipline of BMHI in Egypt in order to support improved healthcare services.

  8. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    Science.gov (United States)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  9. CNN-based ranking for biomedical entity normalization.

    Science.gov (United States)

    Li, Haodi; Chen, Qingcai; Tang, Buzhou; Wang, Xiaolong; Xu, Hua; Wang, Baohua; Huang, Dong

    2017-10-03

    Most state-of-the-art biomedical entity normalization systems, such as rule-based systems, merely rely on morphological information of entity mentions, but rarely consider their semantic information. In this paper, we introduce a novel convolutional neural network (CNN) architecture that regards biomedical entity normalization as a ranking problem and benefits from semantic information of biomedical entities. The CNN-based ranking method first generates candidates using handcrafted rules, and then ranks the candidates according to their semantic information modeled by CNN as well as their morphological information. Experiments on two benchmark datasets for biomedical entity normalization show that our proposed CNN-based ranking method outperforms traditional rule-based method with state-of-the-art performance. We propose a CNN architecture that regards biomedical entity normalization as a ranking problem. Comparison results show that semantic information is beneficial to biomedical entity normalization and can be well combined with morphological information in our CNN architecture for further improvement.

  10. A Ten-Year Assessment of a Biomedical Engineering Summer Research Internship within a Comprehensive Cancer Center

    Science.gov (United States)

    Wright, A. S.; Wu, X.; Frye, C. A.; Mathur, A. B.; Patrick, C. W., Jr.

    2007-01-01

    A Biomedical Engineering Internship Program conducted within a Comprehensive Cancer Center over a 10 year period was assessed and evaluated. Although this is a non-traditional location for an internship, it is an ideal site for a multidisciplinary training program for science, technology, engineering, and mathematics (STEM) students. We made a…

  11. The medical science DMZ: a network design pattern for data-intensive medical science.

    Science.gov (United States)

    Peisert, Sean; Dart, Eli; Barnett, William; Balas, Edward; Cuff, James; Grossman, Robert L; Berman, Ari; Shankar, Anurag; Tierney, Brian

    2017-10-06

    We describe a detailed solution for maintaining high-capacity, data-intensive network flows (eg, 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet-filter firewalls, network intrusion-detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive datasets between research institutions over national research networks, and give 3 detailed descriptions of implemented Medical Science DMZs. The exponentially increasing amounts of "omics" data, high-quality imaging, and other rapidly growing clinical datasets have resulted in the rise of biomedical research "Big Data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large datasets. Maintaining data-intensive flows that comply with the Health Insurance Portability and Accountability Act (HIPAA) and other regulations presents a new challenge for biomedical research. We describe a strategy that marries performance and security by borrowing from and redefining the concept of a Science DMZ, a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high

  12. Exploration of Global Trend on Biomedical Application of Polyhydroxyalkanoate (PHA): A Patent Survey.

    Science.gov (United States)

    Ponnaiah, Paulraj; Vnoothenei, Nagiah; Chandramohan, Muruganandham; Thevarkattil, Mohamed Javad Pazhayakath

    2018-01-30

    Polyhydroxyalkanoates are bio-based, biodegradable naturally occurring polymers produced by a wide range of organisms, from bacteria to higher mammals. The properties and biocompatibility of PHA make it possible for a wide spectrum of applications. In this context, we analyze the potential applications of PHA in biomedical science by exploring the global trend through the patent survey. The survey suggests that PHA is an attractive candidate in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. In our present study, we explored patents associated with various biomedical applications of polyhydroxyalkanoates. Patent databases of European Patent Office, United States Patent and Trademark Office and World Intellectual Property Organization were mined. We developed an intensive exploration approach to eliminate overlapping patents and sort out significant patents. We demarcated the keywords and search criterions and established search patterns for the database request. We retrieved documents within the recent 6 years, 2010 to 2016 and sort out the collected data stepwise to gather the most appropriate documents in patent families for further scrutiny. By this approach, we retrieved 23,368 patent documents from all the three databases and the patent titles were further analyzed for the relevance of polyhydroxyalkanoates in biomedical applications. This ensued in the documentation of approximately 226 significant patents associated with biomedical applications of polyhydroxyalkanoates and the information was classified into six major groups. Polyhydroxyalkanoates has been patented in such a way that their applications are widely distributed in the medical industry, drug delivery system, dental material, tissue engineering, packaging material as well as other useful products. There are many avenues through which PHA & PHB could be

  13. Learning through projects in the training of biomedical engineers: an application experience

    Science.gov (United States)

    Gambi, José Antonio Li; Peme, Carmen

    2011-09-01

    Learning through Projects in the curriculum consists of both the identification and analysis of a problem, and the design of solution, execution and evaluation strategies, with teams of students. The project is conceived as the creation of a set of strategies articulated and developed during a certain amount of time to solve a problem contextualized in situations continually changing, where the constant evaluation provides feedback to make adjustments. In 2009, Learning through Projects was applied on the subject Hospital Facilities and three intervention projects were developed in health centers. This first stage is restricted to the analysis of the aspects that are considered to be basic to the professional training: a) Context knowledge: The future biomedical engineers must be familiarized with the complex health system where they will develop their profession; b) Team work: This is one of the essential skills in the training of students, since Biomedical Engineering connects the knowledge of sciences of life with the knowledge of exact sciences and technology; c) Regulations: The activities related to the profession require the implementation of regulations; therefore, to be aware of and to apply these regulations is a fundamental aspect to be analyzed in this stage; d) Project evaluation: It refers to the elaboration and studying of co-evaluation reports, which helps to find out if Learning through Projects contributes to the training. This new line of investigation has the purpose of discovering if the application of this learning strategy makes changes in the training of students in relation to their future professional career. The findings of this ongoing investigation will allow for the analysis of the possibility of extending its application. Key words: engineering, biomedical, learning, projects, strategies.

  14. African Journal of Biomedical Research

    African Journals Online (AJOL)

    The African Journal of biomedical Research was founded in 1998 as a joint project ... of the journal led to the formation of a group (Biomedical Communications Group, ... analysis of multidrug resistant aerobic gram-negative clinical isolates from a ... Dental formula and dental abnormalities observed in the Eidolon helvum ...

  15. Special Issue: 3D Printing for Biomedical Engineering.

    Science.gov (United States)

    Chua, Chee Kai; Yeong, Wai Yee; An, Jia

    2017-02-28

    Three-dimensional (3D) printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  16. Where to search top-K biomedical ontologies?

    Science.gov (United States)

    Oliveira, Daniela; Butt, Anila Sahar; Haller, Armin; Rebholz-Schuhmann, Dietrich; Sahay, Ratnesh

    2018-03-20

    Searching for precise terms and terminological definitions in the biomedical data space is problematic, as researchers find overlapping, closely related and even equivalent concepts in a single or multiple ontologies. Search engines that retrieve ontological resources often suggest an extensive list of search results for a given input term, which leads to the tedious task of selecting the best-fit ontological resource (class or property) for the input term and reduces user confidence in the retrieval engines. A systematic evaluation of these search engines is necessary to understand their strengths and weaknesses in different search requirements. We have implemented seven comparable Information Retrieval ranking algorithms to search through ontologies and compared them against four search engines for ontologies. Free-text queries have been performed, the outcomes have been judged by experts and the ranking algorithms and search engines have been evaluated against the expert-based ground truth (GT). In addition, we propose a probabilistic GT that is developed automatically to provide deeper insights and confidence to the expert-based GT as well as evaluating a broader range of search queries. The main outcome of this work is the identification of key search factors for biomedical ontologies together with search requirements and a set of recommendations that will help biomedical experts and ontology engineers to select the best-suited retrieval mechanism in their search scenarios. We expect that this evaluation will allow researchers and practitioners to apply the current search techniques more reliably and that it will help them to select the right solution for their daily work. The source code (of seven ranking algorithms), ground truths and experimental results are available at https://github.com/danielapoliveira/bioont-search-benchmark.

  17. Biomedical Ph.D. students enrolled in two elite universities in the United kingdom and the United States report adopting multiple learning relationships.

    Science.gov (United States)

    Kemp, Matthew W; Lazarus, Benjamin M; Perron, Gabriel G; Hanage, William P; Chapman, Elaine

    2014-01-01

    The ability to form multiple learning relationships is a key element of the doctoral learning environment in the biomedical sciences. Of these relationships, that between student and supervisor has long been viewed as key. There are, however, limited data to describe the student perspective on what makes this relationship valuable. In the present study, we discuss the findings of semi-structured interviews with biomedical Ph.D. students from the United Kingdom and the United States to: i) determine if the learning relationships identified in an Australian biomedical Ph.D. cohort are also important in a larger international student cohort; and ii) improve our understanding of student perceptions of value in their supervisory relationships. 32 students from two research intensive universities, one in the United Kingdom (n = 17), and one in the United States (n = 15) were recruited to participate in a semi-structured interview. Verbatim transcripts were transcribed, validated and analysed using a Miles and Huberman method for thematic analysis. Students reported that relationships with other Ph.D. students, post-doctoral scientists and supervisors were all essential to their learning. Effective supervisory relationships were perceived as the primary source of high-level project guidance, intellectual support and confidence. Relationships with fellow students were viewed as essential for the provision of empathetic emotional support. Technical learning was facilitated, almost exclusively, by relationships with postdoctoral staff. These data make two important contributions to the scholarship of doctoral education in the biomedical sciences. Firstly, they provide further evidence for the importance of multiple learning relationships in the biomedical doctorate. Secondly, they clarify the form of a 'valued' supervisory relationship from a student perspective. We conclude that biomedical doctoral programs should be designed to contain a minimum level of formalised

  18. Biomedical Ph.D. students enrolled in two elite universities in the United kingdom and the United States report adopting multiple learning relationships.

    Directory of Open Access Journals (Sweden)

    Matthew W Kemp

    Full Text Available The ability to form multiple learning relationships is a key element of the doctoral learning environment in the biomedical sciences. Of these relationships, that between student and supervisor has long been viewed as key. There are, however, limited data to describe the student perspective on what makes this relationship valuable. In the present study, we discuss the findings of semi-structured interviews with biomedical Ph.D. students from the United Kingdom and the United States to: i determine if the learning relationships identified in an Australian biomedical Ph.D. cohort are also important in a larger international student cohort; and ii improve our understanding of student perceptions of value in their supervisory relationships.32 students from two research intensive universities, one in the United Kingdom (n = 17, and one in the United States (n = 15 were recruited to participate in a semi-structured interview. Verbatim transcripts were transcribed, validated and analysed using a Miles and Huberman method for thematic analysis.Students reported that relationships with other Ph.D. students, post-doctoral scientists and supervisors were all essential to their learning. Effective supervisory relationships were perceived as the primary source of high-level project guidance, intellectual support and confidence. Relationships with fellow students were viewed as essential for the provision of empathetic emotional support. Technical learning was facilitated, almost exclusively, by relationships with postdoctoral staff.These data make two important contributions to the scholarship of doctoral education in the biomedical sciences. Firstly, they provide further evidence for the importance of multiple learning relationships in the biomedical doctorate. Secondly, they clarify the form of a 'valued' supervisory relationship from a student perspective. We conclude that biomedical doctoral programs should be designed to contain a minimum level

  19. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  20. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  1. Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy

    Science.gov (United States)

    Dunn, Carol Anne

    2009-01-01

    If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two

  2. Lignocellulosic Biomass Derived Functional Materials: Synthesis and Applications in Biomedical Engineering.

    Science.gov (United States)

    Zhang, Lei; Peng, Xinwen; Zhong, Linxin; Chua, Weitian; Xiang, Zhihua; Sun, Runcang

    2017-09-18

    The pertinent issue of resources shortage arising from global climate change in the recent years has accentuated the importance of materials that are environmental friendly. Despite the merits of current material like cellulose as the most abundant natural polysaccharide on earth, the incorporation of lignocellulosic biomass has the potential to value-add the recent development of cellulose-derivatives in drug delivery systems. Lignocellulosic biomass, with a hierarchical structure, comprised of cellulose, hemicellulose and lignin. As an excellent substrate that is renewable, biodegradable, biocompatible and chemically accessible for modified materials, lignocellulosic biomass sets forth a myriad of applications. To date, materials derived from lignocellulosic biomass have been extensively explored for new technological development and applications, such as biomedical, green electronics and energy products. In this review, chemical constituents of lignocellulosic biomass are first discussed before we critically examine the potential alternatives in the field of biomedical application. In addition, the pretreatment methods for extracting cellulose, hemicellulose and lignin from lignocellulosic biomass as well as their biological applications including drug delivery, biosensor, tissue engineering etc will be reviewed. It is anticipated there will be an increasing interest and research findings in cellulose, hemicellulose and lignin from natural resources, which help provide important directions for the development in biomedical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Drawing lithography for microneedles: a review of fundamentals and biomedical applications.

    Science.gov (United States)

    Lee, Kwang; Jung, Hyungil

    2012-10-01

    A microneedle is a three-dimensional (3D) micromechanical structure and has been in the spotlight recently as a drug delivery system (DDS). Because a microneedle delivers the target drug after penetrating the skin barrier, the therapeutic effects of microneedles proceed from its 3D structural geometry. Various types of microneedles have been fabricated using subtractive micromanufacturing methods which are based on the inherently planar two-dimensional (2D) geometries. However, traditional subtractive processes are limited for flexible structural microneedles and makes functional biomedical applications for efficient drug delivery difficult. The authors of the present study propose drawing lithography as a unique additive process for the fabrication of a microneedle directly from 2D planar substrates, thus overcoming a subtractive process shortcoming. The present article provides the first overview of the principal drawing lithography technology: fundamentals and biomedical applications. The continuous drawing technique for an ultrahigh-aspect ratio (UHAR) hollow microneedle, stepwise controlled drawing technique for a dissolving microneedle, and drawing technique with antidromic isolation for a hybrid electro-microneedle (HEM) are reviewed, and efficient biomedical applications by drawing lithography-mediated microneedles as an innovative drug and gene delivery system are described. Drawing lithography herein can provide a great breakthrough in the development of materials science and biotechnology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Special Issue: 3D Printing for Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Chee Kai Chua

    2017-02-01

    Full Text Available Three-dimensional (3D printing has a long history of applications in biomedical engineering. The development and expansion of traditional biomedical applications are being advanced and enriched by new printing technologies. New biomedical applications such as bioprinting are highly attractive and trendy. This Special Issue aims to provide readers with a glimpse of the recent profile of 3D printing in biomedical research.

  5. Research evaluation support services in biomedical libraries

    Directory of Open Access Journals (Sweden)

    Karen Elizabeth Gutzman

    2018-01-01

    Conclusions: Libraries can leverage a variety of evaluation support services as an opportunity to successfully meet an array of challenges confronting the biomedical research community, including robust efforts to report and demonstrate tangible and meaningful outcomes of biomedical research and clinical care. These services represent a transformative direction that can be emulated by other biomedical and research libraries.

  6. Biomedical nanomaterials from design to implementation

    CERN Document Server

    Webster, Thomas

    2016-01-01

    Biomedical Nanomaterials brings together the engineering applications and challenges of using nanostructured surfaces and nanomaterials in healthcare in a single source. Each chapter covers important and new information in the biomedical applications of nanomaterials.

  7. Teaching Science Online: Hands Off Is Not Minds Off!

    Science.gov (United States)

    Schoenfeld-Tacher, Regina; McConnell, Sherry; Schultheiss, Patricia; Bowen, Richard; Jones, Robert

    This study used Bloom's Taxonomy in conjunction with new and emerging research paradigms, such as discourse analysis, to examine the outcomes of online science instruction in various biomedical science courses (i.e., histology, histopathology, physiology, microbiology, and farm animal anatomy). By combining quantitative and qualitative data, a…

  8. Using an Untapped Resource: Expanding the Role of the Student Worker at the Bio-Medical Library

    Science.gov (United States)

    Aho, Melissa K.; Beschnett, Anne M.; Reimer, Emily Y.

    2010-01-01

    Student workers have always been a traditional and valuable component to the smooth running of many academic health sciences libraries. However, in recent years many libraries have redefined student workers' roles to extend beyond their traditional scope due to a range of factors, such as loss of staff and budget cutbacks. The Bio-Medical Library…

  9. For 481 biomedical open access journals, articles are not searchable in the Directory of Open Access Journals nor in conventional biomedical databases.

    Science.gov (United States)

    Liljekvist, Mads Svane; Andresen, Kristoffer; Pommergaard, Hans-Christian; Rosenberg, Jacob

    2015-01-01

    Background. Open access (OA) journals allows access to research papers free of charge to the reader. Traditionally, biomedical researchers use databases like MEDLINE and EMBASE to discover new advances. However, biomedical OA journals might not fulfill such databases' criteria, hindering dissemination. The Directory of Open Access Journals (DOAJ) is a database exclusively listing OA journals. The aim of this study was to investigate DOAJ's coverage of biomedical OA journals compared with the conventional biomedical databases. Methods. Information on all journals listed in four conventional biomedical databases (MEDLINE, PubMed Central, EMBASE and SCOPUS) and DOAJ were gathered. Journals were included if they were (1) actively publishing, (2) full OA, (3) prospectively indexed in one or more database, and (4) of biomedical subject. Impact factor and journal language were also collected. DOAJ was compared with conventional databases regarding the proportion of journals covered, along with their impact factor and publishing language. The proportion of journals with articles indexed by DOAJ was determined. Results. In total, 3,236 biomedical OA journals were included in the study. Of the included journals, 86.7% were listed in DOAJ. Combined, the conventional biomedical databases listed 75.0% of the journals; 18.7% in MEDLINE; 36.5% in PubMed Central; 51.5% in SCOPUS and 50.6% in EMBASE. Of the journals in DOAJ, 88.7% published in English and 20.6% had received impact factor for 2012 compared with 93.5% and 26.0%, respectively, for journals in the conventional biomedical databases. A subset of 51.1% and 48.5% of the journals in DOAJ had articles indexed from 2012 and 2013, respectively. Of journals exclusively listed in DOAJ, one journal had received an impact factor for 2012, and 59.6% of the journals had no content from 2013 indexed in DOAJ. Conclusions. DOAJ is the most complete registry of biomedical OA journals compared with five conventional biomedical databases

  10. Evaluating efforts to diversify the biomedical workforce: the role and function of the Coordination and Evaluation Center of the Diversity Program Consortium.

    Science.gov (United States)

    McCreath, Heather E; Norris, Keith C; Calderόn, Nancy E; Purnell, Dawn L; Maccalla, Nicole M G; Seeman, Teresa E

    2017-01-01

    The National Institutes of Health (NIH)-funded Diversity Program Consortium (DPC) includes a Coordination and Evaluation Center (CEC) to conduct a longitudinal evaluation of the two signature, national NIH initiatives - the Building Infrastructure Leading to Diversity (BUILD) and the National Research Mentoring Network (NRMN) programs - designed to promote diversity in the NIH-funded biomedical, behavioral, clinical, and social sciences research workforce. Evaluation is central to understanding the impact of the consortium activities. This article reviews the role and function of the CEC and the collaborative processes and achievements critical to establishing empirical evidence regarding the efficacy of federally-funded, quasi-experimental interventions across multiple sites. The integrated DPC evaluation is particularly significant because it is a collaboratively developed Consortium Wide Evaluation Plan and the first hypothesis-driven, large-scale systemic national longitudinal evaluation of training programs in the history of NIH/National Institute of General Medical Sciences. To guide the longitudinal evaluation, the CEC-led literature review defined key indicators at critical training and career transition points - or Hallmarks of Success. The multidimensional, comprehensive evaluation of the impact of the DPC framed by these Hallmarks is described. This evaluation uses both established and newly developed common measures across sites, and rigorous quasi-experimental designs within novel multi-methods (qualitative and quantitative). The CEC also promotes shared learning among Consortium partners through working groups and provides technical assistance to support high-quality process and outcome evaluation internally of each program. Finally, the CEC is responsible for developing high-impact dissemination channels for best practices to inform peer institutions, NIH, and other key national and international stakeholders. A strong longitudinal evaluation across

  11. After the Biomedical Technology Revolution: Where to Now for a Bio-Psycho-Social Approach to Social Work?

    Science.gov (United States)

    Healy, Karen

    2016-07-01

    In the late twentieth century, the bio-psycho-social framework emerged as a powerful influence on the conceptualisation and delivery of health and rehabilitation services including social work services in these fields. The bio-psycho-social framework is built on a systems view of health and well-being ( Garland and Howard, 2009). The systems perspective encourages medical and allied health professions, including social work, to recognise and to respond to the multiple systems impacting on individual health and well-being ( Engel, 2003). This paper analyses how advances in biomedical technology, particularly in the fields of neuroscience and human genomics, are challenging the bio-psycho-social approach to practice. The paper examines the pressures on the social work profession to embrace biomedical science and points to the problems in doing so. The conclusion points to some tentative ways forward for social workers to engage critically with biomedical advances and to strengthen the bio-psycho-social framework in the interests of holistic and ethical approaches to social work practice.

  12. Proof of concept: concept-based biomedical information retrieval

    NARCIS (Netherlands)

    Trieschnigg, Rudolf Berend

    2010-01-01

    In this thesis we investigate the possibility to integrate domain-specific knowledge into biomedical information retrieval (IR). Recent decades have shown a fast growing interest in biomedical research, reflected by an exponential growth in scientific literature. An important problem for biomedical

  13. Exploring subdomain variation in biomedical language

    Directory of Open Access Journals (Sweden)

    Séaghdha Diarmuid Ó

    2011-05-01

    Full Text Available Abstract Background Applications of Natural Language Processing (NLP technology to biomedical texts have generated significant interest in recent years. In this paper we identify and investigate the phenomenon of linguistic subdomain variation within the biomedical domain, i.e., the extent to which different subject areas of biomedicine are characterised by different linguistic behaviour. While variation at a coarser domain level such as between newswire and biomedical text is well-studied and known to affect the portability of NLP systems, we are the first to conduct an extensive investigation into more fine-grained levels of variation. Results Using the large OpenPMC text corpus, which spans the many subdomains of biomedicine, we investigate variation across a number of lexical, syntactic, semantic and discourse-related dimensions. These dimensions are chosen for their relevance to the performance of NLP systems. We use clustering techniques to analyse commonalities and distinctions among the subdomains. Conclusions We find that while patterns of inter-subdomain variation differ somewhat from one feature set to another, robust clusters can be identified that correspond to intuitive distinctions such as that between clinical and laboratory subjects. In particular, subdomains relating to genetics and molecular biology, which are the most common sources of material for training and evaluating biomedical NLP tools, are not representative of all biomedical subdomains. We conclude that an awareness of subdomain variation is important when considering the practical use of language processing applications by biomedical researchers.

  14. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  15. BIG: a Grid Portal for Biomedical Data and Images

    Directory of Open Access Journals (Sweden)

    Giovanni Aloisio

    2004-06-01

    Full Text Available Modern management of biomedical systems involves the use of many distributed resources, such as high performance computational resources to analyze biomedical data, mass storage systems to store them, medical instruments (microscopes, tomographs, etc., advanced visualization and rendering tools. Grids offer the computational power, security and availability needed by such novel applications. This paper presents BIG (Biomedical Imaging Grid, a Web-based Grid portal for management of biomedical information (data and images in a distributed environment. BIG is an interactive environment that deals with complex user's requests, regarding the acquisition of biomedical data, the "processing" and "delivering" of biomedical images, using the power and security of Computational Grids.

  16. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2007-06-28

    Jun 28, 2007 ... Author Affiliations. Jon D Wright1 Carmay Lim1 2. Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, ROC; Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, ROC ...

  17. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  18. Research Strategies for Biomedical and Health Informatics

    Science.gov (United States)

    Kulikowski, Casimir A.; Bakken, Suzanne; de Lusignan, Simon; Kimura, Michio; Koch, Sabine; Mantas, John; Maojo, Victor; Marschollek, Michael; Martin-Sanchez, Fernando; Moen, Anne; Park, Hyeoun-Ae; Sarkar, Indra Neil; Leong, Tze Yun; McCray, Alexa T.

    2017-01-01

    Summary Background Medical informatics, or biomedical and health informatics (BMHI), has become an established scientific discipline. In all such disciplines there is a certain inertia to persist in focusing on well-established research areas and to hold on to well-known research methodologies rather than adopting new ones, which may be more appropriate. Objectives To search for answers to the following questions: What are research fields in informatics, which are not being currently adequately addressed, and which methodological approaches might be insufficiently used? Do we know about reasons? What could be consequences of change for research and for education? Methods Outstanding informatics scientists were invited to three panel sessions on this topic in leading international conferences (MIE 2015, Medinfo 2015, HEC 2016) in order to get their answers to these questions. Results A variety of themes emerged in the set of answers provided by the panellists. Some panellists took the theoretical foundations of the field for granted, while several questioned whether the field was actually grounded in a strong theoretical foundation. Panellists proposed a range of suggestions for new or improved approaches, methodologies, and techniques to enhance the BMHI research agenda. Conclusions The field of BMHI is on the one hand maturing as an academic community and intellectual endeavour. On the other hand vendor-supplied solutions may be too readily and uncritically accepted in health care practice. There is a high chance that BMHI will continue to flourish as an important discipline; its innovative interventions might then reach the original objectives of advancing science and improving health care outcomes. PMID:28119991

  19. The development of biomedical engineering as experienced by one biomedical engineer.

    Science.gov (United States)

    Newell, Jonathan C

    2012-12-12

    This personal essay described the development of the field of Biomedical Engineering from its early days, from the perspective of one who lived through that development. It describes the making of a major invention using data that had been rejected by other scientists, the re-discovery of an obscure fact of physiology and its use in developing a major medical instrument, the development of a new medical imaging modality, and the near-death rescue of a research project. The essay concludes with comments about the development and present status of impedance imaging, and recent changes in the evolution of biomedical engineering as a field.

  20. Biomedical Research Institute, Biomedical Research Foundation of Northwest Louisiana, Shreveport, Louisiana

    International Nuclear Information System (INIS)

    1992-01-01

    Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-0789, evaluating the environmental impacts of construction and operation of a Biomedical Research Institute (BRI) at the Louisiana State University (LSU) Medical Center, Shreveport, Louisiana. The purpose of the BRI is to accelerate the development of biomedical research in cardiovascular disease, molecular biology, and neurobiology. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  1. clearScience: Infrastructure for Communicating Data-Intensive Science.

    Science.gov (United States)

    Bot, Brian M; Burdick, David; Kellen, Michael; Huang, Erich S

    2013-01-01

    Progress in biomedical research requires effective scientific communication to one's peers and to the public. Current research routinely encompasses large datasets and complex analytic processes, and the constraints of traditional journal formats limit useful transmission of these elements. We are constructing a framework through which authors can not only provide the narrative of what was done, but the primary and derivative data, the source code, the compute environment, and web-accessible virtual machines. This infrastructure allows authors to "hand their machine"- prepopulated with libraries, data, and code-to those interested in reviewing or building off of their work. This project, "clearScience," seeks to provide an integrated system that accommodates the ad hoc nature of discovery in the data-intensive sciences and seamless transitions from working to reporting. We demonstrate that rather than merely describing the science being reported, one can deliver the science itself.

  2. Plasmonic enhancement of scattering and emission of light in nanostructures: from basic science to biomedical applications

    International Nuclear Information System (INIS)

    Gaponenko, Sergey

    2013-01-01

    Advances and challenges of plasmonic enhancement of Raman scattering and fluorescence with metal-dielectric nanostructures are discussed. Theoretical predictions and experimental implementation are presented and compared. Reasonable agreement of experimental data with the theory is outlined. Special attention is given to biomedical applications including fluorescent and Raman immunospectroscopy. (author)

  3. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    Science.gov (United States)

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  4. On stethoscope design: a challenge for biomedical circuit designers.

    Science.gov (United States)

    Hahn, A W

    2001-01-01

    Most clinicians learned the art and science of auscultation using an acoustic stethoscope. While many models of electronic stethoscopes have been marketed over the years, none of them seem to do a very good job of emulating the most common forms of acoustic stethoscopes available. This paper is an appeal to biomedical circuit designers to learn more about the acoustics of commonly used stethoscopes and to develop an appropriate group of circuits which would emulate them much like music synthesizers can emulate almost any musical instrument. The implications are for creative designers to move toward a rational and acceptable design for both personal physician use and for telemedicine.

  5. "Exploring knowledge-user experiences in integrated knowledge translation: a biomedical investigation of the causes and consequences of food allergy".

    Science.gov (United States)

    Dixon, Jenna; Elliott, Susan J; Clarke, Ann E

    2016-01-01

    Food allergy is a serious public health problem in Canada and other high-income countries, as it is potentially life threatening and severely impacts the quality of life for individuals and their families. Yet, many questions still remain as to its origins and determinants, and the best practices for treatment. Formed to tackle these very questions, the GET-FACTS research study centers on a novel concept in biomedical research: in order to make this science useful, knowledge creation must include meaningful interactions with knowledge-users. With this, knowledge-users are present at every stage of the research and are crucial, central and equal contributors. This study reflects on the early part of that journey from the perspective of the knowledge-users. We conducted interviews with all non-scientist members of the GET-FACTS steering committee, representing Canadian organizations that deal with patient advocacy and policy with regards to food allergy. Steering committee members had a clear sense that scientists and knowledge-users are equally responsible for putting knowledge into action and the importance of consulting and integrating knowledge-users throughout research. They also have high expectations for the GET-FACTS integrated process; that this model of doing science will create better scientists (e.g. improve communication skills) and make the scientific output more useful and relevant. Our work highlights both the unique contributions that knowledge-users can offer to knowledge creation as well as the challenges of trying to unify members from such different communities (policy/advocacy and biomedical science). There remains a real need to develop more touch points and opportunities for collaboration if true integration is to be achieved. Despite the obstacles, this model can help change the way knowledge is created in the biomedical world. ᅟ. Despite the burden of food allergic disease many questions remain as to its origins, determinants and best

  6. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications.

    Science.gov (United States)

    Esfand, R; Tomalia, D A.

    2001-04-01

    Poly(amidoamine) (PAMAM) dendrimers are the first complete dendrimer family to be synthesized, characterized and commercialized. Based on this extensive activity, they are recognized as a unique new class of synthetic nanostructures. Dendrimers allow the precise control of size, shape and placement of functional groups that is desirable for many life science applications. From this perspective, this review focuses on crucial properties of biomimetic dendrimers that will broaden the potential for their use as macromolecular vectors in novel drug delivery and biomedical applications.

  7. 75 FR 63843 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-18

    ... Sciences Special Emphasis Panel; Review of Minority Biomedical Research Neuro Grant Applications. Date... General Medical Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... of General Medical Sciences, National Institutes of Health, Natcher Building, Room 3AN18J, Bethesda...

  8. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  9. Relational Databases and Biomedical Big Data.

    Science.gov (United States)

    de Silva, N H Nisansa D

    2017-01-01

    In various biomedical applications that collect, handle, and manipulate data, the amounts of data tend to build up and venture into the range identified as bigdata. In such occurrences, a design decision has to be taken as to what type of database would be used to handle this data. More often than not, the default and classical solution to this in the biomedical domain according to past research is relational databases. While this used to be the norm for a long while, it is evident that there is a trend to move away from relational databases in favor of other types and paradigms of databases. However, it still has paramount importance to understand the interrelation that exists between biomedical big data and relational databases. This chapter will review the pros and cons of using relational databases to store biomedical big data that previous researches have discussed and used.

  10. The Medical Science DMZ.

    Science.gov (United States)

    Peisert, Sean; Barnett, William; Dart, Eli; Cuff, James; Grossman, Robert L; Balas, Edward; Berman, Ari; Shankar, Anurag; Tierney, Brian

    2016-11-01

    We describe use cases and an institutional reference architecture for maintaining high-capacity, data-intensive network flows (e.g., 10, 40, 100 Gbps+) in a scientific, medical context while still adhering to security and privacy laws and regulations. High-end networking, packet filter firewalls, network intrusion detection systems. We describe a "Medical Science DMZ" concept as an option for secure, high-volume transport of large, sensitive data sets between research institutions over national research networks. The exponentially increasing amounts of "omics" data, the rapid increase of high-quality imaging, and other rapidly growing clinical data sets have resulted in the rise of biomedical research "big data." The storage, analysis, and network resources required to process these data and integrate them into patient diagnoses and treatments have grown to scales that strain the capabilities of academic health centers. Some data are not generated locally and cannot be sustained locally, and shared data repositories such as those provided by the National Library of Medicine, the National Cancer Institute, and international partners such as the European Bioinformatics Institute are rapidly growing. The ability to store and compute using these data must therefore be addressed by a combination of local, national, and industry resources that exchange large data sets. Maintaining data-intensive flows that comply with HIPAA and other regulations presents a new challenge for biomedical research. Recognizing this, we describe a strategy that marries performance and security by borrowing from and redefining the concept of a "Science DMZ"-a framework that is used in physical sciences and engineering research to manage high-capacity data flows. By implementing a Medical Science DMZ architecture, biomedical researchers can leverage the scale provided by high-performance computer and cloud storage facilities and national high-speed research networks while preserving privacy and

  11. BOSS: context-enhanced search for biomedical objects

    Directory of Open Access Journals (Sweden)

    Choi Jaehoon

    2012-04-01

    Full Text Available Abstract Background There exist many academic search solutions and most of them can be put on either ends of spectrum: general-purpose search and domain-specific "deep" search systems. The general-purpose search systems, such as PubMed, offer flexible query interface, but churn out a list of matching documents that users have to go through the results in order to find the answers to their queries. On the other hand, the "deep" search systems, such as PPI Finder and iHOP, return the precompiled results in a structured way. Their results, however, are often found only within some predefined contexts. In order to alleviate these problems, we introduce a new search engine, BOSS, Biomedical Object Search System. Methods Unlike the conventional search systems, BOSS indexes segments, rather than documents. A segment refers to a Maximal Coherent Semantic Unit (MCSU such as phrase, clause or sentence that is semantically coherent in the given context (e.g., biomedical objects or their relations. For a user query, BOSS finds all matching segments, identifies the objects appearing in those segments, and aggregates the segments for each object. Finally, it returns the ranked list of the objects along with their matching segments. Results The working prototype of BOSS is available at http://boss.korea.ac.kr. The current version of BOSS has indexed abstracts of more than 20 million articles published during last 16 years from 1996 to 2011 across all science disciplines. Conclusion BOSS fills the gap between either ends of the spectrum by allowing users to pose context-free queries and by returning a structured set of results. Furthermore, BOSS exhibits the characteristic of good scalability, just as with conventional document search engines, because it is designed to use a standard document-indexing model with minimal modifications. Considering the features, BOSS notches up the technological level of traditional solutions for search on biomedical information.

  12. Translational science by public biotechnology companies in the IPO "class of 2000": the impact of technological maturity.

    Science.gov (United States)

    McNamee, Laura; Ledley, Fred

    2013-01-01

    The biotechnology industry plays a central role in the translation of nascent biomedical science into both products that offer material health benefits and creating capital growth. This study examines the relationship between the maturity of technologies in a characteristic life cycle and value creation by biotechnology companies. We examined the core technology, product development pipelines, and capitalization for a cohort of biotechnology companies that completed an IPO in 2000. Each of these companies was well financed and had core technologies on the leading edge of biological science. We found that companies with the least mature technologies had significantly higher valuations at IPO, but failed to develop products based on these technologies over the ensuing decade, and created less capital growth than companies with more mature technologies at IPO. The observation that this cohort of recently public biotechnology companies was not effective in creating value from nascent science suggests the need for new, evidence-based business strategies for translational science.

  13. From Biomedical to Psychosomatic Reasoning: A Theoretical Framework

    Directory of Open Access Journals (Sweden)

    Alireza Monajemi

    2014-01-01

    Full Text Available Despite a general acceptance of the biopsychosocial model, medical education and patient care are still largely biomedical in focus, and physicians have many deficiencies in biopsychosocial formulations and care. Education in medical schools puts more emphasis on providing biomedical education (BM than biopsychosocial education (BPS; the initial knowledge formed in medical students is mainly with a biomedical approach. Therefore, it seems that psychosocial aspects play a minor role at this level and PSM knowledge will lag behind BM knowledge. However, it seems that the integration of biomedical and psychosocial-knowledge is crucial for a successful and efficient patient encounter. In this paper, based on the theory of medical expertise development, the steps through which biomedical reasoning transforms to psychosomatic reasoning will be discussed.

  14. CALL FOR PAPERS: Special cluster in Biomedical Optics: honouring Professor Valery Tuchin, Saratov University

    Science.gov (United States)

    Wang, Ruikang K.; Priezzhev, Alexander; Fantini, Sergio

    2004-07-01

    To honour Professor Valery Tuchin, one of the pioneers in biomedical optics, Journal of Physics D: Applied Physics invites manuscript submissions on topics in biomedical optics, for publication in a Special section in May 2005. Papers may cover a variety of topics related to photon propagation in turbid media, spectroscopy and imaging. This Special cluster will reflect the diversity, breadth and impact of Professor Tuchin's contributions to the field of biomedical optics over the course of his distinguished career. Biomedical optics is a recently emerged discipline providing a broad variety of optical techniques and instruments for diagnostic, therapeutic and basic science applications. Together with contributions from other pioneers in the field, Professor Tuchin's work on fundamental and experimental aspects in tissue optics contributed enormously to the formation of this exciting field. Although general submissions in biomedical optics are invited, the Special cluster Editors especially encourage submissions in areas that are explicitly or implicitly influenced by Professor Tuchin's contributions to the field of biomedical optics. Manuscripts submitted to this Special cluster of Journal of Physics D: Applied Physics will be refereed according to the normal criteria and procedures of the journal, in accordance with the following schedule: Deadline for receipt of contributed papers: 31 November 2004 Deadline for acceptance and completion of refereeing process: 28 February 2005 Publication of special issue: May 2005 Please submit your manuscript electronically to jphysd@iop.org or via the Web site at www.iop.org/Journals. Otherwise, please send a copy of your typescript, a set of original figures and a cover letter to: The Publishing Administrator, Journal of Physics D: Applied Physics, Institute of Physics Publishing, Dirac House, Temple Back, Bristol BS1 6BE, United Kingdom. Further information on how to submit may be obtained upon request by e-mailing the

  15. Simbody: multibody dynamics for biomedical research.

    Science.gov (United States)

    Sherman, Michael A; Seth, Ajay; Delp, Scott L

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an open source, extensible, high performance toolkit including a multibody mechanics library aimed at the needs of biomedical researchers. The resulting code, Simbody, supports research in a variety of fields including neuromuscular, prosthetic, and biomolecular simulation, and related research such as biologically-inspired design and control of humanoid robots and avatars. Simbody is the dynamics engine behind OpenSim, a widely used biomechanics simulation application. This article reviews issues that arise uniquely in biomedical research, and reports on the architecture, theory, and computational methods Simbody uses to address them. By addressing these needs explicitly Simbody provides a better match to the needs of researchers than can be obtained by adaptation of mechanical engineering or gaming codes. Simbody is a community resource, free for any purpose. We encourage wide adoption and invite contributions to the code base at https://simtk.org/home/simbody.

  16. 75 FR 65363 - National Institute of General Medical Sciences; Notice of Closed Meeting

    Science.gov (United States)

    2010-10-22

    ... Sciences Special Emphasis Panel; Review of Minority Biomedical Research Neuro Grant Applications. Date... General Medical Sciences; Notice of Closed Meeting Pursuant to section 10(d) of the Federal Advisory... General Medical Sciences, National Institutes of Health, Natcher Building, Room 3AN18J, Bethesda, MD 20892...

  17. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  18. Introduction to applied statistical signal analysis guide to biomedical and electrical engineering applications

    CERN Document Server

    Shiavi, Richard

    2007-01-01

    Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech.Introduction to Applied Statistical Signal Analysis intertwines theory and implementation with practical examples and exercises. Topics presented in detail include: mathematical

  19. Usage of cell nomenclature in biomedical literature

    KAUST Repository

    Kafkas, Senay

    2017-12-21

    Background Cell lines and cell types are extensively studied in biomedical research yielding to a significant amount of publications each year. Identifying cell lines and cell types precisely in publications is crucial for science reproducibility and knowledge integration. There are efforts for standardisation of the cell nomenclature based on ontology development to support FAIR principles of the cell knowledge. However, it is important to analyse the usage of cell nomenclature in publications at a large scale for understanding the level of uptake of cell nomenclature in literature by scientists. In this study, we analyse the usage of cell nomenclature, both in Vivo, and in Vitro in biomedical literature by using text mining methods and present our results. Results We identified 59% of the cell type classes in the Cell Ontology and 13% of the cell line classes in the Cell Line Ontology in the literature. Our analysis showed that cell line nomenclature is much more ambiguous compared to the cell type nomenclature. However, trends indicate that standardised nomenclature for cell lines and cell types are being increasingly used in publications by the scientists. Conclusions Our findings provide an insight to understand how experimental cells are described in publications and may allow for an improved standardisation of cell type and cell line nomenclature as well as can be utilised to develop efficient text mining applications on cell types and cell lines. All data generated in this study is available at https://github.com/shenay/CellNomenclatureStudy.

  20. Mathematics and physics of emerging biomedical imaging

    International Nuclear Information System (INIS)

    1996-01-01

    Although the mathematical sciences were used in a general way for image processing, they were of little importance in biomedical work until the development in the 1970s of computed tomography (CT) for the imaging of x-rays and isotope emission tomography. In the 1980s, MRI eclipsed the other modalities in many ways as the most informative medical imaging methodology. Besides these well-established techniques, computer-based mathematical methods are being explored in applications to other well-known methods, such as ultrasound and electroencephalography, as well as new techniques of optical imaging, impedance tomography, and magnetic source imaging. It is worth pointing out that, while the final images of many of these techniques bear many similarities to each other, the technologies involved in each are completely different and the parameters represented in the images are very different in character as well as in medical usefulness. In each case, rather different mathematical or statistical models are used, with different equations. One common thread is the paradigm of reconstruction from indirect measurements--this is the unifying theme of this report. The imaging methods used in biomedical applications that this report discusses include: (1) x-ray projection imaging; (2) x-ray computed tomography (CT); (3) magnetic resonance imaging (MRI) and magnetic resonance spectroscopy; (4) single photon emission computed tomography (SPECT); (5) positron emission tomography (PET); (6) ultrasonics; (7) electrical source imaging (ESI); (8) electrical impedance tomography (EIT); (9) magnetic source imaging (MSI); and (10) medical optical imaging

  1. Archives of Medical and Biomedical Research

    African Journals Online (AJOL)

    Archives of Medical and Biomedical Research is the official journal of the International Association of Medical and Biomedical Researchers (IAMBR) and the Society for Free Radical Research Africa (SFRR-Africa). It is an internationally peer reviewed, open access and multidisciplinary journal aimed at publishing original ...

  2. The Vulnerability of Study Participants in the Context of Transnational Biomedical Research: From Conceptual Considerations to Practical Implications.

    Science.gov (United States)

    Orth, Helen Grete; Schicktanz, Silke

    2017-08-01

    Outsourcing clinical trials sponsored by pharmaceutical companies from industrialized countries to low- (middle)-income countries - summarized as transnational biomedical research (TBR) - has lead to many concerns about ethical standards. Whether study participants are particularly vulnerable is one of those concerns. However, the concept of vulnerability is still vague and varies in its definition. Despite the fact that important international ethical guidelines such as the Declaration of Helsinki by the World Medical Association or the Ethical Guidelines for Biomedical Research Involving Human Subjects by the Council of International Organizations of Medical Sciences refer to vulnerability as ethical principle, each of their approaches are different. To overcome these shortcomings, we analyze and unite different approaches of vulnerability and develop practical criteria in order to operationalize the concept especially for the context of TBR. These criteria refer to the context of a study as well as the characteristics and the current living situation of study participants. Based on a case study of an HIV-vaccine-trial conducted in India we demonstrate how those criteria can be applied in a retrospective way to identify potential ethical conflicts. The criteria can also indicate a prospective function for ethical pre-assessment. For this, we provide an outlook for three major topics: 1. Vulnerability as a normative concept: Different ways of protection; 2. The relevance of transparency and 3. Vulnerability as an instrument to increase decision participation of human subjects. © 2016 John Wiley & Sons Ltd.

  3. Novartis School Lab: bringing young people closer to the world of research and discovering the excitement of science.

    Science.gov (United States)

    Michel, Christiane Röckl; Standke, Gesche; Naef, Reto

    2012-01-01

    The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.

  4. Dosimetry in life sciences

    International Nuclear Information System (INIS)

    1975-01-01

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  5. Dosimetry in life sciences

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-06-15

    The uses of radiation in medicine and biology have grown in scope and diversity to make the Radiological Sciences a significant factor in both research and medical practice. Of critical importance in the applications and development of biomedical and radiological techniques is the precision with which the dose may be determined at all points of interest in the absorbing medium. This has developed as a result of efficacy of investigations in clinical radiation therapy, concern for patient safety and diagnostic accuracy in diagnostic radiology and the advent of clinical trials and research into the use of heavily ionizing radiations in biology and medicine. Since the last IAEA Symposium on Dosimetry Techniques applied to Agriculture, Industry, Biology and Medicine, held in Vienna in 1972, it has become increasingly clear that advances in the techniques and hardware of biomedical dosimetry have been rapid. It is for these reasons that this symposium was organized in a concerted effort to focus on the problems, developments and areas of further research in dosimetry in the Life Sciences. (author)

  6. National Heart, Lung, and Blood Institute Workshop Summary: Enhancing Opportunities for Training and Retention of a Diverse Biomedical Workforce.

    Science.gov (United States)

    Duncan, Gregg A; Lockett, Angelia; Villegas, Leah R; Almodovar, Sharilyn; Gomez, Jose L; Flores, Sonia C; Wilkes, David S; Tigno, Xenia T

    2016-04-01

    Committed to its mission of conducting and supporting research that addresses the health needs of all sectors of the nation's population, the Division of Lung Diseases, National Heart, Lung, and Blood Institute of the National Institutes of Health (NHLBI/NIH) seeks to identify issues that impact the training and retention of underrepresented individuals in the biomedical research workforce. Early-stage investigators who received grant support through the NIH Research Supplements to Promote Diversity in Health Related Research Program were invited to a workshop held in Bethesda, Maryland in June, 2015, in order to (1) assess the effectiveness of the current NHLBI diversity program, (2) improve its strategies towards achieving its goal, and (3) provide guidance to assist the transition of diversity supplement recipients to independent NIH grant support. Workshop participants participated in five independent focus groups to discuss specific topics affecting underrepresented individuals in the biomedical sciences: (1) Socioeconomic barriers to success for diverse research scientists; (2) role of the academic research community in promoting diversity; (3) life beyond a research project grant: non-primary investigator career paths in research; (4) facilitating career development of diverse independent research scientists through NHLBI diversity programs; and (5) effectiveness of current NHLBI programs for promoting diversity of the biomedical workforce. Several key issues experienced by young, underrepresented biomedical scientists were identified, and solutions were proposed to improve on training and career development for diverse students, from the high school to postdoctoral trainee level, and address limitations of currently available diversity programs. Although some of the challenges mentioned, such as cost of living, limited parental leave, and insecure extramural funding, are also likely faced by nonminority scientists, these issues are magnified among diversity

  7. KaBOB: ontology-based semantic integration of biomedical databases.

    Science.gov (United States)

    Livingston, Kevin M; Bada, Michael; Baumgartner, William A; Hunter, Lawrence E

    2015-04-23

    The ability to query many independent biological databases using a common ontology-based semantic model would facilitate deeper integration and more effective utilization of these diverse and rapidly growing resources. Despite ongoing work moving toward shared data formats and linked identifiers, significant problems persist in semantic data integration in order to establish shared identity and shared meaning across heterogeneous biomedical data sources. We present five processes for semantic data integration that, when applied collectively, solve seven key problems. These processes include making explicit the differences between biomedical concepts and database records, aggregating sets of identifiers denoting the same biomedical concepts across data sources, and using declaratively represented forward-chaining rules to take information that is variably represented in source databases and integrating it into a consistent biomedical representation. We demonstrate these processes and solutions by presenting KaBOB (the Knowledge Base Of Biomedicine), a knowledge base of semantically integrated data from 18 prominent biomedical databases using common representations grounded in Open Biomedical Ontologies. An instance of KaBOB with data about humans and seven major model organisms can be built using on the order of 500 million RDF triples. All source code for building KaBOB is available under an open-source license. KaBOB is an integrated knowledge base of biomedical data representationally based in prominent, actively maintained Open Biomedical Ontologies, thus enabling queries of the underlying data in terms of biomedical concepts (e.g., genes and gene products, interactions and processes) rather than features of source-specific data schemas or file formats. KaBOB resolves many of the issues that routinely plague biomedical researchers intending to work with data from multiple data sources and provides a platform for ongoing data integration and development and for

  8. Introduction to semantic e-Science in biomedicine

    Directory of Open Access Journals (Sweden)

    Wang Yimin

    2007-05-01

    Full Text Available Abstract The Semantic Web technologies provide enhanced capabilities that allow data and the meaning of the data to be shared and reused across application, enterprise, and community boundaries, better enabling integrative research and more effective knowledge discovery. This special issue is intended to give an introduction of the state-of-the-art of Semantic Web technologies and describe how such technologies would be used to build the e-Science infrastructure for biomedical communities. Six papers have been selected and included, featuring different approaches and experiences in a variety of biomedical domains.

  9. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  10. Biomedical engineering for health research and development.

    Science.gov (United States)

    Zhang, X-Y

    2015-01-01

    Biomedical engineering is a new area of research in medicine and biology, providing new concepts and designs for the diagnosis, treatment and prevention of various diseases. There are several types of biomedical engineering, such as tissue, genetic, neural and stem cells, as well as chemical and clinical engineering for health care. Many electronic and magnetic methods and equipments are used for the biomedical engineering such as Computed Tomography (CT) scans, Magnetic Resonance Imaging (MRI) scans, Electroencephalography (EEG), Ultrasound and regenerative medicine and stem cell cultures, preparations of artificial cells and organs, such as pancreas, urinary bladders, liver cells, and fibroblasts cells of foreskin and others. The principle of tissue engineering is described with various types of cells used for tissue engineering purposes. The use of several medical devices and bionics are mentioned with scaffold, cells and tissue cultures and various materials are used for biomedical engineering. The use of biomedical engineering methods is very important for the human health, and research and development of diseases. The bioreactors and preparations of artificial cells or tissues and organs are described here.

  11. Digital fabrication of multi-material biomedical objects

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, H H; Choi, S H, E-mail: shchoi@hku.h [Department of Industrial and Manufacturing Systems Engineering, University of Hong Kong, Pokfulam Road (Hong Kong)

    2009-12-15

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  12. Digital fabrication of multi-material biomedical objects

    International Nuclear Information System (INIS)

    Cheung, H H; Choi, S H

    2009-01-01

    This paper describes a multi-material virtual prototyping (MMVP) system for modelling and digital fabrication of discrete and functionally graded multi-material objects for biomedical applications. The MMVP system consists of a DMMVP module, an FGMVP module and a virtual reality (VR) simulation module. The DMMVP module is used to model discrete multi-material (DMM) objects, while the FGMVP module is for functionally graded multi-material (FGM) objects. The VR simulation module integrates these two modules to perform digital fabrication of multi-material objects, which can be subsequently visualized and analysed in a virtual environment to optimize MMLM processes for fabrication of product prototypes. Using the MMVP system, two biomedical objects, including a DMM human spine and an FGM intervertebral disc spacer are modelled and digitally fabricated for visualization and analysis in a VR environment. These studies show that the MMVP system is a practical tool for modelling, visualization, and subsequent fabrication of biomedical objects of discrete and functionally graded multi-materials for biomedical applications. The system may be adapted to control MMLM machines with appropriate hardware for physical fabrication of biomedical objects.

  13. Archives: Journal of Medicine and Biomedical Research

    African Journals Online (AJOL)

    Items 1 - 19 of 19 ... Archives: Journal of Medicine and Biomedical Research. Journal Home > Archives: Journal of Medicine and Biomedical Research. Log in or Register to get access to full text downloads.

  14. Biomedical technology prosperity game{trademark}

    Energy Technology Data Exchange (ETDEWEB)

    Berman, M.; Boyack, K.W.; Wesenberg, D.L.

    1996-07-01

    Prosperity Games{trademark} are an outgrowth and adaptation of move/countermove and seminar War Games. Prosperity Games{trademark} are simulations that explore complex issues in a variety of areas including economics, politics, sociology, environment, education and research. These issues can be examined from a variety of perspectives ranging from a global, macroeconomic and geopolitical viewpoint down to the details of customer/supplier/market interactions in specific industries. All Prosperity Games{trademark} are unique in that both the game format and the player contributions vary from game to game. This report documents the Biomedical Technology Prosperity Game{trademark} conducted under the sponsorship of Sandia National Laboratories, the Defense Advanced Research Projects Agency, and the Koop Foundation, Inc. Players were drawn from all stakeholders involved in biomedical technologies including patients, hospitals, doctors, insurance companies, legislators, suppliers/manufacturers, regulators, funding organizations, universities/laboratories, and the legal profession. The primary objectives of this game were to: (1) Identify advanced/critical technology issues that affect the cost and quality of health care. (2) Explore the development, patenting, manufacturing and licensing of needed technologies that would decrease costs while maintaining or improving quality. (3) Identify policy and regulatory changes that would reduce costs and improve quality and timeliness of health care delivery. (4) Identify and apply existing resources and facilities to develop and implement improved technologies and policies. (5) Begin to develop Biomedical Technology Roadmaps for industry and government cooperation. The deliberations and recommendations of these players provided valuable insights as to the views of this diverse group of decision makers concerning biomedical issues. Significant progress was made in the roadmapping of key areas in the biomedical technology field.

  15. Engineering β-sheet peptide assemblies for biomedical applications.

    Science.gov (United States)

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  16. Optical coherence tomography: technology and applications (biological and medical physics, biomedical engineering)

    CERN Document Server

    2013-01-01

    Optical coherence tomography (OCT) is the optical analog of ultrasound imaging and is emerging as a powerful imaging technique that enables non-invasive, in vivo, high resolution, cross-sectional imaging in biological tissue. This book introduces OCT technology and applications not only from an optical and technological viewpoint, but also from biomedical and clinical perspectives. The chapters are written by leading research groups, in a style comprehensible to a broad audience.

  17. Biomedical engineering education--status and perspectives.

    Science.gov (United States)

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  18. Combining Open-domain and Biomedical Knowledge for Topic Recognition in Consumer Health Questions.

    Science.gov (United States)

    Mrabet, Yassine; Kilicoglu, Halil; Roberts, Kirk; Demner-Fushman, Dina

    2016-01-01

    Determining the main topics in consumer health questions is a crucial step in their processing as it allows narrowing the search space to a specific semantic context. In this paper we propose a topic recognition approach based on biomedical and open-domain knowledge bases. In the first step of our method, we recognize named entities in consumer health questions using an unsupervised method that relies on a biomedical knowledge base, UMLS, and an open-domain knowledge base, DBpedia. In the next step, we cast topic recognition as a binary classification problem of deciding whether a named entity is the question topic or not. We evaluated our approach on a dataset from the National Library of Medicine (NLM), introduced in this paper, and another from the Genetic and Rare Disease Information Center (GARD). The combination of knowledge bases outperformed the results obtained by individual knowledge bases by up to 16.5% F1 and achieved state-of-the-art performance. Our results demonstrate that combining open-domain knowledge bases with biomedical knowledge bases can lead to a substantial improvement in understanding user-generated health content.

  19. National Institute of Environmental Health Sciences Kids' Pages

    Science.gov (United States)

    ... opportunity to highly motivated science, technology, engineering, and math (STEM) focused undergraduate students in the Raleigh-Durham area to solidly connect with NIEHS, and receive frontier-level training in biomedical research. More Information It's Spring! ...

  20. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  1. Evaluation of Science

    OpenAIRE

    Usmani, Adnan Mahmmood; Meo, Sultan Ayoub

    2011-01-01

    Scientific achievement by publishing a scientific manuscript in a peer reviewed biomedical journal is an important ingredient of research along with a career-enhancing advantages and significant amount of personal satisfaction. The road to evaluate science (research, scientific publications) among scientists often seems complicated. Scientist’s career is generally summarized by the number of publications / citations, teaching the undergraduate, graduate and post-doctoral students, writing or ...

  2. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society. © 2013 John Wiley & Sons Ltd.

  3. Career Services | College of Engineering & Applied Science

    Science.gov (United States)

    @ 10:00 am - 2:00 pm Wisconsin Room, UWM Student Union Register today! Engineering Careers Careers in Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  4. A Short Overview on the Biomedical Applications of Silica, Alumina and Calcium Phosphate-based Nanostructured Materials.

    Science.gov (United States)

    Ellahioui, Younes; Prashar, Sanjiv; Gómez-Ruiz, Santiago

    2016-01-01

    This article reviews the use of silica, alumina and calcium phosphate-based nanostructured materials with biomedical applications. A short introduction on the use of the materials in Science, Nanotechnology and Health is included followed by a revision of each of the selected materials. A description of the principal synthetic methods used in the preparation of the materials in nanostructured form is included. The most widely used applications in biomedicine are reviewed including, for example drug-delivery, bone regeneration, imaging, sensoring amongst others. Finally, a short description of the toxicity and cytotoxicity associated with each of the materials of this revision is presented. This short literature revision serves to demonstrate the very promising future ahead of nanosystems based on silica, alumina and calcium phosphate for biological and biomedical applications.

  5. Welcome to health information science and systems.

    Science.gov (United States)

    Zhang, Yanchun

    2013-01-01

    Health Information Science and Systems is an exciting, new, multidisciplinary journal that aims to use technologies in computer science to assist in disease diagnoses, treatment, prediction and monitoring through the modeling, design, development, visualization, integration and management of health related information. These computer-science technologies include such as information systems, web technologies, data mining, image processing, user interaction and interface, sensors and wireless networking and are applicable to a wide range of health related information including medical data, biomedical data, bioinformatics data, public health data.

  6. Applying Nano technology to Human Health: Revolution in Biomedical Sciences

    International Nuclear Information System (INIS)

    Shrivastava, S.; Dash, D.

    2009-01-01

    Recent research on bio systems at the nano scale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, necrophorum engineering, and developing a sustainable environment. Nano bio systems research is a priority in many countries and its relevance within nano technology is expected to increase in the future. The realisation that the nano scale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nano medical research. The present review explores the significance of nano science and latest nano technologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas

  7. A new visual navigation system for exploring biomedical Open Educational Resource (OER) videos.

    Science.gov (United States)

    Zhao, Baoquan; Xu, Songhua; Lin, Shujin; Luo, Xiaonan; Duan, Lian

    2016-04-01

    Biomedical videos as open educational resources (OERs) are increasingly proliferating on the Internet. Unfortunately, seeking personally valuable content from among the vast corpus of quality yet diverse OER videos is nontrivial due to limitations of today's keyword- and content-based video retrieval techniques. To address this need, this study introduces a novel visual navigation system that facilitates users' information seeking from biomedical OER videos in mass quantity by interactively offering visual and textual navigational clues that are both semantically revealing and user-friendly. The authors collected and processed around 25 000 YouTube videos, which collectively last for a total length of about 4000 h, in the broad field of biomedical sciences for our experiment. For each video, its semantic clues are first extracted automatically through computationally analyzing audio and visual signals, as well as text either accompanying or embedded in the video. These extracted clues are subsequently stored in a metadata database and indexed by a high-performance text search engine. During the online retrieval stage, the system renders video search results as dynamic web pages using a JavaScript library that allows users to interactively and intuitively explore video content both efficiently and effectively.ResultsThe authors produced a prototype implementation of the proposed system, which is publicly accessible athttps://patentq.njit.edu/oer To examine the overall advantage of the proposed system for exploring biomedical OER videos, the authors further conducted a user study of a modest scale. The study results encouragingly demonstrate the functional effectiveness and user-friendliness of the new system for facilitating information seeking from and content exploration among massive biomedical OER videos. Using the proposed tool, users can efficiently and effectively find videos of interest, precisely locate video segments delivering personally valuable

  8. Developments in the Transition From Animal Use to Simulation-Based Biomedical Education.

    Science.gov (United States)

    Pawlowski, John B; Feinstein, David M; Gala, Shalin G

    2018-04-18

    There has been a significant shift from the use of animals in biomedical training exercises toward simulation-based education methods. The transition has been driven by technological advances, empirical evidence of improved student outcomes, cost-effectiveness, and a growing concern for the welfare of animals. These factors have spurred policy changes worldwide in how medical and science curricula are delivered. We detail how some of these policy changes evolved and comment on the future direction of simulation-based education and its implications for healthcare providers, instructors, and the general public.

  9. World Congress on Medical Physics and Biomedical Engineering

    CERN Document Server

    2015-01-01

    This book presents the proceedings of the IUPESM World Biomedical Engineering and Medical Physics, a tri-annual high-level policy meeting dedicated exclusively to furthering the role of biomedical engineering and medical physics in medicine. The book offers papers about emerging issues related to the development and sustainability of the role and impact of medical physicists and biomedical engineers in medicine and healthcare. It provides a unique and important forum to secure a coordinated, multileveled global response to the need, demand, and importance of creating and supporting strong academic and clinical teams of biomedical engineers and medical physicists for the benefit of human health.

  10. EPA Leads the Way on Lead Exposure Science and Risk Management

    Science.gov (United States)

    EPA researchers have developed a modeling approach that improves our understanding of the relationship between lead concentrations of various sources (drinking water, soil and dust, food, and air) and children’s blood-lead levels.

  11. Partners in Science: A Model Cooperative Program Introducing High School Teachers and Students to Leading-Edge Pharmaceutical Science

    Science.gov (United States)

    Woska, Joseph R., Jr.; Collins, Danielle M.; Canney, Brian J.; Arcario, Erin L.; Reilly, Patricia L.

    2005-12-01

    Partners in Science is a cooperative program between Boehringer Ingelheim Pharmaceuticals, Inc. and area high schools in the community surrounding our Connecticut campus. It is a two-phase program that introduces high school students and teachers to the world of drug discovery and leading-edge pharmaceutical research. Phase 1 involves a series of lectures, tours, and demonstrations given by scientists within our research and development division (R&D). Phase 2 involves the selection of a small group of participants to intern for the summer in a research laboratory, working side by side with a scientist within R&D. In this manuscript, the specific aims, goals, and development of the Partners in Science program are described, as well as the syllabus/agenda, the logistics surrounding the operation of the program, and our shared personal experiences with students and teachers who have participated. Some of the pitfalls/problems associated with the program will be presented, and finally, the future direction of the program including areas of improvement and expansion are described.

  12. A Case Study: Data Management in Biomedical Engineering

    Directory of Open Access Journals (Sweden)

    Glenn R. Gaudette

    2012-01-01

    Full Text Available In a biomedical engineering lab at Worcester Polytechnic Institute, co-author Dr. Glenn R. Gaudette and his research team are investigating the effects of stem cell therapy on the regeneration of function in damaged cardiac tissue in laboratory rats. Each instance of stem cell experimentation on a rat yields hundreds of data sets that must be carefully captured, documented and securely stored so that the data will be easily accessed and retrieved for papers, reports, further research, and validation of findings, while meeting NIH guidelines for data sharing. After a brief introduction to the bioengineering field and stem cell research, this paper focuses on the experimental workflow and the data generated in one instance of stem cell experimentation; the lab’s data management practices; and how Dr. Gaudette teaches data management to the lab’s incoming graduate students each semester. The co-authors discuss the haphazard manner by which engineering and science students typically learn data management practices, and advocate for the integration of formal data management instruction in higher education STEM curricula. The paper concludes with a discussion of the Frameworks for a Data Management Curriculum developed collaboratively by the co-authors’ institutions -- the University of Massachusetts Medical School and Worcester Polytechnic Institute -- to teach data management best practices to students in the sciences, health sciences, and engineering.

  13. Improving science literacy and education through space life sciences

    Science.gov (United States)

    MacLeish, M. Y.; Moreno, N. P.; Tharp, B. Z.; Denton, J. J.; Jessup, G.; Clipper, M. C.

    2001-01-01

    The National Space Biomedical Research Institute (NSBRI) encourages open involvement by scientists and the public at large in the Institute's activities. Through its Education and Public Outreach Program, the Institute is supporting national efforts to improve Kindergarten through grade twelve (K-12) and undergraduate education and to communicate knowledge generated by space life science research to lay audiences. Three academic institution Baylor College of Medicine, Morehouse School of Medicine and Texas A&M University are designing, producing, field-testing, and disseminating a comprehensive array of programs and products to achieve this goal. The objectives of the NSBRI Education and Public Outreach program are to: promote systemic change in elementary and secondary science education; attract undergraduate students--especially those from underrepresented groups--to careers in space life sciences, engineering and technology-based fields; increase scientific literacy; and to develop public and private sector partnerships that enhance and expand NSBRI efforts to reach students and families. c 2001. Elsevier Science Ltd. All rights reserved.

  14. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  15. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  16. Effective communication and supervision in the biomedical engineering department.

    Science.gov (United States)

    Xu, Y; Wald, A; Cappiello, J

    1997-01-01

    It is important for biomedical engineering supervisors to master the art of effective communication. Supervisors who have effective communication skills can successfully initiate creative programs and generate a harmonious working atmosphere. Using effective communication, they can promote good working conditions, such as high morale, worker initiative and loyalty to the department, which are almost impossible to measure but imperative for a successful department. However, effective communication tends to be neglected by supervisors who are either functional specialists or managerial generalists. This paper presents several cases of what effective communication truly is and discusses some potential factors that may lead to ineffective communication.

  17. EnQuest | College of Engineering & Applied Science

    Science.gov (United States)

    engineering camp, in which high school girls explore careers in engineering. It is held at the University of Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Energy Doctoral Programs in Engineering Non-Degree Candidate Departments Biomedical Engineering

  18. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  19. A hybrid model based on neural networks for biomedical relation extraction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Zhang, Shaowu; Sun, Yuanyuan; Yang, Liang

    2018-05-01

    Biomedical relation extraction can automatically extract high-quality biomedical relations from biomedical texts, which is a vital step for the mining of biomedical knowledge hidden in the literature. Recurrent neural networks (RNNs) and convolutional neural networks (CNNs) are two major neural network models for biomedical relation extraction. Neural network-based methods for biomedical relation extraction typically focus on the sentence sequence and employ RNNs or CNNs to learn the latent features from sentence sequences separately. However, RNNs and CNNs have their own advantages for biomedical relation extraction. Combining RNNs and CNNs may improve biomedical relation extraction. In this paper, we present a hybrid model for the extraction of biomedical relations that combines RNNs and CNNs. First, the shortest dependency path (SDP) is generated based on the dependency graph of the candidate sentence. To make full use of the SDP, we divide the SDP into a dependency word sequence and a relation sequence. Then, RNNs and CNNs are employed to automatically learn the features from the sentence sequence and the dependency sequences, respectively. Finally, the output features of the RNNs and CNNs are combined to detect and extract biomedical relations. We evaluate our hybrid model using five public (protein-protein interaction) PPI corpora and a (drug-drug interaction) DDI corpus. The experimental results suggest that the advantages of RNNs and CNNs in biomedical relation extraction are complementary. Combining RNNs and CNNs can effectively boost biomedical relation extraction performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  1. Diversity in the biomedical research workforce: developing talent.

    Science.gov (United States)

    McGee, Richard; Saran, Suman; Krulwich, Terry A

    2012-01-01

    Much has been written about the need for and barriers to achievement of greater diversity in the biomedical workforce from the perspectives of gender, race, and ethnicity; this is not a new topic. These discussions often center around a "pipeline" metaphor that imagines students flowing through a series of experiences to eventually arrive at a science career. Here we argue that diversity will only be achieved if the primary focus is on (1) what is happening within the pipeline, not just counting individuals entering and leaving it; (2) de-emphasizing the achievement of academic milestones by typical ages; and (3) adopting approaches that most effectively develop talent. Students may develop skills at different rates based on factors such as earlier access to educational resources, exposure to science (especially research experiences), and competing demands for time and attention during high school and college. Therefore, there is wide variety among students at any point along the pipeline. Taking this view requires letting go of imagining the pipeline as a sequence of age-dependent steps in favor of milestones of skill and talent development decoupled from age or educational stage. Emphasizing talent development opens up many new approaches for science training outside of traditional degree programs. This article provides examples of such approaches, including interventions at the postbaccalaureate and PhD levels, as well as a novel coaching model that incorporates well-established social science theories and complements traditional mentoring. These approaches could significantly impact diversity by developing scientific talent, especially among currently underrepresented minorities. © 2012 Mount Sinai School of Medicine.

  2. Home | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-09-27

    Sep 27, 2016 ... The 82nd Annual Meeting · A new Masterclass eBook: Linear Algebra and Analysis · Seismically susceptible regions in the western Himalaya identified by a team from IIT Roorkee · Special Issue On HIGGS PHYSICS In Pramana – Journal Of Physics · Ayurgenomics – a new player in biomedical sciences.

  3. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  4. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    Costa, E.T.; Martins, H.L.; Muehlen, S.S.; Rockman, T.M.B.

    1992-01-01

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  5. Peer Review Practices for Evaluating Biomedical Research Grants: A Scientific Statement From the American Heart Association.

    Science.gov (United States)

    Liaw, Lucy; Freedman, Jane E; Becker, Lance B; Mehta, Nehal N; Liscum, Laura

    2017-08-04

    The biomedical research enterprise depends on the fair and objective peer review of research grants, leading to the distribution of resources through efficient and robust competitive methods. In the United States, federal funding agencies and foundations collectively distribute billions of dollars annually to support biomedical research. For the American Heart Association, a Peer Review Subcommittee is charged with establishing the highest standards for peer review. This scientific statement reviews the current literature on peer review practices, describes the current American Heart Association peer review process and those of other agencies, analyzes the strengths and weaknesses of American Heart Association peer review practices, and recommends best practices for the future. © 2017 American Heart Association, Inc.

  6. Severe Plastic Deformation of Commercial Pure Titanium (CP-Ti) for Biomedical Applications: A Brief Review

    Science.gov (United States)

    Mahmoodian, Reza; Annuar, N. Syahira M.; Faraji, Ghader; Bahar, Nadia Dayana; Razak, Bushroa Abd; Sparham, Mahdi

    2017-11-01

    This paper reviews severe plastic deformation (SPD) techniques for producing ultrafine-grained (UFG) and nanostructured commercial pure titanium (CP-Ti) for biomedical applications as the best alternative to titanium alloys. SPD processes, effective parameters, and advantages of nanostructured CP-Ti over coarse-grained (CG) material and Ti alloys are briefly reviewed. It is reported that nanostructured CP-Ti processed via SPD exhibits higher mechanical strength comparable to Ti alloys but better biological response and superior biocompatibility. Also, different surface modification techniques offer different results on UFG and CG CP-Ti, leading to nanoscale surface topography in UFG samples. Overall, it is reported that nanostructured CP-Ti processed by SPD could be considered to be the best candidate for biomedical implants.

  7. Topical Review: Translating Translational Research in Behavioral Science.

    Science.gov (United States)

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Review of spectral imaging technology in biomedical engineering: achievements and challenges.

    Science.gov (United States)

    Li, Qingli; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Dongrong; Guo, Fangmin

    2013-10-01

    Spectral imaging is a technology that integrates conventional imaging and spectroscopy to get both spatial and spectral information from an object. Although this technology was originally developed for remote sensing, it has been extended to the biomedical engineering field as a powerful analytical tool for biological and biomedical research. This review introduces the basics of spectral imaging, imaging methods, current equipment, and recent advances in biomedical applications. The performance and analytical capabilities of spectral imaging systems for biological and biomedical imaging are discussed. In particular, the current achievements and limitations of this technology in biomedical engineering are presented. The benefits and development trends of biomedical spectral imaging are highlighted to provide the reader with an insight into the current technological advances and its potential for biomedical research.

  9. The importance of Zebrafish in biomedical research.

    Science.gov (United States)

    Tavares, Bárbara; Santos Lopes, Susana

    2013-01-01

    Zebrafish (Danio rerio) is an ideal model organism for the study of vertebrate development. This is due to the large clutches that each couple produces, with up to 200 embryos every 7 days, and to the fact that the embryos and larvae are small, transparent and undergo rapid external development. Using scientific literature research tools available online and the keywords Zebrafish, biomedical research, human disease, and drug screening, we reviewed original studies and reviews indexed in PubMed. In this review we summarized work conducted with this model for the advancement of our knowledge related to several human diseases. We also focused on the biomedical research being performed in Portugal with the zebrafish model. Powerful live imaging and genetic tools are currently available for zebrafish making it a valuable model in biomedical research. The combination of these properties with the optimization of automated systems for drug screening has transformed the zebrafish into "a top model" in biomedical research, drug discovery and toxicity testing. Furthermore, with the optimization of xenografts technology it will be possible to use zebrafish to aide in the choice of the best therapy for each patient. Zebrafish is an excellent model organism in biomedical research, drug development and in clinical therapy.

  10. [The long pilgrimage of Spanish biomedical journals toward excellence. Who helps? Quality, impact and research merit].

    Science.gov (United States)

    Alfonso, Fernando

    2010-03-01

    Biomedical journals must adhere to strict standards of editorial quality. In a globalized academic scenario, biomedical journals must compete firstly to publish the most relevant original research and secondly to obtain the broadest possible visibility and the widest dissemination of their scientific contents. The cornerstone of the scientific process is still the peer-review system but additional quality criteria should be met. Recently access to medical information has been revolutionized by electronic editions. Bibliometric databases such as MEDLINE, the ISI Web of Science and Scopus offer comprehensive online information on medical literature. Classically, the prestige of biomedical journals has been measured by their impact factor but, recently, other indicators such as SCImago SJR or the Eigenfactor are emerging as alternative indices of a journal's quality. Assessing the scholarly impact of research and the merits of individual scientists remains a major challenge. Allocation of authorship credit also remains controversial. Furthermore, in our Kafkaesque world, we prefer to count rather than read the articles we judge. Quantitative publication metrics (research output) and citations analyses (scientific influence) are key determinants of the scientific success of individual investigators. However, academia is embracing new objective indicators (such as the "h" index) to evaluate scholarly merit. The present review discusses some editorial issues affecting biomedical journals, currently available bibliometric databases, bibliometric indices of journal quality and, finally, indicators of research performance and scientific success. Copyright 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  12. The Neurolab mission and biomedical engineering: a partnership for the future

    Science.gov (United States)

    Liskowsky, D. R.; Frey, M. A.; Sulzman, F. M.; White, R. J.; Likowsky, D. R.

    1996-01-01

    Over the last five years, with the advent of flights of U.S. Shuttle/Spacelab missions dedicated entirely to life sciences research, the opportunities for conducting serious studies that use a fully outfitted space laboratory to better understand basic biological processes have increased. The last of this series of Shuttle/Spacelab missions, currently scheduled for 1998, is dedicated entirely to neuroscience and behavioral research. The mission, named Neurolab, includes a broad range of experiments that build on previous research efforts, as well as studies related to less mature areas of space neuroscience. The Neurolab mission provides the global scientific community with the opportunity to use the space environment for investigations that exploit microgravity to increase our understanding of basic processes in neuroscience. The results from this premier mission should lead to a significant advancement in the field as a whole and to the opening of new lines of investigation for future research. Experiments under development for this mission will utilize human subjects as well as a variety of other species. The capacity to carry out detailed experiments on both human and animal subjects in space allows a diverse complement of studies that investigate functional changes and their underlying molecular, cellular, and physiological mechanisms. In order to conduct these experiments, a wide array of biomedical instrumentation will be used, including some instruments and devices being developed especially for the mission.

  13. The preparation of metal–organic frameworks and their biomedical application

    Directory of Open Access Journals (Sweden)

    Liu R

    2016-03-01

    Full Text Available Rong Liu,1,2 Tian Yu,1 Zheng Shi,1 Zhiyong Wang3 1School of Medicine and Nursing, Chengdu University, Chengdu, 2Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 3Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People’s Republic of China Abstract: The development of a safe and targetable drug carrier is a major challenge. An efficient delivery system should protect cargo from degradation and cleanup, and control of drug release in the target site. Metal–organic frameworks (MOFs, consisting of metal ions and a variety of organic ligands, have been applied for drug delivery due to their distinct structure. In this review, we summarized the synthesis strategies of MOFs, especially emphasizing the methods of pore creation in frameworks, which were based on recent literatures. Subsequently, the controlled size, biocompatibility, drug releasing performances, and imaging of MOFs were discussed, which would pave the road for the application in drug-delivery systems. Keywords: metal-organic frameworks, pore creation, the controlled size, biocompatibility, drug releasing performances, imaging

  14. National Institutes of Health addresses the science of diversity

    Science.gov (United States)

    Valantine, Hannah A.; Collins, Francis S.

    2015-01-01

    The US biomedical research workforce does not currently mirror the nation’s population demographically, despite numerous attempts to increase diversity. This imbalance is limiting the promise of our biomedical enterprise for building knowledge and improving the nation’s health. Beyond ensuring fairness in scientific workforce representation, recruiting and retaining a diverse set of minds and approaches is vital to harnessing the complete intellectual capital of the nation. The complexity inherent in diversifying the research workforce underscores the need for a rigorous scientific approach, consistent with the ways we address the challenges of science discovery and translation to human health. Herein, we identify four cross-cutting diversity challenges ripe for scientific exploration and opportunity: research evidence for diversity’s impact on the quality and outputs of science; evidence-based approaches to recruitment and training; individual and institutional barriers to workforce diversity; and a national strategy for eliminating barriers to career transition, with scientifically based approaches for scaling and dissemination. Evidence-based data for each of these challenges should provide an integrated, stepwise approach to programs that enhance diversity rapidly within the biomedical research workforce. PMID:26392553

  15. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    van Alste, Jan A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  16. Comparing a rule based vs. statistical system for automatic categorization of MEDLINE documents according to biomedical specialty

    OpenAIRE

    Humphrey, Susanne M.; Névéol, Aurélie; Browne, Allen; Gobeill, Julien; Ruch, Patrick; Darmoni, Stéfan J.

    2010-01-01

    Automatic document categorization is an important research problem in Information Science and Natural Language Processing. Many applications, including Word Sense Disambiguation and Information Retrieval in large collections, can benefit from such categorization. This paper focuses on automatic categorization of documents from the biomedical literature into broad discipline-based categories. Two different systems are described and contrasted: CISMeF, which uses rules based on human indexing o...

  17. Status and possibilities for biomedical applications at the Instituto de Pesquisas Energeticas e Nucleares/Sao Paulo-Brazil

    International Nuclear Information System (INIS)

    Mastro, N.L. del.

    1989-02-01

    Radiation applications in the area of biological sciences at our institution aim in the first place at the preservation and improvement of health through the development of research directed to diagnosis and therapeutics. The multiple aspects of biotechnology turn possible also classical and new applications of great importance for the community. The biomedical radiation applications performed particularly at the IPEN are summarized. (author) [pt

  18. A semi-supervised learning framework for biomedical event extraction based on hidden topics.

    Science.gov (United States)

    Zhou, Deyu; Zhong, Dayou

    2015-05-01

    Scientists have devoted decades of efforts to understanding the interaction between proteins or RNA production. The information might empower the current knowledge on drug reactions or the development of certain diseases. Nevertheless, due to the lack of explicit structure, literature in life science, one of the most important sources of this information, prevents computer-based systems from accessing. Therefore, biomedical event extraction, automatically acquiring knowledge of molecular events in research articles, has attracted community-wide efforts recently. Most approaches are based on statistical models, requiring large-scale annotated corpora to precisely estimate models' parameters. However, it is usually difficult to obtain in practice. Therefore, employing un-annotated data based on semi-supervised learning for biomedical event extraction is a feasible solution and attracts more interests. In this paper, a semi-supervised learning framework based on hidden topics for biomedical event extraction is presented. In this framework, sentences in the un-annotated corpus are elaborately and automatically assigned with event annotations based on their distances to these sentences in the annotated corpus. More specifically, not only the structures of the sentences, but also the hidden topics embedded in the sentences are used for describing the distance. The sentences and newly assigned event annotations, together with the annotated corpus, are employed for training. Experiments were conducted on the multi-level event extraction corpus, a golden standard corpus. Experimental results show that more than 2.2% improvement on F-score on biomedical event extraction is achieved by the proposed framework when compared to the state-of-the-art approach. The results suggest that by incorporating un-annotated data, the proposed framework indeed improves the performance of the state-of-the-art event extraction system and the similarity between sentences might be precisely

  19. Computer literacy and E-learning perception in Cameroon: the case of Yaounde Faculty of Medicine and Biomedical Sciences.

    Science.gov (United States)

    Bediang, Georges; Stoll, Beat; Geissbuhler, Antoine; Klohn, Axel M; Stuckelberger, Astrid; Nko'o, Samuel; Chastonay, Philippe

    2013-04-19

    Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of Medicine and Biomedical Sciences (FMBS) of Yaoundé has played a pioneering role in Cameroon in making significant efforts to improve students' and lecturers' access to computers and to Internet on its campus.The objective is to investigate how computer literacy and the perception towards e-learning and its potential could contribute to the learning and teaching process within the FMBS academic community. A cross-sectional survey was carried out among students, residents and lecturers. The data was gathered through a written questionnaire distributed at FMBS campus and analysed with routine statistical software. 307 participants answered the questionnaire: 218 students, 57 residents and 32 lecturers. Results show that most students, residents and lecturers have access to computers and Internet, although students' access is mainly at home for computers and at cyber cafés for Internet. Most of the participants have a fairly good mastery of ICT. However, some basic rules of good practices concerning the use of ICT in the health domain were still not well known. Google is the most frequently used engine to retrieve health literature for all participants; only 7% of students and 16% of residents have heard about Medical Subject Headings (MeSH).The potential of e-learning in the improvement of teaching and learning still remains insufficiently exploited. About two thirds of the students are not familiar with the concept of e-leaning. 84% of students and 58% of residents had never had access to

  20. Assessing the practice of biomedical ontology evaluation: Gaps and opportunities.

    Science.gov (United States)

    Amith, Muhammad; He, Zhe; Bian, Jiang; Lossio-Ventura, Juan Antonio; Tao, Cui

    2018-04-01

    With the proliferation of heterogeneous health care data in the last three decades, biomedical ontologies and controlled biomedical terminologies play a more and more important role in knowledge representation and management, data integration, natural language processing, as well as decision support for health information systems and biomedical research. Biomedical ontologies and controlled terminologies are intended to assure interoperability. Nevertheless, the quality of biomedical ontologies has hindered their applicability and subsequent adoption in real-world applications. Ontology evaluation is an integral part of ontology development and maintenance. In the biomedicine domain, ontology evaluation is often conducted by third parties as a quality assurance (or auditing) effort that focuses on identifying modeling errors and inconsistencies. In this work, we first organized four categorical schemes of ontology evaluation methods in the existing literature to create an integrated taxonomy. Further, to understand the ontology evaluation practice in the biomedicine domain, we reviewed a sample of 200 ontologies from the National Center for Biomedical Ontology (NCBO) BioPortal-the largest repository for biomedical ontologies-and observed that only 15 of these ontologies have documented evaluation in their corresponding inception papers. We then surveyed the recent quality assurance approaches for biomedical ontologies and their use. We also mapped these quality assurance approaches to the ontology evaluation criteria. It is our anticipation that ontology evaluation and quality assurance approaches will be more widely adopted in the development life cycle of biomedical ontologies. Copyright © 2018 Elsevier Inc. All rights reserved.