WorldWideScience

Sample records for biomedical sciences lead

  1. Leading change: curriculum reform in graduate education in the biomedical sciences.

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were also 15 unique curricula. Departments and programs offered courses independently, and students participated in curricula that were overlapping combinations of these courses. This system created curricula that were not coordinated and that had redundant course content as well as content gaps. A partnership of key stakeholders began a curriculum reform process to completely restructure doctoral education at the Boston University School of Medicine. The key pedagogical goals, objectives, and elements designed into the new curriculum through this reform process created a curriculum designed to foster the interdisciplinary thinking that students are ultimately asked to utilize in their research endeavors. We implemented comprehensive student and peer evaluation of the new Foundations in Biomedical Sciences integrated curriculum to assess the new curriculum. Furthermore, we detail how this process served as a gateway toward creating a more fully integrated graduate experience, under the umbrella of the Program in Biomedical Sciences.

  2. Leading Change: Curriculum Reform in Graduate Education in the Biomedical Sciences

    Science.gov (United States)

    Dasgupta, Shoumita; Symes, Karen; Hyman, Linda

    2015-01-01

    The Division of Graduate Medical Sciences at the Boston University School of Medicine houses numerous dynamic graduate programs. Doctoral students began their studies with laboratory rotations and classroom training in a variety of fundamental disciplines. Importantly, with 15 unique pathways of admission to these doctoral programs, there were…

  3. Optimizing biomedical science learning in a veterinary curriculum: a review.

    Science.gov (United States)

    Warren, Amy L; Donnon, Tyrone

    2013-01-01

    As veterinary medical curricula evolve, the time dedicated to biomedical science teaching, as well as the role of biomedical science knowledge in veterinary education, has been scrutinized. Aside from being mandated by accrediting bodies, biomedical science knowledge plays an important role in developing clinical, diagnostic, and therapeutic reasoning skills in the application of clinical skills, in supporting evidence-based veterinary practice and life-long learning, and in advancing biomedical knowledge and comparative medicine. With an increasing volume and fast pace of change in biomedical knowledge, as well as increased demands on curricular time, there has been pressure to make biomedical science education efficient and relevant for veterinary medicine. This has lead to a shift in biomedical education from fact-based, teacher-centered and discipline-based teaching to applicable, student-centered, integrated teaching. This movement is supported by adult learning theories and is thought to enhance students' transference of biomedical science into their clinical practice. The importance of biomedical science in veterinary education and the theories of biomedical science learning will be discussed in this article. In addition, we will explore current advances in biomedical teaching methodologies that are aimed to maximize knowledge retention and application for clinical veterinary training and practice.

  4. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G. (comps.)

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  5. Science gateways for biomedical big data analysis

    OpenAIRE

    Kampen, van, PJW; Olabarriaga, S.D.; Shahand, S.

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists from different organizations. Data-driven or e-Science methods are defined as a combination of Information Technology (IT) and science that enables scientists to tackle the data deluge challenges. Th...

  6. Terahertz biomedical science and technology

    CERN Document Server

    Son, Joo-Hiuk

    2014-01-01

    Introduction to Biomedical Studies Using Terahertz WavesJoo-Hiuk SonSection I Terahertz TechnologyTerahertz Sources and DetectorsHyunyong Choi and Joo-Hiuk SonTabletop High-Power Terahertz Pulse Generation TechniquesYun-Shik LeeTerahertz Imaging and Tomography TechniquesHyunyong Choi and Joo-Hiuk SonCompact Solid-State Electronic Terahertz Devices and CircuitsJae-Sung Rieh, Daekeun Yoon, and Jongwon Yun<

  7. Effective written communication in biomedical sciences.

    Science.gov (United States)

    Rugh, K S; Hahn, A W

    1996-01-01

    The written word is the biomedical scientist's most important and most enduring communication tool. Nevertheless, the development of writing skills receives little attention in most scientific disciplines and the ability to conduct research is often viewed as more important than the ability to communicate the results of that research. Consequently, many scientists lack the writing skills necessary to effectively convey essential aspects of their research. In this paper, we will discuss the importance of good writing skills, give examples of common mistakes that are made in biomedical science writing and offer suggestions on how to improve written communication. PMID:8672681

  8. Biomedical and Environmental Sciences INFORMATION FOR AUTHORS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Biomedical and Environmental Sciences, an international journal with emphasis on scientific findings in China, publishes articles dealing with biologic and toxic effects of environmental pollutants on man and other forms of life. The effects may be measured with pharmacological, biochemical, pathological, and immunological techniques. The journal also publishes reports dealing with the entry, transport, and fate of natural and anthropogenic chemicals in the biosphere, and their impact on human health and well-being.Papers describing biochemical, pharmacological, pathological, toxicological and immunological studies of pharmaceuticals (biotechnological products) are also welcome.

  9. Signal and image analysis for biomedical and life sciences

    CERN Document Server

    Sun, Changming; Pham, Tuan D; Vallotton, Pascal; Wang, Dadong

    2014-01-01

    With an emphasis on applications of computational models for solving modern challenging problems in biomedical and life sciences, this book aims to bring collections of articles from biologists, medical/biomedical and health science researchers together with computational scientists to focus on problems at the frontier of biomedical and life sciences. The goals of this book are to build interactions of scientists across several disciplines and to help industrial users apply advanced computational techniques for solving practical biomedical and life science problems. This book is for users in t

  10. Modeling and control in the biomedical sciences

    CERN Document Server

    Banks, H T

    1975-01-01

    These notes are based on (i) a series of lectures that I gave at the 14th Biennial Seminar of the Canadian Mathematical Congress held at the University of Western Ontario August 12-24, 1973 and (li) some of my lectures in a modeling course that I have cotaught in the Division of Bio-Medical Sciences at Brown during the past several years. An earlier version of these notes appeared in the Center for Dynamical Systems Lectures Notes series (CDS LN 73-1, November 1973). I have in this revised and extended version of those earlier notes incorporated a number of changes based both on classroom experience and on my research efforts with several colleagues during the intervening period. The narrow viewpoint of the present notes (use of optimization and control theory in biomedical problems) reflects more the scope of the CMC lectures given in August, 1973 than the scope of my own interests. Indeed, my real interests have included the modeling process itself as well as the contributions made by investiga­ tors who e...

  11. The Impact of Regulating Social Science Research with Biomedical Regulations

    Science.gov (United States)

    Durosinmi, Brenda Braxton

    2011-01-01

    The Impact of Regulating Social Science Research with Biomedical Regulations Since 1974 Federal regulations have governed the use of human subjects in biomedical and social science research. The regulations are known as the Federal Policy for the Protection of Human Subjects, and often referred to as the "Common Rule" because 18 Federal…

  12. Science gateways for biomedical big data analysis

    NARCIS (Netherlands)

    S. Shahand

    2015-01-01

    Biomedical researchers are facing data deluge challenges such as dealing with large volume of complex heterogeneous data and complex and computationally demanding data processing methods. Such scale and complexity of biomedical research requires multi-disciplinary collaboration between scientists fr

  13. Theory and experiment in biomedical science

    Science.gov (United States)

    Allen, Roland

    2012-10-01

    A physicist might regard a person as a collection of electrons and quarks, and a biologist might regard her as an assemblage of biochemical molecules. But according to some speakers at a recent Welch conference [1] biology is a branch of physics. Then biomedical research is a branch of applied physics. Even if one adopts a more modest perspective, it is still true that physics can contribute strongly to biomedical research. An example on the experimental side is the recent studies of G protein-coupled receptors (targeted by more than 50 percent of therapeutic drugs) using synchrotron radiation and nuclear magnetic resonance. On the theory side, one might classify models as microscopic (e.g., simulations of molecules, ions, or electrons), mesoscopic (e.g., simulations of pathways within a cell), or macroscopic (e.g., calculations of processes involving the whole body). We have recently introduced a new macroscopic method for estimating the biochemical response to pharmaceuticals, surgeries, or other medical interventions, and applied it in a simple model of the response to bariatric surgeries [2]. An amazing effect is that the most widely used bariatric surgery (Roux-en-Y-gastric bypass) usually leads to remission of type 2 diabetes in days, long before there is any significant weight loss (with further beneficial effects in the subsequent months and years). Our results confirm that this effect can be largely explained by the enhanced post-meal excretion of glucagon-like peptide 1 (GLP-1), an incretin that increases insulin secretion from the pancreas, but also suggest that other mechanisms are likely to be involved, possibly including an additional insulin-independent pathway for glucose transport into cells. [4pt] [1] Physical Biology, from Atoms to Medicine, edited by Ahmed H. Zewail (Imperial College Press, London, 2008).[0pt] [2] Roland E. Allen, Tyler D. Hughes, Jia Lerd Ng, Roberto D. Ortiz, Michel Abou Ghantous, Othmane Bouhali, Abdelilah Arredouani

  14. New methodology in biomedical science: methodological errors in classical science.

    Science.gov (United States)

    Skurvydas, Albertas

    2005-01-01

    The following methodological errors are observed in biomedical sciences: paradigmatic ones; those of exaggerated search for certainty; science dehumanisation; deterministic and linearity; those of making conclusions; errors of reductionism or quality decomposition as well as exaggerated enlargement; errors connected with discarding odd; unexpected or awkward facts; those of exaggerated mathematization; isolation of science; the error of "common sense"; Ceteris Paribus law's ("other things being equal" laws) error; "youth" and common sense; inflexibility of criteria of the truth; errors of restricting the sources of truth and ways of searching for truth; the error connected with wisdom gained post factum; the errors of wrong interpretation of research mission; "laziness" to repeat the experiment as well as the errors of coordination of errors. One of the basic aims for the present-day scholars of biomedicine is, therefore, mastering the new non-linear, holistic, complex way of thinking that will, undoubtedly, enable one to make less errors doing research. The aim of "scientific travelling" will be achieved with greater probability if the "travelling" itself is performed with great probability. PMID:15687745

  15. Biomedical Applications of NASA Science and Technology

    Science.gov (United States)

    Brown, James N., Jr.

    1968-01-01

    During the period 15 September 1968 to 14 December 1968, the NASA supported Biomedical Application Team at the Research Triangle Institute has identified 6 new problems, performed significant activities on 15 of the active problems identified previously, performed 5 computer searches of the NASA aerospace literature, and maintained one current awareness search. As a partial result of these activities, one technology transfer was accomplished. As a part of continuing problem review, 13 problems were classified inactive. Activities during the quarter involved all phases of team activity with respect to biomedical problems. As has been observed in preceding years, it has been exceedingly difficult to arrange meetings with medical investigators during the fourth quarter of the calendar year. This is a result of a combination of factors. Teaching requirements, submission of grant applications and holidays are the most significant factors involved. As a result, the numbers of new problems identified and of transfers and potential transfers are relatively low during this quarter. Most of our activities have thus been directed toward obtaining information related to problems already identified. Consequently, during the next quarter we will follow up on these activities with the expectation that transfers will be accomplished on a number of them. In addition, the normal availability of researchers to the team is expected to be restored during this quarter, permitting an increase in new problem identification activities as well as follow-up with other researchers on old problems. Another activity scheduled for the next quarter is consultation with several interested biomedical equipment manufacturers to explore means of effective interaction between the Biomedical Application Team and these companies.

  16. Evaluation of Biomedical Science Students Use and Perceptions of Podcasting

    Science.gov (United States)

    Smith, Katie; Morris, Neil P.

    2014-01-01

    The use of podcasting in higher education has escalated in recent years. The aim of this case study was to analyse undergraduate student use and perceptions of lecture audio recordings in the School of Biomedical Sciences at the University of Leeds. Students completed an online survey over a two-week period based on their use of lecture audio…

  17. Convergence of Terahertz Sciences in Biomedical Systems

    CERN Document Server

    Kim, Yong; Han, Haewook; Han, Joon; Ahn, Jaewook; Son, Joo-Hiuk; Park, Woong-Yang; Jeong, Young

    2012-01-01

    Recent technological breakthrough in the field of Terahertz radiation has triggered new applications in biology and biomedicine. Particularly, biological applications are based on the specific spectroscopic fingerprints of biological matter in this spectral region. Historically with the discovery of new electromagnetic wave spectrum, we have always discovered new medical diagnostic imaging systems. The use of terahertz wave was not realized due to the absence of useful terahertz sources. Now after successful generation of THz waves, it is reported that a great potential for THz wave exists for its resonance with bio-molecules. There are many challenging issues such as development of THz passive and active instrumentations, understanding of THz-Bio interaction for THz spectroscopy, THz-Bio nonlinear phenomena and safety guideline, and THz imaging systems. Eventually the deeper understanding of THz-Bio interaction and novel THz systems enable us to develop powerful THz biomedical imaging systems which can contr...

  18. Publications in biomedical and environmental sciences programs, 1980

    International Nuclear Information System (INIS)

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences

  19. Publications in biomedical and environmental sciences programs, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Pfuderer, H.A.; Moody, J.B.

    1981-07-01

    This bibliography contains 690 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1980. There are 529 references to articles published in journals and books and 161 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly and bimonthly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Energy, Environmental Sciences, and Computer Sciences.

  20. Biomedical science postdocs: an end to the era of expansion.

    Science.gov (United States)

    Garrison, Howard H; Justement, Louis B; Gerbi, Susan A

    2016-01-01

    After >3 decades of steady growth, the number of biological and medical science postdoctorates at doctoral degree-granting institutions recently began to decline. From 2010 through 2013, the most recent survey years, the postdoctoral population decreased from 40,970 to 38,719, a loss of 5.5%. This decline represents a notable departure from the previous long-standing increases in the number of postdoctorates in the biomedical workforce. The rate of contraction appears to be accelerating in the most recent survey years, and this has important implications for the biomedical workforce.

  1. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  2. Research-Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment

    Science.gov (United States)

    Lorden, Joan F., Ed.; Kuh, Charlotte V., Ed.; Voytuk, James A., Ed.

    2011-01-01

    "Research Doctorate Programs in the Biomedical Sciences: Selected Findings from the NRC Assessment" examines data on the biomedical sciences programs to gather additional insight about the talent, training environment, outcomes, diversity, and international participation in the biomedical sciences workforce. This report supports an earlier…

  3. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  4. Structural biology computing: Lessons for the biomedical research sciences.

    Science.gov (United States)

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields.

  5. Biomedical Engineering and Cognitive Science Secondary Science Curriculum Development: A Three Year Study

    Science.gov (United States)

    Klein, Stacy S.; Sherwood, Robert D.

    2005-01-01

    This study reports on a multi-year effort to create and evaluate cognitive-based curricular materials for secondary school science classrooms. A team of secondary teachers, educational researchers, and academic biomedical engineers developed a series of curriculum units that are based in biomedical engineering for secondary level students in…

  6. Effective Computer Aided Instruction in Biomedical Science

    OpenAIRE

    Hause, Lawrence L.

    1985-01-01

    A menu-driven Computer Aided Instruction (CAI) package was integrated with word processing and effectively applied in five curricula at the Medical College of Wisconsin. Integration with word processing facilitates the ease of CAI development by instructors and was found to be the most important step in the development of CAI. CAI modules were developed and are currently used to reinforce lectures in medical pathology, laboratory quality control, computer programming and basic science reviews...

  7. Publications in biomedical and environmental sciences programs, 1982

    International Nuclear Information System (INIS)

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division

  8. Life and Biomedical Sciences and Applications Advisory Subcommittee Meeting

    Science.gov (United States)

    1996-01-01

    The proceedings of the August 1995 meeting of the Life and Biomedical Sciences and Applications Advisory Subcommittee (LBSAAS) are summarized. The following topics were addressed by the Subcommittee members: the activities and status of the LBSA Division; program activities of the Office of Life and Microgravity Sciences and Applications (OLMSA); the medical Countermeasures Program; and the Fettman Report on animal research activities at ARC. Also presented were a history and overview of the activities of the Space Station Utilization Advisory Committee and the Advanced Life Support Program (ALSP). The meeting agenda and a list of the Subcommittee members and meeting attendees are included as appendices.

  9. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... involve a wide range of medical specialties within the general areas of biomedical, behavioral...

  10. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to the... location changes have been made for the following panel meetings of the of the Joint Biomedical...

  11. Should MD-PhD Programs Encourage Graduate Training in Disciplines Beyond Conventional Biomedical or Clinical Sciences?

    OpenAIRE

    O'Mara, Ryan J.; Hsu, Stephen I.; Wilson, Daniel R.

    2015-01-01

    The goal of MD–PhD training programs is to produce physician–scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician–scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD–PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This quest...

  12. Publications in biomedical and environmental sciences programs, 1981

    International Nuclear Information System (INIS)

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference

  13. Publications in biomedical and environmental sciences programs, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1982-07-01

    This bibliography contains 698 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1981. There are 520 references to articles published in journals and books and 178 references to reports. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions represented in the order that they appear in the bibliography are Analytical Chemistry, Biology, Chemical Technology, Information R and D, Health and Safety Research, Instrumentation and Controls, Computer Sciences, Energy, Engineering Technology, Solid State, Central Management, Operations, and Environmental Sciences. Indexes are provided by author, title, and journal reference.

  14. Life sciences biomedical research planning for Space Station

    Science.gov (United States)

    Primeaux, Gary R.; Michaud, Roger; Miller, Ladonna; Searcy, Jim; Dickey, Bernistine

    1987-01-01

    The Biomedical Research Project (BmRP), a major component of the NASA Life Sciences Space Station Program, incorporates a laboratory for the study of the effects of microgravity on the human body, and the development of techniques capable of modifying or counteracting these effects. Attention is presently given to a representative scenario of BmRP investigations and associated engineering analyses, together with an account of the evolutionary process by which the scenarios and the Space Station design requirements they entail are identified. Attention is given to a tether-implemented 'variable gravity centrifuge'.

  15. Graduate Experience in Science Education: The Development of a Science Education Course for Biomedical Science Graduate Students

    Science.gov (United States)

    Markowitz, Dina G.; DuPre, Michael J.

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with…

  16. Publications in biomedical and environmental sciences programs, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Moody, J.B. (comp.)

    1983-04-01

    This bibliography contains 725 references to articles in journals, books, and reports published in the subject area of biomedical and environmental sciences during 1982. There are 553 references to articles published in journals and books and 172 references to reports. The citations appear once ordered by the first author's division or by the performing division. Staff members in the Biomedical and Environmental Sciences divisions have other publications not included in this bibliography; for example, theses, book reviews, abstracts published in journals or symposia proceedings, pending journal publications and reports such as monthly, bimonthly, and quarterly progress reports, contractor reports, and reports for internal distribution. This document is sorted by the division, and then alphabetically by author. The sorting by divisions separates the references by subject area in a simple way. The divisions are represented alphabetically. Indexes are provided by author, title, and journal reference. Reprints of articles referenced in this bibliography can be obtained from the author or the author's division.

  17. Espionage Scandal Leads Science News

    Directory of Open Access Journals (Sweden)

    Shauna M. Haley

    2001-01-01

    Full Text Available Two Japanese molecular biologists are charged with espionage in a case that could strain scientific relations between the U.S. and Japan, report both Nature and Science in their top stories this week.

  18. Context-Aware Adaptive Hybrid Semantic Relatedness in Biomedical Science

    Science.gov (United States)

    Emadzadeh, Ehsan

    Text mining of biomedical literature and clinical notes is a very active field of research in biomedical science. Semantic analysis is one of the core modules for different Natural Language Processing (NLP) solutions. Methods for calculating semantic relatedness of two concepts can be very useful in solutions solving different problems such as relationship extraction, ontology creation and question / answering [1--6]. Several techniques exist in calculating semantic relatedness of two concepts. These techniques utilize different knowledge sources and corpora. So far, researchers attempted to find the best hybrid method for each domain by combining semantic relatedness techniques and data sources manually. In this work, attempts were made to eliminate the needs for manually combining semantic relatedness methods targeting any new contexts or resources through proposing an automated method, which attempted to find the best combination of semantic relatedness techniques and resources to achieve the best semantic relatedness score in every context. This may help the research community find the best hybrid method for each context considering the available algorithms and resources.

  19. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... medical specialties within the general areas of biomedical, behavioral and clinical science research. The... under the Public Law 92-463 (Federal Advisory Committee Act) that the panels of the Joint...

  20. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... review by the Board involve a wide range of medical specialties within the general areas of...

  1. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... under the Public Law 92-463 (Federal Advisory Committee Act) that the panels of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development Services Scientific...

  2. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... range of medical specialties within the general areas of biomedical, behavioral and clinical science... under Public Law 92-463 (Federal Advisory Committee Act), that the panels of the Joint...

  3. 1st International Conference on Computational and Experimental Biomedical Sciences

    CERN Document Server

    Jorge, RM

    2015-01-01

    This book contains the full papers presented at ICCEBS 2013 – the 1st International Conference on Computational and Experimental Biomedical Sciences, which was organized in Azores, in October 2013. The included papers present and discuss new trends in those fields, using several methods and techniques, including active shape models, constitutive models, isogeometric elements, genetic algorithms, level sets, material models, neural networks, optimization, and the finite element method, in order to address more efficiently different and timely applications involving biofluids, computer simulation, computational biomechanics, image based diagnosis, image processing and analysis, image segmentation, image registration, scaffolds, simulation, and surgical planning. The main audience for this book consists of researchers, Ph.D students, and graduate students with multidisciplinary interests related to the areas of artificial intelligence, bioengineering, biology, biomechanics, computational fluid dynamics, comput...

  4. Big biomedical data as the key resource for discovery science.

    Science.gov (United States)

    Toga, Arthur W; Foster, Ian; Kesselman, Carl; Madduri, Ravi; Chard, Kyle; Deutsch, Eric W; Price, Nathan D; Glusman, Gustavo; Heavner, Benjamin D; Dinov, Ivo D; Ames, Joseph; Van Horn, John; Kramer, Roger; Hood, Leroy

    2015-11-01

    Modern biomedical data collection is generating exponentially more data in a multitude of formats. This flood of complex data poses significant opportunities to discover and understand the critical interplay among such diverse domains as genomics, proteomics, metabolomics, and phenomics, including imaging, biometrics, and clinical data. The Big Data for Discovery Science Center is taking an "-ome to home" approach to discover linkages between these disparate data sources by mining existing databases of proteomic and genomic data, brain images, and clinical assessments. In support of this work, the authors developed new technological capabilities that make it easy for researchers to manage, aggregate, manipulate, integrate, and model large amounts of distributed data. Guided by biological domain expertise, the Center's computational resources and software will reveal relationships and patterns, aiding researchers in identifying biomarkers for the most confounding conditions and diseases, such as Parkinson's and Alzheimer's.

  5. Biomedical technology transfer: Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    The major efforts of the Stanford Biomedical Applications Team Program at the Stanford University School of Medicine for the period from October 1, 1975 to September 31, 1976 are covered. A completed EMG biotelemetry system which monitors the physiological signals of man and animals in space related research is discussed. The results of a pilot study involving lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative pressure unit for evaluating heart patients. This technology utilizes vacuum chambers to stress the cardiovascular system during space flight. Laboratory tests of an intracranial pressure transducer, have been conducted. Extremely stable long term data using capacative pressure sensors has lead to the order of commercially manufactured monitoring systems base. Projects involving commercialization are: flexible medical electrodes, an echocardioscope, a miniature biotelemetry system, and an on-line ventricular contour detector.

  6. Biomedical Biopolymers, their Origin and Evolution in Biomedical Sciences: A Systematic Review.

    Science.gov (United States)

    Yadav, Preeti; Yadav, Harsh; Shah, Veena Gowri; Shah, Gaurav; Dhaka, Gaurav

    2015-09-01

    Biopolymers provide a plethora of applications in the pharmaceutical and medical applications. A material that can be used for biomedical applications like wound healing, drug delivery and tissue engineering should possess certain properties like biocompatibility, biodegradation to non-toxic products, low antigenicity, high bio-activity, processability to complicated shapes with appropriate porosity, ability to support cell growth and proliferation and appropriate mechanical properties, as well as maintaining mechanical strength. This paper reviews biodegradable biopolymers focusing on their potential in biomedical applications. Biopolymers most commonly used and most abundantly available have been described with focus on the properties relevant to biomedical importance.

  7. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives.

  8. The rolling evolution of biomedical science as an essential tool in modern clinical practice.

    Science.gov (United States)

    Blann, Andrew

    2016-01-01

    The British Journal of Biomedical Science is committed to publishing high-quality original research that represents a clear advance in the practice of biomedical science, and reviews that summarise recent advances in the field of biomedical science. The overall aim of the Journal is to provide a platform for the dissemination of new and innovative information on the diagnosis and management of disease that is valuable to the practicing laboratory scientist. The Editorial that follows describes the Journal and provides a perspective of its aims and objectives. PMID:27182669

  9. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  10. Mining biomedical images towards valuable information retrieval in biomedical and life sciences.

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries.

  11. Mining biomedical images towards valuable information retrieval in biomedical and life sciences

    Science.gov (United States)

    Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas

    2016-01-01

    Biomedical images are helpful sources for the scientists and practitioners in drawing significant hypotheses, exemplifying approaches and describing experimental results in published biomedical literature. In last decades, there has been an enormous increase in the amount of heterogeneous biomedical image production and publication, which results in a need for bioimaging platforms for feature extraction and analysis of text and content in biomedical images to take advantage in implementing effective information retrieval systems. In this review, we summarize technologies related to data mining of figures. We describe and compare the potential of different approaches in terms of their developmental aspects, used methodologies, produced results, achieved accuracies and limitations. Our comparative conclusions include current challenges for bioimaging software with selective image mining, embedded text extraction and processing of complex natural language queries. PMID:27538578

  12. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers.

  13. Synergies and distinctions between computational disciplines in biomedical research: perspective from the Clinical andTranslational Science Award programs.

    Science.gov (United States)

    Bernstam, Elmer V; Hersh, William R; Johnson, Stephen B; Chute, Christopher G; Nguyen, Hien; Sim, Ida; Nahm, Meredith; Weiner, Mark G; Miller, Perry; DiLaura, Robert P; Overcash, Marc; Lehmann, Harold P; Eichmann, David; Athey, Brian D; Scheuermann, Richard H; Anderson, Nick; Starren, Justin; Harris, Paul A; Smith, Jack W; Barbour, Ed; Silverstein, Jonathan C; Krusch, David A; Nagarajan, Rakesh; Becich, Michael J

    2009-07-01

    Clinical and translational research increasingly requires computation. Projects may involve multiple computationally oriented groups including information technology (IT) professionals, computer scientists, and biomedical informaticians. However, many biomedical researchers are not aware of the distinctions among these complementary groups, leading to confusion, delays, and suboptimal results. Although written from the perspective of Clinical and Translational Science Award (CTSA) programs within academic medical centers, this article addresses issues that extend beyond clinical and translational research. The authors describe the complementary but distinct roles of operational IT, research IT, computer science, and biomedical informatics using a clinical data warehouse as a running example. In general, IT professionals focus on technology. The authors distinguish between two types of IT groups within academic medical centers: central or administrative IT (supporting the administrative computing needs of large organizations) and research IT (supporting the computing needs of researchers). Computer scientists focus on general issues of computation such as designing faster computers or more efficient algorithms, rather than specific applications. In contrast, informaticians are concerned with data, information, and knowledge. Biomedical informaticians draw on a variety of tools, including but not limited to computers, to solve information problems in health care and biomedicine. The paper concludes with recommendations regarding administrative structures that can help to maximize the benefit of computation to biomedical research within academic health centers. PMID:19550198

  14. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  15. British Journal of Biomedical Science in 2015: what have we learned?

    Science.gov (United States)

    Blann, Andrew; Nation, Brian

    2016-01-01

    In 2015, the British Journal of Biomedical Science published 47 reports on topics relating to the various disciplines within biomedical science. Of these, the majority were in infection science (15 in microbiology and two in virology) and blood science (seven in biochemistry, four in haematology, three in immunology and one in transplantation), with a smaller number in cellular sciences (four reports) and with one review across disciplines. The present report will summarise key aspects of these publications that are of greatest relevance to laboratory scientists.

  16. How the UK Can Lead the Terrestrial Translation of Biomedical Advances Arising from Lunar Exploration Activities

    Science.gov (United States)

    Green, David A.

    2010-12-01

    Terrestrial translation of biomedical advances is insufficient justification for lunar exploration. However, terrestrial translation should be viewed as a critical part of the cycle of mission planning, execution and review, both in terms of the progress of space exploration, but also of sustained life on Earth. Thus, both the mission and its potential to benefit mankind are increased by the adoption of human-based exploration of the lunar surface. Whilst European biomedical sciences have grown in stature, there remains a gap between space biomedical science and terrestrial medical application. As such, an opportunity for the UK to take a sustainable leadership role exists by utilising its biomedical science community, socialised health care system (National Health Service) and defined mechanisms to determine the clinical efficacy and cost-effectiveness upon health and wellbeing (i.e. National Institute Clinical Excellence), aiding the difficult process of health care rationing. By focusing upon exploitation of the more scientifically rewarding, potentially long-term and more terrestrially analogous challenge of lunar habitation, the UK would circumnavigate the current impediments to International Space Station utilisation. Early engagement in lunar exploration would promote the UK, and its adoption of a leadership role incorporating a considered approach to the development of space biomedicine with an eye to its terrestrial value. For instance, prolonged lunar habitation could provide an `ideal controlled environment' for investigation of medical interventions, in particular multiple interactions (e.g. between exercise and nutrition), a model of accelerated aging and a number of chronic pathologies, including those related to disuse. Lunar advances could provide a springboard for individualized medicine, insights into occupational and de-centralised medicine (e.g. telemedicine) and act as a stimulus for biomedical innovation and understanding. Leadership in

  17. Interactive Processing and Visualization of Image Data forBiomedical and Life Science Applications

    Energy Technology Data Exchange (ETDEWEB)

    Staadt, Oliver G.; Natarjan, Vijay; Weber, Gunther H.; Wiley,David F.; Hamann, Bernd

    2007-02-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and life science applications. We present an adaptive high-resolution display system suitable for biomedical image data, algorithms for analyzing and visualization protein surfaces and retinal optical coherence tomography data, and visualization tools for 3D gene expression data. Conclusion: We demonstrated that interactive processing and visualization methods and systems can support scientists in a variety of biomedical and life science application areas concerned with massive data analysis.

  18. New frontiers in biomedical science and engineering during 2014-2015.

    Science.gov (United States)

    Liu, Feng; Lee, Dong-Hoon; Lagoa, Ricardo; Kumar, Sandeep

    2015-01-01

    The International Conference on Biomedical Engineering and Biotechnology (ICBEB) is an international meeting held once a year. This, the fourth International Conference on Biomedical Engineering and Biotechnology (ICBEB2015), will be held in Shanghai, China, during August 18th-21st, 2015. This annual conference intends to provide an opportunity for researchers and practitioners at home and abroad to present the most recent frontiers and future challenges in the fields of biomedical science, biomedical engineering, biomaterials, bioinformatics and computational biology, biomedical imaging and signal processing, biomechanical engineering and biotechnology, etc. The papers published in this issue are selected from this Conference, which witness the advances in biomedical engineering and biotechnology during 2014-2015.

  19. Interactive processing and visualization of image data for biomedical and life science applications

    OpenAIRE

    Staadt, Oliver G.; Natarajan, Vijay; Weber, Gunther H.; Wiley, David F; Hamann, Bernd

    2007-01-01

    Background Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results We show that new data processing tools and visualization systems can be used successfully in biomedical and life s...

  20. Interactive processing and visualization of image data for biomedical and life science applications

    OpenAIRE

    Staadt, Oliver G; Natarajan, Vijay; Weber, Gunther H.; Wiley, David F.; Hamann, Bernd

    2007-01-01

    Background: Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results: We show that new data processing tools and visualization systems can be used successfully in biomedical and l...

  1. Interactive Processing and Visualization of Image Data for Biomedical and Life Science Applications

    OpenAIRE

    Staadt, Oliver G; Natarjan, Vijay; Weber, Gunther H.; Wiley, David F.; Hamann, Bernd

    2007-01-01

    Background Applications in biomedical science and life science produce large data sets using increasingly powerful imaging devices and computer simulations. It is becoming increasingly difficult for scientists to explore and analyze these data using traditional tools. Interactive data processing and visualization tools can support scientists to overcome these limitations. Results We show that new data processing tools and visualization systems can be used successfully in biomedical and life s...

  2. From Bench to Bedside: A Communal Utility Value Intervention to Enhance Students' Biomedical Science Motivation

    Science.gov (United States)

    Brown, Elizabeth R.; Smith, Jessi L.; Thoman, Dustin B.; Allen, Jill M.; Muragishi, Gregg

    2015-01-01

    Motivating students to pursue science careers is a top priority among many science educators. We add to the growing literature by examining the impact of a utility value intervention to enhance student's perceptions that biomedical science affords important utility work values. Using an expectancy-value perspective, we identified and tested 2…

  3. International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015)

    Science.gov (United States)

    2015-09-01

    The International Conference on Bio-Medical Instrumentation and related Engineering and Physical Sciences (BIOMEP 2015) took place in the Technological Educational Institute (TEI) of Athens, Greece on June 18-20, 2015 and was organized by the Department of Biomedical Engineering. The scope of the conference was to provide a forum on the latest developments in Biomedical Instrumentation and related principles of Physical and Engineering sciences. Scientists and engineers from academic, industrial and health disciplines were invited to participate in the Conference and to contribute both in the promotion and dissemination of the scientific knowledge.

  4. Biomedical scientist training officers' evaluation of integrated (co-terminus) Applied Biomedical Science BSc programmes: a multicentre study.

    Science.gov (United States)

    Pitt, S J; Cunningham, J M

    2011-01-01

    The introduction of the Institute of Biomedical Science (IBMS) portfolio for pre-registration training in 2003 allowed universities to develop integrated (co-terminus) biomedical science BSc programmes. Students undertake structured placements within clinical pathology laboratories as part of their degree. The clinical training and professional development of students is undertaken by training officers (TOs), who are experienced Health Professions Council (HPC)-registered biomedical scientists and usually also members of the IBMS. This study aims to evaluate TOs' perceptions of these integrated degrees as a means of delivering pre-registration training for biomedical scientists. A questionnaire to collect quantitative data and be completed anonymously was sent to TOs, via staff at participating universities. Items considered TOs' perceptions in four categories: how well students fitted into the laboratory team, their professional and scientific development, the impact of delivering integrated degrees on service delivery, and the commitment to training students. Surveys took place in 2007, 2008 and 2009 and involved TOs taking students from 10, 14 and 17 universities each year, respectively. The response rates to the survey were 60% in 2007, 34% in 2008 and 12% in 2009. Participants were representative in terms of age, gender and pathology discipline and had a broad range of experience with students. The overall mean score for TOs perceptions was 3.38 in 2007 which increased significantly to 3.99 in 2009 (Kruskall Wallis test chi2 = 21.13, P<0.01). Mean scores in three of the four categories were positive in 2007, although the impact on service delivery was perceived negatively. In all areas, means were significantly greater in 2009. The results indicate that TOs view the integrated degrees favourably and are happy with the scientific and professional development of students. Although designing training sessions suitable for undergraduates took extra work initially

  5. Race and Genetics: Controversies in Biomedical, Behavioral, and Forensic Sciences

    Science.gov (United States)

    Ossorio, Pilar; Duster, Troy

    2005-01-01

    Among biomedical scientists, there is a great deal of controversy over the nature of race, the relevance of racial categories for research, and the proper methods of using racial variables. This article argues that researchers and scholars should avoid a binary-type argument, in which the question is whether to use race always or never.…

  6. The Faculty Costs to Educate a Biomedical Sciences Graduate Student

    Science.gov (United States)

    Smolka, Adam J.; Halushka, Perry V.; Garrett-Mayer, Elizabeth

    2015-01-01

    Academic medical centers nationwide face numerous fiscal challenges resulting from implementation of restructured healthcare delivery models, contracting state support for higher education, and increased competition for federal and other sources of biomedical research funding. In pursuing greater accountability and transparency in its fiscal…

  7. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce. PMID:25354071

  8. Should MD-PhD programs encourage graduate training in disciplines beyond conventional biomedical or clinical sciences?

    Science.gov (United States)

    O'Mara, Ryan J; Hsu, Stephen I; Wilson, Daniel R

    2015-02-01

    The goal of MD-PhD training programs is to produce physician-scientists with unique capacities to lead the future biomedical research workforce. The current dearth of physician-scientists with expertise outside conventional biomedical or clinical sciences raises the question of whether MD-PhD training programs should allow or even encourage scholars to pursue doctoral studies in disciplines that are deemed nontraditional, yet are intrinsically germane to major influences on health. This question is especially relevant because the central value and ultimate goal of the academic medicine community is to help attain the highest level of health and health equity for all people. Advances in medical science and practice, along with improvements in health care access and delivery, are steps toward health equity, but alone they will not come close to eliminating health inequalities. Addressing the complex health issues in our communities and society as a whole requires a biomedical research workforce with knowledge, practice, and research skills well beyond conventional biomedical or clinical sciences. To make real progress in advancing health equity, educational pathways must prepare physician-scientists to treat both micro and macro determinants of health. The authors argue that MD-PhD programs should allow and encourage their scholars to cross boundaries into less traditional disciplines such as epidemiology, statistics, anthropology, sociology, ethics, public policy, management, economics, education, social work, informatics, communications, and marketing. To fulfill current and coming health care needs, nontraditional MD-PhD students should be welcomed and supported as valuable members of our biomedical research workforce.

  9. Bridging the social and the biomedical: engaging the social and political sciences in HIV research

    OpenAIRE

    Kippax Susan C; Holt Martin; Friedman Samuel R

    2011-01-01

    Abstract This supplement to the Journal of the International AIDS Society focuses on the engagement of the social and political sciences within HIV research and, in particular, maintaining a productive relationship between social and biomedical perspectives on HIV. It responds to a number of concerns raised primarily by social scientists, but also recognized as important by biomedical and public health researchers. These concerns include how best to understand the impact of medical technologi...

  10. The Role Biomedical Science Laboratories Can Play in Improving Science Knowledge and Promoting First-Year Nursing Academic Success

    Science.gov (United States)

    Arneson, Pam

    2011-01-01

    The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an…

  11. Keynote Lecture: The Problems and Challenges in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Bruce Albert

    2015-08-01

    Full Text Available Distressed by the perverse incentives that have generated the current hyper-competitive biomedical research environment in the United States, four of us published an open-access article in April 2014 entitled: Rescuing US biomedical research from its systemic flaws (Alberts, B., Kirschner, Marc W., Tilghman, Shirley, and  Varmus, H.; Proc. Natl. Acad. Sci. USA 111, 5773-5777 (2014. As announced in our follow-up piece, Opinion: Addressing systemic problems in the biomedical research enterprise (Proc. Natl. Acad. Sci. USA 112, 1912-1913 (2015, we have formed a 16-member steering committee to oversee a new website that is designed to collect suggestions for actions that can ameliorate the identified problems, as well as to highlight promising changes that are either underway or proposed (see http://rescuingbiomedicalresearch.org.  Despite widespread agreement concerning the problems, any substantial change in the system is bound to be controversial. Experiments are therefore needed. In my talk, I will outline some possible ideas for overcoming the inertia that prevents moving forward.We are encouraging both national and international contributions to this effort, since the problems that we have described are by no means unique to the United States.

  12. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-04-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.

  13. Polymers in life sciences: Pharmaceutical and biomedical applications

    Science.gov (United States)

    Barba, Anna Angela; Dalmoro, Annalisa; d'Amore, Matteo; Lamberti, Gaetano; Cascone, Sara; Titomanlio, Giuseppe

    2015-12-01

    This paper deals with the work done by prof. Titomanlio and his group in the fields of pharmaceutical and biomedical applications of polymers. In particular, the main topics covered are: i) controlled drug release from pharmaceuticals based on hydrogel for oral delivery of drugs; ii) production and characterization of micro and nanoparticles based on stimuli-responsive polymers; iii) use of polymers for coronary stent gel-paving; iv) design and realization of novel methods (in-vitro and in-silico) to test polymer-based pharmaceuticals.

  14. Biomedical technical transfer. Applications of NASA science and technology

    Science.gov (United States)

    1976-01-01

    Lower body negative pressure testing in cardiac patients has been completed as well as the design and construction of a new leg negative unit for evaluating heart patients. This technology is based on NASA research, using vacuum chambers to stress the cardiovascular system during space flight. Additional laboratory tests of an intracranial pressure transducer, have been conducted. Three new biomedical problems to which NASA technology is applicable are also identified. These are: a communication device for the speech impaired, the NASA development liquid-cooled garment, and miniature force transducers for heart research.

  15. Establishment of an index system for evaluating outstanding biomedical scientists for science foundation of Shanghai

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-jing; CHEN Xin; REN Xu-feng

    2007-01-01

    Objective:To establish a scientific, objective and applicable index system for evaluating outstanding biomedical scientists for science foundation of Shanghai. Methods: According to the principal indices that have been used in the developed countries for evaluating their talented personnel and the reality of our country, an index system was set up to evaluate the outstanding biomedical scientists for Shanghai science foundation. The following parameters were used to simplify the indices: correlation coefficient,multiple correlation coefficient, partial correlation coefficient, creditability, and discriminatory power.And analytic hierarchy process was used to determine the weights of each index. Results and Conclusions:The established index system is scientific and applicable; it is helpful for cultivating and evaluating outstanding biomedical scientists.

  16. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  17. [Application of the life sciences platform based on oracle to biomedical informations].

    Science.gov (United States)

    Zhao, Zhi-Yun; Li, Tai-Huan; Yang, Hong-Qiao

    2008-03-01

    The life sciences platform based on Oracle database technology is introduced in this paper. By providing a powerful data access, integrating a variety of data types, and managing vast quantities of data, the software presents a flexible, safe and scalable management platform for biomedical data processing. PMID:18581881

  18. The impact of blended learning technologies on student performance/learning in biomedical science higher education

    OpenAIRE

    Heugh, Sheelagh Mary Bernadette

    2015-01-01

    This study examines the benefits of learning innovations in e-learning (asynchronous classrooms only) and blended learning (asynchronous virtual classrooms plus traditional learning) compared to traditional learning (classroom lectures). It specifically investigates effects on student satisfaction, retention, progression and achievement. We focussed on core biomedical science modules at London Metropolitan University: and four such modules were electronically supported using a learning and co...

  19. A New Voice in Science : Patient participation in decision-making on biomedical research

    NARCIS (Netherlands)

    Caron-Flinterman, J.F.

    2005-01-01

    End-users are increasingly involved in decision-making concerning science and technology. This dissertation focuses on a specific kind of end-user participation: patient participation in decision-making on bio-medical research. Since patients can be considered relevant experts and stakeholders with

  20. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  1. Drug design and discovery: translational biomedical science varies among countries.

    Science.gov (United States)

    Weaver, Ian N; Weaver, Donald F

    2013-10-01

    Drug design and discovery is an innovation process that translates the outcomes of fundamental biomedical research into therapeutics that are ultimately made available to people with medical disorders in many countries throughout the world. To identify which nations succeed, exceed, or fail at the drug design/discovery endeavor--more specifically, which countries, within the context of their national size and wealth, are "pulling their weight" when it comes to developing medications targeting the myriad of diseases that afflict humankind--we compiled and analyzed a comprehensive survey of all new drugs (small molecular entities and biologics) approved annually throughout the world over the 20-year period from 1991 to 2010. Based upon this analysis, we have devised prediction algorithms to ascertain which countries are successful (or not) in contributing to the worldwide need for effective new therapeutics.

  2. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    OpenAIRE

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical sciences. For our analysis, we developed and used a theoretical framework which integrates concepts from identity-in-practice literature with Bourdieu’s ...

  3. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers.

  4. Graduate Experience in Science Education: the development of a science education course for biomedical science graduate students.

    Science.gov (United States)

    Markowitz, Dina G; DuPré, Michael J

    2007-01-01

    The University of Rochester's Graduate Experience in Science Education (GESE) course familiarizes biomedical science graduate students interested in pursuing academic career tracks with a fundamental understanding of some of the theory, principles, and concepts of science education. This one-semester elective course provides graduate students with practical teaching and communication skills to help them better relate science content to, and increase their confidence in, their own teaching abilities. The 2-h weekly sessions include an introduction to cognitive hierarchies, learning styles, and multiple intelligences; modeling and coaching some practical aspects of science education pedagogy; lesson-planning skills; an introduction to instructional methods such as case studies and problem-based learning; and use of computer-based instructional technologies. It is hoped that the early development of knowledge and skills about teaching and learning will encourage graduate students to continue their growth as educators throughout their careers. This article summarizes the GESE course and presents evidence on the effectiveness of this course in providing graduate students with information about teaching and learning that they will use throughout their careers. PMID:17785406

  5. International Conference for Innovation in Biomedical Engineering and Life Sciences

    CERN Document Server

    Usman, Juliana; Mohktar, Mas; Ahmad, Mohd

    2016-01-01

    This volumes presents the proceedings of ICIBEL 2015, organized by the Centre for Innovation in Medical Engineering (CIME) under Innovative Technology Research Cluster, University of Malaya. It was held in Kuala Lumpur, Malaysia, from 6-8 December 2015. The ICIBEL 2015 conference promotes the latest researches and developments related to the integration of the Engineering technology in medical fields and life sciences. This includes the latest innovations, research trends and concerns, challenges and adopted solution in the field of medical engineering and life sciences. .

  6. Biomedical Science, Unit II: Nutrition in Health and Medicine. Digestion of Foods; Organic Chemistry of Nutrients; Energy and Cell Respiration; The Optimal Diet; Foodborne Diseases; Food Technology; Dental Science and Nutrition. Student Text. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This student text presents instructional materials for a unit of science within the Biomedical Interdisciplinary Curriculum Project (BICP), a two-year interdisciplinary precollege curriculum aimed at preparing high school students for entry into college and vocational programs leading to a career in the health field. Lessons concentrate on…

  7. Reaching Consensus on Essential Biomedical Science Learning Objectives in a Dental Curriculum.

    Science.gov (United States)

    Best, Leandra; Walton, Joanne N; Walker, Judith; von Bergmann, HsingChi

    2016-04-01

    This article describes how the University of British Columbia Faculty of Dentistry reached consensus on essential basic biomedical science objectives for DMD students and applied the information to the renewal of its DMD curriculum. The Delphi Method was used to build consensus among dental faculty members and students regarding the relevance of over 1,500 existing biomedical science objectives. Volunteer panels of at least three faculty members (a basic scientist, a general dentist, and a dental specialist) and a fourth-year dental student were formed for each of 13 biomedical courses in the first two years of the program. Panel members worked independently and anonymously, rating each course objective as "need to know," "nice to know," "irrelevant," or "don't know." Panel members were advised after each round which objectives had not yet achieved a 75% consensus and were asked to reconsider their ratings. After a maximum of three rounds to reach consensus, a second group of faculty experts reviewed and refined the results to establish the biomedical science objectives for the renewed curriculum. There was consensus on 46% of the learning objectives after round one, 80% after round two, and 95% after round three. The second expert group addressed any remaining objectives as part of its review process. Only 47% of previous biomedical science course objectives were judged to be essential or "need to know" for the general dentist. The consensus reached by participants in the Delphi Method panels and a second group of faculty experts led to a streamlined, better integrated DMD curriculum to prepare graduates for future practice.

  8. The placebo puzzle: examining the discordant space between biomedical science and illness/healing.

    Science.gov (United States)

    Pohlman, Shawn; Cibulka, Nancy J; Palmer, Janice L; Lorenz, Rebecca A; SmithBattle, Lee

    2013-03-01

    The placebo response presents an enigma to biomedical science: how can 'inert' or 'sham' procedures reduce symptoms and produce physiological changes that are comparable to prescribed treatments? In this study, we examine this puzzle by explicating the discordant space between the prevailing biomedical paradigm, which focuses on a technical understanding of diagnosis and treatment, and a broader understanding of illness and healing as relational and embodied. Although biomedical achievements are impressive, the knowledge resulting from this paradigm is limited by its ontological and epistemological assumptions. When the body and world are objectified, illness meanings, therapeutic relationships, and healing practices are dismissed or distorted. In spite of a robust critique of the tenets of biomedicine for guiding practice, the biomedical paradigm retains a tenacious hold on evidence-based medicine and nursing, downplaying our clinical understanding of the sentient body, patients' life-worlds, and illness and healing. In reality, skilled nurses rely on multiple forms of knowledge in providing high-quality care to particular patients. Clinically wise nurses integrate their experience and knowledge of patients' priorities, fears, and illness trajectories along with biomedical findings to make astute judgments and promote health and healing.

  9. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  10. Truth in basic biomedical science will set future mankind free.

    Science.gov (United States)

    Ling, Gilbert N

    2011-01-01

    It is self-evident that continued wellbeing and prosperity of our species in time to come depends upon a steady supply of major scientific and technologic innovations. However, major scientific and technical innovations are rare. As a rule, they grow only in the exceptionally fertile minds of men and women, who have fully mastered the underlying basic sciences. To waken their interest in science at an early critical age and to nurture and enhance that interest afterward, good textbooks at all level of education that accurately portray the relevant up-to-date knowledge are vital. As of now, the field of science that offers by far the greatest promise for the future of humanity is the science of life at the most basic cell and below-cell level. Unfortunately, it is precisely this crucial part of the (standardized) biological textbooks for all high schools and colleges in the US and abroad that have become, so to speak, fossilized. As a result, generation after generation of (educated) young men and women have been and are still being force-fed as established scientific truth an obsolete membrane (pump) theory, which has been categorically disproved half a century ago (see Endnote 1.) To reveal this Trojan horse of a theory for what it really is demands the concerted efforts of many courageous individuals especially young biology teachers who take themselves and their career seriously. But even the most courageous and the most resourceful won't find the task easy. To begin with, they would find it hard to access the critical scientific knowledge, with which to convert the skeptic and to rally the friendly. For the wealth of mutually supportive evidence against the membrane (pump) theory are often hidden in inaccessible publications and/or in languages other than English. To overcome this seemingly trivial but in fact formidable obstacle and to reveal the beauty and coherence of the existing but untaught truth, I put together in this small package a collection of the

  11. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  12. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  13. Modern Trends in Imaging XI: Impedance Measurements in the Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Frederick D. Coffman

    2012-01-01

    Full Text Available Biological organisms and their component organs, tissues and cells have unique electrical impedance properties. Impedance properties often change with changes in structure, composition, and metabolism, and can be indicative of the onset and progression of disease states. Over the past 100 years, instruments and analytical methods have been developed to measure the impedance properties of biological specimens and to utilize these measurements in both clinical and basic science settings. This chapter will review the applications of impedance measurements in the biomedical sciences, from whole body analysis to impedance measurements of single cells and cell monolayers, and how cellular impedance measuring instruments can now be used in high throughput screening applications.

  14. Resident's morning report: an opportunity to reinforce principles of biomedical science in a clinical context.

    Science.gov (United States)

    Brass, Eric P

    2013-01-01

    The principles of biochemistry are core to understanding cellular and tissue function, as well as the pathophysiology of disease. However, the clinical utility of biochemical principles is often obscure to clinical trainees. Resident's Morning Report is a common teaching conference in which residents present clinical cases of interest to a faculty member for discussion. This venue provides an opportunity to illustrate how basic biomedical principles facilitate an understanding of the clinical presentation, the relevant pathophysiology, and the rationale for diagnostic and therapeutic strategies. A discussion of biochemical principles can easily be incorporated into these case discussions, with the potential to reinforce these concepts and to illustrate their application to clinical decision making. This approach maintains the effort to teach basic biomedical sciences in the context of clinical application across the educational continuum.

  15. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  16. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    Science.gov (United States)

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  17. Measuring revolutionary biomedical science 1992-2006 using Nobel prizes, Lasker (clinical medicine) awards and Gairdner awards (NLG metric).

    Science.gov (United States)

    Charlton, Bruce G

    2007-01-01

    The Nobel prize for medicine or physiology, the Lasker award for clinical medicine, and the Gairdner international award are given to individuals for their role in developing theories, technologies and discoveries which have changed the direction of biomedical science. These distinctions have been used to develop an NLG metric to measure research performance and trends in 'revolutionary' biomedical science with the aim of identifying the premier revolutionary science research institutions and nations from 1992-2006. I have previously argued that the number of Nobel laureates in the biomedical field should be expanded to about nine per year and the NLG metric attempts to predict the possible results of such an expansion. One hundred and nineteen NLG prizes and awards were made during the past fifteen years (about eight per year) when overlapping awards had been removed. Eighty-five were won by the USA, revealing a massive domination in revolutionary biomedical science by this nation; the UK was second with sixteen awards; Canada had five, Australia four and Germany three. The USA had twelve elite centres of revolutionary biomedical science, with University of Washington at Seattle and MIT in first position with six awards and prizes each; Rockefeller University and Caltech were jointly second placed with five. Surprisingly, Harvard University--which many people rank as the premier world research centre--failed to reach the threshold of three prizes and awards, and was not included in the elite list. The University of Oxford, UK, was the only institution outside of the USA which featured as a significant centre of revolutionary biomedical science. Long-term success at the highest level of revolutionary biomedical science (and probably other sciences) probably requires a sufficiently large number of individually-successful large institutions in open competition with one another--as in the USA. If this model cannot be replicated within smaller nations, then it implies

  18. Teaching authorship and publication practices in the biomedical and life sciences.

    Science.gov (United States)

    Macrina, Francis L

    2011-06-01

    Examination of a limited number of publisher's Instructions for Authors, guidelines from two scientific societies, and the widely accepted policy document of the International Committee of Medical Journal Editors (ICMJE) provided useful information on authorship practices. Three of five journals examined (Nature, Science, and the Proceedings of the National Academy of Sciences) publish papers across a variety of disciplines. One is broadly focused on topics in medical research (New England Journal of Medicine) and one publishes research reports in a single discipline (Journal of Bacteriology). Similar elements of publication policy and accepted practices were found across the policies of these journals articulated in their Instructions for Authors. A number of these same elements were found in the professional society guidelines of the Society for Neuroscience and the American Chemical Society, as well as the ICMJE Uniform Requirements for Manuscripts Submitted to Biomedical Journals. Taken together, these sources provide the basis for articulating best practices in authorship in scientific research. Emerging from this material is a definition of authorship, as well as policy statements on duplicative publication, conflict of interest disclosure, electronic access, data sharing, digital image integrity, and research requiring subjects' protection, including prior registration of clinical trials. These common elements provide a foundation for teaching about scientific authorship and publication practices across biomedical and life sciences disciplines.

  19. Should there be greater use of preprint servers for publishing reports of biomedical science?

    Science.gov (United States)

    Chalmers, Iain; Glasziou, Paul

    2016-01-01

    Vitek Tracz and Rebecca Lawrence declare the current journal publishing system to be broken beyond repair. They propose that it should be replaced by immediate publication followed by transparent peer review as the starting place for more open and efficient reporting of science. While supporting this general objective, we suggest that research is needed both to understand why biomedical scientists have been slow to take up preprint options, as well as to assess the relative merits of this and other alternatives to journal publishing.

  20. Spacelab Life Sciences 3 biomedical research using the Rhesus Research Facility

    Science.gov (United States)

    Ballard, R. W.; Searby, N. D.; Stone, L. S.; Hogan, R. P.; Viso, M.; Venet, M.

    1992-01-01

    In 1985, a letter of agreement was signed between the French space agency, CNES, and NASA, formally initiating a joint venture called the RHESUS Project. The goal of this project is to provide a facility to fly rhesus monkeys (Macaca mulatta) to support spaceflight experiments which are applicable but not practical to carry out on human subjects. Biomedical investigations in behavior/performance, immunology/microbiology, muscle physiology, cardiopulmonary physiology, bone/calcium physiology, regulatory physiology, and neurophysiology disciplines will be performed. The Rhesus Research Facility, hardware capable of supporting two adult rhesus monkeys in a microgravity environment, is being developed for a first flight on Spacelab Life Sciences in early 1996.

  1. Differential equation analysis in biomedical science and engineering partial differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world PDE problems across various fields With a step-by-step approach to solving partial differential equations (PDEs), Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R successfully applies computational techniques for solving real-world PDE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the com

  2. Differential equation analysis in biomedical science and engineering ordinary differential equation applications with R

    CERN Document Server

    Schiesser, William E

    2014-01-01

    Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-worldODE problems that are found in a variety of fields, including chemistry, physics, biology,and physiology. The book provides readers with the necessary knowledge to reproduce andextend the comp

  3. Recent developments in fluorescence-based microscopy applied in biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The present short review aims to give an overview of the most recent de velopments in fluorescence microscopy and its applications in biomedical science s. Apart from improvements in well-established methods based on conventional fl u orescence microscopy and confocal microscopy (fluorescence in situ hybridisa tion (FISH), tyramide signal amplification (TSA) in immunocytochemistry, new fluorop hores), more recently introduced techniques like fluorescence resonance energy t ransfer (FRET), fluorescence recovery after photobleaching (FRAP), multiphoton m icroscopy and fluorescence correlation spectroscopy (FCS) will be discussed.

  4. Boundary-Work in the Health Research Field: Biomedical and Clinician Scientists' Perceptions of Social Science Research

    Science.gov (United States)

    Albert, Mathieu; Laberge, Suzanne; Hodges, Brian D.

    2009-01-01

    Funding agencies in Canada are attempting to break down the organizational boundaries between disciplines to promote interdisciplinary research and foster the integration of the social sciences into the health research field. This paper explores the extent to which biomedical and clinician scientists' perceptions of social science research operate…

  5. Predicting Transition and Adjustment to College: Biomedical and Behavioral Science Aspirants' and Minority Students' First Year of College

    Science.gov (United States)

    Hurtado, Sylvia; Han, June C.; Saenz, Victor B.; Espinosa, Lorelle L.; Cabrera, Nolan L.; Cerna, Oscar S.

    2007-01-01

    The purpose of this study is to explore key factors that impact the college transition of aspiring underrepresented minority students in the biomedical and behavioral sciences, in comparison with White, Asian students and non-science minority students. We examined successful management of the academic environment and sense of belonging during the…

  6. Biomedical Big Data Training Collaborative (BBDTC): An effort to bridge the talent gap in biomedical science and research

    Science.gov (United States)

    Purawat, Shweta; Cowart, Charles; Amaro, Rommie E.; Altintas, Ilkay

    2016-01-01

    The BBDTC (https://biobigdata.ucsd.edu) is a community-oriented platform to encourage high-quality knowledge dissemination with the aim of growing a well-informed biomedical big data community through collaborative efforts on training and education. The BBDTC collaborative is an e-learning platform that supports the biomedical community to access, develop and deploy open training materials. The BBDTC supports Big Data skill training for biomedical scientists at all levels, and from varied backgrounds. The natural hierarchy of courses allows them to be broken into and handled as modules. Modules can be reused in the context of multiple courses and reshuffled, producing a new and different, dynamic course called a playlist. Users may create playlists to suit their learning requirements and share it with individual users or the wider public. BBDTC leverages the maturity and design of the HUBzero content-management platform for delivering educational content. To facilitate the migration of existing content, the BBDTC supports importing and exporting course material from the edX platform. Migration tools will be extended in the future to support other platforms. Hands-on training software packages, i.e., toolboxes, are supported through Amazon EC2 and Virtualbox virtualization technologies, and they are available as: (i) downloadable lightweight Virtualbox Images providing a standardized software tool environment with software packages and test data on their personal machines, and (ii) remotely accessible Amazon EC2 Virtual Machines for accessing biomedical big data tools and scalable big data experiments. At the moment, the BBDTC site contains three open Biomedical big data training courses with lecture contents, videos and hands-on training utilizing VM toolboxes, covering diverse topics. The courses have enhanced the hands-on learning environment by providing structured content that users can use at their own pace. A four course biomedical big data series is planned

  7. Lecture 10: The European Bioinformatics Institute - "Big data" for biomedical sciences

    CERN Document Server

    CERN. Geneva; Dana, Jose

    2013-01-01

    Part 1: Big data for biomedical sciences (Tom Hancocks) Ten years ago witnessed the completion of the first international 'Big Biology' project that sequenced the human genome. In the years since biological sciences, have seen a vast growth in data. In the coming years advances will come from integration of experimental approaches and the translation into applied technologies is the hospital, clinic and even at home. This talk will examine the development of infrastructure, physical and virtual, that will allow millions of life scientists across Europe better access to biological data Tom studied Human Genetics at the University of Leeds and McMaster University, before completing an MSc in Analytical Genomics at the University of Birmingham. He has worked for the UK National Health Service in diagnostic genetics and in training healthcare scientists and clinicians in bioinformatics. Tom joined the EBI in 2012 and is responsible for the scientific development and delivery of training for the BioMedBridges pr...

  8. Biomedical engineering and nanotechnology

    International Nuclear Information System (INIS)

    This book is predominantly a compilation of papers presented in the conference which is focused on the development in biomedical materials, biomedical devises and instrumentation, biomedical effects of electromagnetic radiation, electrotherapy, radiotherapy, biosensors, biotechnology, bioengineering, tissue engineering, clinical engineering and surgical planning, medical imaging, hospital system management, biomedical education, biomedical industry and society, bioinformatics, structured nanomaterial for biomedical application, nano-composites, nano-medicine, synthesis of nanomaterial, nano science and technology development. The papers presented herein contain the scientific substance to suffice the academic directivity of the researchers from the field of biomedicine, biomedical engineering, material science and nanotechnology. Papers relevant to INIS are indexed separately

  9. Hegemony in the marketplace of biomedical innovation: consumer demand and stem cell science.

    Science.gov (United States)

    Salter, Brian; Zhou, Yinhua; Datta, Saheli

    2015-04-01

    The global political economy of stem cell therapies is characterised by an established biomedical hegemony of expertise, governance and values in collision with an increasingly informed health consumer demand able to define and pursue its own interest. How does the hegemony then deal with the challenge from the consumer market and what does this tell us about its modus operandi? In developing a theoretical framework to answer these questions, the paper begins with an analysis of the nature of the hegemony of biomedical innovation in general, its close relationship with the research funding market, the current political modes of consumer incorporation, and the ideological role performed by bioethics as legitimating agency. Secondly, taking the case of stem cell innovation, it explores the hegemonic challenge posed by consumer demand working through the global practice based market of medical innovation, the response of the national and international institutions of science and their reassertion of the values of the orthodox model, and the supporting contribution of bioethics. Finally, the paper addresses the tensions within the hegemonic model of stem cell innovation between the key roles and values of scientist and clinician, the exacerbation of these tensions by the increasingly visible demands of health consumers, and the emergence of political compromise.

  10. Biomedical laboratory science education: standardising teaching content in resource-limited countries

    Directory of Open Access Journals (Sweden)

    Wendy Arneson

    2013-03-01

    Full Text Available Background: There is a worldwide shortage of qualified laboratory personnel to provide adequate testing for the detection and monitoring of diseases. In an effort to increase laboratory capacity in developing countries, new skills have been introduced into laboratory services. Curriculum revision with a focus on good laboratory practice is an important aspect of supplying entry-level graduates with the competencies needed to meet the current needs.Objectives: Gaps in application and problem-solving competencies of newly graduated laboratory personnel were discovered in Ethiopia, Tanzania and Kenya. New medical laboratory teaching content was developed in Ethiopia, Tanzania and Kenya using national instructors, tutors, and experts and consulting medical laboratory educators from the United States of America (USA.Method: Workshops were held in Ethiopia to create standardised biomedical laboratory science (BMLS lessons based on recently-revised course objectives with an emphasis on application of skills. In Tanzania, course-module teaching guides with objectives were developed based on established competency outcomes and tasks. In Kenya, example interactive presentations and lesson plans were developed by the USA medical laboratory educators prior to the workshop to serve as resources and templates for the development of lessons within the country itself.Results: The new teaching materials were implemented and faculty, students and other stakeholders reported successful outcomes.Conclusions: These approaches to updating curricula may be helpful as biomedical laboratory schools in other countries address gaps in the competencies of entry-level graduates.

  11. Biomedical neutron research at the Californium User Facility for neutron science

    International Nuclear Information System (INIS)

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact 252Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with 252Cf sources. Three projects at the CUF that demonstrate the versatility of 252Cf for biological and biomedical neutron-based research are described: future establishment of a 252Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded 252Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy

  12. Biomedical neutron research at the Californium User Facility for neutron science

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.C. [Oak Ridge National Lab., TN (United States); Byrne, T.E. [Roane State Community College, Harriman, TN (United States); Miller, L.F. [Univ. of Tennessee, Knoxville, TN (United States)

    1997-04-01

    The Californium User Facility for Neutron Science has been established at Oak Ridge National Laboratory (ORNL). The Californium User Facility (CUF) is a part of the larger Californium Facility, which fabricates and stores compact {sup 252}Cf neutron sources for worldwide distribution. The CUF can provide a cost-effective option for research with {sup 252}Cf sources. Three projects at the CUF that demonstrate the versatility of {sup 252}Cf for biological and biomedical neutron-based research are described: future establishment of a {sup 252}Cf-based neutron activation analysis system, ongoing work to produce miniature high-intensity, remotely afterloaded {sup 252}Cf sources for tumor therapy, and a recent experiment that irradiated living human lung cancer cells impregnated with experimental boron compounds to test their effectiveness for boron neutron capture therapy.

  13. Advancement and applications of peptide phage display technology in biomedical science.

    Science.gov (United States)

    Wu, Chien-Hsun; Liu, I-Ju; Lu, Ruei-Min; Wu, Han-Chung

    2016-01-01

    Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.

  14. Exploring lecturers' views of first-year health science students' misconceptions in biomedical domains.

    Science.gov (United States)

    Badenhorst, Elmi; Mamede, Sílvia; Hartman, Nadia; Schmidt, Henk G

    2015-05-01

    Research has indicated that misconceptions hamper the process of knowledge construction. Misconceptions are defined as persistent ideas not supported by current scientific views. Few studies have explored how misconceptions develop when first year health students conceptually move between anatomy and physiology to construct coherent knowledge about the human body. This explorative study analysed lecturers' perceptions of first-year health science students' misconceptions in anatomy and physiology to gain a deeper understanding of how and why misconceptions could potentially arise, by attempting to link sources of misconceptions with four schools of thought, namely theories on concept formation, complexity, constructivism and conceptual change. This was a qualitative study where ten lecturers involved in teaching anatomy and physiology in the health science curricula at the University of Cape Town were interviewed to explore perceptions of students' misconceptions. Analytical induction was used to uncover categories within the interview data by using a coding system. A deeper analysis was done to identify emerging themes that begins to explore a theoretical understanding of why and how misconceptions arise. Nine sources of misconceptions were identified, including misconceptions related to language, perception, three dimensional thinking, causal reasoning, curricula design, learning styles and moving between macro and micro levels. The sources of misconceptions were then grouped together to assist educators with finding educational interventions to overcome potential misconceptions. This explorative study is an attempt in theory building to understand what is at the core of biomedical misconceptions. Misconceptions identified in this study hold implications for educators as not all students have the required building blocks and cognitive skills to successfully navigate their way through biomedical courses. Theoretical insight into the sources of misconceptions can

  15. Adventurism in biomedical science: Washington University-Monsanto program in biotechnology.

    Science.gov (United States)

    Gordon, J I

    1992-01-01

    The Washington University-Monsanto relationship has supported innovation in the biological sciences. It has done so in part by making the fence between an industrial and an academic institution more transparent and more easy to cross. A unique means of promoting intellectual adventurism may be lost, however, if this type of relationship is not structured to maximize the likelihood of obtaining products or if products are the only financial benefit that the industrial partner can derive from such interactions (for example other benefits could include governmental R&D tax credits for those relationships that satisfy some minimal criteria for size and/or length of commitment). I hope that this and other forms of industrial-university relationships that encourage discovery by providing institutional support for new ideas will flourish. Whatever their fate, the responsibility for promoting dreams must be shared by all of us: by those who are privileged to have students in their labs, by academic institutions as they seek to define their roles in the next century, by peer review boards, by national science policymakers, and perhaps by industry. I have presented the Washington University-Monsanto collaboration not as a complete answer to the question of how to promote intellectual adventurism in the biomedical sciences but rather as a concrete response to a problem that must be clearly articulated, thoroughly examined, and creatively addressed.

  16. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    A major objective of the biomedical and environmental sciences (BES) research at the Oak Ridge National Laboratory (ORNL) is to provide information on environmental, health, and safety considerations that can be used in the formulation and implementation of energy technology decisions. Research is directed at securing information required for an understanding of both the short- and long-term consequences of the processes involved in new energy technologies. Investigation of the mechanisms responsible for biological and ecological damage caused by substances associated with energy production and of repair mechanisms is a necessary component of this research. The research is carried out by the staff of four divisions and one program: Biology Division, Environmental Sciences Division, Health and Safety Research Division, Information Division, and the Life Sciences Synthetic Fuels Program. Research programs underway in each of these divisions are discussed. Information on the following subjects is also included: interactions with universities; interactions with industry; technology transfer; recent accomplishments in the areas of program, publications, awards, and patents; and new initiatives

  17. Developmental programming: State-of-the-science and future directions-summary from a Pennington biomedical symposium

    Science.gov (United States)

    On December 8-9, 2014, the Pennington Biomedical Research Center convened a scientific symposium to review the state-of-the-science and future directions for the study of developmental programming of obesity and chronic disease. The objectives of the symposium were to discuss: (i) past and current s...

  18. Multiple choice questions are superior to extended matching questions to identify medicine and biomedical sciences students who perform poorly.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Brand, T.L. van den; Hopman, M.T.E.

    2013-01-01

    In recent years, medical faculties at Dutch universities have implemented a legally binding study advice to students of medicine and biomedical sciences during their propaedeutic phase. Appropriate examination is essential to discriminate between poor (grade <6), moderate (grade 6-8) and excellen

  19. The role biomedical science laboratories can play in improving science knowledge and promoting first-year nursing academic success

    Science.gov (United States)

    Arneson, Pam

    The Role Biomedical Science Laboratories Can Play In Improving Science Knowledge and Promoting First-Year Nursing Academic Success The need for additional nursing and health care professionals is expected to increase dramatically over the next 20 years. With this in mind, students must have strong biomedical science knowledge to be competent in their field. Some studies have shown that participation in bioscience laboratories can enhance science knowledge. If this is true, an analysis of the role bioscience labs have in first-year nursing academic success is apposite. In response, this study sought to determine whether concurrent enrollment in anatomy and microbiology lecture and lab courses improved final lecture course grades. The investigation was expanded to include a comparison of first-year nursing GPA and prerequisite bioscience concurrent lecture/lab enrollment. Additionally, research has indicated that learning is affected by student perception of the course, instructor, content, and environment. To gain an insight regarding students' perspectives of laboratory courses, almost 100 students completed a 20-statement perception survey to understand how lab participation affects learning. Data analyses involved comparing anatomy and microbiology final lecture course grades between students who concurrently enrolled in the lecture and lab courses and students who completed the lecture course alone. Independent t test analyses revealed that there was no significant difference between the groups for anatomy, t(285) = .11, p = .912, but for microbiology, the lab course provided a significant educational benefit, t(256) = 4.47, p = .000. However, when concurrent prerequisite bioscience lecture/lab enrollment was compared to non-concurrent enrollment for first-year nursing GPA using independent t test analyses, no significant difference was found for South Dakota State University, t(37) = -1.57, p = .125, or for the University of South Dakota, t(38) = -0.46, p

  20. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  1. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics.

    Science.gov (United States)

    Dutta-Moscato, Joyeeta; Gopalakrishnan, Vanathi; Lotze, Michael T; Becich, Michael J

    2014-01-01

    This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM) training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical) informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC)), Richard Hersheberger, PhD (Currently, Dean at Roswell Park), and Megan Seippel, MS (the administrator) launched the University of Pittsburgh Cancer Institute (UPCI) Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI) was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical informatics

  2. Creating a pipeline of talent for informatics: STEM initiative for high school students in computer science, biology, and biomedical informatics

    Directory of Open Access Journals (Sweden)

    Joyeeta Dutta-Moscato

    2014-01-01

    Full Text Available This editorial provides insights into how informatics can attract highly trained students by involving them in science, technology, engineering, and math (STEM training at the high school level and continuing to provide mentorship and research opportunities through the formative years of their education. Our central premise is that the trajectory necessary to be expert in the emergent fields in front of them requires acceleration at an early time point. Both pathology (and biomedical informatics are new disciplines which would benefit from involvement by students at an early stage of their education. In 2009, Michael T Lotze MD, Kirsten Livesey (then a medical student, now a medical resident at University of Pittsburgh Medical Center (UPMC, Richard Hersheberger, PhD (Currently, Dean at Roswell Park, and Megan Seippel, MS (the administrator launched the University of Pittsburgh Cancer Institute (UPCI Summer Academy to bring high school students for an 8 week summer academy focused on Cancer Biology. Initially, pathology and biomedical informatics were involved only in the classroom component of the UPCI Summer Academy. In 2011, due to popular interest, an informatics track called Computer Science, Biology and Biomedical Informatics (CoSBBI was launched. CoSBBI currently acts as a feeder program for the undergraduate degree program in bioinformatics at the University of Pittsburgh, which is a joint degree offered by the Departments of Biology and Computer Science. We believe training in bioinformatics is the best foundation for students interested in future careers in pathology informatics or biomedical informatics. We describe our approach to the recruitment, training and research mentoring of high school students to create a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics. We emphasize here how mentoring of high school students in pathology informatics and biomedical

  3. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science. PMID:27191836

  4. Programmatic Efforts at the National Institutes of Health to Promote and Support the Careers of Women in Biomedical Science.

    Science.gov (United States)

    Plank-Bazinet, Jennifer L; Bunker Whittington, Kjersten; Cassidy, Sara K B; Filart, Rosemarie; Cornelison, Terri L; Begg, Lisa; Austin Clayton, Janine

    2016-08-01

    Although women have reached parity at the training level in the biological sciences and medicine, they are still significantly underrepresented in the professoriate and in mid- and senior-level life science positions. Considerable effort has been devoted by individuals and organizations across science sectors to understanding this disparity and to developing interventions in support of women's career development. The National Institutes of Health (NIH) formed the Office of Research on Women's Health (ORWH) in 1990 with the goals of supporting initiatives to improve women's health and providing opportunities and support for the recruitment, retention, reentry, and sustained advancement of women in biomedical careers. Here, the authors review several accomplishments and flagship activities initiated by the NIH and ORWH in support of women's career development during this time. These include programming to support researchers returning to the workforce after a period away (Research Supplements to Promote Reentry into Biomedical and Behavioral Research Careers), career development awards made through the Building Interdisciplinary Research Careers in Women's Health program, and trans-NIH involvement and activities stemming from the NIH Working Group on Women in Biomedical Careers. These innovative programs have contributed to advancement of women by supporting the professional and personal needs of women in science. The authors discuss the unique opportunities that accompany NIH partnerships with the scientific community, and conclude with a summary of the impact of these programs on women in science.

  5. 76 FR 38650 - Draft Integrated Science Assessment for Lead

    Science.gov (United States)

    2011-07-01

    ... announcing the public comment period was published on May 6, 2011 (76 FR 26284). This assessment document was... instructions provided in the SUPPLEMENTARY INFORMATION section of Federal Register Notice (76 FR 26284). For... AGENCY Draft Integrated Science Assessment for Lead AGENCY: Environmental Protection Agency....

  6. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  7. Pacific Northwest Laboratory annual report for 1994 to the DOE Office of Energy Research Part 1: Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1995-04-01

    Research in the biomedical sciences at PNL is described. Activities reported include: inhaled plutonium in dogs; national radiobiology archives; statistical analysis of data from animal studies; genotoxicity of inhaled energy effluents; molecular events during tumor initiation; biochemistry of free radical induced DNA damage; radon hazards in homes; mechanisms of radon injury; genetics of radon induced lung cancer; and in vivo/in vitro radon induced cellular damage.

  8. Development of Biomedical Polymer-Silicate Nanocomposites: A Materials Science Perspective

    Directory of Open Access Journals (Sweden)

    Chia-Jung Wu

    2010-04-01

    Full Text Available Biomedical polymer-silicate nanocomposites have potential to become critically important to the development of biomedical applications, ranging from diagnostic and therapeutic devices, tissue regeneration and drug delivery matrixes to various bio-technologies that are inspired by biology but have only indirect biomedical relation. The fundamental understanding of polymer-nanoparticle interactions is absolutely necessary to control structure-property relationships of materials that need to work within the chemical, physical and biological constraints required by an application. This review summarizes the most recent published strategies to design and develop polymer-silicate nanocomposites (including clay based silicate nanoparticles and bioactive glass nanoparticles for a variety of biomedical applications. Emerging trends in bio-technological and biomedical nanocomposites are highlighted and potential new fields of applications are examined.

  9. Biomedical Engineering

    CERN Document Server

    Suh, Sang C; Tanik, Murat M

    2011-01-01

    Biomedical Engineering: Health Care Systems, Technology and Techniques is an edited volume with contributions from world experts. It provides readers with unique contributions related to current research and future healthcare systems. Practitioners and researchers focused on computer science, bioinformatics, engineering and medicine will find this book a valuable reference.

  10. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Directory of Open Access Journals (Sweden)

    Rahul Uppal

    2016-01-01

    Full Text Available The Computer Science, Biology, and Biomedical Informatics (CoSBBI program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4th year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI Academy (http://www.upci.upmc.edu/summeracademy/, and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  11. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine.

  12. How can we improve Science, Technology, Engineering, and Math education to encourage careers in Biomedical and Pathology Informatics?

    Science.gov (United States)

    Uppal, Rahul; Mandava, Gunasheil; Romagnoli, Katrina M; King, Andrew J; Draper, Amie J; Handen, Adam L; Fisher, Arielle M; Becich, Michael J; Dutta-Moscato, Joyeeta

    2016-01-01

    The Computer Science, Biology, and Biomedical Informatics (CoSBBI) program was initiated in 2011 to expose the critical role of informatics in biomedicine to talented high school students.[1] By involving them in Science, Technology, Engineering, and Math (STEM) training at the high school level and providing mentorship and research opportunities throughout the formative years of their education, CoSBBI creates a research infrastructure designed to develop young informaticians. Our central premise is that the trajectory necessary to be an expert in the emerging fields of biomedical informatics and pathology informatics requires accelerated learning at an early age.In our 4(th) year of CoSBBI as a part of the University of Pittsburgh Cancer Institute (UPCI) Academy (http://www.upci.upmc.edu/summeracademy/), and our 2nd year of CoSBBI as an independent informatics-based academy, we enhanced our classroom curriculum, added hands-on computer science instruction, and expanded research projects to include clinical informatics. We also conducted a qualitative evaluation of the program to identify areas that need improvement in order to achieve our goal of creating a pipeline of exceptionally well-trained applicants for both the disciplines of pathology informatics and biomedical informatics in the era of big data and personalized medicine. PMID:26955500

  13. Information sources in biomedical science and medical journalism: methodological approaches and assessment.

    Science.gov (United States)

    Miranda, Giovanna F; Vercellesi, Luisa; Bruno, Flavia

    2004-09-01

    Throughout the world the public is showing increasing interest in medical and scientific subjects and journalists largely spread this information, with an important impact on knowledge and health. Clearly, therefore, the relationship between the journalist and his sources is delicate: freedom and independence of information depend on the independence and truthfulness of the sources. The new "precision journalism" holds that scientific methods should be applied to journalism, so authoritative sources are a common need for journalists and scientists. We therefore compared the individual classifications and methods of assessing of sources in biomedical science and medical journalism to try to extrapolate scientific methods of evaluation to journalism. In journalism and science terms used to classify sources of information show some similarities, but their meanings are different. In science primary and secondary classes of information, for instance, refer to the levels of processing, but in journalism to the official nature of the source itself. Scientists and journalists must both always consult as many sources as possible and check their authoritativeness, reliability, completeness, up-to-dateness and balance. In journalism, however, there are some important differences and limits: too many sources can sometimes diminish the quality of the information. The sources serve a first filter between the event and the journalist, who is not providing the reader with the fact, but with its projection. Journalists have time constraints and lack the objective criteria for searching, the specific background knowledge, and the expertise to fully assess sources. To assist in understanding the wealth of sources of information in journalism, we have prepared a checklist of items and questions. There are at least four fundamental points that a good journalist, like any scientist, should know: how to find the latest information (the sources), how to assess it (the quality and

  14. An Interactive, Integrated, Instructional Pathway to the LEAD Science Gateway

    Science.gov (United States)

    Yalda, S.; Clark, R.; Davis, L.; Wiziecki, E. N.

    2008-12-01

    Linked Environments for Atmospheric Discovery (LEAD) is a bold and revolutionary paradigm that through a Web-based Service Oriented Architecture (SOA) exposes the user to a rich environment of data, models, data mining and visualization and analysis tools, enabling the user to ask science questions of applications while the complexity of the software and middleware managing these applications is hidden from the user. From its inception in 2003, LEAD has championed goals that have context for the future of weather and related research and education. LEAD espouses to lowering the barrier for using complex end-to-end weather technologies by a) democratizing the availability of advanced weather technologies, b) empowering the user of these technologies to tackle a variety of problems, and c) facilitating learning and understanding. LEAD, as it exists today, is poised to enable a diverse community of scientists, educators, students, and operational practitioners. The project has been informed by atmospheric and computer scientists, educators, and educational consultants who, in search of new knowledge, understanding, ideas, and learning methodologies, seek easy access to new capabilities that allow for user-directed and interactive query and acquisition, simulation, assimilation, data mining, computational modeling, and visualization. As one component of the total LEAD effort, the LEAD education team has designed interactive, integrated, instructional pathways within a set of learning modules (LEAD-to-Learn) to facilitate, enhance, and enable the use of the LEAD gateway in the classroom. The LEAD education initiative focuses on the means to integrate data, tools, and services used by researchers into undergraduate meteorology education in order to provide an authentic and contextualized environment for teaching and learning. Educators, educational specialists, and students from meteorology and computer science backgrounds have collaborated on the design and development

  15. Blazing the trail essays by leading women in science

    CERN Document Server

    Ideal, Emma

    2013-01-01

    Name a famous scientist. Got one? Now name a famous physicist. Ok, now name a famous female physicist. Ok, now name a famous living female physicist. Stumped? In Blazing the Trail: Essays by Leading Women in Science, 35 highly successful physicists, engineers, and chemists share their personal histories, their passion for discovery, and their secrets for success with the next generation. Essayists candidly recount their experiences – both positive and negative – with an uplifting tone, focusing on lessons learned along the way. The combination of personal stories and advice sends a powerful message to all young women considering scientific careers: I did it, so can you. Here’s how.

  16. Developing a competence-based core curriculum in biomedical laboratory science: a Delphi study.

    Science.gov (United States)

    Edgren, Gudrun

    2006-08-01

    In this study the Delphi technique has been used to develop a core curriculum for education of the biomedical scientist. The rapid development in biomedicine and the corresponding changes in methodology in biomedical laboratories demand careful planning of the education of biomedical scientists. The Delphi technique uses an anonymous panel of experts for suggestions and assessments aiming at consensus. Twenty-six experts from different kinds of hospital and university laboratories took part in the investigation. They suggested and assessed necessary competences for a recently graduated biomedical scientist, and if 75% or more of the participants agreed on a competence, it was included in the core curriculum. The final list consisted of 66 competences of varying depth, in three categories. This list contained several generic competences, concerning for example basic laboratory methods, handling of samples, dealing with apparatus and applying relevant rules and laws; basic knowledge in chemistry, preclinical medicine and laboratory methods; and finally attitudes that the panel expected in the recently graduated person. The core was sufficiently restricted to be used in a three-year programme and still leave space for about one year of electives/special study modules. It became rather traditional, e.g. it did not include competences that many recent reports consider important for the future professional. PMID:16973452

  17. Surveys of current status in biomedical science grant review: funding organisations' and grant reviewers' perspectives

    DEFF Research Database (Denmark)

    Schroter, Sara; Groves, Trish; Højgaard, Liselotte

    2010-01-01

    The objectives of this research were (a) to describe the current status of grant review for biomedical projects and programmes from the perspectives of international funding organisations and grant reviewers, and (b) to explore funders' interest in developing uniform requirements for grant review...

  18. Understanding public opinion in debates over biomedical research: looking beyond political partisanship to focus on beliefs about science and society.

    Science.gov (United States)

    Nisbet, Matthew; Markowitz, Ezra M

    2014-01-01

    As social scientists have investigated the political and social factors influencing public opinion in science-related policy debates, there has been growing interest in the implications of this research for public communication and outreach. Given the level of political polarization in the United States, much of the focus has been on partisan differences in public opinion, the strategies employed by political leaders and advocates that promote those differences, and the counter-strategies for overcoming them. Yet this focus on partisan differences tends to overlook the processes by which core beliefs about science and society impact public opinion and how these schema are often activated by specific frames of reference embedded in media coverage and popular discourse. In this study, analyzing cross-sectional, nationally representative survey data collected between 2002 and 2010, we investigate the relative influence of political partisanship and science-related schema on Americans' support for embryonic stem cell research. In comparison to the influence of partisan identity, our findings suggest that generalized beliefs about science and society were more chronically accessible, less volatile in relation to media attention and focusing events, and an overall stronger influence on public opinion. Classifying respondents into four unique audience groups based on their beliefs about science and society, we additionally find that individuals within each of these groups split relatively evenly by partisanship but differ on other important dimensions. The implications for public engagement and future research on controversies related to biomedical science are discussed.

  19. Hyped biomedical science or uncritical reporting? Press coverage of genomics (1992-2001) in Québec.

    Science.gov (United States)

    Racine, Eric; Gareau, Isabelle; Doucet, Hubert; Laudy, Danielle; Jobin, Guy; Schraedley-Desmond, Pamela

    2006-03-01

    Genomics integrates the promises and perils of modern biomedical science. Canada and the province of Québec embarked late but aggressively in genomics research based on the 'discourse of promise' in which genomics is embedded. This did not prevent the emergence of a 'discourse of concerns', and debates on the wider meaning of genomics and on the risks related to genomics applications such as gene therapy and gene testing. Given this context, this study aims to understand the evolution of genomics press coverage from the early days up to the publication of the draft sequence of the human genome. Accordingly, we performed a press content analysis on 749 articles reporting genomics research in Québec from 1992 to 2001. We focused on coverage of benefits and ethical issues, tone, and differences in reporting practices between press agencies and journalists. Results show an increasing number of articles, a general decline in the proportion of articles featuring ethical issues, an increased focus on the economy, and greater optimism from 1992 to 2001. In comparison to articles written by journalists, articles signed by press agencies are more optimistic and less often feature ethical issues. Results are discussed following two non-exclusive interpretations: (1) the successes of genomics and its institutionalization in Québec and Canada brought hype and greater social acceptance, and (2) uncritical reporting practices have emerged under pressures for expedient and consumable writing. We are left with two concerns: given worldwide media concentration movements, what are the challenges for the dissemination of diversified and critical information in print media? And, given limited coverage of ethical issues, and concerns about bioethics being too narrowly focused, should public debates on frontier biomedical science be promoted to broaden the scope of biomedical ethics? PMID:16174544

  20. Uptake of Optional Activities Leads to Improved Performance in a Biomedical Sciences Class

    Science.gov (United States)

    Verkade, Heather; Lim, Saw Hoon

    2015-01-01

    Optional (non-assessed) learning activities are a learning tool that may help students achieve their desired grade, or help students with lower levels of previous experience in the topic. This study examines the implementation of, and outcomes from, two optional activities, one online and one paper-based. The activities complemented the lectures…

  1. Introduction to biomedical engineering

    CERN Document Server

    Enderle, John

    2011-01-01

    Introduction to Biomedical Engineering is a comprehensive survey text for biomedical engineering courses. It is the most widely adopted text across the BME course spectrum, valued by instructors and students alike for its authority, clarity and encyclopedic coverage in a single volume. Biomedical engineers need to understand the wide range of topics that are covered in this text, including basic mathematical modeling; anatomy and physiology; electrical engineering, signal processing and instrumentation; biomechanics; biomaterials science and tissue engineering; and medical and engineering e

  2. The Biomedical Humanities program: merging humanities and science in a premedical curriculum at Hiram College.

    Science.gov (United States)

    Fried, Colleen; Madar, Sandra; Donley, Carol

    2003-10-01

    The Biomedical Humanities program at Hiram College, established in 1999, engages premedical and other qualified students in ethical and informed decision making, improves their ability to interact with persons of different backgrounds and cultures, provides them an active introduction to basic medical research and clinical practice, and coaches them in communicating across barriers, appreciating that scientists and humanists typically learn and work differently. The program offers both a major and a minor in biomedical humanities topics. The major requires the core biology and chemistry curriculum necessary for further studies in medicine as well as courses in genetics and statistics. The remainder of the major is devoted to four core areas: Communications, Relationships and Cultural Sensitivity, Ethics and Medical Humanities, and a nonacademic core area, Experiential Learning. Many of the ethics and medical humanities options are team-taught interdisciplinary courses. The Experiential Learning area requires students to take two special topics seminars, two service seminars, and two internships-one shadowing a professional in his or her area of interest and one engaging in basic biomedical research. The shadowing internship and service seminars focus not only on career exploration, but also on human interactions. Students reflect on the personal interactions they observe during their various experiences, and on their own strengths and weaknesses. Essays, designed to help students learn more about their roles in these settings, push them to deal with the sociopolitical issues involved in their service. The major, a robust and vital component of Hiram's undergraduate program, has attracted academically gifted students with a diverse array of career goals. PMID:14534095

  3. International Careers of Researchers in Biomedical Sciences: A Comparison of the US and the UK.

    OpenAIRE

    Lawson, Cornelia; Geuna, Aldo; Ana Fernández-Zubieta; Toselli, Manuel; Kataishi, Rodrigo

    2015-01-01

    This chapter analyses the mobility of academic biomedical researchers in the US and the UK. Both countries are at the forefront of research in biomedicine, and able to attract promising researchers from other countries as well as fostering mobility between the US and the UK. Using a database of 292 UK based academics and 327 US based academics covering the period 1956 to 2012, the descriptive analysis shows a high level of international mobility at education level (BA, PhD and Postdoc) with s...

  4. Deliberative ethics in a biomedical institution: an example of integration between science and ethics.

    Science.gov (United States)

    Boniolo, G; Di Fiore, P P

    2010-07-01

    The deliberative ethics guidelines elaborated and implemented by members of the IFOM-IEO Campus (Firc Institute of Molecular Oncology (IFOM) and the European Institute of Oncology (IEO)). These should serve the dual purpose of establishing a minimal set of standard rules for bioethical debate and any ensuing decision-making process, especially for the perspective of providing real instruments to foster public engagement and public awareness on the ethical issues involved in biomedical research. It is shown that these guidelines instantiate the scheme of one of the correct ways of debating formalised by the western thought. PMID:20605995

  5. Applications of systems science in biomedical research regarding obesity and noncommunicable chronic diseases: opportunities, promise, and challenges.

    Science.gov (United States)

    Wang, Youfa; Xue, Hong; Liu, Shiyong

    2015-01-01

    Interest in the application of systems science (SS) in biomedical research, particularly regarding obesity and noncommunicable chronic disease (NCD) research, has been growing rapidly over the past decade. SS is a broad term referring to a family of research approaches that include modeling. As an emerging approach being adopted in public health, SS focuses on the complex dynamic interaction between agents (e.g., people) and subsystems defined at different levels. SS provides a conceptual framework for interdisciplinary and transdisciplinary approaches that address complex problems. SS has unique advantages for studying obesity and NCD problems in comparison to the traditional analytic approaches. The application of SS in biomedical research dates back to the 1960s with the development of computing capacity and simulation software. In recent decades, SS has been applied to addressing the growing global obesity epidemic. There is growing appreciation and support for using SS in the public health field, with many promising opportunities. There are also many challenges and uncertainties, including methodologic, funding, and institutional barriers. Integrated efforts by stakeholders that address these challenges are critical for the successful application of SS in the future.

  6. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    International Nuclear Information System (INIS)

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base

  7. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-10-22

    ... and Behavioral Sciences- November 16, 2012...... *VA Central Office. B. Neurobiology-A November 16... Crystal City Hotel. Mental Health and Behavioral Sciences- November 20, 2012...... Sheraton Crystal City... Crystal City Hotel. Clinical Application of Genetics..... December 12, 2012...... *VA Central...

  8. Rhythm Analysis by Heartbeat Classification in the Electrocardiogram (Review article of the research achievements of the members of the Centre of Biomedical Engineering, Bulgarian Academy of Sciences

    Directory of Open Access Journals (Sweden)

    Irena Jekova

    2009-08-01

    Full Text Available The morphological and rhythm analysis of the electrocardiogram (ECG is based on ventricular beats detection, wave parameters measurement, as amplitudes, widths, polarities, intervals and relations between them, and a subsequent classification supporting the diagnostic process. Number of algorithms for detection and classification of the QRS complexes have been developed by researchers in the Centre of Biomedical Engineering - Bulgarian Academy of Sciences, and are reviewed in this material. Combined criteria have been introduced dealing with the QRS areas and amplitudes, the waveshapes evaluated by steep slopes and sharp peaks, vectorcardiographic (VCG loop descriptors, RR intervals irregularities. Algorithms have been designed for application on a single ECG lead, a synthesized lead derived by multichannel synchronous recordings, or simultaneous multilead analysis. Some approaches are based on templates matching, cross-correlation or rely on a continuous updating of adaptive thresholds. Various beat classification methods have been designed involving discriminant analysis, the K-th nearest neighbors, fuzzy sets, genetic algorithms, neural networks, etc. The efficiency of the developed methods has been assessed using internationally recognized arrhythmia ECG databases with annotated beats and rhythm disturbances. In general, high values for specificity and sensitivity competitive to those reported in the literature have been achieved.

  9. Biomedical and veterinary science can increase our understanding of coral disease

    Science.gov (United States)

    Work, T.M.; Richardson, L.L.; Reynolds, T.L.; Willis, B.L.

    2008-01-01

    A balanced approach to coral disease investigation is critical for understanding the global decline of corals. Such an approach should involve the proper use of biomedical concepts, tools, and terminology to address confusion and promote clarity in the coral disease literature. Investigating disease in corals should follow a logical series of steps including identification of disease, systematic morphologic descriptions of lesions at the gross and cellular levels, measurement of health indices, and experiments to understand disease pathogenesis and the complex interactions between host, pathogen, and the environment. This model for disease investigation is widely accepted in the medical, veterinary and invertebrate pathology disciplines. We present standard biomedical rationale behind the detection, description, and naming of diseases and offer examples of the application of Koch's postulates to elucidate the etiology of some infectious diseases. Basic epidemiologic concepts are introduced to help investigators think systematically about the cause(s) of complex diseases. A major goal of disease investigation in corals and other organisms is to gather data that will enable the establishment of standardized case definitions to distinguish among diseases. Concepts and facts amassed from empirical studies over the centuries by medical and veterinary pathologists have standardized disease investigation and are invaluable to coral researchers because of the robust comparisons they enable; examples of these are given throughout this paper. Arguments over whether coral diseases are caused by primary versus opportunistic pathogens reflect the lack of data available to prove or refute such hypotheses and emphasize the need for coral disease investigations that focus on: characterizing the normal microbiota and physiology of the healthy host; defining ecological interactions within the microbial community associated with the host; and investigating host immunity, host

  10. Virginia Tech Leads Nation In Family And Consumer Sciences Dissertatons

    OpenAIRE

    Calhoun, Annette

    2003-01-01

    The College of Human Sciences and Education (CHSE) at Virginia Tech, formerly the College of Human Resources and Education, was recently ranked number one in the nation in the number of dissertations completed in family and consumer sciences in colleges and universities throughout the United States.

  11. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    OpenAIRE

    Fuhrmann, C. N.; Halme, D. G.; O’Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of doctoral students in the basic biomedical sciences at University of California, San Francisco (UCSF). Midway through graduate training, UCSF students ...

  12. Biomedical optical imaging

    CERN Document Server

    Fujimoto, James G

    2009-01-01

    Biomedical optical imaging is a rapidly emerging research area with widespread fundamental research and clinical applications. This book gives an overview of biomedical optical imaging with contributions from leading international research groups who have pioneered many of these techniques and applications. A unique research field spanning the microscopic to the macroscopic, biomedical optical imaging allows both structural and functional imaging. Techniques such as confocal and multiphoton microscopy provide cellular level resolution imaging in biological systems. The integration of this tech

  13. Is basic science disappearing from medicine? The decline of biomedical research in the medical literature.

    Science.gov (United States)

    Steinberg, Benjamin E; Goldenberg, Neil M; Fairn, Gregory D; Kuebler, Wolfgang M; Slutsky, Arthur S; Lee, Warren L

    2016-02-01

    Explosive growth in our understanding of genomics and molecular biology have fueled calls for the pursuit of personalized medicine, the notion of harnessing biologic variability to provide patient-specific care. This vision will necessitate a deep understanding of the underlying pathophysiology in each patient. Medical journals play a pivotal role in the education of trainees and clinicians, yet we suspected that the amount of basic science in the top medical journals has been in decline. We conducted an automated search strategy in PubMed to identify basic science articles and calculated the proportion of articles dealing with basic science in the highest impact journals for 8 different medical specialties from 1994 to 2013. We observed a steep decline (40-60%) in such articles over time in almost all of the journals examined. This rapid decline in basic science from medical journals is likely to affect practitioners' understanding of and interest in the basic mechanisms of disease and therapy. In this Life Sciences Forum, we discuss why this decline may be occurring and what it means for the future of science and medicine.

  14. Biomedical and Behavioral Research Scientists: Their Training and Supply. Volume 1: Findings.

    Science.gov (United States)

    National Academy of Sciences - National Research Council, Washington, DC. Office of Scientific and Engineering Personnel.

    This is the first of three volumes which presents the Committee on Biomedical and Behavioral Research Personnel's examination of the educational process that leads to doctoral degrees in biomedical and behavioral science (and to postdoctoral study in some cases) and the role of the National Research Service Awards (NRSA) training programs in it.…

  15. Earth Sciences Division annual report 1981. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    Separate abstracts were prepared for the 59 papers of the 1981 annual report of the Earth Sciences Division at Lawrence Berkeley Laboratory. The general topics covered included nuclear waste isolation, geophysics and reservoir engineering, and geosciences. (KRM)

  16. Using a popular science nonfiction book to introduce biomedical research ethics in a biology majors course.

    Science.gov (United States)

    Walton, Kristen L W

    2014-12-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  17. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course

    Directory of Open Access Journals (Sweden)

    Kristen L.W. Walton

    2014-08-01

    Full Text Available Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States.  Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course.  The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research.  Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research.  Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course.  This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research.

  18. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2013-04-16

    ... Health and Behavioral. May 30, 2013 Sheraton Crystal City Hotel. Sciences--A. Gastroenterology May 30-31... Office.* Endocrinology--B June 4, 2013 Sheraton Crystal City Hotel. Mental Health and Behavioral. June 6... Application of Genetics..... June 18, 2013 Ritz-Carlton, Pentagon City. Eligibility July 15, 2013...

  19. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-20

    ...) Location Hematology May 23, 2012........ Sheraton Suites--Old Town Alexandria. Mental Health and Behavioral... Alexandria. Mental Health and Behavioral May 31, 2012........ Sheraton Suites--Old Town Alexandria. Science-A........... * VA Central Office. Genetics. Cardiovascular Studies...... June 4, 2012........ Sheraton...

  20. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Science.gov (United States)

    2012-04-04

    ...) Location Hematology May 23, 2012..... Sheraton Suites--Old Town Alexandria. Mental Health and Behavioral.... Mental Health and Behavioral May 31, 2012..... Sheraton Suites--Old Science-A. Town Alexandria. Surgery........ *VA Central Office. Genetics. Cardiovascular Studies........ June 4, 2012..... Sheraton...

  1. Making Bioinformatics Projects a Meaningful Experience in an Undergraduate Biotechnology or Biomedical Science Programme

    Science.gov (United States)

    Sutcliffe, Iain C.; Cummings, Stephen P.

    2007-01-01

    Bioinformatics has emerged as an important discipline within the biological sciences that allows scientists to decipher and manage the vast quantities of data (such as genome sequences) that are now available. Consequently, there is an obvious need to provide graduates in biosciences with generic, transferable skills in bioinformatics. We present…

  2. Beyond Preparation: Identity, Cultural Capital, and Readiness for Graduate School in the Biomedical Sciences

    Science.gov (United States)

    Gazley, J. Lynn; Remich, Robin; Naffziger-Hirsch, Michelle E.; Keller, Jill; Campbell, Patricia B.; McGee, Richard

    2014-01-01

    In this study, we conducted in-depth interviews with 52 college graduates as they entered a Postbaccalaureate Research Education Program (PREP). Our goal was to investigate what it means for these aspiring scientists, most of whom are from groups underrepresented in the sciences, to feel ready to apply to a doctoral program in the biomedical…

  3. 76 FR 26284 - Draft Integrated Science Assessment for Lead (Pb)

    Science.gov (United States)

    2011-05-06

    ... Criteria Document). On February 26, 2010 (75 FR 8934), EPA formally initiated its current review of the air... workshop was held on May 10-11, 2010 (75 FR 20843) to discuss policy- relevant science to inform EPA's... accessible teleconference consultation on May 5, 2011 (76 FR 21346). In December 2010, EPA held a...

  4. Early Childhood: Follow My Lead: A Science Board Game.

    Science.gov (United States)

    Science and Children, 1985

    1985-01-01

    Two identical boards and sets of playing pieces can help teach science vocabulary while improving skills in observing, describing, giving clear and complete directions, and listening to and questioning those directions. Children or groups communicate without seeing each other's board. Examples of topics/board design and suggestions for teachers…

  5. [A study of development of medicine and science in the nineteenth century science fiction: biomedical experiments in Mary Shelley's Frankenstein].

    Science.gov (United States)

    Choo, Jae-Uk

    2014-12-01

    As the sciences advanced rapidly in the modern European world, outstanding achievements have been made in medicine, chemistry, biology, physiology, physics and others, which have been co-influencing each of the scientific disciplines. Accordingly, such medical and scientific phenomena began to be reflected in novels. In particular, Mary Shelley's Frankenstein includes the diverse aspects of the change and development in the medicine and science. Associated with medical and scientific information reflected in Frankenstein and Frankenstein's experiments in the text, accordingly, this research will investigate the aspects of medical and scientific development taking place in the nineteenth century in three ways. First, the medical and scientific development of the nineteenth century has been reviewed by summerizing both the information of alchemy in which Frankenstein shows his interest and the new science in general that M. Waldman introduces in the text. Second, the actual features of medical and scientific development have been examined through some examples of the experimental methods that M. Waldman implicitly uttered to Frankenstein. Third, it has been checked how the medical and scientific development is related to the main issues of mechanism and vitalism which can be explained as principles of life. Even though this research deals with the developmental process of medicine & science and origin & principles of life implied in Mary Shelley's Frankenstein, its significance is that it is the interdisciplinary research focussing on how deeply medical and scientific discourse of Mary Shelley's period has been imbedded in the nineteenth century novel.

  6. Healthcare and biomedical technology in the 21st century an introduction for non-science majors

    CERN Document Server

    Baran, George R; Samuel, Solomon Praveen

    2014-01-01

    This textbook introduces students not pursuing degrees in science or engineering to the remarkable new applications of technology now available to physicians and their patients and discusses how these technologies are evolving to permit new treatments and procedures.  The book also elucidates the societal and ethical impacts of advances in medical technology, such as extending life and end of life decisions, the role of genetic testing, confidentiality, costs of health care delivery, scrutiny of scientific claims, and provides background on the engineering approach in healthcare and the scientific method as a guiding principle. This concise, highly relevant text enables faculty to offer a substantive course for students from non-scientific backgrounds that will empower them to make more informed decisions about their healthcare by significantly enhancing their understanding of these technological advancements. This book also: ·         Presents scientific concepts from modern medical science using r...

  7. Handbook of Coherent-Domain Optical Methods Biomedical Diagnostics, Environmental Monitoring, and Materials Science

    CERN Document Server

    2013-01-01

    This Handbook provides comprehensive coverage of laser and coherent-domain methods as applied to biomedicine, environmental monitoring, and materials science. Worldwide leaders in these fields describe the fundamentals of light interaction with random media and present an overview of basic research. The latest results on coherent and polarization properties of light scattered by random media, including tissues and blood, speckles formation in multiple scattering media, and other non-destructive interactions of coherent light with rough surfaces and tissues, allow the reader to understand the principles and applications of coherent diagnostic techniques. The expanded second edition has been thoroughly updated with particular emphasis on novel coherent-domain techniques and their applications in medicine and environmental science. Volume 1 describes state-of-the-art methods of coherent and polarization optical imaging, tomography and spectroscopy; diffusion wave spectroscopy; elastic, quasi-elastic and inelasti...

  8. Severo Ochoa and the Biomedical Sciences in Spain under Franco, 1959-1975

    OpenAIRE

    Santesmases, María Jesús

    2000-01-01

    The influence of Severo Ochoa in the establishment of biochemistry and molecular biology in Spain is the central topic of this essay. From the time he was awarded the Nobel Prize in Physiology or Medicine in 1959, Ochoa's links with Spanish scientists and top authorities in education and science became instrumental to the development of these areas in the country of his birth. Ochoa's influence is analyzed through investigation of three "events": the reception of the award in Spain and some o...

  9. Tribute to a Leading Personality of World Horticultural Science

    Directory of Open Access Journals (Sweden)

    Radu E. SESTRAS

    2010-12-01

    Full Text Available Following the proposal of Academic Council of Horticulture Faculty, the Senate of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca accepted nominee Professor Jules Janick for Doctor Honoris Causa award. The title was awarded in festive ceremony on September 30, 2010. Jules Janick, Professor at Purdue University has a long and distinguished career devoted to horticulture in all its facets. In horticultural research, he has made important advances including the genetics of sex determination including the synthesis of heteromorphic sex chromosomes, fireblight resistance, cleistogamy, cucurbitacins, artemisisin production, anthocyanin pigmentation, as well as in vitro metabolite production from somatic embryos and the production of synthetic seed. In crop improvement, he has been associated with the release of 21 scab-resistant apple cultivars, three pear cultivars with tolerance to fireblight, delayed-bolting arugula, crack resistant tomato, and the first release of a pelargonium cultivar from somaclonal variation. Professor Janick has made contributions to the historical aspects of horticulture and explored the relation of art and horticultural technology with special studies on the iconography of Rubus, Cucurbitaceae, and Solanaceae, opening up a new approach to the study of plant diversity, origins, cultivar evolution, and diversity. Professor Janick has been a prolific author and editor in horticulture. He was the editor of HortScience and editor of the Journal of ASHS. He is the founder and editor of both Horticultural Reviews and Plant Breeding Reviews. Since 2002 he has been the science editor of Chronica Horticulturae (ISHS. Janick has edited and produced six proceedings of New Crops symposia since 1990 that have had a deep impact on new crop information. The development of a new crop website has become a major world resource for information on crops. He is the author of the texts Horticultural Science, Plant Science

  10. Iodine-129 AMS for Earth Science, Biomedical, and National Security Applications

    International Nuclear Information System (INIS)

    This Laboratory Directed Research and Development project created the capability to analyze the radionuclide iodine-129 (129I) by accelerator mass spectrometry (AMS) in the CAMS facility at LLNL, and enhanced our scientific foundation for its application through development of sample preparation technology required for environmental, biomedical, and national security applications. The project greatly improved our environmental iodine extraction and concentration methodology, and developed new techniques for the analysis of small quantities of 129I. The project can be viewed as having two phases, one in which the basic instrumental and chemical extraction methods necessary for general 129I analysis were developed, and a second in which these techniques were improved and new techniques were developed to enable broader and more sophisticated applications. The latter occurred through the mechanism of four subprojects that also serve as proof-of-principle demonstrations of our newly developed 129I capabilities. The first subproject determined the vertical distribution of bomb-pulse 129I (129Iv distributed globally as fallout from 1950's atmospheric nuclear testing) through 5 meters in the upper vadose zone in the arid southwestern United States. This characterizes migration mechanisms of contaminant 129I, or 129I released by nuclear fuel reprocessing, as well as the migration of labile iodine in soils relative to moisture flux, permitting a determination of nutrient cycling. The second subproject minimized the amount of iodine required in an AMS sample target. Because natural iodine abundances are very low in almost all environments, many areas of research had been precluded or made extremely difficult by the demands of sample size. Also, certain sample types of potential interest to national security are intrinsically small - for example iodine on air filters. The result of this work is the ability to measure the 129I/127I ratio at the 2E-07 level or higher in a sample

  11. Iodine-129 AMS for Earth Science, Biomedical, and National Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G; Brown, T; Tumey, S; Marchetti, A; Vu, A

    2007-02-20

    This Laboratory Directed Research and Development project created the capability to analyze the radionuclide iodine-129 ({sup 129}I) by accelerator mass spectrometry (AMS) in the CAMS facility at LLNL, and enhanced our scientific foundation for its application through development of sample preparation technology required for environmental, biomedical, and national security applications. The project greatly improved our environmental iodine extraction and concentration methodology, and developed new techniques for the analysis of small quantities of {sup 129}I. The project can be viewed as having two phases, one in which the basic instrumental and chemical extraction methods necessary for general {sup 129}I analysis were developed, and a second in which these techniques were improved and new techniques were developed to enable broader and more sophisticated applications. The latter occurred through the mechanism of four subprojects that also serve as proof-of-principle demonstrations of our newly developed {sup 129}I capabilities. The first subproject determined the vertical distribution of bomb-pulse {sup 129}I ({sup 129}Iv distributed globally as fallout from 1950's atmospheric nuclear testing) through 5 meters in the upper vadose zone in the arid southwestern United States. This characterizes migration mechanisms of contaminant {sup 129}I, or {sup 129}I released by nuclear fuel reprocessing, as well as the migration of labile iodine in soils relative to moisture flux, permitting a determination of nutrient cycling. The second subproject minimized the amount of iodine required in an AMS sample target. Because natural iodine abundances are very low in almost all environments, many areas of research had been precluded or made extremely difficult by the demands of sample size. Also, certain sample types of potential interest to national security are intrinsically small - for example iodine on air filters. The result of this work is the ability to measure the

  12. Some Aspects of the State-of-the-Arts in Biomedical Science Research: A Perspective for Organizational Change in African Academia.

    Science.gov (United States)

    John, Theresa Adebola

    2014-01-01

    In the biomedical sciences, there is need to generate solutions for Africa's health and economic problems through the impact of university research. To guide organizational transformation, the author here presents some aspects of the state-of-the-arts of biomedical science research in advanced countries using a perspective derived from the FASEB journal publications. The author examines the thirty three peer reviewed scientific research articles in a centennial (April 2012) issue of the FASEB Journal [Volume 26(4)] using the following parameters: number of authors contributing to the paper; number of academic departments contributing to the paper; number of academic institutions contributing to the paper; funding of the research reported in the article. The articles were written by 7.97±0.61 authors from 3.46±0.3 departments of 2.79±0.29 institutions. The contributors were classified into four categories: basic sciences, clinical sciences, institutions and centers, and programs and labs. Amongst the publications, 21.2% were single disciplinary. Two tier collaboration amongst any two of the four categories were observed in 16/33 (48.5%) of the articles. Three tier and four tier collaborations were observed amongst 7/33 (21.2%) and 3/33 (9%) of the articles respectively. Therefore 26/33 (78.7%) of the articles were multidisciplinary. Collaborative efforts between basic science and clinical science departments were observed in 9/33 (27.3%) articles. Public funding through government agencies provided 85 out of a total of 143 (59.5%) grants. The collaborative and multidisciplinary nature and government support are characteristic of biomedical science in the US where research tends to result in solutions to problems and economic benefits.

  13. The importance of being elegant: a discussion of elegance in nephrology and biomedical science.

    Science.gov (United States)

    Nathan, Marco J; Brancaccio, Diego

    2013-06-01

    Elegance is pursued and appreciated in virtually all aspects of our lives, from fashion to visual and performing arts, from literature to architecture. While most of us praise the elegance and beauty of science when we see it, elegance is typically treated as something that need not concern our research and thus does not belong inside the laboratory. In this article, we provide an alternative perspective, according to which elegance is more than an accessory ornament of scientific theories. We endorse and defend the view that elegance is an intrinsic feature of successful scientific practice and observation, a benchmark that demarcates between good experiments and bad ones. In support of our conclusions, we present and discuss three paradigms of scientific elegance: Jenner's discovery of vaccination, Bricker and Slatopolsky's trade-off hypothesis and Brenner's hypothesis regarding the role of residual nephrons in the decline of renal function.

  14. Career Coaches as a Source of Vicarious Learning for Racial and Ethnic Minority PhD Students in the Biomedical Sciences: A Qualitative Study

    Science.gov (United States)

    Williams, Simon N.; Thakore, Bhoomi K.; McGee, Richard

    2016-01-01

    Introduction Many recent mentoring initiatives have sought to help improve the proportion of underrepresented racial and ethnic minorities (URMs) in academic positions across the biomedical sciences. However, the intractable nature of the problem of underrepresentation suggests that many young scientists may require supplemental career development beyond what many mentors are able to offer. As an adjunct to traditional scientific mentoring, we created a novel academic career “coaching” intervention for PhD students in the biomedical sciences. Objective To determine whether and how academic career coaches can provide effective career-development-related learning experiences for URM PhD students in the biomedical sciences. We focus specifically on vicarious learning experiences, where individuals learn indirectly through the experiences of others. Method The intervention is being tested as part of a longitudinal randomized control trial (RCT). Here, we describe a nested qualitative study, using a framework approach to analyze data from a total of 48 semi-structured interviews from 24 URM PhD students (2 interviews per participant, 1 at baseline, 1 at 12-month follow-up) (16 female, 8 male; 11 Black, 12 Hispanic, 1 Native-American). We explored the role of the coach as a source of vicarious learning, in relation to the students’ goal of being future biomedical science faculty. Results Coaches were resources through which most students in the study were able to learn vicariously about how to pursue, and succeed within, an academic career. Coaches were particularly useful in instances where students’ research mentors are unable to provide such vicarious learning opportunities, for example because the mentor is too busy to have career-related discussions with a student, or because they have, or value, a different type of academic career to the type the student hopes to achieve. Implications Coaching can be an important way to address the lack of structured career

  15. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D; Bronzino, Joseph D

    2006-01-01

    Over the last century,medicine has come out of the "black bag" and emerged as one of the most dynamic and advanced fields of development in science and technology. Today, biomedical engineering plays a critical role in patient diagnosis, care, and rehabilitation. As such, the field encompasses a wide range of disciplines, from biology and physiology to informatics and signal processing. Reflecting the enormous growth and change in biomedical engineering during the infancy of the 21st century, The Biomedical Engineering Handbook enters its third edition as a set of three carefully focused and

  16. Leading the way in biomedical engineering: an interview with Robert Langer. Interview by Hannah Stanwix, Commissioning Editor.

    Science.gov (United States)

    Langer, Robert

    2012-10-01

    Professor Robert Langer obtained his Bachelor's Degree in Chemical Engineering from Cornell University (NY, USA) in 1970. He received his Sc.D. from the Massachusetts Institute of Technology (MA, USA) in 1974. He is currently the David H Koch Institute Professor at the Massachusetts Institute of Technology. Professor Langer is a member of the Institute of Medicine of the National Academy of Sciences, the National Academy of Engineering and the National Academy of Sciences. At the age of 43 he was the youngest person in history to be elected to all three United States National Academies. Throughout his career, Professor Langer has received over 200 awards including, notably, the Charles Stark Draper Prize (considered the equivalent of the Nobel Prize for engineers), the 2008 Millennium Prize, the 2006 United States National Medal of Science and the 2012 Priestley Medal. In 1996 he was awarded the Gairdner Foundation International Award (the only engineer ever to have been awarded this accolade). Professor Langer has also been the recipient of the Lemelson-MIT prize, which he was awarded with for being "one of history's most prolific inventors in medicine." Professor Langer was selected by Time Magazine in 2001 as one of the 100 most important people in the USA. He has received honorary degrees from several universities worldwide, including Harvard University (MA, USA), the Mt. Sinai School of Medicine (NY, USA), Yale University (CT, USA), the ETH Zurich (Zurich, Switzerland), the Technion-Israel Institute of Technology (Haifa, Israel), the Hebrew University of Jerusalem (Israel), the Université Catholique de Louvain (Louvain-La-Neuve, Belgium), Rensselaer Polytechnic Institute (NY, USA), Willamette University (OR, USA), the University of Liverpool (Liverpool, UK), Bates College (ME, USA), the University of Nottingham (Nottingham, UK), Albany Medical College (NY, USA), Pennsylvania State University (PA, USA), Northwestern University (IL, USA) and Uppsala University

  17. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base

  18. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  19. 75 FR 69078 - Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA)

    Science.gov (United States)

    2010-11-10

    ... AGENCY Workshop To Review Draft Materials for the Lead (Pb) Integrated Science Assessment (ISA) AGENCY... a workshop to evaluate initial draft materials for the Pb Integrated Science Assessment (ISA) is... the scientific content of initial draft materials or sections for the draft ISA. Workshop...

  20. Biomedical Engineering Desk Reference

    CERN Document Server

    Ratner, Buddy D; Schoen, Frederick J; Lemons, Jack E; Dyro, Joseph; Martinsen, Orjan G; Kyle, Richard; Preim, Bernhard; Bartz, Dirk; Grimnes, Sverre; Vallero, Daniel; Semmlow, John; Murray, W Bosseau; Perez, Reinaldo; Bankman, Isaac; Dunn, Stanley; Ikada, Yoshito; Moghe, Prabhas V; Constantinides, Alkis

    2009-01-01

    A one-stop Desk Reference, for Biomedical Engineers involved in the ever expanding and very fast moving area; this is a book that will not gather dust on the shelf. It brings together the essential professional reference content from leading international contributors in the biomedical engineering field. Material covers a broad range of topics including: Biomechanics and Biomaterials; Tissue Engineering; and Biosignal Processing* A hard-working desk reference providing all the essential material needed by biomedical and clinical engineers on a day-to-day basis * Fundamentals, key techniques,

  1. Biomedical engineering frontier research and converging technologies

    CERN Document Server

    Jun, Ho-Wook; Shin, Jennifer; Lee, SangHoon

    2016-01-01

    This book provides readers with an integrative overview of the latest research and developments in the broad field of biomedical engineering. Each of the chapters offers a timely review written by leading biomedical engineers and aims at showing how the convergence of scientific and engineering fields with medicine has created a new basis for practically solving problems concerning human health, wellbeing and disease. While some of the latest frontiers of biomedicine, such as neuroscience and regenerative medicine, are becoming increasingly dependent on new ideas and tools from other disciplines, the paradigm shift caused by technological innovations in the fields of information science, nanotechnology, and robotics is opening new opportunities in healthcare, besides dramatically changing the ways we actually practice science. At the same time, a new generation of engineers, fluent in many different scientific “languages,” is creating entirely new fields of research that approach the “old” questions f...

  2. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately

  3. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  4. Bevalac biomedical facility

    International Nuclear Information System (INIS)

    This paper describes the physical layout of the Bevalac Facility and the research programs carried out at the facility. Beam time on the Bevalac is divided between two disciplines: one-third for biomedical research and two-thirds for nuclear science studies. The remainder of the paper discusses the beam delivery system including dosimetry, beam sharing and beam scanning

  5. Basic science research in pediatric radiology - how to empower the leading edge of our field.

    Science.gov (United States)

    Daldrup-Link, Heike E

    2014-08-01

    Basic science research aims to explore, understand and predict phenomena in the natural world. It spurs the discovery of fundamentally new principles and leads to new knowledge and new concepts. By comparison, applied research employs basic science knowledge toward practical applications. In the clinical realm, basic science research and applied research should be closely connected. Basic science discoveries can build the foundation for a broad range of practical applications and thereby bring major benefits to human health, education, environment and economy. This article explains how basic science research impacts our field, it describes examples of new research directions in pediatric imaging and it outlines current challenges that we need to overcome in order to enable the next groundbreaking discovery.

  6. Molecular Biomedical Imaging Laboratory (MBIL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Molecular Biomedical Imaging Laboratory (MBIL) is adjacent-a nd has access-to the Department of Radiology and Imaging Sciences clinical imaging facilities. MBIL...

  7. A community of practice: librarians in a biomedical research network.

    Science.gov (United States)

    De Jager-Loftus, Danielle P; Midyette, J David; Harvey, Barbara

    2014-01-01

    Providing library and reference services within a biomedical research community presents special challenges for librarians, especially those in historically lower-funded states. These challenges can include understanding needs, defining and communicating the library's role, building relationships, and developing and maintaining general and subject specific knowledge. This article describes a biomedical research network and the work of health sciences librarians at the lead intensive research institution with librarians from primarily undergraduate institutions and tribal colleges. Applying the concept of a community of practice to a collaborative effort suggests how librarians can work together to provide effective reference services to researchers in biomedicine. PMID:24528265

  8. Pacific Northwest Laboratory annual report for 1980 to the DOE Assistant Secretary for Environment. Part 1. Biomedical sciences. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Drucker, H.

    1981-02-01

    Separate abstracts were prepared for 31 sections in this progress report. The appendix which deals with dose-effect studies with inhaled plutonium in beagles is not represented by a separate abstract. (KRM)

  9. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems-application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The pos

  10. Biomedical photonics handbook biomedical diagnostics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers, studen

  11. Linking geology and health sciences to assess childhood lead poisoning from artisanal gold mining in Nigeria

    Science.gov (United States)

    Plumlee, Geoffrey S.; Durant, James T.; Morman, Suzette A.; Neri, Antonio; Wolf, Ruth E.; Dooyema, Carrie A.; Hageman, Philip L.; Lowers, Heather; Fernette, Gregory L.; Meeker, Gregory P.; Benzel, William M.; Driscoll, Rhonda L.; Berry, Cyrus J.; Crock, James G.; Goldstein, Harland L.; Adams, Monique; Bartrem, Casey L.; Tirima, Simba; Behrooz, Behbod; von Lindern, Ian; Brown, Mary Jean

    2013-01-01

    Background: In 2010, Médecins Sans Frontières discovered a lead poisoning outbreak linked to artisanal gold processing in northwestern Nigeria. The outbreak has killed approximately 400 young children and affected thousands more. Objectives: Our aim was to undertake an interdisciplinary geological- and health-science assessment to clarify lead sources and exposure pathways, identify additional toxicants of concern and populations at risk, and examine potential for similar lead poisoning globally. Methods: We applied diverse analytical methods to ore samples, soil and sweep samples from villages and family compounds, and plant foodstuff samples. Results: Natural weathering of lead-rich gold ores before mining formed abundant, highly gastric-bioaccessible lead carbonates. The same fingerprint of lead minerals found in all sample types confirms that ore processing caused extreme contamination, with up to 185,000 ppm lead in soils/sweep samples and up to 145 ppm lead in plant foodstuffs. Incidental ingestion of soils via hand-to-mouth transmission and of dusts cleared from the respiratory tract is the dominant exposure pathway. Consumption of water and foodstuffs contaminated by the processing is likely lesser, but these are still significant exposure pathways. Although young children suffered the most immediate and severe consequences, results indicate that older children, adult workers, pregnant women, and breastfed infants are also at risk for lead poisoning. Mercury, arsenic, manganese, antimony, and crystalline silica exposures pose additional health threats. Conclusions: Results inform ongoing efforts in Nigeria to assess lead contamination and poisoning, treat victims, mitigate exposures, and remediate contamination. Ore deposit geology, pre-mining weathering, and burgeoning artisanal mining may combine to cause similar lead poisoning disasters elsewhere globally.

  12. Grants for Science Education 1997. Including Grants for Research Resources in the United States and for Biomedical Scientists Abroad.

    Science.gov (United States)

    Howard Hughes Medical Inst., Chevy Chase, MD. Office of Grants and Special Programs.

    The data presented in this document provide information about those individuals and organizations that received funding from the Howard Hughes Medical Institute in 1997. Following a description of the Howard Hughes Medical Institute programs, details on the funding of graduate science education, undergraduate biological sciences education,…

  13. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    Energy Technology Data Exchange (ETDEWEB)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K. (comps.)

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  14. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  15. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1987-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology.

  16. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 1, Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1986. The research develops the knowledge and scientific principles necessary to identify, understand and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect the PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological methods for assessing health risks among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include effects of radiation and of energy-related chemicals. The last section is related to medical applications of nuclear technology

  17. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1988-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology.

  18. Medicine's perception of reality - a split picture: critical reflections on apparent anomalies within the biomedical theory of science.

    Science.gov (United States)

    Kirkengen, Anna Luise; Ekeland, Tor-Johan; Getz, Linn; Hetlevik, Irene; Schei, Edvin; Ulvestad, Elling; Vetlesen, Arne Johan

    2016-08-01

    Escalating costs, increasing multi-morbidity, medically unexplained health problems, complex risk, poly-pharmacy and antibiotic resistance can be regarded as artefacts of the traditional knowledge production in Western medicine, arising from its particular worldview. Our paper presents a historically grounded critical analysis of this view. The materialistic shift of Enlightenment philosophy, separating subjectivity from bodily matter, became normative for modern medicine and yielded astonishing results. The traditional dichotomies of mind/body and subjective/objective are, however, incompatible with modern biological theory. Medical knowledge ignores central tenets of human existence, notably the physiological impact of subjective experience, relationships, history and sociocultural contexts. Biomedicine will not succeed in resolving today's poorly understood health problems by doing 'more of the same'. We must acknowledge that health, sickness and bodily functioning are interwoven with human meaning-production, fundamentally personal and biographical. This implies that the biomedical framework, although having engendered 'success stories' like the era of antibiotics, needs to be radically revised.

  19. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology

  20. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1986-02-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1985 to develop information for a comprehensive understanding of the interaction of energy-related radiation and chemicals with man. Our continuing emphasis on decreasing the uncertainty of health-effects risk estimates to man from existing and/or developing energy-related technologies supports the DOE goal of increasing and diversifying national energy resources and decreasing risks to human health. The report is arranged to reflect the PNL research relative to OHER programmatic needs. The first section concerns evaluation of possible health effects among nuclear workers. The next two sections, which contain reports of health-effects research in biological systems, include health effects of radiation and health effects of chemical mixtures. The last section is related to medical applications of nuclear technology.

  1. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    International Nuclear Information System (INIS)

    This report summarizes progress on OHER biomedical and health-effects research conducted at Pacific Northwest Laboratory in FY 1987. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals. The last section is related to medical applications of nuclear technology

  2. Computer literacy and E-learning perception in Cameroon: the case of Yaounde Faculty of Medicine and Biomedical Sciences

    OpenAIRE

    Bediang, Georges Wylfred; Stoll, Beat; Geissbuhler, Antoine; Klohn, Axel Maximo; Stuckelberger, Astrid; Nko'o, Samuel; Chastonay, Philippe

    2013-01-01

    Background Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of ...

  3. Biomedical photonics handbook

    CERN Document Server

    Vo-Dinh, Tuan

    2003-01-01

    1.Biomedical Photonics: A Revolution at the Interface of Science and Technology, T. Vo-DinhPHOTONICS AND TISSUE OPTICS2.Optical Properties of Tissues, J. Mobley and T. Vo-Dinh3.Light-Tissue Interactions, V.V. Tuchin 4.Theoretical Models and Algorithms in Optical Diffusion Tomography, S.J. Norton and T. Vo-DinhPHOTONIC DEVICES5.Laser Light in Biomedicine and the Life Sciences: From the Present to the Future, V.S. Letokhov6.Basic Instrumentation in Photonics, T. Vo-Dinh7.Optical Fibers and Waveguides for Medical Applications, I. Gannot and

  4. The Rosetta Stone of isotope science and the uranium/lead system.

    Science.gov (United States)

    De Laeter, John

    2011-01-01

    The nucleosynthetic characteristics of U and Pb, together with the interconnectivity between these elements by two radioactive decay chains, are the foundation on which the U/Pb system was able to make a unique contribution to isotope science. The Rosetta Stone is an ancient Egyptian tablet that enabled previously indecipherable hieroglyphics to be translated. In a similar manner, the isotopic investigation of the U/Pb system, by a variety of mass spectrometric instrumentation, has led to our knowledge of the age of the Earth and contributed to thermochronology. In a similar manner, climate change information has been garnered by utilizing the U-Disequilibrium Series to measure the ages of marine archives. The impact of Pb in the environment has been demonstrated in human health, particularly at the peak of leaded petrol consumption in motor vehicles in the 1970s. Variations in the isotopic composition of lead in samples enable the source of the lead to be "fingerprinted" so as to trace the history of the Pb in ice cores and aerosols. The discovery of nuclear fission of (235)U led to the development of nuclear reactors and the isotopic investigation of the Oklo natural reactors. The mass spectrometer is the modern Rosetta Stone of isotope science, which has enabled the isotopic hieroglyphics of the U/Pb system to be investigated to reveal new horizons in our understanding of nature, and to address a number of societal and environmental problems.

  5. Using a Popular Science Nonfiction Book to Introduce Biomedical Research Ethics in a Biology Majors Course †

    Science.gov (United States)

    Walton, Kristen L. W.

    2014-01-01

    Although bioethics is an important topic in modern society, it is not a required part of the curriculum for many biology degree programs in the United States. Students in our program are exposed to biologically relevant ethical issues informally in many classes, but we do not have a requirement for a separate bioethics course. The Immortal Life of Henrietta Lacks is a recent nonfiction book that describes the life of the woman whose cervical cancer biopsy gave rise to the HeLa cell line, as well as discussing relevant medical, societal, and ethical issues surrounding human tissue use for research. Weekly reading assignments from the book with discussion questions and a final paper were used to engage students in learning about the ethics of human subjects and human tissues research. Students were surveyed for qualitative feedback on the usefulness of including this book as part of the course. This book has been a successful platform for increasing student knowledge and interest in ethics related to biomedical and biological research. PMID:25574289

  6. Medicine's perception of reality - a split picture: critical reflections on apparent anomalies within the biomedical theory of science.

    Science.gov (United States)

    Kirkengen, Anna Luise; Ekeland, Tor-Johan; Getz, Linn; Hetlevik, Irene; Schei, Edvin; Ulvestad, Elling; Vetlesen, Arne Johan

    2016-08-01

    Escalating costs, increasing multi-morbidity, medically unexplained health problems, complex risk, poly-pharmacy and antibiotic resistance can be regarded as artefacts of the traditional knowledge production in Western medicine, arising from its particular worldview. Our paper presents a historically grounded critical analysis of this view. The materialistic shift of Enlightenment philosophy, separating subjectivity from bodily matter, became normative for modern medicine and yielded astonishing results. The traditional dichotomies of mind/body and subjective/objective are, however, incompatible with modern biological theory. Medical knowledge ignores central tenets of human existence, notably the physiological impact of subjective experience, relationships, history and sociocultural contexts. Biomedicine will not succeed in resolving today's poorly understood health problems by doing 'more of the same'. We must acknowledge that health, sickness and bodily functioning are interwoven with human meaning-production, fundamentally personal and biographical. This implies that the biomedical framework, although having engendered 'success stories' like the era of antibiotics, needs to be radically revised. PMID:25967850

  7. Biomedical Materials

    Institute of Scientific and Technical Information of China (English)

    CHANG Jiang; ZHOU Yanling

    2011-01-01

    @@ Biomedical materials, biomaterials for short, is regarded as "any substance or combination of substances, synthetic or natural in origin, which can be used for any period of time, as a whole or as part of a system which treats, augments, or replaces any tissue, organ or function of the body" (Vonrecum & Laberge, 1995).Biomaterials can save lives, relieve suffering and enhance the quality of life for human being.

  8. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Lumetta, C.C. [ed.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  9. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 1, Biomedical sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1992-09-01

    This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.

  10. The use of non-human primates in biomedical research: addressing the replacement impasse through the social dynamics of science

    OpenAIRE

    Hudson-Shore, Michelle

    2015-01-01

    Non-human primate experimentation provokes passionate and opposing exchanges, particularly in the UK. This disagreement contributes to an impasse which in turn has prevented the exploration of the important question, if and how primate research could be ended. This project aims to support the examination of this question of impasse presenting data on how it might be overcome by providing a novel and challenging perspective using a multi-method approach, and insights from science and technolog...

  11. A Review of Biomedical Composite Materials

    Institute of Scientific and Technical Information of China (English)

    吴珊珊

    2013-01-01

    This article addresses the review of the biomedical composite materials.It introduces the operational definition,the classification of biomedical composite materials,and its constituents within itself.In this thesis,the last part presents the application of this kind of material.By writing this paper,I hope that people will get a comprehensive knowledge of the biomedical composite material and make further and deeper research in this material by which way to animate the material science industry.

  12. 75 FR 6030 - EPA Science Advisory Board Staff Office Request for Nominations of Experts for the SAB Lead (Pb...

    Science.gov (United States)

    2010-02-05

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY EPA Science Advisory Board Staff Office Request for Nominations of Experts for the SAB Lead (Pb) Review Panel AGENCY: Environmental Protection Agency (EPA). ACTION: Notice; Request for...

  13. Towards a Science of Community Stakeholder Engagement in Biomedical HIV Prevention Trials: An Embedded Four-Country Case Study.

    Directory of Open Access Journals (Sweden)

    Peter A Newman

    Full Text Available Broad international guidelines and studies in the context of individual clinical trials highlight the centrality of community stakeholder engagement in conducting ethically rigorous HIV prevention trials. We explored and identified challenges and facilitators for community stakeholder engagement in biomedical HIV prevention trials in diverse global settings. Our aim was to assess and deepen the empirical foundation for priorities included in the GPP guidelines and to highlight challenges in implementation that may merit further attention in subsequent GPP iterations.From 2008-2012 we conducted an embedded, multiple case study centered in Thailand, India, South Africa and Canada. We conducted in-depth interviews and focus groups with respondents from different trial-related subsystems: civil society organization representatives, community advocates, service providers, clinical trialists/researchers, former trial participants, and key HIV risk populations. Interviews/focus groups were recorded, and coded using thematic content analysis. After intra-case analyses, we conducted cross-case analysis to contrast and synthesize themes and sub-themes across cases. Lastly, we applied the case study findings to explore and assess UNAIDS/AVAC GPP guidelines and the GPP Blueprint for Stakeholder Engagement.Across settings, we identified three cross-cutting themes as essential to community stakeholder engagement: trial literacy, including lexicon challenges and misconceptions that imperil sound communication; mistrust due to historical exploitation; and participatory processes: engaging early; considering the breadth of "community"; and, developing appropriate stakeholder roles. Site-specific challenges arose in resource-limited settings and settings where trials were halted.This multiple case study revealed common themes underlying community stakeholder engagement across four country settings that largely mirror GPP goals and the GPP Blueprint, as well as

  14. Pacific Northwest Laboratory annual report for 1989 to the DOE Office of Energy Research - Part 1: Biomedical Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Park, J.F.

    1990-05-01

    This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiological studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.

  15. Biomedical Social Science, Unit I: Health and Society. Basic Social Science Inquiry Into Health-Related Problems. Instructor's Manual. Revised Version, 1975.

    Science.gov (United States)

    Biomedical Interdisciplinary Curriculum Project, Berkeley, CA.

    This guide presents lesson plans to accompany the lessons presented in the associated student text. The lessons are designed to teach social science concepts that enhance the prospective health care practitioner's ability to interact effectively with people and to anticipate the demands of health care delivery situations. An introduction to the…

  16. Proceedings of the 1. National Forum of Science and Technology on Health; 13. Brazilian Congress on Biomedical Engineering; 4. Brazilian Congress of Physicists on Medicine; Brazilian Meeting on Biology and Nuclear Medicine; Brazilian Meeting on Radiological Protection

    International Nuclear Information System (INIS)

    This 1. National Forum of Science and Technology on Health presents works of several scientific institutions, including topics on bioengineering; modelling and simulation; sensors and transducers; ultrasonic on medicine; instrumentation processing of signs and medical images; biomedical informatics and clinical software; engineering of rehabilitation; bio-materials and bio-mechanical; clinical engineering; in vivo and in vitro nuclear medicine; radioisotope production and utilization; radiology; radiology protection and dosimetry; radiotherapy; evaluation of technology on health and education. (C.G.C.)

  17. Integrated Biomaterials for Biomedical Technology

    CERN Document Server

    Ramalingam, Murugan; Ramakrishna, Seeram; Kobayashi, Hisatoshi

    2012-01-01

    This cutting edge book provides all the important aspects dealing with the basic science involved in materials in biomedical technology, especially structure and properties, techniques and technological innovations in material processing and characterizations, as well as the applications. The volume consists of 12 chapters written by acknowledged experts of the biomaterials field and covers a wide range of topics and applications.

  18. Biomedical Engineering Education in Perspective

    Science.gov (United States)

    Gowen, Richard J.

    1973-01-01

    Discusses recent developments in the health care industry and their impact on the future of biomedical engineering education. Indicates that a more thorough understanding of the complex functions of the living organism can be acquired through the application of engineering techniques to problems of life sciences. (CC)

  19. Challenges of medical and biological engineering and science

    International Nuclear Information System (INIS)

    All aspects of biomedical engineering and science, from research and development, education and training, implementation in health care systems, internationalisation and globalisation, and other, new issues are present in the strategy and in action plans of the International Federation for Medical and Biological Engineering (IFMBE) which, with help of a large number of highly motivated volunteers, will stay in leading position in biomedical engineering and science

  20. Biomedical informatics: changing what physicians need to know and how they learn.

    Science.gov (United States)

    Stead, William W; Searle, John R; Fessler, Henry E; Smith, Jack W; Shortliffe, Edward H

    2011-04-01

    The explosive growth of biomedical complexity calls for a shift in the paradigm of medical decision making-from a focus on the power of an individual brain to the collective power of systems of brains. This shift alters professional roles and requires biomedical informatics and information technology (IT) infrastructure. The authors illustrate this future role of medical informatics with a vignette and summarize the evolving understanding of both beneficial and deleterious effects of informatics-rich environments on learning, clinical care, and research. The authors also provide a framework of core informatics competencies for health professionals of the future and conclude with broad steps for faculty development. They recommend that medical schools advance on four fronts to prepare their faculty to teach in a biomedical informatics-rich world: (1) create academic units in biomedical informatics; (2) adapt the IT infrastructure of academic health centers (AHCs) into testing laboratories; (3) introduce medical educators to biomedical informatics sufficiently for them to model its use; and (4) retrain AHC faculty to lead the transformation to health care based on a new systems approach enabled by biomedical informatics. The authors propose that embracing this collective and informatics-enhanced future of medicine will provide opportunities to advance education, patient care, and biomedical science.

  1. NIH/NSF accelerate biomedical research innovations

    Science.gov (United States)

    A collaboration between the National Science Foundation and the National Institutes of Health will give NIH-funded researchers training to help them evaluate their scientific discoveries for commercial potential, with the aim of accelerating biomedical in

  2. [Projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo].

    Science.gov (United States)

    Niimi, Shingo; Umezu, Mitsuo; Iseki, Hiroshi; Harada, Hiroshi Kasanuki Noboru; Mitsuishi, Mamoru; Kitamori, Takehiko; Tei, Yuichi; Nakaoka, Ryusuke; Haishima, Yuji

    2014-01-01

    Division of Medical Devices has been conducting the projects to accelerate the practical use of innovative medical devices to collaborate with TWIns, Center for Advanced Biomedical Sciences, Waseda University and School of Engineering, The University of Tokyo. The TWIns has been studying to aim at establishment of preclinical evaluation methods by "Engineering Based Medicine", and established Regulatory Science Institute for Medical Devices. School of Engineering, The University of Tokyo has been studying to aim at establishment of assessment methodology for innovative minimally invasive therapeutic devices, materials, and nanobio diagnostic devices. This report reviews the exchanges of personnel, the implement systems and the research progress of these projects.

  3. Organic Bioelectronic Tools for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Susanne Löffler

    2015-11-01

    Full Text Available Organic bioelectronics forms the basis of conductive polymer tools with great potential for application in biomedical science and medicine. It is a rapidly growing field of both academic and industrial interest since conductive polymers bridge the gap between electronics and biology by being electronically and ionically conductive. This feature can be employed in numerous ways by choosing the right polyelectrolyte system and tuning its properties towards the intended application. This review highlights how active organic bioelectronic surfaces can be used to control cell attachment and release as well as to trigger cell signaling by means of electrical, chemical or mechanical actuation. Furthermore, we report on the unique properties of conductive polymers that make them outstanding materials for labeled or label-free biosensors. Techniques for electronically controlled ion transport in organic bioelectronic devices are introduced, and examples are provided to illustrate their use in self-regulated medical devices. Organic bioelectronics have great potential to become a primary platform in future bioelectronics. We therefore introduce current applications that will aid in the development of advanced in vitro systems for biomedical science and of automated systems for applications in neuroscience, cell biology and infection biology. Considering this broad spectrum of applications, organic bioelectronics could lead to timely detection of disease, and facilitate the use of remote and personalized medicine. As such, organic bioelectronics might contribute to efficient healthcare and reduced hospitalization times for patients.

  4. Fraud and deceit in biomedical research

    Directory of Open Access Journals (Sweden)

    Buitrago Juliana

    2004-05-01

    Full Text Available History: Scientists are supposed to be moved by lofty ideals and be taught to work restlessly in pursue of the truth, but sadly fraud in biomedical research can be traced through the entire history of science. Definition: Nowadays, typology of fraud is clearly defined. Principal types of misconduct are reviewed. Consequences: It is impossible to know to what extent the damage will remain. Fraud threats public confidence in the integrity of science and may change professional attitudes and health public policies leading to serious social consequences. Evaluation of the problem: Prevalence of research fraud is unknown but in almost every country where investigation has been largely developed, at least a corroborated case of mis-conduct has been known. Policies on the scientific process may eventually contribute to fraudulent behaviour. Situation in Colombia: Colombia lacks of comprehensive policies to deal with fraud in research. How to tackle this problem: Finally, some recommendations are given to prevent, detect and deal with fraud in biomedical research.

  5. Writing intelligible English prose for biomedical journals.

    Science.gov (United States)

    Ludbrook, John

    2007-01-01

    1. I present a combination of semi-objective and subjective evidence that the quality of English prose in biomedical scientific writing is deteriorating. 2. I consider seven possible strategies for reversing this apparent trend. These refer to a greater emphasis on good writing by students in schools and by university students, consulting books on science writing, one-on-one mentoring, using 'scientific' measures to reveal lexical poverty, making use of freelance science editors and encouraging the editors of biomedical journals to pay more attention to the problem. 3. I conclude that a fruitful, long-term, strategy would be to encourage more biomedical scientists to embark on a career in science editing. This strategy requires a complementary initiative on the part of biomedical research institutions and universities to employ qualified science editors. 4. An immediately realisable strategy is to encourage postgraduate students in the biomedical sciences to undertake the service courses provided by many universities on writing English prose in general and scientific prose in particular. This strategy would require that heads of departments and supervisors urge their postgraduate students to attend such courses. 5. Two major publishers of biomedical journals, Blackwell Publications and Elsevier Science, now provide lists of commercial editing services on their web sites. I strongly recommend that authors intending to submit manuscripts to their journals (including Blackwell's Clinical and Experimental Pharmacology and Physiology) make use of these services. This recommendation applies especially to those for whom English is a second language.

  6. Environmental/Biomedical Terminology Index

    Energy Technology Data Exchange (ETDEWEB)

    Huffstetler, J.K.; Dailey, N.S.; Rickert, L.W.; Chilton, B.D.

    1976-12-01

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index (EBTI).

  7. Environmental/Biomedical Terminology Index

    International Nuclear Information System (INIS)

    The Information Center Complex (ICC), a centrally administered group of information centers, provides information support to environmental and biomedical research groups and others within and outside Oak Ridge National Laboratory. In-house data base building and development of specialized document collections are important elements of the ongoing activities of these centers. ICC groups must be concerned with language which will adequately classify and insure retrievability of document records. Language control problems are compounded when the complexity of modern scientific problem solving demands an interdisciplinary approach. Although there are several word lists, indexes, and thesauri specific to various scientific disciplines usually grouped as Environmental Sciences, no single generally recognized authority can be used as a guide to the terminology of all environmental science. If biomedical terminology for the description of research on environmental effects is also needed, the problem becomes even more complex. The building of a word list which can be used as a general guide to the environmental/biomedical sciences has been a continuing activity of the Information Center Complex. This activity resulted in the publication of the Environmental Biomedical Terminology Index

  8. Learning in a Belgian Hospital: Conditions of biomedical innovation in the Sector of Health Sciences at the Université catholique de Louvain.

    OpenAIRE

    Moyson, Stéphane; Aubin, David

    2009-01-01

    markdownabstract__INTRODUCTION __ This report is part of “Medlearn”. Medlearn is a research project coordinated by Prof. E. MONTPETIT (Université de Montréal, Canada), in collaboration with Prof. D. AUBIN (Université catholique de Louvain, Belgium) and Prof. M. ATKINSON (University of Saskatchewan, Canada). Academic Medical Centers (AMCs) are often at the center of biomedical innovation. The objective of this research project is to better understand the conditions of biomedical innovation wit...

  9. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    OpenAIRE

    Shamim Haider; Sneha Kumari; Vivek Kashyap; Shalini Sunderam; Shashi Bhushan Singh

    2015-01-01

    Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW) is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months). It was a descriptive, hospi...

  10. International Co-authorship Relations in the Social Science Citation Index: Is Internationalization Leading the Network?

    CERN Document Server

    Leydesdorff, Loet; Wagner, Caroline

    2013-01-01

    We analyze international co-authorship relations in the Social Science Citation Index 2011 using all citable items in the DVD-version of this index. Network statistics indicate four groups of nations: (i) an Asian-Pacific one to which all Anglo-Saxon nations (including the UK and Ireland) are attributed; (ii) a continental European one including also the Latin-American countries; (iii) the Scandinavian nations; and (iv) a community of African nations. Within the EU-28 (including Croatia), eleven of the EU-15 states have dominant positions. Collapsing the EU-28 into a single node leads to a bi-polar structure between the US and EU-28; China is part of the US-pole. We develop an information-theoretical test to distinguish whether international collaborations or domestic collaborations prevail; the results are mixed, but the international dimension is more important than the national one in the aggregated sets (this was found in both SSCI and SCI). In France, however, the national distribution is more important ...

  11. Basics of biomedical ultrasound for engineers

    CERN Document Server

    Azhari, Haim

    2010-01-01

    "Basics of Biomedical Ultrasound for Engineers is a structured textbook for university engineering courses in biomedical ultrasound and for researchers in the field. This book offers a tool for building a solid understanding of biomedical ultrasound, and leads the novice through the field in a step-by-step manner. The book begins with the most basic definitions of waves, proceeds to ultrasounds in fluids, and then delves into solid ultrasounds, the most complicated kind of ultrasound. It encompasses a wide range of topics within biomedical ultrasound, from conceptual definitions of waves to the intricacies of focusing devices, transducers, and acoustic fields"--Provided by publisher.

  12. The ethics of biomedical big data

    CERN Document Server

    Mittelstadt, Brent Daniel

    2016-01-01

    This book presents cutting edge research on the new ethical challenges posed by biomedical Big Data technologies and practices. ‘Biomedical Big Data’ refers to the analysis of aggregated, very large datasets to improve medical knowledge and clinical care. The book describes the ethical problems posed by aggregation of biomedical datasets and re-use/re-purposing of data, in areas such as privacy, consent, professionalism, power relationships, and ethical governance of Big Data platforms. Approaches and methods are discussed that can be used to address these problems to achieve the appropriate balance between the social goods of biomedical Big Data research and the safety and privacy of individuals. Seventeen original contributions analyse the ethical, social and related policy implications of the analysis and curation of biomedical Big Data, written by leading experts in the areas of biomedical research, medical and technology ethics, privacy, governance and data protection. The book advances our understan...

  13. Functionalized carbon nanotubes: biomedical applications

    Directory of Open Access Journals (Sweden)

    Vardharajula S

    2012-10-01

    Full Text Available Sandhya Vardharajula,1 Sk Z Ali,2 Pooja M Tiwari,1 Erdal Eroğlu,1 Komal Vig,1 Vida A Dennis,1 Shree R Singh11Center for NanoBiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USA; 2Department of Microbiology, Osmania University, Hyderabad, IndiaAbstract: Carbon nanotubes (CNTs are emerging as novel nanomaterials for various biomedical applications. CNTs can be used to deliver a variety of therapeutic agents, including biomolecules, to the target disease sites. In addition, their unparalleled optical and electrical properties make them excellent candidates for bioimaging and other biomedical applications. However, the high cytotoxicity of CNTs limits their use in humans and many biological systems. The biocompatibility and low cytotoxicity of CNTs are attributed to size, dose, duration, testing systems, and surface functionalization. The functionalization of CNTs improves their solubility and biocompatibility and alters their cellular interaction pathways, resulting in much-reduced cytotoxic effects. Functionalized CNTs are promising novel materials for a variety of biomedical applications. These potential applications are particularly enhanced by their ability to penetrate biological membranes with relatively low cytotoxicity. This review is directed towards the overview of CNTs and their functionalization for biomedical applications with minimal cytotoxicity.Keywords: carbon nanotubes, cytotoxicity, functionalization, biomedical applications

  14. Animal Ambassadors . . . 4-H teens learn to lead science program for kids

    OpenAIRE

    Smith, Martin H; Enfield, Richard P.; Meehan, Cheryl L.; Klingborg, Donald J.

    2004-01-01

    To improve science literacy among school-age children in the United States, educators must receive effective training and support, and children must be engaged in science at a young age. Animal Ambassadors is a science-education outreach program of the UC School of Veterinary Medicine, Veterinary Medicine Extension, which focuses on the awareness and understanding of animal-related concepts and emphasizes important critical thinking and life skills. Through a collaboration with UC Cooperative...

  15. Environmental Sciences Division annual progress report for period ending September 30, 1982. Environmental Sciences Division Publication No. 2090. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    1983-04-01

    Separate abstracts were prepared for 12 of the 14 sections of the Environmental Sciences Division annual progress report. The other 2 sections deal with educational activities. The programs discussed deal with advanced fuel energy, toxic substances, environmental impacts of various energy technologies, biomass, low-level radioactive waste management, the global carbon cycle, and aquatic and terrestrial ecology. (KRM)

  16. Rewiring the Corporate Brain: Using the New Science To Rethink How We Structure and Lead Organizations.

    Science.gov (United States)

    Zohar, Danah

    This book relates the radically new sciences of the 20th century--quantum mechanics, chaos theory, and complexity theory--to organizational problems and challenges facing corporate leaders. The book draws on the science of the human brain, with its three different kinds of neural structures--mental, emotional, and spiritual--to illustrate how to…

  17. International coauthorship relations in the Social Sciences Citation Index: is internationalization leading the network?

    NARCIS (Netherlands)

    L. Leydesdorff; H.W. Park; C. Wagner

    2014-01-01

    International coauthorship relations have increasingly shaped another dynamic in the natural and life sciences during recent decades. However, much less is known about such internationalization in the social sciences. In this study, we analyze international and domestic coauthorship relations of all

  18. [Biomedical research in Revista de Biologia Tropical].

    Science.gov (United States)

    Gutiérrez, José María

    2002-01-01

    The contributions published in Revista de Biología Tropical in the area of Biomedical Sciences are reviewed in terms of number of contributions and scope of research subjects. Biomedical Sciences, particularly Parasitology and Microbiology, constituted the predominant subject in the Revista during the first decade, reflecting the intense research environment at the School of Microbiology of the University of Costa Rica and at Hospital San Juan de Dios. The relative weight of Biomedicine in the following decades diminished, due to the outstanding increment in publications in Biological Sciences; however, the absolute number of contributions in Biomedical Sciences remained constant throughout the last decades, with around 80 contributions per decade. In spite of the predominance of Parasitology as the main biomedical subject, the last decades have witnessed the emergence of new areas of interest in the Revista, such as Pharmacology of natural products, Toxinology, especially related to snake venoms, and Human Genetics. This retrospective analysis evidences that Biomedical Sciences, particularly those related to Tropical Medicine, were a fundamental component during the first years of Revista de Biología Tropical, and have maintained a significant presence in the scientific output of this journal, the most relevant scientific publication in biological sciences in Central America.

  19. Biomedical technology

    CERN Document Server

    Wriggers, Peter

    2015-01-01

    During the last years computational methods lead to new approaches that can be applied within medical practice. Based on the tremendous advances in medical imaging and high-performance computing, virtual testing is able to help in medical decision processes or implant designs. Current challenges in medicine and engineering are related to the application of computational methods to clinical medicine and the study of biological systems at different scales. Additionally manufacturers will be able to use computational tools and methods to predict the performance of their medical devices in virtual patients. The physical and animal testing procedures could be reduced by virtual prototyping of medical devices. Here simulations can enhance the performance of alternate device designs for a range of virtual patients. This will lead to a refinement of designs and to safer products. This book summarizes different aspects of approaches to enhance function, production, initialization and complications of different types o...

  20. Spintronic platforms for biomedical applications.

    Science.gov (United States)

    Freitas, P P; Cardoso, F A; Martins, V C; Martins, S A M; Loureiro, J; Amaral, J; Chaves, R C; Cardoso, S; Fonseca, L P; Sebastião, A M; Pannetier-Lecoeur, M; Fermon, C

    2012-02-01

    Since the fundamental discovery of the giant magnetoresistance many spintronic devices have been developed and implemented in our daily life (e.g. information storage and automotive industry). Lately, advances in the sensors technology (higher sensitivity, smaller size) have potentiated other applications, namely in the biological area, leading to the emergence of novel biomedical platforms. In particular the investigation of spintronics and its application to the development of magnetoresistive (MR) biomolecular and biomedical platforms are giving rise to a new class of biomedical diagnostic devices, suitable for bench top bioassays as well as point-of-care and point-of-use devices. Herein, integrated spintronic biochip platforms for diagnostic and cytometric applications, hybrid systems incorporating magnetoresistive sensors applied to neuroelectronic studies and biomedical imaging, namely magneto-encephalography and magneto-cardiography, are reviewed. Also lab-on-a-chip MR-based platforms to perform biological studies at the single molecule level are discussed. Overall the potential and main characteristics of such MR-based biomedical devices, comparing to the existing technologies while giving particular examples of targeted applications, are addressed. PMID:22146898

  1. Biomedical wellness challenges and opportunities

    Science.gov (United States)

    Tangney, John F.

    2012-06-01

    The mission of ONR's Human and Bioengineered Systems Division is to direct, plan, foster, and encourage Science and Technology in cognitive science, computational neuroscience, bioscience and bio-mimetic technology, social/organizational science, training, human factors, and decision making as related to future Naval needs. This paper highlights current programs that contribute to future biomedical wellness needs in context of humanitarian assistance and disaster relief. ONR supports fundamental research and related technology demonstrations in several related areas, including biometrics and human activity recognition; cognitive sciences; computational neurosciences and bio-robotics; human factors, organizational design and decision research; social, cultural and behavioral modeling; and training, education and human performance. In context of a possible future with automated casualty evacuation, elements of current science and technology programs are illustrated.

  2. Advanced computational approaches to biomedical engineering

    CERN Document Server

    Saha, Punam K; Basu, Subhadip

    2014-01-01

    There has been rapid growth in biomedical engineering in recent decades, given advancements in medical imaging and physiological modelling and sensing systems, coupled with immense growth in computational and network technology, analytic approaches, visualization and virtual-reality, man-machine interaction and automation. Biomedical engineering involves applying engineering principles to the medical and biological sciences and it comprises several topics including biomedicine, medical imaging, physiological modelling and sensing, instrumentation, real-time systems, automation and control, sig

  3. Biomedical engineering fundamentals

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Engineering Fundamentals, the first volume of the handbook, presents material from respected scientists with diverse backgrounds in physiological systems, biomechanics, biomaterials, bioelectric phenomena, and neuroengineering. More than three dozen specific topics are examined, including cardia

  4. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    Science.gov (United States)

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-01-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P < 0.001). Japan representation in basic science journals showed an upward trend over the 1991-2000 period (P < 0.001) but remained flat during 2001-2010 (P = 0.177). In contrast, the trend of Japan representation in general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000. PMID:24189990

  5. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  6. Smoking Prevalence Among Mugla School of Health Sciences Students and Causes of Leading Increase in Smoking

    Directory of Open Access Journals (Sweden)

    Metin Picakciefe

    2007-08-01

    Full Text Available The purpose of this study was to determine the smoking prevalence among Mugla School of Health Sciences students, to determine the effects the increasing causes of smoking and their education about adverse health outcome of smoking. A cross-sectional study was performed among Mugla School of Health Sciences students in Mugla University. All students (417 in Mugla School of Health Sciences included in the study. The participation rates was 85.1%. Data were obtained by the self-administered questionnaire without teachers in classes. SPSS 11.0 was used for data analysis, and the differentiation was assessed by Chi-square analysis. P < 0.05 was accepted statistically significant. The prevalence of current smokers was 25.3% among students in Mugla School of Health Sciences. The students stated that the most important factor of smoking initiation was stress (59.2%. The univariable analysis showed that the friends’ smoking (p: 0.000 , having knowledge about smoking habits of teachers (p: 0.020 , alcohol consumption (p: 0.000, and other smokers out of parent in the home (p: 0.000 was significantly associated with increasing rate of smoking prevalence. The smoking prevalence was quite high (25.3% among Mugla School of Health Sciences students in Mugla University. It is needed to decreasing smoking prevalence among students that antismoking education should be reevaluated, that antismoking campaign should be administered in schools. [TAF Prev Med Bull 2007; 6(4.000: 267-272

  7. Smoking Prevalence Among Mugla School of Health Sciences Students and Causes of Leading Increase in Smoking

    Directory of Open Access Journals (Sweden)

    Metin Picakciefe

    2007-08-01

    Full Text Available The purpose of this study was to determine the smoking prevalence among Mugla School of Health Sciences students, to determine the effects the increasing causes of smoking and their education about adverse health outcome of smoking. A cross-sectional study was performed among Mugla School of Health Sciences students in Mugla University. All students (417 in Mugla School of Health Sciences included in the study. The participation rates was 85.1%. Data were obtained by the self-administered questionnaire without teachers in classes. SPSS 11.0 was used for data analysis, and the differentiation was assessed by Chi-square analysis. P < 0.05 was accepted statistically significant. The prevalence of current smokers was 25.3% among students in Mugla School of Health Sciences. The students stated that the most important factor of smoking initiation was stress (59.2%. The univariable analysis showed that the friends’ smoking (p: 0.000 , having knowledge about smoking habits of teachers (p: 0.020 , alcohol consumption (p: 0.000, and other smokers out of parent in the home (p: 0.000 was significantly associated with increasing rate of smoking prevalence. The smoking prevalence was quite high (25.3% among Mugla School of Health Sciences students in Mugla University. It is needed to decreasing smoking prevalence among students that antismoking education should be reevaluated, that antismoking campaign should be administered in schools. [TAF Prev Med Bull. 2007; 6(4: 267-272

  8. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    Science.gov (United States)

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-01-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P journals showed an upward trend over the 1991-2000 period (P journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  9. Environmental Sciences Division. Annual progress report for period ending September 30, 1980. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, S.I.; Reichle, D.E.

    1981-03-01

    Research conducted in the Environmental Sciences Division for the Fiscal Year 1980 included studies carried out in the following Division programs and sections: (1) Advanced Fossil Energy Program, (2) Nuclear Program, (3) Environmental Impact Program, (4) Ecosystem Studies Program, (5) Low-Level Waste Research and Development Program, (6) National Low-Level Waste Program, (7) Aquatic Ecology Section, (8) Environmental Resources Section, (9) Earth Sciences Section, and (10) Terrestrial Ecology Section. In addition, Educational Activities and the dedication of the Oak Ridge National Environmental Research Park are reported. Separate abstracts were prepared for the 10 sections of this report.

  10. Refutations in science texts lead to hypercorrection of misconceptions held with high confidence

    NARCIS (Netherlands)

    Van Loon, Mariëtte H.; Dunlosky, John; Van Gog, Tamara; Van Merriënboer, Jeroen J.g.; De Bruin, Anique B.h.

    2015-01-01

    Misconceptions about science are often not corrected during study when they are held with high confidence. However, when corrective feedback co-activates a misconception together with the correct conception, this feedback may surprise the learner and draw attention, especially when the misconception

  11. 15th International Conference on Biomedical Engineering

    CERN Document Server

    2014-01-01

    This volume presents the proceedings of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organisations working i...

  12. Identifying the Factors Leading to Success: How an Innovative Science Curriculum Cultivates Student Motivation

    Science.gov (United States)

    Scogin, Stephen C.

    2016-06-01

    PlantingScience is an award-winning program recognized for its innovation and use of computer-supported scientist mentoring. Science learners work on inquiry-based experiments in their classrooms and communicate asynchronously with practicing plant scientist-mentors about the projects. The purpose of this study was to identify specific factors contributing to the program's effectiveness in engaging students. Using multiple data sources, grounded theory (Strauss and Corbin in Basics of qualitative research. Sage, Newbury Park, 1990) was used to develop a conceptual model identifying the central phenomenon, causal conditions, intervening conditions, strategies, contexts, and student outcomes of the project. Student motivation was determined to be the central phenomenon explaining the success of the program, with student empowerment, online mentor interaction, and authenticity of the scientific experiences serving as causal conditions. Teachers contributed to student motivation by giving students more freedom, challenging students to take projects deeper, encouraging, and scaffolding. Scientists contributed to student motivation by providing explanations, asking questions, encouraging, and offering themselves as partners in the inquiry process. Several positive student outcomes of the program were uncovered and included increased positivity, greater willingness to take projects deeper, better understanding of scientific concepts, and greater commitments to collaboration. The findings of this study provide relevant information on how to develop curriculum, use technology, and train practitioners and mentors to utilize strategies and actions that improve learners' motivation to engage in authentic science in the classroom.

  13. The Potential Improvement of Team-Working Skills in Biomedical and Natural Science Students Using a Problem-Based Learning Approach

    Science.gov (United States)

    Nowrouzian, Forough L.; Farewell, Anne

    2013-01-01

    Teamwork has become an integral part of most organisations today, and it is clearly important in Science and other disciplines. In Science, research teams increase in size while the number of single-authored papers and patents decline. Team-work in laboratory sciences permits projects that are too big or complex for one individual to be tackled.…

  14. VI Latin American Congress on Biomedical Engineering

    CERN Document Server

    Hadad, Alejandro

    2015-01-01

    This volume presents the proceedings of the CLAIB 2014, held in Paraná, Entre Ríos, Argentina 29, 30 & 31 October 2014. The proceedings, presented by the Regional Council of Biomedical Engineering for Latin America (CORAL) offer research findings, experiences and activities between institutions and universities to develop Bioengineering, Biomedical Engineering and related sciences. The conferences of the American Congress of Biomedical Engineering are sponsored by the International Federation for Medical and Biological Engineering (IFMBE), Society for Engineering in Biology and Medicine (EMBS) and the Pan American Health Organization (PAHO), among other organizations and international agencies and bringing together scientists, academics and biomedical engineers in Latin America and other continents in an environment conducive to exchange and professional growth. The Topics include: - Bioinformatics and Computational Biology - Bioinstrumentation; Sensors, Micro and Nano Technologies - Biomaterials, Tissu...

  15. Historical continuity in the methodology of modern medical science: Leonardo leads the way.

    Science.gov (United States)

    Pasipoularides, Ares

    2014-02-01

    Early modern medical science did not arise ex nihilo, but was the culmination of a long history stretching back through the Renaissance, the Middle Ages, Byzantium and Roman times, into Greek Antiquity. The long interval between Aristotle and Galen and Harvey and Descartes was punctuated by outstanding visionaries, including Leonardo, the ultimate Renaissance man. His attitude and mindset were based on Aristotelian pursuit of empirical fact and rational thought. He declared himself to be a "man without letters" to underscore his disdain for those whose culture was only mnemonics and philosophical inferences from authoritative books. Leonardo read the Book of Nature with the immense curiosity of the pioneering scientist, ushering in the methodology of modern medical science with help from forerunners. He left no publications, but extensive personal Notebooks: on his scientific research, hydrodynamics, physiological anatomy, etc. Apparently, numerous successors availed themselves of his methodologies and insights, albeit without attribution. In his Notebooks, disordered and fragmentary, Leonardo manifests the exactitude of the engineer and scientist, the spontaneous freshness of one speaking of what he has at heart and that he knows well. His style is unrefined, but intensely personal, rich with emotion and, sometimes, poetic. Leonardo, the visionary anatomist, strived consistently not merely to imitate nature by depicting body structures, but to perceive through analysis and simulations the intimate physiologic processes; i.e., the biomechanics underlying the workings of all bodily organs and components, even the mysterious beating heart. It is fitting to regard him as the first modern medical scientist. PMID:24360160

  16. 面向生物医学影像e-Science平台的审计监控系统%An Auditing and Monitoring System for Biomedical Image E-Science Platform

    Institute of Scientific and Technical Information of China (English)

    王土生; 杨媛媛; 张建国

    2013-01-01

    During Research in biomedical imaging and clinical applications for major diseases, it is often necessary to involve scientist of basic medicine, clinical medicine, physics and biomedical engineering for collaborative research. To do this, we built a grid-based biomedical image e-Science platform, providing data sharing and exchange between the different institutions. Due to the distribution of system and node heterogeneity, it is difficult to avoid the system hardware and software failures. Therefore, this paper designed an XMPP-based audit and monitoring system, which supports both real-time monitoring of each host, and auditing of the data business happening in e-Science. The system is running with e-Science platform, showing good convenient and soundness.%在面向重大疾病的生物医学成像与临床应用等研究中,常常需要包括基础医学、临床医学、物理学和生物医学工程多学科的科研工作者进行协同交互。为此采用网格技术构建了生物医学影像e-Science平台,实现了跨机构之间大数据的快速共享与交换。由于系统的分布性和节点的异构性,难以避免会碰到系统的软硬件故障。因此,设计了一种基于XMPP协议的审计监控系统,既对e-Science的各个主机系统资源进行实时监测,又对平台中数据业务进行审计跟踪。系统最终被部署应用在e-Science平台,具有良好的便捷性和稳健性。

  17. Biomedical engineering principles

    CERN Document Server

    Ritter, Arthur B; Valdevit, Antonio; Ascione, Alfred N

    2011-01-01

    Introduction: Modeling of Physiological ProcessesCell Physiology and TransportPrinciples and Biomedical Applications of HemodynamicsA Systems Approach to PhysiologyThe Cardiovascular SystemBiomedical Signal ProcessingSignal Acquisition and ProcessingTechniques for Physiological Signal ProcessingExamples of Physiological Signal ProcessingPrinciples of BiomechanicsPractical Applications of BiomechanicsBiomaterialsPrinciples of Biomedical Capstone DesignUnmet Clinical NeedsEntrepreneurship: Reasons why Most Good Designs Never Get to MarketAn Engineering Solution in Search of a Biomedical Problem

  18. Fundamental of biomedical engineering

    CERN Document Server

    Sawhney, GS

    2007-01-01

    About the Book: A well set out textbook explains the fundamentals of biomedical engineering in the areas of biomechanics, biofluid flow, biomaterials, bioinstrumentation and use of computing in biomedical engineering. All these subjects form a basic part of an engineer''s education. The text is admirably suited to meet the needs of the students of mechanical engineering, opting for the elective of Biomedical Engineering. Coverage of bioinstrumentation, biomaterials and computing for biomedical engineers can meet the needs of the students of Electronic & Communication, Electronic & Instrumenta

  19. Manpower development for the biomedical industry space.

    Science.gov (United States)

    Goh, James C H

    2013-01-01

    The Biomedical Sciences (BMS) Cluster is one of four key pillars of the Singapore economy. The Singapore Government has injected research funding for basic and translational research to attract companies to carry out their commercial R&D activities. To further intensify the R&D efforts, the National Research Foundation (NRF) was set up to coordinate the research activities of different agencies within the larger national framework and to fund strategic R&D initiatives. In recent years, funding agencies began to focus on support of translational and clinical research, particularly those with potential for commercialization. Translational research is beginning to have traction, in particular research funding for the development of innovation medical devices. Therefore, the Biomedical Sciences sector is projected to grow which means that there is a need to invest in human capital development to achieve sustainable growth. In support of this, education and training programs to strengthen the manpower capabilities for the Biomedical Sciences industry have been developed. In recent years, undergraduate and graduate degree courses in biomedical engineering/bioengineering have been developing at a rapid rate. The goal is to train students with skills to understand complex issues of biomedicine and to develop and implement of advanced technological applications to these problems. There are a variety of career opportunities open to graduates in biomedical engineering, however regardless of the type of career choices, students must not only focus on achieving good grades. They have to develop their marketability to employers through internships, overseas exchange programs, and involvement in leadership-type activities. Furthermore, curriculum has to be developed with biomedical innovation in mind and ensure relevance to the industry. The objective of this paper is to present the NUS Bioengineering undergraduate program in relation to manpower development for the biomedical

  20. Biomedical and environmental applications of magnetic nanoparticles

    International Nuclear Information System (INIS)

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol–gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied

  1. Biomedical and environmental applications of magnetic nanoparticles

    Science.gov (United States)

    Tran, Dai Lam; Le, Van Hong; Linh Pham, Hoai; Nhung Hoang, Thi My; Quy Nguyen, Thi; Luong, Thien Tai; Thu Ha, Phuong; Phuc Nguyen, Xuan

    2010-12-01

    This paper presents an overview of syntheses and applications of magnetic nanoparticles (MNPs) at the Institute of Materials Science, Vietnam Academy of Science and Technology. Three families of oxide MNPs, magnetite, manganite and spinel ferrite materials, were prepared in various ways: coprecipitation, sol-gel and high energy mechanical milling. Basic properties of MNPs were characterized by Vibrating Sample Magnetometer (VSM) and Physical Properties Measurement Systems (PPMS). As for biomedical application, the aim was to design a novel multifunctional, nanosized magnetofluorescent water-dispersible Fe3O4-curcumin conjugate, and its ability to label, target and treat tumor cells was described. The conjugate possesses a magnetic nano Fe3O4 core, chitosan (CS) or Oleic acid (OL) as an outer shell and entrapped curcumin (Cur), serving the dual function of naturally autofluorescent dye as well as antitumor model drug. Fe3O4-Cur conjugate exhibited a high loading cellular uptake with the help of a macrophage, which was clearly visualized dually by Fluorescence Microscope and Laser Scanning Confocal Microscope (LSCM), as well as by magnetization measurement (PPMS). A preliminary magnetic resonance imaging (MRI) study also showed a clear contrast enhancement by using the conjugate. As for the environmental aspect, the use of magnetite MNPs for the removal of heavy toxic metals, such as Arsenic (As) and Lead (Pb), from contaminated water was studied.

  2. Biomedical applications engineering tasks

    Science.gov (United States)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  3. Lead isotopes in teeth as indicators of past domicile - a potential new tool in forensic science?

    International Nuclear Information System (INIS)

    The isotopic signature for Australian subjects is based mainly on deciduous teeth analyses, especially teeth for 'non-exposed' children from the Broken Hill mining community. For 'non-exposed' children from Broken Hill and several other adults and children from varying locations, the mean 206Pb/204Pb and 207Pb/206Pb ratios are 16.56 and 0.9318 respectively. These data are consistent with values for the isotopic composition of lead in blood obtained from over 200 Australian subjects (Gulson et al., 1995). From comparisons of permanent and deciduous teeth, the isotopic composition has remained remarkably uniform over more than a 30-year period, indicated by the relatively small standard deviation for the data

  4. Capturing the Value of Biomedical Research.

    Science.gov (United States)

    Bertuzzi, Stefano; Jamaleddine, Zeina

    2016-03-24

    Assessing the real-world impact of biomedical research is notoriously difficult. Here, we present the framework for building a prospective science-centered information system from scratch that has been afforded by the Sidra Medical and Research Center in Qatar. This experiment is part of the global conversation on maximizing returns on research investment.

  5. UK Doubles Its "World-Leading" Research in Life Sciences and Medicine in Six Years: Testing the Claim?

    Directory of Open Access Journals (Sweden)

    Steven Wooding

    Full Text Available The UK, like some other countries, carries out a periodic review of research quality in universities and the most recent Research Excellence Framework (REF reported a doubling (103% increase in its "world leading" or so-called "4*" research outputs in the areas of life sciences and medicine between 2008 and 2014. This is a remarkable improvement in six years and if validated internationally could have profound implications for health sciences.We compared the reported changes in 4* quality to bibliometric measures of quality for the 56,639 articles submitted to the RAE 2008 and the 50,044 articles submitted to the REF 2014 to Panel A, which assesses the life sciences, including medicine.UK research submitted to the RAE and REF was of better quality than worldwide research on average. While we found evidence for some increase in the quality of top UK research articles, a 10-25% increase in the top 10%ile papers, depending upon the metrics used, we could not find evidence to support a 103% increase in quality. Instead we found that as compared to the RAE, the REF results implied a lower citation %ile threshold for declaring a 4*.There is a wide discrepancy between bibliometric indices and peer-review panel judgements between the RAE 2008 and REF 2014. It is possible that the changes in the funding regime between 2008 and 2014 that significantly increased the financial premium for 4* articles may have influenced research quality evaluation. For the advancement of science and health, evaluation of research quality requires consistency and validity - the discrepancy noted here calls for a closer examination of mass peer-review methods like the REF.

  6. A study on knowledge and practice regarding biomedical waste management among staff nurses and nursing students of Rajendra Institute of Medical Sciences, Ranchi

    Directory of Open Access Journals (Sweden)

    Shamim Haider

    2015-03-01

    Full Text Available Background: Hospitals are the centre of cure and also the important centres of infectious waste generation. Effective management of Biomedical Waste (BMW is not only a legal necessity but also a social responsibility. Aims and Objectives: To assess the knowledge and practice in managing the biomedical wastes among nursing staff and student nurses in RIMS, Ranchi. Materials and methods: The study was conducted at RIMS, Ranchi from Oct 2013 to March 2014 (6 months. It was a descriptive, hospital based, cross-sectional study. A total of 240 nurses participated in the present study, randomly chosen from various departments A pre-designed, pre-tested, structured proforma was used for data collection after getting their informed consent. Self-made scoring system was used to categorize the participants as having good, average and poor scores. Data was tabulated and analyzed using percentages and chi-square test. Results: The knowledge regarding general information about BMW management was assessed(with scores 0-8,it was found  that level of knowledge was better in student nurses than staff nurses as student nurses scored good(6-8correct answers in more than half of the questions (65%.Whereas staff nurses scored good in only 33.33% questions. When the practical information regarding the BMW management is assessed (with scores 0-8, it was found that staff nurses had relatively better practice regarding BMW management than students as they scored good(6-8correct answers in 40% and 30% respectively. Conclusion: Though overall knowledge of study participants was good but still they need good quality training to improve their current knowledge about BMW. 

  7. Handbook of biomedical optics

    CERN Document Server

    Boas, David A

    2011-01-01

    Biomedical optics holds tremendous promise to deliver effective, safe, non- or minimally invasive diagnostics and targeted, customizable therapeutics. Handbook of Biomedical Optics provides an in-depth treatment of the field, including coverage of applications for biomedical research, diagnosis, and therapy. It introduces the theory and fundamentals of each subject, ensuring accessibility to a wide multidisciplinary readership. It also offers a view of the state of the art and discusses advantages and disadvantages of various techniques.Organized into six sections, this handbook: Contains intr

  8. Biomedical applications of polymers

    CERN Document Server

    Gebelein, C G

    1991-01-01

    The biomedical applications of polymers span an extremely wide spectrum of uses, including artificial organs, skin and soft tissue replacements, orthopaedic applications, dental applications, and controlled release of medications. No single, short review can possibly cover all these items in detail, and dozens of books andhundreds of reviews exist on biomedical polymers. Only a few relatively recent examples will be cited here;additional reviews are listed under most of the major topics in this book. We will consider each of the majorclassifications of biomedical polymers to some extent, inclu

  9. Powering biomedical devices

    CERN Document Server

    Romero, Edwar

    2013-01-01

    From exoskeletons to neural implants, biomedical devices are no less than life-changing. Compact and constant power sources are necessary to keep these devices running efficiently. Edwar Romero's Powering Biomedical Devices reviews the background, current technologies, and possible future developments of these power sources, examining not only the types of biomedical power sources available (macro, mini, MEMS, and nano), but also what they power (such as prostheses, insulin pumps, and muscular and neural stimulators), and how they work (covering batteries, biofluids, kinetic and ther

  10. Sensors for biomedical applications

    NARCIS (Netherlands)

    Bergveld, Piet

    1986-01-01

    This paper considers the impact during the last decade of modern IC technology, microelectronics, thin- and thick-film technology, fibre optic technology, etc. on the development of sensors for biomedical applications.

  11. Biomedical signal analysis

    CERN Document Server

    Rangayyan, Rangaraj M

    2015-01-01

    The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications. 800 mathematical expressions and equations. Practical questions, problems and laboratory exercises. Includes fractals and chaos theory with biomedical applications.

  12. Biomedical signal processing

    CERN Document Server

    Akay, Metin

    1994-01-01

    Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

  13. Sharing big biomedical data

    OpenAIRE

    Toga, Arthur W.; Dinov, Ivo D.

    2015-01-01

    Background The promise of Big Biomedical Data may be offset by the enormous challenges in handling, analyzing, and sharing it. In this paper, we provide a framework for developing practical and reasonable data sharing policies that incorporate the sociological, financial, technical and scientific requirements of a sustainable Big Data dependent scientific community. Findings Many biomedical and healthcare studies may be significantly impacted by using large, heterogeneous and incongruent data...

  14. Improving Graduate Education to Support a Branching Career Pipeline: Recommendations Based on a Survey of Doctoral Students in the Basic Biomedical Sciences

    Science.gov (United States)

    Fuhrmann, C. N.; Halme, D. G.; O'Sullivan, P. S.; Lindstaedt, B.

    2011-01-01

    Today's doctoral programs continue to prepare students for a traditional academic career path despite the inadequate supply of research-focused faculty positions. We advocate for a broader doctoral curriculum that prepares trainees for a wide range of science-related career paths. In support of this argument, we describe data from our survey of…

  15. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science

    OpenAIRE

    Franco, Nuno H.; Olsson, I Anna S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher’s responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (L...

  16. Regaining America's leading global position in the innovation of science and technology: Increasing engineering program enrollment in higher education

    Science.gov (United States)

    Burklo, Daniel A.

    While the United States has always been a global leader in the innovation of science and technology, this leading global position is in jeopardy. As other developing countries produce intellectual capital in the form of engineers at increasing rates, the country will continue to lose ground. Today the need for the country to produce engineers is greater than ever before. Recognizing this need, attempts have been made to increase entrance into engineering fields in higher education by providing STEM (science, technology, engineering, and mathematics) activities during K-12 education. While STEM initiatives create awareness and interest, this study investigates what actually motivates individuals to choose engineering programs in higher education. A quantitative study utilizing survey results from 202 first year engineering students in the state of Ohio illustrates what has motivated them to choose engineering as a major. The study examines who, when, and what motivated the students to choose engineering by examining the relationship of influential people and STEM initiatives participated in during their K-12 education to enrollment in engineering programs at colleges and universities in the state of Ohio. The study proved the general hypothesis that there are influential people in an individual's college choice, such as the parent, and there are time periods during K-12 education when individuals are more motivated, such as the high school years. The study also showed a positive correlation between the motivation toward engineering programs and the number of STEM opportunities in which individuals participated yet there was little difference when comparing the different types of STEM initiatives.

  17. Document Exploration and Automatic Knowledge Extraction for Unstructured Biomedical Text

    Science.gov (United States)

    Chu, S.; Totaro, G.; Doshi, N.; Thapar, S.; Mattmann, C. A.; Ramirez, P.

    2015-12-01

    We describe our work on building a web-browser based document reader with built-in exploration tool and automatic concept extraction of medical entities for biomedical text. Vast amounts of biomedical information are offered in unstructured text form through scientific publications and R&D reports. Utilizing text mining can help us to mine information and extract relevant knowledge from a plethora of biomedical text. The ability to employ such technologies to aid researchers in coping with information overload is greatly desirable. In recent years, there has been an increased interest in automatic biomedical concept extraction [1, 2] and intelligent PDF reader tools with the ability to search on content and find related articles [3]. Such reader tools are typically desktop applications and are limited to specific platforms. Our goal is to provide researchers with a simple tool to aid them in finding, reading, and exploring documents. Thus, we propose a web-based document explorer, which we called Shangri-Docs, which combines a document reader with automatic concept extraction and highlighting of relevant terms. Shangri-Docsalso provides the ability to evaluate a wide variety of document formats (e.g. PDF, Words, PPT, text, etc.) and to exploit the linked nature of the Web and personal content by performing searches on content from public sites (e.g. Wikipedia, PubMed) and private cataloged databases simultaneously. Shangri-Docsutilizes Apache cTAKES (clinical Text Analysis and Knowledge Extraction System) [4] and Unified Medical Language System (UMLS) to automatically identify and highlight terms and concepts, such as specific symptoms, diseases, drugs, and anatomical sites, mentioned in the text. cTAKES was originally designed specially to extract information from clinical medical records. Our investigation leads us to extend the automatic knowledge extraction process of cTAKES for biomedical research domain by improving the ontology guided information extraction

  18. Optimization and Data Analysis in Biomedical Informatics

    CERN Document Server

    Pardalos, Panos M; Xanthopoulos, Petros

    2012-01-01

    This volume covers some of the topics that are related to the rapidly growing field of biomedical informatics. In June 11-12, 2010 a workshop entitled 'Optimization and Data Analysis in Biomedical Informatics' was organized at The Fields Institute. Following this event invited contributions were gathered based on the talks presented at the workshop, and additional invited chapters were chosen from world's leading experts. In this publication, the authors share their expertise in the form of state-of-the-art research and review chapters, bringing together researchers from different disciplines

  19. [Reflections about the historical development of biomedical sciences in Chile and the role of Revista Médica de Chile: an homage on 130-years old].

    Science.gov (United States)

    Vargas Fernández, Luis

    2002-12-01

    When Revista Médica de Chile turns to be 130 years old, the author reflects about the difficulties that scientific and technological creativity faces in Chile, considering that there was a 70 years gap between its historical origin in Chile compared to developed countries. The scientific progress erases the boundaries between Biomedicine and science and technology. This progress has resulted in an improvement in the quality of scientific publications in Revista Medica de Chile. The editorial work has also contributed to this improvement. Revista Medica de Chile has obtained international recognition and stands in a good position as a medical journal in Latin America and Chile.

  20. Superhydrophobic materials for biomedical applications.

    Science.gov (United States)

    Falde, Eric J; Yohe, Stefan T; Colson, Yolonda L; Grinstaff, Mark W

    2016-10-01

    Superhydrophobic surfaces are actively studied across a wide range of applications and industries, and are now finding increased use in the biomedical arena as substrates to control protein adsorption, cellular interaction, and bacterial growth, as well as platforms for drug delivery devices and for diagnostic tools. The commonality in the design of these materials is to create a stable or metastable air layer at the material surface, which lends itself to a number of unique properties. These activities are catalyzing the development of new materials, applications, and fabrication techniques, as well as collaborations across material science, chemistry, engineering, and medicine given the interdisciplinary nature of this work. The review begins with a discussion of superhydrophobicity, and then explores biomedical applications that are utilizing superhydrophobicity in depth including material selection characteristics, in vitro performance, and in vivo performance. General trends are offered for each application in addition to discussion of conflicting data in the literature, and the review concludes with the authors' future perspectives on the utility of superhydrophobic biomaterials for medical applications. PMID:27449946

  1. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    Science.gov (United States)

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research. PMID:23940123

  2. Scientists and the 3Rs: attitudes to animal use in biomedical research and the effect of mandatory training in laboratory animal science.

    Science.gov (United States)

    Franco, N H; Olsson, I A S

    2014-01-01

    The 3Rs principle of replacement, reduction, and refinement has increasingly been endorsed by legislators and regulatory bodies as the best approach to tackle the ethical dilemma presented by animal experimentation in which the potential benefits for humans stand against the costs borne by the animals. Even when animal use is tightly regulated and supervised, the individual researcher's responsibility is still decisive in the implementation of the 3Rs. Training in laboratory animal science (LAS) aims to raise researchers' awareness and increase their knowledge, but its effect on scientists' attitudes and practice has not so far been systematically assessed. Participants (n = 206) in eight LAS courses (following the Federation of European Laboratory Animal Science Associations category C recommendations) in Portugal were surveyed in a self-administered questionnaire during the course. Questions were related mainly to the 3Rs and their application, attitudes to animal use and the ethical review of animal experiments. One year later, all the respondents were asked to answer a similar questionnaire (57% response rate) with added self-evaluation questions on the impact of training. Our results suggest that the course is effective in promoting awareness and increasing knowledge of the 3Rs, particularly with regard to refinement. However, participation in the course did not change perceptions on the current and future needs for animal use in research.

  3. Camera systems in human motion analysis for biomedical applications

    Science.gov (United States)

    Chin, Lim Chee; Basah, Shafriza Nisha; Yaacob, Sazali; Juan, Yeap Ewe; Kadir, Aida Khairunnisaa Ab.

    2015-05-01

    Human Motion Analysis (HMA) system has been one of the major interests among researchers in the field of computer vision, artificial intelligence and biomedical engineering and sciences. This is due to its wide and promising biomedical applications, namely, bio-instrumentation for human computer interfacing and surveillance system for monitoring human behaviour as well as analysis of biomedical signal and image processing for diagnosis and rehabilitation applications. This paper provides an extensive review of the camera system of HMA, its taxonomy, including camera types, camera calibration and camera configuration. The review focused on evaluating the camera system consideration of the HMA system specifically for biomedical applications. This review is important as it provides guidelines and recommendation for researchers and practitioners in selecting a camera system of the HMA system for biomedical applications.

  4. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 6, is a collection of papers that discusses the role of integrated electronics in medical systems and the usage of biological mathematical models in biological systems. Other papers deal with the health care systems, the problems and methods of approach toward rehabilitation, as well as the future of biomedical engineering. One paper discusses the use of system identification as it applies to biological systems to estimate the values of a number of parameters (for example, resistance, diffusion coefficients) by indirect means. More particularly, the i

  5. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1976-01-01

    Advances in Biomedical Engineering, Volume 5, is a collection of papers that deals with application of the principles and practices of engineering to basic and applied biomedical research, development, and the delivery of health care. The papers also describe breakthroughs in health improvements, as well as basic research that have been accomplished through clinical applications. One paper examines engineering principles and practices that can be applied in developing therapeutic systems by a controlled delivery system in drug dosage. Another paper examines the physiological and materials vari

  6. Biomedical enhancements as justice.

    Science.gov (United States)

    Nam, Jeesoo

    2015-02-01

    Biomedical enhancements, the applications of medical technology to make better those who are neither ill nor deficient, have made great strides in the past few decades. Using Amartya Sen's capability approach as my framework, I argue in this article that far from being simply permissible, we have a prima facie moral obligation to use these new developments for the end goal of promoting social justice. In terms of both range and magnitude, the use of biomedical enhancements will mark a radical advance in how we compensate the most disadvantaged members of society.

  7. Biomedical Applications of Simulated Environments .

    Directory of Open Access Journals (Sweden)

    W. Selvamurthy

    1993-07-01

    Full Text Available Environmental physiology assumes great significance in our national context of the diverse climatic conditions prevailing in different regions. Troops have to operate in diverse environmental conditions guarding the frontiers. Hence, the research in this area has been focused on the usage of field studies in the natural environments or simulated environments in the laboratory. Besides, the application of the simulation chambers in the research on the physiological effects of diverse environments, these studies may have applications in the control and management of certain clinical disorders. Some simulation chambers and specilised set-ups have been designed and developed at the Defence Institute of Physiology and Allied Sciences to carry out simulation studies. This paper describes these developments and the potentials of these biomedical applications of simulated environments.

  8. Industry careers for the biomedical engineer.

    Science.gov (United States)

    Munzner, Robert F

    2004-01-01

    This year's conference theme is "linkages for innovation in biomedicine." Biomedical engineers, especially those transitioning their career from academic study into medical device industry, will play a critical role in converting the fruits of scientific research into the reality of modern medical devices. This special session is organized to help biomedical engineers to achieve their career goals more effectively. Participants will have opportunities to hear from and interact with leading industrial experts on many issues. These may include but not limited to 1) career paths for biomedical engineers (industrial, academic, or federal; technical vs. managerial track; small start-up or large established companies); 2) unique design challenges and regulatory requirements in medical device development; 3) aspects of a successful biomedical engineering job candidate (such as resume, interview, follow-up). Suggestions for other topics are welcome and should be directed to xkong@ieee.org The distinguished panelists include: Xuan Kong, Ph.D., VP of Research, NEUROMetrix Inc, Waltham, MA Robert F. Munzner, Ph.D., Medical Device Consultant, Doctor Device, Herndon, VA Glen McLaughlin, Ph.D., VP of Engineering and CTO, Zonare Medical System Inc., Mountain View, CA Grace Bartoo, Ph.D., RAC, General Manager, Decus Biomedical LLC San Carlos, CA.

  9. Conception of Pharmacological Knowledge and Needs Amongst Nigerian Medical Students at Lagos State University College of Medicine: Implication for Future Biomedical Science in Africa.

    Science.gov (United States)

    Agaga, Luther Agbonyegbeni; John, Theresa Adebola

    2016-01-01

    In Nigeria, medical students are trained in more didactic environments than their counterparts in researchintensive academic medical centers. Their conception of pharmacology was thus sought. Students who are taking/have takenthe medical pharmacology course completed an 18-question survey within 10min by marking one/more choices fromalternatives. Instructions were: "Dear Participant, Please treat as confidential, give your true view, avoid influences, avoidcrosstalk, return survey promptly." Out of 301 students, 188 (62.46%) participated. Simple statistics showed: 61.3%respondents associated pharmacology with medicine, 24.9% with science, 16.8 % with industry, and 11.1% with government;32.8% want to know clinical pharmacology, 7.1% basic pharmacology, 6.7% pharmacotherapy, and 34.2% want a blend ofall three; 57.8% want to know clinical uses of drugs, 44.8% mechanisms of action, 44.4% side effects, and 31.1% differentdrugs in a group; 45.8% prefer to study lecturers' notes, 26.7% textbooks, 9.8% the Internet, and 2.7% journals; 46.7% usestandard textbooks, 11.5% revision texts, 2.66% advanced texts, and 8.4% no textbook; 40.4% study pharmacology to beable to treat patients, 39.1% to complete the requirements for MBBS degree, 8.9% to know this interesting subject, and 3.1%to make money. Respondents preferring aspects of pharmacology were: 42.7, 16, 16, and 10 (%) respectively for mechanismsof action, pharmacokinetics, side effects, and drug lists. Medical students' conception and need for pharmacology werebased on MBBS degree requirements; they lacked knowledge/interest in pharmacology as a science and may not be thepotential trusts for Africa's future pharmacology.

  10. Conception of Pharmacological Knowledge and Needs Amongst Nigerian Medical Students at Lagos State University College of Medicine: Implication for Future Biomedical Science in Africa.

    Science.gov (United States)

    Agaga, Luther Agbonyegbeni; John, Theresa Adebola

    2016-01-01

    In Nigeria, medical students are trained in more didactic environments than their counterparts in researchintensive academic medical centers. Their conception of pharmacology was thus sought. Students who are taking/have takenthe medical pharmacology course completed an 18-question survey within 10min by marking one/more choices fromalternatives. Instructions were: "Dear Participant, Please treat as confidential, give your true view, avoid influences, avoidcrosstalk, return survey promptly." Out of 301 students, 188 (62.46%) participated. Simple statistics showed: 61.3%respondents associated pharmacology with medicine, 24.9% with science, 16.8 % with industry, and 11.1% with government;32.8% want to know clinical pharmacology, 7.1% basic pharmacology, 6.7% pharmacotherapy, and 34.2% want a blend ofall three; 57.8% want to know clinical uses of drugs, 44.8% mechanisms of action, 44.4% side effects, and 31.1% differentdrugs in a group; 45.8% prefer to study lecturers' notes, 26.7% textbooks, 9.8% the Internet, and 2.7% journals; 46.7% usestandard textbooks, 11.5% revision texts, 2.66% advanced texts, and 8.4% no textbook; 40.4% study pharmacology to beable to treat patients, 39.1% to complete the requirements for MBBS degree, 8.9% to know this interesting subject, and 3.1%to make money. Respondents preferring aspects of pharmacology were: 42.7, 16, 16, and 10 (%) respectively for mechanismsof action, pharmacokinetics, side effects, and drug lists. Medical students' conception and need for pharmacology werebased on MBBS degree requirements; they lacked knowledge/interest in pharmacology as a science and may not be thepotential trusts for Africa's future pharmacology. PMID:27574769

  11. The Need for Veterinarians in Biomedical Research

    OpenAIRE

    Rosol, Thomas J.; Moore, Rustin M.; Saville, William J. A.; Oglesbee, Michael J.; Rush, Laura J; Mathes, Lawrence E.; Lairmore, Michael D

    2009-01-01

    The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedica...

  12. Integrated nanobiosensor technology for biomedical application

    OpenAIRE

    Choi, Chulhee

    2012-01-01

    Chulhee Choi1,21Department of Bio and Brain Engineering, 2Graduate School of Medical Science and Engineering, 3KI for the BioCentury 4Optical Bioimaging Center, KAIST, Daejeon, Republic of KoreaAbstract: Advances in nanotechnology have led to the development of nanoscale biosensors that have exquisite sensitivity and versatility. The biomedical application of nanobiosensors is wide; moreover, the future impact of nanobiosensor systems for point-of-care diagnostics will be unmatched. The ultim...

  13. Facilitating biomedical researchers' interrogation of electronic health record data: Ideas from outside of biomedical informatics.

    Science.gov (United States)

    Hruby, Gregory W; Matsoukas, Konstantina; Cimino, James J; Weng, Chunhua

    2016-04-01

    Electronic health records (EHR) are a vital data resource for research uses, including cohort identification, phenotyping, pharmacovigilance, and public health surveillance. To realize the promise of EHR data for accelerating clinical research, it is imperative to enable efficient and autonomous EHR data interrogation by end users such as biomedical researchers. This paper surveys state-of-art approaches and key methodological considerations to this purpose. We adapted a previously published conceptual framework for interactive information retrieval, which defines three entities: user, channel, and source, by elaborating on channels for query formulation in the context of facilitating end users to interrogate EHR data. We show the current progress in biomedical informatics mainly lies in support for query execution and information modeling, primarily due to emphases on infrastructure development for data integration and data access via self-service query tools, but has neglected user support needed during iteratively query formulation processes, which can be costly and error-prone. In contrast, the information science literature has offered elaborate theories and methods for user modeling and query formulation support. The two bodies of literature are complementary, implying opportunities for cross-disciplinary idea exchange. On this basis, we outline the directions for future informatics research to improve our understanding of user needs and requirements for facilitating autonomous interrogation of EHR data by biomedical researchers. We suggest that cross-disciplinary translational research between biomedical informatics and information science can benefit our research in facilitating efficient data access in life sciences.

  14. Biomedical Engineering in Modern Society

    Science.gov (United States)

    Attinger, E. O.

    1971-01-01

    Considers definition of biomedical engineering (BME) and how biomedical engineers should be trained. State of the art descriptions of BME and BME education are followed by a brief look at the future of BME. (TS)

  15. Inorganic nanolayers: structure, preparation, and biomedical applications

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging. PMID:26366081

  16. Biomedical applications of photochemistry

    OpenAIRE

    Chan, BP

    2010-01-01

    Photochemistry is the study of photochemical reactions between light and molecules. Recently, there have been increasing interests in using photochemical reactions in the fields of biomaterials and tissue engineering. This work revisits the components and mechanisms of photochemistry and reviews biomedical applications of photochemistry in various disciplines, including oncology, molecular biology, and biosurgery, with particular emphasis on tissue engineering. Finally, potential toxicities a...

  17. Anatomy for Biomedical Engineers

    Science.gov (United States)

    Carmichael, Stephen W.; Robb, Richard A.

    2008-01-01

    There is a perceived need for anatomy instruction for graduate students enrolled in a biomedical engineering program. This appeared especially important for students interested in and using medical images. These students typically did not have a strong background in biology. The authors arranged for students to dissect regions of the body that…

  18. Implantable CMOS Biomedical Devices

    Directory of Open Access Journals (Sweden)

    Toshihiko Noda

    2009-11-01

    Full Text Available The results of recent research on our implantable CMOS biomedical devices are reviewed. Topics include retinal prosthesis devices and deep-brain implantation devices for small animals. Fundamental device structures and characteristics as well as in vivo experiments are presented.

  19. Biomedical applications in EELA.

    Science.gov (United States)

    Cardenas, Miguel; Hernández, Vicente; Mayo, Rafael; Blanquer, Ignacio; Perez-Griffo, Javier; Isea, Raul; Nuñez, Luis; Mora, Henry Ricardo; Fernández, Manuel

    2006-01-01

    The current demand for Grid Infrastructures to bring collabarating groups between Latina America and Europe has created the EELA proyect. This e-infrastructure is used by Biomedical groups in Latina America and Europe for the studies of ocnological analisis, neglected diseases, sequence alignments and computation plygonetics. PMID:16823158

  20. Biomedical signals, imaging, and informatics

    CERN Document Server

    Bronzino, Joseph D

    2014-01-01

    Known as the bible of biomedical engineering, The Biomedical Engineering Handbook, Fourth Edition, sets the standard against which all other references of this nature are measured. As such, it has served as a major resource for both skilled professionals and novices to biomedical engineering.Biomedical Signals, Imaging, and Informatics, the third volume of the handbook, presents material from respected scientists with diverse backgrounds in biosignal processing, medical imaging, infrared imaging, and medical informatics.More than three dozen specific topics are examined, including biomedical s

  1. Investigating the teaching methodology of English for science and technology in the major of biomedical engineering%生物医学工程专业《科技英语》教学方法探讨

    Institute of Scientific and Technical Information of China (English)

    景达; 罗二平; 谢康宁; 申广浩; 汤池; 吴小明; 郭伟; 刘娟; 佟世超

    2015-01-01

    科技英语是科技工作者进行学术交流的语言媒介,其表述具有简明、准确、客观和易懂的特点。《科技英语》课程是学生继大学公共英语学习之后,夯实英语基础知识、提高专业英语水平和应用技能的一个重要环节。实践中针对从事生物医学工程专业开展的科技英语教学,结合了本专业”医工结合“的学科特点,总结出一套以兴趣驱动、输出牵引、由点及面为主体的交互式教学思路。%English for science and technology (EST) is the language medium for academic communication among scientists and technologists. The expression of EST is characterized by concise-ness, correctness, objectiveness and understandability. The EST course is regarded as a key process for the undergraduate students to reinforce the English foundation and improve the capacity of English application after their College English study. In this paper, the authors introduced an interest-motivated, output-dominated, snowballing and interactive teaching strategy, according to the accumulated experi-ence of EST teaching in the past few years coupled with the unique medicine-engineering combined characteristics for the major of biomedical engineering.

  2. Biomedical engineering: A platform for research and innovation in ultrasound

    Science.gov (United States)

    Holland, Christy K.

    2001-05-01

    An undergraduate or graduate degree in biomedical engineering prepares students to solve problems at the interface between engineering and medicine. Biomedical engineering encompasses evolving areas such as advanced medical imaging for diagnosis and treatment of disease, tissue engineering for designing and manufacturing biological implants for damaged or diseased tissues and organs, and bioinformatics for determining which genes play a major role in health and disease. Biomedical engineering academic programs produce graduates with the ability to pursue successful careers in the biomedical device industry or to obtain advanced degrees leading to careers in biomedical engineering research, medicine, law or business. Biomedical engineering majors take courses in biology, anatomy, physics, chemistry, engineering, mathematics and medical product design and value life-long learning. Students learn to work effectively in interdisciplinary teams comprised of individuals with diverse social, cultural and technical backgrounds. Biomedical engineering is becoming increasingly important in imaging and image-guided research. Some examples of innovative ultrasound technology under development are ultrasound devices to accelerate the dissolution of blood clots, advanced surgical instruments with ultrasound guidance and ultrasound contrast agents for targeted drug delivery. Biomedical engineering is a great career choice for technically minded individuals who endeavor to work on applied problems that are medically relevant.

  3. Optical Polarizationin Biomedical Applications

    CERN Document Server

    Tuchin, Valery V; Zimnyakov, Dmitry A

    2006-01-01

    Optical Polarization in Biomedical Applications introduces key developments in optical polarization methods for quantitative studies of tissues, while presenting the theory of polarization transfer in a random medium as a basis for the quantitative description of polarized light interaction with tissues. This theory uses the modified transfer equation for Stokes parameters and predicts the polarization structure of multiple scattered optical fields. The backscattering polarization matrices (Jones matrix and Mueller matrix) important for noninvasive medical diagnostic are introduced. The text also describes a number of diagnostic techniques such as CW polarization imaging and spectroscopy, polarization microscopy and cytometry. As a new tool for medical diagnosis, optical coherent polarization tomography is analyzed. The monograph also covers a range of biomedical applications, among them cataract and glaucoma diagnostics, glucose sensing, and the detection of bacteria.

  4. Toxicology of Biomedical Polymers

    Directory of Open Access Journals (Sweden)

    P. V. Vedanarayanan

    1987-04-01

    Full Text Available This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasised since in our country, at present, there are no regulations covering the manufacturing and marketing of medical devices. Finally the question of the general and subtle long term systemic toxicity of biomedical polymers have been brought to attention with the suggestion that this question needs to be resolved permanently by appropriate studies.

  5. Keep Abreast of Important Scientific Developments in China With the Leading Journal From China Science in China

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    Science in China (in English) with a history of 45 years is a comprehensive academicjournal of natural sciences sponsored by the Chinese Academy of Sciences. It is themost widely read scientific research journal in China and is i’ecognized as the mostauthoritative source of reference for current important development in scientific re-search in China. Papers carried in the journal are vigorously refereed by the mosthighly-esteemed scientists in China today "ensuring that only the papers of the higheststandard and quality are published.

  6. Multilingual Biomedical Dictionary

    OpenAIRE

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical inform...

  7. Multilingual biomedical dictionary.

    Science.gov (United States)

    Daumke, Philipp; Markó, Kornél; Poprat, Michael; Schulz, Stefan

    2005-01-01

    We present a unique technique to create a multilingual biomedical dictionary, based on a methodology called Morpho-Semantic indexing. Our approach closes a gap caused by the absence of free available multilingual medical dictionaries and the lack of accuracy of non-medical electronic translation tools. We first explain the underlying technology followed by a description of the dictionary interface, which makes use of a multilingual subword thesaurus and of statistical information from a domain-specific, multilingual corpus.

  8. Toxicology of Biomedical Polymers

    OpenAIRE

    P. V. Vedanarayanan; A. C. Fernandez

    1987-01-01

    This paper deals with the various types of polymers, used in the fabrication of medical devices, their diversity of applications and toxic hazards which may arise out of their application. The potential toxicity of monomers and the various additives used in the manufacture of biomedical polymers have been discussed along with hazards which may arise out of processing of devices such as sterilization. The importance of quality control and stringent toxicity evaluation methods have been emphasi...

  9. Implantable biomedical microsystems design principles and applications

    CERN Document Server

    Bhunia, Swarup; Sawan, Mohamad

    2015-01-01

    Research and innovation in areas such as circuits, microsystems, packaging, biocompatibility, miniaturization, power supplies, remote control, reliability, and lifespan are leading to a rapid increase in the range of devices and corresponding applications in the field of wearable and implantable biomedical microsystems, which are used for monitoring, diagnosing, and controlling the health conditions of the human body. This book provides comprehensive coverage of the fundamental design principles and validation for implantable microsystems, as well as several major application areas. Each co

  10. Malaysian Journal of Medical Sciences Striving towards Visibility

    OpenAIRE

    GHAZLI, Nur Farahin; Abdullah, Jafri Malin

    2013-01-01

    The Malaysian Journal of Medical Sciences has in its 25 years “Silver Jubilee” achieved another milestone of being visible to the biomedical community when it was accepted in PubMed. The journal aim to increase its readership so as to increase impact in the biomedical field amongst its Asian readers despite having a high rejection rate. This was done to maintain quality of the manuscripts published over the years. PubMed listing should enable more manuscripts to be cited as its the leading bi...

  11. Acquisition and manipulation of computed tomography images of the maxillofacial region for biomedical prototyping

    Energy Technology Data Exchange (ETDEWEB)

    Meurer, Maria Ines [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Pathology]. E-mail: emaninha@gmail.com; Meurer, Eduardo [Universidade do Sul de Santa Catarina (UNISUL), Tubarao, SC (Brazil); Silva, Jorge Vicente Lopes da; Santa Barbara, Ailton [Centro de Pesquisa Renato Archer (CenPRA), Campinas, SP (Brazil); Nobre, Luiz Felipe [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Clinical Practice; Oliveira, Marilia Gerhardt de [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Dept. of Surgery; Silva, Daniela Nascimento [Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, RS (Brazil). Faculdade de Odontologia. Dept. of Surgery

    2008-01-15

    Biomedical prototyping has resulted from a merger of rapid prototyping and imaging diagnosis technologies. However, this process is complex, considering the necessity of interaction between biomedical sciences and engineering. Good results are highly dependent on the acquisition of computed tomography images and their subsequent manipulation by means of specific software. The present study describes the experience of a multidisciplinary group of researchers in the acquisition and manipulation of computed tomography images of the maxillofacial region aiming at biomedical prototyping for surgical purposes. (author)

  12. Titanium nanostructures for biomedical applications

    Science.gov (United States)

    Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Schmuki, P.; Iglič, A.; Mozetič, M.

    2015-02-01

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties.

  13. Titanium nanostructures for biomedical applications

    International Nuclear Information System (INIS)

    Titanium and titanium alloys exhibit a unique combination of strength and biocompatibility, which enables their use in medical applications and accounts for their extensive use as implant materials in the last 50 years. Currently, a large amount of research is being carried out in order to determine the optimal surface topography for use in bioapplications, and thus the emphasis is on nanotechnology for biomedical applications. It was recently shown that titanium implants with rough surface topography and free energy increase osteoblast adhesion, maturation and subsequent bone formation. Furthermore, the adhesion of different cell lines to the surface of titanium implants is influenced by the surface characteristics of titanium; namely topography, charge distribution and chemistry. The present review article focuses on the specific nanotopography of titanium, i.e. titanium dioxide (TiO2) nanotubes, using a simple electrochemical anodisation method of the metallic substrate and other processes such as the hydrothermal or sol-gel template. One key advantage of using TiO2 nanotubes in cell interactions is based on the fact that TiO2 nanotube morphology is correlated with cell adhesion, spreading, growth and differentiation of mesenchymal stem cells, which were shown to be maximally induced on smaller diameter nanotubes (15 nm), but hindered on larger diameter (100 nm) tubes, leading to cell death and apoptosis. Research has supported the significance of nanotopography (TiO2 nanotube diameter) in cell adhesion and cell growth, and suggests that the mechanics of focal adhesion formation are similar among different cell types. As such, the present review will focus on perhaps the most spectacular and surprising one-dimensional structures and their unique biomedical applications for increased osseointegration, protein interaction and antibacterial properties. (topical review)

  14. 75 FR 31433 - Science Advisory Board Staff Office; Notification of a Public Meeting of the SAB Lead Review Panel

    Science.gov (United States)

    2010-06-03

    ... the development of lead-safe work practice standards for renovations of public and commercial... used to support the development of lead-safe work practice standards for renovations of public and... this notice, may be found on the EPA Web site at http://www.epa.gov/sab . SUPPLEMENTARY...

  15. Handbook of photonics for biomedical science

    CERN Document Server

    Tuchin, Valery V

    2010-01-01

    Many of the chapters are written by leaders in their field and thus provide both good foundational descriptions as well as up-to-date accounts of the state of the field. … the book does well throughout: providing a better than skin-deep introduction to a subject, focusing on the core issues within a field and providing references to enable more detailed investigation. … It brings together much of the most important literature into an easily accessible form. Written by leaders in their respective fields, this book would be a valuable addition to the collection of researchers, engineers and c

  16. In silico discoveries for biomedical sciences

    NARCIS (Netherlands)

    Haagen, Herman van

    2011-01-01

    Text-mining is a challenging field of research initially meant for reading large text collections with a computer. Text-mining is useful in summarizing text, searching for the informative documents, and most important to do knowledge discovery. Knowledge discovery is the main subject of this thesis.

  17. Vibrational spectroscopy in biomedical science: bone

    Science.gov (United States)

    Gamsjäger, Sonja; Zoehrer, R.; Roschger, P.; Fratzl, P.; Klaushofer, K.; Mendelsohn, R.; Paschalis, E. P.

    2009-02-01

    Fourier transform infrared imaging (FTIR) and Raman Microspectroscopy are powerful tools for characterizing the distribution of different chemical moieties in heterogeneous materials. FTIR and Raman measurements have been adapted to assess the maturity of the mineral and the quality of the organic component (collagen and non-collagenous proteins) of the mineralized tissue in bone. Unique to the FTIRI analysis is the capability to provide the spatial distribution of two of the major collagen cross-links (pyridinoline, and dehydro-dihydroxylysinonorleucine) and through the study of normal and diseased bone, relate them to bone strength. These FTIR parameters have been validated based on analysis of model compounds. It is widely accepted that bone strength is determined by bone mass and bone quality. The latter is a multifactorial term encompassing the material and structural properties of bone, and one important aspect of the bone material properties is the organic matrix. The bone material properties can be defined by parameters of mineral and collagen, as determined by FTIR and Raman analysis. Considerably less attention has been directed at collagen, although there are several publications in the literature reporting altered collagen properties associated with fragile bone, in both animals and humans. Since bone is a heterogeneous tissue due to the remodeling process, microscopic areas may be carefully selected based on quantitative Backscattered Electron Imaging or histological staining, thus ensuring comparison of areas with similar metabolic activity and mineral content. In conclusion, FTIRI and Raman vibrational spectroscopy are proving to be powerful tools in bone-related medical research.

  18. Nanotechnologies for biomedical science and translational medicine.

    Science.gov (United States)

    Heath, James R

    2015-11-24

    In 2000 the United States launched the National Nanotechnology Initiative and, along with it, a well-defined set of goals for nanomedicine. This Perspective looks back at the progress made toward those goals, within the context of the changing landscape in biomedicine that has occurred over the past 15 years, and considers advances that are likely to occur during the next decade. In particular, nanotechnologies for health-related genomics and single-cell biology, inorganic and organic nanoparticles for biomedicine, and wearable nanotechnologies for wellness monitoring are briefly covered.

  19. The Ontology for Biomedical Investigations

    OpenAIRE

    Anita Bandrowski; Ryan Brinkman; Mathias Brochhausen; Brush, Matthew H.; Bill Bug; Chibucos, Marcus C.; Kevin Clancy; Mélanie Courtot; Dirk Derom; Michel Dumontier; Liju Fan; Jennifer Fostel; Gilberto Fragoso; Frank Gibson; Alejandra Gonzalez-Beltran

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using i...

  20. Generating Explanations for Biomedical Queries

    OpenAIRE

    Erdem, Esra; Oztok, Umut

    2013-01-01

    We introduce novel mathematical models and algorithms to generate (shortest or k different) explanations for biomedical queries, using answer set programming. We implement these algorithms and integrate them in BIOQUERY-ASP. We illustrate the usefulness of these methods with some complex biomedical queries related to drug discovery, over the biomedical knowledge resources PHARMGKB, DRUGBANK, BIOGRID, CTD, SIDER, DISEASE ONTOLOGY and ORPHADATA. To appear in Theory and Practice of Logic Program...

  1. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora, Oscar; Bisbal, Jesús

    2013-01-01

    In this paper, we present BIMS (Biomedical Information Management System). BIMS is a software architecture designed to provide a flexible computational framework to manage the information needs of a wide range of biomedical research projects. The main goal is to facilitate the clinicians' job in data entry, and researcher's tasks in data management, in high data quality biomedical research projects. The BIMS architecture has been designed following the two-level modeling paradigm, a promising...

  2. Principles of Biomedical Engineering

    CERN Document Server

    Madihally, Sundararajan V

    2010-01-01

    Describing the role of engineering in medicine today, this comprehensive volume covers a wide range of the most important topics in this burgeoning field. Supported with over 145 illustrations, the book discusses bioelectrical systems, mechanical analysis of biological tissues and organs, biomaterial selection, compartmental modeling, and biomedical instrumentation. Moreover, you find a thorough treatment of the concept of using living cells in various therapeutics and diagnostics.Structured as a complete text for students with some engineering background, the book also makes a valuable refere

  3. Statistics in biomedical research

    Directory of Open Access Journals (Sweden)

    González-Manteiga, Wenceslao

    2007-06-01

    Full Text Available The discipline of biostatistics is nowadays a fundamental scientific component of biomedical, public health and health services research. Traditional and emerging areas of application include clinical trials research, observational studies, physiology, imaging, and genomics. The present article reviews the current situation of biostatistics, considering the statistical methods traditionally used in biomedical research, as well as the ongoing development of new methods in response to the new problems arising in medicine. Clearly, the successful application of statistics in biomedical research requires appropriate training of biostatisticians. This training should aim to give due consideration to emerging new areas of statistics, while at the same time retaining full coverage of the fundamentals of statistical theory and methodology. In addition, it is important that students of biostatistics receive formal training in relevant biomedical disciplines, such as epidemiology, clinical trials, molecular biology, genetics, and neuroscience.La Bioestadística es hoy en día una componente científica fundamental de la investigación en Biomedicina, salud pública y servicios de salud. Las áreas tradicionales y emergentes de aplicación incluyen ensayos clínicos, estudios observacionales, fisología, imágenes, y genómica. Este artículo repasa la situación actual de la Bioestadística, considerando los métodos estadísticos usados tradicionalmente en investigación biomédica, así como los recientes desarrollos de nuevos métodos, para dar respuesta a los nuevos problemas que surgen en Medicina. Obviamente, la aplicación fructífera de la estadística en investigación biomédica exige una formación adecuada de los bioestadísticos, formación que debería tener en cuenta las áreas emergentes en estadística, cubriendo al mismo tiempo los fundamentos de la teoría estadística y su metodología. Es importante, además, que los estudiantes de

  4. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1974-01-01

    Advances in Biomedical Engineering, Volume 4, is a collection of papers that deals with gas chromatography, mass spectroscopy and the analysis of minute samples, as well as the role of the government in regulating the production, usage, safety, and efficacy of medical devices. One paper reviews the use of mass spectrometry and computer technology in relation to gas-phase analytical methods based on gas chromatograph-mass spectrometer instruments and gas chromatograph-mass spectrometer-computer analytical systems. Many health practitioners, government and private health agencies, the legal prof

  5. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  6. Advances in biomedical engineering

    CERN Document Server

    Brown, J H U

    1973-01-01

    Advances in Biomedical Engineering, Volume 3, is a collection of papers that discusses circulatory system models, linguistics in computer usage, and clinical applications on patient monitoring. One paper describes the use of comparative models of overall circulatory mechanics that include models of the cardiac pump, of the vascular systems, and of the overall systems behavior. Another paper describes a model in processing medical language data that employs an explicit semantic structure, becoming the basis for the computer-based, artificial intelligence of the system. One paper cites studies b

  7. Biomedical signals and systems

    CERN Document Server

    Tranquillo, Joseph V

    2013-01-01

    Biomedical Signals and Systems is meant to accompany a one-semester undergraduate signals and systems course. It may also serve as a quick-start for graduate students or faculty interested in how signals and systems techniques can be applied to living systems. The biological nature of the examples allows for systems thinking to be applied to electrical, mechanical, fluid, chemical, thermal and even optical systems. Each chapter focuses on a topic from classic signals and systems theory: System block diagrams, mathematical models, transforms, stability, feedback, system response, control, time

  8. World-leading science with SPIRou - the nIR spectropolarimeter / high-precision velocimeter for CFHT

    CERN Document Server

    Delfosse, X; Kouach, D; Hébrard, G; Doyon, R; Artigau, E; Bouchy, F; Boisse, I; Brun, A S; Hennebelle, P; Widemann, T; Bouvier, J; Bonfils, X; Morin, J; Moutou, C; Pepe, F; Udry, S; Nascimento, J -D do; Alencar, S H P; Castilho, B V; Martioli, E; Wang, S Y; Figueira, P; Santos, N C

    2013-01-01

    SPIRou is a near-infrared (nIR) spectropolarimeter / velocimeter proposed as a new-generation instrument for CFHT. SPIRou aims in particular at becoming world-leader on two forefront science topics, (i) the quest for habitable Earth-like planets around very- low-mass stars, and (ii) the study of low-mass star and planet formation in the presence of magnetic fields. In addition to these two main goals, SPIRou will be able to tackle many key programs, from weather patterns on brown dwarf to solar-system planet atmospheres, to dynamo processes in fully-convective bodies and planet habitability. The science programs that SPIRou proposes to tackle are forefront (identified as first priorities by most research agencies worldwide), ambitious (competitive and complementary with science programs carried out on much larger facilities, such as ALMA and JWST) and timely (ideally phased with complementary space missions like TESS and CHEOPS). SPIRou is designed to carry out its science mission with maximum efficiency and ...

  9. Classroom Use of Narrative and Documentary Film Leads to an Enhanced Understanding of Cultural Diversity and Ethics in Science

    Science.gov (United States)

    González, Edward L. F.; Lewis, C. Thomas; Slayback-Barry, Denise; Yost, Robert W.

    2016-01-01

    For a first-year seminar, Windows on Science, the authors developed a cooperative learning activity around film designed to meet two of the campus-wide Principles of Undergraduate Learning. The teaching method utilizes the power of storytelling by screening narrative and documentary films. In the process, the methodology helps students to realize…

  10. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications.

  11. Integrating science and business models of sustainability for environmentally-challenging industries such as secondary lead smelters: a systematic review and analysis of findings.

    Science.gov (United States)

    Genaidy, A M; Sequeira, R; Tolaymat, T; Kohler, J; Wallace, S; Rinder, M

    2010-09-01

    Secondary lead smelters (SLS) represent an environmentally-challenging industry as they deal with toxic substances posing potential threats to both human and environmental health, consequently, they operate under strict government regulations. Such challenges have resulted in the significant reduction of SLS plants in the last three decades. In addition, the domestic recycling of lead has been on a steep decline in the past 10 years as the amount of lead recovered has remained virtually unchanged while consumption has increased. Therefore, one may wonder whether sustainable development can be achieved among SLS. The primary objective of this study was to determine whether a roadmap for sustainable development can be established for SLS. The following aims were established in support of the study objective: (1) to conduct a systematic review and an analysis of models of sustainable systems with a particular emphasis on SLS; (2) to document the challenges for the U.S. secondary lead smelting industry; and (3) to explore practices and concepts which act as vehicles for SLS on the road to sustainable development. An evidence-based methodology was adopted to achieve the study objective. A comprehensive electronic search was conducted to implement the aforementioned specific aims. Inclusion criteria were established to filter out irrelevant scientific papers and reports. The relevant articles were closely scrutinized and appraised to extract the required information and data for the possible development of a sustainable roadmap. The search process yielded a number of research articles which were utilized in the systematic review. Two types of models emerged: management/business and science/mathematical models. Although the management/business models explored actions to achieve sustainable growth in the industrial enterprise, science/mathematical models attempted to explain the sustainable behaviors and properties aiming at predominantly ecosystem management. As such

  12. Evaluating a Chat Reference Service at the University of South Alabama's Baugh Biomedical Library

    Science.gov (United States)

    Clanton, Clista C.; Staggs, Geneva B.; Williams, Thomas L.

    2006-01-01

    The University of South Alabama's Baugh Biomedical Library recently initiated a chat reference service targeted at distance education students in the biomedical sciences. After one year of service, the library conducted an evaluation of the chat reference to assess the success of this mode of reference service. Both traditional reference and…

  13. Using Diversity among Biomedical Scientists as a Teaching Tool: A Positive Effect of Role Modeling on Minority Students.

    Science.gov (United States)

    Porta, Angela R.

    2002-01-01

    Points out the fact that women and minority groups are underrepresented in the biomedical sciences. Investigates the effects of exposure to scientists from different careers with various life styles on students' attitudes toward science. Uses a questionnaire designed to evaluate student attitudes towards biomedical scientists. (YDS)

  14. Environmental practices for biomedical research facilities.

    Science.gov (United States)

    Medlin, E L; Grupenhoff, J T

    2000-12-01

    As a result of the Leadership Conference on Biomedical Research and the Environment, the Facilities Committee focused its work on the development of best environmental practices at biomedical research facilities at the university and independent research facility level as well as consideration of potential involvement of for-profit companies and government agencies. The designation "facilities" includes all related buildings and grounds, "green auditing" of buildings and programs, purchasing of furnishings and sources, energy efficiency, and engineering services (lighting, heating, air conditioning), among other activities. The committee made a number of recommendations, including development of a national council for environmental stewardship in biomedical research, development of a system of green auditing of such research facilities, and creation of programs for sustainable building and use. In addition, the committee recommended extension of education and training programs for environmental stewardship, in cooperation with facilities managers, for all research administrators and researchers. These programs would focus especially on graduate fellows and other students, as well as on science labs at levels K--12.

  15. Biomedical Technology Assessment The 3Q Method

    CERN Document Server

    Weinfurt, Phillip

    2010-01-01

    Evaluating biomedical technology poses a significant challenge in light of the complexity and rate of introduction in today's healthcare delivery system. Successful evaluation requires an integration of clinical medicine, science, finance, and market analysis. Little guidance, however, exists for those who must conduct comprehensive technology evaluations. The 3Q Method meets these present day needs. The 3Q Method is organized around 3 key questions dealing with 1) clinical and scientific basis, 2) financial fit and 3) strategic and expertise fit. Both healthcare providers (e.g., hospitals) an

  16. Professional Identification for Biomedical Engineers

    Science.gov (United States)

    Long, Francis M.

    1973-01-01

    Discusses four methods of professional identification in biomedical engineering including registration, certification, accreditation, and possible membership qualification of the societies. Indicates that the destiny of the biomedical engineer may be under the control of a new profession, neither the medical nor the engineering. (CC)

  17. The panacea statistical toolbox of a biomedical peer reviewer.

    Science.gov (United States)

    Skaik, Younis

    2015-01-01

    The main role of a peer reviewer is to make judgments on the research articles by asking a number of questions to evaluate the quality of the research article. Statistics is a major part of any biomedical research article, and most reviewers gain their experiences in manuscript reviewing by undertaking it but not through an educational process. Therefore, reviewers of the biomedical journals normally do not have enough knowledge and skills to evaluate the validity of statistical methods used in biomedical research articles submitted for consideration. Hence, inappropriate statistical analysis in medical journals can lead to misleading conclusions and incorrect results. In this paper, the most common basic statistical guidelines are described that might be a road map to the biomedical reviewers. It is not meant for statisticians or medical editors who have special interest and expertise in statistical analysis. PMID:26430447

  18. Computational intelligence in biomedical imaging

    CERN Document Server

    2014-01-01

    This book provides a comprehensive overview of the state-of-the-art computational intelligence research and technologies in biomedical images with emphasis on biomedical decision making. Biomedical imaging offers useful information on patients’ medical conditions and clues to causes of their symptoms and diseases. Biomedical images, however, provide a large number of images which physicians must interpret. Therefore, computer aids are demanded and become indispensable in physicians’ decision making. This book discusses major technical advancements and research findings in the field of computational intelligence in biomedical imaging, for example, computational intelligence in computer-aided diagnosis for breast cancer, prostate cancer, and brain disease, in lung function analysis, and in radiation therapy. The book examines technologies and studies that have reached the practical level, and those technologies that are becoming available in clinical practices in hospitals rapidly such as computational inte...

  19. Biomedical Engineering: A Compendium of Research Training Programs.

    Science.gov (United States)

    National Inst. of General Medical Sciences (NIH), Bethesda, MD.

    This document was prepared to provide a comprehensive view of the programs in biomedical engineering in existence in 1969. These programs are supported by the National Institute of General Medical Sciences and are located at 18 universities. This compendium provides information as to the intent and content of these programs from data provided by…

  20. MEMS biomedical implants

    Institute of Scientific and Technical Information of China (English)

    Tai Yuchong

    2012-01-01

    The field of micro-electro-mechanical systems (MEMS) has advanced tremendously for the last 20 years. Most commercially noticeably, the field has successfully advanced from pressure sensors to micro physical sensors, such as accelerometers and gyros, for handheld electronics application. In parallel, MEMS has also advanced into micro total analysis system(TAS) and/or lab-on-a-chip applications. This article would discuss a relatively new but promising future direction towards MEMS biomedical implants. Specifically, Parylene C has been explored to be used as a good MEMS implant material and will be discussed in detail. Demonstrated implant devices, such as retinal and spinal cord implants, are presented in this article.

  1. Checklists in biomedical publications

    Directory of Open Access Journals (Sweden)

    Pardal-Refoyo JL

    2013-12-01

    Full Text Available Introduction and objectives: the authors, reviewers, editors and readers must have specific tools that help them in the process of drafting, review, or reading the articles. Objective: to offer a summary of the major checklists for different types of biomedical research articles. Material and method: review literature and resources of the EQUATOR Network and adaptations in Spanish published by Medicina Clínica and Evidencias en Pediatría journals. Results: are the checklists elaborated by various working groups. (CONSORT and TREND, experimental studies for observational studies (STROBE, accuracy (STARD diagnostic studies, systematic reviews and meta-analyses (PRISMA and for studies to improve the quality (SQUIRE. Conclusions: the use of checklists help to improve the quality of articles and help to authors, reviewers, to the editor and readers in the development and understanding of the content.

  2. What Do I Want to Be with My PhD? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science PhD Graduates

    Science.gov (United States)

    Gibbs, Kenneth D., Jr.; Griffin, Kimberly A.

    2013-01-01

    Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs…

  3. Biomedical applications of nisin.

    Science.gov (United States)

    Shin, J M; Gwak, J W; Kamarajan, P; Fenno, J C; Rickard, A H; Kapila, Y L

    2016-06-01

    Nisin is a bacteriocin produced by a group of Gram-positive bacteria that belongs to Lactococcus and Streptococcus species. Nisin is classified as a Type A (I) lantibiotic that is synthesized from mRNA and the translated peptide contains several unusual amino acids due to post-translational modifications. Over the past few decades, nisin has been used widely as a food biopreservative. Since then, many natural and genetically modified variants of nisin have been identified and studied for their unique antimicrobial properties. Nisin is FDA approved and generally regarded as a safe peptide with recognized potential for clinical use. Over the past two decades the application of nisin has been extended to biomedical fields. Studies have reported that nisin can prevent the growth of drug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus, Streptococcus pneumoniae, Enterococci and Clostridium difficile. Nisin has now been shown to have antimicrobial activity against both Gram-positive and Gram-negative disease-associated pathogens. Nisin has been reported to have anti-biofilm properties and can work synergistically in combination with conventional therapeutic drugs. In addition, like host-defence peptides, nisin may activate the adaptive immune response and have an immunomodulatory role. Increasing evidence indicates that nisin can influence the growth of tumours and exhibit selective cytotoxicity towards cancer cells. Collectively, the application of nisin has advanced beyond its role as a food biopreservative. Thus, this review will describe and compare studies on nisin and provide insight into its future biomedical applications. PMID:26678028

  4. Biomedical applications of functionalized fullerene-based nanomaterials

    OpenAIRE

    Ranga Partha; Conyers, Jodie L.

    2009-01-01

    Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullere...

  5. Student engagement in biomedical courses : studies in technology-enhanced seminar learning

    NARCIS (Netherlands)

    Bouwmeester, R.A.M.

    2016-01-01

    Academic medical and biomedical curricula are designed to educate future academics contributing to new developments in science, clinical practice and society. During undergraduate programs student training is typically focused on acquisition of knowledge and understanding of these interdisciplinary

  6. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Khandaker, Mayeen Uddin; Lee, Young Ouk; Cho, Young Sik

    2008-07-15

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found.

  7. Measurements and Evaluation of Nuclear Reaction Cross Sections Leading to Various Practical Applications in Science and Technology

    International Nuclear Information System (INIS)

    This report contains the measurements and evaluation of production cross sections of some medically and technologically important radionuclides over the energy range 1-40 MeV by using a conventional stacked-foil activation technique combined with high purity germanium (HPGe) -ray spectrometry. The irradiations were done by using the external beam line of the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). The standard cross sections for monitor reactions were taken from IAEA web site. Integral yields for the investigated radionuclides were deduced using the measured cross-sections. Reported data were compared with the available literature data, theoretical calculations by the codes TALYS and ALICE-IPPE, and a good overall agreement among them was found

  8. Preparing Postbaccalaureates for Entry and Success in Biomedical PhD Programs.

    Science.gov (United States)

    Hall, Joshua D; Harrell, Jessica R; Cohen, Kimberley W; Miller, Virginia L; Phelps, Patricia V; Cook, Jeanette G

    2016-01-01

    Certain racial and ethnic groups, individuals with disabilities, and those from low socioeconomic backgrounds remain underrepresented (UR) in the biomedical sciences. This underrepresentation becomes more extreme at each higher education stage. To support UR scholars during the critical transition from baccalaureate to PhD, we established an intensive, 1-yr postbaccalaureate training program. We hypothesized that this intervention would strengthen each participant's competitiveness for leading PhD programs and build a foundation of skills and self-efficacy important for success during and after graduate school. Scholar critical analysis skills, lab technique knowledge, and Graduate Record Examination scores all improved significantly during the program. Scholars reported significant confidence growth in 21 of 24 categories related to success in research careers. In 5 yr, 91% (41/45) of scholars transitioned directly into PhD programs. Importantly, 40% (18/45) of participating postbaccalaureate scholars had previously been declined acceptance into graduate school; however, 17/18 of these scholars directly entered competitive PhD programs following our training program. Alumni reported they were "extremely well" prepared for graduate school, and 95% (39/41) are currently making progress to graduation with a PhD. In conclusion, we report a model for postbaccalaureate training that could be replicated to increase participation and success among UR scholars in the biomedical sciences. PMID:27496358

  9. Overview of the biomedical and environmental programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Separate abstracts were prepared for each of the 6 chapters presented by the six divisions involved in the Biomedical and Environmental Sciences Program at Oak Ridge National Laboratory. The introduction is not covered by an abstract and deals with the environmental, health and safety considerations of energy technology decisions, the major initiatives now being taken by these 6 divisions, and recent major accomplishments in the biomedical and environmental science program

  10. Role of Leading Programs in Doctoral Education: A New Type of Leadership Education in the Sciences at University of Hyogo, Japan

    Directory of Open Access Journals (Sweden)

    Maya Okamoto

    2015-01-01

    Full Text Available Fostering global leaders for the next generation is an important mission of universities. In Japan, Leading Programs in Doctoral Education (LP has been implemented in many graduate schools. The main goal of this program is to foster PhDs with deep specialization and peer leadership who will be able to compete well internationally. The Graduate School of Life Science, University of Hyogo is implementing a LP to foster global leaders using cutting-edge technology. They are also trying to create new evaluation criteria of human resource development with their corporate sponsors. The success of LP depends not only on how many graduates can play leading roles globally, but also how university staff can create a superior new evaluation criteria of human resource development and how much it can be shared with universities and industry. Development of students and graduates with a high level of ability takes time, thus it is important to consider the continuous development of LP.

  11. Nanomaterials and nanofabrication for biomedical applications

    Science.gov (United States)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  12. Investigating emerging biomedical practices: zones of awkward engagement on different scales

    NARCIS (Netherlands)

    M. Kontopodis; J. Niewöhner; S. Beck

    2011-01-01

    This special issue of Science, Technology, & Human Values critically explores a new stage in which the life sciences and biomedical practices have entered. This new stage is marked by postgenomic developments and an increased interest of life sciences in the everyday lives of people outside laborato

  13. Recent progress in biomedical applications of magnetic nanoparticles

    KAUST Repository

    Giouroudi, Ioanna

    2010-06-01

    Magnetic nanoparticles have been proposed for biomedical applications for several years. Various research groups worldwide have focused on improving their synthesis, their characterization techniques and the specific tailoring of their properties. Yet, it is the recent, impressive advances in nanotechnology and biotechnology which caused the breakthrough in their successful application in biomedicine. This paper aims at reviewing some current biomedical applications of magnetic nanoparticles as well as some recent patents in this field. Special emphasis is placed on i) hyperthermia, ii) therapeutics iii) diagnostics. Future prospects are also discussed. © 2010 Bentham Science Publishers Ltd.

  14. What Do I Want to Be with My PhD? The Roles of Personal Values and Structural Dynamics in Shaping the Career Interests of Recent Biomedical Science PhD Graduates

    OpenAIRE

    Gibbs, Kenneth D.; Griffin, Kimberly A.

    2013-01-01

    Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of adviso...

  15. New Directions for Biomedical Engineering

    Science.gov (United States)

    Plonsey, Robert

    1973-01-01

    Discusses the definition of "biomedical engineering" and the development of educational programs in the field. Includes detailed descriptions of the roles of bioengineers, medical engineers, and chemical engineers. (CC)

  16. John Glenn Biomedical Engineering Consortium

    Science.gov (United States)

    Nall, Marsha

    2004-01-01

    The John Glenn Biomedical Engineering Consortium is an inter-institutional research and technology development, beginning with ten projects in FY02 that are aimed at applying GRC expertise in fluid physics and sensor development with local biomedical expertise to mitigate the risks of space flight on the health, safety, and performance of astronauts. It is anticipated that several new technologies will be developed that are applicable to both medical needs in space and on earth.

  17. Modified chitosans for biomedical applications

    OpenAIRE

    Yalınca, Zülal

    2013-01-01

    ABSTRACT: The subject of this thesis is the exploration of the suitability of chitosan and some of its derivatives for some chosen biomedical applications. Chitosan-graft-poly (N-vinyl imidazole), Chitosan-tripolyphosphate and ascorbyl chitosan were synthesized and characterized for specific biomedical applications in line with their chemical functionalities. Chitosan-graft-poly (N-vinyl imidazole), Chi-graft-PNVI, was synthesized by two methods; via an N-protection route and without N-pr...

  18. Biomedical engineer: an international job.

    Science.gov (United States)

    Crolet, Jean-Marie

    2007-01-01

    Biomedical engineer is an international job for several reasons and it means that the knowledge of at least one foreign language is a necessity. A geographical and structural analysis of the biomedical sector concludes to the teaching of a second foreign language. But in spite of the presence of adequate means, it is not possible for us for the moment to set up such a teaching. This paper presents the solution we have chosen in the framework of Erasmus exchanges.

  19. BIMS: Biomedical Information Management System

    OpenAIRE

    Mora Pérez, Oscar

    2009-01-01

    This final year project presents the design principles and prototype implementation of BIMS (Biomedical Information Management System), a flexible software system which provides an infrastructure to manage all information required by biomedical research projects.The BIMS project was initiated with the motivation to solve several limitations in medical data acquisition of some research projects, in which Universitat Pompeu Fabra takes part. These limitations,based on the lack of control mechan...

  20. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  1. Engaging the community through an undergraduate biomedical physics course

    Science.gov (United States)

    Van Ness, G. R.; Widenhorn, Ralf

    2012-12-01

    We report on the development of an undergraduate biomedical physics course at Portland State University, motivated by both student interest and the desire of the university's Physics Department to provide an interdisciplinary intermediate-level physics course. The course was developed through the community engagement of physicians, clinical researchers, and basic science researchers. Class meetings were a combination of regular and guest lectures, hands-on exercises, web-based activities, class discussions, and a student poster information session for patrons at a local science museum. The course inspired students to engage in research projects in biomedical physics that enhance their understanding of science and education as well as benefit the learning of future students. Furthermore, this course offers an opportunity for traditionally underrepresented groups in physics courses, such as women, to gain additional exposure to physics.

  2. Science Coordination in Support of the US Weather Research Program Office of the Lead Scientist (OLS) and for Coordination with the World Weather Research (WMO) Program

    Science.gov (United States)

    Gall, Robert

    2005-01-01

    This document is the final report of the work of the Office of the Lead Scientist (OLS) of the U.S. Weather Research Program (USWRP) and for Coordination of the World Weather Research Program (WWRP). The proposal was for a continuation of the duties and responsibilities described in the proposal of 7 October, 1993 to NSF and NOAA associated with the USWRP Lead Scientist then referred to as the Chief Scientist. The activities of the Office of the Lead Scientist (OLS) ended on January 31, 2005 and this report describes the activities undertaken by the OLS from February 1, 2004 until January 3 1, 2005. The OLS activities were under the cosponsorship of the agencies that are members of the Interagency Working Group (IWG) of the US WRP currently: NOAA, NSF, NASA, and DOD. The scope of the work described includes activities that were necessary to develop, facilitate and implement the research objectives of the USWRP consistent with the overall program goals and specific agency objectives. It included liaison with and promotion of WMO/WWW activities that were consistent with and beneficial to the USWRP programs and objectives. Funds covered several broad categories of activity including meetings convened by the Lead Scientist, OLS travel, partial salary and benefits support, publications, hard-copy dissemination of reports and program announcements and the development and maintenance of the USWRP website. In addition to funding covered by this grant, NCAR program funds provided co-sponsorship of half the salary and benefits resources of the USWRP Lead Scientist (.25 FTE) and the WWRP Chairman/Liaison (.167 FTE). Also covered by the grant were partial salaries for the Science Coordinator for the hurricane portion of the program and partial salary for a THORPEX coordinator.

  3. Program of “Okayama Biomedical Engineering Professional” for Local Renovation

    Science.gov (United States)

    Hayashi, Kozaburo

    Okayama University of Science, Department of Biomedical Engineering, is promoting a program of “Okayama Biomedical Engineering Professional” for the development and renovation of biomedical industries in Okayama area. This is one of the programs of the national project on “Formation of the Center for the Production of Capable Persons for Local Renovation” , sponsored by the Ministry of Education, Culture, Sports, Science and Technology, Japan, and performed by the Japan Science and Technology Agency. The purpose of the program is to develop and educate specialists for the research, development, production, and marketing of biomedical devices and equipment in local industries in Okayama area. A half a year training for approximately 5 students from industries consists of 12 days of lectures and experiments, which is repeatedly provided for 5 years (approximately 45 students in total) .

  4. RPCs in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Belli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); De Vecchi, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Giroletti, E. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Guida, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Musitelli, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Nardo, R. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Necchi, M.M. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Pagano, D. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Ratti, S.P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Sani, G. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vicini, A. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Vitulo, P. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy); Viviani, C. [Dipartimento di Fisica Nucleare e Teorica and Sezione INFN, via A. Bassi 6, 27100 Pavia (Italy)

    2006-08-15

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 {mu}m and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi{sub 2}O{sub 3} and Tl{sub 2}O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C{sub 2}H{sub 2}F{sub 4} 92.5%, SF{sub 6} 2.5%, C{sub 4}H{sub 10} 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  5. RPCs in biomedical applications

    Science.gov (United States)

    Belli, G.; De Vecchi, C.; Giroletti, E.; Guida, R.; Musitelli, G.; Nardò, R.; Necchi, M. M.; Pagano, D.; Ratti, S. P.; Sani, G.; Vicini, A.; Vitulo, P.; Viviani, C.

    2006-08-01

    We are studying possible applications of Resistive Plate Chambers (RPCs) in the biomedical domain such as Positron Emission Tomography (PET). The use of RPCs in PET can provide several improvements on the usual scintillation-based detectors. The most striking features are the extremely good spatial and time resolutions. They can be as low as 50 μm and 25 ps respectively, to be compared to the much higher intrinsic limits in bulk detectors. Much efforts have been made to investigate suitable materials to make RPCs sensitive to 511 keV photons. For this reason, we are studying different types of coating employing high Z materials with proper electrical resistivity. Later investigations explored the possibility of coating glass electrodes by mean of serigraphy techniques, employing oxide based mixtures with a high density of high Z materials; the efficiency is strongly dependent on its thickness and it reaches a maximum for a characteristic value that is a function of the compound (usually a few hundred microns). The most promising mixtures seem to be PbO, Bi 2O 3 and Tl 2O. Preliminary gamma efficiency measurements for a Multigap RPC prototype (MRPC) are presented as well as simulations using GEANT4-based framework. The MRPC has 5 gas gaps; their spacings are kept by 0.3 mm diameter nylon fishing line, electrodes are made of thin glasses (1 mm for the outer electrodes, 0.15-0.4 mm for the inner ones). The detector is enclosed in a metallic gas-tight box, filled with a C 2H 2F 4 92.5%, SF 6 2.5%, C 4H 10 5% mixture. Different gas mixtures are being studied increasing the SF6 percentage and results of efficiency as a function of the new mixtures will be presented.

  6. The New Biomedical Technology

    OpenAIRE

    Scoggin, Charles H.

    1985-01-01

    New methods for studying the genetic information of humans in health and disease are emerging from basic science laboratories. Because these approaches are yielding fundamental insights for diagnosing and treating disease, it is important that practitioners begin to understand these methods and how they are used. Methods for genetic analysis using recombinant DNA techniques consist of isolation, separation, propagation in microorganisms and molecular hybridization of DNA. The study of RNA all...

  7. The biomedical discourse relation bank

    Directory of Open Access Journals (Sweden)

    Joshi Aravind

    2011-05-01

    Full Text Available Abstract Background Identification of discourse relations, such as causal and contrastive relations, between situations mentioned in text is an important task for biomedical text-mining. A biomedical text corpus annotated with discourse relations would be very useful for developing and evaluating methods for biomedical discourse processing. However, little effort has been made to develop such an annotated resource. Results We have developed the Biomedical Discourse Relation Bank (BioDRB, in which we have annotated explicit and implicit discourse relations in 24 open-access full-text biomedical articles from the GENIA corpus. Guidelines for the annotation were adapted from the Penn Discourse TreeBank (PDTB, which has discourse relations annotated over open-domain news articles. We introduced new conventions and modifications to the sense classification. We report reliable inter-annotator agreement of over 80% for all sub-tasks. Experiments for identifying the sense of explicit discourse connectives show the connective itself as a highly reliable indicator for coarse sense classification (accuracy 90.9% and F1 score 0.89. These results are comparable to results obtained with the same classifier on the PDTB data. With more refined sense classification, there is degradation in performance (accuracy 69.2% and F1 score 0.28, mainly due to sparsity in the data. The size of the corpus was found to be sufficient for identifying the sense of explicit connectives, with classifier performance stabilizing at about 1900 training instances. Finally, the classifier performs poorly when trained on PDTB and tested on BioDRB (accuracy 54.5% and F1 score 0.57. Conclusion Our work shows that discourse relations can be reliably annotated in biomedical text. Coarse sense disambiguation of explicit connectives can be done with high reliability by using just the connective as a feature, but more refined sense classification requires either richer features or more

  8. The biomedical engineer as a driver for Health Technology innovation.

    Science.gov (United States)

    Colas Fustero, Javier; Guillen Arredondo, Alejandra

    2010-01-01

    Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice.

  9. From biomedical-engineering research to clinical application and industrialization

    Science.gov (United States)

    Taguchi, Tetsushi; Aoyagi, Takao

    2012-12-01

    The rising costs and aging of the population due to a low birth rate negatively affect the healthcare system in Japan. In 2011, the Council for Science and Technology Policy released the 4th Japan's Science and Technology Basic Policy Report from 2011 to 2015. This report includes two major innovations, 'Life Innovation' and 'Green Innovation', to promote economic growth. Biomedical engineering research is part of 'Life Innovation' and its outcomes are required to maintain people's mental and physical health. It has already resulted in numerous biomedical products, and new ones should be developed using nanotechnology-based concepts. The combination of accumulated knowledge and experience, and 'nanoarchitechtonics' will result in novel, well-designed functional biomaterials. This focus issue contains three reviews and 19 original papers on various biomedical topics, including biomaterials, drug-delivery systems, tissue engineering and diagnostics. We hope that it demonstrates the importance of collaboration among scientists, engineers and clinicians, and will contribute to the further development of biomedical engineering.

  10. The biomedical engineer as a driver for Health Technology innovation.

    Science.gov (United States)

    Colas Fustero, Javier; Guillen Arredondo, Alejandra

    2010-01-01

    Health Technology has played a mayor role on most of the fundamental advances in medicine, in the last 30 years. Right now, beginning the XXI Century, it is well accepted that the most important revolution expected in Health Care is the empowerment of the individuals on their own health management. Innovation in health care technologies will continue being paramount, not only in the advances of medicine and in the self health management of patients but also in allowing the sustainability of the public health care becomes more important, the role of the biomedical engineer will turn to be more crucial for the society. The paper targets the development of new curricula for the Biomedical Engineers, The needs of evolving on his different fields in which the contribution of the Biomedical Engineer is becoming fundamental to drive the innovation that Health Care Technology Industry must provide to continue improving human health through cross-disciplinary activities that integrate the engineering sciences with the biomedical sciences and clinical practice. PMID:21096299

  11. Biomedical journals in Republic of Macedonia: the current state.

    Science.gov (United States)

    Polenakovic, Momir; Danevska, Lenche

    2014-01-01

    Several biomedical journals in the Republic of Macedonia have succeeded in maintaining regular publication over the years, but only a few have a long-standing tradition. In this paper we present the basic characteristics of 18 biomedical journals that have been published without a break in the Republic of Macedonia. Of these, more details are given for 14 journals, a particular emphasis being on the journal Prilozi/Contributions of the Macedonian Academy of Sciences and Arts, Section of Medical Sciences as one of the journals with a long-term publishing tradition and one of the journals included in the Medline/PubMed database. A brief or broad description is given for the following journals: Macedonian Medical Review, Acta Morphologica, Physioacta, MJMS-Macedonian Journal of Medical Sciences, International Medical Journal Medicus, Archives of Public Health, Epilepsy, Macedonian Orthopaedics and Traumatology Journal, BANTAO Journal, Macedonian Dental Review, Macedonian Pharmaceutical Bulletin, Macedonian Veterinary Review, Journal of Special Education and Rehabilitation, Balkan Journal of Medical Genetics, Contributions of the Macedonian Scientific Society of Bitola, Vox Medici, Social Medicine: Professional Journal for Public Health, and Prilozi/Contributions of the Macedonian Academy of Sciences and Arts. Journals from Macedonia should aim to be published regularly, should comply with the Uniform requirements for manuscripts submitted to biomedical journals, and with the recommendations of reliable organizations working in the field of publishing and research. These are the key prerequisites which Macedonian journals have to accomplish in order to be included in renowned international bibliographic databases. Thus the results of biomedical science from the Republic of Macedonia will be presented to the international scientific arena.

  12. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.

    Science.gov (United States)

    Chan, Benjamin Qi Yu; Low, Zhi Wei Kenny; Heng, Sylvester Jun Wen; Chan, Siew Yin; Owh, Cally; Loh, Xian Jun

    2016-04-27

    Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field. PMID:27018814

  13. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.

    Science.gov (United States)

    Chan, Benjamin Qi Yu; Low, Zhi Wei Kenny; Heng, Sylvester Jun Wen; Chan, Siew Yin; Owh, Cally; Loh, Xian Jun

    2016-04-27

    Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field.

  14. Biomedical journals: keeping up and reading critically.

    Science.gov (United States)

    Chase, Karen L; DiGiacomo, Ronald F; Van Hoosier, Gerald L

    2006-09-01

    By extrapolation from studies of physicians, knowledge and practice of laboratory animal medicine and science are expected to become progressively more outdated the longer practitioners are out of school. Keeping up with current literature and practice is a challenge that necessitates the use of many different sources of continuing education. Both veterinarians and physicians consistently list journals as the most beneficial source of new information. Accordingly, they must select from the veterinary and biomedical literature articles that report original studies and systematic reviews and recognize and respond to valid new knowledge to improve diagnostic and therapeutic approaches and maintain consistent clinical skills. Other objectives include selecting journals for general information and for information relevant or specific to one's field of research. Lastly, candidates for board certification need to read articles from journals that potentially provide the basis for questions on the examination. 'High-impact' journals should be identified, and articles should be reviewed critically. In a survey of recent candidates for laboratory animal medicine board examination, these journals included Contemporary Topics (now JAALAS), Comparative Medicine, ILAR Journal, and Laboratory Animals. Strategies for coping with the challenge of staying current with the literature include wise use of technology, journal clubs, and consultation with colleagues. A laboratory animal practitioner can become a better scientist and clinician by evaluating the research performed by others. Thorough, critical review of biomedical literature is paramount to these goals. PMID:16995641

  15. Biomedical journals: keeping up and reading critically.

    Science.gov (United States)

    Chase, Karen L; DiGiacomo, Ronald F; Van Hoosier, Gerald L

    2006-09-01

    By extrapolation from studies of physicians, knowledge and practice of laboratory animal medicine and science are expected to become progressively more outdated the longer practitioners are out of school. Keeping up with current literature and practice is a challenge that necessitates the use of many different sources of continuing education. Both veterinarians and physicians consistently list journals as the most beneficial source of new information. Accordingly, they must select from the veterinary and biomedical literature articles that report original studies and systematic reviews and recognize and respond to valid new knowledge to improve diagnostic and therapeutic approaches and maintain consistent clinical skills. Other objectives include selecting journals for general information and for information relevant or specific to one's field of research. Lastly, candidates for board certification need to read articles from journals that potentially provide the basis for questions on the examination. 'High-impact' journals should be identified, and articles should be reviewed critically. In a survey of recent candidates for laboratory animal medicine board examination, these journals included Contemporary Topics (now JAALAS), Comparative Medicine, ILAR Journal, and Laboratory Animals. Strategies for coping with the challenge of staying current with the literature include wise use of technology, journal clubs, and consultation with colleagues. A laboratory animal practitioner can become a better scientist and clinician by evaluating the research performed by others. Thorough, critical review of biomedical literature is paramount to these goals.

  16. Predicting the extension of biomedical ontologies.

    Directory of Open Access Journals (Sweden)

    Catia Pesquita

    Full Text Available Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of the art change capturing methods. In addition we have identified several issues concerning prediction of ontology evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the ontology that need extension.

  17. Nanomaterials in biomedical applications

    DEFF Research Database (Denmark)

    Christiansen, Jesper de Claville; Potarniche, Catalina-Gabriela; Vuluga, Z.;

    2011-01-01

    Advances in nano materials have lead to applications in many areas from automotive to electronics and medicine. Nano composites are a popular group of nano materials. Nanocomposites in medical applications provide novel solutions to common problems. Materials for implants, biosensors and drug del...

  18. What do I want to be with my PhD? The roles of personal values and structural dynamics in shaping the career interests of recent biomedical science PhD graduates.

    Science.gov (United States)

    Gibbs, Kenneth D; Griffin, Kimberly A

    2013-01-01

    Interest in faculty careers decreases as graduate training progresses; however, the process underlying career-interest formation remains poorly defined. To better understand this process and whether/how it differs across social identity (i.e., race/ethnicity, gender), we conducted focus groups with 38 biomedical scientists who received PhDs between 2006 and 2011, including 23 women and 18 individuals from underrepresented minority (URM) backgrounds. Objective performance and quality of advisor relationships were not significantly different between scientists with high versus low interest in faculty careers. Career interests were fluid and formed in environments that generally lacked structured career development. Vicarious learning shaped similar outcome expectations about academic careers for all scientists; however, women and URMs recounted additional, distinct experiences and expectations. Scientists pursuing faculty careers described personal values, which differed by social identity, as their primary driver. For scientists with low interest in faculty careers, a combination of values, shared across social identity, and structural dynamics of the biomedical workforce (e.g., job market, grant funding, postdoc pay, etc.) played determinative roles. These findings illuminate the complexity of career choice and suggest attracting the best, most diverse academic workforce requires institutional leaders and policy makers go beyond developing individual skill, attending to individuals' values and promoting institutional and systemic reforms. PMID:24297297

  19. Pathophysiologic mechanisms of biomedical nanomaterials.

    Science.gov (United States)

    Wang, Liming; Chen, Chunying

    2016-05-15

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell-cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future. We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future.

  20. An Examination of Biomedical Intellectual Reputation in Relationship to Graduates' Productivity, Regional Innovation and Absorptive Capacity at Selected Universities Worldwide

    Science.gov (United States)

    Cavanaugh, Gesulla

    2014-01-01

    The purpose of this study was first to determine factors associated with intellectual reputation, specifically among selected biomedical departments worldwide within the university setting. Second, the study aimed to examine intellectual reputation in relationship to doctoral graduates' productivity in the biomedical sciences and in relationship…

  1. Implantable biomedical devices on bioresorbable substrates

    Science.gov (United States)

    Rogers, John A; Kim, Dae-Hyeong; Omenetto, Fiorenzo; Kaplan, David L; Litt, Brian; Viventi, Jonathan; Huang, Yonggang; Amsden, Jason

    2014-03-04

    Provided herein are implantable biomedical devices, methods of administering implantable biomedical devices, methods of making implantable biomedical devices, and methods of using implantable biomedical devices to actuate a target tissue or sense a parameter associated with the target tissue in a biological environment. Each implantable biomedical device comprises a bioresorbable substrate, an electronic device having a plurality of inorganic semiconductor components supported by the bioresorbable substrate, and a barrier layer encapsulating at least a portion of the inorganic semiconductor components. Upon contact with a biological environment the bioresorbable substrate is at least partially resorbed, thereby establishing conformal contact between the implantable biomedical device and the target tissue in the biological environment.

  2. Physical sciences and engineering advances in life sciences and oncology a WTEC global assessment

    CERN Document Server

    Fletcher, Daniel; Gerecht, Sharon; Levine, Ross; Mallick, Parag; McCarty, Owen; Munn, Lance; Reinhart-King, Cynthia

    2016-01-01

    This book presents an Assessment of Physical Sciences and Engineering Advances in Life Sciences and Oncology (APHELION) by a panel of experts. It covers the status and trends of applying physical sciences and engineering principles to oncology research in leading laboratories and organizations in Europe and Asia. The book elaborates on the six topics identified by the panel that have the greatest potential to advance understanding and treatment of cancer, each covered by a chapter in the book. The study was sponsored by the National Cancer Institute (NCI) at the National Institute of Health (NIH), the National Science Foundation (NSF) and the National Institute of Biomedical Imaging and Bioengineering at the NIH in the US under a cooperative agreement with the World Technology Evaluation Center (WTEC).

  3. Biomedical Imaging Principles and Applications

    CERN Document Server

    Salzer, Reiner

    2012-01-01

    This book presents and describes imaging technologies that can be used to study chemical processes and structural interactions in dynamic systems, principally in biomedical systems. The imaging technologies, largely biomedical imaging technologies such as MRT, Fluorescence mapping, raman mapping, nanoESCA, and CARS microscopy, have been selected according to their application range and to the chemical information content of their data. These technologies allow for the analysis and evaluation of delicate biological samples, which must not be disturbed during the profess. Ultimately, this may me

  4. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes. PMID:26675174

  5. Flexible sensors for biomedical technology.

    Science.gov (United States)

    Vilela, Diana; Romeo, Agostino; Sánchez, Samuel

    2016-02-01

    Flexible sensing devices have gained a great deal of attention among the scientific community in recent years. The application of flexible sensors spans over several fields, including medicine, industrial automation, robotics, security, and human-machine interfacing. In particular, non-invasive health-monitoring devices are expected to play a key role in the improvement of patient life and in reducing costs associated with clinical and biomedical diagnostic procedures. Here, we focus on recent advances achieved in flexible devices applied on the human skin for biomedical and healthcare purposes.

  6. Degradable vinyl polymers for biomedical applications

    Science.gov (United States)

    Delplace, Vianney; Nicolas, Julien

    2015-10-01

    Vinyl polymers have been the focus of intensive research over the past few decades and are attractive materials owing to their ease of synthesis and their broad diversity of architectures, compositions and functionalities. Their carbon-carbon backbones are extremely resistant to degradation, however, and this property limits their uses. Degradable polymers are an important field of research in polymer science and have been used in a wide range of applications spanning from (nano)medicine to microelectronics and environmental protection. The development of synthetic strategies to enable complete or partial degradation of vinyl polymers is, therefore, of great importance because it will offer new opportunities for the application of these materials. This Review captures the most recent and promising approaches to the design of degradable vinyl polymers and discusses the potential of these materials for biomedical applications.

  7. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  8. Development of new metallic alloys for biomedical applications.

    Science.gov (United States)

    Niinomi, Mitsuo; Nakai, Masaaki; Hieda, Junko

    2012-11-01

    New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self-tunable modulus have been proposed for the construction of removable implants. Nickel-free low modulus β-type titanium alloys showing shape memory and super elastic behavior are also currently being developed. Nickel-free stainless steel and cobalt-chromium alloys for biomedical applications are receiving attention as well. Newly developed zirconium-based alloys for biomedical applications are proving very interesting. Magnesium-based or iron-based biodegradable biomaterials are under development. Further, tantalum, and niobium and its alloys are being investigated for biomedical applications. The development of new metallic alloys for biomedical applications is described in this paper.

  9. Network fingerprint: a knowledge-based characterization of biomedical networks

    Science.gov (United States)

    Cui, Xiuliang; He, Haochen; He, Fuchu; Wang, Shengqi; Li, Fei; Bo, Xiaochen

    2015-01-01

    It can be difficult for biomedical researchers to understand complex molecular networks due to their unfamiliarity with the mathematical concepts employed. To represent molecular networks with clear meanings and familiar forms for biomedical researchers, we introduce a knowledge-based computational framework to decipher biomedical networks by making systematic comparisons to well-studied “basic networks”. A biomedical network is characterized as a spectrum-like vector called “network fingerprint”, which contains similarities to basic networks. This knowledge-based multidimensional characterization provides a more intuitive way to decipher molecular networks, especially for large-scale network comparisons and clustering analyses. As an example, we extracted network fingerprints of 44 disease networks in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The comparisons among the network fingerprints of disease networks revealed informative disease-disease and disease-signaling pathway associations, illustrating that the network fingerprinting framework will lead to new approaches for better understanding of biomedical networks. PMID:26307246

  10. Biomedical research coverage in English-language Indian newspapers

    Directory of Open Access Journals (Sweden)

    Bharvi Dutt

    2012-01-01

    Full Text Available The present paper explores biomedical research coverage in the Indian English-language newspapers. Science and technology coverage in the Indian English-language newspapers revealed dominant representation of biomedical research. The research reported was mainly from foreign sources, mostly performed in US, UK and other developed countries of Europe. Plausibly, this was the major reason that areas of medical concerns in foreign countries such as Neuroscience, Oncology, Genetics and Cardiovascular research constituted more than one-third of the total space whereas neglected tropical diseases have almost been neglected in the coverage. This is despite the fact that tropical and other neglected diseases constitute the greatest health problem in India. The study discusses the significance of this research for policy planners, media, health information dissemination and those concerned about informed and science literate citizenry in the country.

  11. Adaptive optics applications in vision science

    Science.gov (United States)

    Olivier, Scot S.

    2003-06-01

    Adaptive optics can be used to correct the aberrations in the human eye caused by imperfections in the cornea and the lens and thereby, improve image quality both looking into and out of the eye. Under the auspices of the NSF Center for Adaptive Optics and the DOE Biomedical Engineering Program, Lawrence Livermore National Laboratory has joined together with leading vision science researchers around the country to develop and test new ophthalmic imaging systems using novel wavefront corrector technologies. Results of preliminary comparative evaluations of these technologies in initial system tests show promise for future clinical utility.

  12. 病毒样颗粒技术——现代生物医学应用的新平台%Virus-like particles: new platforms for the applications of contemporary biomedical sciences

    Institute of Scientific and Technical Information of China (English)

    龙遗芳; 郭中敏; 陆家海

    2013-01-01

    Virus-like particles (VLPs) are composed of one or several virus structural proteins but not packaged the virus genome inside the capsid.VLPs have remarkable advantages over the complete viruses such as VLP can closely mimick the three-dimensional nature of a real virus; VLPs are safe with strong immunogenicity,flexibility of structure and unique ability of bearing DNA and other molecules.VLP technology has been widely accepted especially in the field of vaccinology.In this review,we summarize the applications of VLPs in the field of biomedical research including basic research,development of immunoassays,novel vaccines and VLPs as vehicles for delivering therapeutic molecules.

  13. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  14. Mathematical modeling in biomedical imaging

    CERN Document Server

    2009-01-01

    This volume gives an introduction to a fascinating research area to applied mathematicians. It is devoted to providing the exposition of promising analytical and numerical techniques for solving challenging biomedical imaging problems, which trigger the investigation of interesting issues in various branches of mathematics.

  15. Mathematical modeling in biomedical imaging

    CERN Document Server

    2012-01-01

    This volume reports on recent mathematical and computational advances in optical, ultrasound, and opto-acoustic tomographies. It outlines the state-of-the-art and future directions in these fields and provides readers with the most recently developed mathematical and computational tools.  It is particularly suitable for researchers and graduate students in applied mathematics and biomedical engineering.

  16. Biomedical applications of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bormann, D.

    2012-01-01

    This chapter deals with the emerging field of biomedical applications for magnesium-based materials, envisioning degradable implants that dissolve in the human body after having cured a particular medical condition. After outlining the background of this interest, some major aspects concerning degra

  17. Biomaterials surface science

    CERN Document Server

    Taubert, Andreas; Rodriguez-Cabello, José Carlos

    2013-01-01

    The book provides an overview of the highly interdisciplinary field of surface science in the context of biological and biomedical applications. The covered topics range from micro- and nanostructuring for imparting functionality in a top-down manner to the bottom-up fabrication of gradient surfaces by self-assembly, from interfaces between biomaterials and living matter to smart, stimuli-responsive surfaces, and from cell and surface mechanics to the elucidation of cell-chip interactions in biomedical devices.

  18. The ethical justification for the use of animals in biomedical research

    OpenAIRE

    Kostomitsopoulos N.G.; Đurašević S.F.

    2010-01-01

    Despite all the benefits, the use of animals in biomedical research is still a subject of debate with respect to its true value. The sensitivity of the community and the interest of scientists who work in the field of laboratory animal science and welfare have clearly demonstrated that the use of animals in biomedical research must be conducted under specific scientific, legal and ethical rules. The ethical justification of a research project starts from its initial designing phase until its ...

  19. Advanced Biomedical Computing Center (ABCC) | DSITP

    Science.gov (United States)

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  20. LEADING WITH LEADING INDICATORS

    International Nuclear Information System (INIS)

    This paper documents Fluor Hanford's use of Leading Indicators, management leadership, and statistical methodology in order to improve safe performance of work. By applying these methods, Fluor Hanford achieved a significant reduction in injury rates in 2003 and 2004, and the improvement continues today. The integration of data, leadership, and teamwork pays off with improved safety performance and credibility with the customer. The use of Statistical Process Control, Pareto Charts, and Systems Thinking and their effect on management decisions and employee involvement are discussed. Included are practical examples of choosing leading indicators. A statistically based color coded dashboard presentation system methodology is provided. These tools, management theories and methods, coupled with involved leadership and employee efforts, directly led to significant improvements in worker safety and health, and environmental protection and restoration at one of the nation's largest nuclear cleanup sites

  1. Biomedical ethics and the biomedical engineer: a review.

    Science.gov (United States)

    Saha, S; Saha, P S

    1997-01-01

    Biomedical engineering is responsible for many of the dramatic advances in modern medicine. This has resulted in improved medical care and better quality of life for patients. However, biomedical technology has also contributed to new ethical dilemmas and has challenged some of our moral values. Bioengineers often lack adequate training in facing these moral and ethical problems. These include conflicts of interest, allocation of scarce resources, research misconduct, animal experimentation, and clinical trials for new medical devices. This paper is a compilation of our previous published papers on these topics, and it summarizes many complex ethical issues that a bioengineer may face during his or her research career or professional practice. The need for ethics training in the education of a bioengineering student is emphasized. We also advocate the adoption of a code of ethics for bioengineers.

  2. Full text clustering and relationship network analysis of biomedical publications.

    Directory of Open Access Journals (Sweden)

    Renchu Guan

    Full Text Available Rapid developments in the biomedical sciences have increased the demand for automatic clustering of biomedical publications. In contrast to current approaches to text clustering, which focus exclusively on the contents of abstracts, a novel method is proposed for clustering and analysis of complete biomedical article texts. To reduce dimensionality, Cosine Coefficient is used on a sub-space of only two vectors, instead of computing the Euclidean distance within the space of all vectors. Then a strategy and algorithm is introduced for Semi-supervised Affinity Propagation (SSAP to improve analysis efficiency, using biomedical journal names as an evaluation background. Experimental results show that by avoiding high-dimensional sparse matrix computations, SSAP outperforms conventional k-means methods and improves upon the standard Affinity Propagation algorithm. In constructing a directed relationship network and distribution matrix for the clustering results, it can be noted that overlaps in scope and interests among BioMed publications can be easily identified, providing a valuable analytical tool for editors, authors and readers.

  3. Carbon nanotubes from synthesis to in vivo biomedical applications.

    Science.gov (United States)

    Sajid, Muhammad Imran; Jamshaid, Usama; Jamshaid, Talha; Zafar, Nadiah; Fessi, H; Elaissari, Abdelhamid

    2016-03-30

    Owing to their unique and interesting properties, extensive research round the globe has been carried out on carbon nanotubes and carbon nanotubes based systems to investigate their practical usefulness in biomedical applications. The results from these studies demonstrate a great promise in their use in targeted drug delivery systems, diagnostic techniques and in bio-analytical applications. Although, carbon nanotubes possess quite interesting properties, which make them potential candidates in the biomedical science, but they also have some inherent properties which arise great concern regarding their biosafety. In this comprehensive review, we have discussed different aspects of carbon nanotubes and carbon nanotube based systems related to biomedical applications. In the beginning, a short historical account of these tiny yet powerful particles is given followed by discussion regarding their types, properties, methods of synthesis, large scale production method, purification techniques and characterization aspects of carbon nanotubes. In the second part of the review, the functionalization of carbon nanotubes is reviewed in detail, which is not only important to make them biocompatible and stable in biological systems but also render them a great property of loading various biomolecules, diagnostic and therapeutic moieties resulting in diversified applications. In the final part of the review, emphasis is given on the pharmacokinetic aspects of carbon nanotubes including administration routes, absorption mechanisms, distribution and elimination of carbon nanotubes based systems. Lastly, a comprehensive account about the potential biomedical applications has been given followed by insights into the future.

  4. Livestock in biomedical research: history, current status and future prospective.

    Science.gov (United States)

    Polejaeva, Irina A; Rutigliano, Heloisa M; Wells, Kevin D

    2016-01-01

    Livestock models have contributed significantly to biomedical and surgical advances. Their contribution is particularly prominent in the areas of physiology and assisted reproductive technologies, including understanding developmental processes and disorders, from ancient to modern times. Over the past 25 years, biomedical research that traditionally embraced a diverse species approach shifted to a small number of model species (e.g. mice and rats). The initial reasons for focusing the main efforts on the mouse were the availability of murine embryonic stem cells (ESCs) and genome sequence data. This powerful combination allowed for precise manipulation of the mouse genome (knockouts, knockins, transcriptional switches etc.) leading to ground-breaking discoveries on gene functions and regulation, and their role in health and disease. Despite the enormous contribution to biomedical research, mouse models have some major limitations. Their substantial differences compared with humans in body and organ size, lifespan and inbreeding result in pronounced metabolic, physiological and behavioural differences. Comparative studies of strategically chosen domestic species can complement mouse research and yield more rigorous findings. Because genome sequence and gene manipulation tools are now available for farm animals (cattle, pigs, sheep and goats), a larger number of livestock genetically engineered (GE) models will be accessible for biomedical research. This paper discusses the use of cattle, goats, sheep and pigs in biomedical research, provides an overview of transgenic technology in farm animals and highlights some of the beneficial characteristics of large animal models of human disease compared with the mouse. In addition, status and origin of current regulation of GE biomedical models is also reviewed.

  5. Sensing Mercury for Biomedical and Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Julia Xiaojun Zhao

    2009-07-01

    Full Text Available Mercury is a very toxic element that is widely spread in the atmosphere, lithosphere, and surface water. Concentrated mercury poses serious problems to human health, as bioaccumulation of mercury within the brain and kidneys ultimately leads to neurological diseases. To control mercury pollution and reduce mercury damage to human health, sensitive determination of mercury is important. This article summarizes some current sensors for the determination of both abiotic and biotic mercury. A wide array of sensors for monitoring mercury is described, including biosensors and chemical sensors, while piezoelectric and microcantilever sensors are also described. Additionally, newly developed nanomaterials offer great potential for fabricating novel mercury sensors. Some of the functional fluorescent nanosensors for the determination of mercury are covered. Afterwards, the in vivo determination of mercury and the characterization of different forms of mercury are discussed. Finally, the future direction for mercury detection is outlined, suggesting that nanomaterials may provide revolutionary tools in biomedical and environmental monitoring of mercury.

  6. Branding the bio/biomedical engineering degree.

    Science.gov (United States)

    Voigt, Herbert F

    2011-01-01

    The future challenges to medical and biological engineering, sometimes referred to as biomedical engineering or simply bioengineering, are many. Some of these are identifiable now and others will emerge from time to time as new technologies are introduced and harnessed. There is a fundamental issue regarding "Branding the bio/biomedical engineering degree" that requires a common understanding of what is meant by a B.S. degree in Biomedical Engineering, Bioengineering, or Biological Engineering. In this paper we address some of the issues involved in branding the Bio/Biomedical Engineering degree, with the aim of clarifying the Bio/Biomedical Engineering brand.

  7. Advanced Methods of Biomedical Signal Processing

    CERN Document Server

    Cerutti, Sergio

    2011-01-01

    This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as mult

  8. [Cluster analysis in biomedical researches].

    Science.gov (United States)

    Akopov, A S; Moskovtsev, A A; Dolenko, S A; Savina, G D

    2013-01-01

    Cluster analysis is one of the most popular methods for the analysis of multi-parameter data. The cluster analysis reveals the internal structure of the data, group the separate observations on the degree of their similarity. The review provides a definition of the basic concepts of cluster analysis, and discusses the most popular clustering algorithms: k-means, hierarchical algorithms, Kohonen networks algorithms. Examples are the use of these algorithms in biomedical research. PMID:24640781

  9. New biomedical applications of radiocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.C.

    1990-12-01

    The potential of accelerator mass spectrometry (AMS) and radiocarbon in biomedical applications is being investigated by Lawrence Livermore National Laboratory (LLNL). A measurement of the dose-response curve for DNA damage caused by a carcinogen in mouse liver cells was an initial experiment. This demonstrated the sensitivity and utility of AMS for detecting radiocarbon tags and led to numerous follow-on experiments. The initial experiment and follow-on experiments are discussed in this report. 12 refs., 4 figs. (SM)

  10. Biomedical devices and their applications

    CERN Document Server

    2004-01-01

    This volume introduces readers to the basic concepts and recent advances in the field of biomedical devices. The text gives a detailed account of novel developments in drug delivery, protein electrophoresis, estrogen mimicking methods and medical devices. It also provides the necessary theoretical background as well as describing a wide range of practical applications. The level and style make this book accessible not only to scientific and medical researchers but also to graduate students.

  11. The Ontology for Biomedical Investigations

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H.; Chibucos, Marcus C.; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A.; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L.; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A.; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H.; Schober, Daniel; Smith, Barry; Soldatova, Larisa N.; Stoeckert, Christian J.; Taylor, Chris F.; Torniai, Carlo; Turner, Jessica A.; Vita, Randi; Whetzel, Patricia L.; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  12. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  13. The Ontology for Biomedical Investigations.

    Science.gov (United States)

    Bandrowski, Anita; Brinkman, Ryan; Brochhausen, Mathias; Brush, Matthew H; Bug, Bill; Chibucos, Marcus C; Clancy, Kevin; Courtot, Mélanie; Derom, Dirk; Dumontier, Michel; Fan, Liju; Fostel, Jennifer; Fragoso, Gilberto; Gibson, Frank; Gonzalez-Beltran, Alejandra; Haendel, Melissa A; He, Yongqun; Heiskanen, Mervi; Hernandez-Boussard, Tina; Jensen, Mark; Lin, Yu; Lister, Allyson L; Lord, Phillip; Malone, James; Manduchi, Elisabetta; McGee, Monnie; Morrison, Norman; Overton, James A; Parkinson, Helen; Peters, Bjoern; Rocca-Serra, Philippe; Ruttenberg, Alan; Sansone, Susanna-Assunta; Scheuermann, Richard H; Schober, Daniel; Smith, Barry; Soldatova, Larisa N; Stoeckert, Christian J; Taylor, Chris F; Torniai, Carlo; Turner, Jessica A; Vita, Randi; Whetzel, Patricia L; Zheng, Jie

    2016-01-01

    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed

  14. The Ontology for Biomedical Investigations.

    Directory of Open Access Journals (Sweden)

    Anita Bandrowski

    Full Text Available The Ontology for Biomedical Investigations (OBI is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI and Phenotype Attribute and Trait Ontology (PATO without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT. The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org providing details on the people, policies, and issues being

  15. Advancing community stakeholder engagement in biomedical HIV prevention trials: principles, practices and evidence.

    Science.gov (United States)

    Newman, Peter A; Rubincam, Clara

    2014-12-01

    Community stakeholder engagement is foundational to fair and ethically conducted biomedical HIV prevention trials. Concerns regarding the ethical engagement of community stakeholders in HIV vaccine trials and early terminations of several international pre-exposure prophylaxis trials have fueled the development of international guidelines, such as UNAIDS' good participatory practice (GPP). GPP aims to ensure that stakeholders are effectively involved in all phases of biomedical HIV prevention trials. We provide an overview of the six guiding principles in the GPP and critically examine them in relation to existing social and behavioral science research. In particular, we highlight the challenges involved in operationalizing these principles on the ground in various global contexts, with a focus on low-income country settings. Increasing integration of social science in biomedical HIV prevention trials will provide evidence to advance a science of community stakeholder engagement to support ethical and effective practices informed by local realities and sociocultural differences.

  16. Not just autonomy--the principles of American biomedical ethics.

    OpenAIRE

    Holm, S.

    1995-01-01

    The Principles of Biomedical Ethics by Tom L Beauchamp and James F Childress which is now in its fourth edition has had a great influence on the development of bioethics through its exposition of a theory based on the four principles: respect for autonomy; non-maleficence; beneficence, and justice (1). The theory is developed as a common-morality theory, and the present paper attempts to show how this approach, starting from American common-morality, leads to an underdevelopment of beneficenc...

  17. Efficient Retrieval of Text for Biomedical Domain using Expectation Maximization Algorithm

    Directory of Open Access Journals (Sweden)

    Sumit Vashishtha

    2011-11-01

    Full Text Available Data mining, a branch of computer science [1], is the process of extracting patterns from large data sets by combining methods from statistics and artificial intelligence with database management. Data mining is seen as an increasingly important tool by modern business to transform data into business intelligence giving an informational advantage. Biomedical text retrieval refers to text retrieval techniques applied to biomedical resources and literature available of the biomedical and molecular biology domain. The volume of published biomedical research, and therefore the underlying biomedical knowledge base, is expanding at an increasing rate. Biomedical text retrieval is a way to aid researchers in coping with information overload. By discovering predictive relationships between different pieces of extracted data, data-mining algorithms can be used to improve the accuracy of information extraction. However, textual variation due to typos, abbreviations, and other sources can prevent the productive discovery and utilization of hard-matching rules. Recent methods of soft clustering can exploit predictive relationships in textual data. This paper presents a technique for using soft clustering data mining algorithm to increase the accuracy of biomedical text extraction. Experimental results demonstrate that this approach improves text extraction more effectively that hard keyword matching rules.

  18. The Theory of Biomedical Knowledge Integration(Ⅳ)

    Institute of Scientific and Technical Information of China (English)

    BAO Han-fei

    2005-01-01

    This paper presented some philosophic viewpoints of the Theory of BMKI (The Theory of Biomedical Knowledge Integration), a new exploration in BioMedical Informatics. It discussed an evolutional relation from propositional calculus, predicate calculus, through framework, to neural network.. The differences in exclusivity and other natures were explored for physical systems (the real world), quasi-physical systems (the copies of the real world) and mental systems(the abstracts of the real world). Based on their behaviours in cognitive sciences and knowledge engineering, the new concepts quasi-infinity or -infinitesimal,potential knowledge,dynamic knowledge were introduced. This paper has also described so called "big-or" space which is the base of scientific understanding or association. Furthermore the paper put forward the viewpoint that "reasoning only can implement in an axiomatic space" and then outlined the building processes of such kind of space. At last so called "beacon-andcompass strategy" in BMKI was introduced.

  19. A general method for modeling biochemical and biomedical response

    Science.gov (United States)

    Ortiz, Roberto; Lerd Ng, Jia; Hughes, Tyler; Abou Ghantous, Michel; Bouhali, Othmane; Arredouani, Abdelilah; Allen, Roland

    2012-10-01

    The impressive achievements of biomedical science have come mostly from experimental research with human subjects, animal models, and sophisticated laboratory techniques. Additionally, theoretical chemistry has been a major aid in designing new drugs. Here we introduce a method which is similar to others already well known in theoretical systems biology, but which specifically addresses biochemical changes as the human body responds to medical interventions. It is common in systems biology to use first-order differential equations to model the time evolution of various chemical concentrations, and we as physicists can make a significant impact through designing realistic models and then solving the resulting equations. Biomedical research is rapidly advancing, and the technique presented in this talk can be applied in arbitrarily large models containing tens, hundreds, or even thousands of interacting species, to determine what beneficial effects and side effects may result from pharmaceuticals or other medical interventions.

  20. Biomedical engineering - A means to add new dimension to medicine and research

    Science.gov (United States)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  1. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery.

  2. Text mining patents for biomedical knowledge.

    Science.gov (United States)

    Rodriguez-Esteban, Raul; Bundschus, Markus

    2016-06-01

    Biomedical text mining of scientific knowledge bases, such as Medline, has received much attention in recent years. Given that text mining is able to automatically extract biomedical facts that revolve around entities such as genes, proteins, and drugs, from unstructured text sources, it is seen as a major enabler to foster biomedical research and drug discovery. In contrast to the biomedical literature, research into the mining of biomedical patents has not reached the same level of maturity. Here, we review existing work and highlight the associated technical challenges that emerge from automatically extracting facts from patents. We conclude by outlining potential future directions in this domain that could help drive biomedical research and drug discovery. PMID:27179985

  3. Simbody: multibody dynamics for biomedical research

    OpenAIRE

    Sherman, Michael A.; Seth, Ajay; Delp, Scott L.

    2011-01-01

    Multibody software designed for mechanical engineering has been successfully employed in biomedical research for many years. For real time operation some biomedical researchers have also adapted game physics engines. However, these tools were built for other purposes and do not fully address the needs of biomedical researchers using them to analyze the dynamics of biological structures and make clinically meaningful recommendations. We are addressing this problem through the development of an...

  4. The Obligation to Participate in Biomedical Research

    OpenAIRE

    Schaefer, G. Owen; Emanuel, Ezekiel J; Wertheimer, Alan

    2009-01-01

    The prevailing view is that participation in biomedical research is above and beyond the call of duty. While some commentators have offered reasons against this, we propose a novel public goods argument for an obligation to participate in biomedical research. Biomedical knowledge is a public good, available to any individual even if that individual does not contribute to it. Participation in research is a critical way to support that important public good. Consequently, we all have a duty to ...

  5. Novel Hyperbranched Polyurethane Brushes for Biomedical Applications

    Institute of Scientific and Technical Information of China (English)

    Ton; Loontjens; Bart; Plum

    2007-01-01

    1 Results The objective was to make hyperbranched (HB) polyurethane brushes with reactive end groups, to coat biomedical devices and to enable the introduction of various functionalities that are needed to fulfill biomedical tasks.Biomedical materials should fulfill at least three requirements: (1) good mechanical properties, (2) good biocompatibility and (3) provided with functionalities to perform the required tasks. Since polyurethanes are able to fulfill the first 2 requirements we focused in this w...

  6. Searching Biomedical Text: Towards Maximum Relevant Results

    OpenAIRE

    Galde, Ola; Sevaldsen, John Harald

    2006-01-01

    The amount of biomedical information available to users today is large and increasing. The ability to precisely retrieve desired information is vital in order to utilize available knowledge. In this work we investigated how to improve the relevance of biomedical search results. Using the Lucene Java API we applied a series of information retrieval techniques to search in biomedical data. The techniques ranged from basic stemming and stop-word removal to more advanced methods like user relevan...

  7. Lead Poison Detection

    Science.gov (United States)

    1976-01-01

    With NASA contracts, Whittaker Corporations Space Science division has developed an electro-optical instrument to mass screen for lead poisoning. Device is portable and detects protoporphyrin in whole blood. Free corpuscular porphyrins occur as an early effect of lead ingestion. Also detects lead in urine used to confirm blood tests. Test is inexpensive and can be applied by relatively unskilled personnel. Similar Whittaker fluorometry device called "drug screen" can measure morphine and quinine in urine much faster and cheaper than other methods.

  8. Introduction to biomedical engineering technology

    CERN Document Server

    Street, Laurence J

    2011-01-01

    IntroductionHistory of Medical DevicesThe Role of Biomedical Engineering Technologists in Health CareCharacteristics of Human Anatomy and Physiology That Relate to Medical DevicesSummaryQuestionsDiagnostic Devices: Part OnePhysiological Monitoring SystemsThe HeartSummaryQuestionsDiagnostic Devices: Part TwoCirculatory System and BloodRespiratory SystemNervous SystemSummaryQuestionsDiagnostic Devices: Part ThreeDigestive SystemSensory OrgansReproductionSkin, Bone, Muscle, MiscellaneousChapter SummaryQuestionsDiagnostic ImagingIntroductionX-RaysMagnetic Resonance Imaging ScannersPositron Emissio

  9. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  10. An introduction to biomedical instrumentation

    CERN Document Server

    Dewhurst, D J

    1976-01-01

    An Introduction to Biomedical Instrumentation presents a course of study and applications covering the basic principles of medical and biological instrumentation, as well as the typical features of its design and construction. The book aims to aid not only the cognitive domain of the readers, but also their psychomotor domain as well. Aside from the seminar topics provided, which are divided into 27 chapters, the book complements these topics with practical applications of the discussions. Figures and mathematical formulas are also given. Major topics discussed include the construction, handli

  11. National Space Biomedical Research Institute

    Science.gov (United States)

    1999-01-01

    This report summarizes the activities of the National Space Biomedical Research Institute (NSBRI) during FY 1999, the second full year of existence of the NSBRI's research program, and is prepared in accordance with Cooperative Agreement NCC9-58 between NASA's Lyndon B. Johnson Space Center and Baylor College of Medicine (NSBRI). The report consists of progress reports on projects related to the effects of microgravity and space on physiology. The research is broken up in nine areas: (1) Bone loss, (2) Cardiovascular alterations, (3) human performance, (3) immunology, infection and hematology, (4) muscle alterations and atrophy,(5) Neurovestibular adaptation, radiation effects, (6) technology development, and (7) synergy projects.

  12. Thermoresponsive Polymers for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Theoni K. Georgiou

    2011-08-01

    Full Text Available Thermoresponsive polymers are a class of “smart” materials that have the ability to respond to a change in temperature; a property that makes them useful materials in a wide range of applications and consequently attracts much scientific interest. This review focuses mainly on the studies published over the last 10 years on the synthesis and use of thermoresponsive polymers for biomedical applications including drug delivery, tissue engineering and gene delivery. A summary of the main applications is given following the different studies on thermoresponsive polymers which are categorized based on their 3-dimensional structure; hydrogels, interpenetrating networks, micelles, crosslinked micelles, polymersomes, films and particles.

  13. Frontiers in biomedical engineering and biotechnology.

    Science.gov (United States)

    Liu, Feng; Goodarzi, Ali; Wang, Haifeng; Stasiak, Joanna; Sun, Jianbo; Zhou, Yu

    2014-01-01

    The 2nd International Conference on Biomedical Engineering and Biotechnology (iCBEB 2013), held in Wuhan on 11–13 October 2013, is an annual conference that aims at providing an opportunity for international and national researchers and practitioners to present the most recent advances and future challenges in the fields of Biomedical Information, Biomedical Engineering and Biotechnology. The papers published by this issue are selected from this conference, which witnesses the frontier in the field of Biomedical Engineering and Biotechnology, which particularly has helped improving the level of clinical diagnosis in medical work.

  14. Telemedicine optoelectronic biomedical data processing system

    Science.gov (United States)

    Prosolovska, Vita V.

    2010-08-01

    The telemedicine optoelectronic biomedical data processing system is created to share medical information for the control of health rights and timely and rapid response to crisis. The system includes the main blocks: bioprocessor, analog-digital converter biomedical images, optoelectronic module for image processing, optoelectronic module for parallel recording and storage of biomedical imaging and matrix screen display of biomedical images. Rated temporal characteristics of the blocks defined by a particular triggering optoelectronic couple in analog-digital converters and time imaging for matrix screen. The element base for hardware implementation of the developed matrix screen is integrated optoelectronic couples produced by selective epitaxy.

  15. Lead Poisoning

    Science.gov (United States)

    Lead is a metal that occurs naturally in the earth's crust. Lead can be found in all parts of our ... from human activities such as mining and manufacturing. Lead used to be in paint; older houses may ...

  16. Annual Report for 1981 to the DOE Office of the Assistant Secretary for Environmental Protection, Safety, and Emergency Preparedness. Part 2. Ecological Sciences. [Lead abstract

    Energy Technology Data Exchange (ETDEWEB)

    Vaughan, B.E.

    1982-02-01

    Separate abstracts were prepared for the 38 reports for this Pacific Northwest Laboratory Annual Report for 1981 to the DOE Office of Energy Research. This part dealt with research conducted in the ecological sciences.

  17. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  18. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry. PMID:23502560

  19. Hypercompetition in biomedical research evaluation and its impact on young scientist careers.

    Science.gov (United States)

    Kamerlin, Shina Caroline Lynn

    2015-12-01

    Recent years have seen tremendous changes in the modes of publication and dissemination of biomedical information, with the introduction of countless new publishers and publishing models, as well as alternative modes of research evaluation. In parallel, we are witnessing an unsustainable explosion in the amount of information generated by each individual scientist, at the same time as many countries' shrinking research budgets are greatly increasing the competition for research funding. In such a hypercompetitive environment, how does one measure excellence? This contribution will provide an overview of some of the ongoing changes in authorship practices in the biomedical sciences, and also the consequences of hypercompetition to the careers of young scientists, from the perspective of a tenured young faculty member in the biomedical sciences. It will also provide some suggestions as to alternate dissemination and evaluation practices that could reverse current trends. [Int Microbiol 18(4):253-261 (2015)].

  20. Legacy of Biomedical Research During the Space Shuttle Program

    Science.gov (United States)

    Hayes, Judith C.

    2011-01-01

    The Space Shuttle Program provided many opportunities to study the role of spaceflight on human life for over 30 years and represented the longest and largest US human spaceflight program. Outcomes of the research were understanding the effect of spaceflight on human physiology and performance, countermeasures, operational protocols, and hardware. The Shuttle flights were relatively short, Biomedical research was conducted on the Space Shuttle using various vehicle resources. Specially constructed pressurized laboratories called Spacelab and SPACEHAB housed many laboratory instruments to accomplish experiments in the Shuttle s large payload bay. In addition to these laboratory flights, nearly every mission had dedicated human life science research experiments conducted in the Shuttle middeck. Most Shuttle astronauts participated in some life sciences research experiments either as test subjects or test operators. While middeck experiments resulted in a low sample per mission compared to many Earth-based studies, this participation allowed investigators to have repetition of tests over the years on successive Shuttle flights. In addition, as a prelude to the International Space Station (ISS), NASA used the Space Shuttle as a platform for assessing future ISS hardware systems and procedures. The purpose of this panel is to provide an understanding of science integration activities required to implement Shuttle research, review biomedical research, characterize countermeasures developed for Shuttle and ISS as well as discuss lessons learned that may support commercial crew endeavors. Panel topics include research integration, cardiovascular physiology, neurosciences, skeletal muscle, and exercise physiology. Learning Objective: The panel provides an overview from the Space Shuttle Program regarding research integration, scientific results, lessons learned from biomedical research and countermeasure development.

  1. Environmental and biomedical applications of natural metal stable isotope variations

    Science.gov (United States)

    Bullen, T.D.; Walczyk, T.

    2009-01-01

    etal stable isotopes are now being used to trace metal contaminants in the environment and as indicators of human systemic function where metals play a role. Stable isotope abundance variations provide information about metal sources and the processes affecting metals in complex natural systems, complementing information gained from surrogate tracers, such as metal abundance ratios or biochemical markers of metal metabolism. The science is still in its infancy, but the results of initial studies confirm that metal stable isotopes can provide a powerful tool for forensic and biomedical investigations.

  2. Lab-on-a-chip techniques, circuits, and biomedical applications

    CERN Document Server

    Ghallab, Yehya H

    2010-01-01

    Here's a groundbreaking book that introduces and discusses the important aspects of lab-on-a-chip, including the practical techniques, circuits, microsystems, and key applications in the biomedical, biology, and life science fields. Moreover, this volume covers ongoing research in lab-on-a-chip integration and electric field imaging. Presented in a clear and logical manner, the book provides you with the fundamental underpinnings of lab-on-a-chip, presents practical results, and brings you up to date with state-of-the-art research in the field. This unique resource is supported with over 160 i

  3. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths.

  4. The Role of Scientific Communication Skills in Trainees' Intention to Pursue Biomedical Research Careers: A Social Cognitive Analysis.

    Science.gov (United States)

    Cameron, Carrie; Lee, Hwa Young; Anderson, Cheryl; Byars-Winston, Angela; Baldwin, Constance D; Chang, Shine

    2015-01-01

    Scientific communication (SciComm) skills are indispensable for success in biomedical research, but many trainees may not have fully considered the necessity of regular writing and speaking for research career progression. Our purpose was to investigate the relationship between SciComm skill acquisition and research trainees' intentions to remain in research careers. We used social cognitive career theory (SCCT) to test a model of the relationship of SciComm skills to SciComm-related cognitive variables in explaining career intentions. A sample of 510 graduate students and postdoctoral fellows at major academic health science centers in the Texas Medical Center, Houston, Texas, were surveyed online. Results suggested that interest in performing SciComm tasks, SciComm outcome expectations (SCOEs), and SciComm productivity predicted intention to remain in a research career, while SciComm self-efficacy did not directly predict career intention. SCOEs also predicted interest in performing SciComm tasks. As in other SCCT studies, SciComm self-efficacy predicted SCOEs. We conclude that social cognitive factors of SciComm skill acquisition and SciComm productivity significantly predict biomedical trainees' intentions to pursue research careers whether within or outside academia. While further studies are needed, these findings may lead to evidence-based interventions to help trainees remain in their chosen career paths. PMID:26628562

  5. Biomedical engineering research at DOE national labs

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-03-01

    Biomedical Engineering is the application of principles of physics, chemistry, nd engineering to problems of human health. The National Laboratories of the U.S. Department of Energy have been leaders in this scientific field since 1947. This inventory of their biomedical engineering projects was compiled in January 1999.

  6. Magnetic Resonance Imaging in Biomedical Engineering

    Science.gov (United States)

    Kaśpar, Jan; Hána, Karel; Smrčka, Pavel; Brada, Jiří; Beneš, Jiří; Šunka, Pavel

    2007-11-01

    The basic principles of magnetic resonance imaging covering physical principles and basic imaging techniques will be presented as a strong tool in biomedical engineering. Several applications of MRI in biomedical research practiced at the MRI laboratory of the FBMI CTU including other laboratory instruments and activities are introduced.

  7. Cross language information retrieval for biomedical literature

    NARCIS (Netherlands)

    Schuemie, M.; Trieschnigg, D.; Kraaij, W.

    2007-01-01

    This workshop report discusses the collaborative work of UT, EMC and TNO on the TREC Genomics Track 2007. The biomedical information retrieval task is approached using cross language methods, in which biomedical concept detection is combined with effective IR based on unigram language models. Furthe

  8. A new educational program on biomedical engineering

    NARCIS (Netherlands)

    Alste, van J.A.

    2000-01-01

    At the University of Twente together with the Free University of Amsterdam a new educational program on Biomedical Engineering will be developed. The academic program with a five-year duration will start in September 2001. After a general, broad education in Biomedical Engineering in the first three

  9. Biomedical Journals and the World Wide Web.

    Science.gov (United States)

    Schoonbaert, Dirk

    1998-01-01

    Discusses the publication of biomedical journals on the Internet. Highlights include pros and cons of electronic publishing; the Global Health Network at the University of Pittsburgh; the availability of biomedical journals on the World Wide Web; current applications, including access to journal contents tables and electronic delivery of full-text…

  10. Life sciences report 1987

    Science.gov (United States)

    1987-01-01

    Highlighted here are the major research efforts of the NASA Life Sciences Division during the past year. Topics covered include remote health care delivery in space, space biomedical research, gravitational biology, biospherics (studying planet Earth), the NASA Closed Ecological Life Support System (CELSS), exobiology, flight programs, international cooperation, and education programs.

  11. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement. PMID:27354246

  12. An evaluative conservative case for biomedical enhancement.

    Science.gov (United States)

    Danaher, John

    2016-09-01

    It is widely believed that a conservative moral outlook is opposed to biomedical forms of human enhancement. In this paper, I argue that this widespread belief is incorrect. Using Cohen's evaluative conservatism as my starting point, I argue that there are strong conservative reasons to prioritise the development of biomedical enhancements. In particular, I suggest that biomedical enhancement may be essential if we are to maintain our current evaluative equilibrium (ie, the set of values that undergird and permeate our current political, economic and personal lives) against the threats to that equilibrium posed by external, non-biomedical forms of enhancement. I defend this view against modest conservatives who insist that biomedical enhancements pose a greater risk to our current evaluative equilibrium, and against those who see no principled distinction between the forms of human enhancement.

  13. Applications of computational intelligence in biomedical technology

    CERN Document Server

    Majernik, Jaroslav; Pancerz, Krzysztof; Zaitseva, Elena

    2016-01-01

    This book presents latest results and selected applications of Computational Intelligence in Biomedical Technologies. Most of contributions deal with problems of Biomedical and Medical Informatics, ranging from theoretical considerations to practical applications. Various aspects of development methods and algorithms in Biomedical and Medical Informatics as well as Algorithms for medical image processing, modeling methods are discussed. Individual contributions also cover medical decision making support, estimation of risks of treatments, reliability of medical systems, problems of practical clinical applications and many other topics  This book is intended for scientists interested in problems of Biomedical Technologies, for researchers and academic staff, for all dealing with Biomedical and Medical Informatics, as well as PhD students. Useful information is offered also to IT companies, developers of equipment and/or software for medicine and medical professionals.  .

  14. Announcement of new division: C9 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants

    Science.gov (United States)

    Crop Science, is pleased to announce that manuscript submissions are now being accepted to the journal through the new Provisional Division C09 – Biomedical, Health-Beneficial, and Nutritionally Enhanced Plants. The focus of this Division is on plants as food or feed, and on the development and eva...

  15. Photonic Sensors Based on Flexible Materials with FBGs for Use on Biomedical Applications

    OpenAIRE

    Silva, Alexandre Ferreira da; Rocha, Rui Pedro; Carmo, João Paulo; Correia, José Higino

    2013-01-01

    This chapter is intended for presenting biomedical applications of FBGs embedded into flexible carriers for enhancing the sensitivity and to provide interference-free instrumentation. This work was fully supported by the Algoritmi’s Strategic Project UI 319-2011-2012, under the Portuguese Foundation for Science and Technology grant Pest C/EEI/UI0319/2011.

  16. Biomedical infertility care in Sub-Saharan Africa: what is going on?

    NARCIS (Netherlands)

    G.J.E. Gerrits

    2011-01-01

    Infertility treatments, including the use of advanced reproductive technologies (ARTs), are nowadays provided at several places in sub-Saharan Africa. This article, which is based on a review of (scarce) social science studies, gives insight into the way biomedical infertility care is provided, cons

  17. The Development of a Multi-Disciplinary Educational Programme in Biomedical Diagnostics: A Novel Approach

    Science.gov (United States)

    MacCormac, Aoife; O'Brien, Emma; O'Kennedy, Richard

    2011-01-01

    This paper describes the development of a taught Master's course in biomedical diagnostics using a novel multi-disciplinary approach. This course, the first of its kind in Ireland, covers the science and technology underlying the development of medical diagnostic devices that detect early markers of diseases such as cancer. The ethical impact of…

  18. Peer Relationships and the Biomedical Doctorate: A Key Component of the Contemporary Learning Environment

    Science.gov (United States)

    Kemp, Matthew W.; Molloy, Timothy J.; Pajic, Marina; Chapman, Elaine

    2013-01-01

    Little attention has been paid to the scholarship of doctoral education in the biomedical sciences, hindering the formulation of research-informed improvements to this important area of higher education. We present an analysis of interview data from Australian PhD students and suggest that relationships between students and their…

  19. Cell mechanics in biomedical cavitation

    Science.gov (United States)

    Wang, Qianxi; Manmi, Kawa; Liu, Kuo-Kang

    2015-01-01

    Studies on the deformation behaviours of cellular entities, such as coated microbubbles and liposomes subject to a cavitation flow, become increasingly important for the advancement of ultrasonic imaging and drug delivery. Numerical simulations for bubble dynamics of ultrasound contrast agents based on the boundary integral method are presented in this work. The effects of the encapsulating shell are estimated by adapting Hoff's model used for thin-shell contrast agents. The viscosity effects are estimated by including the normal viscous stress in the boundary condition. In parallel, mechanical models of cell membranes and liposomes as well as state-of-the-art techniques for quantitative measurement of viscoelasticity for a single cell or coated microbubbles are reviewed. The future developments regarding modelling and measurement of the material properties of the cellular entities for cutting-edge biomedical applications are also discussed. PMID:26442142

  20. Biomedical Perspective of Electrochemical Nanobiosensor

    Institute of Scientific and Technical Information of China (English)

    Priti Singh; Shailendra Kumar Pandey; Jyoti Singh; Sameer Srivastava; Sadhana Sachan; Sunil Kumar Singh

    2016-01-01

    Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensi-tivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the electrochemical sensor and its future perspectives are also addressed.

  1. Tritium AMS for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, M.L.; Velsko, C.; Turteltaub, K.W.

    1993-08-01

    We are developing {sup 3}H-AMS to measure {sup 3}H activity of mg-sized biological samples. LLNL has already successfully applied {sup 14}C AMS to a variety of problems in the area of biomedical research. Development of {sup 3}H AMS would greatly complement these studies. The ability to perform {sup 3}H AMS measurements at sensitivities equivalent to those obtained for {sup 14}C will allow us to perform experiments using compounds that are not readily available in {sup 14}C-tagged form. A {sup 3}H capability would also allow us to perform unique double-labeling experiments in which we learn the fate, distribution, and metabolism of separate fractions of biological compounds.

  2. Piezoelectric nanomaterials for biomedical applications

    CERN Document Server

    Menciassi, Arianna

    2012-01-01

    Nanoscale structures and materials have been explored in many biological applications because of their novel and impressive physical and chemical properties. Such properties allow remarkable opportunities to study and interact with complex biological processes. This book analyses the state of the art of piezoelectric nanomaterials and introduces their applications in the biomedical field. Despite their impressive potentials, piezoelectric materials have not yet received significant attention for bio-applications. This book shows that the exploitation of piezoelectric nanoparticles in nanomedicine is possible and realistic, and their impressive physical properties can be useful for several applications, ranging from sensors and transducers for the detection of biomolecules to “sensible” substrates for tissue engineering or cell stimulation.

  3. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  4. Peptide nanostructures in biomedical technology.

    Science.gov (United States)

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  5. Current state of biomedical engineering; Biomedical Engineering ha ima

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, K. [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Kanamori, T. [National Inst. of Materials and Chemical Research, Tsukuba (Japan)

    1996-11-05

    Medical science is divided into basic medical science and clinical medicine, and the technology of the medical treatment is established as their aggregate power. This concept can be compared with the presence of industrial engineering as a product of physical science and engineering. Basic medical science has come to be combined with science deeply as a result of the rise of recent molecular biology. As to clinical medicine, current highly advanced medical treatment can be said to be made up of scientific technology. Medical treatment can be considered to include prevention, diagnosis, remedy, and rehabilitation stages. It is closely connected with engineering in each stage. The methods of approaching medical science are elucidation of the functions of internal organs and tissue considering that a living body is a plant, and offering of new therapeutical means by applying chemical devices to a living body. The functions of artificial organs can e divided roughly into convection transport, mass transfer, structural members, and signal transfer from the viewpoint of chemical engineering. Medical treatment will be brought into close relation with scientific technology in the future. 10 refs., 3 figs., 2 tabs.

  6. Imaging sciences workshop

    Energy Technology Data Exchange (ETDEWEB)

    Candy, J.V.

    1994-11-15

    This workshop on the Imaging Sciences sponsored by Lawrence Livermore National Laboratory contains short abstracts/articles submitted by speakers. The topic areas covered include the following: Astronomical Imaging; biomedical imaging; vision/image display; imaging hardware; imaging software; Acoustic/oceanic imaging; microwave/acoustic imaging; computed tomography; physical imaging; imaging algorithms. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  7. Space life sciences: Programs and projects

    Science.gov (United States)

    1989-01-01

    NASA space life science activities are outlined. Brief, general descriptions are given of research in the areas of biomedical research, space biology, closed loop life support systems, exobiology, and biospherics.

  8. A Microcosm of the Biomedical Research Experience for Upper-level Undergraduates

    OpenAIRE

    Hurd, Daryl D.

    2008-01-01

    The skill set required of biomedical researchers continues to grow and evolve as biology matures as a natural science. Science necessitates creative yet critical thinking, persuasive communication skills, purposeful use of time, and adeptness at the laboratory bench. Teaching these skills can be effectively accomplished in an inquiry-based, active-learning environment at a primarily undergraduate institution. Cell Biology Techniques, an upper-level cell biology laboratory course at St. John F...

  9. A Model of Knowledge Sharing in Biomedical Engineering: Challenges and Requirements

    OpenAIRE

    Arntzen, Aurilla Aurelie Bechina; Leguy, Carole

    2007-01-01

    Technology has always played an important role in medical science by contributing extraordinary advancements to health care. Archaeological excavation shows that the Greek society had already used tools to explore the human body in order to understand human physiology and to diagnose normal and pathologic states. In the last four decades, emerging biomedical engineering sciences have led to the manufacturing of cutting edge medical instruments. Those technical tools are used to enhance clinic...

  10. Antibiotic and chemotherapeutic enhanced three-dimensional printer filaments and constructs for biomedical applications

    OpenAIRE

    Weisman JA; Nicholson JC; Tappa K; Jammalamadaka UB; CG Wilson; Mills DK

    2015-01-01

    Jeffery A Weisman,1 James C Nicholson,2 Karthik Tappa,1 UdayaBhanu Jammalamadaka,1 Chester G Wilson,2 David K Mills1,3 1Center for Biomedical Engineering and Rehabilitation Science, 2Nanosystems Engineering, 3School of Biological Sciences, Louisiana Technical University, Ruston, LA, USAAbstract: Three-dimensional (3D) printing and additive manufacturing holds potential for highly personalized medicine, and its introduction into clinical medicine will have many implications for patient care. T...

  11. Manufacturing Industries with High Concentrations of Scientists and Engineers Lead in 1965-77 Employment Growth. Science Resources Studies Highlights, April 20, 1979.

    Science.gov (United States)

    National Science Foundation, Washington, DC. Div. of Science Resources Studies.

    Presented are the results of a survey of over 100,000 manufacturing establishments, conducted for the National Science Foundation by the Bureau of Labor Statistics, covering average annual employment for calendar year 1977. Industries whose relative concentration of scientists and engineers was high in 1977, such as petroleum refining, chemicals,…

  12. Lead Toxicity

    Science.gov (United States)

    ... in children over time may lead to reduced IQ, slow learning, Attention Deficit Hyperactivity Disorder (ADHD), or ... avoid exposure to soil. Is there a medical test for lead exposure? • Blood samples can be tested ...

  13. Relational Leading

    DEFF Research Database (Denmark)

    Larsen, Mette Vinther; Rasmussen, Jørgen Gulddahl

    2015-01-01

    This first chapter presents the exploratory and curious approach to leading as relational processes – an approach that pervades the entire book. We explore leading from a perspective that emphasises the unpredictable challenges and triviality of everyday life, which we consider an interesting......, relevant and realistic way to examine leading. The chapter brings up a number of concepts and contexts as formulated by researchers within the field, and in this way seeks to construct a first understanding of relational leading....

  14. Education of biomedical engineering in Taiwan.

    Science.gov (United States)

    Lin, Kang-Ping; Kao, Tsair; Wang, Jia-Jung; Chen, Mei-Jung; Su, Fong-Chin

    2014-01-01

    Biomedical Engineers (BME) play an important role in medical and healthcare society. Well educational programs are important to support the healthcare systems including hospitals, long term care organizations, manufacture industries of medical devices/instrumentations/systems, and sales/services companies of medical devices/instrumentations/system. In past 30 more years, biomedical engineering society has accumulated thousands people hold a biomedical engineering degree, and work as a biomedical engineer in Taiwan. Most of BME students can be trained in biomedical engineering departments with at least one of specialties in bioelectronics, bio-information, biomaterials or biomechanics. Students are required to have internship trainings in related institutions out of campus for 320 hours before graduating. Almost all the biomedical engineering departments are certified by IEET (Institute of Engineering Education Taiwan), and met the IEET requirement in which required mathematics and fundamental engineering courses. For BMEs after graduation, Taiwanese Society of Biomedical Engineering (TSBME) provides many continue-learning programs and certificates for all members who expect to hold the certification as a professional credit in his working place. In current status, many engineering departments in university are continuously asked to provide joint programs with BME department to train much better quality students. BME is one of growing fields in Taiwan.

  15. NAMED ENTITY RECOGNITION FROM BIOMEDICAL TEXT -AN INFORMATION EXTRACTION TASK

    Directory of Open Access Journals (Sweden)

    N. Kanya

    2016-07-01

    Full Text Available Biomedical Text Mining targets the Extraction of significant information from biomedical archives. Bio TM encompasses Information Retrieval (IR and Information Extraction (IE. The Information Retrieval will retrieve the relevant Biomedical Literature documents from the various Repositories like PubMed, MedLine etc., based on a search query. The IR Process ends up with the generation of corpus with the relevant document retrieved from the Publication databases based on the query. The IE task includes the process of Preprocessing of the document, Named Entity Recognition (NER from the documents and Relationship Extraction. This process includes Natural Language Processing, Data Mining techniques and machine Language algorithm. The preprocessing task includes tokenization, stop word Removal, shallow parsing, and Parts-Of-Speech tagging. NER phase involves recognition of well-defined objects such as genes, proteins or cell-lines etc. This process leads to the next phase that is extraction of relationships (IE. The work was based on machine learning algorithm Conditional Random Field (CRF.

  16. From GRID to gridlock: the relationship between scientific biomedical breakthroughs and HIV/AIDS policy in the US Congress

    Directory of Open Access Journals (Sweden)

    Matthew B Platt

    2013-11-01

    Full Text Available Introduction: From the travel ban on people living with HIV (PLHIV to resistance to needle exchange programmes, there are many examples where policy responses to HIV/AIDS in the United States seem divorced from behavioural, public health and sociological evidence. At its root, however, the unknowns about HIV/AIDS lie at biomedical science, and scientific researchers have made tremendous progress over the past 30 years of the epidemic by using antiretroviral therapy to increase the life expectancy of PLHIV almost to the same level as non-infected individuals; but a relationship between biomedical science discoveries and congressional responses to HIV/AIDS has not been studied. Using quantitative approaches, we directly examine the hypothesis that progress in HIV/AIDS biomedical science discoveries would have a correlative relationship with congressional response to HIV/AIDS from 1981 to 2010. Methods: This study used original data on every bill introduced, hearing held and law passed by the US Congress relating to HIV/AIDS over 30 years (1981–2010. We combined congressional data with the most cited and impactful biomedical research scientific publications over the same time period as a metric of biomedical science breakthroughs. Correlations between congressional policy and biomedical research were then analyzed at the aggregate and individual levels. Results: Biomedical research advancements helped shape both the level and content of bill sponsorship on HIV/AIDS, but they had no effect on other stages of the legislative process. Examination of the content of bills and biomedical research indicated that science helped transform HIV/AIDS bill sponsorship from a niche concern of liberal Democrats to a bipartisan coalition when Republicans became the majority party. The trade-off for that expansion has been an emphasis on the global epidemic to the detriment of domestic policies and programmes. Conclusions: Breakthroughs in biomedical science did

  17. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique ’intelligent’ characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  18. Enhancing biomedical design with design thinking.

    Science.gov (United States)

    Kemnitzer, Ronald; Dorsa, Ed

    2009-01-01

    The development of biomedical equipment is justifiably focused on making products that "work." However, this approach leaves many of the people affected by these designs (operators, patients, etc.) with little or no representation when it comes to the design of these products. Industrial design is a "user focused" profession which takes into account the needs of diverse groups when making design decisions. The authors propose that biomedical equipment design can be enhanced, made more user and patient "friendly" by adopting the industrial design approach to researching, analyzing, and ultimately designing biomedical products.

  19. Veterans administration biomedical engineer training program.

    Science.gov (United States)

    Bradley, D E

    1981-01-01

    The Veterans administration's Department of Medical and Surgery includes in its Graduate Engineer Training Program a special program for Biomedical Engineers. The program is intended for recent graduates in biomedical engineering and provides for the VA a means of recruiting and training biomedical engineers for employment in its medical centers nationwide. This paper discusses the structure and objectives of the program, the opportunities that exist for the trainee within the program and the results of the program since its inception in 1973, and provides an outlook on the future of the program.

  20. Translational Bioinformatics and Clinical Research (Biomedical) Informatics.

    Science.gov (United States)

    Sirintrapun, S Joseph; Zehir, Ahmet; Syed, Aijazuddin; Gao, JianJiong; Schultz, Nikolaus; Cheng, Donavan T

    2016-03-01

    Translational bioinformatics and clinical research (biomedical) informatics are the primary domains related to informatics activities that support translational research. Translational bioinformatics focuses on computational techniques in genetics, molecular biology, and systems biology. Clinical research (biomedical) informatics involves the use of informatics in discovery and management of new knowledge relating to health and disease. This article details 3 projects that are hybrid applications of translational bioinformatics and clinical research (biomedical) informatics: The Cancer Genome Atlas, the cBioPortal for Cancer Genomics, and the Memorial Sloan Kettering Cancer Center clinical variants and results database, all designed to facilitate insights into cancer biology and clinical/therapeutic correlations.

  1. Comparing the performance of biomedical clustering methods

    DEFF Research Database (Denmark)

    Wiwie, Christian; Baumbach, Jan; Röttger, Richard

    2015-01-01

    Identifying groups of similar objects is a popular first step in biomedical data analysis, but it is error-prone and impossible to perform manually. Many computational methods have been developed to tackle this problem. Here we assessed 13 well-known methods using 24 data sets ranging from gene......-ranging comparison we were able to develop a short guideline for biomedical clustering tasks. ClustEval allows biomedical researchers to pick the appropriate tool for their data type and allows method developers to compare their tool to the state of the art....

  2. Recent developments in intelligent biomedical polymers

    Institute of Scientific and Technical Information of China (English)

    XIAO ChunSheng; TIAN HuaYu; ZHUANG XiuLi; CHEN XueSi; JING XiaBin

    2009-01-01

    Intelligent polymers or stimuli-responsive polymers may exhibit distinct transitions in physical-chemical properties, including conformation, polarity, phase structure and chemical composition in response to changes in environmental stimuli. Due to their unique 'intelligent' characteristics, stimuli-sensitive polymers have found a wide variety of applications in biomedical and nanotechnological fields. This review focuses on the recent developments in biomedical application of intelligent polymer systems, such as intelligent hydrogel systems, intelligent drug delivery systems and intelligent molecular recognition systems. Also, the possible future directions for the application of these intelligent polymer systems in the biomedical field are presented.

  3. Shape-Memory Polymers for Biomedical Applications

    Science.gov (United States)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  4. Biomedical applications of functionalized fullerene-based nanomaterials

    Directory of Open Access Journals (Sweden)

    Ranga Partha

    2009-11-01

    Full Text Available Ranga Partha, Jodie L ConyersCenter for Translational Injury Research, The University of Texas Health Science Center, Houston, TX 77030, USAAbstract: Since their discovery in 1985, fullerenes have been investigated extensively due to their unique physical and chemical properties. In recent years, studies on functionalized fullerenes for various applications in the field of biomedical sciences have seen a significant increase. The ultimate goal is towards employing these functionalized fullerenes in the diagnosis and therapy of human diseases. Functionalized fullerenes are one of the many different classes of compounds that are currently being investigated in the rapidly emerging field of nanomedicine. In this review, the focus is on the three categories of drug delivery, reactive oxygen species quenching, and targeted imaging for which functionalized fullerenes have been studied in depth. In addition, an exhaustive list of the different classes of functionalized fullerenes along with their applications is provided. We will also discuss and summarize the unique approaches, mechanisms, advantages, and the aspect of toxicity behind utilizing functionalized fullerenes for biomedical applications.Keywords: fullerenes, functionalized fullerenes, nanomedicine, drug delivery, buckysomes, radiation protection

  5. Towards a broader understanding of agency in biomedical ethics.

    Science.gov (United States)

    López Barreda, Rodrigo; Trachsel, Manuel; Biller-Andorno, Nikola

    2016-09-01

    With advances in medical science, the concept of agency has received increasing attention in biomedical ethics. However, most of the ethical discussion around definitions of agency has focused either on patients suffering from mental disorders or on patients receiving cutting-edge medical treatments in developed countries. Very little of the discussion around concepts of agency has focused on the situation of patients suffering from common diseases that affect populations worldwide. Therefore, the most widely-used definitions of agency may be not appropriate to analyse common diseases among large populations. The branch of social sciences known as development studies draw on their own definitions of the term agency that may provide a more applicable and accurate way of referring to common and general cases than the definitions currently used in bioethics. Moreover, the psychological Self-Determination Theory may improve the usefulness of these definitions in common situations. This article explains the characteristics and the shortcomings of current bioethical definitions of agency when they are applied to common medical conditions worldwide. A new, value-based concept of agency, informed by development studies, is proposed as more accurate and useful for biomedical ethics.

  6. From global bioethics to ethical governance of biomedical research collaborations

    DEFF Research Database (Denmark)

    Wahlberg, Ayo; Rehmann-Sutter, Christoph; Sleeboom-Faulkner, Margaret;

    2013-01-01

    One of the features of advanced life sciences research in recent years has been its internationalisation, with countries such as China and South Korea considered ‘emerging biotech’ locations. As a result, crosscontinental collaborations are becoming common generating moves towards ethical and legal...... with the ethical challenges that inter-continental biomedical research collaborations generate. In particular we ask how national systems of ethical governance of life science research might cope with increasingly global research collaborations with a focus on Sino-European collaboration. We propose four ‘spheres......’ e deliberation, regulation, oversight and interaction e as a helpful way to conceptualise national systems of ethical governance. Using a workshop-based mapping methodology (workshops held in Beijing, Shanghai, Changsha, Xian, Shenzen and London) we identified three specific ethical challenges...

  7. Governance of biomedical research in Singapore and the challenge of conflicts of interest.

    Science.gov (United States)

    Ho, Calvin Wai Loon; De Castro, Leonardo D; Campbell, Alastair V

    2014-07-01

    This article discusses the establishment of a governance framework for biomedical research in Singapore. It focuses on the work of the Bioethics Advisory Committee (BAC), which has been instrumental in institutionalizing a governance framework, through the provision of recommendations to the government, and through the coordination of efforts among government agencies. However, developing capabilities in biomedical sciences presents challenges that are qualitatively different from those of past technologies. The state has a greater role to play in balancing conflicting and potentially irreconcilable economic, social, and political goals. This article analyzes the various ways by which the BAC has facilitated this.

  8. Centrifugal microfluidics for biomedical applications.

    Science.gov (United States)

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  9. Biomedical waste in Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Sikka, S.

    2000-07-01

    In its broadest sense, medical waste applies to solid or liquid waste generated in the diagnosis, treatment of immunization of human beings or animals in research, in the production or testing of biological material. Of all the wastes produced by hospitals, the World Health Organization estimated that 10 per cent of it is infectious and 5 per cent consists of hazardous chemicals such as methylchloride and formaldehyde. Of course, one of the major concerns is the transmission of human immunodeficiency virus (HIV) and hepatitis B or C viruses. If the medical waste is not properly managed, a high degree of pollution and public health risks exists, particularly if the medical waste is mixed with municipal solid waste and dumped in uncontrolled areas. In New Delhi, the daily medical waste generated is 60 metric tons. In 1989, the Bureau of Indian Standards, New Delhi published guidelines for the management of Solid Wastes-Hospitals. Some rules governing the classification of biomedical waste were published in 1997-98 by the Ministry of Environment and Forests. Recommendations by the author included the segregation of hospital wastes, the set up of common medical waste treatment facilities as well as the training of Municipality workers in the safe handling of medical wastes. 7 refs., 3 tabs.

  10. Holographic lithography for biomedical applications

    Science.gov (United States)

    Stankevicius, E.; Balciunas, E.; Malinauskas, M.; Raciukaitis, G.; Baltriukiene, D.; Bukelskiene, V.

    2012-06-01

    Fabrication of scaffolds for cell growth with appropriate mechanical characteristics is top-most important for successful creation of tissue. Due to ability of fast fabrication of periodic structures with a different period, the holographic lithography technique is a suitable tool for scaffolds fabrication. The scaffolds fabricated by holographic lithography can be used in various biomedical investigations such as the cellular adhesion, proliferation and viability. These investigations allow selection of the suitable material and geometry of scaffolds which can be used in creation of tissue. Scaffolds fabricated from di-acrylated poly(ethylene glycol) (PEG-DA-258) over a large area by holographic lithography technique are presented in this paper. The PEG-DA scaffolds fabricated by holographic lithography showed good cytocompatibility for rabbit myogenic stem cells. It was observed that adult rabbit muscle-derived myogenic stem cells grew onto PEG-DA scaffolds. They were attached to the pillars and formed cell-cell interactions. It demonstrates that the fabricated structures have potential to be an interconnection channel network for cell-to-cell interactions, flow transport of nutrients and metabolic waste as well as vascular capillary ingrowth. These results are encouraging for further development of holographic lithography by improving its efficiency for microstructuring three-dimensional scaffolds out of biodegradable hydrogels

  11. Zirconium: biomedical and nephrological applications.

    Science.gov (United States)

    Lee, David B N; Roberts, Martin; Bluchel, Christian G; Odell, Ross A

    2010-01-01

    Recent years have witnessed a rapid increase in the use of zirconium (Zr)-containing compounds in artificial internal organs. Examples include dental implants and other restorative practices, total knee and hip replacement, and middle-ear ossicular chain reconstruction. In nephrological practice, Zr-containing sorbents have been used in hemofiltration, hemodialysis, peritoneal dialysis, and in the design and construction of wearable artificial kidneys. Zr compounds continue to be widely and extensively used in deodorant and antiperspirant preparations. In the public health arena, Zr compounds have been studied or used in controlling phosphorus pollution and in the reclamation of poison and bacteria-contaminated water. Experimental and clinical studies support the general consensus that Zr compounds are biocompatible and exhibit low toxicity. Reports on possible Zr-associated adverse reactions are rare and, in general, have not rigorously established a cause-and-effect relationship. Although publications on the use of Zr compounds have continued to increase in recent years, reports on Zr toxicity have virtually disappeared from the medical literature. Nevertheless, familiarity with, and continued vigilant monitoring of, the use of these compounds are warranted. This article provides an updated review on the biomedical use of Zr compounds.

  12. A Program on Biochemical and Biomedical Engineering.

    Science.gov (United States)

    San, Ka-Yiu; McIntire, Larry V.

    1989-01-01

    Presents an introduction to the Biochemical and Biomedical Engineering program at Rice University. Describes the development of the academic and enhancement programs, including organizational structure and research project titles. (YP)

  13. NICHD Biomedical Mass Spectrometry Core Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The NICHD Biomedical Mass Spectrometry Core Facility was created under the auspices of the Office of the Scientific Director to provide high-end mass-spectrometric...

  14. Computer vision for biomedical image applications. Proceedings

    International Nuclear Information System (INIS)

    This book constitutes the refereed proceedings of the First International Workshop on Computer Vision for Biomedical Image Applications: Current Techniques and Future Trends, CVBIA 2005, held in Beijing, China, in October 2005 within the scope of ICCV 20. (orig.)

  15. Towards Nanoscale Biomedical Devices in Medicine

    DEFF Research Database (Denmark)

    Parracino, A.; Gajula, G.P.; di Gennaro, A.K.;

    2011-01-01

    Medical interest in nanotechnology originates from a belief that nanoscale therapeutic devices can be constructed and directed towards its target inside the human body. Such nanodevices can be engineered by coupling superparamagnetic nanoparticle to biomedically active proteins. We hereby report...

  16. Focus on polymer chemistry papers in Science in China Series B:Chemistry of the year 2009

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The journal Science in China Series B:Chemistry published 11 and 37 papers in polymer fields in 2008 and 2009,respectively,leading to a percentage increase of 236% and thereby a great historic breakthrough of the journal.These papers mainly focus on three fields:(1) polymer synthesis,(2) functional polymer materials and (3) biomedical polymers.Several research groups published a series of papers in Science in China Series B:Chemistry and detailedly introduced their works in the related fields.

  17. Science Bubbles

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella; Pedersen, David Budtz

    2013-01-01

    Much like the trade and trait sof bubbles in financial markets,similar bubbles appear on the science market. When economic bubbles burst, the drop in prices causes the crash of unsustainable investments leading to an investor confidence crisis possibly followed by a financial panic. But when...... bubbles appear in science, truth and reliability are the first victims. This paper explores how fashions in research funding and research management may turn science into something like a bubble economy....

  18. Semiconducting silicon nanowires for biomedical applications

    CERN Document Server

    Coffer, JL

    2014-01-01

    Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffol

  19. [Open access :an opportunity for biomedical research].

    OpenAIRE

    Duchange, Nathalie; Autard, Delphine; Pinhas, Nicole

    2008-01-01

    International audience Open access within the scientific community depends on the scientific context and the practices of the field. In the biomedical domain, the communication of research results is characterised by the importance of the peer reviewing process, the existence of a hierarchy among journals and the transfer of copyright to the editor. Biomedical publishing has become a lucrative market and the growth of electronic journals has not helped lower the costs. Indeed, it is diffic...

  20. Biomedical photonics handbook therapeutics and advanced biophotonics

    CERN Document Server

    Vo-Dinh, Tuan

    2014-01-01

    Shaped by Quantum Theory, Technology, and the Genomics RevolutionThe integration of photonics, electronics, biomaterials, and nanotechnology holds great promise for the future of medicine. This topic has recently experienced an explosive growth due to the noninvasive or minimally invasive nature and the cost-effectiveness of photonic modalities in medical diagnostics and therapy. The second edition of the Biomedical Photonics Handbook presents recent fundamental developments as well as important applications of biomedical photonics of interest to scientists, engineers, manufacturers, teachers,